1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 struct net_device *dev,
177 struct netlink_ext_ack *extack);
178
179 static DEFINE_MUTEX(ifalias_mutex);
180
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186
dev_base_seq_inc(struct net * net)187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 unsigned int val = net->dev_base_seq + 1;
190
191 WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193
dev_name_hash(struct net * net,const char * name)194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197
198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200
dev_index_hash(struct net * net,int ifindex)201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205
206 #ifndef CONFIG_PREEMPT_RT
207
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209
setup_backlog_napi_threads(char * arg)210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 static_branch_enable(&use_backlog_threads_key);
213 return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216
use_backlog_threads(void)217 static bool use_backlog_threads(void)
218 {
219 return static_branch_unlikely(&use_backlog_threads_key);
220 }
221
222 #else
223
use_backlog_threads(void)224 static bool use_backlog_threads(void)
225 {
226 return true;
227 }
228
229 #endif
230
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 unsigned long *flags)
233 {
234 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 } else {
237 local_irq_save(*flags);
238 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
239 spin_lock(&sd->input_pkt_queue.lock);
240 }
241 }
242
backlog_lock_irq_disable(struct softnet_data * sd)243 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
244 {
245 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
246 spin_lock_irq(&sd->input_pkt_queue.lock);
247 else
248 local_irq_disable();
249 }
250
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long flags)251 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
252 unsigned long flags)
253 {
254 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
255 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, flags);
256 } else {
257 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258 spin_unlock(&sd->input_pkt_queue.lock);
259 local_irq_restore(flags);
260 }
261 }
262
backlog_unlock_irq_enable(struct softnet_data * sd)263 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
264 {
265 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
266 spin_unlock_irq(&sd->input_pkt_queue.lock);
267 else
268 local_irq_enable();
269 }
270
netdev_name_node_alloc(struct net_device * dev,const char * name)271 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
272 const char *name)
273 {
274 struct netdev_name_node *name_node;
275
276 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
277 if (!name_node)
278 return NULL;
279 INIT_HLIST_NODE(&name_node->hlist);
280 name_node->dev = dev;
281 name_node->name = name;
282 return name_node;
283 }
284
285 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)286 netdev_name_node_head_alloc(struct net_device *dev)
287 {
288 struct netdev_name_node *name_node;
289
290 name_node = netdev_name_node_alloc(dev, dev->name);
291 if (!name_node)
292 return NULL;
293 INIT_LIST_HEAD(&name_node->list);
294 return name_node;
295 }
296
netdev_name_node_free(struct netdev_name_node * name_node)297 static void netdev_name_node_free(struct netdev_name_node *name_node)
298 {
299 kfree(name_node);
300 }
301
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)302 static void netdev_name_node_add(struct net *net,
303 struct netdev_name_node *name_node)
304 {
305 hlist_add_head_rcu(&name_node->hlist,
306 dev_name_hash(net, name_node->name));
307 }
308
netdev_name_node_del(struct netdev_name_node * name_node)309 static void netdev_name_node_del(struct netdev_name_node *name_node)
310 {
311 hlist_del_rcu(&name_node->hlist);
312 }
313
netdev_name_node_lookup(struct net * net,const char * name)314 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
315 const char *name)
316 {
317 struct hlist_head *head = dev_name_hash(net, name);
318 struct netdev_name_node *name_node;
319
320 hlist_for_each_entry(name_node, head, hlist)
321 if (!strcmp(name_node->name, name))
322 return name_node;
323 return NULL;
324 }
325
netdev_name_node_lookup_rcu(struct net * net,const char * name)326 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
327 const char *name)
328 {
329 struct hlist_head *head = dev_name_hash(net, name);
330 struct netdev_name_node *name_node;
331
332 hlist_for_each_entry_rcu(name_node, head, hlist)
333 if (!strcmp(name_node->name, name))
334 return name_node;
335 return NULL;
336 }
337
netdev_name_in_use(struct net * net,const char * name)338 bool netdev_name_in_use(struct net *net, const char *name)
339 {
340 return netdev_name_node_lookup(net, name);
341 }
342 EXPORT_SYMBOL(netdev_name_in_use);
343
netdev_name_node_alt_create(struct net_device * dev,const char * name)344 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
345 {
346 struct netdev_name_node *name_node;
347 struct net *net = dev_net(dev);
348
349 name_node = netdev_name_node_lookup(net, name);
350 if (name_node)
351 return -EEXIST;
352 name_node = netdev_name_node_alloc(dev, name);
353 if (!name_node)
354 return -ENOMEM;
355 netdev_name_node_add(net, name_node);
356 /* The node that holds dev->name acts as a head of per-device list. */
357 list_add_tail_rcu(&name_node->list, &dev->name_node->list);
358
359 return 0;
360 }
361
netdev_name_node_alt_free(struct rcu_head * head)362 static void netdev_name_node_alt_free(struct rcu_head *head)
363 {
364 struct netdev_name_node *name_node =
365 container_of(head, struct netdev_name_node, rcu);
366
367 kfree(name_node->name);
368 netdev_name_node_free(name_node);
369 }
370
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)371 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
372 {
373 netdev_name_node_del(name_node);
374 list_del(&name_node->list);
375 call_rcu(&name_node->rcu, netdev_name_node_alt_free);
376 }
377
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)378 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
379 {
380 struct netdev_name_node *name_node;
381 struct net *net = dev_net(dev);
382
383 name_node = netdev_name_node_lookup(net, name);
384 if (!name_node)
385 return -ENOENT;
386 /* lookup might have found our primary name or a name belonging
387 * to another device.
388 */
389 if (name_node == dev->name_node || name_node->dev != dev)
390 return -EINVAL;
391
392 __netdev_name_node_alt_destroy(name_node);
393 return 0;
394 }
395
netdev_name_node_alt_flush(struct net_device * dev)396 static void netdev_name_node_alt_flush(struct net_device *dev)
397 {
398 struct netdev_name_node *name_node, *tmp;
399
400 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
401 list_del(&name_node->list);
402 netdev_name_node_alt_free(&name_node->rcu);
403 }
404 }
405
406 /* Device list insertion */
list_netdevice(struct net_device * dev)407 static void list_netdevice(struct net_device *dev)
408 {
409 struct netdev_name_node *name_node;
410 struct net *net = dev_net(dev);
411
412 ASSERT_RTNL();
413
414 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
415 netdev_name_node_add(net, dev->name_node);
416 hlist_add_head_rcu(&dev->index_hlist,
417 dev_index_hash(net, dev->ifindex));
418
419 netdev_for_each_altname(dev, name_node)
420 netdev_name_node_add(net, name_node);
421
422 /* We reserved the ifindex, this can't fail */
423 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
424
425 dev_base_seq_inc(net);
426 }
427
428 /* Device list removal
429 * caller must respect a RCU grace period before freeing/reusing dev
430 */
unlist_netdevice(struct net_device * dev)431 static void unlist_netdevice(struct net_device *dev)
432 {
433 struct netdev_name_node *name_node;
434 struct net *net = dev_net(dev);
435
436 ASSERT_RTNL();
437
438 xa_erase(&net->dev_by_index, dev->ifindex);
439
440 netdev_for_each_altname(dev, name_node)
441 netdev_name_node_del(name_node);
442
443 /* Unlink dev from the device chain */
444 list_del_rcu(&dev->dev_list);
445 netdev_name_node_del(dev->name_node);
446 hlist_del_rcu(&dev->index_hlist);
447
448 dev_base_seq_inc(dev_net(dev));
449 }
450
451 /*
452 * Our notifier list
453 */
454
455 static RAW_NOTIFIER_HEAD(netdev_chain);
456
457 /*
458 * Device drivers call our routines to queue packets here. We empty the
459 * queue in the local softnet handler.
460 */
461
462 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
463 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
464 };
465 EXPORT_PER_CPU_SYMBOL(softnet_data);
466
467 /* Page_pool has a lockless array/stack to alloc/recycle pages.
468 * PP consumers must pay attention to run APIs in the appropriate context
469 * (e.g. NAPI context).
470 */
471 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
472 .bh_lock = INIT_LOCAL_LOCK(bh_lock),
473 };
474
475 #ifdef CONFIG_LOCKDEP
476 /*
477 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
478 * according to dev->type
479 */
480 static const unsigned short netdev_lock_type[] = {
481 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
482 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
483 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
484 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
485 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
486 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
487 ARPHRD_CAN, ARPHRD_MCTP,
488 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
489 ARPHRD_RAWHDLC, ARPHRD_RAWIP,
490 ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
491 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
492 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
493 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
494 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
495 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
496 ARPHRD_IEEE80211_RADIOTAP,
497 ARPHRD_IEEE802154, ARPHRD_IEEE802154_MONITOR,
498 ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
499 ARPHRD_CAIF, ARPHRD_IP6GRE, ARPHRD_NETLINK, ARPHRD_6LOWPAN,
500 ARPHRD_VSOCKMON,
501 ARPHRD_VOID, ARPHRD_NONE};
502
503 static const char *const netdev_lock_name[] = {
504 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
505 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
506 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
507 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
508 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
509 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
510 "_xmit_CAN", "_xmit_MCTP",
511 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
512 "_xmit_RAWHDLC", "_xmit_RAWIP",
513 "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
514 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
515 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
516 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
517 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
518 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
519 "_xmit_IEEE80211_RADIOTAP",
520 "_xmit_IEEE802154", "_xmit_IEEE802154_MONITOR",
521 "_xmit_PHONET", "_xmit_PHONET_PIPE",
522 "_xmit_CAIF", "_xmit_IP6GRE", "_xmit_NETLINK", "_xmit_6LOWPAN",
523 "_xmit_VSOCKMON",
524 "_xmit_VOID", "_xmit_NONE"};
525
526 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
527 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
528
netdev_lock_pos(unsigned short dev_type)529 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
530 {
531 int i;
532
533 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
534 if (netdev_lock_type[i] == dev_type)
535 return i;
536 /* the last key is used by default */
537 WARN_ONCE(1, "netdev_lock_pos() could not find dev_type=%u\n", dev_type);
538 return ARRAY_SIZE(netdev_lock_type) - 1;
539 }
540
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)541 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
542 unsigned short dev_type)
543 {
544 int i;
545
546 i = netdev_lock_pos(dev_type);
547 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
548 netdev_lock_name[i]);
549 }
550
netdev_set_addr_lockdep_class(struct net_device * dev)551 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
552 {
553 int i;
554
555 i = netdev_lock_pos(dev->type);
556 lockdep_set_class_and_name(&dev->addr_list_lock,
557 &netdev_addr_lock_key[i],
558 netdev_lock_name[i]);
559 }
560 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)561 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
562 unsigned short dev_type)
563 {
564 }
565
netdev_set_addr_lockdep_class(struct net_device * dev)566 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
567 {
568 }
569 #endif
570
571 /*******************************************************************************
572 *
573 * Protocol management and registration routines
574 *
575 *******************************************************************************/
576
577
578 /*
579 * Add a protocol ID to the list. Now that the input handler is
580 * smarter we can dispense with all the messy stuff that used to be
581 * here.
582 *
583 * BEWARE!!! Protocol handlers, mangling input packets,
584 * MUST BE last in hash buckets and checking protocol handlers
585 * MUST start from promiscuous ptype_all chain in net_bh.
586 * It is true now, do not change it.
587 * Explanation follows: if protocol handler, mangling packet, will
588 * be the first on list, it is not able to sense, that packet
589 * is cloned and should be copied-on-write, so that it will
590 * change it and subsequent readers will get broken packet.
591 * --ANK (980803)
592 */
593
ptype_head(const struct packet_type * pt)594 static inline struct list_head *ptype_head(const struct packet_type *pt)
595 {
596 if (pt->type == htons(ETH_P_ALL)) {
597 if (!pt->af_packet_net && !pt->dev)
598 return NULL;
599
600 return pt->dev ? &pt->dev->ptype_all :
601 &pt->af_packet_net->ptype_all;
602 }
603
604 if (pt->dev)
605 return &pt->dev->ptype_specific;
606
607 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
608 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
609 }
610
611 /**
612 * dev_add_pack - add packet handler
613 * @pt: packet type declaration
614 *
615 * Add a protocol handler to the networking stack. The passed &packet_type
616 * is linked into kernel lists and may not be freed until it has been
617 * removed from the kernel lists.
618 *
619 * This call does not sleep therefore it can not
620 * guarantee all CPU's that are in middle of receiving packets
621 * will see the new packet type (until the next received packet).
622 */
623
dev_add_pack(struct packet_type * pt)624 void dev_add_pack(struct packet_type *pt)
625 {
626 struct list_head *head = ptype_head(pt);
627
628 if (WARN_ON_ONCE(!head))
629 return;
630
631 spin_lock(&ptype_lock);
632 list_add_rcu(&pt->list, head);
633 spin_unlock(&ptype_lock);
634 }
635 EXPORT_SYMBOL(dev_add_pack);
636
637 /**
638 * __dev_remove_pack - remove packet handler
639 * @pt: packet type declaration
640 *
641 * Remove a protocol handler that was previously added to the kernel
642 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
643 * from the kernel lists and can be freed or reused once this function
644 * returns.
645 *
646 * The packet type might still be in use by receivers
647 * and must not be freed until after all the CPU's have gone
648 * through a quiescent state.
649 */
__dev_remove_pack(struct packet_type * pt)650 void __dev_remove_pack(struct packet_type *pt)
651 {
652 struct list_head *head = ptype_head(pt);
653 struct packet_type *pt1;
654
655 if (!head)
656 return;
657
658 spin_lock(&ptype_lock);
659
660 list_for_each_entry(pt1, head, list) {
661 if (pt == pt1) {
662 list_del_rcu(&pt->list);
663 goto out;
664 }
665 }
666
667 pr_warn("dev_remove_pack: %p not found\n", pt);
668 out:
669 spin_unlock(&ptype_lock);
670 }
671 EXPORT_SYMBOL(__dev_remove_pack);
672
673 /**
674 * dev_remove_pack - remove packet handler
675 * @pt: packet type declaration
676 *
677 * Remove a protocol handler that was previously added to the kernel
678 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
679 * from the kernel lists and can be freed or reused once this function
680 * returns.
681 *
682 * This call sleeps to guarantee that no CPU is looking at the packet
683 * type after return.
684 */
dev_remove_pack(struct packet_type * pt)685 void dev_remove_pack(struct packet_type *pt)
686 {
687 __dev_remove_pack(pt);
688
689 synchronize_net();
690 }
691 EXPORT_SYMBOL(dev_remove_pack);
692
693
694 /*******************************************************************************
695 *
696 * Device Interface Subroutines
697 *
698 *******************************************************************************/
699
700 /**
701 * dev_get_iflink - get 'iflink' value of a interface
702 * @dev: targeted interface
703 *
704 * Indicates the ifindex the interface is linked to.
705 * Physical interfaces have the same 'ifindex' and 'iflink' values.
706 */
707
dev_get_iflink(const struct net_device * dev)708 int dev_get_iflink(const struct net_device *dev)
709 {
710 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
711 return dev->netdev_ops->ndo_get_iflink(dev);
712
713 return READ_ONCE(dev->ifindex);
714 }
715 EXPORT_SYMBOL(dev_get_iflink);
716
717 /**
718 * dev_fill_metadata_dst - Retrieve tunnel egress information.
719 * @dev: targeted interface
720 * @skb: The packet.
721 *
722 * For better visibility of tunnel traffic OVS needs to retrieve
723 * egress tunnel information for a packet. Following API allows
724 * user to get this info.
725 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)726 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
727 {
728 struct ip_tunnel_info *info;
729
730 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
731 return -EINVAL;
732
733 info = skb_tunnel_info_unclone(skb);
734 if (!info)
735 return -ENOMEM;
736 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
737 return -EINVAL;
738
739 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
740 }
741 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
742
dev_fwd_path(struct net_device_path_stack * stack)743 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
744 {
745 int k = stack->num_paths++;
746
747 if (k >= NET_DEVICE_PATH_STACK_MAX)
748 return NULL;
749
750 return &stack->path[k];
751 }
752
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)753 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
754 struct net_device_path_stack *stack)
755 {
756 const struct net_device *last_dev;
757 struct net_device_path_ctx ctx = {
758 .dev = dev,
759 };
760 struct net_device_path *path;
761 int ret = 0;
762
763 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
764 stack->num_paths = 0;
765 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
766 last_dev = ctx.dev;
767 path = dev_fwd_path(stack);
768 if (!path)
769 return -1;
770
771 memset(path, 0, sizeof(struct net_device_path));
772 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
773 if (ret < 0)
774 return -1;
775
776 if (WARN_ON_ONCE(last_dev == ctx.dev))
777 return -1;
778 }
779
780 if (!ctx.dev)
781 return ret;
782
783 path = dev_fwd_path(stack);
784 if (!path)
785 return -1;
786 path->type = DEV_PATH_ETHERNET;
787 path->dev = ctx.dev;
788
789 return ret;
790 }
791 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
792
793 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)794 static struct napi_struct *napi_by_id(unsigned int napi_id)
795 {
796 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
797 struct napi_struct *napi;
798
799 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
800 if (napi->napi_id == napi_id)
801 return napi;
802
803 return NULL;
804 }
805
806 /* must be called under rcu_read_lock(), as we dont take a reference */
807 static struct napi_struct *
netdev_napi_by_id(struct net * net,unsigned int napi_id)808 netdev_napi_by_id(struct net *net, unsigned int napi_id)
809 {
810 struct napi_struct *napi;
811
812 napi = napi_by_id(napi_id);
813 if (!napi)
814 return NULL;
815
816 if (WARN_ON_ONCE(!napi->dev))
817 return NULL;
818 if (!net_eq(net, dev_net(napi->dev)))
819 return NULL;
820
821 return napi;
822 }
823
824 /**
825 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
826 * @net: the applicable net namespace
827 * @napi_id: ID of a NAPI of a target device
828 *
829 * Find a NAPI instance with @napi_id. Lock its device.
830 * The device must be in %NETREG_REGISTERED state for lookup to succeed.
831 * netdev_unlock() must be called to release it.
832 *
833 * Return: pointer to NAPI, its device with lock held, NULL if not found.
834 */
835 struct napi_struct *
netdev_napi_by_id_lock(struct net * net,unsigned int napi_id)836 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
837 {
838 struct napi_struct *napi;
839 struct net_device *dev;
840
841 rcu_read_lock();
842 napi = netdev_napi_by_id(net, napi_id);
843 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
844 rcu_read_unlock();
845 return NULL;
846 }
847
848 dev = napi->dev;
849 dev_hold(dev);
850 rcu_read_unlock();
851
852 dev = __netdev_put_lock(dev, net);
853 if (!dev)
854 return NULL;
855
856 rcu_read_lock();
857 napi = netdev_napi_by_id(net, napi_id);
858 if (napi && napi->dev != dev)
859 napi = NULL;
860 rcu_read_unlock();
861
862 if (!napi)
863 netdev_unlock(dev);
864 return napi;
865 }
866
867 /**
868 * __dev_get_by_name - find a device by its name
869 * @net: the applicable net namespace
870 * @name: name to find
871 *
872 * Find an interface by name. Must be called under RTNL semaphore.
873 * If the name is found a pointer to the device is returned.
874 * If the name is not found then %NULL is returned. The
875 * reference counters are not incremented so the caller must be
876 * careful with locks.
877 */
878
__dev_get_by_name(struct net * net,const char * name)879 struct net_device *__dev_get_by_name(struct net *net, const char *name)
880 {
881 struct netdev_name_node *node_name;
882
883 node_name = netdev_name_node_lookup(net, name);
884 return node_name ? node_name->dev : NULL;
885 }
886 EXPORT_SYMBOL(__dev_get_by_name);
887
888 /**
889 * dev_get_by_name_rcu - find a device by its name
890 * @net: the applicable net namespace
891 * @name: name to find
892 *
893 * Find an interface by name.
894 * If the name is found a pointer to the device is returned.
895 * If the name is not found then %NULL is returned.
896 * The reference counters are not incremented so the caller must be
897 * careful with locks. The caller must hold RCU lock.
898 */
899
dev_get_by_name_rcu(struct net * net,const char * name)900 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
901 {
902 struct netdev_name_node *node_name;
903
904 node_name = netdev_name_node_lookup_rcu(net, name);
905 return node_name ? node_name->dev : NULL;
906 }
907 EXPORT_SYMBOL(dev_get_by_name_rcu);
908
909 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)910 struct net_device *dev_get_by_name(struct net *net, const char *name)
911 {
912 struct net_device *dev;
913
914 rcu_read_lock();
915 dev = dev_get_by_name_rcu(net, name);
916 dev_hold(dev);
917 rcu_read_unlock();
918 return dev;
919 }
920 EXPORT_SYMBOL(dev_get_by_name);
921
922 /**
923 * netdev_get_by_name() - find a device by its name
924 * @net: the applicable net namespace
925 * @name: name to find
926 * @tracker: tracking object for the acquired reference
927 * @gfp: allocation flags for the tracker
928 *
929 * Find an interface by name. This can be called from any
930 * context and does its own locking. The returned handle has
931 * the usage count incremented and the caller must use netdev_put() to
932 * release it when it is no longer needed. %NULL is returned if no
933 * matching device is found.
934 */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)935 struct net_device *netdev_get_by_name(struct net *net, const char *name,
936 netdevice_tracker *tracker, gfp_t gfp)
937 {
938 struct net_device *dev;
939
940 dev = dev_get_by_name(net, name);
941 if (dev)
942 netdev_tracker_alloc(dev, tracker, gfp);
943 return dev;
944 }
945 EXPORT_SYMBOL(netdev_get_by_name);
946
947 /**
948 * __dev_get_by_index - find a device by its ifindex
949 * @net: the applicable net namespace
950 * @ifindex: index of device
951 *
952 * Search for an interface by index. Returns %NULL if the device
953 * is not found or a pointer to the device. The device has not
954 * had its reference counter increased so the caller must be careful
955 * about locking. The caller must hold the RTNL semaphore.
956 */
957
__dev_get_by_index(struct net * net,int ifindex)958 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
959 {
960 struct net_device *dev;
961 struct hlist_head *head = dev_index_hash(net, ifindex);
962
963 hlist_for_each_entry(dev, head, index_hlist)
964 if (dev->ifindex == ifindex)
965 return dev;
966
967 return NULL;
968 }
969 EXPORT_SYMBOL(__dev_get_by_index);
970
971 /**
972 * dev_get_by_index_rcu - find a device by its ifindex
973 * @net: the applicable net namespace
974 * @ifindex: index of device
975 *
976 * Search for an interface by index. Returns %NULL if the device
977 * is not found or a pointer to the device. The device has not
978 * had its reference counter increased so the caller must be careful
979 * about locking. The caller must hold RCU lock.
980 */
981
dev_get_by_index_rcu(struct net * net,int ifindex)982 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
983 {
984 struct net_device *dev;
985 struct hlist_head *head = dev_index_hash(net, ifindex);
986
987 hlist_for_each_entry_rcu(dev, head, index_hlist)
988 if (dev->ifindex == ifindex)
989 return dev;
990
991 return NULL;
992 }
993 EXPORT_SYMBOL(dev_get_by_index_rcu);
994
995 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)996 struct net_device *dev_get_by_index(struct net *net, int ifindex)
997 {
998 struct net_device *dev;
999
1000 rcu_read_lock();
1001 dev = dev_get_by_index_rcu(net, ifindex);
1002 dev_hold(dev);
1003 rcu_read_unlock();
1004 return dev;
1005 }
1006 EXPORT_SYMBOL(dev_get_by_index);
1007
1008 /**
1009 * netdev_get_by_index() - find a device by its ifindex
1010 * @net: the applicable net namespace
1011 * @ifindex: index of device
1012 * @tracker: tracking object for the acquired reference
1013 * @gfp: allocation flags for the tracker
1014 *
1015 * Search for an interface by index. Returns NULL if the device
1016 * is not found or a pointer to the device. The device returned has
1017 * had a reference added and the pointer is safe until the user calls
1018 * netdev_put() to indicate they have finished with it.
1019 */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)1020 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1021 netdevice_tracker *tracker, gfp_t gfp)
1022 {
1023 struct net_device *dev;
1024
1025 dev = dev_get_by_index(net, ifindex);
1026 if (dev)
1027 netdev_tracker_alloc(dev, tracker, gfp);
1028 return dev;
1029 }
1030 EXPORT_SYMBOL(netdev_get_by_index);
1031
1032 /**
1033 * dev_get_by_napi_id - find a device by napi_id
1034 * @napi_id: ID of the NAPI struct
1035 *
1036 * Search for an interface by NAPI ID. Returns %NULL if the device
1037 * is not found or a pointer to the device. The device has not had
1038 * its reference counter increased so the caller must be careful
1039 * about locking. The caller must hold RCU lock.
1040 */
dev_get_by_napi_id(unsigned int napi_id)1041 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1042 {
1043 struct napi_struct *napi;
1044
1045 WARN_ON_ONCE(!rcu_read_lock_held());
1046
1047 if (!napi_id_valid(napi_id))
1048 return NULL;
1049
1050 napi = napi_by_id(napi_id);
1051
1052 return napi ? napi->dev : NULL;
1053 }
1054
1055 /* Release the held reference on the net_device, and if the net_device
1056 * is still registered try to lock the instance lock. If device is being
1057 * unregistered NULL will be returned (but the reference has been released,
1058 * either way!)
1059 *
1060 * This helper is intended for locking net_device after it has been looked up
1061 * using a lockless lookup helper. Lock prevents the instance from going away.
1062 */
__netdev_put_lock(struct net_device * dev,struct net * net)1063 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1064 {
1065 netdev_lock(dev);
1066 if (dev->reg_state > NETREG_REGISTERED ||
1067 dev->moving_ns || !net_eq(dev_net(dev), net)) {
1068 netdev_unlock(dev);
1069 dev_put(dev);
1070 return NULL;
1071 }
1072 dev_put(dev);
1073 return dev;
1074 }
1075
1076 static struct net_device *
__netdev_put_lock_ops_compat(struct net_device * dev,struct net * net)1077 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1078 {
1079 netdev_lock_ops_compat(dev);
1080 if (dev->reg_state > NETREG_REGISTERED ||
1081 dev->moving_ns || !net_eq(dev_net(dev), net)) {
1082 netdev_unlock_ops_compat(dev);
1083 dev_put(dev);
1084 return NULL;
1085 }
1086 dev_put(dev);
1087 return dev;
1088 }
1089
1090 /**
1091 * netdev_get_by_index_lock() - find a device by its ifindex
1092 * @net: the applicable net namespace
1093 * @ifindex: index of device
1094 *
1095 * Search for an interface by index. If a valid device
1096 * with @ifindex is found it will be returned with netdev->lock held.
1097 * netdev_unlock() must be called to release it.
1098 *
1099 * Return: pointer to a device with lock held, NULL if not found.
1100 */
netdev_get_by_index_lock(struct net * net,int ifindex)1101 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1102 {
1103 struct net_device *dev;
1104
1105 dev = dev_get_by_index(net, ifindex);
1106 if (!dev)
1107 return NULL;
1108
1109 return __netdev_put_lock(dev, net);
1110 }
1111
1112 struct net_device *
netdev_get_by_index_lock_ops_compat(struct net * net,int ifindex)1113 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1114 {
1115 struct net_device *dev;
1116
1117 dev = dev_get_by_index(net, ifindex);
1118 if (!dev)
1119 return NULL;
1120
1121 return __netdev_put_lock_ops_compat(dev, net);
1122 }
1123
1124 struct net_device *
netdev_xa_find_lock(struct net * net,struct net_device * dev,unsigned long * index)1125 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1126 unsigned long *index)
1127 {
1128 if (dev)
1129 netdev_unlock(dev);
1130
1131 do {
1132 rcu_read_lock();
1133 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1134 if (!dev) {
1135 rcu_read_unlock();
1136 return NULL;
1137 }
1138 dev_hold(dev);
1139 rcu_read_unlock();
1140
1141 dev = __netdev_put_lock(dev, net);
1142 if (dev)
1143 return dev;
1144
1145 (*index)++;
1146 } while (true);
1147 }
1148
1149 struct net_device *
netdev_xa_find_lock_ops_compat(struct net * net,struct net_device * dev,unsigned long * index)1150 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1151 unsigned long *index)
1152 {
1153 if (dev)
1154 netdev_unlock_ops_compat(dev);
1155
1156 do {
1157 rcu_read_lock();
1158 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1159 if (!dev) {
1160 rcu_read_unlock();
1161 return NULL;
1162 }
1163 dev_hold(dev);
1164 rcu_read_unlock();
1165
1166 dev = __netdev_put_lock_ops_compat(dev, net);
1167 if (dev)
1168 return dev;
1169
1170 (*index)++;
1171 } while (true);
1172 }
1173
1174 static DEFINE_SEQLOCK(netdev_rename_lock);
1175
netdev_copy_name(struct net_device * dev,char * name)1176 void netdev_copy_name(struct net_device *dev, char *name)
1177 {
1178 unsigned int seq;
1179
1180 do {
1181 seq = read_seqbegin(&netdev_rename_lock);
1182 strscpy(name, dev->name, IFNAMSIZ);
1183 } while (read_seqretry(&netdev_rename_lock, seq));
1184 }
1185 EXPORT_IPV6_MOD_GPL(netdev_copy_name);
1186
1187 /**
1188 * netdev_get_name - get a netdevice name, knowing its ifindex.
1189 * @net: network namespace
1190 * @name: a pointer to the buffer where the name will be stored.
1191 * @ifindex: the ifindex of the interface to get the name from.
1192 */
netdev_get_name(struct net * net,char * name,int ifindex)1193 int netdev_get_name(struct net *net, char *name, int ifindex)
1194 {
1195 struct net_device *dev;
1196 int ret;
1197
1198 rcu_read_lock();
1199
1200 dev = dev_get_by_index_rcu(net, ifindex);
1201 if (!dev) {
1202 ret = -ENODEV;
1203 goto out;
1204 }
1205
1206 netdev_copy_name(dev, name);
1207
1208 ret = 0;
1209 out:
1210 rcu_read_unlock();
1211 return ret;
1212 }
1213
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1214 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1215 const char *ha)
1216 {
1217 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1218 }
1219
1220 /**
1221 * dev_getbyhwaddr_rcu - find a device by its hardware address
1222 * @net: the applicable net namespace
1223 * @type: media type of device
1224 * @ha: hardware address
1225 *
1226 * Search for an interface by MAC address. Returns NULL if the device
1227 * is not found or a pointer to the device.
1228 * The caller must hold RCU.
1229 * The returned device has not had its ref count increased
1230 * and the caller must therefore be careful about locking
1231 *
1232 */
1233
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1234 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1235 const char *ha)
1236 {
1237 struct net_device *dev;
1238
1239 for_each_netdev_rcu(net, dev)
1240 if (dev_addr_cmp(dev, type, ha))
1241 return dev;
1242
1243 return NULL;
1244 }
1245 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1246
1247 /**
1248 * dev_getbyhwaddr() - find a device by its hardware address
1249 * @net: the applicable net namespace
1250 * @type: media type of device
1251 * @ha: hardware address
1252 *
1253 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1254 * rtnl_lock.
1255 *
1256 * Context: rtnl_lock() must be held.
1257 * Return: pointer to the net_device, or NULL if not found
1258 */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1259 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1260 const char *ha)
1261 {
1262 struct net_device *dev;
1263
1264 ASSERT_RTNL();
1265 for_each_netdev(net, dev)
1266 if (dev_addr_cmp(dev, type, ha))
1267 return dev;
1268
1269 return NULL;
1270 }
1271 EXPORT_SYMBOL(dev_getbyhwaddr);
1272
dev_getfirstbyhwtype(struct net * net,unsigned short type)1273 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1274 {
1275 struct net_device *dev, *ret = NULL;
1276
1277 rcu_read_lock();
1278 for_each_netdev_rcu(net, dev)
1279 if (dev->type == type) {
1280 dev_hold(dev);
1281 ret = dev;
1282 break;
1283 }
1284 rcu_read_unlock();
1285 return ret;
1286 }
1287 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1288
1289 /**
1290 * netdev_get_by_flags_rcu - find any device with given flags
1291 * @net: the applicable net namespace
1292 * @tracker: tracking object for the acquired reference
1293 * @if_flags: IFF_* values
1294 * @mask: bitmask of bits in if_flags to check
1295 *
1296 * Search for any interface with the given flags.
1297 *
1298 * Context: rcu_read_lock() must be held.
1299 * Returns: NULL if a device is not found or a pointer to the device.
1300 */
netdev_get_by_flags_rcu(struct net * net,netdevice_tracker * tracker,unsigned short if_flags,unsigned short mask)1301 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1302 unsigned short if_flags, unsigned short mask)
1303 {
1304 struct net_device *dev;
1305
1306 for_each_netdev_rcu(net, dev) {
1307 if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1308 netdev_hold(dev, tracker, GFP_ATOMIC);
1309 return dev;
1310 }
1311 }
1312
1313 return NULL;
1314 }
1315 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1316
1317 /**
1318 * dev_valid_name - check if name is okay for network device
1319 * @name: name string
1320 *
1321 * Network device names need to be valid file names to
1322 * allow sysfs to work. We also disallow any kind of
1323 * whitespace.
1324 */
dev_valid_name(const char * name)1325 bool dev_valid_name(const char *name)
1326 {
1327 if (*name == '\0')
1328 return false;
1329 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1330 return false;
1331 if (!strcmp(name, ".") || !strcmp(name, ".."))
1332 return false;
1333
1334 while (*name) {
1335 if (*name == '/' || *name == ':' || isspace(*name))
1336 return false;
1337 name++;
1338 }
1339 return true;
1340 }
1341 EXPORT_SYMBOL(dev_valid_name);
1342
1343 /**
1344 * __dev_alloc_name - allocate a name for a device
1345 * @net: network namespace to allocate the device name in
1346 * @name: name format string
1347 * @res: result name string
1348 *
1349 * Passed a format string - eg "lt%d" it will try and find a suitable
1350 * id. It scans list of devices to build up a free map, then chooses
1351 * the first empty slot. The caller must hold the dev_base or rtnl lock
1352 * while allocating the name and adding the device in order to avoid
1353 * duplicates.
1354 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1355 * Returns the number of the unit assigned or a negative errno code.
1356 */
1357
__dev_alloc_name(struct net * net,const char * name,char * res)1358 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1359 {
1360 int i = 0;
1361 const char *p;
1362 const int max_netdevices = 8*PAGE_SIZE;
1363 unsigned long *inuse;
1364 struct net_device *d;
1365 char buf[IFNAMSIZ];
1366
1367 /* Verify the string as this thing may have come from the user.
1368 * There must be one "%d" and no other "%" characters.
1369 */
1370 p = strchr(name, '%');
1371 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1372 return -EINVAL;
1373
1374 /* Use one page as a bit array of possible slots */
1375 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1376 if (!inuse)
1377 return -ENOMEM;
1378
1379 for_each_netdev(net, d) {
1380 struct netdev_name_node *name_node;
1381
1382 netdev_for_each_altname(d, name_node) {
1383 if (!sscanf(name_node->name, name, &i))
1384 continue;
1385 if (i < 0 || i >= max_netdevices)
1386 continue;
1387
1388 /* avoid cases where sscanf is not exact inverse of printf */
1389 snprintf(buf, IFNAMSIZ, name, i);
1390 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1391 __set_bit(i, inuse);
1392 }
1393 if (!sscanf(d->name, name, &i))
1394 continue;
1395 if (i < 0 || i >= max_netdevices)
1396 continue;
1397
1398 /* avoid cases where sscanf is not exact inverse of printf */
1399 snprintf(buf, IFNAMSIZ, name, i);
1400 if (!strncmp(buf, d->name, IFNAMSIZ))
1401 __set_bit(i, inuse);
1402 }
1403
1404 i = find_first_zero_bit(inuse, max_netdevices);
1405 bitmap_free(inuse);
1406 if (i == max_netdevices)
1407 return -ENFILE;
1408
1409 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1410 strscpy(buf, name, IFNAMSIZ);
1411 snprintf(res, IFNAMSIZ, buf, i);
1412 return i;
1413 }
1414
1415 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1416 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1417 const char *want_name, char *out_name,
1418 int dup_errno)
1419 {
1420 if (!dev_valid_name(want_name))
1421 return -EINVAL;
1422
1423 if (strchr(want_name, '%'))
1424 return __dev_alloc_name(net, want_name, out_name);
1425
1426 if (netdev_name_in_use(net, want_name))
1427 return -dup_errno;
1428 if (out_name != want_name)
1429 strscpy(out_name, want_name, IFNAMSIZ);
1430 return 0;
1431 }
1432
1433 /**
1434 * dev_alloc_name - allocate a name for a device
1435 * @dev: device
1436 * @name: name format string
1437 *
1438 * Passed a format string - eg "lt%d" it will try and find a suitable
1439 * id. It scans list of devices to build up a free map, then chooses
1440 * the first empty slot. The caller must hold the dev_base or rtnl lock
1441 * while allocating the name and adding the device in order to avoid
1442 * duplicates.
1443 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1444 * Returns the number of the unit assigned or a negative errno code.
1445 */
1446
dev_alloc_name(struct net_device * dev,const char * name)1447 int dev_alloc_name(struct net_device *dev, const char *name)
1448 {
1449 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1450 }
1451 EXPORT_SYMBOL(dev_alloc_name);
1452
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1453 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1454 const char *name)
1455 {
1456 int ret;
1457
1458 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1459 return ret < 0 ? ret : 0;
1460 }
1461
netif_change_name(struct net_device * dev,const char * newname)1462 int netif_change_name(struct net_device *dev, const char *newname)
1463 {
1464 struct net *net = dev_net(dev);
1465 unsigned char old_assign_type;
1466 char oldname[IFNAMSIZ];
1467 int err = 0;
1468 int ret;
1469
1470 ASSERT_RTNL_NET(net);
1471
1472 if (!strncmp(newname, dev->name, IFNAMSIZ))
1473 return 0;
1474
1475 memcpy(oldname, dev->name, IFNAMSIZ);
1476
1477 write_seqlock_bh(&netdev_rename_lock);
1478 err = dev_get_valid_name(net, dev, newname);
1479 write_sequnlock_bh(&netdev_rename_lock);
1480
1481 if (err < 0)
1482 return err;
1483
1484 if (oldname[0] && !strchr(oldname, '%'))
1485 netdev_info(dev, "renamed from %s%s\n", oldname,
1486 dev->flags & IFF_UP ? " (while UP)" : "");
1487
1488 old_assign_type = dev->name_assign_type;
1489 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1490
1491 rollback:
1492 ret = device_rename(&dev->dev, dev->name);
1493 if (ret) {
1494 write_seqlock_bh(&netdev_rename_lock);
1495 memcpy(dev->name, oldname, IFNAMSIZ);
1496 write_sequnlock_bh(&netdev_rename_lock);
1497 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1498 return ret;
1499 }
1500
1501 netdev_adjacent_rename_links(dev, oldname);
1502
1503 netdev_name_node_del(dev->name_node);
1504
1505 synchronize_net();
1506
1507 netdev_name_node_add(net, dev->name_node);
1508
1509 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1510 ret = notifier_to_errno(ret);
1511
1512 if (ret) {
1513 /* err >= 0 after dev_alloc_name() or stores the first errno */
1514 if (err >= 0) {
1515 err = ret;
1516 write_seqlock_bh(&netdev_rename_lock);
1517 memcpy(dev->name, oldname, IFNAMSIZ);
1518 write_sequnlock_bh(&netdev_rename_lock);
1519 memcpy(oldname, newname, IFNAMSIZ);
1520 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1521 old_assign_type = NET_NAME_RENAMED;
1522 goto rollback;
1523 } else {
1524 netdev_err(dev, "name change rollback failed: %d\n",
1525 ret);
1526 }
1527 }
1528
1529 return err;
1530 }
1531
netif_set_alias(struct net_device * dev,const char * alias,size_t len)1532 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1533 {
1534 struct dev_ifalias *new_alias = NULL;
1535
1536 if (len >= IFALIASZ)
1537 return -EINVAL;
1538
1539 if (len) {
1540 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1541 if (!new_alias)
1542 return -ENOMEM;
1543
1544 memcpy(new_alias->ifalias, alias, len);
1545 new_alias->ifalias[len] = 0;
1546 }
1547
1548 mutex_lock(&ifalias_mutex);
1549 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1550 mutex_is_locked(&ifalias_mutex));
1551 mutex_unlock(&ifalias_mutex);
1552
1553 if (new_alias)
1554 kfree_rcu(new_alias, rcuhead);
1555
1556 return len;
1557 }
1558
1559 /**
1560 * dev_get_alias - get ifalias of a device
1561 * @dev: device
1562 * @name: buffer to store name of ifalias
1563 * @len: size of buffer
1564 *
1565 * get ifalias for a device. Caller must make sure dev cannot go
1566 * away, e.g. rcu read lock or own a reference count to device.
1567 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1568 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1569 {
1570 const struct dev_ifalias *alias;
1571 int ret = 0;
1572
1573 rcu_read_lock();
1574 alias = rcu_dereference(dev->ifalias);
1575 if (alias)
1576 ret = snprintf(name, len, "%s", alias->ifalias);
1577 rcu_read_unlock();
1578
1579 return ret;
1580 }
1581
1582 /**
1583 * netdev_features_change - device changes features
1584 * @dev: device to cause notification
1585 *
1586 * Called to indicate a device has changed features.
1587 */
netdev_features_change(struct net_device * dev)1588 void netdev_features_change(struct net_device *dev)
1589 {
1590 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1591 }
1592 EXPORT_SYMBOL(netdev_features_change);
1593
netif_state_change(struct net_device * dev)1594 void netif_state_change(struct net_device *dev)
1595 {
1596 netdev_ops_assert_locked_or_invisible(dev);
1597
1598 if (dev->flags & IFF_UP) {
1599 struct netdev_notifier_change_info change_info = {
1600 .info.dev = dev,
1601 };
1602
1603 call_netdevice_notifiers_info(NETDEV_CHANGE,
1604 &change_info.info);
1605 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1606 }
1607 }
1608
1609 /**
1610 * __netdev_notify_peers - notify network peers about existence of @dev,
1611 * to be called when rtnl lock is already held.
1612 * @dev: network device
1613 *
1614 * Generate traffic such that interested network peers are aware of
1615 * @dev, such as by generating a gratuitous ARP. This may be used when
1616 * a device wants to inform the rest of the network about some sort of
1617 * reconfiguration such as a failover event or virtual machine
1618 * migration.
1619 */
__netdev_notify_peers(struct net_device * dev)1620 void __netdev_notify_peers(struct net_device *dev)
1621 {
1622 ASSERT_RTNL();
1623 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1624 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1625 }
1626 EXPORT_SYMBOL(__netdev_notify_peers);
1627
1628 /**
1629 * netdev_notify_peers - notify network peers about existence of @dev
1630 * @dev: network device
1631 *
1632 * Generate traffic such that interested network peers are aware of
1633 * @dev, such as by generating a gratuitous ARP. This may be used when
1634 * a device wants to inform the rest of the network about some sort of
1635 * reconfiguration such as a failover event or virtual machine
1636 * migration.
1637 */
netdev_notify_peers(struct net_device * dev)1638 void netdev_notify_peers(struct net_device *dev)
1639 {
1640 rtnl_lock();
1641 __netdev_notify_peers(dev);
1642 rtnl_unlock();
1643 }
1644 EXPORT_SYMBOL(netdev_notify_peers);
1645
1646 static int napi_threaded_poll(void *data);
1647
napi_kthread_create(struct napi_struct * n)1648 static int napi_kthread_create(struct napi_struct *n)
1649 {
1650 int err = 0;
1651
1652 /* Create and wake up the kthread once to put it in
1653 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1654 * warning and work with loadavg.
1655 */
1656 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1657 n->dev->name, n->napi_id);
1658 if (IS_ERR(n->thread)) {
1659 err = PTR_ERR(n->thread);
1660 pr_err("kthread_run failed with err %d\n", err);
1661 n->thread = NULL;
1662 }
1663
1664 return err;
1665 }
1666
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1667 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1668 {
1669 const struct net_device_ops *ops = dev->netdev_ops;
1670 int ret;
1671
1672 ASSERT_RTNL();
1673 dev_addr_check(dev);
1674
1675 if (!netif_device_present(dev)) {
1676 /* may be detached because parent is runtime-suspended */
1677 if (dev->dev.parent)
1678 pm_runtime_resume(dev->dev.parent);
1679 if (!netif_device_present(dev))
1680 return -ENODEV;
1681 }
1682
1683 /* Block netpoll from trying to do any rx path servicing.
1684 * If we don't do this there is a chance ndo_poll_controller
1685 * or ndo_poll may be running while we open the device
1686 */
1687 netpoll_poll_disable(dev);
1688
1689 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1690 ret = notifier_to_errno(ret);
1691 if (ret)
1692 return ret;
1693
1694 set_bit(__LINK_STATE_START, &dev->state);
1695
1696 netdev_ops_assert_locked(dev);
1697
1698 if (ops->ndo_validate_addr)
1699 ret = ops->ndo_validate_addr(dev);
1700
1701 if (!ret && ops->ndo_open)
1702 ret = ops->ndo_open(dev);
1703
1704 netpoll_poll_enable(dev);
1705
1706 if (ret)
1707 clear_bit(__LINK_STATE_START, &dev->state);
1708 else {
1709 netif_set_up(dev, true);
1710 dev_set_rx_mode(dev);
1711 dev_activate(dev);
1712 add_device_randomness(dev->dev_addr, dev->addr_len);
1713 }
1714
1715 return ret;
1716 }
1717
netif_open(struct net_device * dev,struct netlink_ext_ack * extack)1718 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1719 {
1720 int ret;
1721
1722 if (dev->flags & IFF_UP)
1723 return 0;
1724
1725 ret = __dev_open(dev, extack);
1726 if (ret < 0)
1727 return ret;
1728
1729 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1730 call_netdevice_notifiers(NETDEV_UP, dev);
1731
1732 return ret;
1733 }
1734
__dev_close_many(struct list_head * head)1735 static void __dev_close_many(struct list_head *head)
1736 {
1737 struct net_device *dev;
1738
1739 ASSERT_RTNL();
1740 might_sleep();
1741
1742 list_for_each_entry(dev, head, close_list) {
1743 /* Temporarily disable netpoll until the interface is down */
1744 netpoll_poll_disable(dev);
1745
1746 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1747
1748 clear_bit(__LINK_STATE_START, &dev->state);
1749
1750 /* Synchronize to scheduled poll. We cannot touch poll list, it
1751 * can be even on different cpu. So just clear netif_running().
1752 *
1753 * dev->stop() will invoke napi_disable() on all of it's
1754 * napi_struct instances on this device.
1755 */
1756 smp_mb__after_atomic(); /* Commit netif_running(). */
1757 }
1758
1759 dev_deactivate_many(head);
1760
1761 list_for_each_entry(dev, head, close_list) {
1762 const struct net_device_ops *ops = dev->netdev_ops;
1763
1764 /*
1765 * Call the device specific close. This cannot fail.
1766 * Only if device is UP
1767 *
1768 * We allow it to be called even after a DETACH hot-plug
1769 * event.
1770 */
1771
1772 netdev_ops_assert_locked(dev);
1773
1774 if (ops->ndo_stop)
1775 ops->ndo_stop(dev);
1776
1777 netif_set_up(dev, false);
1778 netpoll_poll_enable(dev);
1779 }
1780 }
1781
__dev_close(struct net_device * dev)1782 static void __dev_close(struct net_device *dev)
1783 {
1784 LIST_HEAD(single);
1785
1786 list_add(&dev->close_list, &single);
1787 __dev_close_many(&single);
1788 list_del(&single);
1789 }
1790
netif_close_many(struct list_head * head,bool unlink)1791 void netif_close_many(struct list_head *head, bool unlink)
1792 {
1793 struct net_device *dev, *tmp;
1794
1795 /* Remove the devices that don't need to be closed */
1796 list_for_each_entry_safe(dev, tmp, head, close_list)
1797 if (!(dev->flags & IFF_UP))
1798 list_del_init(&dev->close_list);
1799
1800 __dev_close_many(head);
1801
1802 list_for_each_entry_safe(dev, tmp, head, close_list) {
1803 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1804 call_netdevice_notifiers(NETDEV_DOWN, dev);
1805 if (unlink)
1806 list_del_init(&dev->close_list);
1807 }
1808 }
1809 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL");
1810
netif_close(struct net_device * dev)1811 void netif_close(struct net_device *dev)
1812 {
1813 if (dev->flags & IFF_UP) {
1814 LIST_HEAD(single);
1815
1816 list_add(&dev->close_list, &single);
1817 netif_close_many(&single, true);
1818 list_del(&single);
1819 }
1820 }
1821 EXPORT_SYMBOL(netif_close);
1822
netif_disable_lro(struct net_device * dev)1823 void netif_disable_lro(struct net_device *dev)
1824 {
1825 struct net_device *lower_dev;
1826 struct list_head *iter;
1827
1828 dev->wanted_features &= ~NETIF_F_LRO;
1829 netdev_update_features(dev);
1830
1831 if (unlikely(dev->features & NETIF_F_LRO))
1832 netdev_WARN(dev, "failed to disable LRO!\n");
1833
1834 netdev_for_each_lower_dev(dev, lower_dev, iter) {
1835 netdev_lock_ops(lower_dev);
1836 netif_disable_lro(lower_dev);
1837 netdev_unlock_ops(lower_dev);
1838 }
1839 }
1840 EXPORT_IPV6_MOD(netif_disable_lro);
1841
1842 /**
1843 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1844 * @dev: device
1845 *
1846 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1847 * called under RTNL. This is needed if Generic XDP is installed on
1848 * the device.
1849 */
dev_disable_gro_hw(struct net_device * dev)1850 static void dev_disable_gro_hw(struct net_device *dev)
1851 {
1852 dev->wanted_features &= ~NETIF_F_GRO_HW;
1853 netdev_update_features(dev);
1854
1855 if (unlikely(dev->features & NETIF_F_GRO_HW))
1856 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1857 }
1858
netdev_cmd_to_name(enum netdev_cmd cmd)1859 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1860 {
1861 #define N(val) \
1862 case NETDEV_##val: \
1863 return "NETDEV_" __stringify(val);
1864 switch (cmd) {
1865 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1866 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1867 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1868 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1869 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1870 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1871 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1872 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1873 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1874 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1875 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1876 N(XDP_FEAT_CHANGE)
1877 }
1878 #undef N
1879 return "UNKNOWN_NETDEV_EVENT";
1880 }
1881 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1882
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1883 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1884 struct net_device *dev)
1885 {
1886 struct netdev_notifier_info info = {
1887 .dev = dev,
1888 };
1889
1890 return nb->notifier_call(nb, val, &info);
1891 }
1892
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1893 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1894 struct net_device *dev)
1895 {
1896 int err;
1897
1898 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1899 err = notifier_to_errno(err);
1900 if (err)
1901 return err;
1902
1903 if (!(dev->flags & IFF_UP))
1904 return 0;
1905
1906 call_netdevice_notifier(nb, NETDEV_UP, dev);
1907 return 0;
1908 }
1909
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1910 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1911 struct net_device *dev)
1912 {
1913 if (dev->flags & IFF_UP) {
1914 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1915 dev);
1916 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1917 }
1918 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1919 }
1920
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1921 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1922 struct net *net)
1923 {
1924 struct net_device *dev;
1925 int err;
1926
1927 for_each_netdev(net, dev) {
1928 netdev_lock_ops(dev);
1929 err = call_netdevice_register_notifiers(nb, dev);
1930 netdev_unlock_ops(dev);
1931 if (err)
1932 goto rollback;
1933 }
1934 return 0;
1935
1936 rollback:
1937 for_each_netdev_continue_reverse(net, dev)
1938 call_netdevice_unregister_notifiers(nb, dev);
1939 return err;
1940 }
1941
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1942 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1943 struct net *net)
1944 {
1945 struct net_device *dev;
1946
1947 for_each_netdev(net, dev)
1948 call_netdevice_unregister_notifiers(nb, dev);
1949 }
1950
1951 static int dev_boot_phase = 1;
1952
1953 /**
1954 * register_netdevice_notifier - register a network notifier block
1955 * @nb: notifier
1956 *
1957 * Register a notifier to be called when network device events occur.
1958 * The notifier passed is linked into the kernel structures and must
1959 * not be reused until it has been unregistered. A negative errno code
1960 * is returned on a failure.
1961 *
1962 * When registered all registration and up events are replayed
1963 * to the new notifier to allow device to have a race free
1964 * view of the network device list.
1965 */
1966
register_netdevice_notifier(struct notifier_block * nb)1967 int register_netdevice_notifier(struct notifier_block *nb)
1968 {
1969 struct net *net;
1970 int err;
1971
1972 /* Close race with setup_net() and cleanup_net() */
1973 down_write(&pernet_ops_rwsem);
1974
1975 /* When RTNL is removed, we need protection for netdev_chain. */
1976 rtnl_lock();
1977
1978 err = raw_notifier_chain_register(&netdev_chain, nb);
1979 if (err)
1980 goto unlock;
1981 if (dev_boot_phase)
1982 goto unlock;
1983 for_each_net(net) {
1984 __rtnl_net_lock(net);
1985 err = call_netdevice_register_net_notifiers(nb, net);
1986 __rtnl_net_unlock(net);
1987 if (err)
1988 goto rollback;
1989 }
1990
1991 unlock:
1992 rtnl_unlock();
1993 up_write(&pernet_ops_rwsem);
1994 return err;
1995
1996 rollback:
1997 for_each_net_continue_reverse(net) {
1998 __rtnl_net_lock(net);
1999 call_netdevice_unregister_net_notifiers(nb, net);
2000 __rtnl_net_unlock(net);
2001 }
2002
2003 raw_notifier_chain_unregister(&netdev_chain, nb);
2004 goto unlock;
2005 }
2006 EXPORT_SYMBOL(register_netdevice_notifier);
2007
2008 /**
2009 * unregister_netdevice_notifier - unregister a network notifier block
2010 * @nb: notifier
2011 *
2012 * Unregister a notifier previously registered by
2013 * register_netdevice_notifier(). The notifier is unlinked into the
2014 * kernel structures and may then be reused. A negative errno code
2015 * is returned on a failure.
2016 *
2017 * After unregistering unregister and down device events are synthesized
2018 * for all devices on the device list to the removed notifier to remove
2019 * the need for special case cleanup code.
2020 */
2021
unregister_netdevice_notifier(struct notifier_block * nb)2022 int unregister_netdevice_notifier(struct notifier_block *nb)
2023 {
2024 struct net *net;
2025 int err;
2026
2027 /* Close race with setup_net() and cleanup_net() */
2028 down_write(&pernet_ops_rwsem);
2029 rtnl_lock();
2030 err = raw_notifier_chain_unregister(&netdev_chain, nb);
2031 if (err)
2032 goto unlock;
2033
2034 for_each_net(net) {
2035 __rtnl_net_lock(net);
2036 call_netdevice_unregister_net_notifiers(nb, net);
2037 __rtnl_net_unlock(net);
2038 }
2039
2040 unlock:
2041 rtnl_unlock();
2042 up_write(&pernet_ops_rwsem);
2043 return err;
2044 }
2045 EXPORT_SYMBOL(unregister_netdevice_notifier);
2046
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)2047 static int __register_netdevice_notifier_net(struct net *net,
2048 struct notifier_block *nb,
2049 bool ignore_call_fail)
2050 {
2051 int err;
2052
2053 err = raw_notifier_chain_register(&net->netdev_chain, nb);
2054 if (err)
2055 return err;
2056 if (dev_boot_phase)
2057 return 0;
2058
2059 err = call_netdevice_register_net_notifiers(nb, net);
2060 if (err && !ignore_call_fail)
2061 goto chain_unregister;
2062
2063 return 0;
2064
2065 chain_unregister:
2066 raw_notifier_chain_unregister(&net->netdev_chain, nb);
2067 return err;
2068 }
2069
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2070 static int __unregister_netdevice_notifier_net(struct net *net,
2071 struct notifier_block *nb)
2072 {
2073 int err;
2074
2075 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2076 if (err)
2077 return err;
2078
2079 call_netdevice_unregister_net_notifiers(nb, net);
2080 return 0;
2081 }
2082
2083 /**
2084 * register_netdevice_notifier_net - register a per-netns network notifier block
2085 * @net: network namespace
2086 * @nb: notifier
2087 *
2088 * Register a notifier to be called when network device events occur.
2089 * The notifier passed is linked into the kernel structures and must
2090 * not be reused until it has been unregistered. A negative errno code
2091 * is returned on a failure.
2092 *
2093 * When registered all registration and up events are replayed
2094 * to the new notifier to allow device to have a race free
2095 * view of the network device list.
2096 */
2097
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2098 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2099 {
2100 int err;
2101
2102 rtnl_net_lock(net);
2103 err = __register_netdevice_notifier_net(net, nb, false);
2104 rtnl_net_unlock(net);
2105
2106 return err;
2107 }
2108 EXPORT_SYMBOL(register_netdevice_notifier_net);
2109
2110 /**
2111 * unregister_netdevice_notifier_net - unregister a per-netns
2112 * network notifier block
2113 * @net: network namespace
2114 * @nb: notifier
2115 *
2116 * Unregister a notifier previously registered by
2117 * register_netdevice_notifier_net(). The notifier is unlinked from the
2118 * kernel structures and may then be reused. A negative errno code
2119 * is returned on a failure.
2120 *
2121 * After unregistering unregister and down device events are synthesized
2122 * for all devices on the device list to the removed notifier to remove
2123 * the need for special case cleanup code.
2124 */
2125
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2126 int unregister_netdevice_notifier_net(struct net *net,
2127 struct notifier_block *nb)
2128 {
2129 int err;
2130
2131 rtnl_net_lock(net);
2132 err = __unregister_netdevice_notifier_net(net, nb);
2133 rtnl_net_unlock(net);
2134
2135 return err;
2136 }
2137 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2138
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)2139 static void __move_netdevice_notifier_net(struct net *src_net,
2140 struct net *dst_net,
2141 struct notifier_block *nb)
2142 {
2143 __unregister_netdevice_notifier_net(src_net, nb);
2144 __register_netdevice_notifier_net(dst_net, nb, true);
2145 }
2146
rtnl_net_dev_lock(struct net_device * dev)2147 static void rtnl_net_dev_lock(struct net_device *dev)
2148 {
2149 bool again;
2150
2151 do {
2152 struct net *net;
2153
2154 again = false;
2155
2156 /* netns might be being dismantled. */
2157 rcu_read_lock();
2158 net = dev_net_rcu(dev);
2159 net_passive_inc(net);
2160 rcu_read_unlock();
2161
2162 rtnl_net_lock(net);
2163
2164 #ifdef CONFIG_NET_NS
2165 /* dev might have been moved to another netns. */
2166 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2167 rtnl_net_unlock(net);
2168 net_passive_dec(net);
2169 again = true;
2170 }
2171 #endif
2172 } while (again);
2173 }
2174
rtnl_net_dev_unlock(struct net_device * dev)2175 static void rtnl_net_dev_unlock(struct net_device *dev)
2176 {
2177 struct net *net = dev_net(dev);
2178
2179 rtnl_net_unlock(net);
2180 net_passive_dec(net);
2181 }
2182
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2183 int register_netdevice_notifier_dev_net(struct net_device *dev,
2184 struct notifier_block *nb,
2185 struct netdev_net_notifier *nn)
2186 {
2187 int err;
2188
2189 rtnl_net_dev_lock(dev);
2190 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2191 if (!err) {
2192 nn->nb = nb;
2193 list_add(&nn->list, &dev->net_notifier_list);
2194 }
2195 rtnl_net_dev_unlock(dev);
2196
2197 return err;
2198 }
2199 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2200
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2201 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2202 struct notifier_block *nb,
2203 struct netdev_net_notifier *nn)
2204 {
2205 int err;
2206
2207 rtnl_net_dev_lock(dev);
2208 list_del(&nn->list);
2209 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2210 rtnl_net_dev_unlock(dev);
2211
2212 return err;
2213 }
2214 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2215
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2216 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2217 struct net *net)
2218 {
2219 struct netdev_net_notifier *nn;
2220
2221 list_for_each_entry(nn, &dev->net_notifier_list, list)
2222 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2223 }
2224
2225 /**
2226 * call_netdevice_notifiers_info - call all network notifier blocks
2227 * @val: value passed unmodified to notifier function
2228 * @info: notifier information data
2229 *
2230 * Call all network notifier blocks. Parameters and return value
2231 * are as for raw_notifier_call_chain().
2232 */
2233
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2234 int call_netdevice_notifiers_info(unsigned long val,
2235 struct netdev_notifier_info *info)
2236 {
2237 struct net *net = dev_net(info->dev);
2238 int ret;
2239
2240 ASSERT_RTNL();
2241
2242 /* Run per-netns notifier block chain first, then run the global one.
2243 * Hopefully, one day, the global one is going to be removed after
2244 * all notifier block registrators get converted to be per-netns.
2245 */
2246 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2247 if (ret & NOTIFY_STOP_MASK)
2248 return ret;
2249 return raw_notifier_call_chain(&netdev_chain, val, info);
2250 }
2251
2252 /**
2253 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2254 * for and rollback on error
2255 * @val_up: value passed unmodified to notifier function
2256 * @val_down: value passed unmodified to the notifier function when
2257 * recovering from an error on @val_up
2258 * @info: notifier information data
2259 *
2260 * Call all per-netns network notifier blocks, but not notifier blocks on
2261 * the global notifier chain. Parameters and return value are as for
2262 * raw_notifier_call_chain_robust().
2263 */
2264
2265 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2266 call_netdevice_notifiers_info_robust(unsigned long val_up,
2267 unsigned long val_down,
2268 struct netdev_notifier_info *info)
2269 {
2270 struct net *net = dev_net(info->dev);
2271
2272 ASSERT_RTNL();
2273
2274 return raw_notifier_call_chain_robust(&net->netdev_chain,
2275 val_up, val_down, info);
2276 }
2277
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2278 static int call_netdevice_notifiers_extack(unsigned long val,
2279 struct net_device *dev,
2280 struct netlink_ext_ack *extack)
2281 {
2282 struct netdev_notifier_info info = {
2283 .dev = dev,
2284 .extack = extack,
2285 };
2286
2287 return call_netdevice_notifiers_info(val, &info);
2288 }
2289
2290 /**
2291 * call_netdevice_notifiers - call all network notifier blocks
2292 * @val: value passed unmodified to notifier function
2293 * @dev: net_device pointer passed unmodified to notifier function
2294 *
2295 * Call all network notifier blocks. Parameters and return value
2296 * are as for raw_notifier_call_chain().
2297 */
2298
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2299 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2300 {
2301 return call_netdevice_notifiers_extack(val, dev, NULL);
2302 }
2303 EXPORT_SYMBOL(call_netdevice_notifiers);
2304
2305 /**
2306 * call_netdevice_notifiers_mtu - call all network notifier blocks
2307 * @val: value passed unmodified to notifier function
2308 * @dev: net_device pointer passed unmodified to notifier function
2309 * @arg: additional u32 argument passed to the notifier function
2310 *
2311 * Call all network notifier blocks. Parameters and return value
2312 * are as for raw_notifier_call_chain().
2313 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2314 static int call_netdevice_notifiers_mtu(unsigned long val,
2315 struct net_device *dev, u32 arg)
2316 {
2317 struct netdev_notifier_info_ext info = {
2318 .info.dev = dev,
2319 .ext.mtu = arg,
2320 };
2321
2322 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2323
2324 return call_netdevice_notifiers_info(val, &info.info);
2325 }
2326
2327 #ifdef CONFIG_NET_INGRESS
2328 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2329
net_inc_ingress_queue(void)2330 void net_inc_ingress_queue(void)
2331 {
2332 static_branch_inc(&ingress_needed_key);
2333 }
2334 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2335
net_dec_ingress_queue(void)2336 void net_dec_ingress_queue(void)
2337 {
2338 static_branch_dec(&ingress_needed_key);
2339 }
2340 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2341 #endif
2342
2343 #ifdef CONFIG_NET_EGRESS
2344 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2345
net_inc_egress_queue(void)2346 void net_inc_egress_queue(void)
2347 {
2348 static_branch_inc(&egress_needed_key);
2349 }
2350 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2351
net_dec_egress_queue(void)2352 void net_dec_egress_queue(void)
2353 {
2354 static_branch_dec(&egress_needed_key);
2355 }
2356 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2357 #endif
2358
2359 #ifdef CONFIG_NET_CLS_ACT
2360 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2361 EXPORT_SYMBOL(tcf_sw_enabled_key);
2362 #endif
2363
2364 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2365 EXPORT_SYMBOL(netstamp_needed_key);
2366 #ifdef CONFIG_JUMP_LABEL
2367 static atomic_t netstamp_needed_deferred;
2368 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2369 static void netstamp_clear(struct work_struct *work)
2370 {
2371 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2372 int wanted;
2373
2374 wanted = atomic_add_return(deferred, &netstamp_wanted);
2375 if (wanted > 0)
2376 static_branch_enable(&netstamp_needed_key);
2377 else
2378 static_branch_disable(&netstamp_needed_key);
2379 }
2380 static DECLARE_WORK(netstamp_work, netstamp_clear);
2381 #endif
2382
net_enable_timestamp(void)2383 void net_enable_timestamp(void)
2384 {
2385 #ifdef CONFIG_JUMP_LABEL
2386 int wanted = atomic_read(&netstamp_wanted);
2387
2388 while (wanted > 0) {
2389 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2390 return;
2391 }
2392 atomic_inc(&netstamp_needed_deferred);
2393 schedule_work(&netstamp_work);
2394 #else
2395 static_branch_inc(&netstamp_needed_key);
2396 #endif
2397 }
2398 EXPORT_SYMBOL(net_enable_timestamp);
2399
net_disable_timestamp(void)2400 void net_disable_timestamp(void)
2401 {
2402 #ifdef CONFIG_JUMP_LABEL
2403 int wanted = atomic_read(&netstamp_wanted);
2404
2405 while (wanted > 1) {
2406 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2407 return;
2408 }
2409 atomic_dec(&netstamp_needed_deferred);
2410 schedule_work(&netstamp_work);
2411 #else
2412 static_branch_dec(&netstamp_needed_key);
2413 #endif
2414 }
2415 EXPORT_SYMBOL(net_disable_timestamp);
2416
net_timestamp_set(struct sk_buff * skb)2417 static inline void net_timestamp_set(struct sk_buff *skb)
2418 {
2419 skb->tstamp = 0;
2420 skb->tstamp_type = SKB_CLOCK_REALTIME;
2421 if (static_branch_unlikely(&netstamp_needed_key))
2422 skb->tstamp = ktime_get_real();
2423 }
2424
2425 #define net_timestamp_check(COND, SKB) \
2426 if (static_branch_unlikely(&netstamp_needed_key)) { \
2427 if ((COND) && !(SKB)->tstamp) \
2428 (SKB)->tstamp = ktime_get_real(); \
2429 } \
2430
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2431 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2432 {
2433 return __is_skb_forwardable(dev, skb, true);
2434 }
2435 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2436
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2437 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2438 bool check_mtu)
2439 {
2440 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2441
2442 if (likely(!ret)) {
2443 skb->protocol = eth_type_trans(skb, dev);
2444 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2445 }
2446
2447 return ret;
2448 }
2449
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2450 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2451 {
2452 return __dev_forward_skb2(dev, skb, true);
2453 }
2454 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2455
2456 /**
2457 * dev_forward_skb - loopback an skb to another netif
2458 *
2459 * @dev: destination network device
2460 * @skb: buffer to forward
2461 *
2462 * return values:
2463 * NET_RX_SUCCESS (no congestion)
2464 * NET_RX_DROP (packet was dropped, but freed)
2465 *
2466 * dev_forward_skb can be used for injecting an skb from the
2467 * start_xmit function of one device into the receive queue
2468 * of another device.
2469 *
2470 * The receiving device may be in another namespace, so
2471 * we have to clear all information in the skb that could
2472 * impact namespace isolation.
2473 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2474 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2475 {
2476 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2477 }
2478 EXPORT_SYMBOL_GPL(dev_forward_skb);
2479
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2480 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2481 {
2482 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2483 }
2484
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2485 static int deliver_skb(struct sk_buff *skb,
2486 struct packet_type *pt_prev,
2487 struct net_device *orig_dev)
2488 {
2489 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2490 return -ENOMEM;
2491 refcount_inc(&skb->users);
2492 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2493 }
2494
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2495 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2496 struct packet_type **pt,
2497 struct net_device *orig_dev,
2498 __be16 type,
2499 struct list_head *ptype_list)
2500 {
2501 struct packet_type *ptype, *pt_prev = *pt;
2502
2503 list_for_each_entry_rcu(ptype, ptype_list, list) {
2504 if (ptype->type != type)
2505 continue;
2506 if (unlikely(pt_prev))
2507 deliver_skb(skb, pt_prev, orig_dev);
2508 pt_prev = ptype;
2509 }
2510 *pt = pt_prev;
2511 }
2512
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2513 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2514 {
2515 if (!ptype->af_packet_priv || !skb->sk)
2516 return false;
2517
2518 if (ptype->id_match)
2519 return ptype->id_match(ptype, skb->sk);
2520 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2521 return true;
2522
2523 return false;
2524 }
2525
2526 /**
2527 * dev_nit_active_rcu - return true if any network interface taps are in use
2528 *
2529 * The caller must hold the RCU lock
2530 *
2531 * @dev: network device to check for the presence of taps
2532 */
dev_nit_active_rcu(const struct net_device * dev)2533 bool dev_nit_active_rcu(const struct net_device *dev)
2534 {
2535 /* Callers may hold either RCU or RCU BH lock */
2536 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2537
2538 return !list_empty(&dev_net(dev)->ptype_all) ||
2539 !list_empty(&dev->ptype_all);
2540 }
2541 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2542
2543 /*
2544 * Support routine. Sends outgoing frames to any network
2545 * taps currently in use.
2546 */
2547
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2548 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2549 {
2550 struct packet_type *ptype, *pt_prev = NULL;
2551 struct list_head *ptype_list;
2552 struct sk_buff *skb2 = NULL;
2553
2554 rcu_read_lock();
2555 ptype_list = &dev_net_rcu(dev)->ptype_all;
2556 again:
2557 list_for_each_entry_rcu(ptype, ptype_list, list) {
2558 if (READ_ONCE(ptype->ignore_outgoing))
2559 continue;
2560
2561 /* Never send packets back to the socket
2562 * they originated from - MvS (miquels@drinkel.ow.org)
2563 */
2564 if (skb_loop_sk(ptype, skb))
2565 continue;
2566
2567 if (unlikely(pt_prev)) {
2568 deliver_skb(skb2, pt_prev, skb->dev);
2569 pt_prev = ptype;
2570 continue;
2571 }
2572
2573 /* need to clone skb, done only once */
2574 skb2 = skb_clone(skb, GFP_ATOMIC);
2575 if (!skb2)
2576 goto out_unlock;
2577
2578 net_timestamp_set(skb2);
2579
2580 /* skb->nh should be correctly
2581 * set by sender, so that the second statement is
2582 * just protection against buggy protocols.
2583 */
2584 skb_reset_mac_header(skb2);
2585
2586 if (skb_network_header(skb2) < skb2->data ||
2587 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2588 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2589 ntohs(skb2->protocol),
2590 dev->name);
2591 skb_reset_network_header(skb2);
2592 }
2593
2594 skb2->transport_header = skb2->network_header;
2595 skb2->pkt_type = PACKET_OUTGOING;
2596 pt_prev = ptype;
2597 }
2598
2599 if (ptype_list != &dev->ptype_all) {
2600 ptype_list = &dev->ptype_all;
2601 goto again;
2602 }
2603 out_unlock:
2604 if (pt_prev) {
2605 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2606 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2607 else
2608 kfree_skb(skb2);
2609 }
2610 rcu_read_unlock();
2611 }
2612 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2613
2614 /**
2615 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2616 * @dev: Network device
2617 * @txq: number of queues available
2618 *
2619 * If real_num_tx_queues is changed the tc mappings may no longer be
2620 * valid. To resolve this verify the tc mapping remains valid and if
2621 * not NULL the mapping. With no priorities mapping to this
2622 * offset/count pair it will no longer be used. In the worst case TC0
2623 * is invalid nothing can be done so disable priority mappings. If is
2624 * expected that drivers will fix this mapping if they can before
2625 * calling netif_set_real_num_tx_queues.
2626 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2627 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2628 {
2629 int i;
2630 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2631
2632 /* If TC0 is invalidated disable TC mapping */
2633 if (tc->offset + tc->count > txq) {
2634 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2635 dev->num_tc = 0;
2636 return;
2637 }
2638
2639 /* Invalidated prio to tc mappings set to TC0 */
2640 for (i = 1; i < TC_BITMASK + 1; i++) {
2641 int q = netdev_get_prio_tc_map(dev, i);
2642
2643 tc = &dev->tc_to_txq[q];
2644 if (tc->offset + tc->count > txq) {
2645 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2646 i, q);
2647 netdev_set_prio_tc_map(dev, i, 0);
2648 }
2649 }
2650 }
2651
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2652 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2653 {
2654 if (dev->num_tc) {
2655 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2656 int i;
2657
2658 /* walk through the TCs and see if it falls into any of them */
2659 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2660 if ((txq - tc->offset) < tc->count)
2661 return i;
2662 }
2663
2664 /* didn't find it, just return -1 to indicate no match */
2665 return -1;
2666 }
2667
2668 return 0;
2669 }
2670 EXPORT_SYMBOL(netdev_txq_to_tc);
2671
2672 #ifdef CONFIG_XPS
2673 static struct static_key xps_needed __read_mostly;
2674 static struct static_key xps_rxqs_needed __read_mostly;
2675 static DEFINE_MUTEX(xps_map_mutex);
2676 #define xmap_dereference(P) \
2677 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2678
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2679 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2680 struct xps_dev_maps *old_maps, int tci, u16 index)
2681 {
2682 struct xps_map *map = NULL;
2683 int pos;
2684
2685 map = xmap_dereference(dev_maps->attr_map[tci]);
2686 if (!map)
2687 return false;
2688
2689 for (pos = map->len; pos--;) {
2690 if (map->queues[pos] != index)
2691 continue;
2692
2693 if (map->len > 1) {
2694 map->queues[pos] = map->queues[--map->len];
2695 break;
2696 }
2697
2698 if (old_maps)
2699 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2700 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2701 kfree_rcu(map, rcu);
2702 return false;
2703 }
2704
2705 return true;
2706 }
2707
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2708 static bool remove_xps_queue_cpu(struct net_device *dev,
2709 struct xps_dev_maps *dev_maps,
2710 int cpu, u16 offset, u16 count)
2711 {
2712 int num_tc = dev_maps->num_tc;
2713 bool active = false;
2714 int tci;
2715
2716 for (tci = cpu * num_tc; num_tc--; tci++) {
2717 int i, j;
2718
2719 for (i = count, j = offset; i--; j++) {
2720 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2721 break;
2722 }
2723
2724 active |= i < 0;
2725 }
2726
2727 return active;
2728 }
2729
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2730 static void reset_xps_maps(struct net_device *dev,
2731 struct xps_dev_maps *dev_maps,
2732 enum xps_map_type type)
2733 {
2734 static_key_slow_dec_cpuslocked(&xps_needed);
2735 if (type == XPS_RXQS)
2736 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2737
2738 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2739
2740 kfree_rcu(dev_maps, rcu);
2741 }
2742
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2743 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2744 u16 offset, u16 count)
2745 {
2746 struct xps_dev_maps *dev_maps;
2747 bool active = false;
2748 int i, j;
2749
2750 dev_maps = xmap_dereference(dev->xps_maps[type]);
2751 if (!dev_maps)
2752 return;
2753
2754 for (j = 0; j < dev_maps->nr_ids; j++)
2755 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2756 if (!active)
2757 reset_xps_maps(dev, dev_maps, type);
2758
2759 if (type == XPS_CPUS) {
2760 for (i = offset + (count - 1); count--; i--)
2761 netdev_queue_numa_node_write(
2762 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2763 }
2764 }
2765
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2766 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2767 u16 count)
2768 {
2769 if (!static_key_false(&xps_needed))
2770 return;
2771
2772 cpus_read_lock();
2773 mutex_lock(&xps_map_mutex);
2774
2775 if (static_key_false(&xps_rxqs_needed))
2776 clean_xps_maps(dev, XPS_RXQS, offset, count);
2777
2778 clean_xps_maps(dev, XPS_CPUS, offset, count);
2779
2780 mutex_unlock(&xps_map_mutex);
2781 cpus_read_unlock();
2782 }
2783
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2784 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2785 {
2786 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2787 }
2788
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2789 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2790 u16 index, bool is_rxqs_map)
2791 {
2792 struct xps_map *new_map;
2793 int alloc_len = XPS_MIN_MAP_ALLOC;
2794 int i, pos;
2795
2796 for (pos = 0; map && pos < map->len; pos++) {
2797 if (map->queues[pos] != index)
2798 continue;
2799 return map;
2800 }
2801
2802 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2803 if (map) {
2804 if (pos < map->alloc_len)
2805 return map;
2806
2807 alloc_len = map->alloc_len * 2;
2808 }
2809
2810 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2811 * map
2812 */
2813 if (is_rxqs_map)
2814 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2815 else
2816 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2817 cpu_to_node(attr_index));
2818 if (!new_map)
2819 return NULL;
2820
2821 for (i = 0; i < pos; i++)
2822 new_map->queues[i] = map->queues[i];
2823 new_map->alloc_len = alloc_len;
2824 new_map->len = pos;
2825
2826 return new_map;
2827 }
2828
2829 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2830 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2831 struct xps_dev_maps *new_dev_maps, int index,
2832 int tc, bool skip_tc)
2833 {
2834 int i, tci = index * dev_maps->num_tc;
2835 struct xps_map *map;
2836
2837 /* copy maps belonging to foreign traffic classes */
2838 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2839 if (i == tc && skip_tc)
2840 continue;
2841
2842 /* fill in the new device map from the old device map */
2843 map = xmap_dereference(dev_maps->attr_map[tci]);
2844 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2845 }
2846 }
2847
2848 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2849 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2850 u16 index, enum xps_map_type type)
2851 {
2852 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2853 const unsigned long *online_mask = NULL;
2854 bool active = false, copy = false;
2855 int i, j, tci, numa_node_id = -2;
2856 int maps_sz, num_tc = 1, tc = 0;
2857 struct xps_map *map, *new_map;
2858 unsigned int nr_ids;
2859
2860 WARN_ON_ONCE(index >= dev->num_tx_queues);
2861
2862 if (dev->num_tc) {
2863 /* Do not allow XPS on subordinate device directly */
2864 num_tc = dev->num_tc;
2865 if (num_tc < 0)
2866 return -EINVAL;
2867
2868 /* If queue belongs to subordinate dev use its map */
2869 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2870
2871 tc = netdev_txq_to_tc(dev, index);
2872 if (tc < 0)
2873 return -EINVAL;
2874 }
2875
2876 mutex_lock(&xps_map_mutex);
2877
2878 dev_maps = xmap_dereference(dev->xps_maps[type]);
2879 if (type == XPS_RXQS) {
2880 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2881 nr_ids = dev->num_rx_queues;
2882 } else {
2883 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2884 if (num_possible_cpus() > 1)
2885 online_mask = cpumask_bits(cpu_online_mask);
2886 nr_ids = nr_cpu_ids;
2887 }
2888
2889 if (maps_sz < L1_CACHE_BYTES)
2890 maps_sz = L1_CACHE_BYTES;
2891
2892 /* The old dev_maps could be larger or smaller than the one we're
2893 * setting up now, as dev->num_tc or nr_ids could have been updated in
2894 * between. We could try to be smart, but let's be safe instead and only
2895 * copy foreign traffic classes if the two map sizes match.
2896 */
2897 if (dev_maps &&
2898 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2899 copy = true;
2900
2901 /* allocate memory for queue storage */
2902 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2903 j < nr_ids;) {
2904 if (!new_dev_maps) {
2905 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2906 if (!new_dev_maps) {
2907 mutex_unlock(&xps_map_mutex);
2908 return -ENOMEM;
2909 }
2910
2911 new_dev_maps->nr_ids = nr_ids;
2912 new_dev_maps->num_tc = num_tc;
2913 }
2914
2915 tci = j * num_tc + tc;
2916 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2917
2918 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2919 if (!map)
2920 goto error;
2921
2922 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2923 }
2924
2925 if (!new_dev_maps)
2926 goto out_no_new_maps;
2927
2928 if (!dev_maps) {
2929 /* Increment static keys at most once per type */
2930 static_key_slow_inc_cpuslocked(&xps_needed);
2931 if (type == XPS_RXQS)
2932 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2933 }
2934
2935 for (j = 0; j < nr_ids; j++) {
2936 bool skip_tc = false;
2937
2938 tci = j * num_tc + tc;
2939 if (netif_attr_test_mask(j, mask, nr_ids) &&
2940 netif_attr_test_online(j, online_mask, nr_ids)) {
2941 /* add tx-queue to CPU/rx-queue maps */
2942 int pos = 0;
2943
2944 skip_tc = true;
2945
2946 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2947 while ((pos < map->len) && (map->queues[pos] != index))
2948 pos++;
2949
2950 if (pos == map->len)
2951 map->queues[map->len++] = index;
2952 #ifdef CONFIG_NUMA
2953 if (type == XPS_CPUS) {
2954 if (numa_node_id == -2)
2955 numa_node_id = cpu_to_node(j);
2956 else if (numa_node_id != cpu_to_node(j))
2957 numa_node_id = -1;
2958 }
2959 #endif
2960 }
2961
2962 if (copy)
2963 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2964 skip_tc);
2965 }
2966
2967 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2968
2969 /* Cleanup old maps */
2970 if (!dev_maps)
2971 goto out_no_old_maps;
2972
2973 for (j = 0; j < dev_maps->nr_ids; j++) {
2974 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2975 map = xmap_dereference(dev_maps->attr_map[tci]);
2976 if (!map)
2977 continue;
2978
2979 if (copy) {
2980 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2981 if (map == new_map)
2982 continue;
2983 }
2984
2985 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2986 kfree_rcu(map, rcu);
2987 }
2988 }
2989
2990 old_dev_maps = dev_maps;
2991
2992 out_no_old_maps:
2993 dev_maps = new_dev_maps;
2994 active = true;
2995
2996 out_no_new_maps:
2997 if (type == XPS_CPUS)
2998 /* update Tx queue numa node */
2999 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
3000 (numa_node_id >= 0) ?
3001 numa_node_id : NUMA_NO_NODE);
3002
3003 if (!dev_maps)
3004 goto out_no_maps;
3005
3006 /* removes tx-queue from unused CPUs/rx-queues */
3007 for (j = 0; j < dev_maps->nr_ids; j++) {
3008 tci = j * dev_maps->num_tc;
3009
3010 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
3011 if (i == tc &&
3012 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
3013 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
3014 continue;
3015
3016 active |= remove_xps_queue(dev_maps,
3017 copy ? old_dev_maps : NULL,
3018 tci, index);
3019 }
3020 }
3021
3022 if (old_dev_maps)
3023 kfree_rcu(old_dev_maps, rcu);
3024
3025 /* free map if not active */
3026 if (!active)
3027 reset_xps_maps(dev, dev_maps, type);
3028
3029 out_no_maps:
3030 mutex_unlock(&xps_map_mutex);
3031
3032 return 0;
3033 error:
3034 /* remove any maps that we added */
3035 for (j = 0; j < nr_ids; j++) {
3036 for (i = num_tc, tci = j * num_tc; i--; tci++) {
3037 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3038 map = copy ?
3039 xmap_dereference(dev_maps->attr_map[tci]) :
3040 NULL;
3041 if (new_map && new_map != map)
3042 kfree(new_map);
3043 }
3044 }
3045
3046 mutex_unlock(&xps_map_mutex);
3047
3048 kfree(new_dev_maps);
3049 return -ENOMEM;
3050 }
3051 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3052
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3053 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3054 u16 index)
3055 {
3056 int ret;
3057
3058 cpus_read_lock();
3059 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3060 cpus_read_unlock();
3061
3062 return ret;
3063 }
3064 EXPORT_SYMBOL(netif_set_xps_queue);
3065
3066 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)3067 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3068 {
3069 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3070
3071 /* Unbind any subordinate channels */
3072 while (txq-- != &dev->_tx[0]) {
3073 if (txq->sb_dev)
3074 netdev_unbind_sb_channel(dev, txq->sb_dev);
3075 }
3076 }
3077
netdev_reset_tc(struct net_device * dev)3078 void netdev_reset_tc(struct net_device *dev)
3079 {
3080 #ifdef CONFIG_XPS
3081 netif_reset_xps_queues_gt(dev, 0);
3082 #endif
3083 netdev_unbind_all_sb_channels(dev);
3084
3085 /* Reset TC configuration of device */
3086 dev->num_tc = 0;
3087 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3088 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3089 }
3090 EXPORT_SYMBOL(netdev_reset_tc);
3091
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)3092 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3093 {
3094 if (tc >= dev->num_tc)
3095 return -EINVAL;
3096
3097 #ifdef CONFIG_XPS
3098 netif_reset_xps_queues(dev, offset, count);
3099 #endif
3100 dev->tc_to_txq[tc].count = count;
3101 dev->tc_to_txq[tc].offset = offset;
3102 return 0;
3103 }
3104 EXPORT_SYMBOL(netdev_set_tc_queue);
3105
netdev_set_num_tc(struct net_device * dev,u8 num_tc)3106 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3107 {
3108 if (num_tc > TC_MAX_QUEUE)
3109 return -EINVAL;
3110
3111 #ifdef CONFIG_XPS
3112 netif_reset_xps_queues_gt(dev, 0);
3113 #endif
3114 netdev_unbind_all_sb_channels(dev);
3115
3116 dev->num_tc = num_tc;
3117 return 0;
3118 }
3119 EXPORT_SYMBOL(netdev_set_num_tc);
3120
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)3121 void netdev_unbind_sb_channel(struct net_device *dev,
3122 struct net_device *sb_dev)
3123 {
3124 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3125
3126 #ifdef CONFIG_XPS
3127 netif_reset_xps_queues_gt(sb_dev, 0);
3128 #endif
3129 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3130 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3131
3132 while (txq-- != &dev->_tx[0]) {
3133 if (txq->sb_dev == sb_dev)
3134 txq->sb_dev = NULL;
3135 }
3136 }
3137 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3138
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)3139 int netdev_bind_sb_channel_queue(struct net_device *dev,
3140 struct net_device *sb_dev,
3141 u8 tc, u16 count, u16 offset)
3142 {
3143 /* Make certain the sb_dev and dev are already configured */
3144 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3145 return -EINVAL;
3146
3147 /* We cannot hand out queues we don't have */
3148 if ((offset + count) > dev->real_num_tx_queues)
3149 return -EINVAL;
3150
3151 /* Record the mapping */
3152 sb_dev->tc_to_txq[tc].count = count;
3153 sb_dev->tc_to_txq[tc].offset = offset;
3154
3155 /* Provide a way for Tx queue to find the tc_to_txq map or
3156 * XPS map for itself.
3157 */
3158 while (count--)
3159 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3160
3161 return 0;
3162 }
3163 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3164
netdev_set_sb_channel(struct net_device * dev,u16 channel)3165 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3166 {
3167 /* Do not use a multiqueue device to represent a subordinate channel */
3168 if (netif_is_multiqueue(dev))
3169 return -ENODEV;
3170
3171 /* We allow channels 1 - 32767 to be used for subordinate channels.
3172 * Channel 0 is meant to be "native" mode and used only to represent
3173 * the main root device. We allow writing 0 to reset the device back
3174 * to normal mode after being used as a subordinate channel.
3175 */
3176 if (channel > S16_MAX)
3177 return -EINVAL;
3178
3179 dev->num_tc = -channel;
3180
3181 return 0;
3182 }
3183 EXPORT_SYMBOL(netdev_set_sb_channel);
3184
3185 /*
3186 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3187 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3188 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3189 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3190 {
3191 bool disabling;
3192 int rc;
3193
3194 disabling = txq < dev->real_num_tx_queues;
3195
3196 if (txq < 1 || txq > dev->num_tx_queues)
3197 return -EINVAL;
3198
3199 if (dev->reg_state == NETREG_REGISTERED ||
3200 dev->reg_state == NETREG_UNREGISTERING) {
3201 netdev_ops_assert_locked(dev);
3202
3203 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3204 txq);
3205 if (rc)
3206 return rc;
3207
3208 if (dev->num_tc)
3209 netif_setup_tc(dev, txq);
3210
3211 net_shaper_set_real_num_tx_queues(dev, txq);
3212
3213 dev_qdisc_change_real_num_tx(dev, txq);
3214
3215 dev->real_num_tx_queues = txq;
3216
3217 if (disabling) {
3218 synchronize_net();
3219 qdisc_reset_all_tx_gt(dev, txq);
3220 #ifdef CONFIG_XPS
3221 netif_reset_xps_queues_gt(dev, txq);
3222 #endif
3223 }
3224 } else {
3225 dev->real_num_tx_queues = txq;
3226 }
3227
3228 return 0;
3229 }
3230 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3231
3232 /**
3233 * netif_set_real_num_rx_queues - set actual number of RX queues used
3234 * @dev: Network device
3235 * @rxq: Actual number of RX queues
3236 *
3237 * This must be called either with the rtnl_lock held or before
3238 * registration of the net device. Returns 0 on success, or a
3239 * negative error code. If called before registration, it always
3240 * succeeds.
3241 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3242 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3243 {
3244 int rc;
3245
3246 if (rxq < 1 || rxq > dev->num_rx_queues)
3247 return -EINVAL;
3248
3249 if (dev->reg_state == NETREG_REGISTERED) {
3250 netdev_ops_assert_locked(dev);
3251
3252 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3253 rxq);
3254 if (rc)
3255 return rc;
3256 }
3257
3258 dev->real_num_rx_queues = rxq;
3259 return 0;
3260 }
3261 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3262
3263 /**
3264 * netif_set_real_num_queues - set actual number of RX and TX queues used
3265 * @dev: Network device
3266 * @txq: Actual number of TX queues
3267 * @rxq: Actual number of RX queues
3268 *
3269 * Set the real number of both TX and RX queues.
3270 * Does nothing if the number of queues is already correct.
3271 */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3272 int netif_set_real_num_queues(struct net_device *dev,
3273 unsigned int txq, unsigned int rxq)
3274 {
3275 unsigned int old_rxq = dev->real_num_rx_queues;
3276 int err;
3277
3278 if (txq < 1 || txq > dev->num_tx_queues ||
3279 rxq < 1 || rxq > dev->num_rx_queues)
3280 return -EINVAL;
3281
3282 /* Start from increases, so the error path only does decreases -
3283 * decreases can't fail.
3284 */
3285 if (rxq > dev->real_num_rx_queues) {
3286 err = netif_set_real_num_rx_queues(dev, rxq);
3287 if (err)
3288 return err;
3289 }
3290 if (txq > dev->real_num_tx_queues) {
3291 err = netif_set_real_num_tx_queues(dev, txq);
3292 if (err)
3293 goto undo_rx;
3294 }
3295 if (rxq < dev->real_num_rx_queues)
3296 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3297 if (txq < dev->real_num_tx_queues)
3298 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3299
3300 return 0;
3301 undo_rx:
3302 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3303 return err;
3304 }
3305 EXPORT_SYMBOL(netif_set_real_num_queues);
3306
3307 /**
3308 * netif_set_tso_max_size() - set the max size of TSO frames supported
3309 * @dev: netdev to update
3310 * @size: max skb->len of a TSO frame
3311 *
3312 * Set the limit on the size of TSO super-frames the device can handle.
3313 * Unless explicitly set the stack will assume the value of
3314 * %GSO_LEGACY_MAX_SIZE.
3315 */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3316 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3317 {
3318 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3319 if (size < READ_ONCE(dev->gso_max_size))
3320 netif_set_gso_max_size(dev, size);
3321 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3322 netif_set_gso_ipv4_max_size(dev, size);
3323 }
3324 EXPORT_SYMBOL(netif_set_tso_max_size);
3325
3326 /**
3327 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3328 * @dev: netdev to update
3329 * @segs: max number of TCP segments
3330 *
3331 * Set the limit on the number of TCP segments the device can generate from
3332 * a single TSO super-frame.
3333 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3334 */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3335 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3336 {
3337 dev->tso_max_segs = segs;
3338 if (segs < READ_ONCE(dev->gso_max_segs))
3339 netif_set_gso_max_segs(dev, segs);
3340 }
3341 EXPORT_SYMBOL(netif_set_tso_max_segs);
3342
3343 /**
3344 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3345 * @to: netdev to update
3346 * @from: netdev from which to copy the limits
3347 */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3348 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3349 {
3350 netif_set_tso_max_size(to, from->tso_max_size);
3351 netif_set_tso_max_segs(to, from->tso_max_segs);
3352 }
3353 EXPORT_SYMBOL(netif_inherit_tso_max);
3354
3355 /**
3356 * netif_get_num_default_rss_queues - default number of RSS queues
3357 *
3358 * Default value is the number of physical cores if there are only 1 or 2, or
3359 * divided by 2 if there are more.
3360 */
netif_get_num_default_rss_queues(void)3361 int netif_get_num_default_rss_queues(void)
3362 {
3363 cpumask_var_t cpus;
3364 int cpu, count = 0;
3365
3366 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3367 return 1;
3368
3369 cpumask_copy(cpus, cpu_online_mask);
3370 for_each_cpu(cpu, cpus) {
3371 ++count;
3372 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3373 }
3374 free_cpumask_var(cpus);
3375
3376 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3377 }
3378 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3379
__netif_reschedule(struct Qdisc * q)3380 static void __netif_reschedule(struct Qdisc *q)
3381 {
3382 struct softnet_data *sd;
3383 unsigned long flags;
3384
3385 local_irq_save(flags);
3386 sd = this_cpu_ptr(&softnet_data);
3387 q->next_sched = NULL;
3388 *sd->output_queue_tailp = q;
3389 sd->output_queue_tailp = &q->next_sched;
3390 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3391 local_irq_restore(flags);
3392 }
3393
__netif_schedule(struct Qdisc * q)3394 void __netif_schedule(struct Qdisc *q)
3395 {
3396 /* If q->defer_list is not empty, at least one thread is
3397 * in __dev_xmit_skb() before llist_del_all(&q->defer_list).
3398 * This thread will attempt to run the queue.
3399 */
3400 if (!llist_empty(&q->defer_list))
3401 return;
3402
3403 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3404 __netif_reschedule(q);
3405 }
3406 EXPORT_SYMBOL(__netif_schedule);
3407
3408 struct dev_kfree_skb_cb {
3409 enum skb_drop_reason reason;
3410 };
3411
get_kfree_skb_cb(const struct sk_buff * skb)3412 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3413 {
3414 return (struct dev_kfree_skb_cb *)skb->cb;
3415 }
3416
netif_schedule_queue(struct netdev_queue * txq)3417 void netif_schedule_queue(struct netdev_queue *txq)
3418 {
3419 rcu_read_lock();
3420 if (!netif_xmit_stopped(txq)) {
3421 struct Qdisc *q = rcu_dereference(txq->qdisc);
3422
3423 __netif_schedule(q);
3424 }
3425 rcu_read_unlock();
3426 }
3427 EXPORT_SYMBOL(netif_schedule_queue);
3428
netif_tx_wake_queue(struct netdev_queue * dev_queue)3429 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3430 {
3431 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3432 struct Qdisc *q;
3433
3434 rcu_read_lock();
3435 q = rcu_dereference(dev_queue->qdisc);
3436 __netif_schedule(q);
3437 rcu_read_unlock();
3438 }
3439 }
3440 EXPORT_SYMBOL(netif_tx_wake_queue);
3441
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3442 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3443 {
3444 unsigned long flags;
3445
3446 if (unlikely(!skb))
3447 return;
3448
3449 if (likely(refcount_read(&skb->users) == 1)) {
3450 smp_rmb();
3451 refcount_set(&skb->users, 0);
3452 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3453 return;
3454 }
3455 get_kfree_skb_cb(skb)->reason = reason;
3456 local_irq_save(flags);
3457 skb->next = __this_cpu_read(softnet_data.completion_queue);
3458 __this_cpu_write(softnet_data.completion_queue, skb);
3459 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3460 local_irq_restore(flags);
3461 }
3462 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3463
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3464 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3465 {
3466 if (in_hardirq() || irqs_disabled())
3467 dev_kfree_skb_irq_reason(skb, reason);
3468 else
3469 kfree_skb_reason(skb, reason);
3470 }
3471 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3472
3473
3474 /**
3475 * netif_device_detach - mark device as removed
3476 * @dev: network device
3477 *
3478 * Mark device as removed from system and therefore no longer available.
3479 */
netif_device_detach(struct net_device * dev)3480 void netif_device_detach(struct net_device *dev)
3481 {
3482 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3483 netif_running(dev)) {
3484 netif_tx_stop_all_queues(dev);
3485 }
3486 }
3487 EXPORT_SYMBOL(netif_device_detach);
3488
3489 /**
3490 * netif_device_attach - mark device as attached
3491 * @dev: network device
3492 *
3493 * Mark device as attached from system and restart if needed.
3494 */
netif_device_attach(struct net_device * dev)3495 void netif_device_attach(struct net_device *dev)
3496 {
3497 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3498 netif_running(dev)) {
3499 netif_tx_wake_all_queues(dev);
3500 netdev_watchdog_up(dev);
3501 }
3502 }
3503 EXPORT_SYMBOL(netif_device_attach);
3504
3505 /*
3506 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3507 * to be used as a distribution range.
3508 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3509 static u16 skb_tx_hash(const struct net_device *dev,
3510 const struct net_device *sb_dev,
3511 struct sk_buff *skb)
3512 {
3513 u32 hash;
3514 u16 qoffset = 0;
3515 u16 qcount = dev->real_num_tx_queues;
3516
3517 if (dev->num_tc) {
3518 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3519
3520 qoffset = sb_dev->tc_to_txq[tc].offset;
3521 qcount = sb_dev->tc_to_txq[tc].count;
3522 if (unlikely(!qcount)) {
3523 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3524 sb_dev->name, qoffset, tc);
3525 qoffset = 0;
3526 qcount = dev->real_num_tx_queues;
3527 }
3528 }
3529
3530 if (skb_rx_queue_recorded(skb)) {
3531 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3532 hash = skb_get_rx_queue(skb);
3533 if (hash >= qoffset)
3534 hash -= qoffset;
3535 while (unlikely(hash >= qcount))
3536 hash -= qcount;
3537 return hash + qoffset;
3538 }
3539
3540 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3541 }
3542
skb_warn_bad_offload(const struct sk_buff * skb)3543 void skb_warn_bad_offload(const struct sk_buff *skb)
3544 {
3545 static const netdev_features_t null_features;
3546 struct net_device *dev = skb->dev;
3547 const char *name = "";
3548
3549 if (!net_ratelimit())
3550 return;
3551
3552 if (dev) {
3553 if (dev->dev.parent)
3554 name = dev_driver_string(dev->dev.parent);
3555 else
3556 name = netdev_name(dev);
3557 }
3558 skb_dump(KERN_WARNING, skb, false);
3559 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3560 name, dev ? &dev->features : &null_features,
3561 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3562 }
3563
3564 /*
3565 * Invalidate hardware checksum when packet is to be mangled, and
3566 * complete checksum manually on outgoing path.
3567 */
skb_checksum_help(struct sk_buff * skb)3568 int skb_checksum_help(struct sk_buff *skb)
3569 {
3570 __wsum csum;
3571 int ret = 0, offset;
3572
3573 if (skb->ip_summed == CHECKSUM_COMPLETE)
3574 goto out_set_summed;
3575
3576 if (unlikely(skb_is_gso(skb))) {
3577 skb_warn_bad_offload(skb);
3578 return -EINVAL;
3579 }
3580
3581 if (!skb_frags_readable(skb)) {
3582 return -EFAULT;
3583 }
3584
3585 /* Before computing a checksum, we should make sure no frag could
3586 * be modified by an external entity : checksum could be wrong.
3587 */
3588 if (skb_has_shared_frag(skb)) {
3589 ret = __skb_linearize(skb);
3590 if (ret)
3591 goto out;
3592 }
3593
3594 offset = skb_checksum_start_offset(skb);
3595 ret = -EINVAL;
3596 if (unlikely(offset >= skb_headlen(skb))) {
3597 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3598 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3599 offset, skb_headlen(skb));
3600 goto out;
3601 }
3602 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3603
3604 offset += skb->csum_offset;
3605 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3606 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3607 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3608 offset + sizeof(__sum16), skb_headlen(skb));
3609 goto out;
3610 }
3611 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3612 if (ret)
3613 goto out;
3614
3615 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3616 out_set_summed:
3617 skb->ip_summed = CHECKSUM_NONE;
3618 out:
3619 return ret;
3620 }
3621 EXPORT_SYMBOL(skb_checksum_help);
3622
3623 #ifdef CONFIG_NET_CRC32C
skb_crc32c_csum_help(struct sk_buff * skb)3624 int skb_crc32c_csum_help(struct sk_buff *skb)
3625 {
3626 u32 crc;
3627 int ret = 0, offset, start;
3628
3629 if (skb->ip_summed != CHECKSUM_PARTIAL)
3630 goto out;
3631
3632 if (unlikely(skb_is_gso(skb)))
3633 goto out;
3634
3635 /* Before computing a checksum, we should make sure no frag could
3636 * be modified by an external entity : checksum could be wrong.
3637 */
3638 if (unlikely(skb_has_shared_frag(skb))) {
3639 ret = __skb_linearize(skb);
3640 if (ret)
3641 goto out;
3642 }
3643 start = skb_checksum_start_offset(skb);
3644 offset = start + offsetof(struct sctphdr, checksum);
3645 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3646 ret = -EINVAL;
3647 goto out;
3648 }
3649
3650 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3651 if (ret)
3652 goto out;
3653
3654 crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3655 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3656 skb_reset_csum_not_inet(skb);
3657 out:
3658 return ret;
3659 }
3660 EXPORT_SYMBOL(skb_crc32c_csum_help);
3661 #endif /* CONFIG_NET_CRC32C */
3662
skb_network_protocol(struct sk_buff * skb,int * depth)3663 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3664 {
3665 __be16 type = skb->protocol;
3666
3667 /* Tunnel gso handlers can set protocol to ethernet. */
3668 if (type == htons(ETH_P_TEB)) {
3669 struct ethhdr *eth;
3670
3671 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3672 return 0;
3673
3674 eth = (struct ethhdr *)skb->data;
3675 type = eth->h_proto;
3676 }
3677
3678 return vlan_get_protocol_and_depth(skb, type, depth);
3679 }
3680
3681
3682 /* Take action when hardware reception checksum errors are detected. */
3683 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3684 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3685 {
3686 netdev_err(dev, "hw csum failure\n");
3687 skb_dump(KERN_ERR, skb, true);
3688 dump_stack();
3689 }
3690
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3691 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3692 {
3693 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3694 }
3695 EXPORT_SYMBOL(netdev_rx_csum_fault);
3696 #endif
3697
3698 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3699 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3700 {
3701 #ifdef CONFIG_HIGHMEM
3702 int i;
3703
3704 if (!(dev->features & NETIF_F_HIGHDMA)) {
3705 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3706 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3707 struct page *page = skb_frag_page(frag);
3708
3709 if (page && PageHighMem(page))
3710 return 1;
3711 }
3712 }
3713 #endif
3714 return 0;
3715 }
3716
3717 /* If MPLS offload request, verify we are testing hardware MPLS features
3718 * instead of standard features for the netdev.
3719 */
3720 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3721 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3722 netdev_features_t features,
3723 __be16 type)
3724 {
3725 if (eth_p_mpls(type))
3726 features &= skb->dev->mpls_features;
3727
3728 return features;
3729 }
3730 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3731 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3732 netdev_features_t features,
3733 __be16 type)
3734 {
3735 return features;
3736 }
3737 #endif
3738
harmonize_features(struct sk_buff * skb,netdev_features_t features)3739 static netdev_features_t harmonize_features(struct sk_buff *skb,
3740 netdev_features_t features)
3741 {
3742 __be16 type;
3743
3744 type = skb_network_protocol(skb, NULL);
3745 features = net_mpls_features(skb, features, type);
3746
3747 if (skb->ip_summed != CHECKSUM_NONE &&
3748 !can_checksum_protocol(features, type)) {
3749 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3750 }
3751 if (illegal_highdma(skb->dev, skb))
3752 features &= ~NETIF_F_SG;
3753
3754 return features;
3755 }
3756
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3757 netdev_features_t passthru_features_check(struct sk_buff *skb,
3758 struct net_device *dev,
3759 netdev_features_t features)
3760 {
3761 return features;
3762 }
3763 EXPORT_SYMBOL(passthru_features_check);
3764
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3765 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3766 struct net_device *dev,
3767 netdev_features_t features)
3768 {
3769 return vlan_features_check(skb, features);
3770 }
3771
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3772 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3773 struct net_device *dev,
3774 netdev_features_t features)
3775 {
3776 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3777
3778 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3779 return features & ~NETIF_F_GSO_MASK;
3780
3781 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3782 return features & ~NETIF_F_GSO_MASK;
3783
3784 if (!skb_shinfo(skb)->gso_type) {
3785 skb_warn_bad_offload(skb);
3786 return features & ~NETIF_F_GSO_MASK;
3787 }
3788
3789 /* Support for GSO partial features requires software
3790 * intervention before we can actually process the packets
3791 * so we need to strip support for any partial features now
3792 * and we can pull them back in after we have partially
3793 * segmented the frame.
3794 */
3795 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3796 features &= ~dev->gso_partial_features;
3797
3798 /* Make sure to clear the IPv4 ID mangling feature if the IPv4 header
3799 * has the potential to be fragmented so that TSO does not generate
3800 * segments with the same ID. For encapsulated packets, the ID mangling
3801 * feature is guaranteed not to use the same ID for the outer IPv4
3802 * headers of the generated segments if the headers have the potential
3803 * to be fragmented, so there is no need to clear the IPv4 ID mangling
3804 * feature (see the section about NETIF_F_TSO_MANGLEID in
3805 * segmentation-offloads.rst).
3806 */
3807 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3808 struct iphdr *iph = skb->encapsulation ?
3809 inner_ip_hdr(skb) : ip_hdr(skb);
3810
3811 if (!(iph->frag_off & htons(IP_DF)))
3812 features &= ~dev->mangleid_features;
3813 }
3814
3815 /* NETIF_F_IPV6_CSUM does not support IPv6 extension headers,
3816 * so neither does TSO that depends on it.
3817 */
3818 if (features & NETIF_F_IPV6_CSUM &&
3819 (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 ||
3820 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 &&
3821 vlan_get_protocol(skb) == htons(ETH_P_IPV6))) &&
3822 skb_transport_header_was_set(skb) &&
3823 skb_network_header_len(skb) != sizeof(struct ipv6hdr))
3824 features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4);
3825
3826 return features;
3827 }
3828
netif_skb_features(struct sk_buff * skb)3829 netdev_features_t netif_skb_features(struct sk_buff *skb)
3830 {
3831 struct net_device *dev = skb->dev;
3832 netdev_features_t features = dev->features;
3833
3834 if (skb_is_gso(skb))
3835 features = gso_features_check(skb, dev, features);
3836
3837 /* If encapsulation offload request, verify we are testing
3838 * hardware encapsulation features instead of standard
3839 * features for the netdev
3840 */
3841 if (skb->encapsulation)
3842 features &= dev->hw_enc_features;
3843
3844 if (skb_vlan_tagged(skb))
3845 features = netdev_intersect_features(features,
3846 dev->vlan_features |
3847 NETIF_F_HW_VLAN_CTAG_TX |
3848 NETIF_F_HW_VLAN_STAG_TX);
3849
3850 if (dev->netdev_ops->ndo_features_check)
3851 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3852 features);
3853 else
3854 features &= dflt_features_check(skb, dev, features);
3855
3856 return harmonize_features(skb, features);
3857 }
3858 EXPORT_SYMBOL(netif_skb_features);
3859
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3860 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3861 struct netdev_queue *txq, bool more)
3862 {
3863 unsigned int len;
3864 int rc;
3865
3866 if (dev_nit_active_rcu(dev))
3867 dev_queue_xmit_nit(skb, dev);
3868
3869 len = skb->len;
3870 trace_net_dev_start_xmit(skb, dev);
3871 rc = netdev_start_xmit(skb, dev, txq, more);
3872 trace_net_dev_xmit(skb, rc, dev, len);
3873
3874 return rc;
3875 }
3876
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3877 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3878 struct netdev_queue *txq, int *ret)
3879 {
3880 struct sk_buff *skb = first;
3881 int rc = NETDEV_TX_OK;
3882
3883 while (skb) {
3884 struct sk_buff *next = skb->next;
3885
3886 skb_mark_not_on_list(skb);
3887 rc = xmit_one(skb, dev, txq, next != NULL);
3888 if (unlikely(!dev_xmit_complete(rc))) {
3889 skb->next = next;
3890 goto out;
3891 }
3892
3893 skb = next;
3894 if (netif_tx_queue_stopped(txq) && skb) {
3895 rc = NETDEV_TX_BUSY;
3896 break;
3897 }
3898 }
3899
3900 out:
3901 *ret = rc;
3902 return skb;
3903 }
3904
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3905 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3906 netdev_features_t features)
3907 {
3908 if (skb_vlan_tag_present(skb) &&
3909 !vlan_hw_offload_capable(features, skb->vlan_proto))
3910 skb = __vlan_hwaccel_push_inside(skb);
3911 return skb;
3912 }
3913
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3914 int skb_csum_hwoffload_help(struct sk_buff *skb,
3915 const netdev_features_t features)
3916 {
3917 if (unlikely(skb_csum_is_sctp(skb)))
3918 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3919 skb_crc32c_csum_help(skb);
3920
3921 if (features & NETIF_F_HW_CSUM)
3922 return 0;
3923
3924 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3925 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3926 skb_network_header_len(skb) != sizeof(struct ipv6hdr))
3927 goto sw_checksum;
3928
3929 switch (skb->csum_offset) {
3930 case offsetof(struct tcphdr, check):
3931 case offsetof(struct udphdr, check):
3932 return 0;
3933 }
3934 }
3935
3936 sw_checksum:
3937 return skb_checksum_help(skb);
3938 }
3939 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3940
3941 /* Checks if this SKB belongs to an HW offloaded socket
3942 * and whether any SW fallbacks are required based on dev.
3943 * Check decrypted mark in case skb_orphan() cleared socket.
3944 */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)3945 static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
3946 struct net_device *dev)
3947 {
3948 #ifdef CONFIG_SOCK_VALIDATE_XMIT
3949 struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev,
3950 struct sk_buff *skb);
3951 struct sock *sk = skb->sk;
3952
3953 sk_validate = NULL;
3954 if (sk) {
3955 if (sk_fullsock(sk))
3956 sk_validate = sk->sk_validate_xmit_skb;
3957 else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT)
3958 sk_validate = inet_twsk(sk)->tw_validate_xmit_skb;
3959 }
3960
3961 if (sk_validate) {
3962 skb = sk_validate(sk, dev, skb);
3963 } else if (unlikely(skb_is_decrypted(skb))) {
3964 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
3965 kfree_skb(skb);
3966 skb = NULL;
3967 }
3968 #endif
3969
3970 return skb;
3971 }
3972
validate_xmit_unreadable_skb(struct sk_buff * skb,struct net_device * dev)3973 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3974 struct net_device *dev)
3975 {
3976 struct skb_shared_info *shinfo;
3977 struct net_iov *niov;
3978
3979 if (likely(skb_frags_readable(skb)))
3980 goto out;
3981
3982 if (!dev->netmem_tx)
3983 goto out_free;
3984
3985 shinfo = skb_shinfo(skb);
3986
3987 if (shinfo->nr_frags > 0) {
3988 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3989 if (net_is_devmem_iov(niov) &&
3990 net_devmem_iov_binding(niov)->dev != dev)
3991 goto out_free;
3992 }
3993
3994 out:
3995 return skb;
3996
3997 out_free:
3998 kfree_skb(skb);
3999 return NULL;
4000 }
4001
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)4002 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
4003 {
4004 netdev_features_t features;
4005
4006 skb = validate_xmit_unreadable_skb(skb, dev);
4007 if (unlikely(!skb))
4008 goto out_null;
4009
4010 features = netif_skb_features(skb);
4011 skb = validate_xmit_vlan(skb, features);
4012 if (unlikely(!skb))
4013 goto out_null;
4014
4015 skb = sk_validate_xmit_skb(skb, dev);
4016 if (unlikely(!skb))
4017 goto out_null;
4018
4019 if (netif_needs_gso(skb, features)) {
4020 struct sk_buff *segs;
4021
4022 segs = skb_gso_segment(skb, features);
4023 if (IS_ERR(segs)) {
4024 goto out_kfree_skb;
4025 } else if (segs) {
4026 consume_skb(skb);
4027 skb = segs;
4028 }
4029 } else {
4030 if (skb_needs_linearize(skb, features) &&
4031 __skb_linearize(skb))
4032 goto out_kfree_skb;
4033
4034 /* If packet is not checksummed and device does not
4035 * support checksumming for this protocol, complete
4036 * checksumming here.
4037 */
4038 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4039 if (skb->encapsulation)
4040 skb_set_inner_transport_header(skb,
4041 skb_checksum_start_offset(skb));
4042 else
4043 skb_set_transport_header(skb,
4044 skb_checksum_start_offset(skb));
4045 if (skb_csum_hwoffload_help(skb, features))
4046 goto out_kfree_skb;
4047 }
4048 }
4049
4050 skb = validate_xmit_xfrm(skb, features, again);
4051
4052 return skb;
4053
4054 out_kfree_skb:
4055 kfree_skb(skb);
4056 out_null:
4057 dev_core_stats_tx_dropped_inc(dev);
4058 return NULL;
4059 }
4060
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)4061 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
4062 {
4063 struct sk_buff *next, *head = NULL, *tail;
4064
4065 for (; skb != NULL; skb = next) {
4066 next = skb->next;
4067 skb_mark_not_on_list(skb);
4068
4069 /* in case skb won't be segmented, point to itself */
4070 skb->prev = skb;
4071
4072 skb = validate_xmit_skb(skb, dev, again);
4073 if (!skb)
4074 continue;
4075
4076 if (!head)
4077 head = skb;
4078 else
4079 tail->next = skb;
4080 /* If skb was segmented, skb->prev points to
4081 * the last segment. If not, it still contains skb.
4082 */
4083 tail = skb->prev;
4084 }
4085 return head;
4086 }
4087 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4088
qdisc_pkt_len_segs_init(struct sk_buff * skb)4089 static void qdisc_pkt_len_segs_init(struct sk_buff *skb)
4090 {
4091 struct skb_shared_info *shinfo = skb_shinfo(skb);
4092 u16 gso_segs;
4093
4094 qdisc_skb_cb(skb)->pkt_len = skb->len;
4095 if (!shinfo->gso_size) {
4096 qdisc_skb_cb(skb)->pkt_segs = 1;
4097 return;
4098 }
4099
4100 qdisc_skb_cb(skb)->pkt_segs = gso_segs = shinfo->gso_segs;
4101
4102 /* To get more precise estimation of bytes sent on wire,
4103 * we add to pkt_len the headers size of all segments
4104 */
4105 if (skb_transport_header_was_set(skb)) {
4106 unsigned int hdr_len;
4107
4108 /* mac layer + network layer */
4109 if (!skb->encapsulation)
4110 hdr_len = skb_transport_offset(skb);
4111 else
4112 hdr_len = skb_inner_transport_offset(skb);
4113
4114 /* + transport layer */
4115 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4116 const struct tcphdr *th;
4117 struct tcphdr _tcphdr;
4118
4119 th = skb_header_pointer(skb, hdr_len,
4120 sizeof(_tcphdr), &_tcphdr);
4121 if (likely(th))
4122 hdr_len += __tcp_hdrlen(th);
4123 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4124 struct udphdr _udphdr;
4125
4126 if (skb_header_pointer(skb, hdr_len,
4127 sizeof(_udphdr), &_udphdr))
4128 hdr_len += sizeof(struct udphdr);
4129 }
4130
4131 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4132 int payload = skb->len - hdr_len;
4133
4134 /* Malicious packet. */
4135 if (payload <= 0)
4136 return;
4137 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4138 shinfo->gso_segs = gso_segs;
4139 qdisc_skb_cb(skb)->pkt_segs = gso_segs;
4140 }
4141 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4142 }
4143 }
4144
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)4145 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4146 struct sk_buff **to_free,
4147 struct netdev_queue *txq)
4148 {
4149 int rc;
4150
4151 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4152 if (rc == NET_XMIT_SUCCESS)
4153 trace_qdisc_enqueue(q, txq, skb);
4154 return rc;
4155 }
4156
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)4157 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4158 struct net_device *dev,
4159 struct netdev_queue *txq)
4160 {
4161 struct sk_buff *next, *to_free = NULL, *to_free2 = NULL;
4162 spinlock_t *root_lock = qdisc_lock(q);
4163 struct llist_node *ll_list, *first_n;
4164 unsigned long defer_count = 0;
4165 int rc;
4166
4167 qdisc_calculate_pkt_len(skb, q);
4168
4169 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4170
4171 if (q->flags & TCQ_F_NOLOCK) {
4172 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4173 qdisc_run_begin(q)) {
4174 /* Retest nolock_qdisc_is_empty() within the protection
4175 * of q->seqlock to protect from racing with requeuing.
4176 */
4177 if (unlikely(!nolock_qdisc_is_empty(q))) {
4178 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4179 __qdisc_run(q);
4180 to_free2 = qdisc_run_end(q);
4181
4182 goto free_skbs;
4183 }
4184
4185 qdisc_bstats_cpu_update(q, skb);
4186 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4187 !nolock_qdisc_is_empty(q))
4188 __qdisc_run(q);
4189
4190 to_free2 = qdisc_run_end(q);
4191 rc = NET_XMIT_SUCCESS;
4192 goto free_skbs;
4193 }
4194
4195 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4196 to_free2 = qdisc_run(q);
4197 goto free_skbs;
4198 }
4199
4200 /* Open code llist_add(&skb->ll_node, &q->defer_list) + queue limit.
4201 * In the try_cmpxchg() loop, we want to increment q->defer_count
4202 * at most once to limit the number of skbs in defer_list.
4203 * We perform the defer_count increment only if the list is not empty,
4204 * because some arches have slow atomic_long_inc_return().
4205 */
4206 first_n = READ_ONCE(q->defer_list.first);
4207 do {
4208 if (first_n && !defer_count) {
4209 defer_count = atomic_long_inc_return(&q->defer_count);
4210 if (unlikely(defer_count > READ_ONCE(net_hotdata.qdisc_max_burst))) {
4211 kfree_skb_reason(skb, SKB_DROP_REASON_QDISC_BURST_DROP);
4212 return NET_XMIT_DROP;
4213 }
4214 }
4215 skb->ll_node.next = first_n;
4216 } while (!try_cmpxchg(&q->defer_list.first, &first_n, &skb->ll_node));
4217
4218 /* If defer_list was not empty, we know the cpu which queued
4219 * the first skb will process the whole list for us.
4220 */
4221 if (first_n)
4222 return NET_XMIT_SUCCESS;
4223
4224 spin_lock(root_lock);
4225
4226 ll_list = llist_del_all(&q->defer_list);
4227 /* There is a small race because we clear defer_count not atomically
4228 * with the prior llist_del_all(). This means defer_list could grow
4229 * over qdisc_max_burst.
4230 */
4231 atomic_long_set(&q->defer_count, 0);
4232
4233 ll_list = llist_reverse_order(ll_list);
4234
4235 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4236 llist_for_each_entry_safe(skb, next, ll_list, ll_node)
4237 __qdisc_drop(skb, &to_free);
4238 rc = NET_XMIT_DROP;
4239 goto unlock;
4240 }
4241 if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4242 !llist_next(ll_list) && qdisc_run_begin(q)) {
4243 /*
4244 * This is a work-conserving queue; there are no old skbs
4245 * waiting to be sent out; and the qdisc is not running -
4246 * xmit the skb directly.
4247 */
4248
4249 DEBUG_NET_WARN_ON_ONCE(skb != llist_entry(ll_list,
4250 struct sk_buff,
4251 ll_node));
4252 qdisc_bstats_update(q, skb);
4253 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true))
4254 __qdisc_run(q);
4255 to_free2 = qdisc_run_end(q);
4256 rc = NET_XMIT_SUCCESS;
4257 } else {
4258 int count = 0;
4259
4260 llist_for_each_entry_safe(skb, next, ll_list, ll_node) {
4261 if (next) {
4262 prefetch(next);
4263 prefetch(&next->priority);
4264 skb_mark_not_on_list(skb);
4265 }
4266 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4267 count++;
4268 }
4269 to_free2 = qdisc_run(q);
4270 if (count != 1)
4271 rc = NET_XMIT_SUCCESS;
4272 }
4273 unlock:
4274 spin_unlock(root_lock);
4275
4276 free_skbs:
4277 tcf_kfree_skb_list(to_free);
4278 tcf_kfree_skb_list(to_free2);
4279 return rc;
4280 }
4281
4282 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)4283 static void skb_update_prio(struct sk_buff *skb)
4284 {
4285 const struct netprio_map *map;
4286 const struct sock *sk;
4287 unsigned int prioidx;
4288
4289 if (skb->priority)
4290 return;
4291 map = rcu_dereference_bh(skb->dev->priomap);
4292 if (!map)
4293 return;
4294 sk = skb_to_full_sk(skb);
4295 if (!sk)
4296 return;
4297
4298 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4299
4300 if (prioidx < map->priomap_len)
4301 skb->priority = map->priomap[prioidx];
4302 }
4303 #else
4304 #define skb_update_prio(skb)
4305 #endif
4306
4307 /**
4308 * dev_loopback_xmit - loop back @skb
4309 * @net: network namespace this loopback is happening in
4310 * @sk: sk needed to be a netfilter okfn
4311 * @skb: buffer to transmit
4312 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4313 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4314 {
4315 skb_reset_mac_header(skb);
4316 __skb_pull(skb, skb_network_offset(skb));
4317 skb->pkt_type = PACKET_LOOPBACK;
4318 if (skb->ip_summed == CHECKSUM_NONE)
4319 skb->ip_summed = CHECKSUM_UNNECESSARY;
4320 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4321 skb_dst_force(skb);
4322 netif_rx(skb);
4323 return 0;
4324 }
4325 EXPORT_SYMBOL(dev_loopback_xmit);
4326
4327 #ifdef CONFIG_NET_EGRESS
4328 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4329 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4330 {
4331 int qm = skb_get_queue_mapping(skb);
4332
4333 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4334 }
4335
4336 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4337 static bool netdev_xmit_txqueue_skipped(void)
4338 {
4339 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4340 }
4341
netdev_xmit_skip_txqueue(bool skip)4342 void netdev_xmit_skip_txqueue(bool skip)
4343 {
4344 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4345 }
4346 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4347
4348 #else
netdev_xmit_txqueue_skipped(void)4349 static bool netdev_xmit_txqueue_skipped(void)
4350 {
4351 return current->net_xmit.skip_txqueue;
4352 }
4353
netdev_xmit_skip_txqueue(bool skip)4354 void netdev_xmit_skip_txqueue(bool skip)
4355 {
4356 current->net_xmit.skip_txqueue = skip;
4357 }
4358 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4359 #endif
4360 #endif /* CONFIG_NET_EGRESS */
4361
4362 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4363 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4364 enum skb_drop_reason *drop_reason)
4365 {
4366 int ret = TC_ACT_UNSPEC;
4367 #ifdef CONFIG_NET_CLS_ACT
4368 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4369 struct tcf_result res;
4370
4371 if (!miniq)
4372 return ret;
4373
4374 /* Global bypass */
4375 if (!static_branch_likely(&tcf_sw_enabled_key))
4376 return ret;
4377
4378 /* Block-wise bypass */
4379 if (tcf_block_bypass_sw(miniq->block))
4380 return ret;
4381
4382 tc_skb_cb(skb)->mru = 0;
4383 qdisc_skb_cb(skb)->post_ct = false;
4384 tcf_set_drop_reason(skb, *drop_reason);
4385
4386 mini_qdisc_bstats_cpu_update(miniq, skb);
4387 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4388 /* Only tcf related quirks below. */
4389 switch (ret) {
4390 case TC_ACT_SHOT:
4391 *drop_reason = tcf_get_drop_reason(skb);
4392 mini_qdisc_qstats_cpu_drop(miniq);
4393 break;
4394 case TC_ACT_OK:
4395 case TC_ACT_RECLASSIFY:
4396 skb->tc_index = TC_H_MIN(res.classid);
4397 break;
4398 }
4399 #endif /* CONFIG_NET_CLS_ACT */
4400 return ret;
4401 }
4402
4403 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4404
tcx_inc(void)4405 void tcx_inc(void)
4406 {
4407 static_branch_inc(&tcx_needed_key);
4408 }
4409
tcx_dec(void)4410 void tcx_dec(void)
4411 {
4412 static_branch_dec(&tcx_needed_key);
4413 }
4414
4415 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4416 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4417 const bool needs_mac)
4418 {
4419 const struct bpf_mprog_fp *fp;
4420 const struct bpf_prog *prog;
4421 int ret = TCX_NEXT;
4422
4423 if (needs_mac)
4424 __skb_push(skb, skb->mac_len);
4425 bpf_mprog_foreach_prog(entry, fp, prog) {
4426 bpf_compute_data_pointers(skb);
4427 ret = bpf_prog_run(prog, skb);
4428 if (ret != TCX_NEXT)
4429 break;
4430 }
4431 if (needs_mac)
4432 __skb_pull(skb, skb->mac_len);
4433 return tcx_action_code(skb, ret);
4434 }
4435
4436 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4437 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4438 struct net_device *orig_dev, bool *another)
4439 {
4440 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4441 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4442 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4443 int sch_ret;
4444
4445 if (!entry)
4446 return skb;
4447
4448 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4449 if (unlikely(*pt_prev)) {
4450 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4451 *pt_prev = NULL;
4452 }
4453
4454 qdisc_pkt_len_segs_init(skb);
4455 tcx_set_ingress(skb, true);
4456
4457 if (static_branch_unlikely(&tcx_needed_key)) {
4458 sch_ret = tcx_run(entry, skb, true);
4459 if (sch_ret != TC_ACT_UNSPEC)
4460 goto ingress_verdict;
4461 }
4462 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4463 ingress_verdict:
4464 switch (sch_ret) {
4465 case TC_ACT_REDIRECT:
4466 /* skb_mac_header check was done by BPF, so we can safely
4467 * push the L2 header back before redirecting to another
4468 * netdev.
4469 */
4470 __skb_push(skb, skb->mac_len);
4471 if (skb_do_redirect(skb) == -EAGAIN) {
4472 __skb_pull(skb, skb->mac_len);
4473 *another = true;
4474 break;
4475 }
4476 *ret = NET_RX_SUCCESS;
4477 bpf_net_ctx_clear(bpf_net_ctx);
4478 return NULL;
4479 case TC_ACT_SHOT:
4480 kfree_skb_reason(skb, drop_reason);
4481 *ret = NET_RX_DROP;
4482 bpf_net_ctx_clear(bpf_net_ctx);
4483 return NULL;
4484 /* used by tc_run */
4485 case TC_ACT_STOLEN:
4486 case TC_ACT_QUEUED:
4487 case TC_ACT_TRAP:
4488 consume_skb(skb);
4489 fallthrough;
4490 case TC_ACT_CONSUMED:
4491 *ret = NET_RX_SUCCESS;
4492 bpf_net_ctx_clear(bpf_net_ctx);
4493 return NULL;
4494 }
4495 bpf_net_ctx_clear(bpf_net_ctx);
4496
4497 return skb;
4498 }
4499
4500 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4501 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4502 {
4503 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4504 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4505 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4506 int sch_ret;
4507
4508 if (!entry)
4509 return skb;
4510
4511 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4512
4513 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4514 * already set by the caller.
4515 */
4516 if (static_branch_unlikely(&tcx_needed_key)) {
4517 sch_ret = tcx_run(entry, skb, false);
4518 if (sch_ret != TC_ACT_UNSPEC)
4519 goto egress_verdict;
4520 }
4521 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4522 egress_verdict:
4523 switch (sch_ret) {
4524 case TC_ACT_REDIRECT:
4525 /* No need to push/pop skb's mac_header here on egress! */
4526 skb_do_redirect(skb);
4527 *ret = NET_XMIT_SUCCESS;
4528 bpf_net_ctx_clear(bpf_net_ctx);
4529 return NULL;
4530 case TC_ACT_SHOT:
4531 kfree_skb_reason(skb, drop_reason);
4532 *ret = NET_XMIT_DROP;
4533 bpf_net_ctx_clear(bpf_net_ctx);
4534 return NULL;
4535 /* used by tc_run */
4536 case TC_ACT_STOLEN:
4537 case TC_ACT_QUEUED:
4538 case TC_ACT_TRAP:
4539 consume_skb(skb);
4540 fallthrough;
4541 case TC_ACT_CONSUMED:
4542 *ret = NET_XMIT_SUCCESS;
4543 bpf_net_ctx_clear(bpf_net_ctx);
4544 return NULL;
4545 }
4546 bpf_net_ctx_clear(bpf_net_ctx);
4547
4548 return skb;
4549 }
4550 #else
4551 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4552 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4553 struct net_device *orig_dev, bool *another)
4554 {
4555 return skb;
4556 }
4557
4558 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4559 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4560 {
4561 return skb;
4562 }
4563 #endif /* CONFIG_NET_XGRESS */
4564
4565 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4566 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4567 struct xps_dev_maps *dev_maps, unsigned int tci)
4568 {
4569 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4570 struct xps_map *map;
4571 int queue_index = -1;
4572
4573 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4574 return queue_index;
4575
4576 tci *= dev_maps->num_tc;
4577 tci += tc;
4578
4579 map = rcu_dereference(dev_maps->attr_map[tci]);
4580 if (map) {
4581 if (map->len == 1)
4582 queue_index = map->queues[0];
4583 else
4584 queue_index = map->queues[reciprocal_scale(
4585 skb_get_hash(skb), map->len)];
4586 if (unlikely(queue_index >= dev->real_num_tx_queues))
4587 queue_index = -1;
4588 }
4589 return queue_index;
4590 }
4591 #endif
4592
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4593 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4594 struct sk_buff *skb)
4595 {
4596 #ifdef CONFIG_XPS
4597 struct xps_dev_maps *dev_maps;
4598 struct sock *sk = skb->sk;
4599 int queue_index = -1;
4600
4601 if (!static_key_false(&xps_needed))
4602 return -1;
4603
4604 rcu_read_lock();
4605 if (!static_key_false(&xps_rxqs_needed))
4606 goto get_cpus_map;
4607
4608 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4609 if (dev_maps) {
4610 int tci = sk_rx_queue_get(sk);
4611
4612 if (tci >= 0)
4613 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4614 tci);
4615 }
4616
4617 get_cpus_map:
4618 if (queue_index < 0) {
4619 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4620 if (dev_maps) {
4621 unsigned int tci = skb->sender_cpu - 1;
4622
4623 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4624 tci);
4625 }
4626 }
4627 rcu_read_unlock();
4628
4629 return queue_index;
4630 #else
4631 return -1;
4632 #endif
4633 }
4634
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4635 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4636 struct net_device *sb_dev)
4637 {
4638 return 0;
4639 }
4640 EXPORT_SYMBOL(dev_pick_tx_zero);
4641
sk_tx_queue_get(const struct sock * sk)4642 int sk_tx_queue_get(const struct sock *sk)
4643 {
4644 int resel, val;
4645
4646 if (!sk)
4647 return -1;
4648 /* Paired with WRITE_ONCE() in sk_tx_queue_clear()
4649 * and sk_tx_queue_set().
4650 */
4651 val = READ_ONCE(sk->sk_tx_queue_mapping);
4652
4653 if (val == NO_QUEUE_MAPPING)
4654 return -1;
4655
4656 if (!sk_fullsock(sk))
4657 return val;
4658
4659 resel = READ_ONCE(sock_net(sk)->core.sysctl_txq_reselection);
4660 if (resel && time_is_before_jiffies(
4661 READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + resel))
4662 return -1;
4663
4664 return val;
4665 }
4666 EXPORT_SYMBOL(sk_tx_queue_get);
4667
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4668 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4669 struct net_device *sb_dev)
4670 {
4671 struct sock *sk = skb->sk;
4672 int queue_index = sk_tx_queue_get(sk);
4673
4674 sb_dev = sb_dev ? : dev;
4675
4676 if (queue_index < 0 || skb->ooo_okay ||
4677 queue_index >= dev->real_num_tx_queues) {
4678 int new_index = get_xps_queue(dev, sb_dev, skb);
4679
4680 if (new_index < 0)
4681 new_index = skb_tx_hash(dev, sb_dev, skb);
4682
4683 if (sk && sk_fullsock(sk) &&
4684 rcu_access_pointer(sk->sk_dst_cache))
4685 sk_tx_queue_set(sk, new_index);
4686
4687 queue_index = new_index;
4688 }
4689
4690 return queue_index;
4691 }
4692 EXPORT_SYMBOL(netdev_pick_tx);
4693
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4694 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4695 struct sk_buff *skb,
4696 struct net_device *sb_dev)
4697 {
4698 int queue_index = 0;
4699
4700 #ifdef CONFIG_XPS
4701 u32 sender_cpu = skb->sender_cpu - 1;
4702
4703 if (sender_cpu >= (u32)NR_CPUS)
4704 skb->sender_cpu = raw_smp_processor_id() + 1;
4705 #endif
4706
4707 if (dev->real_num_tx_queues != 1) {
4708 const struct net_device_ops *ops = dev->netdev_ops;
4709
4710 if (ops->ndo_select_queue)
4711 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4712 else
4713 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4714
4715 queue_index = netdev_cap_txqueue(dev, queue_index);
4716 }
4717
4718 skb_set_queue_mapping(skb, queue_index);
4719 return netdev_get_tx_queue(dev, queue_index);
4720 }
4721
4722 /**
4723 * __dev_queue_xmit() - transmit a buffer
4724 * @skb: buffer to transmit
4725 * @sb_dev: suboordinate device used for L2 forwarding offload
4726 *
4727 * Queue a buffer for transmission to a network device. The caller must
4728 * have set the device and priority and built the buffer before calling
4729 * this function. The function can be called from an interrupt.
4730 *
4731 * When calling this method, interrupts MUST be enabled. This is because
4732 * the BH enable code must have IRQs enabled so that it will not deadlock.
4733 *
4734 * Regardless of the return value, the skb is consumed, so it is currently
4735 * difficult to retry a send to this method. (You can bump the ref count
4736 * before sending to hold a reference for retry if you are careful.)
4737 *
4738 * Return:
4739 * * 0 - buffer successfully transmitted
4740 * * positive qdisc return code - NET_XMIT_DROP etc.
4741 * * negative errno - other errors
4742 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4743 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4744 {
4745 struct net_device *dev = skb->dev;
4746 struct netdev_queue *txq = NULL;
4747 struct Qdisc *q;
4748 int rc = -ENOMEM;
4749 bool again = false;
4750
4751 skb_reset_mac_header(skb);
4752 skb_assert_len(skb);
4753
4754 if (unlikely(skb_shinfo(skb)->tx_flags &
4755 (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4756 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4757
4758 /* Disable soft irqs for various locks below. Also
4759 * stops preemption for RCU.
4760 */
4761 rcu_read_lock_bh();
4762
4763 skb_update_prio(skb);
4764
4765 qdisc_pkt_len_segs_init(skb);
4766 tcx_set_ingress(skb, false);
4767 #ifdef CONFIG_NET_EGRESS
4768 if (static_branch_unlikely(&egress_needed_key)) {
4769 if (nf_hook_egress_active()) {
4770 skb = nf_hook_egress(skb, &rc, dev);
4771 if (!skb)
4772 goto out;
4773 }
4774
4775 netdev_xmit_skip_txqueue(false);
4776
4777 nf_skip_egress(skb, true);
4778 skb = sch_handle_egress(skb, &rc, dev);
4779 if (!skb)
4780 goto out;
4781 nf_skip_egress(skb, false);
4782
4783 if (netdev_xmit_txqueue_skipped())
4784 txq = netdev_tx_queue_mapping(dev, skb);
4785 }
4786 #endif
4787 /* If device/qdisc don't need skb->dst, release it right now while
4788 * its hot in this cpu cache.
4789 */
4790 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4791 skb_dst_drop(skb);
4792 else
4793 skb_dst_force(skb);
4794
4795 if (!txq)
4796 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4797
4798 q = rcu_dereference_bh(txq->qdisc);
4799
4800 trace_net_dev_queue(skb);
4801 if (q->enqueue) {
4802 rc = __dev_xmit_skb(skb, q, dev, txq);
4803 goto out;
4804 }
4805
4806 /* The device has no queue. Common case for software devices:
4807 * loopback, all the sorts of tunnels...
4808
4809 * Really, it is unlikely that netif_tx_lock protection is necessary
4810 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4811 * counters.)
4812 * However, it is possible, that they rely on protection
4813 * made by us here.
4814
4815 * Check this and shot the lock. It is not prone from deadlocks.
4816 *Either shot noqueue qdisc, it is even simpler 8)
4817 */
4818 if (dev->flags & IFF_UP) {
4819 int cpu = smp_processor_id(); /* ok because BHs are off */
4820
4821 /* Other cpus might concurrently change txq->xmit_lock_owner
4822 * to -1 or to their cpu id, but not to our id.
4823 */
4824 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4825 if (dev_xmit_recursion())
4826 goto recursion_alert;
4827
4828 skb = validate_xmit_skb(skb, dev, &again);
4829 if (!skb)
4830 goto out;
4831
4832 HARD_TX_LOCK(dev, txq, cpu);
4833
4834 if (!netif_xmit_stopped(txq)) {
4835 dev_xmit_recursion_inc();
4836 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4837 dev_xmit_recursion_dec();
4838 if (dev_xmit_complete(rc)) {
4839 HARD_TX_UNLOCK(dev, txq);
4840 goto out;
4841 }
4842 }
4843 HARD_TX_UNLOCK(dev, txq);
4844 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4845 dev->name);
4846 } else {
4847 /* Recursion is detected! It is possible,
4848 * unfortunately
4849 */
4850 recursion_alert:
4851 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4852 dev->name);
4853 }
4854 }
4855
4856 rc = -ENETDOWN;
4857 rcu_read_unlock_bh();
4858
4859 dev_core_stats_tx_dropped_inc(dev);
4860 kfree_skb_list(skb);
4861 return rc;
4862 out:
4863 rcu_read_unlock_bh();
4864 return rc;
4865 }
4866 EXPORT_SYMBOL(__dev_queue_xmit);
4867
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4868 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4869 {
4870 struct net_device *dev = skb->dev;
4871 struct sk_buff *orig_skb = skb;
4872 struct netdev_queue *txq;
4873 int ret = NETDEV_TX_BUSY;
4874 bool again = false;
4875
4876 if (unlikely(!netif_running(dev) ||
4877 !netif_carrier_ok(dev)))
4878 goto drop;
4879
4880 skb = validate_xmit_skb_list(skb, dev, &again);
4881 if (skb != orig_skb)
4882 goto drop;
4883
4884 skb_set_queue_mapping(skb, queue_id);
4885 txq = skb_get_tx_queue(dev, skb);
4886
4887 local_bh_disable();
4888
4889 dev_xmit_recursion_inc();
4890 HARD_TX_LOCK(dev, txq, smp_processor_id());
4891 if (!netif_xmit_frozen_or_drv_stopped(txq))
4892 ret = netdev_start_xmit(skb, dev, txq, false);
4893 HARD_TX_UNLOCK(dev, txq);
4894 dev_xmit_recursion_dec();
4895
4896 local_bh_enable();
4897 return ret;
4898 drop:
4899 dev_core_stats_tx_dropped_inc(dev);
4900 kfree_skb_list(skb);
4901 return NET_XMIT_DROP;
4902 }
4903 EXPORT_SYMBOL(__dev_direct_xmit);
4904
4905 /*************************************************************************
4906 * Receiver routines
4907 *************************************************************************/
4908 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4909
4910 int weight_p __read_mostly = 64; /* old backlog weight */
4911 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4912 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4913
4914 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4915 static inline void ____napi_schedule(struct softnet_data *sd,
4916 struct napi_struct *napi)
4917 {
4918 struct task_struct *thread;
4919
4920 lockdep_assert_irqs_disabled();
4921
4922 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4923 /* Paired with smp_mb__before_atomic() in
4924 * napi_enable()/netif_set_threaded().
4925 * Use READ_ONCE() to guarantee a complete
4926 * read on napi->thread. Only call
4927 * wake_up_process() when it's not NULL.
4928 */
4929 thread = READ_ONCE(napi->thread);
4930 if (thread) {
4931 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4932 goto use_local_napi;
4933
4934 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4935 wake_up_process(thread);
4936 return;
4937 }
4938 }
4939
4940 use_local_napi:
4941 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4942 list_add_tail(&napi->poll_list, &sd->poll_list);
4943 WRITE_ONCE(napi->list_owner, smp_processor_id());
4944 /* If not called from net_rx_action()
4945 * we have to raise NET_RX_SOFTIRQ.
4946 */
4947 if (!sd->in_net_rx_action)
4948 raise_softirq_irqoff(NET_RX_SOFTIRQ);
4949 }
4950
4951 #ifdef CONFIG_RPS
4952
4953 struct static_key_false rps_needed __read_mostly;
4954 EXPORT_SYMBOL(rps_needed);
4955 struct static_key_false rfs_needed __read_mostly;
4956 EXPORT_SYMBOL(rfs_needed);
4957
rfs_slot(u32 hash,const struct rps_dev_flow_table * flow_table)4958 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4959 {
4960 return hash_32(hash, flow_table->log);
4961 }
4962
4963 #ifdef CONFIG_RFS_ACCEL
4964 /**
4965 * rps_flow_is_active - check whether the flow is recently active.
4966 * @rflow: Specific flow to check activity.
4967 * @flow_table: per-queue flowtable that @rflow belongs to.
4968 * @cpu: CPU saved in @rflow.
4969 *
4970 * If the CPU has processed many packets since the flow's last activity
4971 * (beyond 10 times the table size), the flow is considered stale.
4972 *
4973 * Return: true if flow was recently active.
4974 */
rps_flow_is_active(struct rps_dev_flow * rflow,struct rps_dev_flow_table * flow_table,unsigned int cpu)4975 static bool rps_flow_is_active(struct rps_dev_flow *rflow,
4976 struct rps_dev_flow_table *flow_table,
4977 unsigned int cpu)
4978 {
4979 unsigned int flow_last_active;
4980 unsigned int sd_input_head;
4981
4982 if (cpu >= nr_cpu_ids)
4983 return false;
4984
4985 sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head);
4986 flow_last_active = READ_ONCE(rflow->last_qtail);
4987
4988 return (int)(sd_input_head - flow_last_active) <
4989 (int)(10 << flow_table->log);
4990 }
4991 #endif
4992
4993 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu,u32 hash,u32 flow_id)4994 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4995 struct rps_dev_flow *rflow, u16 next_cpu, u32 hash,
4996 u32 flow_id)
4997 {
4998 if (next_cpu < nr_cpu_ids) {
4999 u32 head;
5000 #ifdef CONFIG_RFS_ACCEL
5001 struct netdev_rx_queue *rxqueue;
5002 struct rps_dev_flow_table *flow_table;
5003 struct rps_dev_flow *old_rflow;
5004 struct rps_dev_flow *tmp_rflow;
5005 unsigned int tmp_cpu;
5006 u16 rxq_index;
5007 int rc;
5008
5009 /* Should we steer this flow to a different hardware queue? */
5010 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
5011 !(dev->features & NETIF_F_NTUPLE))
5012 goto out;
5013 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
5014 if (rxq_index == skb_get_rx_queue(skb))
5015 goto out;
5016
5017 rxqueue = dev->_rx + rxq_index;
5018 flow_table = rcu_dereference(rxqueue->rps_flow_table);
5019 if (!flow_table)
5020 goto out;
5021
5022 tmp_rflow = &flow_table->flows[flow_id];
5023 tmp_cpu = READ_ONCE(tmp_rflow->cpu);
5024
5025 if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) {
5026 if (rps_flow_is_active(tmp_rflow, flow_table,
5027 tmp_cpu)) {
5028 if (hash != READ_ONCE(tmp_rflow->hash) ||
5029 next_cpu == tmp_cpu)
5030 goto out;
5031 }
5032 }
5033
5034 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
5035 rxq_index, flow_id);
5036 if (rc < 0)
5037 goto out;
5038
5039 old_rflow = rflow;
5040 rflow = tmp_rflow;
5041 WRITE_ONCE(rflow->filter, rc);
5042 WRITE_ONCE(rflow->hash, hash);
5043
5044 if (old_rflow->filter == rc)
5045 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
5046 out:
5047 #endif
5048 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
5049 rps_input_queue_tail_save(&rflow->last_qtail, head);
5050 }
5051
5052 WRITE_ONCE(rflow->cpu, next_cpu);
5053 return rflow;
5054 }
5055
5056 /*
5057 * get_rps_cpu is called from netif_receive_skb and returns the target
5058 * CPU from the RPS map of the receiving queue for a given skb.
5059 * rcu_read_lock must be held on entry.
5060 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)5061 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
5062 struct rps_dev_flow **rflowp)
5063 {
5064 const struct rps_sock_flow_table *sock_flow_table;
5065 struct netdev_rx_queue *rxqueue = dev->_rx;
5066 struct rps_dev_flow_table *flow_table;
5067 struct rps_map *map;
5068 int cpu = -1;
5069 u32 flow_id;
5070 u32 tcpu;
5071 u32 hash;
5072
5073 if (skb_rx_queue_recorded(skb)) {
5074 u16 index = skb_get_rx_queue(skb);
5075
5076 if (unlikely(index >= dev->real_num_rx_queues)) {
5077 WARN_ONCE(dev->real_num_rx_queues > 1,
5078 "%s received packet on queue %u, but number "
5079 "of RX queues is %u\n",
5080 dev->name, index, dev->real_num_rx_queues);
5081 goto done;
5082 }
5083 rxqueue += index;
5084 }
5085
5086 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
5087
5088 flow_table = rcu_dereference(rxqueue->rps_flow_table);
5089 map = rcu_dereference(rxqueue->rps_map);
5090 if (!flow_table && !map)
5091 goto done;
5092
5093 skb_reset_network_header(skb);
5094 hash = skb_get_hash(skb);
5095 if (!hash)
5096 goto done;
5097
5098 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
5099 if (flow_table && sock_flow_table) {
5100 struct rps_dev_flow *rflow;
5101 u32 next_cpu;
5102 u32 ident;
5103
5104 /* First check into global flow table if there is a match.
5105 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
5106 */
5107 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
5108 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
5109 goto try_rps;
5110
5111 next_cpu = ident & net_hotdata.rps_cpu_mask;
5112
5113 /* OK, now we know there is a match,
5114 * we can look at the local (per receive queue) flow table
5115 */
5116 flow_id = rfs_slot(hash, flow_table);
5117 rflow = &flow_table->flows[flow_id];
5118 tcpu = rflow->cpu;
5119
5120 /*
5121 * If the desired CPU (where last recvmsg was done) is
5122 * different from current CPU (one in the rx-queue flow
5123 * table entry), switch if one of the following holds:
5124 * - Current CPU is unset (>= nr_cpu_ids).
5125 * - Current CPU is offline.
5126 * - The current CPU's queue tail has advanced beyond the
5127 * last packet that was enqueued using this table entry.
5128 * This guarantees that all previous packets for the flow
5129 * have been dequeued, thus preserving in order delivery.
5130 */
5131 if (unlikely(tcpu != next_cpu) &&
5132 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
5133 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
5134 rflow->last_qtail)) >= 0)) {
5135 tcpu = next_cpu;
5136 rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash,
5137 flow_id);
5138 }
5139
5140 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
5141 *rflowp = rflow;
5142 cpu = tcpu;
5143 goto done;
5144 }
5145 }
5146
5147 try_rps:
5148
5149 if (map) {
5150 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
5151 if (cpu_online(tcpu)) {
5152 cpu = tcpu;
5153 goto done;
5154 }
5155 }
5156
5157 done:
5158 return cpu;
5159 }
5160
5161 #ifdef CONFIG_RFS_ACCEL
5162
5163 /**
5164 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
5165 * @dev: Device on which the filter was set
5166 * @rxq_index: RX queue index
5167 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
5168 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
5169 *
5170 * Drivers that implement ndo_rx_flow_steer() should periodically call
5171 * this function for each installed filter and remove the filters for
5172 * which it returns %true.
5173 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)5174 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5175 u32 flow_id, u16 filter_id)
5176 {
5177 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5178 struct rps_dev_flow_table *flow_table;
5179 struct rps_dev_flow *rflow;
5180 bool expire = true;
5181
5182 rcu_read_lock();
5183 flow_table = rcu_dereference(rxqueue->rps_flow_table);
5184 if (flow_table && flow_id < (1UL << flow_table->log)) {
5185 unsigned int cpu;
5186
5187 rflow = &flow_table->flows[flow_id];
5188 cpu = READ_ONCE(rflow->cpu);
5189 if (READ_ONCE(rflow->filter) == filter_id &&
5190 rps_flow_is_active(rflow, flow_table, cpu))
5191 expire = false;
5192 }
5193 rcu_read_unlock();
5194 return expire;
5195 }
5196 EXPORT_SYMBOL(rps_may_expire_flow);
5197
5198 #endif /* CONFIG_RFS_ACCEL */
5199
5200 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)5201 static void rps_trigger_softirq(void *data)
5202 {
5203 struct softnet_data *sd = data;
5204
5205 ____napi_schedule(sd, &sd->backlog);
5206 /* Pairs with READ_ONCE() in softnet_seq_show() */
5207 WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5208 }
5209
5210 #endif /* CONFIG_RPS */
5211
5212 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)5213 static void trigger_rx_softirq(void *data)
5214 {
5215 struct softnet_data *sd = data;
5216
5217 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5218 smp_store_release(&sd->defer_ipi_scheduled, 0);
5219 }
5220
5221 /*
5222 * After we queued a packet into sd->input_pkt_queue,
5223 * we need to make sure this queue is serviced soon.
5224 *
5225 * - If this is another cpu queue, link it to our rps_ipi_list,
5226 * and make sure we will process rps_ipi_list from net_rx_action().
5227 *
5228 * - If this is our own queue, NAPI schedule our backlog.
5229 * Note that this also raises NET_RX_SOFTIRQ.
5230 */
napi_schedule_rps(struct softnet_data * sd)5231 static void napi_schedule_rps(struct softnet_data *sd)
5232 {
5233 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5234
5235 #ifdef CONFIG_RPS
5236 if (sd != mysd) {
5237 if (use_backlog_threads()) {
5238 __napi_schedule_irqoff(&sd->backlog);
5239 return;
5240 }
5241
5242 sd->rps_ipi_next = mysd->rps_ipi_list;
5243 mysd->rps_ipi_list = sd;
5244
5245 /* If not called from net_rx_action() or napi_threaded_poll()
5246 * we have to raise NET_RX_SOFTIRQ.
5247 */
5248 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5249 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5250 return;
5251 }
5252 #endif /* CONFIG_RPS */
5253 __napi_schedule_irqoff(&mysd->backlog);
5254 }
5255
kick_defer_list_purge(unsigned int cpu)5256 void kick_defer_list_purge(unsigned int cpu)
5257 {
5258 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5259 unsigned long flags;
5260
5261 if (use_backlog_threads()) {
5262 backlog_lock_irq_save(sd, &flags);
5263
5264 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5265 __napi_schedule_irqoff(&sd->backlog);
5266
5267 backlog_unlock_irq_restore(sd, flags);
5268
5269 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5270 smp_call_function_single_async(cpu, &sd->defer_csd);
5271 }
5272 }
5273
5274 #ifdef CONFIG_NET_FLOW_LIMIT
5275 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5276 #endif
5277
skb_flow_limit(struct sk_buff * skb,unsigned int qlen,int max_backlog)5278 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen,
5279 int max_backlog)
5280 {
5281 #ifdef CONFIG_NET_FLOW_LIMIT
5282 unsigned int old_flow, new_flow;
5283 const struct softnet_data *sd;
5284 struct sd_flow_limit *fl;
5285
5286 if (likely(qlen < (max_backlog >> 1)))
5287 return false;
5288
5289 sd = this_cpu_ptr(&softnet_data);
5290
5291 rcu_read_lock();
5292 fl = rcu_dereference(sd->flow_limit);
5293 if (fl) {
5294 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5295 old_flow = fl->history[fl->history_head];
5296 fl->history[fl->history_head] = new_flow;
5297
5298 fl->history_head++;
5299 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5300
5301 if (likely(fl->buckets[old_flow]))
5302 fl->buckets[old_flow]--;
5303
5304 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5305 /* Pairs with READ_ONCE() in softnet_seq_show() */
5306 WRITE_ONCE(fl->count, fl->count + 1);
5307 rcu_read_unlock();
5308 return true;
5309 }
5310 }
5311 rcu_read_unlock();
5312 #endif
5313 return false;
5314 }
5315
5316 /*
5317 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5318 * queue (may be a remote CPU queue).
5319 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)5320 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5321 unsigned int *qtail)
5322 {
5323 enum skb_drop_reason reason;
5324 struct softnet_data *sd;
5325 unsigned long flags;
5326 unsigned int qlen;
5327 int max_backlog;
5328 u32 tail;
5329
5330 reason = SKB_DROP_REASON_DEV_READY;
5331 if (unlikely(!netif_running(skb->dev)))
5332 goto bad_dev;
5333
5334 sd = &per_cpu(softnet_data, cpu);
5335
5336 qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5337 max_backlog = READ_ONCE(net_hotdata.max_backlog);
5338 if (unlikely(qlen > max_backlog) ||
5339 skb_flow_limit(skb, qlen, max_backlog))
5340 goto cpu_backlog_drop;
5341 backlog_lock_irq_save(sd, &flags);
5342 qlen = skb_queue_len(&sd->input_pkt_queue);
5343 if (likely(qlen <= max_backlog)) {
5344 if (!qlen) {
5345 /* Schedule NAPI for backlog device. We can use
5346 * non atomic operation as we own the queue lock.
5347 */
5348 if (!__test_and_set_bit(NAPI_STATE_SCHED,
5349 &sd->backlog.state))
5350 napi_schedule_rps(sd);
5351 }
5352 __skb_queue_tail(&sd->input_pkt_queue, skb);
5353 tail = rps_input_queue_tail_incr(sd);
5354 backlog_unlock_irq_restore(sd, flags);
5355
5356 /* save the tail outside of the critical section */
5357 rps_input_queue_tail_save(qtail, tail);
5358 return NET_RX_SUCCESS;
5359 }
5360
5361 backlog_unlock_irq_restore(sd, flags);
5362
5363 cpu_backlog_drop:
5364 reason = SKB_DROP_REASON_CPU_BACKLOG;
5365 numa_drop_add(&sd->drop_counters, 1);
5366 bad_dev:
5367 dev_core_stats_rx_dropped_inc(skb->dev);
5368 kfree_skb_reason(skb, reason);
5369 return NET_RX_DROP;
5370 }
5371
netif_get_rxqueue(struct sk_buff * skb)5372 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5373 {
5374 struct net_device *dev = skb->dev;
5375 struct netdev_rx_queue *rxqueue;
5376
5377 rxqueue = dev->_rx;
5378
5379 if (skb_rx_queue_recorded(skb)) {
5380 u16 index = skb_get_rx_queue(skb);
5381
5382 if (unlikely(index >= dev->real_num_rx_queues)) {
5383 WARN_ONCE(dev->real_num_rx_queues > 1,
5384 "%s received packet on queue %u, but number "
5385 "of RX queues is %u\n",
5386 dev->name, index, dev->real_num_rx_queues);
5387
5388 return rxqueue; /* Return first rxqueue */
5389 }
5390 rxqueue += index;
5391 }
5392 return rxqueue;
5393 }
5394
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5395 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5396 const struct bpf_prog *xdp_prog)
5397 {
5398 void *orig_data, *orig_data_end, *hard_start;
5399 struct netdev_rx_queue *rxqueue;
5400 bool orig_bcast, orig_host;
5401 u32 mac_len, frame_sz;
5402 __be16 orig_eth_type;
5403 struct ethhdr *eth;
5404 u32 metalen, act;
5405 int off;
5406
5407 /* The XDP program wants to see the packet starting at the MAC
5408 * header.
5409 */
5410 mac_len = skb->data - skb_mac_header(skb);
5411 hard_start = skb->data - skb_headroom(skb);
5412
5413 /* SKB "head" area always have tailroom for skb_shared_info */
5414 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5415 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5416
5417 rxqueue = netif_get_rxqueue(skb);
5418 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5419 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5420 skb_headlen(skb) + mac_len, true);
5421 if (skb_is_nonlinear(skb)) {
5422 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5423 xdp_buff_set_frags_flag(xdp);
5424 } else {
5425 xdp_buff_clear_frags_flag(xdp);
5426 }
5427
5428 orig_data_end = xdp->data_end;
5429 orig_data = xdp->data;
5430 eth = (struct ethhdr *)xdp->data;
5431 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5432 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5433 orig_eth_type = eth->h_proto;
5434
5435 act = bpf_prog_run_xdp(xdp_prog, xdp);
5436
5437 /* check if bpf_xdp_adjust_head was used */
5438 off = xdp->data - orig_data;
5439 if (off) {
5440 if (off > 0)
5441 __skb_pull(skb, off);
5442 else if (off < 0)
5443 __skb_push(skb, -off);
5444
5445 skb->mac_header += off;
5446 skb_reset_network_header(skb);
5447 }
5448
5449 /* check if bpf_xdp_adjust_tail was used */
5450 off = xdp->data_end - orig_data_end;
5451 if (off != 0) {
5452 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5453 skb->len += off; /* positive on grow, negative on shrink */
5454 }
5455
5456 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5457 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5458 */
5459 if (xdp_buff_has_frags(xdp))
5460 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5461 else
5462 skb->data_len = 0;
5463
5464 /* check if XDP changed eth hdr such SKB needs update */
5465 eth = (struct ethhdr *)xdp->data;
5466 if ((orig_eth_type != eth->h_proto) ||
5467 (orig_host != ether_addr_equal_64bits(eth->h_dest,
5468 skb->dev->dev_addr)) ||
5469 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5470 __skb_push(skb, ETH_HLEN);
5471 skb->pkt_type = PACKET_HOST;
5472 skb->protocol = eth_type_trans(skb, skb->dev);
5473 }
5474
5475 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5476 * before calling us again on redirect path. We do not call do_redirect
5477 * as we leave that up to the caller.
5478 *
5479 * Caller is responsible for managing lifetime of skb (i.e. calling
5480 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5481 */
5482 switch (act) {
5483 case XDP_REDIRECT:
5484 case XDP_TX:
5485 __skb_push(skb, mac_len);
5486 break;
5487 case XDP_PASS:
5488 metalen = xdp->data - xdp->data_meta;
5489 if (metalen)
5490 skb_metadata_set(skb, metalen);
5491 break;
5492 }
5493
5494 return act;
5495 }
5496
5497 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,const struct bpf_prog * prog)5498 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5499 {
5500 struct sk_buff *skb = *pskb;
5501 int err, hroom, troom;
5502
5503 local_lock_nested_bh(&system_page_pool.bh_lock);
5504 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5505 local_unlock_nested_bh(&system_page_pool.bh_lock);
5506 if (!err)
5507 return 0;
5508
5509 /* In case we have to go down the path and also linearize,
5510 * then lets do the pskb_expand_head() work just once here.
5511 */
5512 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5513 troom = skb->tail + skb->data_len - skb->end;
5514 err = pskb_expand_head(skb,
5515 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5516 troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5517 if (err)
5518 return err;
5519
5520 return skb_linearize(skb);
5521 }
5522
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5523 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5524 struct xdp_buff *xdp,
5525 const struct bpf_prog *xdp_prog)
5526 {
5527 struct sk_buff *skb = *pskb;
5528 u32 mac_len, act = XDP_DROP;
5529
5530 /* Reinjected packets coming from act_mirred or similar should
5531 * not get XDP generic processing.
5532 */
5533 if (skb_is_redirected(skb))
5534 return XDP_PASS;
5535
5536 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5537 * bytes. This is the guarantee that also native XDP provides,
5538 * thus we need to do it here as well.
5539 */
5540 mac_len = skb->data - skb_mac_header(skb);
5541 __skb_push(skb, mac_len);
5542
5543 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5544 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5545 if (netif_skb_check_for_xdp(pskb, xdp_prog))
5546 goto do_drop;
5547 }
5548
5549 __skb_pull(*pskb, mac_len);
5550
5551 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5552 switch (act) {
5553 case XDP_REDIRECT:
5554 case XDP_TX:
5555 case XDP_PASS:
5556 break;
5557 default:
5558 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5559 fallthrough;
5560 case XDP_ABORTED:
5561 trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5562 fallthrough;
5563 case XDP_DROP:
5564 do_drop:
5565 kfree_skb(*pskb);
5566 break;
5567 }
5568
5569 return act;
5570 }
5571
5572 /* When doing generic XDP we have to bypass the qdisc layer and the
5573 * network taps in order to match in-driver-XDP behavior. This also means
5574 * that XDP packets are able to starve other packets going through a qdisc,
5575 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5576 * queues, so they do not have this starvation issue.
5577 */
generic_xdp_tx(struct sk_buff * skb,const struct bpf_prog * xdp_prog)5578 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5579 {
5580 struct net_device *dev = skb->dev;
5581 struct netdev_queue *txq;
5582 bool free_skb = true;
5583 int cpu, rc;
5584
5585 txq = netdev_core_pick_tx(dev, skb, NULL);
5586 cpu = smp_processor_id();
5587 HARD_TX_LOCK(dev, txq, cpu);
5588 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5589 rc = netdev_start_xmit(skb, dev, txq, 0);
5590 if (dev_xmit_complete(rc))
5591 free_skb = false;
5592 }
5593 HARD_TX_UNLOCK(dev, txq);
5594 if (free_skb) {
5595 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5596 dev_core_stats_tx_dropped_inc(dev);
5597 kfree_skb(skb);
5598 }
5599 }
5600
5601 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5602
do_xdp_generic(const struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5603 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5604 {
5605 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5606
5607 if (xdp_prog) {
5608 struct xdp_buff xdp;
5609 u32 act;
5610 int err;
5611
5612 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5613 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5614 if (act != XDP_PASS) {
5615 switch (act) {
5616 case XDP_REDIRECT:
5617 err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5618 &xdp, xdp_prog);
5619 if (err)
5620 goto out_redir;
5621 break;
5622 case XDP_TX:
5623 generic_xdp_tx(*pskb, xdp_prog);
5624 break;
5625 }
5626 bpf_net_ctx_clear(bpf_net_ctx);
5627 return XDP_DROP;
5628 }
5629 bpf_net_ctx_clear(bpf_net_ctx);
5630 }
5631 return XDP_PASS;
5632 out_redir:
5633 bpf_net_ctx_clear(bpf_net_ctx);
5634 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5635 return XDP_DROP;
5636 }
5637 EXPORT_SYMBOL_GPL(do_xdp_generic);
5638
netif_rx_internal(struct sk_buff * skb)5639 static int netif_rx_internal(struct sk_buff *skb)
5640 {
5641 int ret;
5642
5643 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5644
5645 trace_netif_rx(skb);
5646
5647 #ifdef CONFIG_RPS
5648 if (static_branch_unlikely(&rps_needed)) {
5649 struct rps_dev_flow voidflow, *rflow = &voidflow;
5650 int cpu;
5651
5652 rcu_read_lock();
5653
5654 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5655 if (cpu < 0)
5656 cpu = smp_processor_id();
5657
5658 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5659
5660 rcu_read_unlock();
5661 } else
5662 #endif
5663 {
5664 unsigned int qtail;
5665
5666 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5667 }
5668 return ret;
5669 }
5670
5671 /**
5672 * __netif_rx - Slightly optimized version of netif_rx
5673 * @skb: buffer to post
5674 *
5675 * This behaves as netif_rx except that it does not disable bottom halves.
5676 * As a result this function may only be invoked from the interrupt context
5677 * (either hard or soft interrupt).
5678 */
__netif_rx(struct sk_buff * skb)5679 int __netif_rx(struct sk_buff *skb)
5680 {
5681 int ret;
5682
5683 lockdep_assert_once(hardirq_count() | softirq_count());
5684
5685 trace_netif_rx_entry(skb);
5686 ret = netif_rx_internal(skb);
5687 trace_netif_rx_exit(ret);
5688 return ret;
5689 }
5690 EXPORT_SYMBOL(__netif_rx);
5691
5692 /**
5693 * netif_rx - post buffer to the network code
5694 * @skb: buffer to post
5695 *
5696 * This function receives a packet from a device driver and queues it for
5697 * the upper (protocol) levels to process via the backlog NAPI device. It
5698 * always succeeds. The buffer may be dropped during processing for
5699 * congestion control or by the protocol layers.
5700 * The network buffer is passed via the backlog NAPI device. Modern NIC
5701 * driver should use NAPI and GRO.
5702 * This function can used from interrupt and from process context. The
5703 * caller from process context must not disable interrupts before invoking
5704 * this function.
5705 *
5706 * return values:
5707 * NET_RX_SUCCESS (no congestion)
5708 * NET_RX_DROP (packet was dropped)
5709 *
5710 */
netif_rx(struct sk_buff * skb)5711 int netif_rx(struct sk_buff *skb)
5712 {
5713 bool need_bh_off = !(hardirq_count() | softirq_count());
5714 int ret;
5715
5716 if (need_bh_off)
5717 local_bh_disable();
5718 trace_netif_rx_entry(skb);
5719 ret = netif_rx_internal(skb);
5720 trace_netif_rx_exit(ret);
5721 if (need_bh_off)
5722 local_bh_enable();
5723 return ret;
5724 }
5725 EXPORT_SYMBOL(netif_rx);
5726
net_tx_action(void)5727 static __latent_entropy void net_tx_action(void)
5728 {
5729 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5730
5731 if (sd->completion_queue) {
5732 struct sk_buff *clist;
5733
5734 local_irq_disable();
5735 clist = sd->completion_queue;
5736 sd->completion_queue = NULL;
5737 local_irq_enable();
5738
5739 while (clist) {
5740 struct sk_buff *skb = clist;
5741
5742 clist = clist->next;
5743
5744 WARN_ON(refcount_read(&skb->users));
5745 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5746 trace_consume_skb(skb, net_tx_action);
5747 else
5748 trace_kfree_skb(skb, net_tx_action,
5749 get_kfree_skb_cb(skb)->reason, NULL);
5750
5751 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5752 __kfree_skb(skb);
5753 else
5754 __napi_kfree_skb(skb,
5755 get_kfree_skb_cb(skb)->reason);
5756 }
5757 }
5758
5759 if (sd->output_queue) {
5760 struct Qdisc *head;
5761
5762 local_irq_disable();
5763 head = sd->output_queue;
5764 sd->output_queue = NULL;
5765 sd->output_queue_tailp = &sd->output_queue;
5766 local_irq_enable();
5767
5768 rcu_read_lock();
5769
5770 while (head) {
5771 spinlock_t *root_lock = NULL;
5772 struct sk_buff *to_free;
5773 struct Qdisc *q = head;
5774
5775 head = head->next_sched;
5776
5777 /* We need to make sure head->next_sched is read
5778 * before clearing __QDISC_STATE_SCHED
5779 */
5780 smp_mb__before_atomic();
5781
5782 if (!(q->flags & TCQ_F_NOLOCK)) {
5783 root_lock = qdisc_lock(q);
5784 spin_lock(root_lock);
5785 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5786 &q->state))) {
5787 /* There is a synchronize_net() between
5788 * STATE_DEACTIVATED flag being set and
5789 * qdisc_reset()/some_qdisc_is_busy() in
5790 * dev_deactivate(), so we can safely bail out
5791 * early here to avoid data race between
5792 * qdisc_deactivate() and some_qdisc_is_busy()
5793 * for lockless qdisc.
5794 */
5795 clear_bit(__QDISC_STATE_SCHED, &q->state);
5796 continue;
5797 }
5798
5799 clear_bit(__QDISC_STATE_SCHED, &q->state);
5800 to_free = qdisc_run(q);
5801 if (root_lock)
5802 spin_unlock(root_lock);
5803 tcf_kfree_skb_list(to_free);
5804 }
5805
5806 rcu_read_unlock();
5807 }
5808
5809 xfrm_dev_backlog(sd);
5810 }
5811
5812 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5813 /* This hook is defined here for ATM LANE */
5814 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5815 unsigned char *addr) __read_mostly;
5816 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5817 #endif
5818
5819 /**
5820 * netdev_is_rx_handler_busy - check if receive handler is registered
5821 * @dev: device to check
5822 *
5823 * Check if a receive handler is already registered for a given device.
5824 * Return true if there one.
5825 *
5826 * The caller must hold the rtnl_mutex.
5827 */
netdev_is_rx_handler_busy(struct net_device * dev)5828 bool netdev_is_rx_handler_busy(struct net_device *dev)
5829 {
5830 ASSERT_RTNL();
5831 return dev && rtnl_dereference(dev->rx_handler);
5832 }
5833 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5834
5835 /**
5836 * netdev_rx_handler_register - register receive handler
5837 * @dev: device to register a handler for
5838 * @rx_handler: receive handler to register
5839 * @rx_handler_data: data pointer that is used by rx handler
5840 *
5841 * Register a receive handler for a device. This handler will then be
5842 * called from __netif_receive_skb. A negative errno code is returned
5843 * on a failure.
5844 *
5845 * The caller must hold the rtnl_mutex.
5846 *
5847 * For a general description of rx_handler, see enum rx_handler_result.
5848 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5849 int netdev_rx_handler_register(struct net_device *dev,
5850 rx_handler_func_t *rx_handler,
5851 void *rx_handler_data)
5852 {
5853 if (netdev_is_rx_handler_busy(dev))
5854 return -EBUSY;
5855
5856 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5857 return -EINVAL;
5858
5859 /* Note: rx_handler_data must be set before rx_handler */
5860 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5861 rcu_assign_pointer(dev->rx_handler, rx_handler);
5862
5863 return 0;
5864 }
5865 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5866
5867 /**
5868 * netdev_rx_handler_unregister - unregister receive handler
5869 * @dev: device to unregister a handler from
5870 *
5871 * Unregister a receive handler from a device.
5872 *
5873 * The caller must hold the rtnl_mutex.
5874 */
netdev_rx_handler_unregister(struct net_device * dev)5875 void netdev_rx_handler_unregister(struct net_device *dev)
5876 {
5877
5878 ASSERT_RTNL();
5879 RCU_INIT_POINTER(dev->rx_handler, NULL);
5880 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5881 * section has a guarantee to see a non NULL rx_handler_data
5882 * as well.
5883 */
5884 synchronize_net();
5885 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5886 }
5887 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5888
5889 /*
5890 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5891 * the special handling of PFMEMALLOC skbs.
5892 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5893 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5894 {
5895 switch (skb->protocol) {
5896 case htons(ETH_P_ARP):
5897 case htons(ETH_P_IP):
5898 case htons(ETH_P_IPV6):
5899 case htons(ETH_P_8021Q):
5900 case htons(ETH_P_8021AD):
5901 return true;
5902 default:
5903 return false;
5904 }
5905 }
5906
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5907 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5908 int *ret, struct net_device *orig_dev)
5909 {
5910 if (nf_hook_ingress_active(skb)) {
5911 int ingress_retval;
5912
5913 if (unlikely(*pt_prev)) {
5914 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5915 *pt_prev = NULL;
5916 }
5917
5918 rcu_read_lock();
5919 ingress_retval = nf_hook_ingress(skb);
5920 rcu_read_unlock();
5921 return ingress_retval;
5922 }
5923 return 0;
5924 }
5925
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5926 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5927 struct packet_type **ppt_prev)
5928 {
5929 enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO;
5930 struct packet_type *ptype, *pt_prev;
5931 rx_handler_func_t *rx_handler;
5932 struct sk_buff *skb = *pskb;
5933 struct net_device *orig_dev;
5934 bool deliver_exact = false;
5935 int ret = NET_RX_DROP;
5936 __be16 type;
5937
5938 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5939
5940 trace_netif_receive_skb(skb);
5941
5942 orig_dev = skb->dev;
5943
5944 skb_reset_network_header(skb);
5945 #if !defined(CONFIG_DEBUG_NET)
5946 /* We plan to no longer reset the transport header here.
5947 * Give some time to fuzzers and dev build to catch bugs
5948 * in network stacks.
5949 */
5950 if (!skb_transport_header_was_set(skb))
5951 skb_reset_transport_header(skb);
5952 #endif
5953 skb_reset_mac_len(skb);
5954
5955 pt_prev = NULL;
5956
5957 another_round:
5958 skb->skb_iif = skb->dev->ifindex;
5959
5960 __this_cpu_inc(softnet_data.processed);
5961
5962 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5963 int ret2;
5964
5965 migrate_disable();
5966 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5967 &skb);
5968 migrate_enable();
5969
5970 if (ret2 != XDP_PASS) {
5971 ret = NET_RX_DROP;
5972 goto out;
5973 }
5974 }
5975
5976 if (eth_type_vlan(skb->protocol)) {
5977 skb = skb_vlan_untag(skb);
5978 if (unlikely(!skb))
5979 goto out;
5980 }
5981
5982 if (skb_skip_tc_classify(skb))
5983 goto skip_classify;
5984
5985 if (pfmemalloc)
5986 goto skip_taps;
5987
5988 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5989 list) {
5990 if (unlikely(pt_prev))
5991 ret = deliver_skb(skb, pt_prev, orig_dev);
5992 pt_prev = ptype;
5993 }
5994
5995 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5996 if (unlikely(pt_prev))
5997 ret = deliver_skb(skb, pt_prev, orig_dev);
5998 pt_prev = ptype;
5999 }
6000
6001 skip_taps:
6002 #ifdef CONFIG_NET_INGRESS
6003 if (static_branch_unlikely(&ingress_needed_key)) {
6004 bool another = false;
6005
6006 nf_skip_egress(skb, true);
6007 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
6008 &another);
6009 if (another)
6010 goto another_round;
6011 if (!skb)
6012 goto out;
6013
6014 nf_skip_egress(skb, false);
6015 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
6016 goto out;
6017 }
6018 #endif
6019 skb_reset_redirect(skb);
6020 skip_classify:
6021 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) {
6022 drop_reason = SKB_DROP_REASON_PFMEMALLOC;
6023 goto drop;
6024 }
6025
6026 if (skb_vlan_tag_present(skb)) {
6027 if (unlikely(pt_prev)) {
6028 ret = deliver_skb(skb, pt_prev, orig_dev);
6029 pt_prev = NULL;
6030 }
6031 if (vlan_do_receive(&skb))
6032 goto another_round;
6033 else if (unlikely(!skb))
6034 goto out;
6035 }
6036
6037 rx_handler = rcu_dereference(skb->dev->rx_handler);
6038 if (rx_handler) {
6039 if (unlikely(pt_prev)) {
6040 ret = deliver_skb(skb, pt_prev, orig_dev);
6041 pt_prev = NULL;
6042 }
6043 switch (rx_handler(&skb)) {
6044 case RX_HANDLER_CONSUMED:
6045 ret = NET_RX_SUCCESS;
6046 goto out;
6047 case RX_HANDLER_ANOTHER:
6048 goto another_round;
6049 case RX_HANDLER_EXACT:
6050 deliver_exact = true;
6051 break;
6052 case RX_HANDLER_PASS:
6053 break;
6054 default:
6055 BUG();
6056 }
6057 }
6058
6059 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
6060 check_vlan_id:
6061 if (skb_vlan_tag_get_id(skb)) {
6062 /* Vlan id is non 0 and vlan_do_receive() above couldn't
6063 * find vlan device.
6064 */
6065 skb->pkt_type = PACKET_OTHERHOST;
6066 } else if (eth_type_vlan(skb->protocol)) {
6067 /* Outer header is 802.1P with vlan 0, inner header is
6068 * 802.1Q or 802.1AD and vlan_do_receive() above could
6069 * not find vlan dev for vlan id 0.
6070 */
6071 __vlan_hwaccel_clear_tag(skb);
6072 skb = skb_vlan_untag(skb);
6073 if (unlikely(!skb))
6074 goto out;
6075 if (vlan_do_receive(&skb))
6076 /* After stripping off 802.1P header with vlan 0
6077 * vlan dev is found for inner header.
6078 */
6079 goto another_round;
6080 else if (unlikely(!skb))
6081 goto out;
6082 else
6083 /* We have stripped outer 802.1P vlan 0 header.
6084 * But could not find vlan dev.
6085 * check again for vlan id to set OTHERHOST.
6086 */
6087 goto check_vlan_id;
6088 }
6089 /* Note: we might in the future use prio bits
6090 * and set skb->priority like in vlan_do_receive()
6091 * For the time being, just ignore Priority Code Point
6092 */
6093 __vlan_hwaccel_clear_tag(skb);
6094 }
6095
6096 type = skb->protocol;
6097
6098 /* deliver only exact match when indicated */
6099 if (likely(!deliver_exact)) {
6100 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6101 &ptype_base[ntohs(type) &
6102 PTYPE_HASH_MASK]);
6103
6104 /* orig_dev and skb->dev could belong to different netns;
6105 * Even in such case we need to traverse only the list
6106 * coming from skb->dev, as the ptype owner (packet socket)
6107 * will use dev_net(skb->dev) to do namespace filtering.
6108 */
6109 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6110 &dev_net_rcu(skb->dev)->ptype_specific);
6111 }
6112
6113 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6114 &orig_dev->ptype_specific);
6115
6116 if (unlikely(skb->dev != orig_dev)) {
6117 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6118 &skb->dev->ptype_specific);
6119 }
6120
6121 if (pt_prev) {
6122 *ppt_prev = pt_prev;
6123 } else {
6124 drop:
6125 if (!deliver_exact)
6126 dev_core_stats_rx_dropped_inc(skb->dev);
6127 else
6128 dev_core_stats_rx_nohandler_inc(skb->dev);
6129
6130 kfree_skb_reason(skb, drop_reason);
6131 /* Jamal, now you will not able to escape explaining
6132 * me how you were going to use this. :-)
6133 */
6134 ret = NET_RX_DROP;
6135 }
6136
6137 out:
6138 /* The invariant here is that if *ppt_prev is not NULL
6139 * then skb should also be non-NULL.
6140 *
6141 * Apparently *ppt_prev assignment above holds this invariant due to
6142 * skb dereferencing near it.
6143 */
6144 *pskb = skb;
6145 return ret;
6146 }
6147
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)6148 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
6149 {
6150 struct net_device *orig_dev = skb->dev;
6151 struct packet_type *pt_prev = NULL;
6152 int ret;
6153
6154 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6155 if (pt_prev)
6156 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
6157 skb->dev, pt_prev, orig_dev);
6158 return ret;
6159 }
6160
6161 /**
6162 * netif_receive_skb_core - special purpose version of netif_receive_skb
6163 * @skb: buffer to process
6164 *
6165 * More direct receive version of netif_receive_skb(). It should
6166 * only be used by callers that have a need to skip RPS and Generic XDP.
6167 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
6168 *
6169 * This function may only be called from softirq context and interrupts
6170 * should be enabled.
6171 *
6172 * Return values (usually ignored):
6173 * NET_RX_SUCCESS: no congestion
6174 * NET_RX_DROP: packet was dropped
6175 */
netif_receive_skb_core(struct sk_buff * skb)6176 int netif_receive_skb_core(struct sk_buff *skb)
6177 {
6178 int ret;
6179
6180 rcu_read_lock();
6181 ret = __netif_receive_skb_one_core(skb, false);
6182 rcu_read_unlock();
6183
6184 return ret;
6185 }
6186 EXPORT_SYMBOL(netif_receive_skb_core);
6187
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)6188 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6189 struct packet_type *pt_prev,
6190 struct net_device *orig_dev)
6191 {
6192 struct sk_buff *skb, *next;
6193
6194 if (!pt_prev)
6195 return;
6196 if (list_empty(head))
6197 return;
6198 if (pt_prev->list_func != NULL)
6199 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6200 ip_list_rcv, head, pt_prev, orig_dev);
6201 else
6202 list_for_each_entry_safe(skb, next, head, list) {
6203 skb_list_del_init(skb);
6204 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6205 }
6206 }
6207
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)6208 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6209 {
6210 /* Fast-path assumptions:
6211 * - There is no RX handler.
6212 * - Only one packet_type matches.
6213 * If either of these fails, we will end up doing some per-packet
6214 * processing in-line, then handling the 'last ptype' for the whole
6215 * sublist. This can't cause out-of-order delivery to any single ptype,
6216 * because the 'last ptype' must be constant across the sublist, and all
6217 * other ptypes are handled per-packet.
6218 */
6219 /* Current (common) ptype of sublist */
6220 struct packet_type *pt_curr = NULL;
6221 /* Current (common) orig_dev of sublist */
6222 struct net_device *od_curr = NULL;
6223 struct sk_buff *skb, *next;
6224 LIST_HEAD(sublist);
6225
6226 list_for_each_entry_safe(skb, next, head, list) {
6227 struct net_device *orig_dev = skb->dev;
6228 struct packet_type *pt_prev = NULL;
6229
6230 skb_list_del_init(skb);
6231 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6232 if (!pt_prev)
6233 continue;
6234 if (pt_curr != pt_prev || od_curr != orig_dev) {
6235 /* dispatch old sublist */
6236 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6237 /* start new sublist */
6238 INIT_LIST_HEAD(&sublist);
6239 pt_curr = pt_prev;
6240 od_curr = orig_dev;
6241 }
6242 list_add_tail(&skb->list, &sublist);
6243 }
6244
6245 /* dispatch final sublist */
6246 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6247 }
6248
__netif_receive_skb(struct sk_buff * skb)6249 static int __netif_receive_skb(struct sk_buff *skb)
6250 {
6251 int ret;
6252
6253 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6254 unsigned int noreclaim_flag;
6255
6256 /*
6257 * PFMEMALLOC skbs are special, they should
6258 * - be delivered to SOCK_MEMALLOC sockets only
6259 * - stay away from userspace
6260 * - have bounded memory usage
6261 *
6262 * Use PF_MEMALLOC as this saves us from propagating the allocation
6263 * context down to all allocation sites.
6264 */
6265 noreclaim_flag = memalloc_noreclaim_save();
6266 ret = __netif_receive_skb_one_core(skb, true);
6267 memalloc_noreclaim_restore(noreclaim_flag);
6268 } else
6269 ret = __netif_receive_skb_one_core(skb, false);
6270
6271 return ret;
6272 }
6273
__netif_receive_skb_list(struct list_head * head)6274 static void __netif_receive_skb_list(struct list_head *head)
6275 {
6276 unsigned long noreclaim_flag = 0;
6277 struct sk_buff *skb, *next;
6278 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6279
6280 list_for_each_entry_safe(skb, next, head, list) {
6281 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6282 struct list_head sublist;
6283
6284 /* Handle the previous sublist */
6285 list_cut_before(&sublist, head, &skb->list);
6286 if (!list_empty(&sublist))
6287 __netif_receive_skb_list_core(&sublist, pfmemalloc);
6288 pfmemalloc = !pfmemalloc;
6289 /* See comments in __netif_receive_skb */
6290 if (pfmemalloc)
6291 noreclaim_flag = memalloc_noreclaim_save();
6292 else
6293 memalloc_noreclaim_restore(noreclaim_flag);
6294 }
6295 }
6296 /* Handle the remaining sublist */
6297 if (!list_empty(head))
6298 __netif_receive_skb_list_core(head, pfmemalloc);
6299 /* Restore pflags */
6300 if (pfmemalloc)
6301 memalloc_noreclaim_restore(noreclaim_flag);
6302 }
6303
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)6304 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6305 {
6306 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6307 struct bpf_prog *new = xdp->prog;
6308 int ret = 0;
6309
6310 switch (xdp->command) {
6311 case XDP_SETUP_PROG:
6312 rcu_assign_pointer(dev->xdp_prog, new);
6313 if (old)
6314 bpf_prog_put(old);
6315
6316 if (old && !new) {
6317 static_branch_dec(&generic_xdp_needed_key);
6318 } else if (new && !old) {
6319 static_branch_inc(&generic_xdp_needed_key);
6320 netif_disable_lro(dev);
6321 dev_disable_gro_hw(dev);
6322 }
6323 break;
6324
6325 default:
6326 ret = -EINVAL;
6327 break;
6328 }
6329
6330 return ret;
6331 }
6332
netif_receive_skb_internal(struct sk_buff * skb)6333 static int netif_receive_skb_internal(struct sk_buff *skb)
6334 {
6335 int ret;
6336
6337 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6338
6339 if (skb_defer_rx_timestamp(skb))
6340 return NET_RX_SUCCESS;
6341
6342 rcu_read_lock();
6343 #ifdef CONFIG_RPS
6344 if (static_branch_unlikely(&rps_needed)) {
6345 struct rps_dev_flow voidflow, *rflow = &voidflow;
6346 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6347
6348 if (cpu >= 0) {
6349 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6350 rcu_read_unlock();
6351 return ret;
6352 }
6353 }
6354 #endif
6355 ret = __netif_receive_skb(skb);
6356 rcu_read_unlock();
6357 return ret;
6358 }
6359
netif_receive_skb_list_internal(struct list_head * head)6360 void netif_receive_skb_list_internal(struct list_head *head)
6361 {
6362 struct sk_buff *skb, *next;
6363 LIST_HEAD(sublist);
6364
6365 list_for_each_entry_safe(skb, next, head, list) {
6366 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6367 skb);
6368 skb_list_del_init(skb);
6369 if (!skb_defer_rx_timestamp(skb))
6370 list_add_tail(&skb->list, &sublist);
6371 }
6372 list_splice_init(&sublist, head);
6373
6374 rcu_read_lock();
6375 #ifdef CONFIG_RPS
6376 if (static_branch_unlikely(&rps_needed)) {
6377 list_for_each_entry_safe(skb, next, head, list) {
6378 struct rps_dev_flow voidflow, *rflow = &voidflow;
6379 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6380
6381 if (cpu >= 0) {
6382 /* Will be handled, remove from list */
6383 skb_list_del_init(skb);
6384 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6385 }
6386 }
6387 }
6388 #endif
6389 __netif_receive_skb_list(head);
6390 rcu_read_unlock();
6391 }
6392
6393 /**
6394 * netif_receive_skb - process receive buffer from network
6395 * @skb: buffer to process
6396 *
6397 * netif_receive_skb() is the main receive data processing function.
6398 * It always succeeds. The buffer may be dropped during processing
6399 * for congestion control or by the protocol layers.
6400 *
6401 * This function may only be called from softirq context and interrupts
6402 * should be enabled.
6403 *
6404 * Return values (usually ignored):
6405 * NET_RX_SUCCESS: no congestion
6406 * NET_RX_DROP: packet was dropped
6407 */
netif_receive_skb(struct sk_buff * skb)6408 int netif_receive_skb(struct sk_buff *skb)
6409 {
6410 int ret;
6411
6412 trace_netif_receive_skb_entry(skb);
6413
6414 ret = netif_receive_skb_internal(skb);
6415 trace_netif_receive_skb_exit(ret);
6416
6417 return ret;
6418 }
6419 EXPORT_SYMBOL(netif_receive_skb);
6420
6421 /**
6422 * netif_receive_skb_list - process many receive buffers from network
6423 * @head: list of skbs to process.
6424 *
6425 * Since return value of netif_receive_skb() is normally ignored, and
6426 * wouldn't be meaningful for a list, this function returns void.
6427 *
6428 * This function may only be called from softirq context and interrupts
6429 * should be enabled.
6430 */
netif_receive_skb_list(struct list_head * head)6431 void netif_receive_skb_list(struct list_head *head)
6432 {
6433 struct sk_buff *skb;
6434
6435 if (list_empty(head))
6436 return;
6437 if (trace_netif_receive_skb_list_entry_enabled()) {
6438 list_for_each_entry(skb, head, list)
6439 trace_netif_receive_skb_list_entry(skb);
6440 }
6441 netif_receive_skb_list_internal(head);
6442 trace_netif_receive_skb_list_exit(0);
6443 }
6444 EXPORT_SYMBOL(netif_receive_skb_list);
6445
6446 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6447 static void flush_backlog(struct work_struct *work)
6448 {
6449 struct sk_buff *skb, *tmp;
6450 struct sk_buff_head list;
6451 struct softnet_data *sd;
6452
6453 __skb_queue_head_init(&list);
6454 local_bh_disable();
6455 sd = this_cpu_ptr(&softnet_data);
6456
6457 backlog_lock_irq_disable(sd);
6458 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6459 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6460 __skb_unlink(skb, &sd->input_pkt_queue);
6461 __skb_queue_tail(&list, skb);
6462 rps_input_queue_head_incr(sd);
6463 }
6464 }
6465 backlog_unlock_irq_enable(sd);
6466
6467 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6468 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6469 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6470 __skb_unlink(skb, &sd->process_queue);
6471 __skb_queue_tail(&list, skb);
6472 rps_input_queue_head_incr(sd);
6473 }
6474 }
6475 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6476 local_bh_enable();
6477
6478 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6479 }
6480
flush_required(int cpu)6481 static bool flush_required(int cpu)
6482 {
6483 #if IS_ENABLED(CONFIG_RPS)
6484 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6485 bool do_flush;
6486
6487 backlog_lock_irq_disable(sd);
6488
6489 /* as insertion into process_queue happens with the rps lock held,
6490 * process_queue access may race only with dequeue
6491 */
6492 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6493 !skb_queue_empty_lockless(&sd->process_queue);
6494 backlog_unlock_irq_enable(sd);
6495
6496 return do_flush;
6497 #endif
6498 /* without RPS we can't safely check input_pkt_queue: during a
6499 * concurrent remote skb_queue_splice() we can detect as empty both
6500 * input_pkt_queue and process_queue even if the latter could end-up
6501 * containing a lot of packets.
6502 */
6503 return true;
6504 }
6505
6506 struct flush_backlogs {
6507 cpumask_t flush_cpus;
6508 struct work_struct w[];
6509 };
6510
flush_backlogs_alloc(void)6511 static struct flush_backlogs *flush_backlogs_alloc(void)
6512 {
6513 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6514 GFP_KERNEL);
6515 }
6516
6517 static struct flush_backlogs *flush_backlogs_fallback;
6518 static DEFINE_MUTEX(flush_backlogs_mutex);
6519
flush_all_backlogs(void)6520 static void flush_all_backlogs(void)
6521 {
6522 struct flush_backlogs *ptr = flush_backlogs_alloc();
6523 unsigned int cpu;
6524
6525 if (!ptr) {
6526 mutex_lock(&flush_backlogs_mutex);
6527 ptr = flush_backlogs_fallback;
6528 }
6529 cpumask_clear(&ptr->flush_cpus);
6530
6531 cpus_read_lock();
6532
6533 for_each_online_cpu(cpu) {
6534 if (flush_required(cpu)) {
6535 INIT_WORK(&ptr->w[cpu], flush_backlog);
6536 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6537 __cpumask_set_cpu(cpu, &ptr->flush_cpus);
6538 }
6539 }
6540
6541 /* we can have in flight packet[s] on the cpus we are not flushing,
6542 * synchronize_net() in unregister_netdevice_many() will take care of
6543 * them.
6544 */
6545 for_each_cpu(cpu, &ptr->flush_cpus)
6546 flush_work(&ptr->w[cpu]);
6547
6548 cpus_read_unlock();
6549
6550 if (ptr != flush_backlogs_fallback)
6551 kfree(ptr);
6552 else
6553 mutex_unlock(&flush_backlogs_mutex);
6554 }
6555
net_rps_send_ipi(struct softnet_data * remsd)6556 static void net_rps_send_ipi(struct softnet_data *remsd)
6557 {
6558 #ifdef CONFIG_RPS
6559 while (remsd) {
6560 struct softnet_data *next = remsd->rps_ipi_next;
6561
6562 if (cpu_online(remsd->cpu))
6563 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6564 remsd = next;
6565 }
6566 #endif
6567 }
6568
6569 /*
6570 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6571 * Note: called with local irq disabled, but exits with local irq enabled.
6572 */
net_rps_action_and_irq_enable(struct softnet_data * sd)6573 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6574 {
6575 #ifdef CONFIG_RPS
6576 struct softnet_data *remsd = sd->rps_ipi_list;
6577
6578 if (!use_backlog_threads() && remsd) {
6579 sd->rps_ipi_list = NULL;
6580
6581 local_irq_enable();
6582
6583 /* Send pending IPI's to kick RPS processing on remote cpus. */
6584 net_rps_send_ipi(remsd);
6585 } else
6586 #endif
6587 local_irq_enable();
6588 }
6589
sd_has_rps_ipi_waiting(struct softnet_data * sd)6590 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6591 {
6592 #ifdef CONFIG_RPS
6593 return !use_backlog_threads() && sd->rps_ipi_list;
6594 #else
6595 return false;
6596 #endif
6597 }
6598
process_backlog(struct napi_struct * napi,int quota)6599 static int process_backlog(struct napi_struct *napi, int quota)
6600 {
6601 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6602 bool again = true;
6603 int work = 0;
6604
6605 /* Check if we have pending ipi, its better to send them now,
6606 * not waiting net_rx_action() end.
6607 */
6608 if (sd_has_rps_ipi_waiting(sd)) {
6609 local_irq_disable();
6610 net_rps_action_and_irq_enable(sd);
6611 }
6612
6613 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6614 while (again) {
6615 struct sk_buff *skb;
6616
6617 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6618 while ((skb = __skb_dequeue(&sd->process_queue))) {
6619 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6620 rcu_read_lock();
6621 __netif_receive_skb(skb);
6622 rcu_read_unlock();
6623 if (++work >= quota) {
6624 rps_input_queue_head_add(sd, work);
6625 return work;
6626 }
6627
6628 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6629 }
6630 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6631
6632 backlog_lock_irq_disable(sd);
6633 if (skb_queue_empty(&sd->input_pkt_queue)) {
6634 /*
6635 * Inline a custom version of __napi_complete().
6636 * only current cpu owns and manipulates this napi,
6637 * and NAPI_STATE_SCHED is the only possible flag set
6638 * on backlog.
6639 * We can use a plain write instead of clear_bit(),
6640 * and we dont need an smp_mb() memory barrier.
6641 */
6642 napi->state &= NAPIF_STATE_THREADED;
6643 again = false;
6644 } else {
6645 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6646 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6647 &sd->process_queue);
6648 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6649 }
6650 backlog_unlock_irq_enable(sd);
6651 }
6652
6653 if (work)
6654 rps_input_queue_head_add(sd, work);
6655 return work;
6656 }
6657
6658 /**
6659 * __napi_schedule - schedule for receive
6660 * @n: entry to schedule
6661 *
6662 * The entry's receive function will be scheduled to run.
6663 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6664 */
__napi_schedule(struct napi_struct * n)6665 void __napi_schedule(struct napi_struct *n)
6666 {
6667 unsigned long flags;
6668
6669 local_irq_save(flags);
6670 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6671 local_irq_restore(flags);
6672 }
6673 EXPORT_SYMBOL(__napi_schedule);
6674
6675 /**
6676 * napi_schedule_prep - check if napi can be scheduled
6677 * @n: napi context
6678 *
6679 * Test if NAPI routine is already running, and if not mark
6680 * it as running. This is used as a condition variable to
6681 * insure only one NAPI poll instance runs. We also make
6682 * sure there is no pending NAPI disable.
6683 */
napi_schedule_prep(struct napi_struct * n)6684 bool napi_schedule_prep(struct napi_struct *n)
6685 {
6686 unsigned long new, val = READ_ONCE(n->state);
6687
6688 do {
6689 if (unlikely(val & NAPIF_STATE_DISABLE))
6690 return false;
6691 new = val | NAPIF_STATE_SCHED;
6692
6693 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6694 * This was suggested by Alexander Duyck, as compiler
6695 * emits better code than :
6696 * if (val & NAPIF_STATE_SCHED)
6697 * new |= NAPIF_STATE_MISSED;
6698 */
6699 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6700 NAPIF_STATE_MISSED;
6701 } while (!try_cmpxchg(&n->state, &val, new));
6702
6703 return !(val & NAPIF_STATE_SCHED);
6704 }
6705 EXPORT_SYMBOL(napi_schedule_prep);
6706
6707 /**
6708 * __napi_schedule_irqoff - schedule for receive
6709 * @n: entry to schedule
6710 *
6711 * Variant of __napi_schedule() assuming hard irqs are masked.
6712 *
6713 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6714 * because the interrupt disabled assumption might not be true
6715 * due to force-threaded interrupts and spinlock substitution.
6716 */
__napi_schedule_irqoff(struct napi_struct * n)6717 void __napi_schedule_irqoff(struct napi_struct *n)
6718 {
6719 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6720 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6721 else
6722 __napi_schedule(n);
6723 }
6724 EXPORT_SYMBOL(__napi_schedule_irqoff);
6725
napi_complete_done(struct napi_struct * n,int work_done)6726 bool napi_complete_done(struct napi_struct *n, int work_done)
6727 {
6728 unsigned long flags, val, new, timeout = 0;
6729 bool ret = true;
6730
6731 /*
6732 * 1) Don't let napi dequeue from the cpu poll list
6733 * just in case its running on a different cpu.
6734 * 2) If we are busy polling, do nothing here, we have
6735 * the guarantee we will be called later.
6736 */
6737 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6738 NAPIF_STATE_IN_BUSY_POLL)))
6739 return false;
6740
6741 if (work_done) {
6742 if (n->gro.bitmask)
6743 timeout = napi_get_gro_flush_timeout(n);
6744 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6745 }
6746 if (n->defer_hard_irqs_count > 0) {
6747 n->defer_hard_irqs_count--;
6748 timeout = napi_get_gro_flush_timeout(n);
6749 if (timeout)
6750 ret = false;
6751 }
6752
6753 /*
6754 * When the NAPI instance uses a timeout and keeps postponing
6755 * it, we need to bound somehow the time packets are kept in
6756 * the GRO layer.
6757 */
6758 gro_flush_normal(&n->gro, !!timeout);
6759
6760 if (unlikely(!list_empty(&n->poll_list))) {
6761 /* If n->poll_list is not empty, we need to mask irqs */
6762 local_irq_save(flags);
6763 list_del_init(&n->poll_list);
6764 local_irq_restore(flags);
6765 }
6766 WRITE_ONCE(n->list_owner, -1);
6767
6768 val = READ_ONCE(n->state);
6769 do {
6770 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6771
6772 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6773 NAPIF_STATE_SCHED_THREADED |
6774 NAPIF_STATE_PREFER_BUSY_POLL);
6775
6776 /* If STATE_MISSED was set, leave STATE_SCHED set,
6777 * because we will call napi->poll() one more time.
6778 * This C code was suggested by Alexander Duyck to help gcc.
6779 */
6780 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6781 NAPIF_STATE_SCHED;
6782 } while (!try_cmpxchg(&n->state, &val, new));
6783
6784 if (unlikely(val & NAPIF_STATE_MISSED)) {
6785 __napi_schedule(n);
6786 return false;
6787 }
6788
6789 if (timeout)
6790 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6791 HRTIMER_MODE_REL_PINNED);
6792 return ret;
6793 }
6794 EXPORT_SYMBOL(napi_complete_done);
6795
skb_defer_free_flush(void)6796 static void skb_defer_free_flush(void)
6797 {
6798 struct llist_node *free_list;
6799 struct sk_buff *skb, *next;
6800 struct skb_defer_node *sdn;
6801 int node;
6802
6803 for_each_node(node) {
6804 sdn = this_cpu_ptr(net_hotdata.skb_defer_nodes) + node;
6805
6806 if (llist_empty(&sdn->defer_list))
6807 continue;
6808 atomic_long_set(&sdn->defer_count, 0);
6809 free_list = llist_del_all(&sdn->defer_list);
6810
6811 llist_for_each_entry_safe(skb, next, free_list, ll_node) {
6812 prefetch(next);
6813 napi_consume_skb(skb, 1);
6814 }
6815 }
6816 }
6817
6818 #if defined(CONFIG_NET_RX_BUSY_POLL)
6819
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6820 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6821 {
6822 if (!skip_schedule) {
6823 gro_normal_list(&napi->gro);
6824 __napi_schedule(napi);
6825 return;
6826 }
6827
6828 /* Flush too old packets. If HZ < 1000, flush all packets */
6829 gro_flush_normal(&napi->gro, HZ >= 1000);
6830
6831 clear_bit(NAPI_STATE_SCHED, &napi->state);
6832 }
6833
6834 enum {
6835 NAPI_F_PREFER_BUSY_POLL = 1,
6836 NAPI_F_END_ON_RESCHED = 2,
6837 };
6838
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6839 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6840 unsigned flags, u16 budget)
6841 {
6842 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6843 bool skip_schedule = false;
6844 unsigned long timeout;
6845 int rc;
6846
6847 /* Busy polling means there is a high chance device driver hard irq
6848 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6849 * set in napi_schedule_prep().
6850 * Since we are about to call napi->poll() once more, we can safely
6851 * clear NAPI_STATE_MISSED.
6852 *
6853 * Note: x86 could use a single "lock and ..." instruction
6854 * to perform these two clear_bit()
6855 */
6856 clear_bit(NAPI_STATE_MISSED, &napi->state);
6857 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6858
6859 local_bh_disable();
6860 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6861
6862 if (flags & NAPI_F_PREFER_BUSY_POLL) {
6863 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6864 timeout = napi_get_gro_flush_timeout(napi);
6865 if (napi->defer_hard_irqs_count && timeout) {
6866 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6867 skip_schedule = true;
6868 }
6869 }
6870
6871 /* All we really want here is to re-enable device interrupts.
6872 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6873 */
6874 rc = napi->poll(napi, budget);
6875 /* We can't gro_normal_list() here, because napi->poll() might have
6876 * rearmed the napi (napi_complete_done()) in which case it could
6877 * already be running on another CPU.
6878 */
6879 trace_napi_poll(napi, rc, budget);
6880 netpoll_poll_unlock(have_poll_lock);
6881 if (rc == budget)
6882 __busy_poll_stop(napi, skip_schedule);
6883 bpf_net_ctx_clear(bpf_net_ctx);
6884 local_bh_enable();
6885 }
6886
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6887 static void __napi_busy_loop(unsigned int napi_id,
6888 bool (*loop_end)(void *, unsigned long),
6889 void *loop_end_arg, unsigned flags, u16 budget)
6890 {
6891 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6892 int (*napi_poll)(struct napi_struct *napi, int budget);
6893 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6894 void *have_poll_lock = NULL;
6895 struct napi_struct *napi;
6896
6897 WARN_ON_ONCE(!rcu_read_lock_held());
6898
6899 restart:
6900 napi_poll = NULL;
6901
6902 napi = napi_by_id(napi_id);
6903 if (!napi)
6904 return;
6905
6906 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6907 preempt_disable();
6908 for (;;) {
6909 int work = 0;
6910
6911 local_bh_disable();
6912 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6913 if (!napi_poll) {
6914 unsigned long val = READ_ONCE(napi->state);
6915
6916 /* If multiple threads are competing for this napi,
6917 * we avoid dirtying napi->state as much as we can.
6918 */
6919 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6920 NAPIF_STATE_IN_BUSY_POLL)) {
6921 if (flags & NAPI_F_PREFER_BUSY_POLL)
6922 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6923 goto count;
6924 }
6925 if (cmpxchg(&napi->state, val,
6926 val | NAPIF_STATE_IN_BUSY_POLL |
6927 NAPIF_STATE_SCHED) != val) {
6928 if (flags & NAPI_F_PREFER_BUSY_POLL)
6929 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6930 goto count;
6931 }
6932 have_poll_lock = netpoll_poll_lock(napi);
6933 napi_poll = napi->poll;
6934 }
6935 work = napi_poll(napi, budget);
6936 trace_napi_poll(napi, work, budget);
6937 gro_normal_list(&napi->gro);
6938 count:
6939 if (work > 0)
6940 __NET_ADD_STATS(dev_net(napi->dev),
6941 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6942 skb_defer_free_flush();
6943 bpf_net_ctx_clear(bpf_net_ctx);
6944 local_bh_enable();
6945
6946 if (!loop_end || loop_end(loop_end_arg, start_time))
6947 break;
6948
6949 if (unlikely(need_resched())) {
6950 if (flags & NAPI_F_END_ON_RESCHED)
6951 break;
6952 if (napi_poll)
6953 busy_poll_stop(napi, have_poll_lock, flags, budget);
6954 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6955 preempt_enable();
6956 rcu_read_unlock();
6957 cond_resched();
6958 rcu_read_lock();
6959 if (loop_end(loop_end_arg, start_time))
6960 return;
6961 goto restart;
6962 }
6963 cpu_relax();
6964 }
6965 if (napi_poll)
6966 busy_poll_stop(napi, have_poll_lock, flags, budget);
6967 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6968 preempt_enable();
6969 }
6970
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6971 void napi_busy_loop_rcu(unsigned int napi_id,
6972 bool (*loop_end)(void *, unsigned long),
6973 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6974 {
6975 unsigned flags = NAPI_F_END_ON_RESCHED;
6976
6977 if (prefer_busy_poll)
6978 flags |= NAPI_F_PREFER_BUSY_POLL;
6979
6980 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6981 }
6982
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6983 void napi_busy_loop(unsigned int napi_id,
6984 bool (*loop_end)(void *, unsigned long),
6985 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6986 {
6987 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6988
6989 rcu_read_lock();
6990 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6991 rcu_read_unlock();
6992 }
6993 EXPORT_SYMBOL(napi_busy_loop);
6994
napi_suspend_irqs(unsigned int napi_id)6995 void napi_suspend_irqs(unsigned int napi_id)
6996 {
6997 struct napi_struct *napi;
6998
6999 rcu_read_lock();
7000 napi = napi_by_id(napi_id);
7001 if (napi) {
7002 unsigned long timeout = napi_get_irq_suspend_timeout(napi);
7003
7004 if (timeout)
7005 hrtimer_start(&napi->timer, ns_to_ktime(timeout),
7006 HRTIMER_MODE_REL_PINNED);
7007 }
7008 rcu_read_unlock();
7009 }
7010
napi_resume_irqs(unsigned int napi_id)7011 void napi_resume_irqs(unsigned int napi_id)
7012 {
7013 struct napi_struct *napi;
7014
7015 rcu_read_lock();
7016 napi = napi_by_id(napi_id);
7017 if (napi) {
7018 /* If irq_suspend_timeout is set to 0 between the call to
7019 * napi_suspend_irqs and now, the original value still
7020 * determines the safety timeout as intended and napi_watchdog
7021 * will resume irq processing.
7022 */
7023 if (napi_get_irq_suspend_timeout(napi)) {
7024 local_bh_disable();
7025 napi_schedule(napi);
7026 local_bh_enable();
7027 }
7028 }
7029 rcu_read_unlock();
7030 }
7031
7032 #endif /* CONFIG_NET_RX_BUSY_POLL */
7033
__napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)7034 static void __napi_hash_add_with_id(struct napi_struct *napi,
7035 unsigned int napi_id)
7036 {
7037 napi->gro.cached_napi_id = napi_id;
7038
7039 WRITE_ONCE(napi->napi_id, napi_id);
7040 hlist_add_head_rcu(&napi->napi_hash_node,
7041 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
7042 }
7043
napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)7044 static void napi_hash_add_with_id(struct napi_struct *napi,
7045 unsigned int napi_id)
7046 {
7047 unsigned long flags;
7048
7049 spin_lock_irqsave(&napi_hash_lock, flags);
7050 WARN_ON_ONCE(napi_by_id(napi_id));
7051 __napi_hash_add_with_id(napi, napi_id);
7052 spin_unlock_irqrestore(&napi_hash_lock, flags);
7053 }
7054
napi_hash_add(struct napi_struct * napi)7055 static void napi_hash_add(struct napi_struct *napi)
7056 {
7057 unsigned long flags;
7058
7059 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
7060 return;
7061
7062 spin_lock_irqsave(&napi_hash_lock, flags);
7063
7064 /* 0..NR_CPUS range is reserved for sender_cpu use */
7065 do {
7066 if (unlikely(!napi_id_valid(++napi_gen_id)))
7067 napi_gen_id = MIN_NAPI_ID;
7068 } while (napi_by_id(napi_gen_id));
7069
7070 __napi_hash_add_with_id(napi, napi_gen_id);
7071
7072 spin_unlock_irqrestore(&napi_hash_lock, flags);
7073 }
7074
7075 /* Warning : caller is responsible to make sure rcu grace period
7076 * is respected before freeing memory containing @napi
7077 */
napi_hash_del(struct napi_struct * napi)7078 static void napi_hash_del(struct napi_struct *napi)
7079 {
7080 unsigned long flags;
7081
7082 spin_lock_irqsave(&napi_hash_lock, flags);
7083
7084 hlist_del_init_rcu(&napi->napi_hash_node);
7085
7086 spin_unlock_irqrestore(&napi_hash_lock, flags);
7087 }
7088
napi_watchdog(struct hrtimer * timer)7089 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
7090 {
7091 struct napi_struct *napi;
7092
7093 napi = container_of(timer, struct napi_struct, timer);
7094
7095 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
7096 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
7097 */
7098 if (!napi_disable_pending(napi) &&
7099 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
7100 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
7101 __napi_schedule_irqoff(napi);
7102 }
7103
7104 return HRTIMER_NORESTART;
7105 }
7106
napi_stop_kthread(struct napi_struct * napi)7107 static void napi_stop_kthread(struct napi_struct *napi)
7108 {
7109 unsigned long val, new;
7110
7111 /* Wait until the napi STATE_THREADED is unset. */
7112 while (true) {
7113 val = READ_ONCE(napi->state);
7114
7115 /* If napi kthread own this napi or the napi is idle,
7116 * STATE_THREADED can be unset here.
7117 */
7118 if ((val & NAPIF_STATE_SCHED_THREADED) ||
7119 !(val & NAPIF_STATE_SCHED)) {
7120 new = val & (~(NAPIF_STATE_THREADED |
7121 NAPIF_STATE_THREADED_BUSY_POLL));
7122 } else {
7123 msleep(20);
7124 continue;
7125 }
7126
7127 if (try_cmpxchg(&napi->state, &val, new))
7128 break;
7129 }
7130
7131 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
7132 * the kthread.
7133 */
7134 while (true) {
7135 if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state))
7136 break;
7137
7138 msleep(20);
7139 }
7140
7141 kthread_stop(napi->thread);
7142 napi->thread = NULL;
7143 }
7144
napi_set_threaded_state(struct napi_struct * napi,enum netdev_napi_threaded threaded_mode)7145 static void napi_set_threaded_state(struct napi_struct *napi,
7146 enum netdev_napi_threaded threaded_mode)
7147 {
7148 bool threaded = threaded_mode != NETDEV_NAPI_THREADED_DISABLED;
7149 bool busy_poll = threaded_mode == NETDEV_NAPI_THREADED_BUSY_POLL;
7150
7151 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
7152 assign_bit(NAPI_STATE_THREADED_BUSY_POLL, &napi->state, busy_poll);
7153 }
7154
napi_set_threaded(struct napi_struct * napi,enum netdev_napi_threaded threaded)7155 int napi_set_threaded(struct napi_struct *napi,
7156 enum netdev_napi_threaded threaded)
7157 {
7158 if (threaded) {
7159 if (!napi->thread) {
7160 int err = napi_kthread_create(napi);
7161
7162 if (err)
7163 return err;
7164 }
7165 }
7166
7167 if (napi->config)
7168 napi->config->threaded = threaded;
7169
7170 /* Setting/unsetting threaded mode on a napi might not immediately
7171 * take effect, if the current napi instance is actively being
7172 * polled. In this case, the switch between threaded mode and
7173 * softirq mode will happen in the next round of napi_schedule().
7174 * This should not cause hiccups/stalls to the live traffic.
7175 */
7176 if (!threaded && napi->thread) {
7177 napi_stop_kthread(napi);
7178 } else {
7179 /* Make sure kthread is created before THREADED bit is set. */
7180 smp_mb__before_atomic();
7181 napi_set_threaded_state(napi, threaded);
7182 }
7183
7184 return 0;
7185 }
7186
netif_set_threaded(struct net_device * dev,enum netdev_napi_threaded threaded)7187 int netif_set_threaded(struct net_device *dev,
7188 enum netdev_napi_threaded threaded)
7189 {
7190 struct napi_struct *napi;
7191 int i, err = 0;
7192
7193 netdev_assert_locked_or_invisible(dev);
7194
7195 if (threaded) {
7196 list_for_each_entry(napi, &dev->napi_list, dev_list) {
7197 if (!napi->thread) {
7198 err = napi_kthread_create(napi);
7199 if (err) {
7200 threaded = NETDEV_NAPI_THREADED_DISABLED;
7201 break;
7202 }
7203 }
7204 }
7205 }
7206
7207 WRITE_ONCE(dev->threaded, threaded);
7208
7209 /* The error should not occur as the kthreads are already created. */
7210 list_for_each_entry(napi, &dev->napi_list, dev_list)
7211 WARN_ON_ONCE(napi_set_threaded(napi, threaded));
7212
7213 /* Override the config for all NAPIs even if currently not listed */
7214 for (i = 0; i < dev->num_napi_configs; i++)
7215 dev->napi_config[i].threaded = threaded;
7216
7217 return err;
7218 }
7219
7220 /**
7221 * netif_threaded_enable() - enable threaded NAPIs
7222 * @dev: net_device instance
7223 *
7224 * Enable threaded mode for the NAPI instances of the device. This may be useful
7225 * for devices where multiple NAPI instances get scheduled by a single
7226 * interrupt. Threaded NAPI allows moving the NAPI processing to cores other
7227 * than the core where IRQ is mapped.
7228 *
7229 * This function should be called before @dev is registered.
7230 */
netif_threaded_enable(struct net_device * dev)7231 void netif_threaded_enable(struct net_device *dev)
7232 {
7233 WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED));
7234 }
7235 EXPORT_SYMBOL(netif_threaded_enable);
7236
7237 /**
7238 * netif_queue_set_napi - Associate queue with the napi
7239 * @dev: device to which NAPI and queue belong
7240 * @queue_index: Index of queue
7241 * @type: queue type as RX or TX
7242 * @napi: NAPI context, pass NULL to clear previously set NAPI
7243 *
7244 * Set queue with its corresponding napi context. This should be done after
7245 * registering the NAPI handler for the queue-vector and the queues have been
7246 * mapped to the corresponding interrupt vector.
7247 */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)7248 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7249 enum netdev_queue_type type, struct napi_struct *napi)
7250 {
7251 struct netdev_rx_queue *rxq;
7252 struct netdev_queue *txq;
7253
7254 if (WARN_ON_ONCE(napi && !napi->dev))
7255 return;
7256 netdev_ops_assert_locked_or_invisible(dev);
7257
7258 switch (type) {
7259 case NETDEV_QUEUE_TYPE_RX:
7260 rxq = __netif_get_rx_queue(dev, queue_index);
7261 rxq->napi = napi;
7262 return;
7263 case NETDEV_QUEUE_TYPE_TX:
7264 txq = netdev_get_tx_queue(dev, queue_index);
7265 txq->napi = napi;
7266 return;
7267 default:
7268 return;
7269 }
7270 }
7271 EXPORT_SYMBOL(netif_queue_set_napi);
7272
7273 static void
netif_napi_irq_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)7274 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7275 const cpumask_t *mask)
7276 {
7277 struct napi_struct *napi =
7278 container_of(notify, struct napi_struct, notify);
7279 #ifdef CONFIG_RFS_ACCEL
7280 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7281 int err;
7282 #endif
7283
7284 if (napi->config && napi->dev->irq_affinity_auto)
7285 cpumask_copy(&napi->config->affinity_mask, mask);
7286
7287 #ifdef CONFIG_RFS_ACCEL
7288 if (napi->dev->rx_cpu_rmap_auto) {
7289 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7290 if (err)
7291 netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7292 err);
7293 }
7294 #endif
7295 }
7296
7297 #ifdef CONFIG_RFS_ACCEL
netif_napi_affinity_release(struct kref * ref)7298 static void netif_napi_affinity_release(struct kref *ref)
7299 {
7300 struct napi_struct *napi =
7301 container_of(ref, struct napi_struct, notify.kref);
7302 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7303
7304 netdev_assert_locked(napi->dev);
7305 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7306 &napi->state));
7307
7308 if (!napi->dev->rx_cpu_rmap_auto)
7309 return;
7310 rmap->obj[napi->napi_rmap_idx] = NULL;
7311 napi->napi_rmap_idx = -1;
7312 cpu_rmap_put(rmap);
7313 }
7314
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7315 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7316 {
7317 if (dev->rx_cpu_rmap_auto)
7318 return 0;
7319
7320 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7321 if (!dev->rx_cpu_rmap)
7322 return -ENOMEM;
7323
7324 dev->rx_cpu_rmap_auto = true;
7325 return 0;
7326 }
7327 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7328
netif_del_cpu_rmap(struct net_device * dev)7329 static void netif_del_cpu_rmap(struct net_device *dev)
7330 {
7331 struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7332
7333 if (!dev->rx_cpu_rmap_auto)
7334 return;
7335
7336 /* Free the rmap */
7337 cpu_rmap_put(rmap);
7338 dev->rx_cpu_rmap = NULL;
7339 dev->rx_cpu_rmap_auto = false;
7340 }
7341
7342 #else
netif_napi_affinity_release(struct kref * ref)7343 static void netif_napi_affinity_release(struct kref *ref)
7344 {
7345 }
7346
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7347 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7348 {
7349 return 0;
7350 }
7351 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7352
netif_del_cpu_rmap(struct net_device * dev)7353 static void netif_del_cpu_rmap(struct net_device *dev)
7354 {
7355 }
7356 #endif
7357
netif_set_affinity_auto(struct net_device * dev)7358 void netif_set_affinity_auto(struct net_device *dev)
7359 {
7360 unsigned int i, maxqs, numa;
7361
7362 maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7363 numa = dev_to_node(&dev->dev);
7364
7365 for (i = 0; i < maxqs; i++)
7366 cpumask_set_cpu(cpumask_local_spread(i, numa),
7367 &dev->napi_config[i].affinity_mask);
7368
7369 dev->irq_affinity_auto = true;
7370 }
7371 EXPORT_SYMBOL(netif_set_affinity_auto);
7372
netif_napi_set_irq_locked(struct napi_struct * napi,int irq)7373 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7374 {
7375 int rc;
7376
7377 netdev_assert_locked_or_invisible(napi->dev);
7378
7379 if (napi->irq == irq)
7380 return;
7381
7382 /* Remove existing resources */
7383 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7384 irq_set_affinity_notifier(napi->irq, NULL);
7385
7386 napi->irq = irq;
7387 if (irq < 0 ||
7388 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7389 return;
7390
7391 /* Abort for buggy drivers */
7392 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7393 return;
7394
7395 #ifdef CONFIG_RFS_ACCEL
7396 if (napi->dev->rx_cpu_rmap_auto) {
7397 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7398 if (rc < 0)
7399 return;
7400
7401 cpu_rmap_get(napi->dev->rx_cpu_rmap);
7402 napi->napi_rmap_idx = rc;
7403 }
7404 #endif
7405
7406 /* Use core IRQ notifier */
7407 napi->notify.notify = netif_napi_irq_notify;
7408 napi->notify.release = netif_napi_affinity_release;
7409 rc = irq_set_affinity_notifier(irq, &napi->notify);
7410 if (rc) {
7411 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7412 rc);
7413 goto put_rmap;
7414 }
7415
7416 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7417 return;
7418
7419 put_rmap:
7420 #ifdef CONFIG_RFS_ACCEL
7421 if (napi->dev->rx_cpu_rmap_auto) {
7422 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7423 cpu_rmap_put(napi->dev->rx_cpu_rmap);
7424 napi->napi_rmap_idx = -1;
7425 }
7426 #endif
7427 napi->notify.notify = NULL;
7428 napi->notify.release = NULL;
7429 }
7430 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7431
napi_restore_config(struct napi_struct * n)7432 static void napi_restore_config(struct napi_struct *n)
7433 {
7434 n->defer_hard_irqs = n->config->defer_hard_irqs;
7435 n->gro_flush_timeout = n->config->gro_flush_timeout;
7436 n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7437
7438 if (n->dev->irq_affinity_auto &&
7439 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7440 irq_set_affinity(n->irq, &n->config->affinity_mask);
7441
7442 /* a NAPI ID might be stored in the config, if so use it. if not, use
7443 * napi_hash_add to generate one for us.
7444 */
7445 if (n->config->napi_id) {
7446 napi_hash_add_with_id(n, n->config->napi_id);
7447 } else {
7448 napi_hash_add(n);
7449 n->config->napi_id = n->napi_id;
7450 }
7451
7452 WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7453 }
7454
napi_save_config(struct napi_struct * n)7455 static void napi_save_config(struct napi_struct *n)
7456 {
7457 n->config->defer_hard_irqs = n->defer_hard_irqs;
7458 n->config->gro_flush_timeout = n->gro_flush_timeout;
7459 n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7460 napi_hash_del(n);
7461 }
7462
7463 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7464 * inherit an existing ID try to insert it at the right position.
7465 */
7466 static void
netif_napi_dev_list_add(struct net_device * dev,struct napi_struct * napi)7467 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7468 {
7469 unsigned int new_id, pos_id;
7470 struct list_head *higher;
7471 struct napi_struct *pos;
7472
7473 new_id = UINT_MAX;
7474 if (napi->config && napi->config->napi_id)
7475 new_id = napi->config->napi_id;
7476
7477 higher = &dev->napi_list;
7478 list_for_each_entry(pos, &dev->napi_list, dev_list) {
7479 if (napi_id_valid(pos->napi_id))
7480 pos_id = pos->napi_id;
7481 else if (pos->config)
7482 pos_id = pos->config->napi_id;
7483 else
7484 pos_id = UINT_MAX;
7485
7486 if (pos_id <= new_id)
7487 break;
7488 higher = &pos->dev_list;
7489 }
7490 list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7491 }
7492
7493 /* Double check that napi_get_frags() allocates skbs with
7494 * skb->head being backed by slab, not a page fragment.
7495 * This is to make sure bug fixed in 3226b158e67c
7496 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7497 * does not accidentally come back.
7498 */
napi_get_frags_check(struct napi_struct * napi)7499 static void napi_get_frags_check(struct napi_struct *napi)
7500 {
7501 struct sk_buff *skb;
7502
7503 local_bh_disable();
7504 skb = napi_get_frags(napi);
7505 WARN_ON_ONCE(skb && skb->head_frag);
7506 napi_free_frags(napi);
7507 local_bh_enable();
7508 }
7509
netif_napi_add_weight_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)7510 void netif_napi_add_weight_locked(struct net_device *dev,
7511 struct napi_struct *napi,
7512 int (*poll)(struct napi_struct *, int),
7513 int weight)
7514 {
7515 netdev_assert_locked(dev);
7516 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7517 return;
7518
7519 INIT_LIST_HEAD(&napi->poll_list);
7520 INIT_HLIST_NODE(&napi->napi_hash_node);
7521 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7522 gro_init(&napi->gro);
7523 napi->skb = NULL;
7524 napi->poll = poll;
7525 if (weight > NAPI_POLL_WEIGHT)
7526 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7527 weight);
7528 napi->weight = weight;
7529 napi->dev = dev;
7530 #ifdef CONFIG_NETPOLL
7531 napi->poll_owner = -1;
7532 #endif
7533 napi->list_owner = -1;
7534 set_bit(NAPI_STATE_SCHED, &napi->state);
7535 set_bit(NAPI_STATE_NPSVC, &napi->state);
7536 netif_napi_dev_list_add(dev, napi);
7537
7538 /* default settings from sysfs are applied to all NAPIs. any per-NAPI
7539 * configuration will be loaded in napi_enable
7540 */
7541 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7542 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7543
7544 napi_get_frags_check(napi);
7545 /* Create kthread for this napi if dev->threaded is set.
7546 * Clear dev->threaded if kthread creation failed so that
7547 * threaded mode will not be enabled in napi_enable().
7548 */
7549 if (napi_get_threaded_config(dev, napi))
7550 if (napi_kthread_create(napi))
7551 dev->threaded = NETDEV_NAPI_THREADED_DISABLED;
7552 netif_napi_set_irq_locked(napi, -1);
7553 }
7554 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7555
napi_disable_locked(struct napi_struct * n)7556 void napi_disable_locked(struct napi_struct *n)
7557 {
7558 unsigned long val, new;
7559
7560 might_sleep();
7561 netdev_assert_locked(n->dev);
7562
7563 set_bit(NAPI_STATE_DISABLE, &n->state);
7564
7565 val = READ_ONCE(n->state);
7566 do {
7567 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7568 usleep_range(20, 200);
7569 val = READ_ONCE(n->state);
7570 }
7571
7572 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7573 new &= ~(NAPIF_STATE_THREADED |
7574 NAPIF_STATE_THREADED_BUSY_POLL |
7575 NAPIF_STATE_PREFER_BUSY_POLL);
7576 } while (!try_cmpxchg(&n->state, &val, new));
7577
7578 hrtimer_cancel(&n->timer);
7579
7580 if (n->config)
7581 napi_save_config(n);
7582 else
7583 napi_hash_del(n);
7584
7585 clear_bit(NAPI_STATE_DISABLE, &n->state);
7586 }
7587 EXPORT_SYMBOL(napi_disable_locked);
7588
7589 /**
7590 * napi_disable() - prevent NAPI from scheduling
7591 * @n: NAPI context
7592 *
7593 * Stop NAPI from being scheduled on this context.
7594 * Waits till any outstanding processing completes.
7595 * Takes netdev_lock() for associated net_device.
7596 */
napi_disable(struct napi_struct * n)7597 void napi_disable(struct napi_struct *n)
7598 {
7599 netdev_lock(n->dev);
7600 napi_disable_locked(n);
7601 netdev_unlock(n->dev);
7602 }
7603 EXPORT_SYMBOL(napi_disable);
7604
napi_enable_locked(struct napi_struct * n)7605 void napi_enable_locked(struct napi_struct *n)
7606 {
7607 unsigned long new, val = READ_ONCE(n->state);
7608
7609 if (n->config)
7610 napi_restore_config(n);
7611 else
7612 napi_hash_add(n);
7613
7614 do {
7615 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7616
7617 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7618 if (n->dev->threaded && n->thread)
7619 new |= NAPIF_STATE_THREADED;
7620 } while (!try_cmpxchg(&n->state, &val, new));
7621 }
7622 EXPORT_SYMBOL(napi_enable_locked);
7623
7624 /**
7625 * napi_enable() - enable NAPI scheduling
7626 * @n: NAPI context
7627 *
7628 * Enable scheduling of a NAPI instance.
7629 * Must be paired with napi_disable().
7630 * Takes netdev_lock() for associated net_device.
7631 */
napi_enable(struct napi_struct * n)7632 void napi_enable(struct napi_struct *n)
7633 {
7634 netdev_lock(n->dev);
7635 napi_enable_locked(n);
7636 netdev_unlock(n->dev);
7637 }
7638 EXPORT_SYMBOL(napi_enable);
7639
7640 /* Must be called in process context */
__netif_napi_del_locked(struct napi_struct * napi)7641 void __netif_napi_del_locked(struct napi_struct *napi)
7642 {
7643 netdev_assert_locked(napi->dev);
7644
7645 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7646 return;
7647
7648 /* Make sure NAPI is disabled (or was never enabled). */
7649 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7650
7651 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7652 irq_set_affinity_notifier(napi->irq, NULL);
7653
7654 if (napi->config) {
7655 napi->index = -1;
7656 napi->config = NULL;
7657 }
7658
7659 list_del_rcu(&napi->dev_list);
7660 napi_free_frags(napi);
7661
7662 gro_cleanup(&napi->gro);
7663
7664 if (napi->thread) {
7665 kthread_stop(napi->thread);
7666 napi->thread = NULL;
7667 }
7668 }
7669 EXPORT_SYMBOL(__netif_napi_del_locked);
7670
__napi_poll(struct napi_struct * n,bool * repoll)7671 static int __napi_poll(struct napi_struct *n, bool *repoll)
7672 {
7673 int work, weight;
7674
7675 weight = n->weight;
7676
7677 /* This NAPI_STATE_SCHED test is for avoiding a race
7678 * with netpoll's poll_napi(). Only the entity which
7679 * obtains the lock and sees NAPI_STATE_SCHED set will
7680 * actually make the ->poll() call. Therefore we avoid
7681 * accidentally calling ->poll() when NAPI is not scheduled.
7682 */
7683 work = 0;
7684 if (napi_is_scheduled(n)) {
7685 work = n->poll(n, weight);
7686 trace_napi_poll(n, work, weight);
7687
7688 xdp_do_check_flushed(n);
7689 }
7690
7691 if (unlikely(work > weight))
7692 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7693 n->poll, work, weight);
7694
7695 if (likely(work < weight))
7696 return work;
7697
7698 /* Drivers must not modify the NAPI state if they
7699 * consume the entire weight. In such cases this code
7700 * still "owns" the NAPI instance and therefore can
7701 * move the instance around on the list at-will.
7702 */
7703 if (unlikely(napi_disable_pending(n))) {
7704 napi_complete(n);
7705 return work;
7706 }
7707
7708 /* The NAPI context has more processing work, but busy-polling
7709 * is preferred. Exit early.
7710 */
7711 if (napi_prefer_busy_poll(n)) {
7712 if (napi_complete_done(n, work)) {
7713 /* If timeout is not set, we need to make sure
7714 * that the NAPI is re-scheduled.
7715 */
7716 napi_schedule(n);
7717 }
7718 return work;
7719 }
7720
7721 /* Flush too old packets. If HZ < 1000, flush all packets */
7722 gro_flush_normal(&n->gro, HZ >= 1000);
7723
7724 /* Some drivers may have called napi_schedule
7725 * prior to exhausting their budget.
7726 */
7727 if (unlikely(!list_empty(&n->poll_list))) {
7728 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7729 n->dev ? n->dev->name : "backlog");
7730 return work;
7731 }
7732
7733 *repoll = true;
7734
7735 return work;
7736 }
7737
napi_poll(struct napi_struct * n,struct list_head * repoll)7738 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7739 {
7740 bool do_repoll = false;
7741 void *have;
7742 int work;
7743
7744 list_del_init(&n->poll_list);
7745
7746 have = netpoll_poll_lock(n);
7747
7748 work = __napi_poll(n, &do_repoll);
7749
7750 if (do_repoll) {
7751 #if defined(CONFIG_DEBUG_NET)
7752 if (unlikely(!napi_is_scheduled(n)))
7753 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7754 n->dev->name, n->poll);
7755 #endif
7756 list_add_tail(&n->poll_list, repoll);
7757 }
7758 netpoll_poll_unlock(have);
7759
7760 return work;
7761 }
7762
napi_thread_wait(struct napi_struct * napi)7763 static int napi_thread_wait(struct napi_struct *napi)
7764 {
7765 set_current_state(TASK_INTERRUPTIBLE);
7766
7767 while (!kthread_should_stop()) {
7768 /* Testing SCHED_THREADED bit here to make sure the current
7769 * kthread owns this napi and could poll on this napi.
7770 * Testing SCHED bit is not enough because SCHED bit might be
7771 * set by some other busy poll thread or by napi_disable().
7772 */
7773 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7774 WARN_ON(!list_empty(&napi->poll_list));
7775 __set_current_state(TASK_RUNNING);
7776 return 0;
7777 }
7778
7779 schedule();
7780 set_current_state(TASK_INTERRUPTIBLE);
7781 }
7782 __set_current_state(TASK_RUNNING);
7783
7784 return -1;
7785 }
7786
napi_threaded_poll_loop(struct napi_struct * napi,bool busy_poll)7787 static void napi_threaded_poll_loop(struct napi_struct *napi, bool busy_poll)
7788 {
7789 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7790 struct softnet_data *sd;
7791 unsigned long last_qs = jiffies;
7792
7793 for (;;) {
7794 bool repoll = false;
7795 void *have;
7796
7797 local_bh_disable();
7798 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7799
7800 sd = this_cpu_ptr(&softnet_data);
7801 sd->in_napi_threaded_poll = true;
7802
7803 have = netpoll_poll_lock(napi);
7804 __napi_poll(napi, &repoll);
7805 netpoll_poll_unlock(have);
7806
7807 sd->in_napi_threaded_poll = false;
7808 barrier();
7809
7810 if (sd_has_rps_ipi_waiting(sd)) {
7811 local_irq_disable();
7812 net_rps_action_and_irq_enable(sd);
7813 }
7814 skb_defer_free_flush();
7815 bpf_net_ctx_clear(bpf_net_ctx);
7816
7817 /* When busy poll is enabled, the old packets are not flushed in
7818 * napi_complete_done. So flush them here.
7819 */
7820 if (busy_poll)
7821 gro_flush_normal(&napi->gro, HZ >= 1000);
7822 local_bh_enable();
7823
7824 /* Call cond_resched here to avoid watchdog warnings. */
7825 if (repoll || busy_poll) {
7826 rcu_softirq_qs_periodic(last_qs);
7827 cond_resched();
7828 }
7829
7830 if (!repoll)
7831 break;
7832 }
7833 }
7834
napi_threaded_poll(void * data)7835 static int napi_threaded_poll(void *data)
7836 {
7837 struct napi_struct *napi = data;
7838 bool want_busy_poll;
7839 bool in_busy_poll;
7840 unsigned long val;
7841
7842 while (!napi_thread_wait(napi)) {
7843 val = READ_ONCE(napi->state);
7844
7845 want_busy_poll = val & NAPIF_STATE_THREADED_BUSY_POLL;
7846 in_busy_poll = val & NAPIF_STATE_IN_BUSY_POLL;
7847
7848 if (unlikely(val & NAPIF_STATE_DISABLE))
7849 want_busy_poll = false;
7850
7851 if (want_busy_poll != in_busy_poll)
7852 assign_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state,
7853 want_busy_poll);
7854
7855 napi_threaded_poll_loop(napi, want_busy_poll);
7856 }
7857
7858 return 0;
7859 }
7860
net_rx_action(void)7861 static __latent_entropy void net_rx_action(void)
7862 {
7863 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7864 unsigned long time_limit = jiffies +
7865 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7866 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7867 int budget = READ_ONCE(net_hotdata.netdev_budget);
7868 LIST_HEAD(list);
7869 LIST_HEAD(repoll);
7870
7871 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7872 start:
7873 sd->in_net_rx_action = true;
7874 local_irq_disable();
7875 list_splice_init(&sd->poll_list, &list);
7876 local_irq_enable();
7877
7878 for (;;) {
7879 struct napi_struct *n;
7880
7881 skb_defer_free_flush();
7882
7883 if (list_empty(&list)) {
7884 if (list_empty(&repoll)) {
7885 sd->in_net_rx_action = false;
7886 barrier();
7887 /* We need to check if ____napi_schedule()
7888 * had refilled poll_list while
7889 * sd->in_net_rx_action was true.
7890 */
7891 if (!list_empty(&sd->poll_list))
7892 goto start;
7893 if (!sd_has_rps_ipi_waiting(sd))
7894 goto end;
7895 }
7896 break;
7897 }
7898
7899 n = list_first_entry(&list, struct napi_struct, poll_list);
7900 budget -= napi_poll(n, &repoll);
7901
7902 /* If softirq window is exhausted then punt.
7903 * Allow this to run for 2 jiffies since which will allow
7904 * an average latency of 1.5/HZ.
7905 */
7906 if (unlikely(budget <= 0 ||
7907 time_after_eq(jiffies, time_limit))) {
7908 /* Pairs with READ_ONCE() in softnet_seq_show() */
7909 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7910 break;
7911 }
7912 }
7913
7914 local_irq_disable();
7915
7916 list_splice_tail_init(&sd->poll_list, &list);
7917 list_splice_tail(&repoll, &list);
7918 list_splice(&list, &sd->poll_list);
7919 if (!list_empty(&sd->poll_list))
7920 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7921 else
7922 sd->in_net_rx_action = false;
7923
7924 net_rps_action_and_irq_enable(sd);
7925 end:
7926 bpf_net_ctx_clear(bpf_net_ctx);
7927 }
7928
7929 struct netdev_adjacent {
7930 struct net_device *dev;
7931 netdevice_tracker dev_tracker;
7932
7933 /* upper master flag, there can only be one master device per list */
7934 bool master;
7935
7936 /* lookup ignore flag */
7937 bool ignore;
7938
7939 /* counter for the number of times this device was added to us */
7940 u16 ref_nr;
7941
7942 /* private field for the users */
7943 void *private;
7944
7945 struct list_head list;
7946 struct rcu_head rcu;
7947 };
7948
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7949 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7950 struct list_head *adj_list)
7951 {
7952 struct netdev_adjacent *adj;
7953
7954 list_for_each_entry(adj, adj_list, list) {
7955 if (adj->dev == adj_dev)
7956 return adj;
7957 }
7958 return NULL;
7959 }
7960
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7961 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7962 struct netdev_nested_priv *priv)
7963 {
7964 struct net_device *dev = (struct net_device *)priv->data;
7965
7966 return upper_dev == dev;
7967 }
7968
7969 /**
7970 * netdev_has_upper_dev - Check if device is linked to an upper device
7971 * @dev: device
7972 * @upper_dev: upper device to check
7973 *
7974 * Find out if a device is linked to specified upper device and return true
7975 * in case it is. Note that this checks only immediate upper device,
7976 * not through a complete stack of devices. The caller must hold the RTNL lock.
7977 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7978 bool netdev_has_upper_dev(struct net_device *dev,
7979 struct net_device *upper_dev)
7980 {
7981 struct netdev_nested_priv priv = {
7982 .data = (void *)upper_dev,
7983 };
7984
7985 ASSERT_RTNL();
7986
7987 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7988 &priv);
7989 }
7990 EXPORT_SYMBOL(netdev_has_upper_dev);
7991
7992 /**
7993 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7994 * @dev: device
7995 * @upper_dev: upper device to check
7996 *
7997 * Find out if a device is linked to specified upper device and return true
7998 * in case it is. Note that this checks the entire upper device chain.
7999 * The caller must hold rcu lock.
8000 */
8001
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)8002 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
8003 struct net_device *upper_dev)
8004 {
8005 struct netdev_nested_priv priv = {
8006 .data = (void *)upper_dev,
8007 };
8008
8009 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
8010 &priv);
8011 }
8012 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
8013
8014 /**
8015 * netdev_has_any_upper_dev - Check if device is linked to some device
8016 * @dev: device
8017 *
8018 * Find out if a device is linked to an upper device and return true in case
8019 * it is. The caller must hold the RTNL lock.
8020 */
netdev_has_any_upper_dev(struct net_device * dev)8021 bool netdev_has_any_upper_dev(struct net_device *dev)
8022 {
8023 ASSERT_RTNL();
8024
8025 return !list_empty(&dev->adj_list.upper);
8026 }
8027 EXPORT_SYMBOL(netdev_has_any_upper_dev);
8028
8029 /**
8030 * netdev_master_upper_dev_get - Get master upper device
8031 * @dev: device
8032 *
8033 * Find a master upper device and return pointer to it or NULL in case
8034 * it's not there. The caller must hold the RTNL lock.
8035 */
netdev_master_upper_dev_get(struct net_device * dev)8036 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
8037 {
8038 struct netdev_adjacent *upper;
8039
8040 ASSERT_RTNL();
8041
8042 if (list_empty(&dev->adj_list.upper))
8043 return NULL;
8044
8045 upper = list_first_entry(&dev->adj_list.upper,
8046 struct netdev_adjacent, list);
8047 if (likely(upper->master))
8048 return upper->dev;
8049 return NULL;
8050 }
8051 EXPORT_SYMBOL(netdev_master_upper_dev_get);
8052
__netdev_master_upper_dev_get(struct net_device * dev)8053 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
8054 {
8055 struct netdev_adjacent *upper;
8056
8057 ASSERT_RTNL();
8058
8059 if (list_empty(&dev->adj_list.upper))
8060 return NULL;
8061
8062 upper = list_first_entry(&dev->adj_list.upper,
8063 struct netdev_adjacent, list);
8064 if (likely(upper->master) && !upper->ignore)
8065 return upper->dev;
8066 return NULL;
8067 }
8068
8069 /**
8070 * netdev_has_any_lower_dev - Check if device is linked to some device
8071 * @dev: device
8072 *
8073 * Find out if a device is linked to a lower device and return true in case
8074 * it is. The caller must hold the RTNL lock.
8075 */
netdev_has_any_lower_dev(struct net_device * dev)8076 static bool netdev_has_any_lower_dev(struct net_device *dev)
8077 {
8078 ASSERT_RTNL();
8079
8080 return !list_empty(&dev->adj_list.lower);
8081 }
8082
netdev_adjacent_get_private(struct list_head * adj_list)8083 void *netdev_adjacent_get_private(struct list_head *adj_list)
8084 {
8085 struct netdev_adjacent *adj;
8086
8087 adj = list_entry(adj_list, struct netdev_adjacent, list);
8088
8089 return adj->private;
8090 }
8091 EXPORT_SYMBOL(netdev_adjacent_get_private);
8092
8093 /**
8094 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
8095 * @dev: device
8096 * @iter: list_head ** of the current position
8097 *
8098 * Gets the next device from the dev's upper list, starting from iter
8099 * position. The caller must hold RCU read lock.
8100 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)8101 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
8102 struct list_head **iter)
8103 {
8104 struct netdev_adjacent *upper;
8105
8106 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8107
8108 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8109
8110 if (&upper->list == &dev->adj_list.upper)
8111 return NULL;
8112
8113 *iter = &upper->list;
8114
8115 return upper->dev;
8116 }
8117 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
8118
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8119 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
8120 struct list_head **iter,
8121 bool *ignore)
8122 {
8123 struct netdev_adjacent *upper;
8124
8125 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
8126
8127 if (&upper->list == &dev->adj_list.upper)
8128 return NULL;
8129
8130 *iter = &upper->list;
8131 *ignore = upper->ignore;
8132
8133 return upper->dev;
8134 }
8135
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)8136 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
8137 struct list_head **iter)
8138 {
8139 struct netdev_adjacent *upper;
8140
8141 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8142
8143 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8144
8145 if (&upper->list == &dev->adj_list.upper)
8146 return NULL;
8147
8148 *iter = &upper->list;
8149
8150 return upper->dev;
8151 }
8152
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8153 static int __netdev_walk_all_upper_dev(struct net_device *dev,
8154 int (*fn)(struct net_device *dev,
8155 struct netdev_nested_priv *priv),
8156 struct netdev_nested_priv *priv)
8157 {
8158 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8159 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8160 int ret, cur = 0;
8161 bool ignore;
8162
8163 now = dev;
8164 iter = &dev->adj_list.upper;
8165
8166 while (1) {
8167 if (now != dev) {
8168 ret = fn(now, priv);
8169 if (ret)
8170 return ret;
8171 }
8172
8173 next = NULL;
8174 while (1) {
8175 udev = __netdev_next_upper_dev(now, &iter, &ignore);
8176 if (!udev)
8177 break;
8178 if (ignore)
8179 continue;
8180
8181 next = udev;
8182 niter = &udev->adj_list.upper;
8183 dev_stack[cur] = now;
8184 iter_stack[cur++] = iter;
8185 break;
8186 }
8187
8188 if (!next) {
8189 if (!cur)
8190 return 0;
8191 next = dev_stack[--cur];
8192 niter = iter_stack[cur];
8193 }
8194
8195 now = next;
8196 iter = niter;
8197 }
8198
8199 return 0;
8200 }
8201
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8202 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
8203 int (*fn)(struct net_device *dev,
8204 struct netdev_nested_priv *priv),
8205 struct netdev_nested_priv *priv)
8206 {
8207 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8208 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8209 int ret, cur = 0;
8210
8211 now = dev;
8212 iter = &dev->adj_list.upper;
8213
8214 while (1) {
8215 if (now != dev) {
8216 ret = fn(now, priv);
8217 if (ret)
8218 return ret;
8219 }
8220
8221 next = NULL;
8222 while (1) {
8223 udev = netdev_next_upper_dev_rcu(now, &iter);
8224 if (!udev)
8225 break;
8226
8227 next = udev;
8228 niter = &udev->adj_list.upper;
8229 dev_stack[cur] = now;
8230 iter_stack[cur++] = iter;
8231 break;
8232 }
8233
8234 if (!next) {
8235 if (!cur)
8236 return 0;
8237 next = dev_stack[--cur];
8238 niter = iter_stack[cur];
8239 }
8240
8241 now = next;
8242 iter = niter;
8243 }
8244
8245 return 0;
8246 }
8247 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8248
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)8249 static bool __netdev_has_upper_dev(struct net_device *dev,
8250 struct net_device *upper_dev)
8251 {
8252 struct netdev_nested_priv priv = {
8253 .flags = 0,
8254 .data = (void *)upper_dev,
8255 };
8256
8257 ASSERT_RTNL();
8258
8259 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8260 &priv);
8261 }
8262
8263 /**
8264 * netdev_lower_get_next_private - Get the next ->private from the
8265 * lower neighbour list
8266 * @dev: device
8267 * @iter: list_head ** of the current position
8268 *
8269 * Gets the next netdev_adjacent->private from the dev's lower neighbour
8270 * list, starting from iter position. The caller must hold either hold the
8271 * RTNL lock or its own locking that guarantees that the neighbour lower
8272 * list will remain unchanged.
8273 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)8274 void *netdev_lower_get_next_private(struct net_device *dev,
8275 struct list_head **iter)
8276 {
8277 struct netdev_adjacent *lower;
8278
8279 lower = list_entry(*iter, struct netdev_adjacent, list);
8280
8281 if (&lower->list == &dev->adj_list.lower)
8282 return NULL;
8283
8284 *iter = lower->list.next;
8285
8286 return lower->private;
8287 }
8288 EXPORT_SYMBOL(netdev_lower_get_next_private);
8289
8290 /**
8291 * netdev_lower_get_next_private_rcu - Get the next ->private from the
8292 * lower neighbour list, RCU
8293 * variant
8294 * @dev: device
8295 * @iter: list_head ** of the current position
8296 *
8297 * Gets the next netdev_adjacent->private from the dev's lower neighbour
8298 * list, starting from iter position. The caller must hold RCU read lock.
8299 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)8300 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8301 struct list_head **iter)
8302 {
8303 struct netdev_adjacent *lower;
8304
8305 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8306
8307 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8308
8309 if (&lower->list == &dev->adj_list.lower)
8310 return NULL;
8311
8312 *iter = &lower->list;
8313
8314 return lower->private;
8315 }
8316 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8317
8318 /**
8319 * netdev_lower_get_next - Get the next device from the lower neighbour
8320 * list
8321 * @dev: device
8322 * @iter: list_head ** of the current position
8323 *
8324 * Gets the next netdev_adjacent from the dev's lower neighbour
8325 * list, starting from iter position. The caller must hold RTNL lock or
8326 * its own locking that guarantees that the neighbour lower
8327 * list will remain unchanged.
8328 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)8329 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8330 {
8331 struct netdev_adjacent *lower;
8332
8333 lower = list_entry(*iter, struct netdev_adjacent, list);
8334
8335 if (&lower->list == &dev->adj_list.lower)
8336 return NULL;
8337
8338 *iter = lower->list.next;
8339
8340 return lower->dev;
8341 }
8342 EXPORT_SYMBOL(netdev_lower_get_next);
8343
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)8344 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8345 struct list_head **iter)
8346 {
8347 struct netdev_adjacent *lower;
8348
8349 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8350
8351 if (&lower->list == &dev->adj_list.lower)
8352 return NULL;
8353
8354 *iter = &lower->list;
8355
8356 return lower->dev;
8357 }
8358
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8359 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8360 struct list_head **iter,
8361 bool *ignore)
8362 {
8363 struct netdev_adjacent *lower;
8364
8365 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8366
8367 if (&lower->list == &dev->adj_list.lower)
8368 return NULL;
8369
8370 *iter = &lower->list;
8371 *ignore = lower->ignore;
8372
8373 return lower->dev;
8374 }
8375
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8376 int netdev_walk_all_lower_dev(struct net_device *dev,
8377 int (*fn)(struct net_device *dev,
8378 struct netdev_nested_priv *priv),
8379 struct netdev_nested_priv *priv)
8380 {
8381 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8382 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8383 int ret, cur = 0;
8384
8385 now = dev;
8386 iter = &dev->adj_list.lower;
8387
8388 while (1) {
8389 if (now != dev) {
8390 ret = fn(now, priv);
8391 if (ret)
8392 return ret;
8393 }
8394
8395 next = NULL;
8396 while (1) {
8397 ldev = netdev_next_lower_dev(now, &iter);
8398 if (!ldev)
8399 break;
8400
8401 next = ldev;
8402 niter = &ldev->adj_list.lower;
8403 dev_stack[cur] = now;
8404 iter_stack[cur++] = iter;
8405 break;
8406 }
8407
8408 if (!next) {
8409 if (!cur)
8410 return 0;
8411 next = dev_stack[--cur];
8412 niter = iter_stack[cur];
8413 }
8414
8415 now = next;
8416 iter = niter;
8417 }
8418
8419 return 0;
8420 }
8421 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8422
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8423 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8424 int (*fn)(struct net_device *dev,
8425 struct netdev_nested_priv *priv),
8426 struct netdev_nested_priv *priv)
8427 {
8428 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8429 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8430 int ret, cur = 0;
8431 bool ignore;
8432
8433 now = dev;
8434 iter = &dev->adj_list.lower;
8435
8436 while (1) {
8437 if (now != dev) {
8438 ret = fn(now, priv);
8439 if (ret)
8440 return ret;
8441 }
8442
8443 next = NULL;
8444 while (1) {
8445 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8446 if (!ldev)
8447 break;
8448 if (ignore)
8449 continue;
8450
8451 next = ldev;
8452 niter = &ldev->adj_list.lower;
8453 dev_stack[cur] = now;
8454 iter_stack[cur++] = iter;
8455 break;
8456 }
8457
8458 if (!next) {
8459 if (!cur)
8460 return 0;
8461 next = dev_stack[--cur];
8462 niter = iter_stack[cur];
8463 }
8464
8465 now = next;
8466 iter = niter;
8467 }
8468
8469 return 0;
8470 }
8471
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)8472 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8473 struct list_head **iter)
8474 {
8475 struct netdev_adjacent *lower;
8476
8477 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8478 if (&lower->list == &dev->adj_list.lower)
8479 return NULL;
8480
8481 *iter = &lower->list;
8482
8483 return lower->dev;
8484 }
8485 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8486
__netdev_upper_depth(struct net_device * dev)8487 static u8 __netdev_upper_depth(struct net_device *dev)
8488 {
8489 struct net_device *udev;
8490 struct list_head *iter;
8491 u8 max_depth = 0;
8492 bool ignore;
8493
8494 for (iter = &dev->adj_list.upper,
8495 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8496 udev;
8497 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8498 if (ignore)
8499 continue;
8500 if (max_depth < udev->upper_level)
8501 max_depth = udev->upper_level;
8502 }
8503
8504 return max_depth;
8505 }
8506
__netdev_lower_depth(struct net_device * dev)8507 static u8 __netdev_lower_depth(struct net_device *dev)
8508 {
8509 struct net_device *ldev;
8510 struct list_head *iter;
8511 u8 max_depth = 0;
8512 bool ignore;
8513
8514 for (iter = &dev->adj_list.lower,
8515 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8516 ldev;
8517 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8518 if (ignore)
8519 continue;
8520 if (max_depth < ldev->lower_level)
8521 max_depth = ldev->lower_level;
8522 }
8523
8524 return max_depth;
8525 }
8526
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)8527 static int __netdev_update_upper_level(struct net_device *dev,
8528 struct netdev_nested_priv *__unused)
8529 {
8530 dev->upper_level = __netdev_upper_depth(dev) + 1;
8531 return 0;
8532 }
8533
8534 #ifdef CONFIG_LOCKDEP
8535 static LIST_HEAD(net_unlink_list);
8536
net_unlink_todo(struct net_device * dev)8537 static void net_unlink_todo(struct net_device *dev)
8538 {
8539 if (list_empty(&dev->unlink_list))
8540 list_add_tail(&dev->unlink_list, &net_unlink_list);
8541 }
8542 #endif
8543
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)8544 static int __netdev_update_lower_level(struct net_device *dev,
8545 struct netdev_nested_priv *priv)
8546 {
8547 dev->lower_level = __netdev_lower_depth(dev) + 1;
8548
8549 #ifdef CONFIG_LOCKDEP
8550 if (!priv)
8551 return 0;
8552
8553 if (priv->flags & NESTED_SYNC_IMM)
8554 dev->nested_level = dev->lower_level - 1;
8555 if (priv->flags & NESTED_SYNC_TODO)
8556 net_unlink_todo(dev);
8557 #endif
8558 return 0;
8559 }
8560
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8561 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8562 int (*fn)(struct net_device *dev,
8563 struct netdev_nested_priv *priv),
8564 struct netdev_nested_priv *priv)
8565 {
8566 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8567 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8568 int ret, cur = 0;
8569
8570 now = dev;
8571 iter = &dev->adj_list.lower;
8572
8573 while (1) {
8574 if (now != dev) {
8575 ret = fn(now, priv);
8576 if (ret)
8577 return ret;
8578 }
8579
8580 next = NULL;
8581 while (1) {
8582 ldev = netdev_next_lower_dev_rcu(now, &iter);
8583 if (!ldev)
8584 break;
8585
8586 next = ldev;
8587 niter = &ldev->adj_list.lower;
8588 dev_stack[cur] = now;
8589 iter_stack[cur++] = iter;
8590 break;
8591 }
8592
8593 if (!next) {
8594 if (!cur)
8595 return 0;
8596 next = dev_stack[--cur];
8597 niter = iter_stack[cur];
8598 }
8599
8600 now = next;
8601 iter = niter;
8602 }
8603
8604 return 0;
8605 }
8606 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8607
8608 /**
8609 * netdev_lower_get_first_private_rcu - Get the first ->private from the
8610 * lower neighbour list, RCU
8611 * variant
8612 * @dev: device
8613 *
8614 * Gets the first netdev_adjacent->private from the dev's lower neighbour
8615 * list. The caller must hold RCU read lock.
8616 */
netdev_lower_get_first_private_rcu(struct net_device * dev)8617 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8618 {
8619 struct netdev_adjacent *lower;
8620
8621 lower = list_first_or_null_rcu(&dev->adj_list.lower,
8622 struct netdev_adjacent, list);
8623 if (lower)
8624 return lower->private;
8625 return NULL;
8626 }
8627 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8628
8629 /**
8630 * netdev_master_upper_dev_get_rcu - Get master upper device
8631 * @dev: device
8632 *
8633 * Find a master upper device and return pointer to it or NULL in case
8634 * it's not there. The caller must hold the RCU read lock.
8635 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)8636 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8637 {
8638 struct netdev_adjacent *upper;
8639
8640 upper = list_first_or_null_rcu(&dev->adj_list.upper,
8641 struct netdev_adjacent, list);
8642 if (upper && likely(upper->master))
8643 return upper->dev;
8644 return NULL;
8645 }
8646 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8647
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8648 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8649 struct net_device *adj_dev,
8650 struct list_head *dev_list)
8651 {
8652 char linkname[IFNAMSIZ+7];
8653
8654 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8655 "upper_%s" : "lower_%s", adj_dev->name);
8656 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8657 linkname);
8658 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)8659 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8660 char *name,
8661 struct list_head *dev_list)
8662 {
8663 char linkname[IFNAMSIZ+7];
8664
8665 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8666 "upper_%s" : "lower_%s", name);
8667 sysfs_remove_link(&(dev->dev.kobj), linkname);
8668 }
8669
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8670 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8671 struct net_device *adj_dev,
8672 struct list_head *dev_list)
8673 {
8674 return (dev_list == &dev->adj_list.upper ||
8675 dev_list == &dev->adj_list.lower) &&
8676 net_eq(dev_net(dev), dev_net(adj_dev));
8677 }
8678
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)8679 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8680 struct net_device *adj_dev,
8681 struct list_head *dev_list,
8682 void *private, bool master)
8683 {
8684 struct netdev_adjacent *adj;
8685 int ret;
8686
8687 adj = __netdev_find_adj(adj_dev, dev_list);
8688
8689 if (adj) {
8690 adj->ref_nr += 1;
8691 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8692 dev->name, adj_dev->name, adj->ref_nr);
8693
8694 return 0;
8695 }
8696
8697 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8698 if (!adj)
8699 return -ENOMEM;
8700
8701 adj->dev = adj_dev;
8702 adj->master = master;
8703 adj->ref_nr = 1;
8704 adj->private = private;
8705 adj->ignore = false;
8706 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8707
8708 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8709 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8710
8711 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8712 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8713 if (ret)
8714 goto free_adj;
8715 }
8716
8717 /* Ensure that master link is always the first item in list. */
8718 if (master) {
8719 ret = sysfs_create_link(&(dev->dev.kobj),
8720 &(adj_dev->dev.kobj), "master");
8721 if (ret)
8722 goto remove_symlinks;
8723
8724 list_add_rcu(&adj->list, dev_list);
8725 } else {
8726 list_add_tail_rcu(&adj->list, dev_list);
8727 }
8728
8729 return 0;
8730
8731 remove_symlinks:
8732 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8733 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8734 free_adj:
8735 netdev_put(adj_dev, &adj->dev_tracker);
8736 kfree(adj);
8737
8738 return ret;
8739 }
8740
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8741 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8742 struct net_device *adj_dev,
8743 u16 ref_nr,
8744 struct list_head *dev_list)
8745 {
8746 struct netdev_adjacent *adj;
8747
8748 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8749 dev->name, adj_dev->name, ref_nr);
8750
8751 adj = __netdev_find_adj(adj_dev, dev_list);
8752
8753 if (!adj) {
8754 pr_err("Adjacency does not exist for device %s from %s\n",
8755 dev->name, adj_dev->name);
8756 WARN_ON(1);
8757 return;
8758 }
8759
8760 if (adj->ref_nr > ref_nr) {
8761 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8762 dev->name, adj_dev->name, ref_nr,
8763 adj->ref_nr - ref_nr);
8764 adj->ref_nr -= ref_nr;
8765 return;
8766 }
8767
8768 if (adj->master)
8769 sysfs_remove_link(&(dev->dev.kobj), "master");
8770
8771 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8772 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8773
8774 list_del_rcu(&adj->list);
8775 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8776 adj_dev->name, dev->name, adj_dev->name);
8777 netdev_put(adj_dev, &adj->dev_tracker);
8778 kfree_rcu(adj, rcu);
8779 }
8780
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8781 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8782 struct net_device *upper_dev,
8783 struct list_head *up_list,
8784 struct list_head *down_list,
8785 void *private, bool master)
8786 {
8787 int ret;
8788
8789 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8790 private, master);
8791 if (ret)
8792 return ret;
8793
8794 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8795 private, false);
8796 if (ret) {
8797 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8798 return ret;
8799 }
8800
8801 return 0;
8802 }
8803
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8804 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8805 struct net_device *upper_dev,
8806 u16 ref_nr,
8807 struct list_head *up_list,
8808 struct list_head *down_list)
8809 {
8810 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8811 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8812 }
8813
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8814 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8815 struct net_device *upper_dev,
8816 void *private, bool master)
8817 {
8818 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8819 &dev->adj_list.upper,
8820 &upper_dev->adj_list.lower,
8821 private, master);
8822 }
8823
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8824 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8825 struct net_device *upper_dev)
8826 {
8827 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8828 &dev->adj_list.upper,
8829 &upper_dev->adj_list.lower);
8830 }
8831
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8832 static int __netdev_upper_dev_link(struct net_device *dev,
8833 struct net_device *upper_dev, bool master,
8834 void *upper_priv, void *upper_info,
8835 struct netdev_nested_priv *priv,
8836 struct netlink_ext_ack *extack)
8837 {
8838 struct netdev_notifier_changeupper_info changeupper_info = {
8839 .info = {
8840 .dev = dev,
8841 .extack = extack,
8842 },
8843 .upper_dev = upper_dev,
8844 .master = master,
8845 .linking = true,
8846 .upper_info = upper_info,
8847 };
8848 struct net_device *master_dev;
8849 int ret = 0;
8850
8851 ASSERT_RTNL();
8852
8853 if (dev == upper_dev)
8854 return -EBUSY;
8855
8856 /* To prevent loops, check if dev is not upper device to upper_dev. */
8857 if (__netdev_has_upper_dev(upper_dev, dev))
8858 return -EBUSY;
8859
8860 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8861 return -EMLINK;
8862
8863 if (!master) {
8864 if (__netdev_has_upper_dev(dev, upper_dev))
8865 return -EEXIST;
8866 } else {
8867 master_dev = __netdev_master_upper_dev_get(dev);
8868 if (master_dev)
8869 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8870 }
8871
8872 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8873 &changeupper_info.info);
8874 ret = notifier_to_errno(ret);
8875 if (ret)
8876 return ret;
8877
8878 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8879 master);
8880 if (ret)
8881 return ret;
8882
8883 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8884 &changeupper_info.info);
8885 ret = notifier_to_errno(ret);
8886 if (ret)
8887 goto rollback;
8888
8889 __netdev_update_upper_level(dev, NULL);
8890 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8891
8892 __netdev_update_lower_level(upper_dev, priv);
8893 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8894 priv);
8895
8896 return 0;
8897
8898 rollback:
8899 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8900
8901 return ret;
8902 }
8903
8904 /**
8905 * netdev_upper_dev_link - Add a link to the upper device
8906 * @dev: device
8907 * @upper_dev: new upper device
8908 * @extack: netlink extended ack
8909 *
8910 * Adds a link to device which is upper to this one. The caller must hold
8911 * the RTNL lock. On a failure a negative errno code is returned.
8912 * On success the reference counts are adjusted and the function
8913 * returns zero.
8914 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8915 int netdev_upper_dev_link(struct net_device *dev,
8916 struct net_device *upper_dev,
8917 struct netlink_ext_ack *extack)
8918 {
8919 struct netdev_nested_priv priv = {
8920 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8921 .data = NULL,
8922 };
8923
8924 return __netdev_upper_dev_link(dev, upper_dev, false,
8925 NULL, NULL, &priv, extack);
8926 }
8927 EXPORT_SYMBOL(netdev_upper_dev_link);
8928
8929 /**
8930 * netdev_master_upper_dev_link - Add a master link to the upper device
8931 * @dev: device
8932 * @upper_dev: new upper device
8933 * @upper_priv: upper device private
8934 * @upper_info: upper info to be passed down via notifier
8935 * @extack: netlink extended ack
8936 *
8937 * Adds a link to device which is upper to this one. In this case, only
8938 * one master upper device can be linked, although other non-master devices
8939 * might be linked as well. The caller must hold the RTNL lock.
8940 * On a failure a negative errno code is returned. On success the reference
8941 * counts are adjusted and the function returns zero.
8942 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8943 int netdev_master_upper_dev_link(struct net_device *dev,
8944 struct net_device *upper_dev,
8945 void *upper_priv, void *upper_info,
8946 struct netlink_ext_ack *extack)
8947 {
8948 struct netdev_nested_priv priv = {
8949 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8950 .data = NULL,
8951 };
8952
8953 return __netdev_upper_dev_link(dev, upper_dev, true,
8954 upper_priv, upper_info, &priv, extack);
8955 }
8956 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8957
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8958 static void __netdev_upper_dev_unlink(struct net_device *dev,
8959 struct net_device *upper_dev,
8960 struct netdev_nested_priv *priv)
8961 {
8962 struct netdev_notifier_changeupper_info changeupper_info = {
8963 .info = {
8964 .dev = dev,
8965 },
8966 .upper_dev = upper_dev,
8967 .linking = false,
8968 };
8969
8970 ASSERT_RTNL();
8971
8972 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8973
8974 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8975 &changeupper_info.info);
8976
8977 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8978
8979 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8980 &changeupper_info.info);
8981
8982 __netdev_update_upper_level(dev, NULL);
8983 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8984
8985 __netdev_update_lower_level(upper_dev, priv);
8986 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8987 priv);
8988 }
8989
8990 /**
8991 * netdev_upper_dev_unlink - Removes a link to upper device
8992 * @dev: device
8993 * @upper_dev: new upper device
8994 *
8995 * Removes a link to device which is upper to this one. The caller must hold
8996 * the RTNL lock.
8997 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8998 void netdev_upper_dev_unlink(struct net_device *dev,
8999 struct net_device *upper_dev)
9000 {
9001 struct netdev_nested_priv priv = {
9002 .flags = NESTED_SYNC_TODO,
9003 .data = NULL,
9004 };
9005
9006 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
9007 }
9008 EXPORT_SYMBOL(netdev_upper_dev_unlink);
9009
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)9010 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
9011 struct net_device *lower_dev,
9012 bool val)
9013 {
9014 struct netdev_adjacent *adj;
9015
9016 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
9017 if (adj)
9018 adj->ignore = val;
9019
9020 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
9021 if (adj)
9022 adj->ignore = val;
9023 }
9024
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)9025 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
9026 struct net_device *lower_dev)
9027 {
9028 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
9029 }
9030
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)9031 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
9032 struct net_device *lower_dev)
9033 {
9034 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
9035 }
9036
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)9037 int netdev_adjacent_change_prepare(struct net_device *old_dev,
9038 struct net_device *new_dev,
9039 struct net_device *dev,
9040 struct netlink_ext_ack *extack)
9041 {
9042 struct netdev_nested_priv priv = {
9043 .flags = 0,
9044 .data = NULL,
9045 };
9046 int err;
9047
9048 if (!new_dev)
9049 return 0;
9050
9051 if (old_dev && new_dev != old_dev)
9052 netdev_adjacent_dev_disable(dev, old_dev);
9053 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
9054 extack);
9055 if (err) {
9056 if (old_dev && new_dev != old_dev)
9057 netdev_adjacent_dev_enable(dev, old_dev);
9058 return err;
9059 }
9060
9061 return 0;
9062 }
9063 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
9064
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)9065 void netdev_adjacent_change_commit(struct net_device *old_dev,
9066 struct net_device *new_dev,
9067 struct net_device *dev)
9068 {
9069 struct netdev_nested_priv priv = {
9070 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
9071 .data = NULL,
9072 };
9073
9074 if (!new_dev || !old_dev)
9075 return;
9076
9077 if (new_dev == old_dev)
9078 return;
9079
9080 netdev_adjacent_dev_enable(dev, old_dev);
9081 __netdev_upper_dev_unlink(old_dev, dev, &priv);
9082 }
9083 EXPORT_SYMBOL(netdev_adjacent_change_commit);
9084
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)9085 void netdev_adjacent_change_abort(struct net_device *old_dev,
9086 struct net_device *new_dev,
9087 struct net_device *dev)
9088 {
9089 struct netdev_nested_priv priv = {
9090 .flags = 0,
9091 .data = NULL,
9092 };
9093
9094 if (!new_dev)
9095 return;
9096
9097 if (old_dev && new_dev != old_dev)
9098 netdev_adjacent_dev_enable(dev, old_dev);
9099
9100 __netdev_upper_dev_unlink(new_dev, dev, &priv);
9101 }
9102 EXPORT_SYMBOL(netdev_adjacent_change_abort);
9103
9104 /**
9105 * netdev_bonding_info_change - Dispatch event about slave change
9106 * @dev: device
9107 * @bonding_info: info to dispatch
9108 *
9109 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
9110 * The caller must hold the RTNL lock.
9111 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)9112 void netdev_bonding_info_change(struct net_device *dev,
9113 struct netdev_bonding_info *bonding_info)
9114 {
9115 struct netdev_notifier_bonding_info info = {
9116 .info.dev = dev,
9117 };
9118
9119 memcpy(&info.bonding_info, bonding_info,
9120 sizeof(struct netdev_bonding_info));
9121 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
9122 &info.info);
9123 }
9124 EXPORT_SYMBOL(netdev_bonding_info_change);
9125
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)9126 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
9127 struct netlink_ext_ack *extack)
9128 {
9129 struct netdev_notifier_offload_xstats_info info = {
9130 .info.dev = dev,
9131 .info.extack = extack,
9132 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9133 };
9134 int err;
9135 int rc;
9136
9137 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
9138 GFP_KERNEL);
9139 if (!dev->offload_xstats_l3)
9140 return -ENOMEM;
9141
9142 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
9143 NETDEV_OFFLOAD_XSTATS_DISABLE,
9144 &info.info);
9145 err = notifier_to_errno(rc);
9146 if (err)
9147 goto free_stats;
9148
9149 return 0;
9150
9151 free_stats:
9152 kfree(dev->offload_xstats_l3);
9153 dev->offload_xstats_l3 = NULL;
9154 return err;
9155 }
9156
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)9157 int netdev_offload_xstats_enable(struct net_device *dev,
9158 enum netdev_offload_xstats_type type,
9159 struct netlink_ext_ack *extack)
9160 {
9161 ASSERT_RTNL();
9162
9163 if (netdev_offload_xstats_enabled(dev, type))
9164 return -EALREADY;
9165
9166 switch (type) {
9167 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9168 return netdev_offload_xstats_enable_l3(dev, extack);
9169 }
9170
9171 WARN_ON(1);
9172 return -EINVAL;
9173 }
9174 EXPORT_SYMBOL(netdev_offload_xstats_enable);
9175
netdev_offload_xstats_disable_l3(struct net_device * dev)9176 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
9177 {
9178 struct netdev_notifier_offload_xstats_info info = {
9179 .info.dev = dev,
9180 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9181 };
9182
9183 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
9184 &info.info);
9185 kfree(dev->offload_xstats_l3);
9186 dev->offload_xstats_l3 = NULL;
9187 }
9188
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)9189 int netdev_offload_xstats_disable(struct net_device *dev,
9190 enum netdev_offload_xstats_type type)
9191 {
9192 ASSERT_RTNL();
9193
9194 if (!netdev_offload_xstats_enabled(dev, type))
9195 return -EALREADY;
9196
9197 switch (type) {
9198 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9199 netdev_offload_xstats_disable_l3(dev);
9200 return 0;
9201 }
9202
9203 WARN_ON(1);
9204 return -EINVAL;
9205 }
9206 EXPORT_SYMBOL(netdev_offload_xstats_disable);
9207
netdev_offload_xstats_disable_all(struct net_device * dev)9208 static void netdev_offload_xstats_disable_all(struct net_device *dev)
9209 {
9210 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
9211 }
9212
9213 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)9214 netdev_offload_xstats_get_ptr(const struct net_device *dev,
9215 enum netdev_offload_xstats_type type)
9216 {
9217 switch (type) {
9218 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9219 return dev->offload_xstats_l3;
9220 }
9221
9222 WARN_ON(1);
9223 return NULL;
9224 }
9225
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)9226 bool netdev_offload_xstats_enabled(const struct net_device *dev,
9227 enum netdev_offload_xstats_type type)
9228 {
9229 ASSERT_RTNL();
9230
9231 return netdev_offload_xstats_get_ptr(dev, type);
9232 }
9233 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9234
9235 struct netdev_notifier_offload_xstats_ru {
9236 bool used;
9237 };
9238
9239 struct netdev_notifier_offload_xstats_rd {
9240 struct rtnl_hw_stats64 stats;
9241 bool used;
9242 };
9243
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)9244 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9245 const struct rtnl_hw_stats64 *src)
9246 {
9247 dest->rx_packets += src->rx_packets;
9248 dest->tx_packets += src->tx_packets;
9249 dest->rx_bytes += src->rx_bytes;
9250 dest->tx_bytes += src->tx_bytes;
9251 dest->rx_errors += src->rx_errors;
9252 dest->tx_errors += src->tx_errors;
9253 dest->rx_dropped += src->rx_dropped;
9254 dest->tx_dropped += src->tx_dropped;
9255 dest->multicast += src->multicast;
9256 }
9257
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)9258 static int netdev_offload_xstats_get_used(struct net_device *dev,
9259 enum netdev_offload_xstats_type type,
9260 bool *p_used,
9261 struct netlink_ext_ack *extack)
9262 {
9263 struct netdev_notifier_offload_xstats_ru report_used = {};
9264 struct netdev_notifier_offload_xstats_info info = {
9265 .info.dev = dev,
9266 .info.extack = extack,
9267 .type = type,
9268 .report_used = &report_used,
9269 };
9270 int rc;
9271
9272 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9273 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9274 &info.info);
9275 *p_used = report_used.used;
9276 return notifier_to_errno(rc);
9277 }
9278
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9279 static int netdev_offload_xstats_get_stats(struct net_device *dev,
9280 enum netdev_offload_xstats_type type,
9281 struct rtnl_hw_stats64 *p_stats,
9282 bool *p_used,
9283 struct netlink_ext_ack *extack)
9284 {
9285 struct netdev_notifier_offload_xstats_rd report_delta = {};
9286 struct netdev_notifier_offload_xstats_info info = {
9287 .info.dev = dev,
9288 .info.extack = extack,
9289 .type = type,
9290 .report_delta = &report_delta,
9291 };
9292 struct rtnl_hw_stats64 *stats;
9293 int rc;
9294
9295 stats = netdev_offload_xstats_get_ptr(dev, type);
9296 if (WARN_ON(!stats))
9297 return -EINVAL;
9298
9299 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9300 &info.info);
9301
9302 /* Cache whatever we got, even if there was an error, otherwise the
9303 * successful stats retrievals would get lost.
9304 */
9305 netdev_hw_stats64_add(stats, &report_delta.stats);
9306
9307 if (p_stats)
9308 *p_stats = *stats;
9309 *p_used = report_delta.used;
9310
9311 return notifier_to_errno(rc);
9312 }
9313
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9314 int netdev_offload_xstats_get(struct net_device *dev,
9315 enum netdev_offload_xstats_type type,
9316 struct rtnl_hw_stats64 *p_stats, bool *p_used,
9317 struct netlink_ext_ack *extack)
9318 {
9319 ASSERT_RTNL();
9320
9321 if (p_stats)
9322 return netdev_offload_xstats_get_stats(dev, type, p_stats,
9323 p_used, extack);
9324 else
9325 return netdev_offload_xstats_get_used(dev, type, p_used,
9326 extack);
9327 }
9328 EXPORT_SYMBOL(netdev_offload_xstats_get);
9329
9330 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)9331 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9332 const struct rtnl_hw_stats64 *stats)
9333 {
9334 report_delta->used = true;
9335 netdev_hw_stats64_add(&report_delta->stats, stats);
9336 }
9337 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9338
9339 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)9340 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9341 {
9342 report_used->used = true;
9343 }
9344 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9345
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)9346 void netdev_offload_xstats_push_delta(struct net_device *dev,
9347 enum netdev_offload_xstats_type type,
9348 const struct rtnl_hw_stats64 *p_stats)
9349 {
9350 struct rtnl_hw_stats64 *stats;
9351
9352 ASSERT_RTNL();
9353
9354 stats = netdev_offload_xstats_get_ptr(dev, type);
9355 if (WARN_ON(!stats))
9356 return;
9357
9358 netdev_hw_stats64_add(stats, p_stats);
9359 }
9360 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9361
9362 /**
9363 * netdev_get_xmit_slave - Get the xmit slave of master device
9364 * @dev: device
9365 * @skb: The packet
9366 * @all_slaves: assume all the slaves are active
9367 *
9368 * The reference counters are not incremented so the caller must be
9369 * careful with locks. The caller must hold RCU lock.
9370 * %NULL is returned if no slave is found.
9371 */
9372
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)9373 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9374 struct sk_buff *skb,
9375 bool all_slaves)
9376 {
9377 const struct net_device_ops *ops = dev->netdev_ops;
9378
9379 if (!ops->ndo_get_xmit_slave)
9380 return NULL;
9381 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9382 }
9383 EXPORT_SYMBOL(netdev_get_xmit_slave);
9384
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)9385 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9386 struct sock *sk)
9387 {
9388 const struct net_device_ops *ops = dev->netdev_ops;
9389
9390 if (!ops->ndo_sk_get_lower_dev)
9391 return NULL;
9392 return ops->ndo_sk_get_lower_dev(dev, sk);
9393 }
9394
9395 /**
9396 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9397 * @dev: device
9398 * @sk: the socket
9399 *
9400 * %NULL is returned if no lower device is found.
9401 */
9402
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)9403 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9404 struct sock *sk)
9405 {
9406 struct net_device *lower;
9407
9408 lower = netdev_sk_get_lower_dev(dev, sk);
9409 while (lower) {
9410 dev = lower;
9411 lower = netdev_sk_get_lower_dev(dev, sk);
9412 }
9413
9414 return dev;
9415 }
9416 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9417
netdev_adjacent_add_links(struct net_device * dev)9418 static void netdev_adjacent_add_links(struct net_device *dev)
9419 {
9420 struct netdev_adjacent *iter;
9421
9422 struct net *net = dev_net(dev);
9423
9424 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9425 if (!net_eq(net, dev_net(iter->dev)))
9426 continue;
9427 netdev_adjacent_sysfs_add(iter->dev, dev,
9428 &iter->dev->adj_list.lower);
9429 netdev_adjacent_sysfs_add(dev, iter->dev,
9430 &dev->adj_list.upper);
9431 }
9432
9433 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9434 if (!net_eq(net, dev_net(iter->dev)))
9435 continue;
9436 netdev_adjacent_sysfs_add(iter->dev, dev,
9437 &iter->dev->adj_list.upper);
9438 netdev_adjacent_sysfs_add(dev, iter->dev,
9439 &dev->adj_list.lower);
9440 }
9441 }
9442
netdev_adjacent_del_links(struct net_device * dev)9443 static void netdev_adjacent_del_links(struct net_device *dev)
9444 {
9445 struct netdev_adjacent *iter;
9446
9447 struct net *net = dev_net(dev);
9448
9449 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9450 if (!net_eq(net, dev_net(iter->dev)))
9451 continue;
9452 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9453 &iter->dev->adj_list.lower);
9454 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9455 &dev->adj_list.upper);
9456 }
9457
9458 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9459 if (!net_eq(net, dev_net(iter->dev)))
9460 continue;
9461 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9462 &iter->dev->adj_list.upper);
9463 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9464 &dev->adj_list.lower);
9465 }
9466 }
9467
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)9468 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9469 {
9470 struct netdev_adjacent *iter;
9471
9472 struct net *net = dev_net(dev);
9473
9474 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9475 if (!net_eq(net, dev_net(iter->dev)))
9476 continue;
9477 netdev_adjacent_sysfs_del(iter->dev, oldname,
9478 &iter->dev->adj_list.lower);
9479 netdev_adjacent_sysfs_add(iter->dev, dev,
9480 &iter->dev->adj_list.lower);
9481 }
9482
9483 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9484 if (!net_eq(net, dev_net(iter->dev)))
9485 continue;
9486 netdev_adjacent_sysfs_del(iter->dev, oldname,
9487 &iter->dev->adj_list.upper);
9488 netdev_adjacent_sysfs_add(iter->dev, dev,
9489 &iter->dev->adj_list.upper);
9490 }
9491 }
9492
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)9493 void *netdev_lower_dev_get_private(struct net_device *dev,
9494 struct net_device *lower_dev)
9495 {
9496 struct netdev_adjacent *lower;
9497
9498 if (!lower_dev)
9499 return NULL;
9500 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9501 if (!lower)
9502 return NULL;
9503
9504 return lower->private;
9505 }
9506 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9507
9508
9509 /**
9510 * netdev_lower_state_changed - Dispatch event about lower device state change
9511 * @lower_dev: device
9512 * @lower_state_info: state to dispatch
9513 *
9514 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9515 * The caller must hold the RTNL lock.
9516 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)9517 void netdev_lower_state_changed(struct net_device *lower_dev,
9518 void *lower_state_info)
9519 {
9520 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9521 .info.dev = lower_dev,
9522 };
9523
9524 ASSERT_RTNL();
9525 changelowerstate_info.lower_state_info = lower_state_info;
9526 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9527 &changelowerstate_info.info);
9528 }
9529 EXPORT_SYMBOL(netdev_lower_state_changed);
9530
dev_change_rx_flags(struct net_device * dev,int flags)9531 static void dev_change_rx_flags(struct net_device *dev, int flags)
9532 {
9533 const struct net_device_ops *ops = dev->netdev_ops;
9534
9535 if (ops->ndo_change_rx_flags)
9536 ops->ndo_change_rx_flags(dev, flags);
9537 }
9538
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)9539 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9540 {
9541 unsigned int old_flags = dev->flags;
9542 unsigned int promiscuity, flags;
9543 kuid_t uid;
9544 kgid_t gid;
9545
9546 ASSERT_RTNL();
9547
9548 promiscuity = dev->promiscuity + inc;
9549 if (promiscuity == 0) {
9550 /*
9551 * Avoid overflow.
9552 * If inc causes overflow, untouch promisc and return error.
9553 */
9554 if (unlikely(inc > 0)) {
9555 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9556 return -EOVERFLOW;
9557 }
9558 flags = old_flags & ~IFF_PROMISC;
9559 } else {
9560 flags = old_flags | IFF_PROMISC;
9561 }
9562 WRITE_ONCE(dev->promiscuity, promiscuity);
9563 if (flags != old_flags) {
9564 WRITE_ONCE(dev->flags, flags);
9565 netdev_info(dev, "%s promiscuous mode\n",
9566 dev->flags & IFF_PROMISC ? "entered" : "left");
9567 if (audit_enabled) {
9568 current_uid_gid(&uid, &gid);
9569 audit_log(audit_context(), GFP_ATOMIC,
9570 AUDIT_ANOM_PROMISCUOUS,
9571 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9572 dev->name, (dev->flags & IFF_PROMISC),
9573 (old_flags & IFF_PROMISC),
9574 from_kuid(&init_user_ns, audit_get_loginuid(current)),
9575 from_kuid(&init_user_ns, uid),
9576 from_kgid(&init_user_ns, gid),
9577 audit_get_sessionid(current));
9578 }
9579
9580 dev_change_rx_flags(dev, IFF_PROMISC);
9581 }
9582 if (notify) {
9583 /* The ops lock is only required to ensure consistent locking
9584 * for `NETDEV_CHANGE` notifiers. This function is sometimes
9585 * called without the lock, even for devices that are ops
9586 * locked, such as in `dev_uc_sync_multiple` when using
9587 * bonding or teaming.
9588 */
9589 netdev_ops_assert_locked(dev);
9590 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9591 }
9592 return 0;
9593 }
9594
netif_set_promiscuity(struct net_device * dev,int inc)9595 int netif_set_promiscuity(struct net_device *dev, int inc)
9596 {
9597 unsigned int old_flags = dev->flags;
9598 int err;
9599
9600 err = __dev_set_promiscuity(dev, inc, true);
9601 if (err < 0)
9602 return err;
9603 if (dev->flags != old_flags)
9604 dev_set_rx_mode(dev);
9605 return err;
9606 }
9607
netif_set_allmulti(struct net_device * dev,int inc,bool notify)9608 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9609 {
9610 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9611 unsigned int allmulti, flags;
9612
9613 ASSERT_RTNL();
9614
9615 allmulti = dev->allmulti + inc;
9616 if (allmulti == 0) {
9617 /*
9618 * Avoid overflow.
9619 * If inc causes overflow, untouch allmulti and return error.
9620 */
9621 if (unlikely(inc > 0)) {
9622 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9623 return -EOVERFLOW;
9624 }
9625 flags = old_flags & ~IFF_ALLMULTI;
9626 } else {
9627 flags = old_flags | IFF_ALLMULTI;
9628 }
9629 WRITE_ONCE(dev->allmulti, allmulti);
9630 if (flags != old_flags) {
9631 WRITE_ONCE(dev->flags, flags);
9632 netdev_info(dev, "%s allmulticast mode\n",
9633 dev->flags & IFF_ALLMULTI ? "entered" : "left");
9634 dev_change_rx_flags(dev, IFF_ALLMULTI);
9635 dev_set_rx_mode(dev);
9636 if (notify)
9637 __dev_notify_flags(dev, old_flags,
9638 dev->gflags ^ old_gflags, 0, NULL);
9639 }
9640 return 0;
9641 }
9642
9643 /*
9644 * Upload unicast and multicast address lists to device and
9645 * configure RX filtering. When the device doesn't support unicast
9646 * filtering it is put in promiscuous mode while unicast addresses
9647 * are present.
9648 */
__dev_set_rx_mode(struct net_device * dev)9649 void __dev_set_rx_mode(struct net_device *dev)
9650 {
9651 const struct net_device_ops *ops = dev->netdev_ops;
9652
9653 /* dev_open will call this function so the list will stay sane. */
9654 if (!(dev->flags&IFF_UP))
9655 return;
9656
9657 if (!netif_device_present(dev))
9658 return;
9659
9660 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9661 /* Unicast addresses changes may only happen under the rtnl,
9662 * therefore calling __dev_set_promiscuity here is safe.
9663 */
9664 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9665 __dev_set_promiscuity(dev, 1, false);
9666 dev->uc_promisc = true;
9667 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9668 __dev_set_promiscuity(dev, -1, false);
9669 dev->uc_promisc = false;
9670 }
9671 }
9672
9673 if (ops->ndo_set_rx_mode)
9674 ops->ndo_set_rx_mode(dev);
9675 }
9676
dev_set_rx_mode(struct net_device * dev)9677 void dev_set_rx_mode(struct net_device *dev)
9678 {
9679 netif_addr_lock_bh(dev);
9680 __dev_set_rx_mode(dev);
9681 netif_addr_unlock_bh(dev);
9682 }
9683
9684 /**
9685 * netif_get_flags() - get flags reported to userspace
9686 * @dev: device
9687 *
9688 * Get the combination of flag bits exported through APIs to userspace.
9689 */
netif_get_flags(const struct net_device * dev)9690 unsigned int netif_get_flags(const struct net_device *dev)
9691 {
9692 unsigned int flags;
9693
9694 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9695 IFF_ALLMULTI |
9696 IFF_RUNNING |
9697 IFF_LOWER_UP |
9698 IFF_DORMANT)) |
9699 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
9700 IFF_ALLMULTI));
9701
9702 if (netif_running(dev)) {
9703 if (netif_oper_up(dev))
9704 flags |= IFF_RUNNING;
9705 if (netif_carrier_ok(dev))
9706 flags |= IFF_LOWER_UP;
9707 if (netif_dormant(dev))
9708 flags |= IFF_DORMANT;
9709 }
9710
9711 return flags;
9712 }
9713 EXPORT_SYMBOL(netif_get_flags);
9714
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9715 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9716 struct netlink_ext_ack *extack)
9717 {
9718 unsigned int old_flags = dev->flags;
9719 int ret;
9720
9721 ASSERT_RTNL();
9722
9723 /*
9724 * Set the flags on our device.
9725 */
9726
9727 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9728 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9729 IFF_AUTOMEDIA)) |
9730 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9731 IFF_ALLMULTI));
9732
9733 /*
9734 * Load in the correct multicast list now the flags have changed.
9735 */
9736
9737 if ((old_flags ^ flags) & IFF_MULTICAST)
9738 dev_change_rx_flags(dev, IFF_MULTICAST);
9739
9740 dev_set_rx_mode(dev);
9741
9742 /*
9743 * Have we downed the interface. We handle IFF_UP ourselves
9744 * according to user attempts to set it, rather than blindly
9745 * setting it.
9746 */
9747
9748 ret = 0;
9749 if ((old_flags ^ flags) & IFF_UP) {
9750 if (old_flags & IFF_UP)
9751 __dev_close(dev);
9752 else
9753 ret = __dev_open(dev, extack);
9754 }
9755
9756 if ((flags ^ dev->gflags) & IFF_PROMISC) {
9757 int inc = (flags & IFF_PROMISC) ? 1 : -1;
9758 old_flags = dev->flags;
9759
9760 dev->gflags ^= IFF_PROMISC;
9761
9762 if (__dev_set_promiscuity(dev, inc, false) >= 0)
9763 if (dev->flags != old_flags)
9764 dev_set_rx_mode(dev);
9765 }
9766
9767 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9768 * is important. Some (broken) drivers set IFF_PROMISC, when
9769 * IFF_ALLMULTI is requested not asking us and not reporting.
9770 */
9771 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9772 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9773
9774 dev->gflags ^= IFF_ALLMULTI;
9775 netif_set_allmulti(dev, inc, false);
9776 }
9777
9778 return ret;
9779 }
9780
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)9781 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9782 unsigned int gchanges, u32 portid,
9783 const struct nlmsghdr *nlh)
9784 {
9785 unsigned int changes = dev->flags ^ old_flags;
9786
9787 if (gchanges)
9788 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9789
9790 if (changes & IFF_UP) {
9791 if (dev->flags & IFF_UP)
9792 call_netdevice_notifiers(NETDEV_UP, dev);
9793 else
9794 call_netdevice_notifiers(NETDEV_DOWN, dev);
9795 }
9796
9797 if (dev->flags & IFF_UP &&
9798 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9799 struct netdev_notifier_change_info change_info = {
9800 .info = {
9801 .dev = dev,
9802 },
9803 .flags_changed = changes,
9804 };
9805
9806 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9807 }
9808 }
9809
netif_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9810 int netif_change_flags(struct net_device *dev, unsigned int flags,
9811 struct netlink_ext_ack *extack)
9812 {
9813 int ret;
9814 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9815
9816 ret = __dev_change_flags(dev, flags, extack);
9817 if (ret < 0)
9818 return ret;
9819
9820 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9821 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
9822 return ret;
9823 }
9824
__netif_set_mtu(struct net_device * dev,int new_mtu)9825 int __netif_set_mtu(struct net_device *dev, int new_mtu)
9826 {
9827 const struct net_device_ops *ops = dev->netdev_ops;
9828
9829 if (ops->ndo_change_mtu)
9830 return ops->ndo_change_mtu(dev, new_mtu);
9831
9832 /* Pairs with all the lockless reads of dev->mtu in the stack */
9833 WRITE_ONCE(dev->mtu, new_mtu);
9834 return 0;
9835 }
9836 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL");
9837
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9838 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9839 struct netlink_ext_ack *extack)
9840 {
9841 /* MTU must be positive, and in range */
9842 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9843 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9844 return -EINVAL;
9845 }
9846
9847 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9848 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9849 return -EINVAL;
9850 }
9851 return 0;
9852 }
9853
9854 /**
9855 * netif_set_mtu_ext() - Change maximum transfer unit
9856 * @dev: device
9857 * @new_mtu: new transfer unit
9858 * @extack: netlink extended ack
9859 *
9860 * Change the maximum transfer size of the network device.
9861 *
9862 * Return: 0 on success, -errno on failure.
9863 */
netif_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9864 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9865 struct netlink_ext_ack *extack)
9866 {
9867 int err, orig_mtu;
9868
9869 netdev_ops_assert_locked(dev);
9870
9871 if (new_mtu == dev->mtu)
9872 return 0;
9873
9874 err = dev_validate_mtu(dev, new_mtu, extack);
9875 if (err)
9876 return err;
9877
9878 if (!netif_device_present(dev))
9879 return -ENODEV;
9880
9881 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9882 err = notifier_to_errno(err);
9883 if (err)
9884 return err;
9885
9886 orig_mtu = dev->mtu;
9887 err = __netif_set_mtu(dev, new_mtu);
9888
9889 if (!err) {
9890 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9891 orig_mtu);
9892 err = notifier_to_errno(err);
9893 if (err) {
9894 /* setting mtu back and notifying everyone again,
9895 * so that they have a chance to revert changes.
9896 */
9897 __netif_set_mtu(dev, orig_mtu);
9898 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9899 new_mtu);
9900 }
9901 }
9902 return err;
9903 }
9904
netif_set_mtu(struct net_device * dev,int new_mtu)9905 int netif_set_mtu(struct net_device *dev, int new_mtu)
9906 {
9907 struct netlink_ext_ack extack;
9908 int err;
9909
9910 memset(&extack, 0, sizeof(extack));
9911 err = netif_set_mtu_ext(dev, new_mtu, &extack);
9912 if (err && extack._msg)
9913 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9914 return err;
9915 }
9916 EXPORT_SYMBOL(netif_set_mtu);
9917
netif_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9918 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9919 {
9920 unsigned int orig_len = dev->tx_queue_len;
9921 int res;
9922
9923 if (new_len != (unsigned int)new_len)
9924 return -ERANGE;
9925
9926 if (new_len != orig_len) {
9927 WRITE_ONCE(dev->tx_queue_len, new_len);
9928 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9929 res = notifier_to_errno(res);
9930 if (res)
9931 goto err_rollback;
9932 res = dev_qdisc_change_tx_queue_len(dev);
9933 if (res)
9934 goto err_rollback;
9935 }
9936
9937 return 0;
9938
9939 err_rollback:
9940 netdev_err(dev, "refused to change device tx_queue_len\n");
9941 WRITE_ONCE(dev->tx_queue_len, orig_len);
9942 return res;
9943 }
9944
netif_set_group(struct net_device * dev,int new_group)9945 void netif_set_group(struct net_device *dev, int new_group)
9946 {
9947 dev->group = new_group;
9948 }
9949
9950 /**
9951 * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR.
9952 * @dev: device
9953 * @addr: new address
9954 * @extack: netlink extended ack
9955 *
9956 * Return: 0 on success, -errno on failure.
9957 */
netif_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9958 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9959 struct netlink_ext_ack *extack)
9960 {
9961 struct netdev_notifier_pre_changeaddr_info info = {
9962 .info.dev = dev,
9963 .info.extack = extack,
9964 .dev_addr = addr,
9965 };
9966 int rc;
9967
9968 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9969 return notifier_to_errno(rc);
9970 }
9971 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL");
9972
netif_set_mac_address(struct net_device * dev,struct sockaddr_storage * ss,struct netlink_ext_ack * extack)9973 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9974 struct netlink_ext_ack *extack)
9975 {
9976 const struct net_device_ops *ops = dev->netdev_ops;
9977 int err;
9978
9979 if (!ops->ndo_set_mac_address)
9980 return -EOPNOTSUPP;
9981 if (ss->ss_family != dev->type)
9982 return -EINVAL;
9983 if (!netif_device_present(dev))
9984 return -ENODEV;
9985 err = netif_pre_changeaddr_notify(dev, ss->__data, extack);
9986 if (err)
9987 return err;
9988 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9989 err = ops->ndo_set_mac_address(dev, ss);
9990 if (err)
9991 return err;
9992 }
9993 dev->addr_assign_type = NET_ADDR_SET;
9994 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9995 add_device_randomness(dev->dev_addr, dev->addr_len);
9996 return 0;
9997 }
9998
9999 DECLARE_RWSEM(dev_addr_sem);
10000
10001 /* "sa" is a true struct sockaddr with limited "sa_data" member. */
netif_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)10002 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
10003 {
10004 size_t size = sizeof(sa->sa_data);
10005 struct net_device *dev;
10006 int ret = 0;
10007
10008 down_read(&dev_addr_sem);
10009 rcu_read_lock();
10010
10011 dev = dev_get_by_name_rcu(net, dev_name);
10012 if (!dev) {
10013 ret = -ENODEV;
10014 goto unlock;
10015 }
10016 if (!dev->addr_len)
10017 memset(sa->sa_data, 0, size);
10018 else
10019 memcpy(sa->sa_data, dev->dev_addr,
10020 min_t(size_t, size, dev->addr_len));
10021 sa->sa_family = dev->type;
10022
10023 unlock:
10024 rcu_read_unlock();
10025 up_read(&dev_addr_sem);
10026 return ret;
10027 }
10028 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL");
10029
netif_change_carrier(struct net_device * dev,bool new_carrier)10030 int netif_change_carrier(struct net_device *dev, bool new_carrier)
10031 {
10032 const struct net_device_ops *ops = dev->netdev_ops;
10033
10034 if (!ops->ndo_change_carrier)
10035 return -EOPNOTSUPP;
10036 if (!netif_device_present(dev))
10037 return -ENODEV;
10038 return ops->ndo_change_carrier(dev, new_carrier);
10039 }
10040
10041 /**
10042 * dev_get_phys_port_id - Get device physical port ID
10043 * @dev: device
10044 * @ppid: port ID
10045 *
10046 * Get device physical port ID
10047 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)10048 int dev_get_phys_port_id(struct net_device *dev,
10049 struct netdev_phys_item_id *ppid)
10050 {
10051 const struct net_device_ops *ops = dev->netdev_ops;
10052
10053 if (!ops->ndo_get_phys_port_id)
10054 return -EOPNOTSUPP;
10055 return ops->ndo_get_phys_port_id(dev, ppid);
10056 }
10057
10058 /**
10059 * dev_get_phys_port_name - Get device physical port name
10060 * @dev: device
10061 * @name: port name
10062 * @len: limit of bytes to copy to name
10063 *
10064 * Get device physical port name
10065 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)10066 int dev_get_phys_port_name(struct net_device *dev,
10067 char *name, size_t len)
10068 {
10069 const struct net_device_ops *ops = dev->netdev_ops;
10070 int err;
10071
10072 if (ops->ndo_get_phys_port_name) {
10073 err = ops->ndo_get_phys_port_name(dev, name, len);
10074 if (err != -EOPNOTSUPP)
10075 return err;
10076 }
10077 return devlink_compat_phys_port_name_get(dev, name, len);
10078 }
10079
10080 /**
10081 * netif_get_port_parent_id() - Get the device's port parent identifier
10082 * @dev: network device
10083 * @ppid: pointer to a storage for the port's parent identifier
10084 * @recurse: allow/disallow recursion to lower devices
10085 *
10086 * Get the devices's port parent identifier.
10087 *
10088 * Return: 0 on success, -errno on failure.
10089 */
netif_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)10090 int netif_get_port_parent_id(struct net_device *dev,
10091 struct netdev_phys_item_id *ppid, bool recurse)
10092 {
10093 const struct net_device_ops *ops = dev->netdev_ops;
10094 struct netdev_phys_item_id first = { };
10095 struct net_device *lower_dev;
10096 struct list_head *iter;
10097 int err;
10098
10099 if (ops->ndo_get_port_parent_id) {
10100 err = ops->ndo_get_port_parent_id(dev, ppid);
10101 if (err != -EOPNOTSUPP)
10102 return err;
10103 }
10104
10105 err = devlink_compat_switch_id_get(dev, ppid);
10106 if (!recurse || err != -EOPNOTSUPP)
10107 return err;
10108
10109 netdev_for_each_lower_dev(dev, lower_dev, iter) {
10110 err = netif_get_port_parent_id(lower_dev, ppid, true);
10111 if (err)
10112 break;
10113 if (!first.id_len)
10114 first = *ppid;
10115 else if (memcmp(&first, ppid, sizeof(*ppid)))
10116 return -EOPNOTSUPP;
10117 }
10118
10119 return err;
10120 }
10121 EXPORT_SYMBOL(netif_get_port_parent_id);
10122
10123 /**
10124 * netdev_port_same_parent_id - Indicate if two network devices have
10125 * the same port parent identifier
10126 * @a: first network device
10127 * @b: second network device
10128 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)10129 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
10130 {
10131 struct netdev_phys_item_id a_id = { };
10132 struct netdev_phys_item_id b_id = { };
10133
10134 if (netif_get_port_parent_id(a, &a_id, true) ||
10135 netif_get_port_parent_id(b, &b_id, true))
10136 return false;
10137
10138 return netdev_phys_item_id_same(&a_id, &b_id);
10139 }
10140 EXPORT_SYMBOL(netdev_port_same_parent_id);
10141
netif_change_proto_down(struct net_device * dev,bool proto_down)10142 int netif_change_proto_down(struct net_device *dev, bool proto_down)
10143 {
10144 if (!dev->change_proto_down)
10145 return -EOPNOTSUPP;
10146 if (!netif_device_present(dev))
10147 return -ENODEV;
10148 if (proto_down)
10149 netif_carrier_off(dev);
10150 else
10151 netif_carrier_on(dev);
10152 WRITE_ONCE(dev->proto_down, proto_down);
10153 return 0;
10154 }
10155
10156 /**
10157 * netdev_change_proto_down_reason_locked - proto down reason
10158 *
10159 * @dev: device
10160 * @mask: proto down mask
10161 * @value: proto down value
10162 */
netdev_change_proto_down_reason_locked(struct net_device * dev,unsigned long mask,u32 value)10163 void netdev_change_proto_down_reason_locked(struct net_device *dev,
10164 unsigned long mask, u32 value)
10165 {
10166 u32 proto_down_reason;
10167 int b;
10168
10169 if (!mask) {
10170 proto_down_reason = value;
10171 } else {
10172 proto_down_reason = dev->proto_down_reason;
10173 for_each_set_bit(b, &mask, 32) {
10174 if (value & (1 << b))
10175 proto_down_reason |= BIT(b);
10176 else
10177 proto_down_reason &= ~BIT(b);
10178 }
10179 }
10180 WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
10181 }
10182
10183 struct bpf_xdp_link {
10184 struct bpf_link link;
10185 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
10186 int flags;
10187 };
10188
dev_xdp_mode(struct net_device * dev,u32 flags)10189 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
10190 {
10191 if (flags & XDP_FLAGS_HW_MODE)
10192 return XDP_MODE_HW;
10193 if (flags & XDP_FLAGS_DRV_MODE)
10194 return XDP_MODE_DRV;
10195 if (flags & XDP_FLAGS_SKB_MODE)
10196 return XDP_MODE_SKB;
10197 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
10198 }
10199
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)10200 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
10201 {
10202 switch (mode) {
10203 case XDP_MODE_SKB:
10204 return generic_xdp_install;
10205 case XDP_MODE_DRV:
10206 case XDP_MODE_HW:
10207 return dev->netdev_ops->ndo_bpf;
10208 default:
10209 return NULL;
10210 }
10211 }
10212
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)10213 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
10214 enum bpf_xdp_mode mode)
10215 {
10216 return dev->xdp_state[mode].link;
10217 }
10218
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)10219 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
10220 enum bpf_xdp_mode mode)
10221 {
10222 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
10223
10224 if (link)
10225 return link->link.prog;
10226 return dev->xdp_state[mode].prog;
10227 }
10228
dev_xdp_prog_count(struct net_device * dev)10229 u8 dev_xdp_prog_count(struct net_device *dev)
10230 {
10231 u8 count = 0;
10232 int i;
10233
10234 for (i = 0; i < __MAX_XDP_MODE; i++)
10235 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
10236 count++;
10237 return count;
10238 }
10239 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10240
dev_xdp_sb_prog_count(struct net_device * dev)10241 u8 dev_xdp_sb_prog_count(struct net_device *dev)
10242 {
10243 u8 count = 0;
10244 int i;
10245
10246 for (i = 0; i < __MAX_XDP_MODE; i++)
10247 if (dev->xdp_state[i].prog &&
10248 !dev->xdp_state[i].prog->aux->xdp_has_frags)
10249 count++;
10250 return count;
10251 }
10252
netif_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)10253 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10254 {
10255 if (!dev->netdev_ops->ndo_bpf)
10256 return -EOPNOTSUPP;
10257
10258 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10259 bpf->command == XDP_SETUP_PROG &&
10260 bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10261 NL_SET_ERR_MSG(bpf->extack,
10262 "unable to propagate XDP to device using tcp-data-split");
10263 return -EBUSY;
10264 }
10265
10266 if (dev_get_min_mp_channel_count(dev)) {
10267 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10268 return -EBUSY;
10269 }
10270
10271 return dev->netdev_ops->ndo_bpf(dev, bpf);
10272 }
10273 EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10274
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)10275 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10276 {
10277 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10278
10279 return prog ? prog->aux->id : 0;
10280 }
10281
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)10282 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10283 struct bpf_xdp_link *link)
10284 {
10285 dev->xdp_state[mode].link = link;
10286 dev->xdp_state[mode].prog = NULL;
10287 }
10288
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)10289 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10290 struct bpf_prog *prog)
10291 {
10292 dev->xdp_state[mode].link = NULL;
10293 dev->xdp_state[mode].prog = prog;
10294 }
10295
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)10296 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10297 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10298 u32 flags, struct bpf_prog *prog)
10299 {
10300 struct netdev_bpf xdp;
10301 int err;
10302
10303 netdev_ops_assert_locked(dev);
10304
10305 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10306 prog && !prog->aux->xdp_has_frags) {
10307 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10308 return -EBUSY;
10309 }
10310
10311 if (dev_get_min_mp_channel_count(dev)) {
10312 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10313 return -EBUSY;
10314 }
10315
10316 memset(&xdp, 0, sizeof(xdp));
10317 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10318 xdp.extack = extack;
10319 xdp.flags = flags;
10320 xdp.prog = prog;
10321
10322 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
10323 * "moved" into driver), so they don't increment it on their own, but
10324 * they do decrement refcnt when program is detached or replaced.
10325 * Given net_device also owns link/prog, we need to bump refcnt here
10326 * to prevent drivers from underflowing it.
10327 */
10328 if (prog)
10329 bpf_prog_inc(prog);
10330 err = bpf_op(dev, &xdp);
10331 if (err) {
10332 if (prog)
10333 bpf_prog_put(prog);
10334 return err;
10335 }
10336
10337 if (mode != XDP_MODE_HW)
10338 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10339
10340 return 0;
10341 }
10342
dev_xdp_uninstall(struct net_device * dev)10343 static void dev_xdp_uninstall(struct net_device *dev)
10344 {
10345 struct bpf_xdp_link *link;
10346 struct bpf_prog *prog;
10347 enum bpf_xdp_mode mode;
10348 bpf_op_t bpf_op;
10349
10350 ASSERT_RTNL();
10351
10352 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10353 prog = dev_xdp_prog(dev, mode);
10354 if (!prog)
10355 continue;
10356
10357 bpf_op = dev_xdp_bpf_op(dev, mode);
10358 if (!bpf_op)
10359 continue;
10360
10361 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10362
10363 /* auto-detach link from net device */
10364 link = dev_xdp_link(dev, mode);
10365 if (link)
10366 link->dev = NULL;
10367 else
10368 bpf_prog_put(prog);
10369
10370 dev_xdp_set_link(dev, mode, NULL);
10371 }
10372 }
10373
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)10374 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10375 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10376 struct bpf_prog *old_prog, u32 flags)
10377 {
10378 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10379 struct bpf_prog *cur_prog;
10380 struct net_device *upper;
10381 struct list_head *iter;
10382 enum bpf_xdp_mode mode;
10383 bpf_op_t bpf_op;
10384 int err;
10385
10386 ASSERT_RTNL();
10387
10388 /* either link or prog attachment, never both */
10389 if (link && (new_prog || old_prog))
10390 return -EINVAL;
10391 /* link supports only XDP mode flags */
10392 if (link && (flags & ~XDP_FLAGS_MODES)) {
10393 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10394 return -EINVAL;
10395 }
10396 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10397 if (num_modes > 1) {
10398 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10399 return -EINVAL;
10400 }
10401 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10402 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10403 NL_SET_ERR_MSG(extack,
10404 "More than one program loaded, unset mode is ambiguous");
10405 return -EINVAL;
10406 }
10407 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10408 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10409 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10410 return -EINVAL;
10411 }
10412
10413 mode = dev_xdp_mode(dev, flags);
10414 /* can't replace attached link */
10415 if (dev_xdp_link(dev, mode)) {
10416 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10417 return -EBUSY;
10418 }
10419
10420 /* don't allow if an upper device already has a program */
10421 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10422 if (dev_xdp_prog_count(upper) > 0) {
10423 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10424 return -EEXIST;
10425 }
10426 }
10427
10428 cur_prog = dev_xdp_prog(dev, mode);
10429 /* can't replace attached prog with link */
10430 if (link && cur_prog) {
10431 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10432 return -EBUSY;
10433 }
10434 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10435 NL_SET_ERR_MSG(extack, "Active program does not match expected");
10436 return -EEXIST;
10437 }
10438
10439 /* put effective new program into new_prog */
10440 if (link)
10441 new_prog = link->link.prog;
10442
10443 if (new_prog) {
10444 bool offload = mode == XDP_MODE_HW;
10445 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10446 ? XDP_MODE_DRV : XDP_MODE_SKB;
10447
10448 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10449 NL_SET_ERR_MSG(extack, "XDP program already attached");
10450 return -EBUSY;
10451 }
10452 if (!offload && dev_xdp_prog(dev, other_mode)) {
10453 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10454 return -EEXIST;
10455 }
10456 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10457 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10458 return -EINVAL;
10459 }
10460 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10461 NL_SET_ERR_MSG(extack, "Program bound to different device");
10462 return -EINVAL;
10463 }
10464 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10465 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10466 return -EINVAL;
10467 }
10468 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10469 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10470 return -EINVAL;
10471 }
10472 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10473 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10474 return -EINVAL;
10475 }
10476 }
10477
10478 /* don't call drivers if the effective program didn't change */
10479 if (new_prog != cur_prog) {
10480 bpf_op = dev_xdp_bpf_op(dev, mode);
10481 if (!bpf_op) {
10482 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10483 return -EOPNOTSUPP;
10484 }
10485
10486 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10487 if (err)
10488 return err;
10489 }
10490
10491 if (link)
10492 dev_xdp_set_link(dev, mode, link);
10493 else
10494 dev_xdp_set_prog(dev, mode, new_prog);
10495 if (cur_prog)
10496 bpf_prog_put(cur_prog);
10497
10498 return 0;
10499 }
10500
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10501 static int dev_xdp_attach_link(struct net_device *dev,
10502 struct netlink_ext_ack *extack,
10503 struct bpf_xdp_link *link)
10504 {
10505 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10506 }
10507
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10508 static int dev_xdp_detach_link(struct net_device *dev,
10509 struct netlink_ext_ack *extack,
10510 struct bpf_xdp_link *link)
10511 {
10512 enum bpf_xdp_mode mode;
10513 bpf_op_t bpf_op;
10514
10515 ASSERT_RTNL();
10516
10517 mode = dev_xdp_mode(dev, link->flags);
10518 if (dev_xdp_link(dev, mode) != link)
10519 return -EINVAL;
10520
10521 bpf_op = dev_xdp_bpf_op(dev, mode);
10522 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10523 dev_xdp_set_link(dev, mode, NULL);
10524 return 0;
10525 }
10526
bpf_xdp_link_release(struct bpf_link * link)10527 static void bpf_xdp_link_release(struct bpf_link *link)
10528 {
10529 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10530
10531 rtnl_lock();
10532
10533 /* if racing with net_device's tear down, xdp_link->dev might be
10534 * already NULL, in which case link was already auto-detached
10535 */
10536 if (xdp_link->dev) {
10537 netdev_lock_ops(xdp_link->dev);
10538 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10539 netdev_unlock_ops(xdp_link->dev);
10540 xdp_link->dev = NULL;
10541 }
10542
10543 rtnl_unlock();
10544 }
10545
bpf_xdp_link_detach(struct bpf_link * link)10546 static int bpf_xdp_link_detach(struct bpf_link *link)
10547 {
10548 bpf_xdp_link_release(link);
10549 return 0;
10550 }
10551
bpf_xdp_link_dealloc(struct bpf_link * link)10552 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10553 {
10554 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10555
10556 kfree(xdp_link);
10557 }
10558
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)10559 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10560 struct seq_file *seq)
10561 {
10562 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10563 u32 ifindex = 0;
10564
10565 rtnl_lock();
10566 if (xdp_link->dev)
10567 ifindex = xdp_link->dev->ifindex;
10568 rtnl_unlock();
10569
10570 seq_printf(seq, "ifindex:\t%u\n", ifindex);
10571 }
10572
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)10573 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10574 struct bpf_link_info *info)
10575 {
10576 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10577 u32 ifindex = 0;
10578
10579 rtnl_lock();
10580 if (xdp_link->dev)
10581 ifindex = xdp_link->dev->ifindex;
10582 rtnl_unlock();
10583
10584 info->xdp.ifindex = ifindex;
10585 return 0;
10586 }
10587
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)10588 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10589 struct bpf_prog *old_prog)
10590 {
10591 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10592 enum bpf_xdp_mode mode;
10593 bpf_op_t bpf_op;
10594 int err = 0;
10595
10596 rtnl_lock();
10597
10598 /* link might have been auto-released already, so fail */
10599 if (!xdp_link->dev) {
10600 err = -ENOLINK;
10601 goto out_unlock;
10602 }
10603
10604 if (old_prog && link->prog != old_prog) {
10605 err = -EPERM;
10606 goto out_unlock;
10607 }
10608 old_prog = link->prog;
10609 if (old_prog->type != new_prog->type ||
10610 old_prog->expected_attach_type != new_prog->expected_attach_type) {
10611 err = -EINVAL;
10612 goto out_unlock;
10613 }
10614
10615 if (old_prog == new_prog) {
10616 /* no-op, don't disturb drivers */
10617 bpf_prog_put(new_prog);
10618 goto out_unlock;
10619 }
10620
10621 netdev_lock_ops(xdp_link->dev);
10622 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10623 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10624 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10625 xdp_link->flags, new_prog);
10626 netdev_unlock_ops(xdp_link->dev);
10627 if (err)
10628 goto out_unlock;
10629
10630 old_prog = xchg(&link->prog, new_prog);
10631 bpf_prog_put(old_prog);
10632
10633 out_unlock:
10634 rtnl_unlock();
10635 return err;
10636 }
10637
10638 static const struct bpf_link_ops bpf_xdp_link_lops = {
10639 .release = bpf_xdp_link_release,
10640 .dealloc = bpf_xdp_link_dealloc,
10641 .detach = bpf_xdp_link_detach,
10642 .show_fdinfo = bpf_xdp_link_show_fdinfo,
10643 .fill_link_info = bpf_xdp_link_fill_link_info,
10644 .update_prog = bpf_xdp_link_update,
10645 };
10646
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)10647 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10648 {
10649 struct net *net = current->nsproxy->net_ns;
10650 struct bpf_link_primer link_primer;
10651 struct netlink_ext_ack extack = {};
10652 struct bpf_xdp_link *link;
10653 struct net_device *dev;
10654 int err, fd;
10655
10656 rtnl_lock();
10657 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10658 if (!dev) {
10659 rtnl_unlock();
10660 return -EINVAL;
10661 }
10662
10663 link = kzalloc(sizeof(*link), GFP_USER);
10664 if (!link) {
10665 err = -ENOMEM;
10666 goto unlock;
10667 }
10668
10669 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog,
10670 attr->link_create.attach_type);
10671 link->dev = dev;
10672 link->flags = attr->link_create.flags;
10673
10674 err = bpf_link_prime(&link->link, &link_primer);
10675 if (err) {
10676 kfree(link);
10677 goto unlock;
10678 }
10679
10680 netdev_lock_ops(dev);
10681 err = dev_xdp_attach_link(dev, &extack, link);
10682 netdev_unlock_ops(dev);
10683 rtnl_unlock();
10684
10685 if (err) {
10686 link->dev = NULL;
10687 bpf_link_cleanup(&link_primer);
10688 trace_bpf_xdp_link_attach_failed(extack._msg);
10689 goto out_put_dev;
10690 }
10691
10692 fd = bpf_link_settle(&link_primer);
10693 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
10694 dev_put(dev);
10695 return fd;
10696
10697 unlock:
10698 rtnl_unlock();
10699
10700 out_put_dev:
10701 dev_put(dev);
10702 return err;
10703 }
10704
10705 /**
10706 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
10707 * @dev: device
10708 * @extack: netlink extended ack
10709 * @fd: new program fd or negative value to clear
10710 * @expected_fd: old program fd that userspace expects to replace or clear
10711 * @flags: xdp-related flags
10712 *
10713 * Set or clear a bpf program for a device
10714 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)10715 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10716 int fd, int expected_fd, u32 flags)
10717 {
10718 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10719 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10720 int err;
10721
10722 ASSERT_RTNL();
10723
10724 if (fd >= 0) {
10725 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10726 mode != XDP_MODE_SKB);
10727 if (IS_ERR(new_prog))
10728 return PTR_ERR(new_prog);
10729 }
10730
10731 if (expected_fd >= 0) {
10732 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10733 mode != XDP_MODE_SKB);
10734 if (IS_ERR(old_prog)) {
10735 err = PTR_ERR(old_prog);
10736 old_prog = NULL;
10737 goto err_out;
10738 }
10739 }
10740
10741 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10742
10743 err_out:
10744 if (err && new_prog)
10745 bpf_prog_put(new_prog);
10746 if (old_prog)
10747 bpf_prog_put(old_prog);
10748 return err;
10749 }
10750
dev_get_min_mp_channel_count(const struct net_device * dev)10751 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10752 {
10753 int i;
10754
10755 netdev_ops_assert_locked(dev);
10756
10757 for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10758 if (dev->_rx[i].mp_params.mp_priv)
10759 /* The channel count is the idx plus 1. */
10760 return i + 1;
10761
10762 return 0;
10763 }
10764
10765 /**
10766 * dev_index_reserve() - allocate an ifindex in a namespace
10767 * @net: the applicable net namespace
10768 * @ifindex: requested ifindex, pass %0 to get one allocated
10769 *
10770 * Allocate a ifindex for a new device. Caller must either use the ifindex
10771 * to store the device (via list_netdevice()) or call dev_index_release()
10772 * to give the index up.
10773 *
10774 * Return: a suitable unique value for a new device interface number or -errno.
10775 */
dev_index_reserve(struct net * net,u32 ifindex)10776 static int dev_index_reserve(struct net *net, u32 ifindex)
10777 {
10778 int err;
10779
10780 if (ifindex > INT_MAX) {
10781 DEBUG_NET_WARN_ON_ONCE(1);
10782 return -EINVAL;
10783 }
10784
10785 if (!ifindex)
10786 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10787 xa_limit_31b, &net->ifindex, GFP_KERNEL);
10788 else
10789 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10790 if (err < 0)
10791 return err;
10792
10793 return ifindex;
10794 }
10795
dev_index_release(struct net * net,int ifindex)10796 static void dev_index_release(struct net *net, int ifindex)
10797 {
10798 /* Expect only unused indexes, unlist_netdevice() removes the used */
10799 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10800 }
10801
from_cleanup_net(void)10802 static bool from_cleanup_net(void)
10803 {
10804 #ifdef CONFIG_NET_NS
10805 return current == READ_ONCE(cleanup_net_task);
10806 #else
10807 return false;
10808 #endif
10809 }
10810
10811 /* Delayed registration/unregisteration */
10812 LIST_HEAD(net_todo_list);
10813 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10814 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10815
net_set_todo(struct net_device * dev)10816 static void net_set_todo(struct net_device *dev)
10817 {
10818 list_add_tail(&dev->todo_list, &net_todo_list);
10819 }
10820
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10821 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10822 struct net_device *upper, netdev_features_t features)
10823 {
10824 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10825 netdev_features_t feature;
10826 int feature_bit;
10827
10828 for_each_netdev_feature(upper_disables, feature_bit) {
10829 feature = __NETIF_F_BIT(feature_bit);
10830 if (!(upper->wanted_features & feature)
10831 && (features & feature)) {
10832 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10833 &feature, upper->name);
10834 features &= ~feature;
10835 }
10836 }
10837
10838 return features;
10839 }
10840
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10841 static void netdev_sync_lower_features(struct net_device *upper,
10842 struct net_device *lower, netdev_features_t features)
10843 {
10844 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10845 netdev_features_t feature;
10846 int feature_bit;
10847
10848 for_each_netdev_feature(upper_disables, feature_bit) {
10849 feature = __NETIF_F_BIT(feature_bit);
10850 if (!(features & feature) && (lower->features & feature)) {
10851 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10852 &feature, lower->name);
10853 netdev_lock_ops(lower);
10854 lower->wanted_features &= ~feature;
10855 __netdev_update_features(lower);
10856
10857 if (unlikely(lower->features & feature))
10858 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10859 &feature, lower->name);
10860 else
10861 netdev_features_change(lower);
10862 netdev_unlock_ops(lower);
10863 }
10864 }
10865 }
10866
netdev_has_ip_or_hw_csum(netdev_features_t features)10867 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10868 {
10869 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10870 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10871 bool hw_csum = features & NETIF_F_HW_CSUM;
10872
10873 return ip_csum || hw_csum;
10874 }
10875
netdev_fix_features(struct net_device * dev,netdev_features_t features)10876 static netdev_features_t netdev_fix_features(struct net_device *dev,
10877 netdev_features_t features)
10878 {
10879 /* Fix illegal checksum combinations */
10880 if ((features & NETIF_F_HW_CSUM) &&
10881 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10882 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10883 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10884 }
10885
10886 /* TSO requires that SG is present as well. */
10887 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10888 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10889 features &= ~NETIF_F_ALL_TSO;
10890 }
10891
10892 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10893 !(features & NETIF_F_IP_CSUM)) {
10894 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10895 features &= ~NETIF_F_TSO;
10896 features &= ~NETIF_F_TSO_ECN;
10897 }
10898
10899 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10900 !(features & NETIF_F_IPV6_CSUM)) {
10901 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10902 features &= ~NETIF_F_TSO6;
10903 }
10904
10905 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10906 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10907 features &= ~NETIF_F_TSO_MANGLEID;
10908
10909 /* TSO ECN requires that TSO is present as well. */
10910 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10911 features &= ~NETIF_F_TSO_ECN;
10912
10913 /* Software GSO depends on SG. */
10914 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10915 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10916 features &= ~NETIF_F_GSO;
10917 }
10918
10919 /* GSO partial features require GSO partial be set */
10920 if ((features & dev->gso_partial_features) &&
10921 !(features & NETIF_F_GSO_PARTIAL)) {
10922 netdev_dbg(dev,
10923 "Dropping partially supported GSO features since no GSO partial.\n");
10924 features &= ~dev->gso_partial_features;
10925 }
10926
10927 if (!(features & NETIF_F_RXCSUM)) {
10928 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10929 * successfully merged by hardware must also have the
10930 * checksum verified by hardware. If the user does not
10931 * want to enable RXCSUM, logically, we should disable GRO_HW.
10932 */
10933 if (features & NETIF_F_GRO_HW) {
10934 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10935 features &= ~NETIF_F_GRO_HW;
10936 }
10937 }
10938
10939 /* LRO/HW-GRO features cannot be combined with RX-FCS */
10940 if (features & NETIF_F_RXFCS) {
10941 if (features & NETIF_F_LRO) {
10942 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10943 features &= ~NETIF_F_LRO;
10944 }
10945
10946 if (features & NETIF_F_GRO_HW) {
10947 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10948 features &= ~NETIF_F_GRO_HW;
10949 }
10950 }
10951
10952 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10953 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10954 features &= ~NETIF_F_LRO;
10955 }
10956
10957 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10958 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10959 features &= ~NETIF_F_HW_TLS_TX;
10960 }
10961
10962 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10963 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10964 features &= ~NETIF_F_HW_TLS_RX;
10965 }
10966
10967 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10968 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10969 features &= ~NETIF_F_GSO_UDP_L4;
10970 }
10971
10972 return features;
10973 }
10974
__netdev_update_features(struct net_device * dev)10975 int __netdev_update_features(struct net_device *dev)
10976 {
10977 struct net_device *upper, *lower;
10978 netdev_features_t features;
10979 struct list_head *iter;
10980 int err = -1;
10981
10982 ASSERT_RTNL();
10983 netdev_ops_assert_locked(dev);
10984
10985 features = netdev_get_wanted_features(dev);
10986
10987 if (dev->netdev_ops->ndo_fix_features)
10988 features = dev->netdev_ops->ndo_fix_features(dev, features);
10989
10990 /* driver might be less strict about feature dependencies */
10991 features = netdev_fix_features(dev, features);
10992
10993 /* some features can't be enabled if they're off on an upper device */
10994 netdev_for_each_upper_dev_rcu(dev, upper, iter)
10995 features = netdev_sync_upper_features(dev, upper, features);
10996
10997 if (dev->features == features)
10998 goto sync_lower;
10999
11000 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
11001 &dev->features, &features);
11002
11003 if (dev->netdev_ops->ndo_set_features)
11004 err = dev->netdev_ops->ndo_set_features(dev, features);
11005 else
11006 err = 0;
11007
11008 if (unlikely(err < 0)) {
11009 netdev_err(dev,
11010 "set_features() failed (%d); wanted %pNF, left %pNF\n",
11011 err, &features, &dev->features);
11012 /* return non-0 since some features might have changed and
11013 * it's better to fire a spurious notification than miss it
11014 */
11015 return -1;
11016 }
11017
11018 sync_lower:
11019 /* some features must be disabled on lower devices when disabled
11020 * on an upper device (think: bonding master or bridge)
11021 */
11022 netdev_for_each_lower_dev(dev, lower, iter)
11023 netdev_sync_lower_features(dev, lower, features);
11024
11025 if (!err) {
11026 netdev_features_t diff = features ^ dev->features;
11027
11028 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
11029 /* udp_tunnel_{get,drop}_rx_info both need
11030 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
11031 * device, or they won't do anything.
11032 * Thus we need to update dev->features
11033 * *before* calling udp_tunnel_get_rx_info,
11034 * but *after* calling udp_tunnel_drop_rx_info.
11035 */
11036 udp_tunnel_nic_lock(dev);
11037 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
11038 dev->features = features;
11039 udp_tunnel_get_rx_info(dev);
11040 } else {
11041 udp_tunnel_drop_rx_info(dev);
11042 }
11043 udp_tunnel_nic_unlock(dev);
11044 }
11045
11046 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
11047 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
11048 dev->features = features;
11049 err |= vlan_get_rx_ctag_filter_info(dev);
11050 } else {
11051 vlan_drop_rx_ctag_filter_info(dev);
11052 }
11053 }
11054
11055 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
11056 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
11057 dev->features = features;
11058 err |= vlan_get_rx_stag_filter_info(dev);
11059 } else {
11060 vlan_drop_rx_stag_filter_info(dev);
11061 }
11062 }
11063
11064 dev->features = features;
11065 }
11066
11067 return err < 0 ? 0 : 1;
11068 }
11069
11070 /**
11071 * netdev_update_features - recalculate device features
11072 * @dev: the device to check
11073 *
11074 * Recalculate dev->features set and send notifications if it
11075 * has changed. Should be called after driver or hardware dependent
11076 * conditions might have changed that influence the features.
11077 */
netdev_update_features(struct net_device * dev)11078 void netdev_update_features(struct net_device *dev)
11079 {
11080 if (__netdev_update_features(dev))
11081 netdev_features_change(dev);
11082 }
11083 EXPORT_SYMBOL(netdev_update_features);
11084
11085 /**
11086 * netdev_change_features - recalculate device features
11087 * @dev: the device to check
11088 *
11089 * Recalculate dev->features set and send notifications even
11090 * if they have not changed. Should be called instead of
11091 * netdev_update_features() if also dev->vlan_features might
11092 * have changed to allow the changes to be propagated to stacked
11093 * VLAN devices.
11094 */
netdev_change_features(struct net_device * dev)11095 void netdev_change_features(struct net_device *dev)
11096 {
11097 __netdev_update_features(dev);
11098 netdev_features_change(dev);
11099 }
11100 EXPORT_SYMBOL(netdev_change_features);
11101
11102 /**
11103 * netif_stacked_transfer_operstate - transfer operstate
11104 * @rootdev: the root or lower level device to transfer state from
11105 * @dev: the device to transfer operstate to
11106 *
11107 * Transfer operational state from root to device. This is normally
11108 * called when a stacking relationship exists between the root
11109 * device and the device(a leaf device).
11110 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)11111 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
11112 struct net_device *dev)
11113 {
11114 if (rootdev->operstate == IF_OPER_DORMANT)
11115 netif_dormant_on(dev);
11116 else
11117 netif_dormant_off(dev);
11118
11119 if (rootdev->operstate == IF_OPER_TESTING)
11120 netif_testing_on(dev);
11121 else
11122 netif_testing_off(dev);
11123
11124 if (netif_carrier_ok(rootdev))
11125 netif_carrier_on(dev);
11126 else
11127 netif_carrier_off(dev);
11128 }
11129 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
11130
netif_alloc_rx_queues(struct net_device * dev)11131 static int netif_alloc_rx_queues(struct net_device *dev)
11132 {
11133 unsigned int i, count = dev->num_rx_queues;
11134 struct netdev_rx_queue *rx;
11135 size_t sz = count * sizeof(*rx);
11136 int err = 0;
11137
11138 BUG_ON(count < 1);
11139
11140 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11141 if (!rx)
11142 return -ENOMEM;
11143
11144 dev->_rx = rx;
11145
11146 for (i = 0; i < count; i++) {
11147 rx[i].dev = dev;
11148
11149 /* XDP RX-queue setup */
11150 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
11151 if (err < 0)
11152 goto err_rxq_info;
11153 }
11154 return 0;
11155
11156 err_rxq_info:
11157 /* Rollback successful reg's and free other resources */
11158 while (i--)
11159 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
11160 kvfree(dev->_rx);
11161 dev->_rx = NULL;
11162 return err;
11163 }
11164
netif_free_rx_queues(struct net_device * dev)11165 static void netif_free_rx_queues(struct net_device *dev)
11166 {
11167 unsigned int i, count = dev->num_rx_queues;
11168
11169 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
11170 if (!dev->_rx)
11171 return;
11172
11173 for (i = 0; i < count; i++)
11174 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
11175
11176 kvfree(dev->_rx);
11177 }
11178
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)11179 static void netdev_init_one_queue(struct net_device *dev,
11180 struct netdev_queue *queue, void *_unused)
11181 {
11182 /* Initialize queue lock */
11183 spin_lock_init(&queue->_xmit_lock);
11184 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
11185 queue->xmit_lock_owner = -1;
11186 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
11187 queue->dev = dev;
11188 #ifdef CONFIG_BQL
11189 dql_init(&queue->dql, HZ);
11190 #endif
11191 }
11192
netif_free_tx_queues(struct net_device * dev)11193 static void netif_free_tx_queues(struct net_device *dev)
11194 {
11195 kvfree(dev->_tx);
11196 }
11197
netif_alloc_netdev_queues(struct net_device * dev)11198 static int netif_alloc_netdev_queues(struct net_device *dev)
11199 {
11200 unsigned int count = dev->num_tx_queues;
11201 struct netdev_queue *tx;
11202 size_t sz = count * sizeof(*tx);
11203
11204 if (count < 1 || count > 0xffff)
11205 return -EINVAL;
11206
11207 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11208 if (!tx)
11209 return -ENOMEM;
11210
11211 dev->_tx = tx;
11212
11213 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
11214 spin_lock_init(&dev->tx_global_lock);
11215
11216 return 0;
11217 }
11218
netif_tx_stop_all_queues(struct net_device * dev)11219 void netif_tx_stop_all_queues(struct net_device *dev)
11220 {
11221 unsigned int i;
11222
11223 for (i = 0; i < dev->num_tx_queues; i++) {
11224 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
11225
11226 netif_tx_stop_queue(txq);
11227 }
11228 }
11229 EXPORT_SYMBOL(netif_tx_stop_all_queues);
11230
netdev_do_alloc_pcpu_stats(struct net_device * dev)11231 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
11232 {
11233 void __percpu *v;
11234
11235 /* Drivers implementing ndo_get_peer_dev must support tstat
11236 * accounting, so that skb_do_redirect() can bump the dev's
11237 * RX stats upon network namespace switch.
11238 */
11239 if (dev->netdev_ops->ndo_get_peer_dev &&
11240 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11241 return -EOPNOTSUPP;
11242
11243 switch (dev->pcpu_stat_type) {
11244 case NETDEV_PCPU_STAT_NONE:
11245 return 0;
11246 case NETDEV_PCPU_STAT_LSTATS:
11247 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11248 break;
11249 case NETDEV_PCPU_STAT_TSTATS:
11250 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11251 break;
11252 case NETDEV_PCPU_STAT_DSTATS:
11253 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11254 break;
11255 default:
11256 return -EINVAL;
11257 }
11258
11259 return v ? 0 : -ENOMEM;
11260 }
11261
netdev_do_free_pcpu_stats(struct net_device * dev)11262 static void netdev_do_free_pcpu_stats(struct net_device *dev)
11263 {
11264 switch (dev->pcpu_stat_type) {
11265 case NETDEV_PCPU_STAT_NONE:
11266 return;
11267 case NETDEV_PCPU_STAT_LSTATS:
11268 free_percpu(dev->lstats);
11269 break;
11270 case NETDEV_PCPU_STAT_TSTATS:
11271 free_percpu(dev->tstats);
11272 break;
11273 case NETDEV_PCPU_STAT_DSTATS:
11274 free_percpu(dev->dstats);
11275 break;
11276 }
11277 }
11278
netdev_free_phy_link_topology(struct net_device * dev)11279 static void netdev_free_phy_link_topology(struct net_device *dev)
11280 {
11281 struct phy_link_topology *topo = dev->link_topo;
11282
11283 if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11284 xa_destroy(&topo->phys);
11285 kfree(topo);
11286 dev->link_topo = NULL;
11287 }
11288 }
11289
11290 /**
11291 * register_netdevice() - register a network device
11292 * @dev: device to register
11293 *
11294 * Take a prepared network device structure and make it externally accessible.
11295 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11296 * Callers must hold the rtnl lock - you may want register_netdev()
11297 * instead of this.
11298 */
register_netdevice(struct net_device * dev)11299 int register_netdevice(struct net_device *dev)
11300 {
11301 int ret;
11302 struct net *net = dev_net(dev);
11303
11304 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11305 NETDEV_FEATURE_COUNT);
11306 BUG_ON(dev_boot_phase);
11307 ASSERT_RTNL();
11308
11309 might_sleep();
11310
11311 /* When net_device's are persistent, this will be fatal. */
11312 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11313 BUG_ON(!net);
11314
11315 ret = ethtool_check_ops(dev->ethtool_ops);
11316 if (ret)
11317 return ret;
11318
11319 /* rss ctx ID 0 is reserved for the default context, start from 1 */
11320 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11321 mutex_init(&dev->ethtool->rss_lock);
11322
11323 spin_lock_init(&dev->addr_list_lock);
11324 netdev_set_addr_lockdep_class(dev);
11325
11326 ret = dev_get_valid_name(net, dev, dev->name);
11327 if (ret < 0)
11328 goto out;
11329
11330 ret = -ENOMEM;
11331 dev->name_node = netdev_name_node_head_alloc(dev);
11332 if (!dev->name_node)
11333 goto out;
11334
11335 /* Init, if this function is available */
11336 if (dev->netdev_ops->ndo_init) {
11337 ret = dev->netdev_ops->ndo_init(dev);
11338 if (ret) {
11339 if (ret > 0)
11340 ret = -EIO;
11341 goto err_free_name;
11342 }
11343 }
11344
11345 if (((dev->hw_features | dev->features) &
11346 NETIF_F_HW_VLAN_CTAG_FILTER) &&
11347 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11348 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11349 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11350 ret = -EINVAL;
11351 goto err_uninit;
11352 }
11353
11354 ret = netdev_do_alloc_pcpu_stats(dev);
11355 if (ret)
11356 goto err_uninit;
11357
11358 ret = dev_index_reserve(net, dev->ifindex);
11359 if (ret < 0)
11360 goto err_free_pcpu;
11361 dev->ifindex = ret;
11362
11363 /* Transfer changeable features to wanted_features and enable
11364 * software offloads (GSO and GRO).
11365 */
11366 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11367 dev->features |= NETIF_F_SOFT_FEATURES;
11368
11369 if (dev->udp_tunnel_nic_info) {
11370 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11371 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11372 }
11373
11374 dev->wanted_features = dev->features & dev->hw_features;
11375
11376 if (!(dev->flags & IFF_LOOPBACK))
11377 dev->hw_features |= NETIF_F_NOCACHE_COPY;
11378
11379 /* If IPv4 TCP segmentation offload is supported we should also
11380 * allow the device to enable segmenting the frame with the option
11381 * of ignoring a static IP ID value. This doesn't enable the
11382 * feature itself but allows the user to enable it later.
11383 */
11384 if (dev->hw_features & NETIF_F_TSO)
11385 dev->hw_features |= NETIF_F_TSO_MANGLEID;
11386 if (dev->vlan_features & NETIF_F_TSO)
11387 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11388 if (dev->mpls_features & NETIF_F_TSO)
11389 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11390 if (dev->hw_enc_features & NETIF_F_TSO)
11391 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11392
11393 /* TSO_MANGLEID belongs in mangleid_features by definition */
11394 dev->mangleid_features |= NETIF_F_TSO_MANGLEID;
11395
11396 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11397 */
11398 dev->vlan_features |= NETIF_F_HIGHDMA;
11399
11400 /* Make NETIF_F_SG inheritable to tunnel devices.
11401 */
11402 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11403
11404 /* Make NETIF_F_SG inheritable to MPLS.
11405 */
11406 dev->mpls_features |= NETIF_F_SG;
11407
11408 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11409 ret = notifier_to_errno(ret);
11410 if (ret)
11411 goto err_ifindex_release;
11412
11413 ret = netdev_register_kobject(dev);
11414
11415 netdev_lock(dev);
11416 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11417 netdev_unlock(dev);
11418
11419 if (ret)
11420 goto err_uninit_notify;
11421
11422 netdev_lock_ops(dev);
11423 __netdev_update_features(dev);
11424 netdev_unlock_ops(dev);
11425
11426 /*
11427 * Default initial state at registry is that the
11428 * device is present.
11429 */
11430
11431 set_bit(__LINK_STATE_PRESENT, &dev->state);
11432
11433 linkwatch_init_dev(dev);
11434
11435 dev_init_scheduler(dev);
11436
11437 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11438 list_netdevice(dev);
11439
11440 add_device_randomness(dev->dev_addr, dev->addr_len);
11441
11442 /* If the device has permanent device address, driver should
11443 * set dev_addr and also addr_assign_type should be set to
11444 * NET_ADDR_PERM (default value).
11445 */
11446 if (dev->addr_assign_type == NET_ADDR_PERM)
11447 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11448
11449 /* Notify protocols, that a new device appeared. */
11450 netdev_lock_ops(dev);
11451 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11452 netdev_unlock_ops(dev);
11453 ret = notifier_to_errno(ret);
11454 if (ret) {
11455 /* Expect explicit free_netdev() on failure */
11456 dev->needs_free_netdev = false;
11457 unregister_netdevice_queue(dev, NULL);
11458 goto out;
11459 }
11460 /*
11461 * Prevent userspace races by waiting until the network
11462 * device is fully setup before sending notifications.
11463 */
11464 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11465 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11466
11467 out:
11468 return ret;
11469
11470 err_uninit_notify:
11471 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11472 err_ifindex_release:
11473 dev_index_release(net, dev->ifindex);
11474 err_free_pcpu:
11475 netdev_do_free_pcpu_stats(dev);
11476 err_uninit:
11477 if (dev->netdev_ops->ndo_uninit)
11478 dev->netdev_ops->ndo_uninit(dev);
11479 if (dev->priv_destructor)
11480 dev->priv_destructor(dev);
11481 err_free_name:
11482 netdev_name_node_free(dev->name_node);
11483 goto out;
11484 }
11485 EXPORT_SYMBOL(register_netdevice);
11486
11487 /* Initialize the core of a dummy net device.
11488 * The setup steps dummy netdevs need which normal netdevs get by going
11489 * through register_netdevice().
11490 */
init_dummy_netdev(struct net_device * dev)11491 static void init_dummy_netdev(struct net_device *dev)
11492 {
11493 /* make sure we BUG if trying to hit standard
11494 * register/unregister code path
11495 */
11496 dev->reg_state = NETREG_DUMMY;
11497
11498 /* a dummy interface is started by default */
11499 set_bit(__LINK_STATE_PRESENT, &dev->state);
11500 set_bit(__LINK_STATE_START, &dev->state);
11501
11502 /* Note : We dont allocate pcpu_refcnt for dummy devices,
11503 * because users of this 'device' dont need to change
11504 * its refcount.
11505 */
11506 }
11507
11508 /**
11509 * register_netdev - register a network device
11510 * @dev: device to register
11511 *
11512 * Take a completed network device structure and add it to the kernel
11513 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11514 * chain. 0 is returned on success. A negative errno code is returned
11515 * on a failure to set up the device, or if the name is a duplicate.
11516 *
11517 * This is a wrapper around register_netdevice that takes the rtnl semaphore
11518 * and expands the device name if you passed a format string to
11519 * alloc_netdev.
11520 */
register_netdev(struct net_device * dev)11521 int register_netdev(struct net_device *dev)
11522 {
11523 struct net *net = dev_net(dev);
11524 int err;
11525
11526 if (rtnl_net_lock_killable(net))
11527 return -EINTR;
11528
11529 err = register_netdevice(dev);
11530
11531 rtnl_net_unlock(net);
11532
11533 return err;
11534 }
11535 EXPORT_SYMBOL(register_netdev);
11536
netdev_refcnt_read(const struct net_device * dev)11537 int netdev_refcnt_read(const struct net_device *dev)
11538 {
11539 #ifdef CONFIG_PCPU_DEV_REFCNT
11540 int i, refcnt = 0;
11541
11542 for_each_possible_cpu(i)
11543 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11544 return refcnt;
11545 #else
11546 return refcount_read(&dev->dev_refcnt);
11547 #endif
11548 }
11549 EXPORT_SYMBOL(netdev_refcnt_read);
11550
11551 int netdev_unregister_timeout_secs __read_mostly = 10;
11552
11553 #define WAIT_REFS_MIN_MSECS 1
11554 #define WAIT_REFS_MAX_MSECS 250
11555 /**
11556 * netdev_wait_allrefs_any - wait until all references are gone.
11557 * @list: list of net_devices to wait on
11558 *
11559 * This is called when unregistering network devices.
11560 *
11561 * Any protocol or device that holds a reference should register
11562 * for netdevice notification, and cleanup and put back the
11563 * reference if they receive an UNREGISTER event.
11564 * We can get stuck here if buggy protocols don't correctly
11565 * call dev_put.
11566 */
netdev_wait_allrefs_any(struct list_head * list)11567 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11568 {
11569 unsigned long rebroadcast_time, warning_time;
11570 struct net_device *dev;
11571 int wait = 0;
11572
11573 rebroadcast_time = warning_time = jiffies;
11574
11575 list_for_each_entry(dev, list, todo_list)
11576 if (netdev_refcnt_read(dev) == 1)
11577 return dev;
11578
11579 while (true) {
11580 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11581 rtnl_lock();
11582
11583 /* Rebroadcast unregister notification */
11584 list_for_each_entry(dev, list, todo_list)
11585 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11586
11587 __rtnl_unlock();
11588 rcu_barrier();
11589 rtnl_lock();
11590
11591 list_for_each_entry(dev, list, todo_list)
11592 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11593 &dev->state)) {
11594 /* We must not have linkwatch events
11595 * pending on unregister. If this
11596 * happens, we simply run the queue
11597 * unscheduled, resulting in a noop
11598 * for this device.
11599 */
11600 linkwatch_run_queue();
11601 break;
11602 }
11603
11604 __rtnl_unlock();
11605
11606 rebroadcast_time = jiffies;
11607 }
11608
11609 rcu_barrier();
11610
11611 if (!wait) {
11612 wait = WAIT_REFS_MIN_MSECS;
11613 } else {
11614 msleep(wait);
11615 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11616 }
11617
11618 list_for_each_entry(dev, list, todo_list)
11619 if (netdev_refcnt_read(dev) == 1)
11620 return dev;
11621
11622 if (time_after(jiffies, warning_time +
11623 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11624 list_for_each_entry(dev, list, todo_list) {
11625 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11626 dev->name, netdev_refcnt_read(dev));
11627 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11628 }
11629
11630 warning_time = jiffies;
11631 }
11632 }
11633 }
11634
11635 /* The sequence is:
11636 *
11637 * rtnl_lock();
11638 * ...
11639 * register_netdevice(x1);
11640 * register_netdevice(x2);
11641 * ...
11642 * unregister_netdevice(y1);
11643 * unregister_netdevice(y2);
11644 * ...
11645 * rtnl_unlock();
11646 * free_netdev(y1);
11647 * free_netdev(y2);
11648 *
11649 * We are invoked by rtnl_unlock().
11650 * This allows us to deal with problems:
11651 * 1) We can delete sysfs objects which invoke hotplug
11652 * without deadlocking with linkwatch via keventd.
11653 * 2) Since we run with the RTNL semaphore not held, we can sleep
11654 * safely in order to wait for the netdev refcnt to drop to zero.
11655 *
11656 * We must not return until all unregister events added during
11657 * the interval the lock was held have been completed.
11658 */
netdev_run_todo(void)11659 void netdev_run_todo(void)
11660 {
11661 struct net_device *dev, *tmp;
11662 struct list_head list;
11663 int cnt;
11664 #ifdef CONFIG_LOCKDEP
11665 struct list_head unlink_list;
11666
11667 list_replace_init(&net_unlink_list, &unlink_list);
11668
11669 while (!list_empty(&unlink_list)) {
11670 dev = list_first_entry(&unlink_list, struct net_device,
11671 unlink_list);
11672 list_del_init(&dev->unlink_list);
11673 dev->nested_level = dev->lower_level - 1;
11674 }
11675 #endif
11676
11677 /* Snapshot list, allow later requests */
11678 list_replace_init(&net_todo_list, &list);
11679
11680 __rtnl_unlock();
11681
11682 /* Wait for rcu callbacks to finish before next phase */
11683 if (!list_empty(&list))
11684 rcu_barrier();
11685
11686 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11687 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11688 netdev_WARN(dev, "run_todo but not unregistering\n");
11689 list_del(&dev->todo_list);
11690 continue;
11691 }
11692
11693 netdev_lock(dev);
11694 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11695 netdev_unlock(dev);
11696 linkwatch_sync_dev(dev);
11697 }
11698
11699 cnt = 0;
11700 while (!list_empty(&list)) {
11701 dev = netdev_wait_allrefs_any(&list);
11702 list_del(&dev->todo_list);
11703
11704 /* paranoia */
11705 BUG_ON(netdev_refcnt_read(dev) != 1);
11706 BUG_ON(!list_empty(&dev->ptype_all));
11707 BUG_ON(!list_empty(&dev->ptype_specific));
11708 WARN_ON(rcu_access_pointer(dev->ip_ptr));
11709 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11710
11711 netdev_do_free_pcpu_stats(dev);
11712 if (dev->priv_destructor)
11713 dev->priv_destructor(dev);
11714 if (dev->needs_free_netdev)
11715 free_netdev(dev);
11716
11717 cnt++;
11718
11719 /* Free network device */
11720 kobject_put(&dev->dev.kobj);
11721 }
11722 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11723 wake_up(&netdev_unregistering_wq);
11724 }
11725
11726 /* Collate per-cpu network dstats statistics
11727 *
11728 * Read per-cpu network statistics from dev->dstats and populate the related
11729 * fields in @s.
11730 */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)11731 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11732 const struct pcpu_dstats __percpu *dstats)
11733 {
11734 int cpu;
11735
11736 for_each_possible_cpu(cpu) {
11737 u64 rx_packets, rx_bytes, rx_drops;
11738 u64 tx_packets, tx_bytes, tx_drops;
11739 const struct pcpu_dstats *stats;
11740 unsigned int start;
11741
11742 stats = per_cpu_ptr(dstats, cpu);
11743 do {
11744 start = u64_stats_fetch_begin(&stats->syncp);
11745 rx_packets = u64_stats_read(&stats->rx_packets);
11746 rx_bytes = u64_stats_read(&stats->rx_bytes);
11747 rx_drops = u64_stats_read(&stats->rx_drops);
11748 tx_packets = u64_stats_read(&stats->tx_packets);
11749 tx_bytes = u64_stats_read(&stats->tx_bytes);
11750 tx_drops = u64_stats_read(&stats->tx_drops);
11751 } while (u64_stats_fetch_retry(&stats->syncp, start));
11752
11753 s->rx_packets += rx_packets;
11754 s->rx_bytes += rx_bytes;
11755 s->rx_dropped += rx_drops;
11756 s->tx_packets += tx_packets;
11757 s->tx_bytes += tx_bytes;
11758 s->tx_dropped += tx_drops;
11759 }
11760 }
11761
11762 /* ndo_get_stats64 implementation for dtstats-based accounting.
11763 *
11764 * Populate @s from dev->stats and dev->dstats. This is used internally by the
11765 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11766 */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)11767 static void dev_get_dstats64(const struct net_device *dev,
11768 struct rtnl_link_stats64 *s)
11769 {
11770 netdev_stats_to_stats64(s, &dev->stats);
11771 dev_fetch_dstats(s, dev->dstats);
11772 }
11773
11774 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11775 * all the same fields in the same order as net_device_stats, with only
11776 * the type differing, but rtnl_link_stats64 may have additional fields
11777 * at the end for newer counters.
11778 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)11779 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11780 const struct net_device_stats *netdev_stats)
11781 {
11782 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11783 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11784 u64 *dst = (u64 *)stats64;
11785
11786 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11787 for (i = 0; i < n; i++)
11788 dst[i] = (unsigned long)atomic_long_read(&src[i]);
11789 /* zero out counters that only exist in rtnl_link_stats64 */
11790 memset((char *)stats64 + n * sizeof(u64), 0,
11791 sizeof(*stats64) - n * sizeof(u64));
11792 }
11793 EXPORT_SYMBOL(netdev_stats_to_stats64);
11794
netdev_core_stats_alloc(struct net_device * dev)11795 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11796 struct net_device *dev)
11797 {
11798 struct net_device_core_stats __percpu *p;
11799
11800 p = alloc_percpu_gfp(struct net_device_core_stats,
11801 GFP_ATOMIC | __GFP_NOWARN);
11802
11803 if (p && cmpxchg(&dev->core_stats, NULL, p))
11804 free_percpu(p);
11805
11806 /* This READ_ONCE() pairs with the cmpxchg() above */
11807 return READ_ONCE(dev->core_stats);
11808 }
11809
netdev_core_stats_inc(struct net_device * dev,u32 offset)11810 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11811 {
11812 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11813 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11814 unsigned long __percpu *field;
11815
11816 if (unlikely(!p)) {
11817 p = netdev_core_stats_alloc(dev);
11818 if (!p)
11819 return;
11820 }
11821
11822 field = (unsigned long __percpu *)((void __percpu *)p + offset);
11823 this_cpu_inc(*field);
11824 }
11825 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11826
11827 /**
11828 * dev_get_stats - get network device statistics
11829 * @dev: device to get statistics from
11830 * @storage: place to store stats
11831 *
11832 * Get network statistics from device. Return @storage.
11833 * The device driver may provide its own method by setting
11834 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11835 * otherwise the internal statistics structure is used.
11836 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11837 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11838 struct rtnl_link_stats64 *storage)
11839 {
11840 const struct net_device_ops *ops = dev->netdev_ops;
11841 const struct net_device_core_stats __percpu *p;
11842
11843 /*
11844 * IPv{4,6} and udp tunnels share common stat helpers and use
11845 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11846 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11847 */
11848 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11849 offsetof(struct pcpu_dstats, rx_bytes));
11850 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11851 offsetof(struct pcpu_dstats, rx_packets));
11852 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11853 offsetof(struct pcpu_dstats, tx_bytes));
11854 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11855 offsetof(struct pcpu_dstats, tx_packets));
11856
11857 if (ops->ndo_get_stats64) {
11858 memset(storage, 0, sizeof(*storage));
11859 ops->ndo_get_stats64(dev, storage);
11860 } else if (ops->ndo_get_stats) {
11861 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11862 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11863 dev_get_tstats64(dev, storage);
11864 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11865 dev_get_dstats64(dev, storage);
11866 } else {
11867 netdev_stats_to_stats64(storage, &dev->stats);
11868 }
11869
11870 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11871 p = READ_ONCE(dev->core_stats);
11872 if (p) {
11873 const struct net_device_core_stats *core_stats;
11874 int i;
11875
11876 for_each_possible_cpu(i) {
11877 core_stats = per_cpu_ptr(p, i);
11878 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11879 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11880 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11881 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11882 }
11883 }
11884 return storage;
11885 }
11886 EXPORT_SYMBOL(dev_get_stats);
11887
11888 /**
11889 * dev_fetch_sw_netstats - get per-cpu network device statistics
11890 * @s: place to store stats
11891 * @netstats: per-cpu network stats to read from
11892 *
11893 * Read per-cpu network statistics and populate the related fields in @s.
11894 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11895 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11896 const struct pcpu_sw_netstats __percpu *netstats)
11897 {
11898 int cpu;
11899
11900 for_each_possible_cpu(cpu) {
11901 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11902 const struct pcpu_sw_netstats *stats;
11903 unsigned int start;
11904
11905 stats = per_cpu_ptr(netstats, cpu);
11906 do {
11907 start = u64_stats_fetch_begin(&stats->syncp);
11908 rx_packets = u64_stats_read(&stats->rx_packets);
11909 rx_bytes = u64_stats_read(&stats->rx_bytes);
11910 tx_packets = u64_stats_read(&stats->tx_packets);
11911 tx_bytes = u64_stats_read(&stats->tx_bytes);
11912 } while (u64_stats_fetch_retry(&stats->syncp, start));
11913
11914 s->rx_packets += rx_packets;
11915 s->rx_bytes += rx_bytes;
11916 s->tx_packets += tx_packets;
11917 s->tx_bytes += tx_bytes;
11918 }
11919 }
11920 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11921
11922 /**
11923 * dev_get_tstats64 - ndo_get_stats64 implementation
11924 * @dev: device to get statistics from
11925 * @s: place to store stats
11926 *
11927 * Populate @s from dev->stats and dev->tstats. Can be used as
11928 * ndo_get_stats64() callback.
11929 */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11930 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11931 {
11932 netdev_stats_to_stats64(s, &dev->stats);
11933 dev_fetch_sw_netstats(s, dev->tstats);
11934 }
11935 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11936
dev_ingress_queue_create(struct net_device * dev)11937 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11938 {
11939 struct netdev_queue *queue = dev_ingress_queue(dev);
11940
11941 #ifdef CONFIG_NET_CLS_ACT
11942 if (queue)
11943 return queue;
11944 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11945 if (!queue)
11946 return NULL;
11947 netdev_init_one_queue(dev, queue, NULL);
11948 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11949 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11950 rcu_assign_pointer(dev->ingress_queue, queue);
11951 #endif
11952 return queue;
11953 }
11954
11955 static const struct ethtool_ops default_ethtool_ops;
11956
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11957 void netdev_set_default_ethtool_ops(struct net_device *dev,
11958 const struct ethtool_ops *ops)
11959 {
11960 if (dev->ethtool_ops == &default_ethtool_ops)
11961 dev->ethtool_ops = ops;
11962 }
11963 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11964
11965 /**
11966 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11967 * @dev: netdev to enable the IRQ coalescing on
11968 *
11969 * Sets a conservative default for SW IRQ coalescing. Users can use
11970 * sysfs attributes to override the default values.
11971 */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11972 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11973 {
11974 WARN_ON(dev->reg_state == NETREG_REGISTERED);
11975
11976 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11977 netdev_set_gro_flush_timeout(dev, 20000);
11978 netdev_set_defer_hard_irqs(dev, 1);
11979 }
11980 }
11981 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11982
11983 /**
11984 * alloc_netdev_mqs - allocate network device
11985 * @sizeof_priv: size of private data to allocate space for
11986 * @name: device name format string
11987 * @name_assign_type: origin of device name
11988 * @setup: callback to initialize device
11989 * @txqs: the number of TX subqueues to allocate
11990 * @rxqs: the number of RX subqueues to allocate
11991 *
11992 * Allocates a struct net_device with private data area for driver use
11993 * and performs basic initialization. Also allocates subqueue structs
11994 * for each queue on the device.
11995 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11996 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11997 unsigned char name_assign_type,
11998 void (*setup)(struct net_device *),
11999 unsigned int txqs, unsigned int rxqs)
12000 {
12001 struct net_device *dev;
12002 size_t napi_config_sz;
12003 unsigned int maxqs;
12004
12005 BUG_ON(strlen(name) >= sizeof(dev->name));
12006
12007 if (txqs < 1) {
12008 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
12009 return NULL;
12010 }
12011
12012 if (rxqs < 1) {
12013 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
12014 return NULL;
12015 }
12016
12017 maxqs = max(txqs, rxqs);
12018
12019 dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
12020 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
12021 if (!dev)
12022 return NULL;
12023
12024 dev->priv_len = sizeof_priv;
12025
12026 ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
12027 #ifdef CONFIG_PCPU_DEV_REFCNT
12028 dev->pcpu_refcnt = alloc_percpu(int);
12029 if (!dev->pcpu_refcnt)
12030 goto free_dev;
12031 __dev_hold(dev);
12032 #else
12033 refcount_set(&dev->dev_refcnt, 1);
12034 #endif
12035
12036 if (dev_addr_init(dev))
12037 goto free_pcpu;
12038
12039 dev_mc_init(dev);
12040 dev_uc_init(dev);
12041
12042 dev_net_set(dev, &init_net);
12043
12044 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
12045 dev->xdp_zc_max_segs = 1;
12046 dev->gso_max_segs = GSO_MAX_SEGS;
12047 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
12048 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
12049 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
12050 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
12051 dev->tso_max_segs = TSO_MAX_SEGS;
12052 dev->upper_level = 1;
12053 dev->lower_level = 1;
12054 #ifdef CONFIG_LOCKDEP
12055 dev->nested_level = 0;
12056 INIT_LIST_HEAD(&dev->unlink_list);
12057 #endif
12058
12059 INIT_LIST_HEAD(&dev->napi_list);
12060 INIT_LIST_HEAD(&dev->unreg_list);
12061 INIT_LIST_HEAD(&dev->close_list);
12062 INIT_LIST_HEAD(&dev->link_watch_list);
12063 INIT_LIST_HEAD(&dev->adj_list.upper);
12064 INIT_LIST_HEAD(&dev->adj_list.lower);
12065 INIT_LIST_HEAD(&dev->ptype_all);
12066 INIT_LIST_HEAD(&dev->ptype_specific);
12067 INIT_LIST_HEAD(&dev->net_notifier_list);
12068 #ifdef CONFIG_NET_SCHED
12069 hash_init(dev->qdisc_hash);
12070 #endif
12071
12072 mutex_init(&dev->lock);
12073
12074 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
12075 setup(dev);
12076
12077 if (!dev->tx_queue_len) {
12078 dev->priv_flags |= IFF_NO_QUEUE;
12079 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
12080 }
12081
12082 dev->num_tx_queues = txqs;
12083 dev->real_num_tx_queues = txqs;
12084 if (netif_alloc_netdev_queues(dev))
12085 goto free_all;
12086
12087 dev->num_rx_queues = rxqs;
12088 dev->real_num_rx_queues = rxqs;
12089 if (netif_alloc_rx_queues(dev))
12090 goto free_all;
12091 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
12092 if (!dev->ethtool)
12093 goto free_all;
12094
12095 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
12096 if (!dev->cfg)
12097 goto free_all;
12098 dev->cfg_pending = dev->cfg;
12099
12100 dev->num_napi_configs = maxqs;
12101 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
12102 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
12103 if (!dev->napi_config)
12104 goto free_all;
12105
12106 strscpy(dev->name, name);
12107 dev->name_assign_type = name_assign_type;
12108 dev->group = INIT_NETDEV_GROUP;
12109 if (!dev->ethtool_ops)
12110 dev->ethtool_ops = &default_ethtool_ops;
12111
12112 nf_hook_netdev_init(dev);
12113
12114 return dev;
12115
12116 free_all:
12117 free_netdev(dev);
12118 return NULL;
12119
12120 free_pcpu:
12121 #ifdef CONFIG_PCPU_DEV_REFCNT
12122 free_percpu(dev->pcpu_refcnt);
12123 free_dev:
12124 #endif
12125 kvfree(dev);
12126 return NULL;
12127 }
12128 EXPORT_SYMBOL(alloc_netdev_mqs);
12129
netdev_napi_exit(struct net_device * dev)12130 static void netdev_napi_exit(struct net_device *dev)
12131 {
12132 if (!list_empty(&dev->napi_list)) {
12133 struct napi_struct *p, *n;
12134
12135 netdev_lock(dev);
12136 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
12137 __netif_napi_del_locked(p);
12138 netdev_unlock(dev);
12139
12140 synchronize_net();
12141 }
12142
12143 kvfree(dev->napi_config);
12144 }
12145
12146 /**
12147 * free_netdev - free network device
12148 * @dev: device
12149 *
12150 * This function does the last stage of destroying an allocated device
12151 * interface. The reference to the device object is released. If this
12152 * is the last reference then it will be freed.Must be called in process
12153 * context.
12154 */
free_netdev(struct net_device * dev)12155 void free_netdev(struct net_device *dev)
12156 {
12157 might_sleep();
12158
12159 /* When called immediately after register_netdevice() failed the unwind
12160 * handling may still be dismantling the device. Handle that case by
12161 * deferring the free.
12162 */
12163 if (dev->reg_state == NETREG_UNREGISTERING) {
12164 ASSERT_RTNL();
12165 dev->needs_free_netdev = true;
12166 return;
12167 }
12168
12169 WARN_ON(dev->cfg != dev->cfg_pending);
12170 kfree(dev->cfg);
12171 kfree(dev->ethtool);
12172 netif_free_tx_queues(dev);
12173 netif_free_rx_queues(dev);
12174
12175 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
12176
12177 /* Flush device addresses */
12178 dev_addr_flush(dev);
12179
12180 netdev_napi_exit(dev);
12181
12182 netif_del_cpu_rmap(dev);
12183
12184 ref_tracker_dir_exit(&dev->refcnt_tracker);
12185 #ifdef CONFIG_PCPU_DEV_REFCNT
12186 free_percpu(dev->pcpu_refcnt);
12187 dev->pcpu_refcnt = NULL;
12188 #endif
12189 free_percpu(dev->core_stats);
12190 dev->core_stats = NULL;
12191 free_percpu(dev->xdp_bulkq);
12192 dev->xdp_bulkq = NULL;
12193
12194 netdev_free_phy_link_topology(dev);
12195
12196 mutex_destroy(&dev->lock);
12197
12198 /* Compatibility with error handling in drivers */
12199 if (dev->reg_state == NETREG_UNINITIALIZED ||
12200 dev->reg_state == NETREG_DUMMY) {
12201 kvfree(dev);
12202 return;
12203 }
12204
12205 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
12206 WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
12207
12208 /* will free via device release */
12209 put_device(&dev->dev);
12210 }
12211 EXPORT_SYMBOL(free_netdev);
12212
12213 /**
12214 * alloc_netdev_dummy - Allocate and initialize a dummy net device.
12215 * @sizeof_priv: size of private data to allocate space for
12216 *
12217 * Return: the allocated net_device on success, NULL otherwise
12218 */
alloc_netdev_dummy(int sizeof_priv)12219 struct net_device *alloc_netdev_dummy(int sizeof_priv)
12220 {
12221 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
12222 init_dummy_netdev);
12223 }
12224 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
12225
12226 /**
12227 * synchronize_net - Synchronize with packet receive processing
12228 *
12229 * Wait for packets currently being received to be done.
12230 * Does not block later packets from starting.
12231 */
synchronize_net(void)12232 void synchronize_net(void)
12233 {
12234 might_sleep();
12235 if (from_cleanup_net() || rtnl_is_locked())
12236 synchronize_rcu_expedited();
12237 else
12238 synchronize_rcu();
12239 }
12240 EXPORT_SYMBOL(synchronize_net);
12241
netdev_rss_contexts_free(struct net_device * dev)12242 static void netdev_rss_contexts_free(struct net_device *dev)
12243 {
12244 struct ethtool_rxfh_context *ctx;
12245 unsigned long context;
12246
12247 mutex_lock(&dev->ethtool->rss_lock);
12248 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12249 xa_erase(&dev->ethtool->rss_ctx, context);
12250 dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12251 kfree(ctx);
12252 }
12253 xa_destroy(&dev->ethtool->rss_ctx);
12254 mutex_unlock(&dev->ethtool->rss_lock);
12255 }
12256
12257 /**
12258 * unregister_netdevice_queue - remove device from the kernel
12259 * @dev: device
12260 * @head: list
12261 *
12262 * This function shuts down a device interface and removes it
12263 * from the kernel tables.
12264 * If head not NULL, device is queued to be unregistered later.
12265 *
12266 * Callers must hold the rtnl semaphore. You may want
12267 * unregister_netdev() instead of this.
12268 */
12269
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)12270 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12271 {
12272 ASSERT_RTNL();
12273
12274 if (head) {
12275 list_move_tail(&dev->unreg_list, head);
12276 } else {
12277 LIST_HEAD(single);
12278
12279 list_add(&dev->unreg_list, &single);
12280 unregister_netdevice_many(&single);
12281 }
12282 }
12283 EXPORT_SYMBOL(unregister_netdevice_queue);
12284
dev_memory_provider_uninstall(struct net_device * dev)12285 static void dev_memory_provider_uninstall(struct net_device *dev)
12286 {
12287 unsigned int i;
12288
12289 for (i = 0; i < dev->real_num_rx_queues; i++) {
12290 struct netdev_rx_queue *rxq = &dev->_rx[i];
12291 struct pp_memory_provider_params *p = &rxq->mp_params;
12292
12293 if (p->mp_ops && p->mp_ops->uninstall)
12294 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12295 }
12296 }
12297
12298 /* devices must be UP and netdev_lock()'d */
netif_close_many_and_unlock(struct list_head * close_head)12299 static void netif_close_many_and_unlock(struct list_head *close_head)
12300 {
12301 struct net_device *dev, *tmp;
12302
12303 netif_close_many(close_head, false);
12304
12305 /* ... now unlock them */
12306 list_for_each_entry_safe(dev, tmp, close_head, close_list) {
12307 netdev_unlock(dev);
12308 list_del_init(&dev->close_list);
12309 }
12310 }
12311
netif_close_many_and_unlock_cond(struct list_head * close_head)12312 static void netif_close_many_and_unlock_cond(struct list_head *close_head)
12313 {
12314 #ifdef CONFIG_LOCKDEP
12315 /* We can only track up to MAX_LOCK_DEPTH locks per task.
12316 *
12317 * Reserve half the available slots for additional locks possibly
12318 * taken by notifiers and (soft)irqs.
12319 */
12320 unsigned int limit = MAX_LOCK_DEPTH / 2;
12321
12322 if (lockdep_depth(current) > limit)
12323 netif_close_many_and_unlock(close_head);
12324 #endif
12325 }
12326
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)12327 void unregister_netdevice_many_notify(struct list_head *head,
12328 u32 portid, const struct nlmsghdr *nlh)
12329 {
12330 struct net_device *dev, *tmp;
12331 LIST_HEAD(close_head);
12332 int cnt = 0;
12333
12334 BUG_ON(dev_boot_phase);
12335 ASSERT_RTNL();
12336
12337 if (list_empty(head))
12338 return;
12339
12340 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12341 /* Some devices call without registering
12342 * for initialization unwind. Remove those
12343 * devices and proceed with the remaining.
12344 */
12345 if (dev->reg_state == NETREG_UNINITIALIZED) {
12346 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12347 dev->name, dev);
12348
12349 WARN_ON(1);
12350 list_del(&dev->unreg_list);
12351 continue;
12352 }
12353 dev->dismantle = true;
12354 BUG_ON(dev->reg_state != NETREG_REGISTERED);
12355 }
12356
12357 /* If device is running, close it first. Start with ops locked... */
12358 list_for_each_entry(dev, head, unreg_list) {
12359 if (!(dev->flags & IFF_UP))
12360 continue;
12361 if (netdev_need_ops_lock(dev)) {
12362 list_add_tail(&dev->close_list, &close_head);
12363 netdev_lock(dev);
12364 }
12365 netif_close_many_and_unlock_cond(&close_head);
12366 }
12367 netif_close_many_and_unlock(&close_head);
12368 /* ... now go over the rest. */
12369 list_for_each_entry(dev, head, unreg_list) {
12370 if (!netdev_need_ops_lock(dev))
12371 list_add_tail(&dev->close_list, &close_head);
12372 }
12373 netif_close_many(&close_head, true);
12374
12375 list_for_each_entry(dev, head, unreg_list) {
12376 /* And unlink it from device chain. */
12377 unlist_netdevice(dev);
12378 netdev_lock(dev);
12379 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12380 netdev_unlock(dev);
12381 }
12382 flush_all_backlogs();
12383
12384 synchronize_net();
12385
12386 list_for_each_entry(dev, head, unreg_list) {
12387 struct sk_buff *skb = NULL;
12388
12389 /* Shutdown queueing discipline. */
12390 netdev_lock_ops(dev);
12391 dev_shutdown(dev);
12392 dev_tcx_uninstall(dev);
12393 dev_xdp_uninstall(dev);
12394 dev_memory_provider_uninstall(dev);
12395 netdev_unlock_ops(dev);
12396 bpf_dev_bound_netdev_unregister(dev);
12397
12398 netdev_offload_xstats_disable_all(dev);
12399
12400 /* Notify protocols, that we are about to destroy
12401 * this device. They should clean all the things.
12402 */
12403 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12404
12405 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12406 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12407 GFP_KERNEL, NULL, 0,
12408 portid, nlh);
12409
12410 /*
12411 * Flush the unicast and multicast chains
12412 */
12413 dev_uc_flush(dev);
12414 dev_mc_flush(dev);
12415
12416 netdev_name_node_alt_flush(dev);
12417 netdev_name_node_free(dev->name_node);
12418
12419 netdev_rss_contexts_free(dev);
12420
12421 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12422
12423 if (dev->netdev_ops->ndo_uninit)
12424 dev->netdev_ops->ndo_uninit(dev);
12425
12426 mutex_destroy(&dev->ethtool->rss_lock);
12427
12428 net_shaper_flush_netdev(dev);
12429
12430 if (skb)
12431 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12432
12433 /* Notifier chain MUST detach us all upper devices. */
12434 WARN_ON(netdev_has_any_upper_dev(dev));
12435 WARN_ON(netdev_has_any_lower_dev(dev));
12436
12437 /* Remove entries from kobject tree */
12438 netdev_unregister_kobject(dev);
12439 #ifdef CONFIG_XPS
12440 /* Remove XPS queueing entries */
12441 netif_reset_xps_queues_gt(dev, 0);
12442 #endif
12443 }
12444
12445 synchronize_net();
12446
12447 list_for_each_entry(dev, head, unreg_list) {
12448 netdev_put(dev, &dev->dev_registered_tracker);
12449 net_set_todo(dev);
12450 cnt++;
12451 }
12452 atomic_add(cnt, &dev_unreg_count);
12453
12454 list_del(head);
12455 }
12456
12457 /**
12458 * unregister_netdevice_many - unregister many devices
12459 * @head: list of devices
12460 *
12461 * Note: As most callers use a stack allocated list_head,
12462 * we force a list_del() to make sure stack won't be corrupted later.
12463 */
unregister_netdevice_many(struct list_head * head)12464 void unregister_netdevice_many(struct list_head *head)
12465 {
12466 unregister_netdevice_many_notify(head, 0, NULL);
12467 }
12468 EXPORT_SYMBOL(unregister_netdevice_many);
12469
12470 /**
12471 * unregister_netdev - remove device from the kernel
12472 * @dev: device
12473 *
12474 * This function shuts down a device interface and removes it
12475 * from the kernel tables.
12476 *
12477 * This is just a wrapper for unregister_netdevice that takes
12478 * the rtnl semaphore. In general you want to use this and not
12479 * unregister_netdevice.
12480 */
unregister_netdev(struct net_device * dev)12481 void unregister_netdev(struct net_device *dev)
12482 {
12483 rtnl_net_dev_lock(dev);
12484 unregister_netdevice(dev);
12485 rtnl_net_dev_unlock(dev);
12486 }
12487 EXPORT_SYMBOL(unregister_netdev);
12488
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex,struct netlink_ext_ack * extack)12489 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12490 const char *pat, int new_ifindex,
12491 struct netlink_ext_ack *extack)
12492 {
12493 struct netdev_name_node *name_node;
12494 struct net *net_old = dev_net(dev);
12495 char new_name[IFNAMSIZ] = {};
12496 int err, new_nsid;
12497
12498 ASSERT_RTNL();
12499
12500 /* Don't allow namespace local devices to be moved. */
12501 err = -EINVAL;
12502 if (dev->netns_immutable) {
12503 NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12504 goto out;
12505 }
12506
12507 /* Ensure the device has been registered */
12508 if (dev->reg_state != NETREG_REGISTERED) {
12509 NL_SET_ERR_MSG(extack, "The interface isn't registered");
12510 goto out;
12511 }
12512
12513 /* Get out if there is nothing todo */
12514 err = 0;
12515 if (net_eq(net_old, net))
12516 goto out;
12517
12518 /* Pick the destination device name, and ensure
12519 * we can use it in the destination network namespace.
12520 */
12521 err = -EEXIST;
12522 if (netdev_name_in_use(net, dev->name)) {
12523 /* We get here if we can't use the current device name */
12524 if (!pat) {
12525 NL_SET_ERR_MSG(extack,
12526 "An interface with the same name exists in the target netns");
12527 goto out;
12528 }
12529 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12530 if (err < 0) {
12531 NL_SET_ERR_MSG_FMT(extack,
12532 "Unable to use '%s' for the new interface name in the target netns",
12533 pat);
12534 goto out;
12535 }
12536 }
12537 /* Check that none of the altnames conflicts. */
12538 err = -EEXIST;
12539 netdev_for_each_altname(dev, name_node) {
12540 if (netdev_name_in_use(net, name_node->name)) {
12541 NL_SET_ERR_MSG_FMT(extack,
12542 "An interface with the altname %s exists in the target netns",
12543 name_node->name);
12544 goto out;
12545 }
12546 }
12547
12548 /* Check that new_ifindex isn't used yet. */
12549 if (new_ifindex) {
12550 err = dev_index_reserve(net, new_ifindex);
12551 if (err < 0) {
12552 NL_SET_ERR_MSG_FMT(extack,
12553 "The ifindex %d is not available in the target netns",
12554 new_ifindex);
12555 goto out;
12556 }
12557 } else {
12558 /* If there is an ifindex conflict assign a new one */
12559 err = dev_index_reserve(net, dev->ifindex);
12560 if (err == -EBUSY)
12561 err = dev_index_reserve(net, 0);
12562 if (err < 0) {
12563 NL_SET_ERR_MSG(extack,
12564 "Unable to allocate a new ifindex in the target netns");
12565 goto out;
12566 }
12567 new_ifindex = err;
12568 }
12569
12570 /*
12571 * And now a mini version of register_netdevice unregister_netdevice.
12572 */
12573
12574 netdev_lock_ops(dev);
12575 /* If device is running close it first. */
12576 netif_close(dev);
12577 /* And unlink it from device chain */
12578 unlist_netdevice(dev);
12579
12580 if (!netdev_need_ops_lock(dev))
12581 netdev_lock(dev);
12582 dev->moving_ns = true;
12583 netdev_unlock(dev);
12584
12585 synchronize_net();
12586
12587 /* Shutdown queueing discipline. */
12588 netdev_lock_ops(dev);
12589 dev_shutdown(dev);
12590 netdev_unlock_ops(dev);
12591
12592 /* Notify protocols, that we are about to destroy
12593 * this device. They should clean all the things.
12594 *
12595 * Note that dev->reg_state stays at NETREG_REGISTERED.
12596 * This is wanted because this way 8021q and macvlan know
12597 * the device is just moving and can keep their slaves up.
12598 */
12599 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12600 rcu_barrier();
12601
12602 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12603
12604 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12605 new_ifindex);
12606
12607 /*
12608 * Flush the unicast and multicast chains
12609 */
12610 dev_uc_flush(dev);
12611 dev_mc_flush(dev);
12612
12613 /* Send a netdev-removed uevent to the old namespace */
12614 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12615 netdev_adjacent_del_links(dev);
12616
12617 /* Move per-net netdevice notifiers that are following the netdevice */
12618 move_netdevice_notifiers_dev_net(dev, net);
12619
12620 /* Actually switch the network namespace */
12621 netdev_lock(dev);
12622 dev_net_set(dev, net);
12623 netdev_unlock(dev);
12624 dev->ifindex = new_ifindex;
12625
12626 if (new_name[0]) {
12627 /* Rename the netdev to prepared name */
12628 write_seqlock_bh(&netdev_rename_lock);
12629 strscpy(dev->name, new_name, IFNAMSIZ);
12630 write_sequnlock_bh(&netdev_rename_lock);
12631 }
12632
12633 /* Fixup kobjects */
12634 dev_set_uevent_suppress(&dev->dev, 1);
12635 err = device_rename(&dev->dev, dev->name);
12636 dev_set_uevent_suppress(&dev->dev, 0);
12637 WARN_ON(err);
12638
12639 /* Send a netdev-add uevent to the new namespace */
12640 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12641 netdev_adjacent_add_links(dev);
12642
12643 /* Adapt owner in case owning user namespace of target network
12644 * namespace is different from the original one.
12645 */
12646 err = netdev_change_owner(dev, net_old, net);
12647 WARN_ON(err);
12648
12649 netdev_lock(dev);
12650 dev->moving_ns = false;
12651 if (!netdev_need_ops_lock(dev))
12652 netdev_unlock(dev);
12653
12654 /* Add the device back in the hashes */
12655 list_netdevice(dev);
12656 /* Notify protocols, that a new device appeared. */
12657 call_netdevice_notifiers(NETDEV_REGISTER, dev);
12658 netdev_unlock_ops(dev);
12659
12660 /*
12661 * Prevent userspace races by waiting until the network
12662 * device is fully setup before sending notifications.
12663 */
12664 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12665
12666 synchronize_net();
12667 err = 0;
12668 out:
12669 return err;
12670 }
12671
dev_cpu_dead(unsigned int oldcpu)12672 static int dev_cpu_dead(unsigned int oldcpu)
12673 {
12674 struct sk_buff **list_skb;
12675 struct sk_buff *skb;
12676 unsigned int cpu;
12677 struct softnet_data *sd, *oldsd, *remsd = NULL;
12678
12679 local_irq_disable();
12680 cpu = smp_processor_id();
12681 sd = &per_cpu(softnet_data, cpu);
12682 oldsd = &per_cpu(softnet_data, oldcpu);
12683
12684 /* Find end of our completion_queue. */
12685 list_skb = &sd->completion_queue;
12686 while (*list_skb)
12687 list_skb = &(*list_skb)->next;
12688 /* Append completion queue from offline CPU. */
12689 *list_skb = oldsd->completion_queue;
12690 oldsd->completion_queue = NULL;
12691
12692 /* Append output queue from offline CPU. */
12693 if (oldsd->output_queue) {
12694 *sd->output_queue_tailp = oldsd->output_queue;
12695 sd->output_queue_tailp = oldsd->output_queue_tailp;
12696 oldsd->output_queue = NULL;
12697 oldsd->output_queue_tailp = &oldsd->output_queue;
12698 }
12699 /* Append NAPI poll list from offline CPU, with one exception :
12700 * process_backlog() must be called by cpu owning percpu backlog.
12701 * We properly handle process_queue & input_pkt_queue later.
12702 */
12703 while (!list_empty(&oldsd->poll_list)) {
12704 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12705 struct napi_struct,
12706 poll_list);
12707
12708 list_del_init(&napi->poll_list);
12709 if (napi->poll == process_backlog)
12710 napi->state &= NAPIF_STATE_THREADED;
12711 else
12712 ____napi_schedule(sd, napi);
12713 }
12714
12715 raise_softirq_irqoff(NET_TX_SOFTIRQ);
12716 local_irq_enable();
12717
12718 if (!use_backlog_threads()) {
12719 #ifdef CONFIG_RPS
12720 remsd = oldsd->rps_ipi_list;
12721 oldsd->rps_ipi_list = NULL;
12722 #endif
12723 /* send out pending IPI's on offline CPU */
12724 net_rps_send_ipi(remsd);
12725 }
12726
12727 /* Process offline CPU's input_pkt_queue */
12728 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12729 netif_rx(skb);
12730 rps_input_queue_head_incr(oldsd);
12731 }
12732 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12733 netif_rx(skb);
12734 rps_input_queue_head_incr(oldsd);
12735 }
12736
12737 return 0;
12738 }
12739
12740 /**
12741 * netdev_increment_features - increment feature set by one
12742 * @all: current feature set
12743 * @one: new feature set
12744 * @mask: mask feature set
12745 *
12746 * Computes a new feature set after adding a device with feature set
12747 * @one to the master device with current feature set @all. Will not
12748 * enable anything that is off in @mask. Returns the new feature set.
12749 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)12750 netdev_features_t netdev_increment_features(netdev_features_t all,
12751 netdev_features_t one, netdev_features_t mask)
12752 {
12753 if (mask & NETIF_F_HW_CSUM)
12754 mask |= NETIF_F_CSUM_MASK;
12755 mask |= NETIF_F_VLAN_CHALLENGED;
12756
12757 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12758 all &= one | ~NETIF_F_ALL_FOR_ALL;
12759
12760 /* If one device supports hw checksumming, set for all. */
12761 if (all & NETIF_F_HW_CSUM)
12762 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12763
12764 return all;
12765 }
12766 EXPORT_SYMBOL(netdev_increment_features);
12767
12768 /**
12769 * netdev_compute_master_upper_features - compute feature from lowers
12770 * @dev: the upper device
12771 * @update_header: whether to update upper device's header_len/headroom/tailroom
12772 *
12773 * Recompute the upper device's feature based on all lower devices.
12774 */
netdev_compute_master_upper_features(struct net_device * dev,bool update_header)12775 void netdev_compute_master_upper_features(struct net_device *dev, bool update_header)
12776 {
12777 unsigned int dst_release_flag = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
12778 netdev_features_t gso_partial_features = MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES;
12779 netdev_features_t xfrm_features = MASTER_UPPER_DEV_XFRM_FEATURES;
12780 netdev_features_t mpls_features = MASTER_UPPER_DEV_MPLS_FEATURES;
12781 netdev_features_t vlan_features = MASTER_UPPER_DEV_VLAN_FEATURES;
12782 netdev_features_t enc_features = MASTER_UPPER_DEV_ENC_FEATURES;
12783 unsigned short max_header_len = ETH_HLEN;
12784 unsigned int tso_max_size = TSO_MAX_SIZE;
12785 unsigned short max_headroom = 0;
12786 unsigned short max_tailroom = 0;
12787 u16 tso_max_segs = TSO_MAX_SEGS;
12788 struct net_device *lower_dev;
12789 struct list_head *iter;
12790
12791 mpls_features = netdev_base_features(mpls_features);
12792 vlan_features = netdev_base_features(vlan_features);
12793 enc_features = netdev_base_features(enc_features);
12794
12795 netdev_for_each_lower_dev(dev, lower_dev, iter) {
12796 gso_partial_features = netdev_increment_features(gso_partial_features,
12797 lower_dev->gso_partial_features,
12798 MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES);
12799
12800 vlan_features = netdev_increment_features(vlan_features,
12801 lower_dev->vlan_features,
12802 MASTER_UPPER_DEV_VLAN_FEATURES);
12803
12804 enc_features = netdev_increment_features(enc_features,
12805 lower_dev->hw_enc_features,
12806 MASTER_UPPER_DEV_ENC_FEATURES);
12807
12808 if (IS_ENABLED(CONFIG_XFRM_OFFLOAD))
12809 xfrm_features = netdev_increment_features(xfrm_features,
12810 lower_dev->hw_enc_features,
12811 MASTER_UPPER_DEV_XFRM_FEATURES);
12812
12813 mpls_features = netdev_increment_features(mpls_features,
12814 lower_dev->mpls_features,
12815 MASTER_UPPER_DEV_MPLS_FEATURES);
12816
12817 dst_release_flag &= lower_dev->priv_flags;
12818
12819 if (update_header) {
12820 max_header_len = max(max_header_len, lower_dev->hard_header_len);
12821 max_headroom = max(max_headroom, lower_dev->needed_headroom);
12822 max_tailroom = max(max_tailroom, lower_dev->needed_tailroom);
12823 }
12824
12825 tso_max_size = min(tso_max_size, lower_dev->tso_max_size);
12826 tso_max_segs = min(tso_max_segs, lower_dev->tso_max_segs);
12827 }
12828
12829 dev->gso_partial_features = gso_partial_features;
12830 dev->vlan_features = vlan_features;
12831 dev->hw_enc_features = enc_features | NETIF_F_GSO_ENCAP_ALL |
12832 NETIF_F_HW_VLAN_CTAG_TX |
12833 NETIF_F_HW_VLAN_STAG_TX;
12834 if (IS_ENABLED(CONFIG_XFRM_OFFLOAD))
12835 dev->hw_enc_features |= xfrm_features;
12836 dev->mpls_features = mpls_features;
12837
12838 dev->priv_flags &= ~IFF_XMIT_DST_RELEASE;
12839 if ((dev->priv_flags & IFF_XMIT_DST_RELEASE_PERM) &&
12840 dst_release_flag == (IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM))
12841 dev->priv_flags |= IFF_XMIT_DST_RELEASE;
12842
12843 if (update_header) {
12844 dev->hard_header_len = max_header_len;
12845 dev->needed_headroom = max_headroom;
12846 dev->needed_tailroom = max_tailroom;
12847 }
12848
12849 netif_set_tso_max_segs(dev, tso_max_segs);
12850 netif_set_tso_max_size(dev, tso_max_size);
12851
12852 netdev_change_features(dev);
12853 }
12854 EXPORT_SYMBOL(netdev_compute_master_upper_features);
12855
netdev_create_hash(void)12856 static struct hlist_head * __net_init netdev_create_hash(void)
12857 {
12858 int i;
12859 struct hlist_head *hash;
12860
12861 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12862 if (hash != NULL)
12863 for (i = 0; i < NETDEV_HASHENTRIES; i++)
12864 INIT_HLIST_HEAD(&hash[i]);
12865
12866 return hash;
12867 }
12868
12869 /* Initialize per network namespace state */
netdev_init(struct net * net)12870 static int __net_init netdev_init(struct net *net)
12871 {
12872 BUILD_BUG_ON(GRO_HASH_BUCKETS >
12873 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12874
12875 INIT_LIST_HEAD(&net->dev_base_head);
12876
12877 net->dev_name_head = netdev_create_hash();
12878 if (net->dev_name_head == NULL)
12879 goto err_name;
12880
12881 net->dev_index_head = netdev_create_hash();
12882 if (net->dev_index_head == NULL)
12883 goto err_idx;
12884
12885 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12886
12887 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12888
12889 return 0;
12890
12891 err_idx:
12892 kfree(net->dev_name_head);
12893 err_name:
12894 return -ENOMEM;
12895 }
12896
12897 /**
12898 * netdev_drivername - network driver for the device
12899 * @dev: network device
12900 *
12901 * Determine network driver for device.
12902 */
netdev_drivername(const struct net_device * dev)12903 const char *netdev_drivername(const struct net_device *dev)
12904 {
12905 const struct device_driver *driver;
12906 const struct device *parent;
12907 const char *empty = "";
12908
12909 parent = dev->dev.parent;
12910 if (!parent)
12911 return empty;
12912
12913 driver = parent->driver;
12914 if (driver && driver->name)
12915 return driver->name;
12916 return empty;
12917 }
12918
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)12919 static void __netdev_printk(const char *level, const struct net_device *dev,
12920 struct va_format *vaf)
12921 {
12922 if (dev && dev->dev.parent) {
12923 dev_printk_emit(level[1] - '0',
12924 dev->dev.parent,
12925 "%s %s %s%s: %pV",
12926 dev_driver_string(dev->dev.parent),
12927 dev_name(dev->dev.parent),
12928 netdev_name(dev), netdev_reg_state(dev),
12929 vaf);
12930 } else if (dev) {
12931 printk("%s%s%s: %pV",
12932 level, netdev_name(dev), netdev_reg_state(dev), vaf);
12933 } else {
12934 printk("%s(NULL net_device): %pV", level, vaf);
12935 }
12936 }
12937
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)12938 void netdev_printk(const char *level, const struct net_device *dev,
12939 const char *format, ...)
12940 {
12941 struct va_format vaf;
12942 va_list args;
12943
12944 va_start(args, format);
12945
12946 vaf.fmt = format;
12947 vaf.va = &args;
12948
12949 __netdev_printk(level, dev, &vaf);
12950
12951 va_end(args);
12952 }
12953 EXPORT_SYMBOL(netdev_printk);
12954
12955 #define define_netdev_printk_level(func, level) \
12956 void func(const struct net_device *dev, const char *fmt, ...) \
12957 { \
12958 struct va_format vaf; \
12959 va_list args; \
12960 \
12961 va_start(args, fmt); \
12962 \
12963 vaf.fmt = fmt; \
12964 vaf.va = &args; \
12965 \
12966 __netdev_printk(level, dev, &vaf); \
12967 \
12968 va_end(args); \
12969 } \
12970 EXPORT_SYMBOL(func);
12971
12972 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12973 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12974 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12975 define_netdev_printk_level(netdev_err, KERN_ERR);
12976 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12977 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12978 define_netdev_printk_level(netdev_info, KERN_INFO);
12979
netdev_exit(struct net * net)12980 static void __net_exit netdev_exit(struct net *net)
12981 {
12982 kfree(net->dev_name_head);
12983 kfree(net->dev_index_head);
12984 xa_destroy(&net->dev_by_index);
12985 if (net != &init_net)
12986 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12987 }
12988
12989 static struct pernet_operations __net_initdata netdev_net_ops = {
12990 .init = netdev_init,
12991 .exit = netdev_exit,
12992 };
12993
default_device_exit_net(struct net * net)12994 static void __net_exit default_device_exit_net(struct net *net)
12995 {
12996 struct netdev_name_node *name_node, *tmp;
12997 struct net_device *dev, *aux;
12998 /*
12999 * Push all migratable network devices back to the
13000 * initial network namespace
13001 */
13002 ASSERT_RTNL();
13003 for_each_netdev_safe(net, dev, aux) {
13004 int err;
13005 char fb_name[IFNAMSIZ];
13006
13007 /* Ignore unmoveable devices (i.e. loopback) */
13008 if (dev->netns_immutable)
13009 continue;
13010
13011 /* Leave virtual devices for the generic cleanup */
13012 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
13013 continue;
13014
13015 /* Push remaining network devices to init_net */
13016 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
13017 if (netdev_name_in_use(&init_net, fb_name))
13018 snprintf(fb_name, IFNAMSIZ, "dev%%d");
13019
13020 netdev_for_each_altname_safe(dev, name_node, tmp)
13021 if (netdev_name_in_use(&init_net, name_node->name))
13022 __netdev_name_node_alt_destroy(name_node);
13023
13024 err = dev_change_net_namespace(dev, &init_net, fb_name);
13025 if (err) {
13026 pr_emerg("%s: failed to move %s to init_net: %d\n",
13027 __func__, dev->name, err);
13028 BUG();
13029 }
13030 }
13031 }
13032
default_device_exit_batch(struct list_head * net_list)13033 static void __net_exit default_device_exit_batch(struct list_head *net_list)
13034 {
13035 /* At exit all network devices most be removed from a network
13036 * namespace. Do this in the reverse order of registration.
13037 * Do this across as many network namespaces as possible to
13038 * improve batching efficiency.
13039 */
13040 struct net_device *dev;
13041 struct net *net;
13042 LIST_HEAD(dev_kill_list);
13043
13044 rtnl_lock();
13045 list_for_each_entry(net, net_list, exit_list) {
13046 default_device_exit_net(net);
13047 cond_resched();
13048 }
13049
13050 list_for_each_entry(net, net_list, exit_list) {
13051 for_each_netdev_reverse(net, dev) {
13052 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
13053 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
13054 else
13055 unregister_netdevice_queue(dev, &dev_kill_list);
13056 }
13057 }
13058 unregister_netdevice_many(&dev_kill_list);
13059 rtnl_unlock();
13060 }
13061
13062 static struct pernet_operations __net_initdata default_device_ops = {
13063 .exit_batch = default_device_exit_batch,
13064 };
13065
net_dev_struct_check(void)13066 static void __init net_dev_struct_check(void)
13067 {
13068 /* TX read-mostly hotpath */
13069 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
13070 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
13071 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
13072 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
13073 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
13074 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
13075 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
13076 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
13077 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
13078 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
13079 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
13080 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
13081 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
13082 #ifdef CONFIG_XPS
13083 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
13084 #endif
13085 #ifdef CONFIG_NETFILTER_EGRESS
13086 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
13087 #endif
13088 #ifdef CONFIG_NET_XGRESS
13089 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
13090 #endif
13091 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
13092
13093 /* TXRX read-mostly hotpath */
13094 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
13095 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
13096 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
13097 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
13098 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
13099 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
13100 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
13101
13102 /* RX read-mostly hotpath */
13103 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
13104 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
13105 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
13106 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
13107 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
13108 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
13109 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
13110 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
13111 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
13112 #ifdef CONFIG_NETPOLL
13113 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
13114 #endif
13115 #ifdef CONFIG_NET_XGRESS
13116 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
13117 #endif
13118 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
13119 }
13120
13121 /*
13122 * Initialize the DEV module. At boot time this walks the device list and
13123 * unhooks any devices that fail to initialise (normally hardware not
13124 * present) and leaves us with a valid list of present and active devices.
13125 *
13126 */
13127
13128 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
13129 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
13130
net_page_pool_create(int cpuid)13131 static int net_page_pool_create(int cpuid)
13132 {
13133 #if IS_ENABLED(CONFIG_PAGE_POOL)
13134 struct page_pool_params page_pool_params = {
13135 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
13136 .flags = PP_FLAG_SYSTEM_POOL,
13137 .nid = cpu_to_mem(cpuid),
13138 };
13139 struct page_pool *pp_ptr;
13140 int err;
13141
13142 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
13143 if (IS_ERR(pp_ptr))
13144 return -ENOMEM;
13145
13146 err = xdp_reg_page_pool(pp_ptr);
13147 if (err) {
13148 page_pool_destroy(pp_ptr);
13149 return err;
13150 }
13151
13152 per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
13153 #endif
13154 return 0;
13155 }
13156
backlog_napi_should_run(unsigned int cpu)13157 static int backlog_napi_should_run(unsigned int cpu)
13158 {
13159 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13160 struct napi_struct *napi = &sd->backlog;
13161
13162 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
13163 }
13164
run_backlog_napi(unsigned int cpu)13165 static void run_backlog_napi(unsigned int cpu)
13166 {
13167 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13168
13169 napi_threaded_poll_loop(&sd->backlog, false);
13170 }
13171
backlog_napi_setup(unsigned int cpu)13172 static void backlog_napi_setup(unsigned int cpu)
13173 {
13174 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13175 struct napi_struct *napi = &sd->backlog;
13176
13177 napi->thread = this_cpu_read(backlog_napi);
13178 set_bit(NAPI_STATE_THREADED, &napi->state);
13179 }
13180
13181 static struct smp_hotplug_thread backlog_threads = {
13182 .store = &backlog_napi,
13183 .thread_should_run = backlog_napi_should_run,
13184 .thread_fn = run_backlog_napi,
13185 .thread_comm = "backlog_napi/%u",
13186 .setup = backlog_napi_setup,
13187 };
13188
13189 /*
13190 * This is called single threaded during boot, so no need
13191 * to take the rtnl semaphore.
13192 */
net_dev_init(void)13193 static int __init net_dev_init(void)
13194 {
13195 int i, rc = -ENOMEM;
13196
13197 BUG_ON(!dev_boot_phase);
13198
13199 net_dev_struct_check();
13200
13201 if (dev_proc_init())
13202 goto out;
13203
13204 if (netdev_kobject_init())
13205 goto out;
13206
13207 for (i = 0; i < PTYPE_HASH_SIZE; i++)
13208 INIT_LIST_HEAD(&ptype_base[i]);
13209
13210 if (register_pernet_subsys(&netdev_net_ops))
13211 goto out;
13212
13213 /*
13214 * Initialise the packet receive queues.
13215 */
13216
13217 flush_backlogs_fallback = flush_backlogs_alloc();
13218 if (!flush_backlogs_fallback)
13219 goto out;
13220
13221 for_each_possible_cpu(i) {
13222 struct softnet_data *sd = &per_cpu(softnet_data, i);
13223
13224 skb_queue_head_init(&sd->input_pkt_queue);
13225 skb_queue_head_init(&sd->process_queue);
13226 #ifdef CONFIG_XFRM_OFFLOAD
13227 skb_queue_head_init(&sd->xfrm_backlog);
13228 #endif
13229 INIT_LIST_HEAD(&sd->poll_list);
13230 sd->output_queue_tailp = &sd->output_queue;
13231 #ifdef CONFIG_RPS
13232 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
13233 sd->cpu = i;
13234 #endif
13235 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
13236
13237 gro_init(&sd->backlog.gro);
13238 sd->backlog.poll = process_backlog;
13239 sd->backlog.weight = weight_p;
13240 INIT_LIST_HEAD(&sd->backlog.poll_list);
13241
13242 if (net_page_pool_create(i))
13243 goto out;
13244 }
13245 net_hotdata.skb_defer_nodes =
13246 __alloc_percpu(sizeof(struct skb_defer_node) * nr_node_ids,
13247 __alignof__(struct skb_defer_node));
13248 if (!net_hotdata.skb_defer_nodes)
13249 goto out;
13250 if (use_backlog_threads())
13251 smpboot_register_percpu_thread(&backlog_threads);
13252
13253 dev_boot_phase = 0;
13254
13255 /* The loopback device is special if any other network devices
13256 * is present in a network namespace the loopback device must
13257 * be present. Since we now dynamically allocate and free the
13258 * loopback device ensure this invariant is maintained by
13259 * keeping the loopback device as the first device on the
13260 * list of network devices. Ensuring the loopback devices
13261 * is the first device that appears and the last network device
13262 * that disappears.
13263 */
13264 if (register_pernet_device(&loopback_net_ops))
13265 goto out;
13266
13267 if (register_pernet_device(&default_device_ops))
13268 goto out;
13269
13270 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
13271 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
13272
13273 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
13274 NULL, dev_cpu_dead);
13275 WARN_ON(rc < 0);
13276 rc = 0;
13277
13278 /* avoid static key IPIs to isolated CPUs */
13279 if (housekeeping_enabled(HK_TYPE_MISC))
13280 net_enable_timestamp();
13281 out:
13282 if (rc < 0) {
13283 for_each_possible_cpu(i) {
13284 struct page_pool *pp_ptr;
13285
13286 pp_ptr = per_cpu(system_page_pool.pool, i);
13287 if (!pp_ptr)
13288 continue;
13289
13290 xdp_unreg_page_pool(pp_ptr);
13291 page_pool_destroy(pp_ptr);
13292 per_cpu(system_page_pool.pool, i) = NULL;
13293 }
13294 }
13295
13296 return rc;
13297 }
13298
13299 subsys_initcall(net_dev_init);
13300