1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 struct net_device *dev,
177 struct netlink_ext_ack *extack);
178
179 static DEFINE_MUTEX(ifalias_mutex);
180
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186
dev_base_seq_inc(struct net * net)187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 unsigned int val = net->dev_base_seq + 1;
190
191 WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193
dev_name_hash(struct net * net,const char * name)194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197
198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200
dev_index_hash(struct net * net,int ifindex)201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205
206 #ifndef CONFIG_PREEMPT_RT
207
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209
setup_backlog_napi_threads(char * arg)210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 static_branch_enable(&use_backlog_threads_key);
213 return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216
use_backlog_threads(void)217 static bool use_backlog_threads(void)
218 {
219 return static_branch_unlikely(&use_backlog_threads_key);
220 }
221
222 #else
223
use_backlog_threads(void)224 static bool use_backlog_threads(void)
225 {
226 return true;
227 }
228
229 #endif
230
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 unsigned long *flags)
233 {
234 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 } else {
237 local_irq_save(*flags);
238 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
239 spin_lock(&sd->input_pkt_queue.lock);
240 }
241 }
242
backlog_lock_irq_disable(struct softnet_data * sd)243 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
244 {
245 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
246 spin_lock_irq(&sd->input_pkt_queue.lock);
247 else
248 local_irq_disable();
249 }
250
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long flags)251 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
252 unsigned long flags)
253 {
254 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
255 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, flags);
256 } else {
257 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258 spin_unlock(&sd->input_pkt_queue.lock);
259 local_irq_restore(flags);
260 }
261 }
262
backlog_unlock_irq_enable(struct softnet_data * sd)263 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
264 {
265 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
266 spin_unlock_irq(&sd->input_pkt_queue.lock);
267 else
268 local_irq_enable();
269 }
270
netdev_name_node_alloc(struct net_device * dev,const char * name)271 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
272 const char *name)
273 {
274 struct netdev_name_node *name_node;
275
276 name_node = kmalloc_obj(*name_node, GFP_KERNEL);
277 if (!name_node)
278 return NULL;
279 INIT_HLIST_NODE(&name_node->hlist);
280 name_node->dev = dev;
281 name_node->name = name;
282 return name_node;
283 }
284
285 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)286 netdev_name_node_head_alloc(struct net_device *dev)
287 {
288 struct netdev_name_node *name_node;
289
290 name_node = netdev_name_node_alloc(dev, dev->name);
291 if (!name_node)
292 return NULL;
293 INIT_LIST_HEAD(&name_node->list);
294 return name_node;
295 }
296
netdev_name_node_free(struct netdev_name_node * name_node)297 static void netdev_name_node_free(struct netdev_name_node *name_node)
298 {
299 kfree(name_node);
300 }
301
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)302 static void netdev_name_node_add(struct net *net,
303 struct netdev_name_node *name_node)
304 {
305 hlist_add_head_rcu(&name_node->hlist,
306 dev_name_hash(net, name_node->name));
307 }
308
netdev_name_node_del(struct netdev_name_node * name_node)309 static void netdev_name_node_del(struct netdev_name_node *name_node)
310 {
311 hlist_del_rcu(&name_node->hlist);
312 }
313
netdev_name_node_lookup(struct net * net,const char * name)314 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
315 const char *name)
316 {
317 struct hlist_head *head = dev_name_hash(net, name);
318 struct netdev_name_node *name_node;
319
320 hlist_for_each_entry(name_node, head, hlist)
321 if (!strcmp(name_node->name, name))
322 return name_node;
323 return NULL;
324 }
325
netdev_name_node_lookup_rcu(struct net * net,const char * name)326 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
327 const char *name)
328 {
329 struct hlist_head *head = dev_name_hash(net, name);
330 struct netdev_name_node *name_node;
331
332 hlist_for_each_entry_rcu(name_node, head, hlist)
333 if (!strcmp(name_node->name, name))
334 return name_node;
335 return NULL;
336 }
337
netdev_name_in_use(struct net * net,const char * name)338 bool netdev_name_in_use(struct net *net, const char *name)
339 {
340 return netdev_name_node_lookup(net, name);
341 }
342 EXPORT_SYMBOL(netdev_name_in_use);
343
netdev_name_node_alt_create(struct net_device * dev,const char * name)344 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
345 {
346 struct netdev_name_node *name_node;
347 struct net *net = dev_net(dev);
348
349 name_node = netdev_name_node_lookup(net, name);
350 if (name_node)
351 return -EEXIST;
352 name_node = netdev_name_node_alloc(dev, name);
353 if (!name_node)
354 return -ENOMEM;
355 netdev_name_node_add(net, name_node);
356 /* The node that holds dev->name acts as a head of per-device list. */
357 list_add_tail_rcu(&name_node->list, &dev->name_node->list);
358
359 return 0;
360 }
361
netdev_name_node_alt_free(struct rcu_head * head)362 static void netdev_name_node_alt_free(struct rcu_head *head)
363 {
364 struct netdev_name_node *name_node =
365 container_of(head, struct netdev_name_node, rcu);
366
367 kfree(name_node->name);
368 netdev_name_node_free(name_node);
369 }
370
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)371 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
372 {
373 netdev_name_node_del(name_node);
374 list_del(&name_node->list);
375 call_rcu(&name_node->rcu, netdev_name_node_alt_free);
376 }
377
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)378 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
379 {
380 struct netdev_name_node *name_node;
381 struct net *net = dev_net(dev);
382
383 name_node = netdev_name_node_lookup(net, name);
384 if (!name_node)
385 return -ENOENT;
386 /* lookup might have found our primary name or a name belonging
387 * to another device.
388 */
389 if (name_node == dev->name_node || name_node->dev != dev)
390 return -EINVAL;
391
392 __netdev_name_node_alt_destroy(name_node);
393 return 0;
394 }
395
netdev_name_node_alt_flush(struct net_device * dev)396 static void netdev_name_node_alt_flush(struct net_device *dev)
397 {
398 struct netdev_name_node *name_node, *tmp;
399
400 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
401 list_del(&name_node->list);
402 netdev_name_node_alt_free(&name_node->rcu);
403 }
404 }
405
406 /* Device list insertion */
list_netdevice(struct net_device * dev)407 static void list_netdevice(struct net_device *dev)
408 {
409 struct netdev_name_node *name_node;
410 struct net *net = dev_net(dev);
411
412 ASSERT_RTNL();
413
414 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
415 netdev_name_node_add(net, dev->name_node);
416 hlist_add_head_rcu(&dev->index_hlist,
417 dev_index_hash(net, dev->ifindex));
418
419 netdev_for_each_altname(dev, name_node)
420 netdev_name_node_add(net, name_node);
421
422 /* We reserved the ifindex, this can't fail */
423 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
424
425 dev_base_seq_inc(net);
426 }
427
428 /* Device list removal
429 * caller must respect a RCU grace period before freeing/reusing dev
430 */
unlist_netdevice(struct net_device * dev)431 static void unlist_netdevice(struct net_device *dev)
432 {
433 struct netdev_name_node *name_node;
434 struct net *net = dev_net(dev);
435
436 ASSERT_RTNL();
437
438 xa_erase(&net->dev_by_index, dev->ifindex);
439
440 netdev_for_each_altname(dev, name_node)
441 netdev_name_node_del(name_node);
442
443 /* Unlink dev from the device chain */
444 list_del_rcu(&dev->dev_list);
445 netdev_name_node_del(dev->name_node);
446 hlist_del_rcu(&dev->index_hlist);
447
448 dev_base_seq_inc(dev_net(dev));
449 }
450
451 /*
452 * Our notifier list
453 */
454
455 static RAW_NOTIFIER_HEAD(netdev_chain);
456
457 /*
458 * Device drivers call our routines to queue packets here. We empty the
459 * queue in the local softnet handler.
460 */
461
462 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
463 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
464 };
465 EXPORT_PER_CPU_SYMBOL(softnet_data);
466
467 /* Page_pool has a lockless array/stack to alloc/recycle pages.
468 * PP consumers must pay attention to run APIs in the appropriate context
469 * (e.g. NAPI context).
470 */
471 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
472 .bh_lock = INIT_LOCAL_LOCK(bh_lock),
473 };
474
475 #ifdef CONFIG_LOCKDEP
476 /*
477 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
478 * according to dev->type
479 */
480 static const unsigned short netdev_lock_type[] = {
481 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
482 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
483 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
484 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
485 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
486 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
487 ARPHRD_CAN, ARPHRD_MCTP,
488 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
489 ARPHRD_RAWHDLC, ARPHRD_RAWIP,
490 ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
491 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
492 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
493 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
494 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
495 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
496 ARPHRD_IEEE80211_RADIOTAP,
497 ARPHRD_IEEE802154, ARPHRD_IEEE802154_MONITOR,
498 ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
499 ARPHRD_CAIF, ARPHRD_IP6GRE, ARPHRD_NETLINK, ARPHRD_6LOWPAN,
500 ARPHRD_VSOCKMON,
501 ARPHRD_VOID, ARPHRD_NONE};
502
503 static const char *const netdev_lock_name[] = {
504 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
505 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
506 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
507 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
508 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
509 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
510 "_xmit_CAN", "_xmit_MCTP",
511 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
512 "_xmit_RAWHDLC", "_xmit_RAWIP",
513 "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
514 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
515 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
516 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
517 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
518 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
519 "_xmit_IEEE80211_RADIOTAP",
520 "_xmit_IEEE802154", "_xmit_IEEE802154_MONITOR",
521 "_xmit_PHONET", "_xmit_PHONET_PIPE",
522 "_xmit_CAIF", "_xmit_IP6GRE", "_xmit_NETLINK", "_xmit_6LOWPAN",
523 "_xmit_VSOCKMON",
524 "_xmit_VOID", "_xmit_NONE"};
525
526 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
527 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
528
netdev_lock_pos(unsigned short dev_type)529 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
530 {
531 int i;
532
533 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
534 if (netdev_lock_type[i] == dev_type)
535 return i;
536 /* the last key is used by default */
537 WARN_ONCE(1, "netdev_lock_pos() could not find dev_type=%u\n", dev_type);
538 return ARRAY_SIZE(netdev_lock_type) - 1;
539 }
540
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)541 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
542 unsigned short dev_type)
543 {
544 int i;
545
546 i = netdev_lock_pos(dev_type);
547 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
548 netdev_lock_name[i]);
549 }
550
netdev_set_addr_lockdep_class(struct net_device * dev)551 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
552 {
553 int i;
554
555 i = netdev_lock_pos(dev->type);
556 lockdep_set_class_and_name(&dev->addr_list_lock,
557 &netdev_addr_lock_key[i],
558 netdev_lock_name[i]);
559 }
560 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)561 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
562 unsigned short dev_type)
563 {
564 }
565
netdev_set_addr_lockdep_class(struct net_device * dev)566 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
567 {
568 }
569 #endif
570
571 /*******************************************************************************
572 *
573 * Protocol management and registration routines
574 *
575 *******************************************************************************/
576
577
578 /*
579 * Add a protocol ID to the list. Now that the input handler is
580 * smarter we can dispense with all the messy stuff that used to be
581 * here.
582 *
583 * BEWARE!!! Protocol handlers, mangling input packets,
584 * MUST BE last in hash buckets and checking protocol handlers
585 * MUST start from promiscuous ptype_all chain in net_bh.
586 * It is true now, do not change it.
587 * Explanation follows: if protocol handler, mangling packet, will
588 * be the first on list, it is not able to sense, that packet
589 * is cloned and should be copied-on-write, so that it will
590 * change it and subsequent readers will get broken packet.
591 * --ANK (980803)
592 */
593
ptype_head(const struct packet_type * pt)594 static inline struct list_head *ptype_head(const struct packet_type *pt)
595 {
596 if (pt->type == htons(ETH_P_ALL)) {
597 if (!pt->af_packet_net && !pt->dev)
598 return NULL;
599
600 return pt->dev ? &pt->dev->ptype_all :
601 &pt->af_packet_net->ptype_all;
602 }
603
604 if (pt->dev)
605 return &pt->dev->ptype_specific;
606
607 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
608 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
609 }
610
611 /**
612 * dev_add_pack - add packet handler
613 * @pt: packet type declaration
614 *
615 * Add a protocol handler to the networking stack. The passed &packet_type
616 * is linked into kernel lists and may not be freed until it has been
617 * removed from the kernel lists.
618 *
619 * This call does not sleep therefore it can not
620 * guarantee all CPU's that are in middle of receiving packets
621 * will see the new packet type (until the next received packet).
622 */
623
dev_add_pack(struct packet_type * pt)624 void dev_add_pack(struct packet_type *pt)
625 {
626 struct list_head *head = ptype_head(pt);
627
628 if (WARN_ON_ONCE(!head))
629 return;
630
631 spin_lock(&ptype_lock);
632 list_add_rcu(&pt->list, head);
633 spin_unlock(&ptype_lock);
634 }
635 EXPORT_SYMBOL(dev_add_pack);
636
637 /**
638 * __dev_remove_pack - remove packet handler
639 * @pt: packet type declaration
640 *
641 * Remove a protocol handler that was previously added to the kernel
642 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
643 * from the kernel lists and can be freed or reused once this function
644 * returns.
645 *
646 * The packet type might still be in use by receivers
647 * and must not be freed until after all the CPU's have gone
648 * through a quiescent state.
649 */
__dev_remove_pack(struct packet_type * pt)650 void __dev_remove_pack(struct packet_type *pt)
651 {
652 struct list_head *head = ptype_head(pt);
653 struct packet_type *pt1;
654
655 if (!head)
656 return;
657
658 spin_lock(&ptype_lock);
659
660 list_for_each_entry(pt1, head, list) {
661 if (pt == pt1) {
662 list_del_rcu(&pt->list);
663 goto out;
664 }
665 }
666
667 pr_warn("dev_remove_pack: %p not found\n", pt);
668 out:
669 spin_unlock(&ptype_lock);
670 }
671 EXPORT_SYMBOL(__dev_remove_pack);
672
673 /**
674 * dev_remove_pack - remove packet handler
675 * @pt: packet type declaration
676 *
677 * Remove a protocol handler that was previously added to the kernel
678 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
679 * from the kernel lists and can be freed or reused once this function
680 * returns.
681 *
682 * This call sleeps to guarantee that no CPU is looking at the packet
683 * type after return.
684 */
dev_remove_pack(struct packet_type * pt)685 void dev_remove_pack(struct packet_type *pt)
686 {
687 __dev_remove_pack(pt);
688
689 synchronize_net();
690 }
691 EXPORT_SYMBOL(dev_remove_pack);
692
693
694 /*******************************************************************************
695 *
696 * Device Interface Subroutines
697 *
698 *******************************************************************************/
699
700 /**
701 * dev_get_iflink - get 'iflink' value of a interface
702 * @dev: targeted interface
703 *
704 * Indicates the ifindex the interface is linked to.
705 * Physical interfaces have the same 'ifindex' and 'iflink' values.
706 */
707
dev_get_iflink(const struct net_device * dev)708 int dev_get_iflink(const struct net_device *dev)
709 {
710 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
711 return dev->netdev_ops->ndo_get_iflink(dev);
712
713 return READ_ONCE(dev->ifindex);
714 }
715 EXPORT_SYMBOL(dev_get_iflink);
716
717 /**
718 * dev_fill_metadata_dst - Retrieve tunnel egress information.
719 * @dev: targeted interface
720 * @skb: The packet.
721 *
722 * For better visibility of tunnel traffic OVS needs to retrieve
723 * egress tunnel information for a packet. Following API allows
724 * user to get this info.
725 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)726 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
727 {
728 struct ip_tunnel_info *info;
729
730 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
731 return -EINVAL;
732
733 info = skb_tunnel_info_unclone(skb);
734 if (!info)
735 return -ENOMEM;
736 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
737 return -EINVAL;
738
739 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
740 }
741 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
742
dev_fwd_path(struct net_device_path_stack * stack)743 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
744 {
745 int k = stack->num_paths++;
746
747 if (k >= NET_DEVICE_PATH_STACK_MAX)
748 return NULL;
749
750 return &stack->path[k];
751 }
752
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)753 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
754 struct net_device_path_stack *stack)
755 {
756 const struct net_device *last_dev;
757 struct net_device_path_ctx ctx = {
758 .dev = dev,
759 };
760 struct net_device_path *path;
761 int ret = 0;
762
763 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
764 stack->num_paths = 0;
765 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
766 last_dev = ctx.dev;
767 path = dev_fwd_path(stack);
768 if (!path)
769 return -1;
770
771 memset(path, 0, sizeof(struct net_device_path));
772 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
773 if (ret < 0)
774 return -1;
775
776 if (WARN_ON_ONCE(last_dev == ctx.dev))
777 return -1;
778 }
779
780 if (!ctx.dev)
781 return ret;
782
783 path = dev_fwd_path(stack);
784 if (!path)
785 return -1;
786 path->type = DEV_PATH_ETHERNET;
787 path->dev = ctx.dev;
788
789 return ret;
790 }
791 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
792
793 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)794 static struct napi_struct *napi_by_id(unsigned int napi_id)
795 {
796 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
797 struct napi_struct *napi;
798
799 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
800 if (napi->napi_id == napi_id)
801 return napi;
802
803 return NULL;
804 }
805
806 /* must be called under rcu_read_lock(), as we dont take a reference */
807 static struct napi_struct *
netdev_napi_by_id(struct net * net,unsigned int napi_id)808 netdev_napi_by_id(struct net *net, unsigned int napi_id)
809 {
810 struct napi_struct *napi;
811
812 napi = napi_by_id(napi_id);
813 if (!napi)
814 return NULL;
815
816 if (WARN_ON_ONCE(!napi->dev))
817 return NULL;
818 if (!net_eq(net, dev_net(napi->dev)))
819 return NULL;
820
821 return napi;
822 }
823
824 /**
825 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
826 * @net: the applicable net namespace
827 * @napi_id: ID of a NAPI of a target device
828 *
829 * Find a NAPI instance with @napi_id. Lock its device.
830 * The device must be in %NETREG_REGISTERED state for lookup to succeed.
831 * netdev_unlock() must be called to release it.
832 *
833 * Return: pointer to NAPI, its device with lock held, NULL if not found.
834 */
835 struct napi_struct *
netdev_napi_by_id_lock(struct net * net,unsigned int napi_id)836 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
837 {
838 struct napi_struct *napi;
839 struct net_device *dev;
840
841 rcu_read_lock();
842 napi = netdev_napi_by_id(net, napi_id);
843 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
844 rcu_read_unlock();
845 return NULL;
846 }
847
848 dev = napi->dev;
849 dev_hold(dev);
850 rcu_read_unlock();
851
852 dev = __netdev_put_lock(dev, net);
853 if (!dev)
854 return NULL;
855
856 rcu_read_lock();
857 napi = netdev_napi_by_id(net, napi_id);
858 if (napi && napi->dev != dev)
859 napi = NULL;
860 rcu_read_unlock();
861
862 if (!napi)
863 netdev_unlock(dev);
864 return napi;
865 }
866
867 /**
868 * __dev_get_by_name - find a device by its name
869 * @net: the applicable net namespace
870 * @name: name to find
871 *
872 * Find an interface by name. Must be called under RTNL semaphore.
873 * If the name is found a pointer to the device is returned.
874 * If the name is not found then %NULL is returned. The
875 * reference counters are not incremented so the caller must be
876 * careful with locks.
877 */
878
__dev_get_by_name(struct net * net,const char * name)879 struct net_device *__dev_get_by_name(struct net *net, const char *name)
880 {
881 struct netdev_name_node *node_name;
882
883 node_name = netdev_name_node_lookup(net, name);
884 return node_name ? node_name->dev : NULL;
885 }
886 EXPORT_SYMBOL(__dev_get_by_name);
887
888 /**
889 * dev_get_by_name_rcu - find a device by its name
890 * @net: the applicable net namespace
891 * @name: name to find
892 *
893 * Find an interface by name.
894 * If the name is found a pointer to the device is returned.
895 * If the name is not found then %NULL is returned.
896 * The reference counters are not incremented so the caller must be
897 * careful with locks. The caller must hold RCU lock.
898 */
899
dev_get_by_name_rcu(struct net * net,const char * name)900 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
901 {
902 struct netdev_name_node *node_name;
903
904 node_name = netdev_name_node_lookup_rcu(net, name);
905 return node_name ? node_name->dev : NULL;
906 }
907 EXPORT_SYMBOL(dev_get_by_name_rcu);
908
909 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)910 struct net_device *dev_get_by_name(struct net *net, const char *name)
911 {
912 struct net_device *dev;
913
914 rcu_read_lock();
915 dev = dev_get_by_name_rcu(net, name);
916 dev_hold(dev);
917 rcu_read_unlock();
918 return dev;
919 }
920 EXPORT_SYMBOL(dev_get_by_name);
921
922 /**
923 * netdev_get_by_name() - find a device by its name
924 * @net: the applicable net namespace
925 * @name: name to find
926 * @tracker: tracking object for the acquired reference
927 * @gfp: allocation flags for the tracker
928 *
929 * Find an interface by name. This can be called from any
930 * context and does its own locking. The returned handle has
931 * the usage count incremented and the caller must use netdev_put() to
932 * release it when it is no longer needed. %NULL is returned if no
933 * matching device is found.
934 */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)935 struct net_device *netdev_get_by_name(struct net *net, const char *name,
936 netdevice_tracker *tracker, gfp_t gfp)
937 {
938 struct net_device *dev;
939
940 dev = dev_get_by_name(net, name);
941 if (dev)
942 netdev_tracker_alloc(dev, tracker, gfp);
943 return dev;
944 }
945 EXPORT_SYMBOL(netdev_get_by_name);
946
947 /**
948 * __dev_get_by_index - find a device by its ifindex
949 * @net: the applicable net namespace
950 * @ifindex: index of device
951 *
952 * Search for an interface by index. Returns %NULL if the device
953 * is not found or a pointer to the device. The device has not
954 * had its reference counter increased so the caller must be careful
955 * about locking. The caller must hold the RTNL semaphore.
956 */
957
__dev_get_by_index(struct net * net,int ifindex)958 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
959 {
960 struct net_device *dev;
961 struct hlist_head *head = dev_index_hash(net, ifindex);
962
963 hlist_for_each_entry(dev, head, index_hlist)
964 if (dev->ifindex == ifindex)
965 return dev;
966
967 return NULL;
968 }
969 EXPORT_SYMBOL(__dev_get_by_index);
970
971 /**
972 * dev_get_by_index_rcu - find a device by its ifindex
973 * @net: the applicable net namespace
974 * @ifindex: index of device
975 *
976 * Search for an interface by index. Returns %NULL if the device
977 * is not found or a pointer to the device. The device has not
978 * had its reference counter increased so the caller must be careful
979 * about locking. The caller must hold RCU lock.
980 */
981
dev_get_by_index_rcu(struct net * net,int ifindex)982 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
983 {
984 struct net_device *dev;
985 struct hlist_head *head = dev_index_hash(net, ifindex);
986
987 hlist_for_each_entry_rcu(dev, head, index_hlist)
988 if (dev->ifindex == ifindex)
989 return dev;
990
991 return NULL;
992 }
993 EXPORT_SYMBOL(dev_get_by_index_rcu);
994
995 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)996 struct net_device *dev_get_by_index(struct net *net, int ifindex)
997 {
998 struct net_device *dev;
999
1000 rcu_read_lock();
1001 dev = dev_get_by_index_rcu(net, ifindex);
1002 dev_hold(dev);
1003 rcu_read_unlock();
1004 return dev;
1005 }
1006 EXPORT_SYMBOL(dev_get_by_index);
1007
1008 /**
1009 * netdev_get_by_index() - find a device by its ifindex
1010 * @net: the applicable net namespace
1011 * @ifindex: index of device
1012 * @tracker: tracking object for the acquired reference
1013 * @gfp: allocation flags for the tracker
1014 *
1015 * Search for an interface by index. Returns NULL if the device
1016 * is not found or a pointer to the device. The device returned has
1017 * had a reference added and the pointer is safe until the user calls
1018 * netdev_put() to indicate they have finished with it.
1019 */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)1020 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1021 netdevice_tracker *tracker, gfp_t gfp)
1022 {
1023 struct net_device *dev;
1024
1025 dev = dev_get_by_index(net, ifindex);
1026 if (dev)
1027 netdev_tracker_alloc(dev, tracker, gfp);
1028 return dev;
1029 }
1030 EXPORT_SYMBOL(netdev_get_by_index);
1031
1032 /**
1033 * dev_get_by_napi_id - find a device by napi_id
1034 * @napi_id: ID of the NAPI struct
1035 *
1036 * Search for an interface by NAPI ID. Returns %NULL if the device
1037 * is not found or a pointer to the device. The device has not had
1038 * its reference counter increased so the caller must be careful
1039 * about locking. The caller must hold RCU lock.
1040 */
dev_get_by_napi_id(unsigned int napi_id)1041 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1042 {
1043 struct napi_struct *napi;
1044
1045 WARN_ON_ONCE(!rcu_read_lock_held());
1046
1047 if (!napi_id_valid(napi_id))
1048 return NULL;
1049
1050 napi = napi_by_id(napi_id);
1051
1052 return napi ? napi->dev : NULL;
1053 }
1054
1055 /* Release the held reference on the net_device, and if the net_device
1056 * is still registered try to lock the instance lock. If device is being
1057 * unregistered NULL will be returned (but the reference has been released,
1058 * either way!)
1059 *
1060 * This helper is intended for locking net_device after it has been looked up
1061 * using a lockless lookup helper. Lock prevents the instance from going away.
1062 */
__netdev_put_lock(struct net_device * dev,struct net * net)1063 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1064 {
1065 netdev_lock(dev);
1066 if (dev->reg_state > NETREG_REGISTERED ||
1067 dev->moving_ns || !net_eq(dev_net(dev), net)) {
1068 netdev_unlock(dev);
1069 dev_put(dev);
1070 return NULL;
1071 }
1072 dev_put(dev);
1073 return dev;
1074 }
1075
1076 static struct net_device *
__netdev_put_lock_ops_compat(struct net_device * dev,struct net * net)1077 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1078 {
1079 netdev_lock_ops_compat(dev);
1080 if (dev->reg_state > NETREG_REGISTERED ||
1081 dev->moving_ns || !net_eq(dev_net(dev), net)) {
1082 netdev_unlock_ops_compat(dev);
1083 dev_put(dev);
1084 return NULL;
1085 }
1086 dev_put(dev);
1087 return dev;
1088 }
1089
1090 /**
1091 * netdev_get_by_index_lock() - find a device by its ifindex
1092 * @net: the applicable net namespace
1093 * @ifindex: index of device
1094 *
1095 * Search for an interface by index. If a valid device
1096 * with @ifindex is found it will be returned with netdev->lock held.
1097 * netdev_unlock() must be called to release it.
1098 *
1099 * Return: pointer to a device with lock held, NULL if not found.
1100 */
netdev_get_by_index_lock(struct net * net,int ifindex)1101 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1102 {
1103 struct net_device *dev;
1104
1105 dev = dev_get_by_index(net, ifindex);
1106 if (!dev)
1107 return NULL;
1108
1109 return __netdev_put_lock(dev, net);
1110 }
1111
1112 struct net_device *
netdev_get_by_index_lock_ops_compat(struct net * net,int ifindex)1113 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1114 {
1115 struct net_device *dev;
1116
1117 dev = dev_get_by_index(net, ifindex);
1118 if (!dev)
1119 return NULL;
1120
1121 return __netdev_put_lock_ops_compat(dev, net);
1122 }
1123
1124 struct net_device *
netdev_xa_find_lock(struct net * net,struct net_device * dev,unsigned long * index)1125 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1126 unsigned long *index)
1127 {
1128 if (dev)
1129 netdev_unlock(dev);
1130
1131 do {
1132 rcu_read_lock();
1133 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1134 if (!dev) {
1135 rcu_read_unlock();
1136 return NULL;
1137 }
1138 dev_hold(dev);
1139 rcu_read_unlock();
1140
1141 dev = __netdev_put_lock(dev, net);
1142 if (dev)
1143 return dev;
1144
1145 (*index)++;
1146 } while (true);
1147 }
1148
1149 struct net_device *
netdev_xa_find_lock_ops_compat(struct net * net,struct net_device * dev,unsigned long * index)1150 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1151 unsigned long *index)
1152 {
1153 if (dev)
1154 netdev_unlock_ops_compat(dev);
1155
1156 do {
1157 rcu_read_lock();
1158 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1159 if (!dev) {
1160 rcu_read_unlock();
1161 return NULL;
1162 }
1163 dev_hold(dev);
1164 rcu_read_unlock();
1165
1166 dev = __netdev_put_lock_ops_compat(dev, net);
1167 if (dev)
1168 return dev;
1169
1170 (*index)++;
1171 } while (true);
1172 }
1173
1174 static DEFINE_SEQLOCK(netdev_rename_lock);
1175
netdev_copy_name(struct net_device * dev,char * name)1176 void netdev_copy_name(struct net_device *dev, char *name)
1177 {
1178 unsigned int seq;
1179
1180 do {
1181 seq = read_seqbegin(&netdev_rename_lock);
1182 strscpy(name, dev->name, IFNAMSIZ);
1183 } while (read_seqretry(&netdev_rename_lock, seq));
1184 }
1185 EXPORT_IPV6_MOD_GPL(netdev_copy_name);
1186
1187 /**
1188 * netdev_get_name - get a netdevice name, knowing its ifindex.
1189 * @net: network namespace
1190 * @name: a pointer to the buffer where the name will be stored.
1191 * @ifindex: the ifindex of the interface to get the name from.
1192 */
netdev_get_name(struct net * net,char * name,int ifindex)1193 int netdev_get_name(struct net *net, char *name, int ifindex)
1194 {
1195 struct net_device *dev;
1196 int ret;
1197
1198 rcu_read_lock();
1199
1200 dev = dev_get_by_index_rcu(net, ifindex);
1201 if (!dev) {
1202 ret = -ENODEV;
1203 goto out;
1204 }
1205
1206 netdev_copy_name(dev, name);
1207
1208 ret = 0;
1209 out:
1210 rcu_read_unlock();
1211 return ret;
1212 }
1213
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1214 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1215 const char *ha)
1216 {
1217 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1218 }
1219
1220 /**
1221 * dev_getbyhwaddr_rcu - find a device by its hardware address
1222 * @net: the applicable net namespace
1223 * @type: media type of device
1224 * @ha: hardware address
1225 *
1226 * Search for an interface by MAC address. Returns NULL if the device
1227 * is not found or a pointer to the device.
1228 * The caller must hold RCU.
1229 * The returned device has not had its ref count increased
1230 * and the caller must therefore be careful about locking
1231 *
1232 */
1233
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1234 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1235 const char *ha)
1236 {
1237 struct net_device *dev;
1238
1239 for_each_netdev_rcu(net, dev)
1240 if (dev_addr_cmp(dev, type, ha))
1241 return dev;
1242
1243 return NULL;
1244 }
1245 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1246
1247 /**
1248 * dev_getbyhwaddr() - find a device by its hardware address
1249 * @net: the applicable net namespace
1250 * @type: media type of device
1251 * @ha: hardware address
1252 *
1253 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1254 * rtnl_lock.
1255 *
1256 * Context: rtnl_lock() must be held.
1257 * Return: pointer to the net_device, or NULL if not found
1258 */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1259 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1260 const char *ha)
1261 {
1262 struct net_device *dev;
1263
1264 ASSERT_RTNL();
1265 for_each_netdev(net, dev)
1266 if (dev_addr_cmp(dev, type, ha))
1267 return dev;
1268
1269 return NULL;
1270 }
1271 EXPORT_SYMBOL(dev_getbyhwaddr);
1272
dev_getfirstbyhwtype(struct net * net,unsigned short type)1273 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1274 {
1275 struct net_device *dev, *ret = NULL;
1276
1277 rcu_read_lock();
1278 for_each_netdev_rcu(net, dev)
1279 if (dev->type == type) {
1280 dev_hold(dev);
1281 ret = dev;
1282 break;
1283 }
1284 rcu_read_unlock();
1285 return ret;
1286 }
1287 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1288
1289 /**
1290 * netdev_get_by_flags_rcu - find any device with given flags
1291 * @net: the applicable net namespace
1292 * @tracker: tracking object for the acquired reference
1293 * @if_flags: IFF_* values
1294 * @mask: bitmask of bits in if_flags to check
1295 *
1296 * Search for any interface with the given flags.
1297 *
1298 * Context: rcu_read_lock() must be held.
1299 * Returns: NULL if a device is not found or a pointer to the device.
1300 */
netdev_get_by_flags_rcu(struct net * net,netdevice_tracker * tracker,unsigned short if_flags,unsigned short mask)1301 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1302 unsigned short if_flags, unsigned short mask)
1303 {
1304 struct net_device *dev;
1305
1306 for_each_netdev_rcu(net, dev) {
1307 if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1308 netdev_hold(dev, tracker, GFP_ATOMIC);
1309 return dev;
1310 }
1311 }
1312
1313 return NULL;
1314 }
1315 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1316
1317 /**
1318 * dev_valid_name - check if name is okay for network device
1319 * @name: name string
1320 *
1321 * Network device names need to be valid file names to
1322 * allow sysfs to work. We also disallow any kind of
1323 * whitespace.
1324 */
dev_valid_name(const char * name)1325 bool dev_valid_name(const char *name)
1326 {
1327 if (*name == '\0')
1328 return false;
1329 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1330 return false;
1331 if (!strcmp(name, ".") || !strcmp(name, ".."))
1332 return false;
1333
1334 while (*name) {
1335 if (*name == '/' || *name == ':' || isspace(*name))
1336 return false;
1337 name++;
1338 }
1339 return true;
1340 }
1341 EXPORT_SYMBOL(dev_valid_name);
1342
1343 /**
1344 * __dev_alloc_name - allocate a name for a device
1345 * @net: network namespace to allocate the device name in
1346 * @name: name format string
1347 * @res: result name string
1348 *
1349 * Passed a format string - eg "lt%d" it will try and find a suitable
1350 * id. It scans list of devices to build up a free map, then chooses
1351 * the first empty slot. The caller must hold the dev_base or rtnl lock
1352 * while allocating the name and adding the device in order to avoid
1353 * duplicates.
1354 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1355 * Returns the number of the unit assigned or a negative errno code.
1356 */
1357
__dev_alloc_name(struct net * net,const char * name,char * res)1358 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1359 {
1360 int i = 0;
1361 const char *p;
1362 const int max_netdevices = 8*PAGE_SIZE;
1363 unsigned long *inuse;
1364 struct net_device *d;
1365 char buf[IFNAMSIZ];
1366
1367 /* Verify the string as this thing may have come from the user.
1368 * There must be one "%d" and no other "%" characters.
1369 */
1370 p = strchr(name, '%');
1371 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1372 return -EINVAL;
1373
1374 /* Use one page as a bit array of possible slots */
1375 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1376 if (!inuse)
1377 return -ENOMEM;
1378
1379 for_each_netdev(net, d) {
1380 struct netdev_name_node *name_node;
1381
1382 netdev_for_each_altname(d, name_node) {
1383 if (!sscanf(name_node->name, name, &i))
1384 continue;
1385 if (i < 0 || i >= max_netdevices)
1386 continue;
1387
1388 /* avoid cases where sscanf is not exact inverse of printf */
1389 snprintf(buf, IFNAMSIZ, name, i);
1390 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1391 __set_bit(i, inuse);
1392 }
1393 if (!sscanf(d->name, name, &i))
1394 continue;
1395 if (i < 0 || i >= max_netdevices)
1396 continue;
1397
1398 /* avoid cases where sscanf is not exact inverse of printf */
1399 snprintf(buf, IFNAMSIZ, name, i);
1400 if (!strncmp(buf, d->name, IFNAMSIZ))
1401 __set_bit(i, inuse);
1402 }
1403
1404 i = find_first_zero_bit(inuse, max_netdevices);
1405 bitmap_free(inuse);
1406 if (i == max_netdevices)
1407 return -ENFILE;
1408
1409 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1410 strscpy(buf, name, IFNAMSIZ);
1411 snprintf(res, IFNAMSIZ, buf, i);
1412 return i;
1413 }
1414
1415 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1416 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1417 const char *want_name, char *out_name,
1418 int dup_errno)
1419 {
1420 if (!dev_valid_name(want_name))
1421 return -EINVAL;
1422
1423 if (strchr(want_name, '%'))
1424 return __dev_alloc_name(net, want_name, out_name);
1425
1426 if (netdev_name_in_use(net, want_name))
1427 return -dup_errno;
1428 if (out_name != want_name)
1429 strscpy(out_name, want_name, IFNAMSIZ);
1430 return 0;
1431 }
1432
1433 /**
1434 * dev_alloc_name - allocate a name for a device
1435 * @dev: device
1436 * @name: name format string
1437 *
1438 * Passed a format string - eg "lt%d" it will try and find a suitable
1439 * id. It scans list of devices to build up a free map, then chooses
1440 * the first empty slot. The caller must hold the dev_base or rtnl lock
1441 * while allocating the name and adding the device in order to avoid
1442 * duplicates.
1443 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1444 * Returns the number of the unit assigned or a negative errno code.
1445 */
1446
dev_alloc_name(struct net_device * dev,const char * name)1447 int dev_alloc_name(struct net_device *dev, const char *name)
1448 {
1449 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1450 }
1451 EXPORT_SYMBOL(dev_alloc_name);
1452
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1453 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1454 const char *name)
1455 {
1456 int ret;
1457
1458 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1459 return ret < 0 ? ret : 0;
1460 }
1461
netif_change_name(struct net_device * dev,const char * newname)1462 int netif_change_name(struct net_device *dev, const char *newname)
1463 {
1464 struct net *net = dev_net(dev);
1465 unsigned char old_assign_type;
1466 char oldname[IFNAMSIZ];
1467 int err = 0;
1468 int ret;
1469
1470 ASSERT_RTNL_NET(net);
1471
1472 if (!strncmp(newname, dev->name, IFNAMSIZ))
1473 return 0;
1474
1475 memcpy(oldname, dev->name, IFNAMSIZ);
1476
1477 write_seqlock_bh(&netdev_rename_lock);
1478 err = dev_get_valid_name(net, dev, newname);
1479 write_sequnlock_bh(&netdev_rename_lock);
1480
1481 if (err < 0)
1482 return err;
1483
1484 if (oldname[0] && !strchr(oldname, '%'))
1485 netdev_info(dev, "renamed from %s%s\n", oldname,
1486 dev->flags & IFF_UP ? " (while UP)" : "");
1487
1488 old_assign_type = dev->name_assign_type;
1489 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1490
1491 rollback:
1492 ret = device_rename(&dev->dev, dev->name);
1493 if (ret) {
1494 write_seqlock_bh(&netdev_rename_lock);
1495 memcpy(dev->name, oldname, IFNAMSIZ);
1496 write_sequnlock_bh(&netdev_rename_lock);
1497 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1498 return ret;
1499 }
1500
1501 netdev_adjacent_rename_links(dev, oldname);
1502
1503 netdev_name_node_del(dev->name_node);
1504
1505 synchronize_net();
1506
1507 netdev_name_node_add(net, dev->name_node);
1508
1509 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1510 ret = notifier_to_errno(ret);
1511
1512 if (ret) {
1513 /* err >= 0 after dev_alloc_name() or stores the first errno */
1514 if (err >= 0) {
1515 err = ret;
1516 write_seqlock_bh(&netdev_rename_lock);
1517 memcpy(dev->name, oldname, IFNAMSIZ);
1518 write_sequnlock_bh(&netdev_rename_lock);
1519 memcpy(oldname, newname, IFNAMSIZ);
1520 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1521 old_assign_type = NET_NAME_RENAMED;
1522 goto rollback;
1523 } else {
1524 netdev_err(dev, "name change rollback failed: %d\n",
1525 ret);
1526 }
1527 }
1528
1529 return err;
1530 }
1531
netif_set_alias(struct net_device * dev,const char * alias,size_t len)1532 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1533 {
1534 struct dev_ifalias *new_alias = NULL;
1535
1536 if (len >= IFALIASZ)
1537 return -EINVAL;
1538
1539 if (len) {
1540 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1541 if (!new_alias)
1542 return -ENOMEM;
1543
1544 memcpy(new_alias->ifalias, alias, len);
1545 new_alias->ifalias[len] = 0;
1546 }
1547
1548 mutex_lock(&ifalias_mutex);
1549 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1550 mutex_is_locked(&ifalias_mutex));
1551 mutex_unlock(&ifalias_mutex);
1552
1553 if (new_alias)
1554 kfree_rcu(new_alias, rcuhead);
1555
1556 return len;
1557 }
1558
1559 /**
1560 * dev_get_alias - get ifalias of a device
1561 * @dev: device
1562 * @name: buffer to store name of ifalias
1563 * @len: size of buffer
1564 *
1565 * get ifalias for a device. Caller must make sure dev cannot go
1566 * away, e.g. rcu read lock or own a reference count to device.
1567 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1568 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1569 {
1570 const struct dev_ifalias *alias;
1571 int ret = 0;
1572
1573 rcu_read_lock();
1574 alias = rcu_dereference(dev->ifalias);
1575 if (alias)
1576 ret = snprintf(name, len, "%s", alias->ifalias);
1577 rcu_read_unlock();
1578
1579 return ret;
1580 }
1581
1582 /**
1583 * netdev_features_change - device changes features
1584 * @dev: device to cause notification
1585 *
1586 * Called to indicate a device has changed features.
1587 */
netdev_features_change(struct net_device * dev)1588 void netdev_features_change(struct net_device *dev)
1589 {
1590 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1591 }
1592 EXPORT_SYMBOL(netdev_features_change);
1593
netif_state_change(struct net_device * dev)1594 void netif_state_change(struct net_device *dev)
1595 {
1596 netdev_ops_assert_locked_or_invisible(dev);
1597
1598 if (dev->flags & IFF_UP) {
1599 struct netdev_notifier_change_info change_info = {
1600 .info.dev = dev,
1601 };
1602
1603 call_netdevice_notifiers_info(NETDEV_CHANGE,
1604 &change_info.info);
1605 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1606 }
1607 }
1608
1609 /**
1610 * __netdev_notify_peers - notify network peers about existence of @dev,
1611 * to be called when rtnl lock is already held.
1612 * @dev: network device
1613 *
1614 * Generate traffic such that interested network peers are aware of
1615 * @dev, such as by generating a gratuitous ARP. This may be used when
1616 * a device wants to inform the rest of the network about some sort of
1617 * reconfiguration such as a failover event or virtual machine
1618 * migration.
1619 */
__netdev_notify_peers(struct net_device * dev)1620 void __netdev_notify_peers(struct net_device *dev)
1621 {
1622 ASSERT_RTNL();
1623 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1624 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1625 }
1626 EXPORT_SYMBOL(__netdev_notify_peers);
1627
1628 /**
1629 * netdev_notify_peers - notify network peers about existence of @dev
1630 * @dev: network device
1631 *
1632 * Generate traffic such that interested network peers are aware of
1633 * @dev, such as by generating a gratuitous ARP. This may be used when
1634 * a device wants to inform the rest of the network about some sort of
1635 * reconfiguration such as a failover event or virtual machine
1636 * migration.
1637 */
netdev_notify_peers(struct net_device * dev)1638 void netdev_notify_peers(struct net_device *dev)
1639 {
1640 rtnl_lock();
1641 __netdev_notify_peers(dev);
1642 rtnl_unlock();
1643 }
1644 EXPORT_SYMBOL(netdev_notify_peers);
1645
1646 static int napi_threaded_poll(void *data);
1647
napi_kthread_create(struct napi_struct * n)1648 static int napi_kthread_create(struct napi_struct *n)
1649 {
1650 int err = 0;
1651
1652 /* Create and wake up the kthread once to put it in
1653 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1654 * warning and work with loadavg.
1655 */
1656 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1657 n->dev->name, n->napi_id);
1658 if (IS_ERR(n->thread)) {
1659 err = PTR_ERR(n->thread);
1660 pr_err("kthread_run failed with err %d\n", err);
1661 n->thread = NULL;
1662 }
1663
1664 return err;
1665 }
1666
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1667 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1668 {
1669 const struct net_device_ops *ops = dev->netdev_ops;
1670 int ret;
1671
1672 ASSERT_RTNL();
1673 dev_addr_check(dev);
1674
1675 if (!netif_device_present(dev)) {
1676 /* may be detached because parent is runtime-suspended */
1677 if (dev->dev.parent)
1678 pm_runtime_resume(dev->dev.parent);
1679 if (!netif_device_present(dev))
1680 return -ENODEV;
1681 }
1682
1683 /* Block netpoll from trying to do any rx path servicing.
1684 * If we don't do this there is a chance ndo_poll_controller
1685 * or ndo_poll may be running while we open the device
1686 */
1687 netpoll_poll_disable(dev);
1688
1689 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1690 ret = notifier_to_errno(ret);
1691 if (ret)
1692 return ret;
1693
1694 set_bit(__LINK_STATE_START, &dev->state);
1695
1696 netdev_ops_assert_locked(dev);
1697
1698 if (ops->ndo_validate_addr)
1699 ret = ops->ndo_validate_addr(dev);
1700
1701 if (!ret && ops->ndo_open)
1702 ret = ops->ndo_open(dev);
1703
1704 netpoll_poll_enable(dev);
1705
1706 if (ret)
1707 clear_bit(__LINK_STATE_START, &dev->state);
1708 else {
1709 netif_set_up(dev, true);
1710 dev_set_rx_mode(dev);
1711 dev_activate(dev);
1712 add_device_randomness(dev->dev_addr, dev->addr_len);
1713 }
1714
1715 return ret;
1716 }
1717
netif_open(struct net_device * dev,struct netlink_ext_ack * extack)1718 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1719 {
1720 int ret;
1721
1722 if (dev->flags & IFF_UP)
1723 return 0;
1724
1725 ret = __dev_open(dev, extack);
1726 if (ret < 0)
1727 return ret;
1728
1729 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1730 call_netdevice_notifiers(NETDEV_UP, dev);
1731
1732 return ret;
1733 }
1734
__dev_close_many(struct list_head * head)1735 static void __dev_close_many(struct list_head *head)
1736 {
1737 struct net_device *dev;
1738
1739 ASSERT_RTNL();
1740 might_sleep();
1741
1742 list_for_each_entry(dev, head, close_list) {
1743 /* Temporarily disable netpoll until the interface is down */
1744 netpoll_poll_disable(dev);
1745
1746 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1747
1748 clear_bit(__LINK_STATE_START, &dev->state);
1749
1750 /* Synchronize to scheduled poll. We cannot touch poll list, it
1751 * can be even on different cpu. So just clear netif_running().
1752 *
1753 * dev->stop() will invoke napi_disable() on all of it's
1754 * napi_struct instances on this device.
1755 */
1756 smp_mb__after_atomic(); /* Commit netif_running(). */
1757 }
1758
1759 dev_deactivate_many(head);
1760
1761 list_for_each_entry(dev, head, close_list) {
1762 const struct net_device_ops *ops = dev->netdev_ops;
1763
1764 /*
1765 * Call the device specific close. This cannot fail.
1766 * Only if device is UP
1767 *
1768 * We allow it to be called even after a DETACH hot-plug
1769 * event.
1770 */
1771
1772 netdev_ops_assert_locked(dev);
1773
1774 if (ops->ndo_stop)
1775 ops->ndo_stop(dev);
1776
1777 netif_set_up(dev, false);
1778 netpoll_poll_enable(dev);
1779 }
1780 }
1781
__dev_close(struct net_device * dev)1782 static void __dev_close(struct net_device *dev)
1783 {
1784 LIST_HEAD(single);
1785
1786 list_add(&dev->close_list, &single);
1787 __dev_close_many(&single);
1788 list_del(&single);
1789 }
1790
netif_close_many(struct list_head * head,bool unlink)1791 void netif_close_many(struct list_head *head, bool unlink)
1792 {
1793 struct net_device *dev, *tmp;
1794
1795 /* Remove the devices that don't need to be closed */
1796 list_for_each_entry_safe(dev, tmp, head, close_list)
1797 if (!(dev->flags & IFF_UP))
1798 list_del_init(&dev->close_list);
1799
1800 __dev_close_many(head);
1801
1802 list_for_each_entry_safe(dev, tmp, head, close_list) {
1803 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1804 call_netdevice_notifiers(NETDEV_DOWN, dev);
1805 if (unlink)
1806 list_del_init(&dev->close_list);
1807 }
1808 }
1809 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL");
1810
netif_close(struct net_device * dev)1811 void netif_close(struct net_device *dev)
1812 {
1813 if (dev->flags & IFF_UP) {
1814 LIST_HEAD(single);
1815
1816 list_add(&dev->close_list, &single);
1817 netif_close_many(&single, true);
1818 list_del(&single);
1819 }
1820 }
1821 EXPORT_SYMBOL(netif_close);
1822
netif_disable_lro(struct net_device * dev)1823 void netif_disable_lro(struct net_device *dev)
1824 {
1825 struct net_device *lower_dev;
1826 struct list_head *iter;
1827
1828 dev->wanted_features &= ~NETIF_F_LRO;
1829 netdev_update_features(dev);
1830
1831 if (unlikely(dev->features & NETIF_F_LRO))
1832 netdev_WARN(dev, "failed to disable LRO!\n");
1833
1834 netdev_for_each_lower_dev(dev, lower_dev, iter) {
1835 netdev_lock_ops(lower_dev);
1836 netif_disable_lro(lower_dev);
1837 netdev_unlock_ops(lower_dev);
1838 }
1839 }
1840 EXPORT_IPV6_MOD(netif_disable_lro);
1841
1842 /**
1843 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1844 * @dev: device
1845 *
1846 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1847 * called under RTNL. This is needed if Generic XDP is installed on
1848 * the device.
1849 */
dev_disable_gro_hw(struct net_device * dev)1850 static void dev_disable_gro_hw(struct net_device *dev)
1851 {
1852 dev->wanted_features &= ~NETIF_F_GRO_HW;
1853 netdev_update_features(dev);
1854
1855 if (unlikely(dev->features & NETIF_F_GRO_HW))
1856 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1857 }
1858
netdev_cmd_to_name(enum netdev_cmd cmd)1859 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1860 {
1861 #define N(val) \
1862 case NETDEV_##val: \
1863 return "NETDEV_" __stringify(val);
1864 switch (cmd) {
1865 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1866 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1867 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1868 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1869 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1870 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1871 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1872 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1873 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1874 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1875 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1876 N(XDP_FEAT_CHANGE)
1877 }
1878 #undef N
1879 return "UNKNOWN_NETDEV_EVENT";
1880 }
1881 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1882
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1883 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1884 struct net_device *dev)
1885 {
1886 struct netdev_notifier_info info = {
1887 .dev = dev,
1888 };
1889
1890 return nb->notifier_call(nb, val, &info);
1891 }
1892
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1893 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1894 struct net_device *dev)
1895 {
1896 int err;
1897
1898 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1899 err = notifier_to_errno(err);
1900 if (err)
1901 return err;
1902
1903 if (!(dev->flags & IFF_UP))
1904 return 0;
1905
1906 call_netdevice_notifier(nb, NETDEV_UP, dev);
1907 return 0;
1908 }
1909
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1910 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1911 struct net_device *dev)
1912 {
1913 if (dev->flags & IFF_UP) {
1914 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1915 dev);
1916 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1917 }
1918 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1919 }
1920
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1921 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1922 struct net *net)
1923 {
1924 struct net_device *dev;
1925 int err;
1926
1927 for_each_netdev(net, dev) {
1928 netdev_lock_ops(dev);
1929 err = call_netdevice_register_notifiers(nb, dev);
1930 netdev_unlock_ops(dev);
1931 if (err)
1932 goto rollback;
1933 }
1934 return 0;
1935
1936 rollback:
1937 for_each_netdev_continue_reverse(net, dev)
1938 call_netdevice_unregister_notifiers(nb, dev);
1939 return err;
1940 }
1941
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1942 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1943 struct net *net)
1944 {
1945 struct net_device *dev;
1946
1947 for_each_netdev(net, dev)
1948 call_netdevice_unregister_notifiers(nb, dev);
1949 }
1950
1951 static int dev_boot_phase = 1;
1952
1953 /**
1954 * register_netdevice_notifier - register a network notifier block
1955 * @nb: notifier
1956 *
1957 * Register a notifier to be called when network device events occur.
1958 * The notifier passed is linked into the kernel structures and must
1959 * not be reused until it has been unregistered. A negative errno code
1960 * is returned on a failure.
1961 *
1962 * When registered all registration and up events are replayed
1963 * to the new notifier to allow device to have a race free
1964 * view of the network device list.
1965 */
1966
register_netdevice_notifier(struct notifier_block * nb)1967 int register_netdevice_notifier(struct notifier_block *nb)
1968 {
1969 struct net *net;
1970 int err;
1971
1972 /* Close race with setup_net() and cleanup_net() */
1973 down_write(&pernet_ops_rwsem);
1974
1975 /* When RTNL is removed, we need protection for netdev_chain. */
1976 rtnl_lock();
1977
1978 err = raw_notifier_chain_register(&netdev_chain, nb);
1979 if (err)
1980 goto unlock;
1981 if (dev_boot_phase)
1982 goto unlock;
1983 for_each_net(net) {
1984 __rtnl_net_lock(net);
1985 err = call_netdevice_register_net_notifiers(nb, net);
1986 __rtnl_net_unlock(net);
1987 if (err)
1988 goto rollback;
1989 }
1990
1991 unlock:
1992 rtnl_unlock();
1993 up_write(&pernet_ops_rwsem);
1994 return err;
1995
1996 rollback:
1997 for_each_net_continue_reverse(net) {
1998 __rtnl_net_lock(net);
1999 call_netdevice_unregister_net_notifiers(nb, net);
2000 __rtnl_net_unlock(net);
2001 }
2002
2003 raw_notifier_chain_unregister(&netdev_chain, nb);
2004 goto unlock;
2005 }
2006 EXPORT_SYMBOL(register_netdevice_notifier);
2007
2008 /**
2009 * unregister_netdevice_notifier - unregister a network notifier block
2010 * @nb: notifier
2011 *
2012 * Unregister a notifier previously registered by
2013 * register_netdevice_notifier(). The notifier is unlinked into the
2014 * kernel structures and may then be reused. A negative errno code
2015 * is returned on a failure.
2016 *
2017 * After unregistering unregister and down device events are synthesized
2018 * for all devices on the device list to the removed notifier to remove
2019 * the need for special case cleanup code.
2020 */
2021
unregister_netdevice_notifier(struct notifier_block * nb)2022 int unregister_netdevice_notifier(struct notifier_block *nb)
2023 {
2024 struct net *net;
2025 int err;
2026
2027 /* Close race with setup_net() and cleanup_net() */
2028 down_write(&pernet_ops_rwsem);
2029 rtnl_lock();
2030 err = raw_notifier_chain_unregister(&netdev_chain, nb);
2031 if (err)
2032 goto unlock;
2033
2034 for_each_net(net) {
2035 __rtnl_net_lock(net);
2036 call_netdevice_unregister_net_notifiers(nb, net);
2037 __rtnl_net_unlock(net);
2038 }
2039
2040 unlock:
2041 rtnl_unlock();
2042 up_write(&pernet_ops_rwsem);
2043 return err;
2044 }
2045 EXPORT_SYMBOL(unregister_netdevice_notifier);
2046
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)2047 static int __register_netdevice_notifier_net(struct net *net,
2048 struct notifier_block *nb,
2049 bool ignore_call_fail)
2050 {
2051 int err;
2052
2053 err = raw_notifier_chain_register(&net->netdev_chain, nb);
2054 if (err)
2055 return err;
2056 if (dev_boot_phase)
2057 return 0;
2058
2059 err = call_netdevice_register_net_notifiers(nb, net);
2060 if (err && !ignore_call_fail)
2061 goto chain_unregister;
2062
2063 return 0;
2064
2065 chain_unregister:
2066 raw_notifier_chain_unregister(&net->netdev_chain, nb);
2067 return err;
2068 }
2069
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2070 static int __unregister_netdevice_notifier_net(struct net *net,
2071 struct notifier_block *nb)
2072 {
2073 int err;
2074
2075 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2076 if (err)
2077 return err;
2078
2079 call_netdevice_unregister_net_notifiers(nb, net);
2080 return 0;
2081 }
2082
2083 /**
2084 * register_netdevice_notifier_net - register a per-netns network notifier block
2085 * @net: network namespace
2086 * @nb: notifier
2087 *
2088 * Register a notifier to be called when network device events occur.
2089 * The notifier passed is linked into the kernel structures and must
2090 * not be reused until it has been unregistered. A negative errno code
2091 * is returned on a failure.
2092 *
2093 * When registered all registration and up events are replayed
2094 * to the new notifier to allow device to have a race free
2095 * view of the network device list.
2096 */
2097
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2098 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2099 {
2100 int err;
2101
2102 rtnl_net_lock(net);
2103 err = __register_netdevice_notifier_net(net, nb, false);
2104 rtnl_net_unlock(net);
2105
2106 return err;
2107 }
2108 EXPORT_SYMBOL(register_netdevice_notifier_net);
2109
2110 /**
2111 * unregister_netdevice_notifier_net - unregister a per-netns
2112 * network notifier block
2113 * @net: network namespace
2114 * @nb: notifier
2115 *
2116 * Unregister a notifier previously registered by
2117 * register_netdevice_notifier_net(). The notifier is unlinked from the
2118 * kernel structures and may then be reused. A negative errno code
2119 * is returned on a failure.
2120 *
2121 * After unregistering unregister and down device events are synthesized
2122 * for all devices on the device list to the removed notifier to remove
2123 * the need for special case cleanup code.
2124 */
2125
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2126 int unregister_netdevice_notifier_net(struct net *net,
2127 struct notifier_block *nb)
2128 {
2129 int err;
2130
2131 rtnl_net_lock(net);
2132 err = __unregister_netdevice_notifier_net(net, nb);
2133 rtnl_net_unlock(net);
2134
2135 return err;
2136 }
2137 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2138
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)2139 static void __move_netdevice_notifier_net(struct net *src_net,
2140 struct net *dst_net,
2141 struct notifier_block *nb)
2142 {
2143 __unregister_netdevice_notifier_net(src_net, nb);
2144 __register_netdevice_notifier_net(dst_net, nb, true);
2145 }
2146
rtnl_net_dev_lock(struct net_device * dev)2147 static void rtnl_net_dev_lock(struct net_device *dev)
2148 {
2149 bool again;
2150
2151 do {
2152 struct net *net;
2153
2154 again = false;
2155
2156 /* netns might be being dismantled. */
2157 rcu_read_lock();
2158 net = dev_net_rcu(dev);
2159 net_passive_inc(net);
2160 rcu_read_unlock();
2161
2162 rtnl_net_lock(net);
2163
2164 #ifdef CONFIG_NET_NS
2165 /* dev might have been moved to another netns. */
2166 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2167 rtnl_net_unlock(net);
2168 net_passive_dec(net);
2169 again = true;
2170 }
2171 #endif
2172 } while (again);
2173 }
2174
rtnl_net_dev_unlock(struct net_device * dev)2175 static void rtnl_net_dev_unlock(struct net_device *dev)
2176 {
2177 struct net *net = dev_net(dev);
2178
2179 rtnl_net_unlock(net);
2180 net_passive_dec(net);
2181 }
2182
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2183 int register_netdevice_notifier_dev_net(struct net_device *dev,
2184 struct notifier_block *nb,
2185 struct netdev_net_notifier *nn)
2186 {
2187 int err;
2188
2189 rtnl_net_dev_lock(dev);
2190 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2191 if (!err) {
2192 nn->nb = nb;
2193 list_add(&nn->list, &dev->net_notifier_list);
2194 }
2195 rtnl_net_dev_unlock(dev);
2196
2197 return err;
2198 }
2199 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2200
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2201 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2202 struct notifier_block *nb,
2203 struct netdev_net_notifier *nn)
2204 {
2205 int err;
2206
2207 rtnl_net_dev_lock(dev);
2208 list_del(&nn->list);
2209 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2210 rtnl_net_dev_unlock(dev);
2211
2212 return err;
2213 }
2214 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2215
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2216 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2217 struct net *net)
2218 {
2219 struct netdev_net_notifier *nn;
2220
2221 list_for_each_entry(nn, &dev->net_notifier_list, list)
2222 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2223 }
2224
2225 /**
2226 * call_netdevice_notifiers_info - call all network notifier blocks
2227 * @val: value passed unmodified to notifier function
2228 * @info: notifier information data
2229 *
2230 * Call all network notifier blocks. Parameters and return value
2231 * are as for raw_notifier_call_chain().
2232 */
2233
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2234 int call_netdevice_notifiers_info(unsigned long val,
2235 struct netdev_notifier_info *info)
2236 {
2237 struct net *net = dev_net(info->dev);
2238 int ret;
2239
2240 ASSERT_RTNL();
2241
2242 /* Run per-netns notifier block chain first, then run the global one.
2243 * Hopefully, one day, the global one is going to be removed after
2244 * all notifier block registrators get converted to be per-netns.
2245 */
2246 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2247 if (ret & NOTIFY_STOP_MASK)
2248 return ret;
2249 return raw_notifier_call_chain(&netdev_chain, val, info);
2250 }
2251
2252 /**
2253 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2254 * for and rollback on error
2255 * @val_up: value passed unmodified to notifier function
2256 * @val_down: value passed unmodified to the notifier function when
2257 * recovering from an error on @val_up
2258 * @info: notifier information data
2259 *
2260 * Call all per-netns network notifier blocks, but not notifier blocks on
2261 * the global notifier chain. Parameters and return value are as for
2262 * raw_notifier_call_chain_robust().
2263 */
2264
2265 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2266 call_netdevice_notifiers_info_robust(unsigned long val_up,
2267 unsigned long val_down,
2268 struct netdev_notifier_info *info)
2269 {
2270 struct net *net = dev_net(info->dev);
2271
2272 ASSERT_RTNL();
2273
2274 return raw_notifier_call_chain_robust(&net->netdev_chain,
2275 val_up, val_down, info);
2276 }
2277
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2278 static int call_netdevice_notifiers_extack(unsigned long val,
2279 struct net_device *dev,
2280 struct netlink_ext_ack *extack)
2281 {
2282 struct netdev_notifier_info info = {
2283 .dev = dev,
2284 .extack = extack,
2285 };
2286
2287 return call_netdevice_notifiers_info(val, &info);
2288 }
2289
2290 /**
2291 * call_netdevice_notifiers - call all network notifier blocks
2292 * @val: value passed unmodified to notifier function
2293 * @dev: net_device pointer passed unmodified to notifier function
2294 *
2295 * Call all network notifier blocks. Parameters and return value
2296 * are as for raw_notifier_call_chain().
2297 */
2298
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2299 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2300 {
2301 return call_netdevice_notifiers_extack(val, dev, NULL);
2302 }
2303 EXPORT_SYMBOL(call_netdevice_notifiers);
2304
2305 /**
2306 * call_netdevice_notifiers_mtu - call all network notifier blocks
2307 * @val: value passed unmodified to notifier function
2308 * @dev: net_device pointer passed unmodified to notifier function
2309 * @arg: additional u32 argument passed to the notifier function
2310 *
2311 * Call all network notifier blocks. Parameters and return value
2312 * are as for raw_notifier_call_chain().
2313 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2314 static int call_netdevice_notifiers_mtu(unsigned long val,
2315 struct net_device *dev, u32 arg)
2316 {
2317 struct netdev_notifier_info_ext info = {
2318 .info.dev = dev,
2319 .ext.mtu = arg,
2320 };
2321
2322 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2323
2324 return call_netdevice_notifiers_info(val, &info.info);
2325 }
2326
2327 #ifdef CONFIG_NET_INGRESS
2328 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2329
net_inc_ingress_queue(void)2330 void net_inc_ingress_queue(void)
2331 {
2332 static_branch_inc(&ingress_needed_key);
2333 }
2334 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2335
net_dec_ingress_queue(void)2336 void net_dec_ingress_queue(void)
2337 {
2338 static_branch_dec(&ingress_needed_key);
2339 }
2340 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2341 #endif
2342
2343 #ifdef CONFIG_NET_EGRESS
2344 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2345
net_inc_egress_queue(void)2346 void net_inc_egress_queue(void)
2347 {
2348 static_branch_inc(&egress_needed_key);
2349 }
2350 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2351
net_dec_egress_queue(void)2352 void net_dec_egress_queue(void)
2353 {
2354 static_branch_dec(&egress_needed_key);
2355 }
2356 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2357 #endif
2358
2359 #ifdef CONFIG_NET_CLS_ACT
2360 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2361 EXPORT_SYMBOL(tcf_sw_enabled_key);
2362 #endif
2363
2364 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2365 EXPORT_SYMBOL(netstamp_needed_key);
2366 #ifdef CONFIG_JUMP_LABEL
2367 static atomic_t netstamp_needed_deferred;
2368 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2369 static void netstamp_clear(struct work_struct *work)
2370 {
2371 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2372 int wanted;
2373
2374 wanted = atomic_add_return(deferred, &netstamp_wanted);
2375 if (wanted > 0)
2376 static_branch_enable(&netstamp_needed_key);
2377 else
2378 static_branch_disable(&netstamp_needed_key);
2379 }
2380 static DECLARE_WORK(netstamp_work, netstamp_clear);
2381 #endif
2382
net_enable_timestamp(void)2383 void net_enable_timestamp(void)
2384 {
2385 #ifdef CONFIG_JUMP_LABEL
2386 int wanted = atomic_read(&netstamp_wanted);
2387
2388 while (wanted > 0) {
2389 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2390 return;
2391 }
2392 atomic_inc(&netstamp_needed_deferred);
2393 schedule_work(&netstamp_work);
2394 #else
2395 static_branch_inc(&netstamp_needed_key);
2396 #endif
2397 }
2398 EXPORT_SYMBOL(net_enable_timestamp);
2399
net_disable_timestamp(void)2400 void net_disable_timestamp(void)
2401 {
2402 #ifdef CONFIG_JUMP_LABEL
2403 int wanted = atomic_read(&netstamp_wanted);
2404
2405 while (wanted > 1) {
2406 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2407 return;
2408 }
2409 atomic_dec(&netstamp_needed_deferred);
2410 schedule_work(&netstamp_work);
2411 #else
2412 static_branch_dec(&netstamp_needed_key);
2413 #endif
2414 }
2415 EXPORT_SYMBOL(net_disable_timestamp);
2416
net_timestamp_set(struct sk_buff * skb)2417 static inline void net_timestamp_set(struct sk_buff *skb)
2418 {
2419 skb->tstamp = 0;
2420 skb->tstamp_type = SKB_CLOCK_REALTIME;
2421 if (static_branch_unlikely(&netstamp_needed_key))
2422 skb->tstamp = ktime_get_real();
2423 }
2424
2425 #define net_timestamp_check(COND, SKB) \
2426 if (static_branch_unlikely(&netstamp_needed_key)) { \
2427 if ((COND) && !(SKB)->tstamp) \
2428 (SKB)->tstamp = ktime_get_real(); \
2429 } \
2430
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2431 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2432 {
2433 return __is_skb_forwardable(dev, skb, true);
2434 }
2435 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2436
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2437 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2438 bool check_mtu)
2439 {
2440 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2441
2442 if (likely(!ret)) {
2443 skb->protocol = eth_type_trans(skb, dev);
2444 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2445 }
2446
2447 return ret;
2448 }
2449
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2450 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2451 {
2452 return __dev_forward_skb2(dev, skb, true);
2453 }
2454 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2455
2456 /**
2457 * dev_forward_skb - loopback an skb to another netif
2458 *
2459 * @dev: destination network device
2460 * @skb: buffer to forward
2461 *
2462 * return values:
2463 * NET_RX_SUCCESS (no congestion)
2464 * NET_RX_DROP (packet was dropped, but freed)
2465 *
2466 * dev_forward_skb can be used for injecting an skb from the
2467 * start_xmit function of one device into the receive queue
2468 * of another device.
2469 *
2470 * The receiving device may be in another namespace, so
2471 * we have to clear all information in the skb that could
2472 * impact namespace isolation.
2473 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2474 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2475 {
2476 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2477 }
2478 EXPORT_SYMBOL_GPL(dev_forward_skb);
2479
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2480 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2481 {
2482 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2483 }
2484
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2485 static int deliver_skb(struct sk_buff *skb,
2486 struct packet_type *pt_prev,
2487 struct net_device *orig_dev)
2488 {
2489 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2490 return -ENOMEM;
2491 refcount_inc(&skb->users);
2492 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2493 }
2494
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2495 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2496 struct packet_type **pt,
2497 struct net_device *orig_dev,
2498 __be16 type,
2499 struct list_head *ptype_list)
2500 {
2501 struct packet_type *ptype, *pt_prev = *pt;
2502
2503 list_for_each_entry_rcu(ptype, ptype_list, list) {
2504 if (ptype->type != type)
2505 continue;
2506 if (unlikely(pt_prev))
2507 deliver_skb(skb, pt_prev, orig_dev);
2508 pt_prev = ptype;
2509 }
2510 *pt = pt_prev;
2511 }
2512
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2513 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2514 {
2515 if (!ptype->af_packet_priv || !skb->sk)
2516 return false;
2517
2518 if (ptype->id_match)
2519 return ptype->id_match(ptype, skb->sk);
2520 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2521 return true;
2522
2523 return false;
2524 }
2525
2526 /**
2527 * dev_nit_active_rcu - return true if any network interface taps are in use
2528 *
2529 * The caller must hold the RCU lock
2530 *
2531 * @dev: network device to check for the presence of taps
2532 */
dev_nit_active_rcu(const struct net_device * dev)2533 bool dev_nit_active_rcu(const struct net_device *dev)
2534 {
2535 /* Callers may hold either RCU or RCU BH lock */
2536 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2537
2538 return !list_empty(&dev_net(dev)->ptype_all) ||
2539 !list_empty(&dev->ptype_all);
2540 }
2541 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2542
2543 /*
2544 * Support routine. Sends outgoing frames to any network
2545 * taps currently in use.
2546 */
2547
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2548 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2549 {
2550 struct packet_type *ptype, *pt_prev = NULL;
2551 struct list_head *ptype_list;
2552 struct sk_buff *skb2 = NULL;
2553
2554 rcu_read_lock();
2555 ptype_list = &dev_net_rcu(dev)->ptype_all;
2556 again:
2557 list_for_each_entry_rcu(ptype, ptype_list, list) {
2558 if (READ_ONCE(ptype->ignore_outgoing))
2559 continue;
2560
2561 /* Never send packets back to the socket
2562 * they originated from - MvS (miquels@drinkel.ow.org)
2563 */
2564 if (skb_loop_sk(ptype, skb))
2565 continue;
2566
2567 if (unlikely(pt_prev)) {
2568 deliver_skb(skb2, pt_prev, skb->dev);
2569 pt_prev = ptype;
2570 continue;
2571 }
2572
2573 /* need to clone skb, done only once */
2574 skb2 = skb_clone(skb, GFP_ATOMIC);
2575 if (!skb2)
2576 goto out_unlock;
2577
2578 net_timestamp_set(skb2);
2579
2580 /* skb->nh should be correctly
2581 * set by sender, so that the second statement is
2582 * just protection against buggy protocols.
2583 */
2584 skb_reset_mac_header(skb2);
2585
2586 if (skb_network_header(skb2) < skb2->data ||
2587 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2588 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2589 ntohs(skb2->protocol),
2590 dev->name);
2591 skb_reset_network_header(skb2);
2592 }
2593
2594 skb2->transport_header = skb2->network_header;
2595 skb2->pkt_type = PACKET_OUTGOING;
2596 pt_prev = ptype;
2597 }
2598
2599 if (ptype_list != &dev->ptype_all) {
2600 ptype_list = &dev->ptype_all;
2601 goto again;
2602 }
2603 out_unlock:
2604 if (pt_prev) {
2605 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2606 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2607 else
2608 kfree_skb(skb2);
2609 }
2610 rcu_read_unlock();
2611 }
2612 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2613
2614 /**
2615 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2616 * @dev: Network device
2617 * @txq: number of queues available
2618 *
2619 * If real_num_tx_queues is changed the tc mappings may no longer be
2620 * valid. To resolve this verify the tc mapping remains valid and if
2621 * not NULL the mapping. With no priorities mapping to this
2622 * offset/count pair it will no longer be used. In the worst case TC0
2623 * is invalid nothing can be done so disable priority mappings. If is
2624 * expected that drivers will fix this mapping if they can before
2625 * calling netif_set_real_num_tx_queues.
2626 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2627 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2628 {
2629 int i;
2630 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2631
2632 /* If TC0 is invalidated disable TC mapping */
2633 if (tc->offset + tc->count > txq) {
2634 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2635 dev->num_tc = 0;
2636 return;
2637 }
2638
2639 /* Invalidated prio to tc mappings set to TC0 */
2640 for (i = 1; i < TC_BITMASK + 1; i++) {
2641 int q = netdev_get_prio_tc_map(dev, i);
2642
2643 tc = &dev->tc_to_txq[q];
2644 if (tc->offset + tc->count > txq) {
2645 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2646 i, q);
2647 netdev_set_prio_tc_map(dev, i, 0);
2648 }
2649 }
2650 }
2651
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2652 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2653 {
2654 if (dev->num_tc) {
2655 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2656 int i;
2657
2658 /* walk through the TCs and see if it falls into any of them */
2659 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2660 if ((txq - tc->offset) < tc->count)
2661 return i;
2662 }
2663
2664 /* didn't find it, just return -1 to indicate no match */
2665 return -1;
2666 }
2667
2668 return 0;
2669 }
2670 EXPORT_SYMBOL(netdev_txq_to_tc);
2671
2672 #ifdef CONFIG_XPS
2673 static struct static_key xps_needed __read_mostly;
2674 static struct static_key xps_rxqs_needed __read_mostly;
2675 static DEFINE_MUTEX(xps_map_mutex);
2676 #define xmap_dereference(P) \
2677 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2678
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2679 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2680 struct xps_dev_maps *old_maps, int tci, u16 index)
2681 {
2682 struct xps_map *map = NULL;
2683 int pos;
2684
2685 map = xmap_dereference(dev_maps->attr_map[tci]);
2686 if (!map)
2687 return false;
2688
2689 for (pos = map->len; pos--;) {
2690 if (map->queues[pos] != index)
2691 continue;
2692
2693 if (map->len > 1) {
2694 map->queues[pos] = map->queues[--map->len];
2695 break;
2696 }
2697
2698 if (old_maps)
2699 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2700 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2701 kfree_rcu(map, rcu);
2702 return false;
2703 }
2704
2705 return true;
2706 }
2707
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2708 static bool remove_xps_queue_cpu(struct net_device *dev,
2709 struct xps_dev_maps *dev_maps,
2710 int cpu, u16 offset, u16 count)
2711 {
2712 int num_tc = dev_maps->num_tc;
2713 bool active = false;
2714 int tci;
2715
2716 for (tci = cpu * num_tc; num_tc--; tci++) {
2717 int i, j;
2718
2719 for (i = count, j = offset; i--; j++) {
2720 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2721 break;
2722 }
2723
2724 active |= i < 0;
2725 }
2726
2727 return active;
2728 }
2729
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2730 static void reset_xps_maps(struct net_device *dev,
2731 struct xps_dev_maps *dev_maps,
2732 enum xps_map_type type)
2733 {
2734 static_key_slow_dec_cpuslocked(&xps_needed);
2735 if (type == XPS_RXQS)
2736 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2737
2738 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2739
2740 kfree_rcu(dev_maps, rcu);
2741 }
2742
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2743 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2744 u16 offset, u16 count)
2745 {
2746 struct xps_dev_maps *dev_maps;
2747 bool active = false;
2748 int i, j;
2749
2750 dev_maps = xmap_dereference(dev->xps_maps[type]);
2751 if (!dev_maps)
2752 return;
2753
2754 for (j = 0; j < dev_maps->nr_ids; j++)
2755 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2756 if (!active)
2757 reset_xps_maps(dev, dev_maps, type);
2758
2759 if (type == XPS_CPUS) {
2760 for (i = offset + (count - 1); count--; i--)
2761 netdev_queue_numa_node_write(
2762 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2763 }
2764 }
2765
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2766 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2767 u16 count)
2768 {
2769 if (!static_key_false(&xps_needed))
2770 return;
2771
2772 cpus_read_lock();
2773 mutex_lock(&xps_map_mutex);
2774
2775 if (static_key_false(&xps_rxqs_needed))
2776 clean_xps_maps(dev, XPS_RXQS, offset, count);
2777
2778 clean_xps_maps(dev, XPS_CPUS, offset, count);
2779
2780 mutex_unlock(&xps_map_mutex);
2781 cpus_read_unlock();
2782 }
2783
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2784 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2785 {
2786 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2787 }
2788
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2789 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2790 u16 index, bool is_rxqs_map)
2791 {
2792 struct xps_map *new_map;
2793 int alloc_len = XPS_MIN_MAP_ALLOC;
2794 int i, pos;
2795
2796 for (pos = 0; map && pos < map->len; pos++) {
2797 if (map->queues[pos] != index)
2798 continue;
2799 return map;
2800 }
2801
2802 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2803 if (map) {
2804 if (pos < map->alloc_len)
2805 return map;
2806
2807 alloc_len = map->alloc_len * 2;
2808 }
2809
2810 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2811 * map
2812 */
2813 if (is_rxqs_map)
2814 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2815 else
2816 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2817 cpu_to_node(attr_index));
2818 if (!new_map)
2819 return NULL;
2820
2821 for (i = 0; i < pos; i++)
2822 new_map->queues[i] = map->queues[i];
2823 new_map->alloc_len = alloc_len;
2824 new_map->len = pos;
2825
2826 return new_map;
2827 }
2828
2829 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2830 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2831 struct xps_dev_maps *new_dev_maps, int index,
2832 int tc, bool skip_tc)
2833 {
2834 int i, tci = index * dev_maps->num_tc;
2835 struct xps_map *map;
2836
2837 /* copy maps belonging to foreign traffic classes */
2838 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2839 if (i == tc && skip_tc)
2840 continue;
2841
2842 /* fill in the new device map from the old device map */
2843 map = xmap_dereference(dev_maps->attr_map[tci]);
2844 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2845 }
2846 }
2847
2848 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2849 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2850 u16 index, enum xps_map_type type)
2851 {
2852 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2853 const unsigned long *online_mask = NULL;
2854 bool active = false, copy = false;
2855 int i, j, tci, numa_node_id = -2;
2856 int maps_sz, num_tc = 1, tc = 0;
2857 struct xps_map *map, *new_map;
2858 unsigned int nr_ids;
2859
2860 WARN_ON_ONCE(index >= dev->num_tx_queues);
2861
2862 if (dev->num_tc) {
2863 /* Do not allow XPS on subordinate device directly */
2864 num_tc = dev->num_tc;
2865 if (num_tc < 0)
2866 return -EINVAL;
2867
2868 /* If queue belongs to subordinate dev use its map */
2869 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2870
2871 tc = netdev_txq_to_tc(dev, index);
2872 if (tc < 0)
2873 return -EINVAL;
2874 }
2875
2876 mutex_lock(&xps_map_mutex);
2877
2878 dev_maps = xmap_dereference(dev->xps_maps[type]);
2879 if (type == XPS_RXQS) {
2880 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2881 nr_ids = dev->num_rx_queues;
2882 } else {
2883 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2884 if (num_possible_cpus() > 1)
2885 online_mask = cpumask_bits(cpu_online_mask);
2886 nr_ids = nr_cpu_ids;
2887 }
2888
2889 if (maps_sz < L1_CACHE_BYTES)
2890 maps_sz = L1_CACHE_BYTES;
2891
2892 /* The old dev_maps could be larger or smaller than the one we're
2893 * setting up now, as dev->num_tc or nr_ids could have been updated in
2894 * between. We could try to be smart, but let's be safe instead and only
2895 * copy foreign traffic classes if the two map sizes match.
2896 */
2897 if (dev_maps &&
2898 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2899 copy = true;
2900
2901 /* allocate memory for queue storage */
2902 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2903 j < nr_ids;) {
2904 if (!new_dev_maps) {
2905 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2906 if (!new_dev_maps) {
2907 mutex_unlock(&xps_map_mutex);
2908 return -ENOMEM;
2909 }
2910
2911 new_dev_maps->nr_ids = nr_ids;
2912 new_dev_maps->num_tc = num_tc;
2913 }
2914
2915 tci = j * num_tc + tc;
2916 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2917
2918 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2919 if (!map)
2920 goto error;
2921
2922 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2923 }
2924
2925 if (!new_dev_maps)
2926 goto out_no_new_maps;
2927
2928 if (!dev_maps) {
2929 /* Increment static keys at most once per type */
2930 static_key_slow_inc_cpuslocked(&xps_needed);
2931 if (type == XPS_RXQS)
2932 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2933 }
2934
2935 for (j = 0; j < nr_ids; j++) {
2936 bool skip_tc = false;
2937
2938 tci = j * num_tc + tc;
2939 if (netif_attr_test_mask(j, mask, nr_ids) &&
2940 netif_attr_test_online(j, online_mask, nr_ids)) {
2941 /* add tx-queue to CPU/rx-queue maps */
2942 int pos = 0;
2943
2944 skip_tc = true;
2945
2946 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2947 while ((pos < map->len) && (map->queues[pos] != index))
2948 pos++;
2949
2950 if (pos == map->len)
2951 map->queues[map->len++] = index;
2952 #ifdef CONFIG_NUMA
2953 if (type == XPS_CPUS) {
2954 if (numa_node_id == -2)
2955 numa_node_id = cpu_to_node(j);
2956 else if (numa_node_id != cpu_to_node(j))
2957 numa_node_id = -1;
2958 }
2959 #endif
2960 }
2961
2962 if (copy)
2963 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2964 skip_tc);
2965 }
2966
2967 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2968
2969 /* Cleanup old maps */
2970 if (!dev_maps)
2971 goto out_no_old_maps;
2972
2973 for (j = 0; j < dev_maps->nr_ids; j++) {
2974 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2975 map = xmap_dereference(dev_maps->attr_map[tci]);
2976 if (!map)
2977 continue;
2978
2979 if (copy) {
2980 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2981 if (map == new_map)
2982 continue;
2983 }
2984
2985 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2986 kfree_rcu(map, rcu);
2987 }
2988 }
2989
2990 old_dev_maps = dev_maps;
2991
2992 out_no_old_maps:
2993 dev_maps = new_dev_maps;
2994 active = true;
2995
2996 out_no_new_maps:
2997 if (type == XPS_CPUS)
2998 /* update Tx queue numa node */
2999 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
3000 (numa_node_id >= 0) ?
3001 numa_node_id : NUMA_NO_NODE);
3002
3003 if (!dev_maps)
3004 goto out_no_maps;
3005
3006 /* removes tx-queue from unused CPUs/rx-queues */
3007 for (j = 0; j < dev_maps->nr_ids; j++) {
3008 tci = j * dev_maps->num_tc;
3009
3010 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
3011 if (i == tc &&
3012 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
3013 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
3014 continue;
3015
3016 active |= remove_xps_queue(dev_maps,
3017 copy ? old_dev_maps : NULL,
3018 tci, index);
3019 }
3020 }
3021
3022 if (old_dev_maps)
3023 kfree_rcu(old_dev_maps, rcu);
3024
3025 /* free map if not active */
3026 if (!active)
3027 reset_xps_maps(dev, dev_maps, type);
3028
3029 out_no_maps:
3030 mutex_unlock(&xps_map_mutex);
3031
3032 return 0;
3033 error:
3034 /* remove any maps that we added */
3035 for (j = 0; j < nr_ids; j++) {
3036 for (i = num_tc, tci = j * num_tc; i--; tci++) {
3037 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3038 map = copy ?
3039 xmap_dereference(dev_maps->attr_map[tci]) :
3040 NULL;
3041 if (new_map && new_map != map)
3042 kfree(new_map);
3043 }
3044 }
3045
3046 mutex_unlock(&xps_map_mutex);
3047
3048 kfree(new_dev_maps);
3049 return -ENOMEM;
3050 }
3051 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3052
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3053 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3054 u16 index)
3055 {
3056 int ret;
3057
3058 cpus_read_lock();
3059 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3060 cpus_read_unlock();
3061
3062 return ret;
3063 }
3064 EXPORT_SYMBOL(netif_set_xps_queue);
3065
3066 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)3067 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3068 {
3069 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3070
3071 /* Unbind any subordinate channels */
3072 while (txq-- != &dev->_tx[0]) {
3073 if (txq->sb_dev)
3074 netdev_unbind_sb_channel(dev, txq->sb_dev);
3075 }
3076 }
3077
netdev_reset_tc(struct net_device * dev)3078 void netdev_reset_tc(struct net_device *dev)
3079 {
3080 #ifdef CONFIG_XPS
3081 netif_reset_xps_queues_gt(dev, 0);
3082 #endif
3083 netdev_unbind_all_sb_channels(dev);
3084
3085 /* Reset TC configuration of device */
3086 dev->num_tc = 0;
3087 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3088 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3089 }
3090 EXPORT_SYMBOL(netdev_reset_tc);
3091
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)3092 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3093 {
3094 if (tc >= dev->num_tc)
3095 return -EINVAL;
3096
3097 #ifdef CONFIG_XPS
3098 netif_reset_xps_queues(dev, offset, count);
3099 #endif
3100 dev->tc_to_txq[tc].count = count;
3101 dev->tc_to_txq[tc].offset = offset;
3102 return 0;
3103 }
3104 EXPORT_SYMBOL(netdev_set_tc_queue);
3105
netdev_set_num_tc(struct net_device * dev,u8 num_tc)3106 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3107 {
3108 if (num_tc > TC_MAX_QUEUE)
3109 return -EINVAL;
3110
3111 #ifdef CONFIG_XPS
3112 netif_reset_xps_queues_gt(dev, 0);
3113 #endif
3114 netdev_unbind_all_sb_channels(dev);
3115
3116 dev->num_tc = num_tc;
3117 return 0;
3118 }
3119 EXPORT_SYMBOL(netdev_set_num_tc);
3120
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)3121 void netdev_unbind_sb_channel(struct net_device *dev,
3122 struct net_device *sb_dev)
3123 {
3124 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3125
3126 #ifdef CONFIG_XPS
3127 netif_reset_xps_queues_gt(sb_dev, 0);
3128 #endif
3129 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3130 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3131
3132 while (txq-- != &dev->_tx[0]) {
3133 if (txq->sb_dev == sb_dev)
3134 txq->sb_dev = NULL;
3135 }
3136 }
3137 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3138
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)3139 int netdev_bind_sb_channel_queue(struct net_device *dev,
3140 struct net_device *sb_dev,
3141 u8 tc, u16 count, u16 offset)
3142 {
3143 /* Make certain the sb_dev and dev are already configured */
3144 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3145 return -EINVAL;
3146
3147 /* We cannot hand out queues we don't have */
3148 if ((offset + count) > dev->real_num_tx_queues)
3149 return -EINVAL;
3150
3151 /* Record the mapping */
3152 sb_dev->tc_to_txq[tc].count = count;
3153 sb_dev->tc_to_txq[tc].offset = offset;
3154
3155 /* Provide a way for Tx queue to find the tc_to_txq map or
3156 * XPS map for itself.
3157 */
3158 while (count--)
3159 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3160
3161 return 0;
3162 }
3163 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3164
netdev_set_sb_channel(struct net_device * dev,u16 channel)3165 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3166 {
3167 /* Do not use a multiqueue device to represent a subordinate channel */
3168 if (netif_is_multiqueue(dev))
3169 return -ENODEV;
3170
3171 /* We allow channels 1 - 32767 to be used for subordinate channels.
3172 * Channel 0 is meant to be "native" mode and used only to represent
3173 * the main root device. We allow writing 0 to reset the device back
3174 * to normal mode after being used as a subordinate channel.
3175 */
3176 if (channel > S16_MAX)
3177 return -EINVAL;
3178
3179 dev->num_tc = -channel;
3180
3181 return 0;
3182 }
3183 EXPORT_SYMBOL(netdev_set_sb_channel);
3184
3185 /*
3186 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3187 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3188 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3189 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3190 {
3191 bool disabling;
3192 int rc;
3193
3194 disabling = txq < dev->real_num_tx_queues;
3195
3196 if (txq < 1 || txq > dev->num_tx_queues)
3197 return -EINVAL;
3198
3199 if (dev->reg_state == NETREG_REGISTERED ||
3200 dev->reg_state == NETREG_UNREGISTERING) {
3201 netdev_ops_assert_locked(dev);
3202
3203 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3204 txq);
3205 if (rc)
3206 return rc;
3207
3208 if (dev->num_tc)
3209 netif_setup_tc(dev, txq);
3210
3211 net_shaper_set_real_num_tx_queues(dev, txq);
3212
3213 dev_qdisc_change_real_num_tx(dev, txq);
3214
3215 dev->real_num_tx_queues = txq;
3216
3217 if (disabling) {
3218 synchronize_net();
3219 qdisc_reset_all_tx_gt(dev, txq);
3220 #ifdef CONFIG_XPS
3221 netif_reset_xps_queues_gt(dev, txq);
3222 #endif
3223 }
3224 } else {
3225 dev->real_num_tx_queues = txq;
3226 }
3227
3228 return 0;
3229 }
3230 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3231
3232 /**
3233 * netif_set_real_num_rx_queues - set actual number of RX queues used
3234 * @dev: Network device
3235 * @rxq: Actual number of RX queues
3236 *
3237 * This must be called either with the rtnl_lock held or before
3238 * registration of the net device. Returns 0 on success, or a
3239 * negative error code. If called before registration, it always
3240 * succeeds.
3241 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3242 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3243 {
3244 int rc;
3245
3246 if (rxq < 1 || rxq > dev->num_rx_queues)
3247 return -EINVAL;
3248
3249 if (dev->reg_state == NETREG_REGISTERED) {
3250 netdev_ops_assert_locked(dev);
3251
3252 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3253 rxq);
3254 if (rc)
3255 return rc;
3256 }
3257
3258 dev->real_num_rx_queues = rxq;
3259 return 0;
3260 }
3261 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3262
3263 /**
3264 * netif_set_real_num_queues - set actual number of RX and TX queues used
3265 * @dev: Network device
3266 * @txq: Actual number of TX queues
3267 * @rxq: Actual number of RX queues
3268 *
3269 * Set the real number of both TX and RX queues.
3270 * Does nothing if the number of queues is already correct.
3271 */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3272 int netif_set_real_num_queues(struct net_device *dev,
3273 unsigned int txq, unsigned int rxq)
3274 {
3275 unsigned int old_rxq = dev->real_num_rx_queues;
3276 int err;
3277
3278 if (txq < 1 || txq > dev->num_tx_queues ||
3279 rxq < 1 || rxq > dev->num_rx_queues)
3280 return -EINVAL;
3281
3282 /* Start from increases, so the error path only does decreases -
3283 * decreases can't fail.
3284 */
3285 if (rxq > dev->real_num_rx_queues) {
3286 err = netif_set_real_num_rx_queues(dev, rxq);
3287 if (err)
3288 return err;
3289 }
3290 if (txq > dev->real_num_tx_queues) {
3291 err = netif_set_real_num_tx_queues(dev, txq);
3292 if (err)
3293 goto undo_rx;
3294 }
3295 if (rxq < dev->real_num_rx_queues)
3296 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3297 if (txq < dev->real_num_tx_queues)
3298 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3299
3300 return 0;
3301 undo_rx:
3302 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3303 return err;
3304 }
3305 EXPORT_SYMBOL(netif_set_real_num_queues);
3306
3307 /**
3308 * netif_set_tso_max_size() - set the max size of TSO frames supported
3309 * @dev: netdev to update
3310 * @size: max skb->len of a TSO frame
3311 *
3312 * Set the limit on the size of TSO super-frames the device can handle.
3313 * Unless explicitly set the stack will assume the value of
3314 * %GSO_LEGACY_MAX_SIZE.
3315 */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3316 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3317 {
3318 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3319 if (size < READ_ONCE(dev->gso_max_size))
3320 netif_set_gso_max_size(dev, size);
3321 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3322 netif_set_gso_ipv4_max_size(dev, size);
3323 }
3324 EXPORT_SYMBOL(netif_set_tso_max_size);
3325
3326 /**
3327 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3328 * @dev: netdev to update
3329 * @segs: max number of TCP segments
3330 *
3331 * Set the limit on the number of TCP segments the device can generate from
3332 * a single TSO super-frame.
3333 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3334 */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3335 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3336 {
3337 dev->tso_max_segs = segs;
3338 if (segs < READ_ONCE(dev->gso_max_segs))
3339 netif_set_gso_max_segs(dev, segs);
3340 }
3341 EXPORT_SYMBOL(netif_set_tso_max_segs);
3342
3343 /**
3344 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3345 * @to: netdev to update
3346 * @from: netdev from which to copy the limits
3347 */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3348 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3349 {
3350 netif_set_tso_max_size(to, from->tso_max_size);
3351 netif_set_tso_max_segs(to, from->tso_max_segs);
3352 }
3353 EXPORT_SYMBOL(netif_inherit_tso_max);
3354
3355 /**
3356 * netif_get_num_default_rss_queues - default number of RSS queues
3357 *
3358 * Default value is the number of physical cores if there are only 1 or 2, or
3359 * divided by 2 if there are more.
3360 */
netif_get_num_default_rss_queues(void)3361 int netif_get_num_default_rss_queues(void)
3362 {
3363 cpumask_var_t cpus;
3364 int cpu, count = 0;
3365
3366 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3367 return 1;
3368
3369 cpumask_copy(cpus, cpu_online_mask);
3370 for_each_cpu(cpu, cpus) {
3371 ++count;
3372 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3373 }
3374 free_cpumask_var(cpus);
3375
3376 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3377 }
3378 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3379
__netif_reschedule(struct Qdisc * q)3380 static void __netif_reschedule(struct Qdisc *q)
3381 {
3382 struct softnet_data *sd;
3383 unsigned long flags;
3384
3385 local_irq_save(flags);
3386 sd = this_cpu_ptr(&softnet_data);
3387 q->next_sched = NULL;
3388 *sd->output_queue_tailp = q;
3389 sd->output_queue_tailp = &q->next_sched;
3390 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3391 local_irq_restore(flags);
3392 }
3393
__netif_schedule(struct Qdisc * q)3394 void __netif_schedule(struct Qdisc *q)
3395 {
3396 /* If q->defer_list is not empty, at least one thread is
3397 * in __dev_xmit_skb() before llist_del_all(&q->defer_list).
3398 * This thread will attempt to run the queue.
3399 */
3400 if (!llist_empty(&q->defer_list))
3401 return;
3402
3403 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3404 __netif_reschedule(q);
3405 }
3406 EXPORT_SYMBOL(__netif_schedule);
3407
3408 struct dev_kfree_skb_cb {
3409 enum skb_drop_reason reason;
3410 };
3411
get_kfree_skb_cb(const struct sk_buff * skb)3412 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3413 {
3414 return (struct dev_kfree_skb_cb *)skb->cb;
3415 }
3416
netif_schedule_queue(struct netdev_queue * txq)3417 void netif_schedule_queue(struct netdev_queue *txq)
3418 {
3419 rcu_read_lock();
3420 if (!netif_xmit_stopped(txq)) {
3421 struct Qdisc *q = rcu_dereference(txq->qdisc);
3422
3423 __netif_schedule(q);
3424 }
3425 rcu_read_unlock();
3426 }
3427 EXPORT_SYMBOL(netif_schedule_queue);
3428
netif_tx_wake_queue(struct netdev_queue * dev_queue)3429 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3430 {
3431 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3432 struct Qdisc *q;
3433
3434 rcu_read_lock();
3435 q = rcu_dereference(dev_queue->qdisc);
3436 __netif_schedule(q);
3437 rcu_read_unlock();
3438 }
3439 }
3440 EXPORT_SYMBOL(netif_tx_wake_queue);
3441
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3442 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3443 {
3444 unsigned long flags;
3445
3446 if (unlikely(!skb))
3447 return;
3448
3449 if (likely(refcount_read(&skb->users) == 1)) {
3450 smp_rmb();
3451 refcount_set(&skb->users, 0);
3452 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3453 return;
3454 }
3455 get_kfree_skb_cb(skb)->reason = reason;
3456 local_irq_save(flags);
3457 skb->next = __this_cpu_read(softnet_data.completion_queue);
3458 __this_cpu_write(softnet_data.completion_queue, skb);
3459 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3460 local_irq_restore(flags);
3461 }
3462 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3463
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3464 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3465 {
3466 if (in_hardirq() || irqs_disabled())
3467 dev_kfree_skb_irq_reason(skb, reason);
3468 else
3469 kfree_skb_reason(skb, reason);
3470 }
3471 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3472
3473
3474 /**
3475 * netif_device_detach - mark device as removed
3476 * @dev: network device
3477 *
3478 * Mark device as removed from system and therefore no longer available.
3479 */
netif_device_detach(struct net_device * dev)3480 void netif_device_detach(struct net_device *dev)
3481 {
3482 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3483 netif_running(dev)) {
3484 netif_tx_stop_all_queues(dev);
3485 }
3486 }
3487 EXPORT_SYMBOL(netif_device_detach);
3488
3489 /**
3490 * netif_device_attach - mark device as attached
3491 * @dev: network device
3492 *
3493 * Mark device as attached from system and restart if needed.
3494 */
netif_device_attach(struct net_device * dev)3495 void netif_device_attach(struct net_device *dev)
3496 {
3497 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3498 netif_running(dev)) {
3499 netif_tx_wake_all_queues(dev);
3500 netdev_watchdog_up(dev);
3501 }
3502 }
3503 EXPORT_SYMBOL(netif_device_attach);
3504
3505 /*
3506 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3507 * to be used as a distribution range.
3508 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3509 static u16 skb_tx_hash(const struct net_device *dev,
3510 const struct net_device *sb_dev,
3511 struct sk_buff *skb)
3512 {
3513 u32 hash;
3514 u16 qoffset = 0;
3515 u16 qcount = dev->real_num_tx_queues;
3516
3517 if (dev->num_tc) {
3518 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3519
3520 qoffset = sb_dev->tc_to_txq[tc].offset;
3521 qcount = sb_dev->tc_to_txq[tc].count;
3522 if (unlikely(!qcount)) {
3523 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3524 sb_dev->name, qoffset, tc);
3525 qoffset = 0;
3526 qcount = dev->real_num_tx_queues;
3527 }
3528 }
3529
3530 if (skb_rx_queue_recorded(skb)) {
3531 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3532 hash = skb_get_rx_queue(skb);
3533 if (hash >= qoffset)
3534 hash -= qoffset;
3535 while (unlikely(hash >= qcount))
3536 hash -= qcount;
3537 return hash + qoffset;
3538 }
3539
3540 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3541 }
3542
skb_warn_bad_offload(const struct sk_buff * skb)3543 void skb_warn_bad_offload(const struct sk_buff *skb)
3544 {
3545 static const netdev_features_t null_features;
3546 struct net_device *dev = skb->dev;
3547 const char *name = "";
3548
3549 if (!net_ratelimit())
3550 return;
3551
3552 if (dev) {
3553 if (dev->dev.parent)
3554 name = dev_driver_string(dev->dev.parent);
3555 else
3556 name = netdev_name(dev);
3557 }
3558 skb_dump(KERN_WARNING, skb, false);
3559 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3560 name, dev ? &dev->features : &null_features,
3561 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3562 }
3563
3564 /*
3565 * Invalidate hardware checksum when packet is to be mangled, and
3566 * complete checksum manually on outgoing path.
3567 */
skb_checksum_help(struct sk_buff * skb)3568 int skb_checksum_help(struct sk_buff *skb)
3569 {
3570 __wsum csum;
3571 int ret = 0, offset;
3572
3573 if (skb->ip_summed == CHECKSUM_COMPLETE)
3574 goto out_set_summed;
3575
3576 if (unlikely(skb_is_gso(skb))) {
3577 skb_warn_bad_offload(skb);
3578 return -EINVAL;
3579 }
3580
3581 if (!skb_frags_readable(skb)) {
3582 return -EFAULT;
3583 }
3584
3585 /* Before computing a checksum, we should make sure no frag could
3586 * be modified by an external entity : checksum could be wrong.
3587 */
3588 if (skb_has_shared_frag(skb)) {
3589 ret = __skb_linearize(skb);
3590 if (ret)
3591 goto out;
3592 }
3593
3594 offset = skb_checksum_start_offset(skb);
3595 ret = -EINVAL;
3596 if (unlikely(offset >= skb_headlen(skb))) {
3597 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3598 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3599 offset, skb_headlen(skb));
3600 goto out;
3601 }
3602 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3603
3604 offset += skb->csum_offset;
3605 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3606 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3607 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3608 offset + sizeof(__sum16), skb_headlen(skb));
3609 goto out;
3610 }
3611 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3612 if (ret)
3613 goto out;
3614
3615 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3616 out_set_summed:
3617 skb->ip_summed = CHECKSUM_NONE;
3618 out:
3619 return ret;
3620 }
3621 EXPORT_SYMBOL(skb_checksum_help);
3622
3623 #ifdef CONFIG_NET_CRC32C
skb_crc32c_csum_help(struct sk_buff * skb)3624 int skb_crc32c_csum_help(struct sk_buff *skb)
3625 {
3626 u32 crc;
3627 int ret = 0, offset, start;
3628
3629 if (skb->ip_summed != CHECKSUM_PARTIAL)
3630 goto out;
3631
3632 if (unlikely(skb_is_gso(skb)))
3633 goto out;
3634
3635 /* Before computing a checksum, we should make sure no frag could
3636 * be modified by an external entity : checksum could be wrong.
3637 */
3638 if (unlikely(skb_has_shared_frag(skb))) {
3639 ret = __skb_linearize(skb);
3640 if (ret)
3641 goto out;
3642 }
3643 start = skb_checksum_start_offset(skb);
3644 offset = start + offsetof(struct sctphdr, checksum);
3645 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3646 ret = -EINVAL;
3647 goto out;
3648 }
3649
3650 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3651 if (ret)
3652 goto out;
3653
3654 crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3655 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3656 skb_reset_csum_not_inet(skb);
3657 out:
3658 return ret;
3659 }
3660 EXPORT_SYMBOL(skb_crc32c_csum_help);
3661 #endif /* CONFIG_NET_CRC32C */
3662
skb_network_protocol(struct sk_buff * skb,int * depth)3663 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3664 {
3665 __be16 type = skb->protocol;
3666
3667 /* Tunnel gso handlers can set protocol to ethernet. */
3668 if (type == htons(ETH_P_TEB)) {
3669 struct ethhdr *eth;
3670
3671 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3672 return 0;
3673
3674 eth = (struct ethhdr *)skb->data;
3675 type = eth->h_proto;
3676 }
3677
3678 return vlan_get_protocol_and_depth(skb, type, depth);
3679 }
3680
3681
3682 /* Take action when hardware reception checksum errors are detected. */
3683 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3684 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3685 {
3686 netdev_err(dev, "hw csum failure\n");
3687 skb_dump(KERN_ERR, skb, true);
3688 dump_stack();
3689 }
3690
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3691 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3692 {
3693 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3694 }
3695 EXPORT_SYMBOL(netdev_rx_csum_fault);
3696 #endif
3697
3698 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3699 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3700 {
3701 #ifdef CONFIG_HIGHMEM
3702 int i;
3703
3704 if (!(dev->features & NETIF_F_HIGHDMA)) {
3705 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3706 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3707 struct page *page = skb_frag_page(frag);
3708
3709 if (page && PageHighMem(page))
3710 return 1;
3711 }
3712 }
3713 #endif
3714 return 0;
3715 }
3716
3717 /* If MPLS offload request, verify we are testing hardware MPLS features
3718 * instead of standard features for the netdev.
3719 */
3720 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3721 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3722 netdev_features_t features,
3723 __be16 type)
3724 {
3725 if (eth_p_mpls(type))
3726 features &= skb->dev->mpls_features;
3727
3728 return features;
3729 }
3730 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3731 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3732 netdev_features_t features,
3733 __be16 type)
3734 {
3735 return features;
3736 }
3737 #endif
3738
harmonize_features(struct sk_buff * skb,netdev_features_t features)3739 static netdev_features_t harmonize_features(struct sk_buff *skb,
3740 netdev_features_t features)
3741 {
3742 __be16 type;
3743
3744 type = skb_network_protocol(skb, NULL);
3745 features = net_mpls_features(skb, features, type);
3746
3747 if (skb->ip_summed != CHECKSUM_NONE &&
3748 !can_checksum_protocol(features, type)) {
3749 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3750 }
3751 if (illegal_highdma(skb->dev, skb))
3752 features &= ~NETIF_F_SG;
3753
3754 return features;
3755 }
3756
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3757 netdev_features_t passthru_features_check(struct sk_buff *skb,
3758 struct net_device *dev,
3759 netdev_features_t features)
3760 {
3761 return features;
3762 }
3763 EXPORT_SYMBOL(passthru_features_check);
3764
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3765 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3766 struct net_device *dev,
3767 netdev_features_t features)
3768 {
3769 return vlan_features_check(skb, features);
3770 }
3771
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3772 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3773 struct net_device *dev,
3774 netdev_features_t features)
3775 {
3776 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3777
3778 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3779 return features & ~NETIF_F_GSO_MASK;
3780
3781 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3782 return features & ~NETIF_F_GSO_MASK;
3783
3784 if (!skb_shinfo(skb)->gso_type) {
3785 skb_warn_bad_offload(skb);
3786 return features & ~NETIF_F_GSO_MASK;
3787 }
3788
3789 /* Support for GSO partial features requires software
3790 * intervention before we can actually process the packets
3791 * so we need to strip support for any partial features now
3792 * and we can pull them back in after we have partially
3793 * segmented the frame.
3794 */
3795 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3796 features &= ~dev->gso_partial_features;
3797
3798 /* Make sure to clear the IPv4 ID mangling feature if the IPv4 header
3799 * has the potential to be fragmented so that TSO does not generate
3800 * segments with the same ID. For encapsulated packets, the ID mangling
3801 * feature is guaranteed not to use the same ID for the outer IPv4
3802 * headers of the generated segments if the headers have the potential
3803 * to be fragmented, so there is no need to clear the IPv4 ID mangling
3804 * feature (see the section about NETIF_F_TSO_MANGLEID in
3805 * segmentation-offloads.rst).
3806 */
3807 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3808 struct iphdr *iph = skb->encapsulation ?
3809 inner_ip_hdr(skb) : ip_hdr(skb);
3810
3811 if (!(iph->frag_off & htons(IP_DF)))
3812 features &= ~dev->mangleid_features;
3813 }
3814
3815 /* NETIF_F_IPV6_CSUM does not support IPv6 extension headers,
3816 * so neither does TSO that depends on it.
3817 */
3818 if (features & NETIF_F_IPV6_CSUM &&
3819 (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 ||
3820 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 &&
3821 vlan_get_protocol(skb) == htons(ETH_P_IPV6))) &&
3822 skb_transport_header_was_set(skb) &&
3823 skb_network_header_len(skb) != sizeof(struct ipv6hdr))
3824 features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4);
3825
3826 return features;
3827 }
3828
netif_skb_features(struct sk_buff * skb)3829 netdev_features_t netif_skb_features(struct sk_buff *skb)
3830 {
3831 struct net_device *dev = skb->dev;
3832 netdev_features_t features = dev->features;
3833
3834 if (skb_is_gso(skb))
3835 features = gso_features_check(skb, dev, features);
3836
3837 /* If encapsulation offload request, verify we are testing
3838 * hardware encapsulation features instead of standard
3839 * features for the netdev
3840 */
3841 if (skb->encapsulation)
3842 features &= dev->hw_enc_features;
3843
3844 if (skb_vlan_tagged(skb))
3845 features = netdev_intersect_features(features,
3846 dev->vlan_features |
3847 NETIF_F_HW_VLAN_CTAG_TX |
3848 NETIF_F_HW_VLAN_STAG_TX);
3849
3850 if (dev->netdev_ops->ndo_features_check)
3851 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3852 features);
3853 else
3854 features &= dflt_features_check(skb, dev, features);
3855
3856 return harmonize_features(skb, features);
3857 }
3858 EXPORT_SYMBOL(netif_skb_features);
3859
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3860 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3861 struct netdev_queue *txq, bool more)
3862 {
3863 unsigned int len;
3864 int rc;
3865
3866 if (dev_nit_active_rcu(dev))
3867 dev_queue_xmit_nit(skb, dev);
3868
3869 len = skb->len;
3870 trace_net_dev_start_xmit(skb, dev);
3871 rc = netdev_start_xmit(skb, dev, txq, more);
3872 trace_net_dev_xmit(skb, rc, dev, len);
3873
3874 return rc;
3875 }
3876
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3877 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3878 struct netdev_queue *txq, int *ret)
3879 {
3880 struct sk_buff *skb = first;
3881 int rc = NETDEV_TX_OK;
3882
3883 while (skb) {
3884 struct sk_buff *next = skb->next;
3885
3886 skb_mark_not_on_list(skb);
3887 rc = xmit_one(skb, dev, txq, next != NULL);
3888 if (unlikely(!dev_xmit_complete(rc))) {
3889 skb->next = next;
3890 goto out;
3891 }
3892
3893 skb = next;
3894 if (netif_tx_queue_stopped(txq) && skb) {
3895 rc = NETDEV_TX_BUSY;
3896 break;
3897 }
3898 }
3899
3900 out:
3901 *ret = rc;
3902 return skb;
3903 }
3904
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3905 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3906 netdev_features_t features)
3907 {
3908 if (skb_vlan_tag_present(skb) &&
3909 !vlan_hw_offload_capable(features, skb->vlan_proto))
3910 skb = __vlan_hwaccel_push_inside(skb);
3911 return skb;
3912 }
3913
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3914 int skb_csum_hwoffload_help(struct sk_buff *skb,
3915 const netdev_features_t features)
3916 {
3917 if (unlikely(skb_csum_is_sctp(skb)))
3918 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3919 skb_crc32c_csum_help(skb);
3920
3921 if (features & NETIF_F_HW_CSUM)
3922 return 0;
3923
3924 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3925 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3926 skb_network_header_len(skb) != sizeof(struct ipv6hdr))
3927 goto sw_checksum;
3928
3929 switch (skb->csum_offset) {
3930 case offsetof(struct tcphdr, check):
3931 case offsetof(struct udphdr, check):
3932 return 0;
3933 }
3934 }
3935
3936 sw_checksum:
3937 return skb_checksum_help(skb);
3938 }
3939 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3940
3941 /* Checks if this SKB belongs to an HW offloaded socket
3942 * and whether any SW fallbacks are required based on dev.
3943 * Check decrypted mark in case skb_orphan() cleared socket.
3944 */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)3945 static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
3946 struct net_device *dev)
3947 {
3948 #ifdef CONFIG_SOCK_VALIDATE_XMIT
3949 struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev,
3950 struct sk_buff *skb);
3951 struct sock *sk = skb->sk;
3952
3953 sk_validate = NULL;
3954 if (sk) {
3955 if (sk_fullsock(sk))
3956 sk_validate = sk->sk_validate_xmit_skb;
3957 else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT)
3958 sk_validate = inet_twsk(sk)->tw_validate_xmit_skb;
3959 }
3960
3961 if (sk_validate) {
3962 skb = sk_validate(sk, dev, skb);
3963 } else if (unlikely(skb_is_decrypted(skb))) {
3964 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
3965 kfree_skb(skb);
3966 skb = NULL;
3967 }
3968 #endif
3969
3970 return skb;
3971 }
3972
validate_xmit_unreadable_skb(struct sk_buff * skb,struct net_device * dev)3973 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3974 struct net_device *dev)
3975 {
3976 struct skb_shared_info *shinfo;
3977 struct net_iov *niov;
3978
3979 if (likely(skb_frags_readable(skb)))
3980 goto out;
3981
3982 if (!dev->netmem_tx)
3983 goto out_free;
3984
3985 shinfo = skb_shinfo(skb);
3986
3987 if (shinfo->nr_frags > 0) {
3988 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3989 if (net_is_devmem_iov(niov) &&
3990 net_devmem_iov_binding(niov)->dev != dev)
3991 goto out_free;
3992 }
3993
3994 out:
3995 return skb;
3996
3997 out_free:
3998 kfree_skb(skb);
3999 return NULL;
4000 }
4001
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)4002 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
4003 {
4004 netdev_features_t features;
4005
4006 skb = validate_xmit_unreadable_skb(skb, dev);
4007 if (unlikely(!skb))
4008 goto out_null;
4009
4010 features = netif_skb_features(skb);
4011 skb = validate_xmit_vlan(skb, features);
4012 if (unlikely(!skb))
4013 goto out_null;
4014
4015 skb = sk_validate_xmit_skb(skb, dev);
4016 if (unlikely(!skb))
4017 goto out_null;
4018
4019 if (netif_needs_gso(skb, features)) {
4020 struct sk_buff *segs;
4021
4022 segs = skb_gso_segment(skb, features);
4023 if (IS_ERR(segs)) {
4024 goto out_kfree_skb;
4025 } else if (segs) {
4026 consume_skb(skb);
4027 skb = segs;
4028 }
4029 } else {
4030 if (skb_needs_linearize(skb, features) &&
4031 __skb_linearize(skb))
4032 goto out_kfree_skb;
4033
4034 /* If packet is not checksummed and device does not
4035 * support checksumming for this protocol, complete
4036 * checksumming here.
4037 */
4038 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4039 if (skb->encapsulation)
4040 skb_set_inner_transport_header(skb,
4041 skb_checksum_start_offset(skb));
4042 else
4043 skb_set_transport_header(skb,
4044 skb_checksum_start_offset(skb));
4045 if (skb_csum_hwoffload_help(skb, features))
4046 goto out_kfree_skb;
4047 }
4048 }
4049
4050 skb = validate_xmit_xfrm(skb, features, again);
4051
4052 return skb;
4053
4054 out_kfree_skb:
4055 kfree_skb(skb);
4056 out_null:
4057 dev_core_stats_tx_dropped_inc(dev);
4058 return NULL;
4059 }
4060
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)4061 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
4062 {
4063 struct sk_buff *next, *head = NULL, *tail;
4064
4065 for (; skb != NULL; skb = next) {
4066 next = skb->next;
4067 skb_mark_not_on_list(skb);
4068
4069 /* in case skb won't be segmented, point to itself */
4070 skb->prev = skb;
4071
4072 skb = validate_xmit_skb(skb, dev, again);
4073 if (!skb)
4074 continue;
4075
4076 if (!head)
4077 head = skb;
4078 else
4079 tail->next = skb;
4080 /* If skb was segmented, skb->prev points to
4081 * the last segment. If not, it still contains skb.
4082 */
4083 tail = skb->prev;
4084 }
4085 return head;
4086 }
4087 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4088
qdisc_pkt_len_segs_init(struct sk_buff * skb)4089 static void qdisc_pkt_len_segs_init(struct sk_buff *skb)
4090 {
4091 struct skb_shared_info *shinfo = skb_shinfo(skb);
4092 u16 gso_segs;
4093
4094 qdisc_skb_cb(skb)->pkt_len = skb->len;
4095 if (!shinfo->gso_size) {
4096 qdisc_skb_cb(skb)->pkt_segs = 1;
4097 return;
4098 }
4099
4100 qdisc_skb_cb(skb)->pkt_segs = gso_segs = shinfo->gso_segs;
4101
4102 /* To get more precise estimation of bytes sent on wire,
4103 * we add to pkt_len the headers size of all segments
4104 */
4105 if (skb_transport_header_was_set(skb)) {
4106 unsigned int hdr_len;
4107
4108 /* mac layer + network layer */
4109 if (!skb->encapsulation)
4110 hdr_len = skb_transport_offset(skb);
4111 else
4112 hdr_len = skb_inner_transport_offset(skb);
4113
4114 /* + transport layer */
4115 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4116 const struct tcphdr *th;
4117 struct tcphdr _tcphdr;
4118
4119 th = skb_header_pointer(skb, hdr_len,
4120 sizeof(_tcphdr), &_tcphdr);
4121 if (likely(th))
4122 hdr_len += __tcp_hdrlen(th);
4123 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4124 struct udphdr _udphdr;
4125
4126 if (skb_header_pointer(skb, hdr_len,
4127 sizeof(_udphdr), &_udphdr))
4128 hdr_len += sizeof(struct udphdr);
4129 }
4130
4131 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4132 int payload = skb->len - hdr_len;
4133
4134 /* Malicious packet. */
4135 if (payload <= 0)
4136 return;
4137 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4138 shinfo->gso_segs = gso_segs;
4139 qdisc_skb_cb(skb)->pkt_segs = gso_segs;
4140 }
4141 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4142 }
4143 }
4144
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)4145 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4146 struct sk_buff **to_free,
4147 struct netdev_queue *txq)
4148 {
4149 int rc;
4150
4151 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4152 if (rc == NET_XMIT_SUCCESS)
4153 trace_qdisc_enqueue(q, txq, skb);
4154 return rc;
4155 }
4156
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)4157 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4158 struct net_device *dev,
4159 struct netdev_queue *txq)
4160 {
4161 struct sk_buff *next, *to_free = NULL, *to_free2 = NULL;
4162 spinlock_t *root_lock = qdisc_lock(q);
4163 struct llist_node *ll_list, *first_n;
4164 unsigned long defer_count = 0;
4165 int rc;
4166
4167 qdisc_calculate_pkt_len(skb, q);
4168
4169 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4170
4171 if (q->flags & TCQ_F_NOLOCK) {
4172 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4173 qdisc_run_begin(q)) {
4174 /* Retest nolock_qdisc_is_empty() within the protection
4175 * of q->seqlock to protect from racing with requeuing.
4176 */
4177 if (unlikely(!nolock_qdisc_is_empty(q))) {
4178 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4179 __qdisc_run(q);
4180 to_free2 = qdisc_run_end(q);
4181
4182 goto free_skbs;
4183 }
4184
4185 qdisc_bstats_cpu_update(q, skb);
4186 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4187 !nolock_qdisc_is_empty(q))
4188 __qdisc_run(q);
4189
4190 to_free2 = qdisc_run_end(q);
4191 rc = NET_XMIT_SUCCESS;
4192 goto free_skbs;
4193 }
4194
4195 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4196 to_free2 = qdisc_run(q);
4197 goto free_skbs;
4198 }
4199
4200 /* Open code llist_add(&skb->ll_node, &q->defer_list) + queue limit.
4201 * In the try_cmpxchg() loop, we want to increment q->defer_count
4202 * at most once to limit the number of skbs in defer_list.
4203 * We perform the defer_count increment only if the list is not empty,
4204 * because some arches have slow atomic_long_inc_return().
4205 */
4206 first_n = READ_ONCE(q->defer_list.first);
4207 do {
4208 if (first_n && !defer_count) {
4209 defer_count = atomic_long_inc_return(&q->defer_count);
4210 if (unlikely(defer_count > READ_ONCE(net_hotdata.qdisc_max_burst))) {
4211 kfree_skb_reason(skb, SKB_DROP_REASON_QDISC_BURST_DROP);
4212 return NET_XMIT_DROP;
4213 }
4214 }
4215 skb->ll_node.next = first_n;
4216 } while (!try_cmpxchg(&q->defer_list.first, &first_n, &skb->ll_node));
4217
4218 /* If defer_list was not empty, we know the cpu which queued
4219 * the first skb will process the whole list for us.
4220 */
4221 if (first_n)
4222 return NET_XMIT_SUCCESS;
4223
4224 spin_lock(root_lock);
4225
4226 ll_list = llist_del_all(&q->defer_list);
4227 /* There is a small race because we clear defer_count not atomically
4228 * with the prior llist_del_all(). This means defer_list could grow
4229 * over qdisc_max_burst.
4230 */
4231 atomic_long_set(&q->defer_count, 0);
4232
4233 ll_list = llist_reverse_order(ll_list);
4234
4235 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4236 llist_for_each_entry_safe(skb, next, ll_list, ll_node)
4237 __qdisc_drop(skb, &to_free);
4238 rc = NET_XMIT_DROP;
4239 goto unlock;
4240 }
4241 if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4242 !llist_next(ll_list) && qdisc_run_begin(q)) {
4243 /*
4244 * This is a work-conserving queue; there are no old skbs
4245 * waiting to be sent out; and the qdisc is not running -
4246 * xmit the skb directly.
4247 */
4248
4249 DEBUG_NET_WARN_ON_ONCE(skb != llist_entry(ll_list,
4250 struct sk_buff,
4251 ll_node));
4252 qdisc_bstats_update(q, skb);
4253 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true))
4254 __qdisc_run(q);
4255 to_free2 = qdisc_run_end(q);
4256 rc = NET_XMIT_SUCCESS;
4257 } else {
4258 int count = 0;
4259
4260 llist_for_each_entry_safe(skb, next, ll_list, ll_node) {
4261 if (next) {
4262 prefetch(next);
4263 prefetch(&next->priority);
4264 skb_mark_not_on_list(skb);
4265 }
4266 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4267 count++;
4268 }
4269 to_free2 = qdisc_run(q);
4270 if (count != 1)
4271 rc = NET_XMIT_SUCCESS;
4272 }
4273 unlock:
4274 spin_unlock(root_lock);
4275
4276 free_skbs:
4277 tcf_kfree_skb_list(to_free);
4278 tcf_kfree_skb_list(to_free2);
4279 return rc;
4280 }
4281
4282 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)4283 static void skb_update_prio(struct sk_buff *skb)
4284 {
4285 const struct netprio_map *map;
4286 const struct sock *sk;
4287 unsigned int prioidx;
4288
4289 if (skb->priority)
4290 return;
4291 map = rcu_dereference_bh(skb->dev->priomap);
4292 if (!map)
4293 return;
4294 sk = skb_to_full_sk(skb);
4295 if (!sk)
4296 return;
4297
4298 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4299
4300 if (prioidx < map->priomap_len)
4301 skb->priority = map->priomap[prioidx];
4302 }
4303 #else
4304 #define skb_update_prio(skb)
4305 #endif
4306
4307 /**
4308 * dev_loopback_xmit - loop back @skb
4309 * @net: network namespace this loopback is happening in
4310 * @sk: sk needed to be a netfilter okfn
4311 * @skb: buffer to transmit
4312 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4313 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4314 {
4315 skb_reset_mac_header(skb);
4316 __skb_pull(skb, skb_network_offset(skb));
4317 skb->pkt_type = PACKET_LOOPBACK;
4318 if (skb->ip_summed == CHECKSUM_NONE)
4319 skb->ip_summed = CHECKSUM_UNNECESSARY;
4320 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4321 skb_dst_force(skb);
4322 netif_rx(skb);
4323 return 0;
4324 }
4325 EXPORT_SYMBOL(dev_loopback_xmit);
4326
4327 #ifdef CONFIG_NET_EGRESS
4328 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4329 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4330 {
4331 int qm = skb_get_queue_mapping(skb);
4332
4333 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4334 }
4335
4336 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4337 static bool netdev_xmit_txqueue_skipped(void)
4338 {
4339 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4340 }
4341
netdev_xmit_skip_txqueue(bool skip)4342 void netdev_xmit_skip_txqueue(bool skip)
4343 {
4344 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4345 }
4346 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4347
4348 #else
netdev_xmit_txqueue_skipped(void)4349 static bool netdev_xmit_txqueue_skipped(void)
4350 {
4351 return current->net_xmit.skip_txqueue;
4352 }
4353
netdev_xmit_skip_txqueue(bool skip)4354 void netdev_xmit_skip_txqueue(bool skip)
4355 {
4356 current->net_xmit.skip_txqueue = skip;
4357 }
4358 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4359 #endif
4360 #endif /* CONFIG_NET_EGRESS */
4361
4362 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4363 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4364 enum skb_drop_reason *drop_reason)
4365 {
4366 int ret = TC_ACT_UNSPEC;
4367 #ifdef CONFIG_NET_CLS_ACT
4368 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4369 struct tcf_result res;
4370
4371 if (!miniq)
4372 return ret;
4373
4374 /* Global bypass */
4375 if (!static_branch_likely(&tcf_sw_enabled_key))
4376 return ret;
4377
4378 /* Block-wise bypass */
4379 if (tcf_block_bypass_sw(miniq->block))
4380 return ret;
4381
4382 tc_skb_cb(skb)->mru = 0;
4383 qdisc_skb_cb(skb)->post_ct = false;
4384 tcf_set_drop_reason(skb, *drop_reason);
4385
4386 mini_qdisc_bstats_cpu_update(miniq, skb);
4387 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4388 /* Only tcf related quirks below. */
4389 switch (ret) {
4390 case TC_ACT_SHOT:
4391 *drop_reason = tcf_get_drop_reason(skb);
4392 mini_qdisc_qstats_cpu_drop(miniq);
4393 break;
4394 case TC_ACT_OK:
4395 case TC_ACT_RECLASSIFY:
4396 skb->tc_index = TC_H_MIN(res.classid);
4397 break;
4398 }
4399 #endif /* CONFIG_NET_CLS_ACT */
4400 return ret;
4401 }
4402
4403 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4404
tcx_inc(void)4405 void tcx_inc(void)
4406 {
4407 static_branch_inc(&tcx_needed_key);
4408 }
4409
tcx_dec(void)4410 void tcx_dec(void)
4411 {
4412 static_branch_dec(&tcx_needed_key);
4413 }
4414
4415 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4416 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4417 const bool needs_mac)
4418 {
4419 const struct bpf_mprog_fp *fp;
4420 const struct bpf_prog *prog;
4421 int ret = TCX_NEXT;
4422
4423 if (needs_mac)
4424 __skb_push(skb, skb->mac_len);
4425 bpf_mprog_foreach_prog(entry, fp, prog) {
4426 bpf_compute_data_pointers(skb);
4427 ret = bpf_prog_run(prog, skb);
4428 if (ret != TCX_NEXT)
4429 break;
4430 }
4431 if (needs_mac)
4432 __skb_pull(skb, skb->mac_len);
4433 return tcx_action_code(skb, ret);
4434 }
4435
4436 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4437 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4438 struct net_device *orig_dev, bool *another)
4439 {
4440 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4441 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4442 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4443 int sch_ret;
4444
4445 if (!entry)
4446 return skb;
4447
4448 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4449 if (unlikely(*pt_prev)) {
4450 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4451 *pt_prev = NULL;
4452 }
4453
4454 qdisc_pkt_len_segs_init(skb);
4455 tcx_set_ingress(skb, true);
4456
4457 if (static_branch_unlikely(&tcx_needed_key)) {
4458 sch_ret = tcx_run(entry, skb, true);
4459 if (sch_ret != TC_ACT_UNSPEC)
4460 goto ingress_verdict;
4461 }
4462 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4463 ingress_verdict:
4464 switch (sch_ret) {
4465 case TC_ACT_REDIRECT:
4466 /* skb_mac_header check was done by BPF, so we can safely
4467 * push the L2 header back before redirecting to another
4468 * netdev.
4469 */
4470 __skb_push(skb, skb->mac_len);
4471 if (skb_do_redirect(skb) == -EAGAIN) {
4472 __skb_pull(skb, skb->mac_len);
4473 *another = true;
4474 break;
4475 }
4476 *ret = NET_RX_SUCCESS;
4477 bpf_net_ctx_clear(bpf_net_ctx);
4478 return NULL;
4479 case TC_ACT_SHOT:
4480 kfree_skb_reason(skb, drop_reason);
4481 *ret = NET_RX_DROP;
4482 bpf_net_ctx_clear(bpf_net_ctx);
4483 return NULL;
4484 /* used by tc_run */
4485 case TC_ACT_STOLEN:
4486 case TC_ACT_QUEUED:
4487 case TC_ACT_TRAP:
4488 consume_skb(skb);
4489 fallthrough;
4490 case TC_ACT_CONSUMED:
4491 *ret = NET_RX_SUCCESS;
4492 bpf_net_ctx_clear(bpf_net_ctx);
4493 return NULL;
4494 }
4495 bpf_net_ctx_clear(bpf_net_ctx);
4496
4497 return skb;
4498 }
4499
4500 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4501 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4502 {
4503 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4504 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4505 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4506 int sch_ret;
4507
4508 if (!entry)
4509 return skb;
4510
4511 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4512
4513 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4514 * already set by the caller.
4515 */
4516 if (static_branch_unlikely(&tcx_needed_key)) {
4517 sch_ret = tcx_run(entry, skb, false);
4518 if (sch_ret != TC_ACT_UNSPEC)
4519 goto egress_verdict;
4520 }
4521 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4522 egress_verdict:
4523 switch (sch_ret) {
4524 case TC_ACT_REDIRECT:
4525 /* No need to push/pop skb's mac_header here on egress! */
4526 skb_do_redirect(skb);
4527 *ret = NET_XMIT_SUCCESS;
4528 bpf_net_ctx_clear(bpf_net_ctx);
4529 return NULL;
4530 case TC_ACT_SHOT:
4531 kfree_skb_reason(skb, drop_reason);
4532 *ret = NET_XMIT_DROP;
4533 bpf_net_ctx_clear(bpf_net_ctx);
4534 return NULL;
4535 /* used by tc_run */
4536 case TC_ACT_STOLEN:
4537 case TC_ACT_QUEUED:
4538 case TC_ACT_TRAP:
4539 consume_skb(skb);
4540 fallthrough;
4541 case TC_ACT_CONSUMED:
4542 *ret = NET_XMIT_SUCCESS;
4543 bpf_net_ctx_clear(bpf_net_ctx);
4544 return NULL;
4545 }
4546 bpf_net_ctx_clear(bpf_net_ctx);
4547
4548 return skb;
4549 }
4550 #else
4551 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4552 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4553 struct net_device *orig_dev, bool *another)
4554 {
4555 return skb;
4556 }
4557
4558 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4559 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4560 {
4561 return skb;
4562 }
4563 #endif /* CONFIG_NET_XGRESS */
4564
4565 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4566 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4567 struct xps_dev_maps *dev_maps, unsigned int tci)
4568 {
4569 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4570 struct xps_map *map;
4571 int queue_index = -1;
4572
4573 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4574 return queue_index;
4575
4576 tci *= dev_maps->num_tc;
4577 tci += tc;
4578
4579 map = rcu_dereference(dev_maps->attr_map[tci]);
4580 if (map) {
4581 if (map->len == 1)
4582 queue_index = map->queues[0];
4583 else
4584 queue_index = map->queues[reciprocal_scale(
4585 skb_get_hash(skb), map->len)];
4586 if (unlikely(queue_index >= dev->real_num_tx_queues))
4587 queue_index = -1;
4588 }
4589 return queue_index;
4590 }
4591 #endif
4592
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4593 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4594 struct sk_buff *skb)
4595 {
4596 #ifdef CONFIG_XPS
4597 struct xps_dev_maps *dev_maps;
4598 struct sock *sk = skb->sk;
4599 int queue_index = -1;
4600
4601 if (!static_key_false(&xps_needed))
4602 return -1;
4603
4604 rcu_read_lock();
4605 if (!static_key_false(&xps_rxqs_needed))
4606 goto get_cpus_map;
4607
4608 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4609 if (dev_maps) {
4610 int tci = sk_rx_queue_get(sk);
4611
4612 if (tci >= 0)
4613 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4614 tci);
4615 }
4616
4617 get_cpus_map:
4618 if (queue_index < 0) {
4619 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4620 if (dev_maps) {
4621 unsigned int tci = skb->sender_cpu - 1;
4622
4623 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4624 tci);
4625 }
4626 }
4627 rcu_read_unlock();
4628
4629 return queue_index;
4630 #else
4631 return -1;
4632 #endif
4633 }
4634
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4635 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4636 struct net_device *sb_dev)
4637 {
4638 return 0;
4639 }
4640 EXPORT_SYMBOL(dev_pick_tx_zero);
4641
sk_tx_queue_get(const struct sock * sk)4642 int sk_tx_queue_get(const struct sock *sk)
4643 {
4644 int resel, val;
4645
4646 if (!sk)
4647 return -1;
4648 /* Paired with WRITE_ONCE() in sk_tx_queue_clear()
4649 * and sk_tx_queue_set().
4650 */
4651 val = READ_ONCE(sk->sk_tx_queue_mapping);
4652
4653 if (val == NO_QUEUE_MAPPING)
4654 return -1;
4655
4656 if (!sk_fullsock(sk))
4657 return val;
4658
4659 resel = READ_ONCE(sock_net(sk)->core.sysctl_txq_reselection);
4660 if (resel && time_is_before_jiffies(
4661 READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + resel))
4662 return -1;
4663
4664 return val;
4665 }
4666 EXPORT_SYMBOL(sk_tx_queue_get);
4667
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4668 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4669 struct net_device *sb_dev)
4670 {
4671 struct sock *sk = skb->sk;
4672 int queue_index = sk_tx_queue_get(sk);
4673
4674 sb_dev = sb_dev ? : dev;
4675
4676 if (queue_index < 0 || skb->ooo_okay ||
4677 queue_index >= dev->real_num_tx_queues) {
4678 int new_index = get_xps_queue(dev, sb_dev, skb);
4679
4680 if (new_index < 0)
4681 new_index = skb_tx_hash(dev, sb_dev, skb);
4682
4683 if (sk && sk_fullsock(sk) &&
4684 rcu_access_pointer(sk->sk_dst_cache))
4685 sk_tx_queue_set(sk, new_index);
4686
4687 queue_index = new_index;
4688 }
4689
4690 return queue_index;
4691 }
4692 EXPORT_SYMBOL(netdev_pick_tx);
4693
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4694 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4695 struct sk_buff *skb,
4696 struct net_device *sb_dev)
4697 {
4698 int queue_index = 0;
4699
4700 #ifdef CONFIG_XPS
4701 u32 sender_cpu = skb->sender_cpu - 1;
4702
4703 if (sender_cpu >= (u32)NR_CPUS)
4704 skb->sender_cpu = raw_smp_processor_id() + 1;
4705 #endif
4706
4707 if (dev->real_num_tx_queues != 1) {
4708 const struct net_device_ops *ops = dev->netdev_ops;
4709
4710 if (ops->ndo_select_queue)
4711 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4712 else
4713 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4714
4715 queue_index = netdev_cap_txqueue(dev, queue_index);
4716 }
4717
4718 skb_set_queue_mapping(skb, queue_index);
4719 return netdev_get_tx_queue(dev, queue_index);
4720 }
4721
4722 /**
4723 * __dev_queue_xmit() - transmit a buffer
4724 * @skb: buffer to transmit
4725 * @sb_dev: suboordinate device used for L2 forwarding offload
4726 *
4727 * Queue a buffer for transmission to a network device. The caller must
4728 * have set the device and priority and built the buffer before calling
4729 * this function. The function can be called from an interrupt.
4730 *
4731 * When calling this method, interrupts MUST be enabled. This is because
4732 * the BH enable code must have IRQs enabled so that it will not deadlock.
4733 *
4734 * Regardless of the return value, the skb is consumed, so it is currently
4735 * difficult to retry a send to this method. (You can bump the ref count
4736 * before sending to hold a reference for retry if you are careful.)
4737 *
4738 * Return:
4739 * * 0 - buffer successfully transmitted
4740 * * positive qdisc return code - NET_XMIT_DROP etc.
4741 * * negative errno - other errors
4742 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4743 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4744 {
4745 struct net_device *dev = skb->dev;
4746 struct netdev_queue *txq = NULL;
4747 struct Qdisc *q;
4748 int rc = -ENOMEM;
4749 bool again = false;
4750
4751 skb_reset_mac_header(skb);
4752 skb_assert_len(skb);
4753
4754 if (unlikely(skb_shinfo(skb)->tx_flags &
4755 (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4756 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4757
4758 /* Disable soft irqs for various locks below. Also
4759 * stops preemption for RCU.
4760 */
4761 rcu_read_lock_bh();
4762
4763 skb_update_prio(skb);
4764
4765 qdisc_pkt_len_segs_init(skb);
4766 tcx_set_ingress(skb, false);
4767 #ifdef CONFIG_NET_EGRESS
4768 if (static_branch_unlikely(&egress_needed_key)) {
4769 if (nf_hook_egress_active()) {
4770 skb = nf_hook_egress(skb, &rc, dev);
4771 if (!skb)
4772 goto out;
4773 }
4774
4775 netdev_xmit_skip_txqueue(false);
4776
4777 nf_skip_egress(skb, true);
4778 skb = sch_handle_egress(skb, &rc, dev);
4779 if (!skb)
4780 goto out;
4781 nf_skip_egress(skb, false);
4782
4783 if (netdev_xmit_txqueue_skipped())
4784 txq = netdev_tx_queue_mapping(dev, skb);
4785 }
4786 #endif
4787 /* If device/qdisc don't need skb->dst, release it right now while
4788 * its hot in this cpu cache.
4789 */
4790 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4791 skb_dst_drop(skb);
4792 else
4793 skb_dst_force(skb);
4794
4795 if (!txq)
4796 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4797
4798 q = rcu_dereference_bh(txq->qdisc);
4799
4800 trace_net_dev_queue(skb);
4801 if (q->enqueue) {
4802 rc = __dev_xmit_skb(skb, q, dev, txq);
4803 goto out;
4804 }
4805
4806 /* The device has no queue. Common case for software devices:
4807 * loopback, all the sorts of tunnels...
4808
4809 * Really, it is unlikely that netif_tx_lock protection is necessary
4810 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4811 * counters.)
4812 * However, it is possible, that they rely on protection
4813 * made by us here.
4814
4815 * Check this and shot the lock. It is not prone from deadlocks.
4816 *Either shot noqueue qdisc, it is even simpler 8)
4817 */
4818 if (dev->flags & IFF_UP) {
4819 int cpu = smp_processor_id(); /* ok because BHs are off */
4820
4821 /* Other cpus might concurrently change txq->xmit_lock_owner
4822 * to -1 or to their cpu id, but not to our id.
4823 */
4824 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4825 if (dev_xmit_recursion())
4826 goto recursion_alert;
4827
4828 skb = validate_xmit_skb(skb, dev, &again);
4829 if (!skb)
4830 goto out;
4831
4832 HARD_TX_LOCK(dev, txq, cpu);
4833
4834 if (!netif_xmit_stopped(txq)) {
4835 dev_xmit_recursion_inc();
4836 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4837 dev_xmit_recursion_dec();
4838 if (dev_xmit_complete(rc)) {
4839 HARD_TX_UNLOCK(dev, txq);
4840 goto out;
4841 }
4842 }
4843 HARD_TX_UNLOCK(dev, txq);
4844 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4845 dev->name);
4846 } else {
4847 /* Recursion is detected! It is possible,
4848 * unfortunately
4849 */
4850 recursion_alert:
4851 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4852 dev->name);
4853 }
4854 }
4855
4856 rc = -ENETDOWN;
4857 rcu_read_unlock_bh();
4858
4859 dev_core_stats_tx_dropped_inc(dev);
4860 kfree_skb_list(skb);
4861 return rc;
4862 out:
4863 rcu_read_unlock_bh();
4864 return rc;
4865 }
4866 EXPORT_SYMBOL(__dev_queue_xmit);
4867
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4868 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4869 {
4870 struct net_device *dev = skb->dev;
4871 struct sk_buff *orig_skb = skb;
4872 struct netdev_queue *txq;
4873 int ret = NETDEV_TX_BUSY;
4874 bool again = false;
4875
4876 if (unlikely(!netif_running(dev) ||
4877 !netif_carrier_ok(dev)))
4878 goto drop;
4879
4880 skb = validate_xmit_skb_list(skb, dev, &again);
4881 if (skb != orig_skb)
4882 goto drop;
4883
4884 skb_set_queue_mapping(skb, queue_id);
4885 txq = skb_get_tx_queue(dev, skb);
4886
4887 local_bh_disable();
4888
4889 dev_xmit_recursion_inc();
4890 HARD_TX_LOCK(dev, txq, smp_processor_id());
4891 if (!netif_xmit_frozen_or_drv_stopped(txq))
4892 ret = netdev_start_xmit(skb, dev, txq, false);
4893 HARD_TX_UNLOCK(dev, txq);
4894 dev_xmit_recursion_dec();
4895
4896 local_bh_enable();
4897 return ret;
4898 drop:
4899 dev_core_stats_tx_dropped_inc(dev);
4900 kfree_skb_list(skb);
4901 return NET_XMIT_DROP;
4902 }
4903 EXPORT_SYMBOL(__dev_direct_xmit);
4904
4905 /*************************************************************************
4906 * Receiver routines
4907 *************************************************************************/
4908 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4909
4910 int weight_p __read_mostly = 64; /* old backlog weight */
4911 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4912 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4913
4914 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4915 static inline void ____napi_schedule(struct softnet_data *sd,
4916 struct napi_struct *napi)
4917 {
4918 struct task_struct *thread;
4919
4920 lockdep_assert_irqs_disabled();
4921
4922 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4923 /* Paired with smp_mb__before_atomic() in
4924 * napi_enable()/netif_set_threaded().
4925 * Use READ_ONCE() to guarantee a complete
4926 * read on napi->thread. Only call
4927 * wake_up_process() when it's not NULL.
4928 */
4929 thread = READ_ONCE(napi->thread);
4930 if (thread) {
4931 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4932 goto use_local_napi;
4933
4934 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4935 wake_up_process(thread);
4936 return;
4937 }
4938 }
4939
4940 use_local_napi:
4941 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4942 list_add_tail(&napi->poll_list, &sd->poll_list);
4943 WRITE_ONCE(napi->list_owner, smp_processor_id());
4944 /* If not called from net_rx_action()
4945 * we have to raise NET_RX_SOFTIRQ.
4946 */
4947 if (!sd->in_net_rx_action)
4948 raise_softirq_irqoff(NET_RX_SOFTIRQ);
4949 }
4950
4951 #ifdef CONFIG_RPS
4952
4953 struct static_key_false rps_needed __read_mostly;
4954 EXPORT_SYMBOL(rps_needed);
4955 struct static_key_false rfs_needed __read_mostly;
4956 EXPORT_SYMBOL(rfs_needed);
4957
rfs_slot(u32 hash,const struct rps_dev_flow_table * flow_table)4958 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4959 {
4960 return hash_32(hash, flow_table->log);
4961 }
4962
4963 #ifdef CONFIG_RFS_ACCEL
4964 /**
4965 * rps_flow_is_active - check whether the flow is recently active.
4966 * @rflow: Specific flow to check activity.
4967 * @flow_table: per-queue flowtable that @rflow belongs to.
4968 * @cpu: CPU saved in @rflow.
4969 *
4970 * If the CPU has processed many packets since the flow's last activity
4971 * (beyond 10 times the table size), the flow is considered stale.
4972 *
4973 * Return: true if flow was recently active.
4974 */
rps_flow_is_active(struct rps_dev_flow * rflow,struct rps_dev_flow_table * flow_table,unsigned int cpu)4975 static bool rps_flow_is_active(struct rps_dev_flow *rflow,
4976 struct rps_dev_flow_table *flow_table,
4977 unsigned int cpu)
4978 {
4979 unsigned int flow_last_active;
4980 unsigned int sd_input_head;
4981
4982 if (cpu >= nr_cpu_ids)
4983 return false;
4984
4985 sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head);
4986 flow_last_active = READ_ONCE(rflow->last_qtail);
4987
4988 return (int)(sd_input_head - flow_last_active) <
4989 (int)(10 << flow_table->log);
4990 }
4991 #endif
4992
4993 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu,u32 hash,u32 flow_id)4994 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4995 struct rps_dev_flow *rflow, u16 next_cpu, u32 hash,
4996 u32 flow_id)
4997 {
4998 if (next_cpu < nr_cpu_ids) {
4999 u32 head;
5000 #ifdef CONFIG_RFS_ACCEL
5001 struct netdev_rx_queue *rxqueue;
5002 struct rps_dev_flow_table *flow_table;
5003 struct rps_dev_flow *old_rflow;
5004 struct rps_dev_flow *tmp_rflow;
5005 unsigned int tmp_cpu;
5006 u16 rxq_index;
5007 int rc;
5008
5009 /* Should we steer this flow to a different hardware queue? */
5010 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
5011 !(dev->features & NETIF_F_NTUPLE))
5012 goto out;
5013 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
5014 if (rxq_index == skb_get_rx_queue(skb))
5015 goto out;
5016
5017 rxqueue = dev->_rx + rxq_index;
5018 flow_table = rcu_dereference(rxqueue->rps_flow_table);
5019 if (!flow_table)
5020 goto out;
5021
5022 tmp_rflow = &flow_table->flows[flow_id];
5023 tmp_cpu = READ_ONCE(tmp_rflow->cpu);
5024
5025 if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) {
5026 if (rps_flow_is_active(tmp_rflow, flow_table,
5027 tmp_cpu)) {
5028 if (hash != READ_ONCE(tmp_rflow->hash) ||
5029 next_cpu == tmp_cpu)
5030 goto out;
5031 }
5032 }
5033
5034 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
5035 rxq_index, flow_id);
5036 if (rc < 0)
5037 goto out;
5038
5039 old_rflow = rflow;
5040 rflow = tmp_rflow;
5041 WRITE_ONCE(rflow->filter, rc);
5042 WRITE_ONCE(rflow->hash, hash);
5043
5044 if (old_rflow->filter == rc)
5045 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
5046 out:
5047 #endif
5048 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
5049 rps_input_queue_tail_save(&rflow->last_qtail, head);
5050 }
5051
5052 WRITE_ONCE(rflow->cpu, next_cpu);
5053 return rflow;
5054 }
5055
5056 /*
5057 * get_rps_cpu is called from netif_receive_skb and returns the target
5058 * CPU from the RPS map of the receiving queue for a given skb.
5059 * rcu_read_lock must be held on entry.
5060 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)5061 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
5062 struct rps_dev_flow **rflowp)
5063 {
5064 const struct rps_sock_flow_table *sock_flow_table;
5065 struct netdev_rx_queue *rxqueue = dev->_rx;
5066 struct rps_dev_flow_table *flow_table;
5067 struct rps_map *map;
5068 int cpu = -1;
5069 u32 flow_id;
5070 u32 tcpu;
5071 u32 hash;
5072
5073 if (skb_rx_queue_recorded(skb)) {
5074 u16 index = skb_get_rx_queue(skb);
5075
5076 if (unlikely(index >= dev->real_num_rx_queues)) {
5077 WARN_ONCE(dev->real_num_rx_queues > 1,
5078 "%s received packet on queue %u, but number "
5079 "of RX queues is %u\n",
5080 dev->name, index, dev->real_num_rx_queues);
5081 goto done;
5082 }
5083 rxqueue += index;
5084 }
5085
5086 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
5087
5088 flow_table = rcu_dereference(rxqueue->rps_flow_table);
5089 map = rcu_dereference(rxqueue->rps_map);
5090 if (!flow_table && !map)
5091 goto done;
5092
5093 skb_reset_network_header(skb);
5094 hash = skb_get_hash(skb);
5095 if (!hash)
5096 goto done;
5097
5098 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
5099 if (flow_table && sock_flow_table) {
5100 struct rps_dev_flow *rflow;
5101 u32 next_cpu;
5102 u32 ident;
5103
5104 /* First check into global flow table if there is a match.
5105 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
5106 */
5107 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
5108 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
5109 goto try_rps;
5110
5111 next_cpu = ident & net_hotdata.rps_cpu_mask;
5112
5113 /* OK, now we know there is a match,
5114 * we can look at the local (per receive queue) flow table
5115 */
5116 flow_id = rfs_slot(hash, flow_table);
5117 rflow = &flow_table->flows[flow_id];
5118 tcpu = rflow->cpu;
5119
5120 /*
5121 * If the desired CPU (where last recvmsg was done) is
5122 * different from current CPU (one in the rx-queue flow
5123 * table entry), switch if one of the following holds:
5124 * - Current CPU is unset (>= nr_cpu_ids).
5125 * - Current CPU is offline.
5126 * - The current CPU's queue tail has advanced beyond the
5127 * last packet that was enqueued using this table entry.
5128 * This guarantees that all previous packets for the flow
5129 * have been dequeued, thus preserving in order delivery.
5130 */
5131 if (unlikely(tcpu != next_cpu) &&
5132 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
5133 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
5134 rflow->last_qtail)) >= 0)) {
5135 tcpu = next_cpu;
5136 rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash,
5137 flow_id);
5138 }
5139
5140 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
5141 *rflowp = rflow;
5142 cpu = tcpu;
5143 goto done;
5144 }
5145 }
5146
5147 try_rps:
5148
5149 if (map) {
5150 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
5151 if (cpu_online(tcpu)) {
5152 cpu = tcpu;
5153 goto done;
5154 }
5155 }
5156
5157 done:
5158 return cpu;
5159 }
5160
5161 #ifdef CONFIG_RFS_ACCEL
5162
5163 /**
5164 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
5165 * @dev: Device on which the filter was set
5166 * @rxq_index: RX queue index
5167 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
5168 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
5169 *
5170 * Drivers that implement ndo_rx_flow_steer() should periodically call
5171 * this function for each installed filter and remove the filters for
5172 * which it returns %true.
5173 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)5174 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5175 u32 flow_id, u16 filter_id)
5176 {
5177 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5178 struct rps_dev_flow_table *flow_table;
5179 struct rps_dev_flow *rflow;
5180 bool expire = true;
5181
5182 rcu_read_lock();
5183 flow_table = rcu_dereference(rxqueue->rps_flow_table);
5184 if (flow_table && flow_id < (1UL << flow_table->log)) {
5185 unsigned int cpu;
5186
5187 rflow = &flow_table->flows[flow_id];
5188 cpu = READ_ONCE(rflow->cpu);
5189 if (READ_ONCE(rflow->filter) == filter_id &&
5190 rps_flow_is_active(rflow, flow_table, cpu))
5191 expire = false;
5192 }
5193 rcu_read_unlock();
5194 return expire;
5195 }
5196 EXPORT_SYMBOL(rps_may_expire_flow);
5197
5198 #endif /* CONFIG_RFS_ACCEL */
5199
5200 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)5201 static void rps_trigger_softirq(void *data)
5202 {
5203 struct softnet_data *sd = data;
5204
5205 ____napi_schedule(sd, &sd->backlog);
5206 /* Pairs with READ_ONCE() in softnet_seq_show() */
5207 WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5208 }
5209
5210 #endif /* CONFIG_RPS */
5211
5212 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)5213 static void trigger_rx_softirq(void *data)
5214 {
5215 struct softnet_data *sd = data;
5216
5217 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5218 smp_store_release(&sd->defer_ipi_scheduled, 0);
5219 }
5220
5221 /*
5222 * After we queued a packet into sd->input_pkt_queue,
5223 * we need to make sure this queue is serviced soon.
5224 *
5225 * - If this is another cpu queue, link it to our rps_ipi_list,
5226 * and make sure we will process rps_ipi_list from net_rx_action().
5227 *
5228 * - If this is our own queue, NAPI schedule our backlog.
5229 * Note that this also raises NET_RX_SOFTIRQ.
5230 */
napi_schedule_rps(struct softnet_data * sd)5231 static void napi_schedule_rps(struct softnet_data *sd)
5232 {
5233 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5234
5235 #ifdef CONFIG_RPS
5236 if (sd != mysd) {
5237 if (use_backlog_threads()) {
5238 __napi_schedule_irqoff(&sd->backlog);
5239 return;
5240 }
5241
5242 sd->rps_ipi_next = mysd->rps_ipi_list;
5243 mysd->rps_ipi_list = sd;
5244
5245 /* If not called from net_rx_action() or napi_threaded_poll()
5246 * we have to raise NET_RX_SOFTIRQ.
5247 */
5248 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5249 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5250 return;
5251 }
5252 #endif /* CONFIG_RPS */
5253 __napi_schedule_irqoff(&mysd->backlog);
5254 }
5255
kick_defer_list_purge(unsigned int cpu)5256 void kick_defer_list_purge(unsigned int cpu)
5257 {
5258 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5259 unsigned long flags;
5260
5261 if (use_backlog_threads()) {
5262 backlog_lock_irq_save(sd, &flags);
5263
5264 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5265 __napi_schedule_irqoff(&sd->backlog);
5266
5267 backlog_unlock_irq_restore(sd, flags);
5268
5269 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5270 smp_call_function_single_async(cpu, &sd->defer_csd);
5271 }
5272 }
5273
5274 #ifdef CONFIG_NET_FLOW_LIMIT
5275 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5276 #endif
5277
skb_flow_limit(struct sk_buff * skb,unsigned int qlen,int max_backlog)5278 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen,
5279 int max_backlog)
5280 {
5281 #ifdef CONFIG_NET_FLOW_LIMIT
5282 unsigned int old_flow, new_flow;
5283 const struct softnet_data *sd;
5284 struct sd_flow_limit *fl;
5285
5286 if (likely(qlen < (max_backlog >> 1)))
5287 return false;
5288
5289 sd = this_cpu_ptr(&softnet_data);
5290
5291 rcu_read_lock();
5292 fl = rcu_dereference(sd->flow_limit);
5293 if (fl) {
5294 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5295 old_flow = fl->history[fl->history_head];
5296 fl->history[fl->history_head] = new_flow;
5297
5298 fl->history_head++;
5299 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5300
5301 if (likely(fl->buckets[old_flow]))
5302 fl->buckets[old_flow]--;
5303
5304 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5305 /* Pairs with READ_ONCE() in softnet_seq_show() */
5306 WRITE_ONCE(fl->count, fl->count + 1);
5307 rcu_read_unlock();
5308 return true;
5309 }
5310 }
5311 rcu_read_unlock();
5312 #endif
5313 return false;
5314 }
5315
5316 /*
5317 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5318 * queue (may be a remote CPU queue).
5319 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)5320 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5321 unsigned int *qtail)
5322 {
5323 enum skb_drop_reason reason;
5324 struct softnet_data *sd;
5325 unsigned long flags;
5326 unsigned int qlen;
5327 int max_backlog;
5328 u32 tail;
5329
5330 reason = SKB_DROP_REASON_DEV_READY;
5331 if (unlikely(!netif_running(skb->dev)))
5332 goto bad_dev;
5333
5334 sd = &per_cpu(softnet_data, cpu);
5335
5336 qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5337 max_backlog = READ_ONCE(net_hotdata.max_backlog);
5338 if (unlikely(qlen > max_backlog) ||
5339 skb_flow_limit(skb, qlen, max_backlog))
5340 goto cpu_backlog_drop;
5341 backlog_lock_irq_save(sd, &flags);
5342 qlen = skb_queue_len(&sd->input_pkt_queue);
5343 if (likely(qlen <= max_backlog)) {
5344 if (!qlen) {
5345 /* Schedule NAPI for backlog device. We can use
5346 * non atomic operation as we own the queue lock.
5347 */
5348 if (!__test_and_set_bit(NAPI_STATE_SCHED,
5349 &sd->backlog.state))
5350 napi_schedule_rps(sd);
5351 }
5352 __skb_queue_tail(&sd->input_pkt_queue, skb);
5353 tail = rps_input_queue_tail_incr(sd);
5354 backlog_unlock_irq_restore(sd, flags);
5355
5356 /* save the tail outside of the critical section */
5357 rps_input_queue_tail_save(qtail, tail);
5358 return NET_RX_SUCCESS;
5359 }
5360
5361 backlog_unlock_irq_restore(sd, flags);
5362
5363 cpu_backlog_drop:
5364 reason = SKB_DROP_REASON_CPU_BACKLOG;
5365 numa_drop_add(&sd->drop_counters, 1);
5366 bad_dev:
5367 dev_core_stats_rx_dropped_inc(skb->dev);
5368 kfree_skb_reason(skb, reason);
5369 return NET_RX_DROP;
5370 }
5371
netif_get_rxqueue(struct sk_buff * skb)5372 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5373 {
5374 struct net_device *dev = skb->dev;
5375 struct netdev_rx_queue *rxqueue;
5376
5377 rxqueue = dev->_rx;
5378
5379 if (skb_rx_queue_recorded(skb)) {
5380 u16 index = skb_get_rx_queue(skb);
5381
5382 if (unlikely(index >= dev->real_num_rx_queues)) {
5383 WARN_ONCE(dev->real_num_rx_queues > 1,
5384 "%s received packet on queue %u, but number "
5385 "of RX queues is %u\n",
5386 dev->name, index, dev->real_num_rx_queues);
5387
5388 return rxqueue; /* Return first rxqueue */
5389 }
5390 rxqueue += index;
5391 }
5392 return rxqueue;
5393 }
5394
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5395 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5396 const struct bpf_prog *xdp_prog)
5397 {
5398 void *orig_data, *orig_data_end, *hard_start;
5399 struct netdev_rx_queue *rxqueue;
5400 bool orig_bcast, orig_host;
5401 u32 mac_len, frame_sz;
5402 __be16 orig_eth_type;
5403 struct ethhdr *eth;
5404 u32 metalen, act;
5405 int off;
5406
5407 /* The XDP program wants to see the packet starting at the MAC
5408 * header.
5409 */
5410 mac_len = skb->data - skb_mac_header(skb);
5411 hard_start = skb->data - skb_headroom(skb);
5412
5413 /* SKB "head" area always have tailroom for skb_shared_info */
5414 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5415 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5416
5417 rxqueue = netif_get_rxqueue(skb);
5418 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5419 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5420 skb_headlen(skb) + mac_len, true);
5421 if (skb_is_nonlinear(skb)) {
5422 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5423 xdp_buff_set_frags_flag(xdp);
5424 } else {
5425 xdp_buff_clear_frags_flag(xdp);
5426 }
5427
5428 orig_data_end = xdp->data_end;
5429 orig_data = xdp->data;
5430 eth = (struct ethhdr *)xdp->data;
5431 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5432 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5433 orig_eth_type = eth->h_proto;
5434
5435 act = bpf_prog_run_xdp(xdp_prog, xdp);
5436
5437 /* check if bpf_xdp_adjust_head was used */
5438 off = xdp->data - orig_data;
5439 if (off) {
5440 if (off > 0)
5441 __skb_pull(skb, off);
5442 else if (off < 0)
5443 __skb_push(skb, -off);
5444
5445 skb->mac_header += off;
5446 skb_reset_network_header(skb);
5447 }
5448
5449 /* check if bpf_xdp_adjust_tail was used */
5450 off = xdp->data_end - orig_data_end;
5451 if (off != 0) {
5452 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5453 skb->len += off; /* positive on grow, negative on shrink */
5454 }
5455
5456 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5457 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5458 */
5459 if (xdp_buff_has_frags(xdp))
5460 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5461 else
5462 skb->data_len = 0;
5463
5464 /* check if XDP changed eth hdr such SKB needs update */
5465 eth = (struct ethhdr *)xdp->data;
5466 if ((orig_eth_type != eth->h_proto) ||
5467 (orig_host != ether_addr_equal_64bits(eth->h_dest,
5468 skb->dev->dev_addr)) ||
5469 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5470 __skb_push(skb, ETH_HLEN);
5471 skb->pkt_type = PACKET_HOST;
5472 skb->protocol = eth_type_trans(skb, skb->dev);
5473 }
5474
5475 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5476 * before calling us again on redirect path. We do not call do_redirect
5477 * as we leave that up to the caller.
5478 *
5479 * Caller is responsible for managing lifetime of skb (i.e. calling
5480 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5481 */
5482 switch (act) {
5483 case XDP_REDIRECT:
5484 case XDP_TX:
5485 __skb_push(skb, mac_len);
5486 break;
5487 case XDP_PASS:
5488 metalen = xdp->data - xdp->data_meta;
5489 if (metalen)
5490 skb_metadata_set(skb, metalen);
5491 break;
5492 }
5493
5494 return act;
5495 }
5496
5497 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,const struct bpf_prog * prog)5498 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5499 {
5500 struct sk_buff *skb = *pskb;
5501 int err, hroom, troom;
5502
5503 local_lock_nested_bh(&system_page_pool.bh_lock);
5504 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5505 local_unlock_nested_bh(&system_page_pool.bh_lock);
5506 if (!err)
5507 return 0;
5508
5509 /* In case we have to go down the path and also linearize,
5510 * then lets do the pskb_expand_head() work just once here.
5511 */
5512 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5513 troom = skb->tail + skb->data_len - skb->end;
5514 err = pskb_expand_head(skb,
5515 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5516 troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5517 if (err)
5518 return err;
5519
5520 return skb_linearize(skb);
5521 }
5522
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5523 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5524 struct xdp_buff *xdp,
5525 const struct bpf_prog *xdp_prog)
5526 {
5527 struct sk_buff *skb = *pskb;
5528 u32 mac_len, act = XDP_DROP;
5529
5530 /* Reinjected packets coming from act_mirred or similar should
5531 * not get XDP generic processing.
5532 */
5533 if (skb_is_redirected(skb))
5534 return XDP_PASS;
5535
5536 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5537 * bytes. This is the guarantee that also native XDP provides,
5538 * thus we need to do it here as well.
5539 */
5540 mac_len = skb->data - skb_mac_header(skb);
5541 __skb_push(skb, mac_len);
5542
5543 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5544 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5545 if (netif_skb_check_for_xdp(pskb, xdp_prog))
5546 goto do_drop;
5547 }
5548
5549 __skb_pull(*pskb, mac_len);
5550
5551 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5552 switch (act) {
5553 case XDP_REDIRECT:
5554 case XDP_TX:
5555 case XDP_PASS:
5556 break;
5557 default:
5558 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5559 fallthrough;
5560 case XDP_ABORTED:
5561 trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5562 fallthrough;
5563 case XDP_DROP:
5564 do_drop:
5565 kfree_skb(*pskb);
5566 break;
5567 }
5568
5569 return act;
5570 }
5571
5572 /* When doing generic XDP we have to bypass the qdisc layer and the
5573 * network taps in order to match in-driver-XDP behavior. This also means
5574 * that XDP packets are able to starve other packets going through a qdisc,
5575 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5576 * queues, so they do not have this starvation issue.
5577 */
generic_xdp_tx(struct sk_buff * skb,const struct bpf_prog * xdp_prog)5578 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5579 {
5580 struct net_device *dev = skb->dev;
5581 struct netdev_queue *txq;
5582 bool free_skb = true;
5583 int cpu, rc;
5584
5585 txq = netdev_core_pick_tx(dev, skb, NULL);
5586 cpu = smp_processor_id();
5587 HARD_TX_LOCK(dev, txq, cpu);
5588 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5589 rc = netdev_start_xmit(skb, dev, txq, 0);
5590 if (dev_xmit_complete(rc))
5591 free_skb = false;
5592 }
5593 HARD_TX_UNLOCK(dev, txq);
5594 if (free_skb) {
5595 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5596 dev_core_stats_tx_dropped_inc(dev);
5597 kfree_skb(skb);
5598 }
5599 }
5600
5601 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5602
do_xdp_generic(const struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5603 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5604 {
5605 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5606
5607 if (xdp_prog) {
5608 struct xdp_buff xdp;
5609 u32 act;
5610 int err;
5611
5612 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5613 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5614 if (act != XDP_PASS) {
5615 switch (act) {
5616 case XDP_REDIRECT:
5617 err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5618 &xdp, xdp_prog);
5619 if (err)
5620 goto out_redir;
5621 break;
5622 case XDP_TX:
5623 generic_xdp_tx(*pskb, xdp_prog);
5624 break;
5625 }
5626 bpf_net_ctx_clear(bpf_net_ctx);
5627 return XDP_DROP;
5628 }
5629 bpf_net_ctx_clear(bpf_net_ctx);
5630 }
5631 return XDP_PASS;
5632 out_redir:
5633 bpf_net_ctx_clear(bpf_net_ctx);
5634 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5635 return XDP_DROP;
5636 }
5637 EXPORT_SYMBOL_GPL(do_xdp_generic);
5638
netif_rx_internal(struct sk_buff * skb)5639 static int netif_rx_internal(struct sk_buff *skb)
5640 {
5641 int ret;
5642
5643 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5644
5645 trace_netif_rx(skb);
5646
5647 #ifdef CONFIG_RPS
5648 if (static_branch_unlikely(&rps_needed)) {
5649 struct rps_dev_flow voidflow, *rflow = &voidflow;
5650 int cpu;
5651
5652 rcu_read_lock();
5653
5654 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5655 if (cpu < 0)
5656 cpu = smp_processor_id();
5657
5658 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5659
5660 rcu_read_unlock();
5661 } else
5662 #endif
5663 {
5664 unsigned int qtail;
5665
5666 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5667 }
5668 return ret;
5669 }
5670
5671 /**
5672 * __netif_rx - Slightly optimized version of netif_rx
5673 * @skb: buffer to post
5674 *
5675 * This behaves as netif_rx except that it does not disable bottom halves.
5676 * As a result this function may only be invoked from the interrupt context
5677 * (either hard or soft interrupt).
5678 */
__netif_rx(struct sk_buff * skb)5679 int __netif_rx(struct sk_buff *skb)
5680 {
5681 int ret;
5682
5683 lockdep_assert_once(hardirq_count() | softirq_count());
5684
5685 trace_netif_rx_entry(skb);
5686 ret = netif_rx_internal(skb);
5687 trace_netif_rx_exit(ret);
5688 return ret;
5689 }
5690 EXPORT_SYMBOL(__netif_rx);
5691
5692 /**
5693 * netif_rx - post buffer to the network code
5694 * @skb: buffer to post
5695 *
5696 * This function receives a packet from a device driver and queues it for
5697 * the upper (protocol) levels to process via the backlog NAPI device. It
5698 * always succeeds. The buffer may be dropped during processing for
5699 * congestion control or by the protocol layers.
5700 * The network buffer is passed via the backlog NAPI device. Modern NIC
5701 * driver should use NAPI and GRO.
5702 * This function can used from interrupt and from process context. The
5703 * caller from process context must not disable interrupts before invoking
5704 * this function.
5705 *
5706 * return values:
5707 * NET_RX_SUCCESS (no congestion)
5708 * NET_RX_DROP (packet was dropped)
5709 *
5710 */
netif_rx(struct sk_buff * skb)5711 int netif_rx(struct sk_buff *skb)
5712 {
5713 bool need_bh_off = !(hardirq_count() | softirq_count());
5714 int ret;
5715
5716 if (need_bh_off)
5717 local_bh_disable();
5718 trace_netif_rx_entry(skb);
5719 ret = netif_rx_internal(skb);
5720 trace_netif_rx_exit(ret);
5721 if (need_bh_off)
5722 local_bh_enable();
5723 return ret;
5724 }
5725 EXPORT_SYMBOL(netif_rx);
5726
net_tx_action(void)5727 static __latent_entropy void net_tx_action(void)
5728 {
5729 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5730
5731 if (sd->completion_queue) {
5732 struct sk_buff *clist;
5733
5734 local_irq_disable();
5735 clist = sd->completion_queue;
5736 sd->completion_queue = NULL;
5737 local_irq_enable();
5738
5739 while (clist) {
5740 struct sk_buff *skb = clist;
5741
5742 clist = clist->next;
5743
5744 WARN_ON(refcount_read(&skb->users));
5745 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5746 trace_consume_skb(skb, net_tx_action);
5747 else
5748 trace_kfree_skb(skb, net_tx_action,
5749 get_kfree_skb_cb(skb)->reason, NULL);
5750
5751 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5752 __kfree_skb(skb);
5753 else
5754 __napi_kfree_skb(skb,
5755 get_kfree_skb_cb(skb)->reason);
5756 }
5757 }
5758
5759 if (sd->output_queue) {
5760 struct Qdisc *head;
5761
5762 local_irq_disable();
5763 head = sd->output_queue;
5764 sd->output_queue = NULL;
5765 sd->output_queue_tailp = &sd->output_queue;
5766 local_irq_enable();
5767
5768 rcu_read_lock();
5769
5770 while (head) {
5771 spinlock_t *root_lock = NULL;
5772 struct sk_buff *to_free;
5773 struct Qdisc *q = head;
5774
5775 head = head->next_sched;
5776
5777 /* We need to make sure head->next_sched is read
5778 * before clearing __QDISC_STATE_SCHED
5779 */
5780 smp_mb__before_atomic();
5781
5782 if (!(q->flags & TCQ_F_NOLOCK)) {
5783 root_lock = qdisc_lock(q);
5784 spin_lock(root_lock);
5785 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5786 &q->state))) {
5787 /* There is a synchronize_net() between
5788 * STATE_DEACTIVATED flag being set and
5789 * qdisc_reset()/some_qdisc_is_busy() in
5790 * dev_deactivate(), so we can safely bail out
5791 * early here to avoid data race between
5792 * qdisc_deactivate() and some_qdisc_is_busy()
5793 * for lockless qdisc.
5794 */
5795 clear_bit(__QDISC_STATE_SCHED, &q->state);
5796 continue;
5797 }
5798
5799 clear_bit(__QDISC_STATE_SCHED, &q->state);
5800 to_free = qdisc_run(q);
5801 if (root_lock)
5802 spin_unlock(root_lock);
5803 tcf_kfree_skb_list(to_free);
5804 }
5805
5806 rcu_read_unlock();
5807 }
5808
5809 xfrm_dev_backlog(sd);
5810 }
5811
5812 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5813 /* This hook is defined here for ATM LANE */
5814 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5815 unsigned char *addr) __read_mostly;
5816 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5817 #endif
5818
5819 /**
5820 * netdev_is_rx_handler_busy - check if receive handler is registered
5821 * @dev: device to check
5822 *
5823 * Check if a receive handler is already registered for a given device.
5824 * Return true if there one.
5825 *
5826 * The caller must hold the rtnl_mutex.
5827 */
netdev_is_rx_handler_busy(struct net_device * dev)5828 bool netdev_is_rx_handler_busy(struct net_device *dev)
5829 {
5830 ASSERT_RTNL();
5831 return dev && rtnl_dereference(dev->rx_handler);
5832 }
5833 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5834
5835 /**
5836 * netdev_rx_handler_register - register receive handler
5837 * @dev: device to register a handler for
5838 * @rx_handler: receive handler to register
5839 * @rx_handler_data: data pointer that is used by rx handler
5840 *
5841 * Register a receive handler for a device. This handler will then be
5842 * called from __netif_receive_skb. A negative errno code is returned
5843 * on a failure.
5844 *
5845 * The caller must hold the rtnl_mutex.
5846 *
5847 * For a general description of rx_handler, see enum rx_handler_result.
5848 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5849 int netdev_rx_handler_register(struct net_device *dev,
5850 rx_handler_func_t *rx_handler,
5851 void *rx_handler_data)
5852 {
5853 if (netdev_is_rx_handler_busy(dev))
5854 return -EBUSY;
5855
5856 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5857 return -EINVAL;
5858
5859 /* Note: rx_handler_data must be set before rx_handler */
5860 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5861 rcu_assign_pointer(dev->rx_handler, rx_handler);
5862
5863 return 0;
5864 }
5865 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5866
5867 /**
5868 * netdev_rx_handler_unregister - unregister receive handler
5869 * @dev: device to unregister a handler from
5870 *
5871 * Unregister a receive handler from a device.
5872 *
5873 * The caller must hold the rtnl_mutex.
5874 */
netdev_rx_handler_unregister(struct net_device * dev)5875 void netdev_rx_handler_unregister(struct net_device *dev)
5876 {
5877
5878 ASSERT_RTNL();
5879 RCU_INIT_POINTER(dev->rx_handler, NULL);
5880 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5881 * section has a guarantee to see a non NULL rx_handler_data
5882 * as well.
5883 */
5884 synchronize_net();
5885 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5886 }
5887 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5888
5889 /*
5890 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5891 * the special handling of PFMEMALLOC skbs.
5892 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5893 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5894 {
5895 switch (skb->protocol) {
5896 case htons(ETH_P_ARP):
5897 case htons(ETH_P_IP):
5898 case htons(ETH_P_IPV6):
5899 case htons(ETH_P_8021Q):
5900 case htons(ETH_P_8021AD):
5901 return true;
5902 default:
5903 return false;
5904 }
5905 }
5906
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5907 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5908 int *ret, struct net_device *orig_dev)
5909 {
5910 if (nf_hook_ingress_active(skb)) {
5911 int ingress_retval;
5912
5913 if (unlikely(*pt_prev)) {
5914 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5915 *pt_prev = NULL;
5916 }
5917
5918 rcu_read_lock();
5919 ingress_retval = nf_hook_ingress(skb);
5920 rcu_read_unlock();
5921 return ingress_retval;
5922 }
5923 return 0;
5924 }
5925
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5926 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5927 struct packet_type **ppt_prev)
5928 {
5929 enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO;
5930 struct packet_type *ptype, *pt_prev;
5931 rx_handler_func_t *rx_handler;
5932 struct sk_buff *skb = *pskb;
5933 struct net_device *orig_dev;
5934 bool deliver_exact = false;
5935 int ret = NET_RX_DROP;
5936 __be16 type;
5937
5938 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5939
5940 trace_netif_receive_skb(skb);
5941
5942 orig_dev = skb->dev;
5943
5944 skb_reset_network_header(skb);
5945 #if !defined(CONFIG_DEBUG_NET)
5946 /* We plan to no longer reset the transport header here.
5947 * Give some time to fuzzers and dev build to catch bugs
5948 * in network stacks.
5949 */
5950 if (!skb_transport_header_was_set(skb))
5951 skb_reset_transport_header(skb);
5952 #endif
5953 skb_reset_mac_len(skb);
5954
5955 pt_prev = NULL;
5956
5957 another_round:
5958 skb->skb_iif = skb->dev->ifindex;
5959
5960 __this_cpu_inc(softnet_data.processed);
5961
5962 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5963 int ret2;
5964
5965 migrate_disable();
5966 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5967 &skb);
5968 migrate_enable();
5969
5970 if (ret2 != XDP_PASS) {
5971 ret = NET_RX_DROP;
5972 goto out;
5973 }
5974 }
5975
5976 if (eth_type_vlan(skb->protocol)) {
5977 skb = skb_vlan_untag(skb);
5978 if (unlikely(!skb))
5979 goto out;
5980 }
5981
5982 if (skb_skip_tc_classify(skb))
5983 goto skip_classify;
5984
5985 if (pfmemalloc)
5986 goto skip_taps;
5987
5988 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5989 list) {
5990 if (unlikely(pt_prev))
5991 ret = deliver_skb(skb, pt_prev, orig_dev);
5992 pt_prev = ptype;
5993 }
5994
5995 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5996 if (unlikely(pt_prev))
5997 ret = deliver_skb(skb, pt_prev, orig_dev);
5998 pt_prev = ptype;
5999 }
6000
6001 skip_taps:
6002 #ifdef CONFIG_NET_INGRESS
6003 if (static_branch_unlikely(&ingress_needed_key)) {
6004 bool another = false;
6005
6006 nf_skip_egress(skb, true);
6007 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
6008 &another);
6009 if (another)
6010 goto another_round;
6011 if (!skb)
6012 goto out;
6013
6014 nf_skip_egress(skb, false);
6015 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
6016 goto out;
6017 }
6018 #endif
6019 skb_reset_redirect(skb);
6020 skip_classify:
6021 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) {
6022 drop_reason = SKB_DROP_REASON_PFMEMALLOC;
6023 goto drop;
6024 }
6025
6026 if (skb_vlan_tag_present(skb)) {
6027 if (unlikely(pt_prev)) {
6028 ret = deliver_skb(skb, pt_prev, orig_dev);
6029 pt_prev = NULL;
6030 }
6031 if (vlan_do_receive(&skb))
6032 goto another_round;
6033 else if (unlikely(!skb))
6034 goto out;
6035 }
6036
6037 rx_handler = rcu_dereference(skb->dev->rx_handler);
6038 if (rx_handler) {
6039 if (unlikely(pt_prev)) {
6040 ret = deliver_skb(skb, pt_prev, orig_dev);
6041 pt_prev = NULL;
6042 }
6043 switch (rx_handler(&skb)) {
6044 case RX_HANDLER_CONSUMED:
6045 ret = NET_RX_SUCCESS;
6046 goto out;
6047 case RX_HANDLER_ANOTHER:
6048 goto another_round;
6049 case RX_HANDLER_EXACT:
6050 deliver_exact = true;
6051 break;
6052 case RX_HANDLER_PASS:
6053 break;
6054 default:
6055 BUG();
6056 }
6057 }
6058
6059 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
6060 check_vlan_id:
6061 if (skb_vlan_tag_get_id(skb)) {
6062 /* Vlan id is non 0 and vlan_do_receive() above couldn't
6063 * find vlan device.
6064 */
6065 skb->pkt_type = PACKET_OTHERHOST;
6066 } else if (eth_type_vlan(skb->protocol)) {
6067 /* Outer header is 802.1P with vlan 0, inner header is
6068 * 802.1Q or 802.1AD and vlan_do_receive() above could
6069 * not find vlan dev for vlan id 0.
6070 */
6071 __vlan_hwaccel_clear_tag(skb);
6072 skb = skb_vlan_untag(skb);
6073 if (unlikely(!skb))
6074 goto out;
6075 if (vlan_do_receive(&skb))
6076 /* After stripping off 802.1P header with vlan 0
6077 * vlan dev is found for inner header.
6078 */
6079 goto another_round;
6080 else if (unlikely(!skb))
6081 goto out;
6082 else
6083 /* We have stripped outer 802.1P vlan 0 header.
6084 * But could not find vlan dev.
6085 * check again for vlan id to set OTHERHOST.
6086 */
6087 goto check_vlan_id;
6088 }
6089 /* Note: we might in the future use prio bits
6090 * and set skb->priority like in vlan_do_receive()
6091 * For the time being, just ignore Priority Code Point
6092 */
6093 __vlan_hwaccel_clear_tag(skb);
6094 }
6095
6096 type = skb->protocol;
6097
6098 /* deliver only exact match when indicated */
6099 if (likely(!deliver_exact)) {
6100 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6101 &ptype_base[ntohs(type) &
6102 PTYPE_HASH_MASK]);
6103
6104 /* orig_dev and skb->dev could belong to different netns;
6105 * Even in such case we need to traverse only the list
6106 * coming from skb->dev, as the ptype owner (packet socket)
6107 * will use dev_net(skb->dev) to do namespace filtering.
6108 */
6109 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6110 &dev_net_rcu(skb->dev)->ptype_specific);
6111 }
6112
6113 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6114 &orig_dev->ptype_specific);
6115
6116 if (unlikely(skb->dev != orig_dev)) {
6117 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6118 &skb->dev->ptype_specific);
6119 }
6120
6121 if (pt_prev) {
6122 *ppt_prev = pt_prev;
6123 } else {
6124 drop:
6125 if (!deliver_exact)
6126 dev_core_stats_rx_dropped_inc(skb->dev);
6127 else
6128 dev_core_stats_rx_nohandler_inc(skb->dev);
6129
6130 kfree_skb_reason(skb, drop_reason);
6131 /* Jamal, now you will not able to escape explaining
6132 * me how you were going to use this. :-)
6133 */
6134 ret = NET_RX_DROP;
6135 }
6136
6137 out:
6138 /* The invariant here is that if *ppt_prev is not NULL
6139 * then skb should also be non-NULL.
6140 *
6141 * Apparently *ppt_prev assignment above holds this invariant due to
6142 * skb dereferencing near it.
6143 */
6144 *pskb = skb;
6145 return ret;
6146 }
6147
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)6148 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
6149 {
6150 struct net_device *orig_dev = skb->dev;
6151 struct packet_type *pt_prev = NULL;
6152 int ret;
6153
6154 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6155 if (pt_prev)
6156 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
6157 skb->dev, pt_prev, orig_dev);
6158 return ret;
6159 }
6160
6161 /**
6162 * netif_receive_skb_core - special purpose version of netif_receive_skb
6163 * @skb: buffer to process
6164 *
6165 * More direct receive version of netif_receive_skb(). It should
6166 * only be used by callers that have a need to skip RPS and Generic XDP.
6167 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
6168 *
6169 * This function may only be called from softirq context and interrupts
6170 * should be enabled.
6171 *
6172 * Return values (usually ignored):
6173 * NET_RX_SUCCESS: no congestion
6174 * NET_RX_DROP: packet was dropped
6175 */
netif_receive_skb_core(struct sk_buff * skb)6176 int netif_receive_skb_core(struct sk_buff *skb)
6177 {
6178 int ret;
6179
6180 rcu_read_lock();
6181 ret = __netif_receive_skb_one_core(skb, false);
6182 rcu_read_unlock();
6183
6184 return ret;
6185 }
6186 EXPORT_SYMBOL(netif_receive_skb_core);
6187
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)6188 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6189 struct packet_type *pt_prev,
6190 struct net_device *orig_dev)
6191 {
6192 struct sk_buff *skb, *next;
6193
6194 if (!pt_prev)
6195 return;
6196 if (list_empty(head))
6197 return;
6198 if (pt_prev->list_func != NULL)
6199 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6200 ip_list_rcv, head, pt_prev, orig_dev);
6201 else
6202 list_for_each_entry_safe(skb, next, head, list) {
6203 skb_list_del_init(skb);
6204 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6205 }
6206 }
6207
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)6208 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6209 {
6210 /* Fast-path assumptions:
6211 * - There is no RX handler.
6212 * - Only one packet_type matches.
6213 * If either of these fails, we will end up doing some per-packet
6214 * processing in-line, then handling the 'last ptype' for the whole
6215 * sublist. This can't cause out-of-order delivery to any single ptype,
6216 * because the 'last ptype' must be constant across the sublist, and all
6217 * other ptypes are handled per-packet.
6218 */
6219 /* Current (common) ptype of sublist */
6220 struct packet_type *pt_curr = NULL;
6221 /* Current (common) orig_dev of sublist */
6222 struct net_device *od_curr = NULL;
6223 struct sk_buff *skb, *next;
6224 LIST_HEAD(sublist);
6225
6226 list_for_each_entry_safe(skb, next, head, list) {
6227 struct net_device *orig_dev = skb->dev;
6228 struct packet_type *pt_prev = NULL;
6229
6230 skb_list_del_init(skb);
6231 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6232 if (!pt_prev)
6233 continue;
6234 if (pt_curr != pt_prev || od_curr != orig_dev) {
6235 /* dispatch old sublist */
6236 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6237 /* start new sublist */
6238 INIT_LIST_HEAD(&sublist);
6239 pt_curr = pt_prev;
6240 od_curr = orig_dev;
6241 }
6242 list_add_tail(&skb->list, &sublist);
6243 }
6244
6245 /* dispatch final sublist */
6246 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6247 }
6248
__netif_receive_skb(struct sk_buff * skb)6249 static int __netif_receive_skb(struct sk_buff *skb)
6250 {
6251 int ret;
6252
6253 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6254 unsigned int noreclaim_flag;
6255
6256 /*
6257 * PFMEMALLOC skbs are special, they should
6258 * - be delivered to SOCK_MEMALLOC sockets only
6259 * - stay away from userspace
6260 * - have bounded memory usage
6261 *
6262 * Use PF_MEMALLOC as this saves us from propagating the allocation
6263 * context down to all allocation sites.
6264 */
6265 noreclaim_flag = memalloc_noreclaim_save();
6266 ret = __netif_receive_skb_one_core(skb, true);
6267 memalloc_noreclaim_restore(noreclaim_flag);
6268 } else
6269 ret = __netif_receive_skb_one_core(skb, false);
6270
6271 return ret;
6272 }
6273
__netif_receive_skb_list(struct list_head * head)6274 static void __netif_receive_skb_list(struct list_head *head)
6275 {
6276 unsigned long noreclaim_flag = 0;
6277 struct sk_buff *skb, *next;
6278 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6279
6280 list_for_each_entry_safe(skb, next, head, list) {
6281 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6282 struct list_head sublist;
6283
6284 /* Handle the previous sublist */
6285 list_cut_before(&sublist, head, &skb->list);
6286 if (!list_empty(&sublist))
6287 __netif_receive_skb_list_core(&sublist, pfmemalloc);
6288 pfmemalloc = !pfmemalloc;
6289 /* See comments in __netif_receive_skb */
6290 if (pfmemalloc)
6291 noreclaim_flag = memalloc_noreclaim_save();
6292 else
6293 memalloc_noreclaim_restore(noreclaim_flag);
6294 }
6295 }
6296 /* Handle the remaining sublist */
6297 if (!list_empty(head))
6298 __netif_receive_skb_list_core(head, pfmemalloc);
6299 /* Restore pflags */
6300 if (pfmemalloc)
6301 memalloc_noreclaim_restore(noreclaim_flag);
6302 }
6303
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)6304 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6305 {
6306 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6307 struct bpf_prog *new = xdp->prog;
6308 int ret = 0;
6309
6310 switch (xdp->command) {
6311 case XDP_SETUP_PROG:
6312 rcu_assign_pointer(dev->xdp_prog, new);
6313 if (old)
6314 bpf_prog_put(old);
6315
6316 if (old && !new) {
6317 static_branch_dec(&generic_xdp_needed_key);
6318 } else if (new && !old) {
6319 static_branch_inc(&generic_xdp_needed_key);
6320 netif_disable_lro(dev);
6321 dev_disable_gro_hw(dev);
6322 }
6323 break;
6324
6325 default:
6326 ret = -EINVAL;
6327 break;
6328 }
6329
6330 return ret;
6331 }
6332
netif_receive_skb_internal(struct sk_buff * skb)6333 static int netif_receive_skb_internal(struct sk_buff *skb)
6334 {
6335 int ret;
6336
6337 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6338
6339 if (skb_defer_rx_timestamp(skb))
6340 return NET_RX_SUCCESS;
6341
6342 rcu_read_lock();
6343 #ifdef CONFIG_RPS
6344 if (static_branch_unlikely(&rps_needed)) {
6345 struct rps_dev_flow voidflow, *rflow = &voidflow;
6346 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6347
6348 if (cpu >= 0) {
6349 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6350 rcu_read_unlock();
6351 return ret;
6352 }
6353 }
6354 #endif
6355 ret = __netif_receive_skb(skb);
6356 rcu_read_unlock();
6357 return ret;
6358 }
6359
netif_receive_skb_list_internal(struct list_head * head)6360 void netif_receive_skb_list_internal(struct list_head *head)
6361 {
6362 struct sk_buff *skb, *next;
6363 LIST_HEAD(sublist);
6364
6365 list_for_each_entry_safe(skb, next, head, list) {
6366 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6367 skb);
6368 skb_list_del_init(skb);
6369 if (!skb_defer_rx_timestamp(skb))
6370 list_add_tail(&skb->list, &sublist);
6371 }
6372 list_splice_init(&sublist, head);
6373
6374 rcu_read_lock();
6375 #ifdef CONFIG_RPS
6376 if (static_branch_unlikely(&rps_needed)) {
6377 list_for_each_entry_safe(skb, next, head, list) {
6378 struct rps_dev_flow voidflow, *rflow = &voidflow;
6379 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6380
6381 if (cpu >= 0) {
6382 /* Will be handled, remove from list */
6383 skb_list_del_init(skb);
6384 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6385 }
6386 }
6387 }
6388 #endif
6389 __netif_receive_skb_list(head);
6390 rcu_read_unlock();
6391 }
6392
6393 /**
6394 * netif_receive_skb - process receive buffer from network
6395 * @skb: buffer to process
6396 *
6397 * netif_receive_skb() is the main receive data processing function.
6398 * It always succeeds. The buffer may be dropped during processing
6399 * for congestion control or by the protocol layers.
6400 *
6401 * This function may only be called from softirq context and interrupts
6402 * should be enabled.
6403 *
6404 * Return values (usually ignored):
6405 * NET_RX_SUCCESS: no congestion
6406 * NET_RX_DROP: packet was dropped
6407 */
netif_receive_skb(struct sk_buff * skb)6408 int netif_receive_skb(struct sk_buff *skb)
6409 {
6410 int ret;
6411
6412 trace_netif_receive_skb_entry(skb);
6413
6414 ret = netif_receive_skb_internal(skb);
6415 trace_netif_receive_skb_exit(ret);
6416
6417 return ret;
6418 }
6419 EXPORT_SYMBOL(netif_receive_skb);
6420
6421 /**
6422 * netif_receive_skb_list - process many receive buffers from network
6423 * @head: list of skbs to process.
6424 *
6425 * Since return value of netif_receive_skb() is normally ignored, and
6426 * wouldn't be meaningful for a list, this function returns void.
6427 *
6428 * This function may only be called from softirq context and interrupts
6429 * should be enabled.
6430 */
netif_receive_skb_list(struct list_head * head)6431 void netif_receive_skb_list(struct list_head *head)
6432 {
6433 struct sk_buff *skb;
6434
6435 if (list_empty(head))
6436 return;
6437 if (trace_netif_receive_skb_list_entry_enabled()) {
6438 list_for_each_entry(skb, head, list)
6439 trace_netif_receive_skb_list_entry(skb);
6440 }
6441 netif_receive_skb_list_internal(head);
6442 trace_netif_receive_skb_list_exit(0);
6443 }
6444 EXPORT_SYMBOL(netif_receive_skb_list);
6445
6446 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6447 static void flush_backlog(struct work_struct *work)
6448 {
6449 struct sk_buff *skb, *tmp;
6450 struct sk_buff_head list;
6451 struct softnet_data *sd;
6452
6453 __skb_queue_head_init(&list);
6454 local_bh_disable();
6455 sd = this_cpu_ptr(&softnet_data);
6456
6457 backlog_lock_irq_disable(sd);
6458 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6459 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6460 __skb_unlink(skb, &sd->input_pkt_queue);
6461 __skb_queue_tail(&list, skb);
6462 rps_input_queue_head_incr(sd);
6463 }
6464 }
6465 backlog_unlock_irq_enable(sd);
6466
6467 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6468 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6469 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6470 __skb_unlink(skb, &sd->process_queue);
6471 __skb_queue_tail(&list, skb);
6472 rps_input_queue_head_incr(sd);
6473 }
6474 }
6475 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6476 local_bh_enable();
6477
6478 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6479 }
6480
flush_required(int cpu)6481 static bool flush_required(int cpu)
6482 {
6483 #if IS_ENABLED(CONFIG_RPS)
6484 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6485 bool do_flush;
6486
6487 backlog_lock_irq_disable(sd);
6488
6489 /* as insertion into process_queue happens with the rps lock held,
6490 * process_queue access may race only with dequeue
6491 */
6492 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6493 !skb_queue_empty_lockless(&sd->process_queue);
6494 backlog_unlock_irq_enable(sd);
6495
6496 return do_flush;
6497 #endif
6498 /* without RPS we can't safely check input_pkt_queue: during a
6499 * concurrent remote skb_queue_splice() we can detect as empty both
6500 * input_pkt_queue and process_queue even if the latter could end-up
6501 * containing a lot of packets.
6502 */
6503 return true;
6504 }
6505
6506 struct flush_backlogs {
6507 cpumask_t flush_cpus;
6508 struct work_struct w[];
6509 };
6510
flush_backlogs_alloc(void)6511 static struct flush_backlogs *flush_backlogs_alloc(void)
6512 {
6513 return kmalloc_flex(struct flush_backlogs, w, nr_cpu_ids, GFP_KERNEL);
6514 }
6515
6516 static struct flush_backlogs *flush_backlogs_fallback;
6517 static DEFINE_MUTEX(flush_backlogs_mutex);
6518
flush_all_backlogs(void)6519 static void flush_all_backlogs(void)
6520 {
6521 struct flush_backlogs *ptr = flush_backlogs_alloc();
6522 unsigned int cpu;
6523
6524 if (!ptr) {
6525 mutex_lock(&flush_backlogs_mutex);
6526 ptr = flush_backlogs_fallback;
6527 }
6528 cpumask_clear(&ptr->flush_cpus);
6529
6530 cpus_read_lock();
6531
6532 for_each_online_cpu(cpu) {
6533 if (flush_required(cpu)) {
6534 INIT_WORK(&ptr->w[cpu], flush_backlog);
6535 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6536 __cpumask_set_cpu(cpu, &ptr->flush_cpus);
6537 }
6538 }
6539
6540 /* we can have in flight packet[s] on the cpus we are not flushing,
6541 * synchronize_net() in unregister_netdevice_many() will take care of
6542 * them.
6543 */
6544 for_each_cpu(cpu, &ptr->flush_cpus)
6545 flush_work(&ptr->w[cpu]);
6546
6547 cpus_read_unlock();
6548
6549 if (ptr != flush_backlogs_fallback)
6550 kfree(ptr);
6551 else
6552 mutex_unlock(&flush_backlogs_mutex);
6553 }
6554
net_rps_send_ipi(struct softnet_data * remsd)6555 static void net_rps_send_ipi(struct softnet_data *remsd)
6556 {
6557 #ifdef CONFIG_RPS
6558 while (remsd) {
6559 struct softnet_data *next = remsd->rps_ipi_next;
6560
6561 if (cpu_online(remsd->cpu))
6562 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6563 remsd = next;
6564 }
6565 #endif
6566 }
6567
6568 /*
6569 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6570 * Note: called with local irq disabled, but exits with local irq enabled.
6571 */
net_rps_action_and_irq_enable(struct softnet_data * sd)6572 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6573 {
6574 #ifdef CONFIG_RPS
6575 struct softnet_data *remsd = sd->rps_ipi_list;
6576
6577 if (!use_backlog_threads() && remsd) {
6578 sd->rps_ipi_list = NULL;
6579
6580 local_irq_enable();
6581
6582 /* Send pending IPI's to kick RPS processing on remote cpus. */
6583 net_rps_send_ipi(remsd);
6584 } else
6585 #endif
6586 local_irq_enable();
6587 }
6588
sd_has_rps_ipi_waiting(struct softnet_data * sd)6589 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6590 {
6591 #ifdef CONFIG_RPS
6592 return !use_backlog_threads() && sd->rps_ipi_list;
6593 #else
6594 return false;
6595 #endif
6596 }
6597
process_backlog(struct napi_struct * napi,int quota)6598 static int process_backlog(struct napi_struct *napi, int quota)
6599 {
6600 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6601 bool again = true;
6602 int work = 0;
6603
6604 /* Check if we have pending ipi, its better to send them now,
6605 * not waiting net_rx_action() end.
6606 */
6607 if (sd_has_rps_ipi_waiting(sd)) {
6608 local_irq_disable();
6609 net_rps_action_and_irq_enable(sd);
6610 }
6611
6612 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6613 while (again) {
6614 struct sk_buff *skb;
6615
6616 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6617 while ((skb = __skb_dequeue(&sd->process_queue))) {
6618 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6619 rcu_read_lock();
6620 __netif_receive_skb(skb);
6621 rcu_read_unlock();
6622 if (++work >= quota) {
6623 rps_input_queue_head_add(sd, work);
6624 return work;
6625 }
6626
6627 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6628 }
6629 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6630
6631 backlog_lock_irq_disable(sd);
6632 if (skb_queue_empty(&sd->input_pkt_queue)) {
6633 /*
6634 * Inline a custom version of __napi_complete().
6635 * only current cpu owns and manipulates this napi,
6636 * and NAPI_STATE_SCHED is the only possible flag set
6637 * on backlog.
6638 * We can use a plain write instead of clear_bit(),
6639 * and we dont need an smp_mb() memory barrier.
6640 */
6641 napi->state &= NAPIF_STATE_THREADED;
6642 again = false;
6643 } else {
6644 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6645 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6646 &sd->process_queue);
6647 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6648 }
6649 backlog_unlock_irq_enable(sd);
6650 }
6651
6652 if (work)
6653 rps_input_queue_head_add(sd, work);
6654 return work;
6655 }
6656
6657 /**
6658 * __napi_schedule - schedule for receive
6659 * @n: entry to schedule
6660 *
6661 * The entry's receive function will be scheduled to run.
6662 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6663 */
__napi_schedule(struct napi_struct * n)6664 void __napi_schedule(struct napi_struct *n)
6665 {
6666 unsigned long flags;
6667
6668 local_irq_save(flags);
6669 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6670 local_irq_restore(flags);
6671 }
6672 EXPORT_SYMBOL(__napi_schedule);
6673
6674 /**
6675 * napi_schedule_prep - check if napi can be scheduled
6676 * @n: napi context
6677 *
6678 * Test if NAPI routine is already running, and if not mark
6679 * it as running. This is used as a condition variable to
6680 * insure only one NAPI poll instance runs. We also make
6681 * sure there is no pending NAPI disable.
6682 */
napi_schedule_prep(struct napi_struct * n)6683 bool napi_schedule_prep(struct napi_struct *n)
6684 {
6685 unsigned long new, val = READ_ONCE(n->state);
6686
6687 do {
6688 if (unlikely(val & NAPIF_STATE_DISABLE))
6689 return false;
6690 new = val | NAPIF_STATE_SCHED;
6691
6692 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6693 * This was suggested by Alexander Duyck, as compiler
6694 * emits better code than :
6695 * if (val & NAPIF_STATE_SCHED)
6696 * new |= NAPIF_STATE_MISSED;
6697 */
6698 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6699 NAPIF_STATE_MISSED;
6700 } while (!try_cmpxchg(&n->state, &val, new));
6701
6702 return !(val & NAPIF_STATE_SCHED);
6703 }
6704 EXPORT_SYMBOL(napi_schedule_prep);
6705
6706 /**
6707 * __napi_schedule_irqoff - schedule for receive
6708 * @n: entry to schedule
6709 *
6710 * Variant of __napi_schedule() assuming hard irqs are masked.
6711 *
6712 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6713 * because the interrupt disabled assumption might not be true
6714 * due to force-threaded interrupts and spinlock substitution.
6715 */
__napi_schedule_irqoff(struct napi_struct * n)6716 void __napi_schedule_irqoff(struct napi_struct *n)
6717 {
6718 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6719 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6720 else
6721 __napi_schedule(n);
6722 }
6723 EXPORT_SYMBOL(__napi_schedule_irqoff);
6724
napi_complete_done(struct napi_struct * n,int work_done)6725 bool napi_complete_done(struct napi_struct *n, int work_done)
6726 {
6727 unsigned long flags, val, new, timeout = 0;
6728 bool ret = true;
6729
6730 /*
6731 * 1) Don't let napi dequeue from the cpu poll list
6732 * just in case its running on a different cpu.
6733 * 2) If we are busy polling, do nothing here, we have
6734 * the guarantee we will be called later.
6735 */
6736 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6737 NAPIF_STATE_IN_BUSY_POLL)))
6738 return false;
6739
6740 if (work_done) {
6741 if (n->gro.bitmask)
6742 timeout = napi_get_gro_flush_timeout(n);
6743 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6744 }
6745 if (n->defer_hard_irqs_count > 0) {
6746 n->defer_hard_irqs_count--;
6747 timeout = napi_get_gro_flush_timeout(n);
6748 if (timeout)
6749 ret = false;
6750 }
6751
6752 /*
6753 * When the NAPI instance uses a timeout and keeps postponing
6754 * it, we need to bound somehow the time packets are kept in
6755 * the GRO layer.
6756 */
6757 gro_flush_normal(&n->gro, !!timeout);
6758
6759 if (unlikely(!list_empty(&n->poll_list))) {
6760 /* If n->poll_list is not empty, we need to mask irqs */
6761 local_irq_save(flags);
6762 list_del_init(&n->poll_list);
6763 local_irq_restore(flags);
6764 }
6765 WRITE_ONCE(n->list_owner, -1);
6766
6767 val = READ_ONCE(n->state);
6768 do {
6769 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6770
6771 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6772 NAPIF_STATE_SCHED_THREADED |
6773 NAPIF_STATE_PREFER_BUSY_POLL);
6774
6775 /* If STATE_MISSED was set, leave STATE_SCHED set,
6776 * because we will call napi->poll() one more time.
6777 * This C code was suggested by Alexander Duyck to help gcc.
6778 */
6779 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6780 NAPIF_STATE_SCHED;
6781 } while (!try_cmpxchg(&n->state, &val, new));
6782
6783 if (unlikely(val & NAPIF_STATE_MISSED)) {
6784 __napi_schedule(n);
6785 return false;
6786 }
6787
6788 if (timeout)
6789 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6790 HRTIMER_MODE_REL_PINNED);
6791 return ret;
6792 }
6793 EXPORT_SYMBOL(napi_complete_done);
6794
skb_defer_free_flush(void)6795 static void skb_defer_free_flush(void)
6796 {
6797 struct llist_node *free_list;
6798 struct sk_buff *skb, *next;
6799 struct skb_defer_node *sdn;
6800 int node;
6801
6802 for_each_node(node) {
6803 sdn = this_cpu_ptr(net_hotdata.skb_defer_nodes) + node;
6804
6805 if (llist_empty(&sdn->defer_list))
6806 continue;
6807 atomic_long_set(&sdn->defer_count, 0);
6808 free_list = llist_del_all(&sdn->defer_list);
6809
6810 llist_for_each_entry_safe(skb, next, free_list, ll_node) {
6811 prefetch(next);
6812 napi_consume_skb(skb, 1);
6813 }
6814 }
6815 }
6816
6817 #if defined(CONFIG_NET_RX_BUSY_POLL)
6818
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6819 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6820 {
6821 if (!skip_schedule) {
6822 gro_normal_list(&napi->gro);
6823 __napi_schedule(napi);
6824 return;
6825 }
6826
6827 /* Flush too old packets. If HZ < 1000, flush all packets */
6828 gro_flush_normal(&napi->gro, HZ >= 1000);
6829
6830 clear_bit(NAPI_STATE_SCHED, &napi->state);
6831 }
6832
6833 enum {
6834 NAPI_F_PREFER_BUSY_POLL = 1,
6835 NAPI_F_END_ON_RESCHED = 2,
6836 };
6837
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6838 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6839 unsigned flags, u16 budget)
6840 {
6841 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6842 bool skip_schedule = false;
6843 unsigned long timeout;
6844 int rc;
6845
6846 /* Busy polling means there is a high chance device driver hard irq
6847 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6848 * set in napi_schedule_prep().
6849 * Since we are about to call napi->poll() once more, we can safely
6850 * clear NAPI_STATE_MISSED.
6851 *
6852 * Note: x86 could use a single "lock and ..." instruction
6853 * to perform these two clear_bit()
6854 */
6855 clear_bit(NAPI_STATE_MISSED, &napi->state);
6856 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6857
6858 local_bh_disable();
6859 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6860
6861 if (flags & NAPI_F_PREFER_BUSY_POLL) {
6862 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6863 timeout = napi_get_gro_flush_timeout(napi);
6864 if (napi->defer_hard_irqs_count && timeout) {
6865 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6866 skip_schedule = true;
6867 }
6868 }
6869
6870 /* All we really want here is to re-enable device interrupts.
6871 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6872 */
6873 rc = napi->poll(napi, budget);
6874 /* We can't gro_normal_list() here, because napi->poll() might have
6875 * rearmed the napi (napi_complete_done()) in which case it could
6876 * already be running on another CPU.
6877 */
6878 trace_napi_poll(napi, rc, budget);
6879 netpoll_poll_unlock(have_poll_lock);
6880 if (rc == budget)
6881 __busy_poll_stop(napi, skip_schedule);
6882 bpf_net_ctx_clear(bpf_net_ctx);
6883 local_bh_enable();
6884 }
6885
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6886 static void __napi_busy_loop(unsigned int napi_id,
6887 bool (*loop_end)(void *, unsigned long),
6888 void *loop_end_arg, unsigned flags, u16 budget)
6889 {
6890 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6891 int (*napi_poll)(struct napi_struct *napi, int budget);
6892 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6893 void *have_poll_lock = NULL;
6894 struct napi_struct *napi;
6895
6896 WARN_ON_ONCE(!rcu_read_lock_held());
6897
6898 restart:
6899 napi_poll = NULL;
6900
6901 napi = napi_by_id(napi_id);
6902 if (!napi)
6903 return;
6904
6905 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6906 preempt_disable();
6907 for (;;) {
6908 int work = 0;
6909
6910 local_bh_disable();
6911 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6912 if (!napi_poll) {
6913 unsigned long val = READ_ONCE(napi->state);
6914
6915 /* If multiple threads are competing for this napi,
6916 * we avoid dirtying napi->state as much as we can.
6917 */
6918 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6919 NAPIF_STATE_IN_BUSY_POLL)) {
6920 if (flags & NAPI_F_PREFER_BUSY_POLL)
6921 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6922 goto count;
6923 }
6924 if (cmpxchg(&napi->state, val,
6925 val | NAPIF_STATE_IN_BUSY_POLL |
6926 NAPIF_STATE_SCHED) != val) {
6927 if (flags & NAPI_F_PREFER_BUSY_POLL)
6928 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6929 goto count;
6930 }
6931 have_poll_lock = netpoll_poll_lock(napi);
6932 napi_poll = napi->poll;
6933 }
6934 work = napi_poll(napi, budget);
6935 trace_napi_poll(napi, work, budget);
6936 gro_normal_list(&napi->gro);
6937 count:
6938 if (work > 0)
6939 __NET_ADD_STATS(dev_net(napi->dev),
6940 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6941 skb_defer_free_flush();
6942 bpf_net_ctx_clear(bpf_net_ctx);
6943 local_bh_enable();
6944
6945 if (!loop_end || loop_end(loop_end_arg, start_time))
6946 break;
6947
6948 if (unlikely(need_resched())) {
6949 if (flags & NAPI_F_END_ON_RESCHED)
6950 break;
6951 if (napi_poll)
6952 busy_poll_stop(napi, have_poll_lock, flags, budget);
6953 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6954 preempt_enable();
6955 rcu_read_unlock();
6956 cond_resched();
6957 rcu_read_lock();
6958 if (loop_end(loop_end_arg, start_time))
6959 return;
6960 goto restart;
6961 }
6962 cpu_relax();
6963 }
6964 if (napi_poll)
6965 busy_poll_stop(napi, have_poll_lock, flags, budget);
6966 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6967 preempt_enable();
6968 }
6969
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6970 void napi_busy_loop_rcu(unsigned int napi_id,
6971 bool (*loop_end)(void *, unsigned long),
6972 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6973 {
6974 unsigned flags = NAPI_F_END_ON_RESCHED;
6975
6976 if (prefer_busy_poll)
6977 flags |= NAPI_F_PREFER_BUSY_POLL;
6978
6979 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6980 }
6981
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6982 void napi_busy_loop(unsigned int napi_id,
6983 bool (*loop_end)(void *, unsigned long),
6984 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6985 {
6986 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6987
6988 rcu_read_lock();
6989 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6990 rcu_read_unlock();
6991 }
6992 EXPORT_SYMBOL(napi_busy_loop);
6993
napi_suspend_irqs(unsigned int napi_id)6994 void napi_suspend_irqs(unsigned int napi_id)
6995 {
6996 struct napi_struct *napi;
6997
6998 rcu_read_lock();
6999 napi = napi_by_id(napi_id);
7000 if (napi) {
7001 unsigned long timeout = napi_get_irq_suspend_timeout(napi);
7002
7003 if (timeout)
7004 hrtimer_start(&napi->timer, ns_to_ktime(timeout),
7005 HRTIMER_MODE_REL_PINNED);
7006 }
7007 rcu_read_unlock();
7008 }
7009
napi_resume_irqs(unsigned int napi_id)7010 void napi_resume_irqs(unsigned int napi_id)
7011 {
7012 struct napi_struct *napi;
7013
7014 rcu_read_lock();
7015 napi = napi_by_id(napi_id);
7016 if (napi) {
7017 /* If irq_suspend_timeout is set to 0 between the call to
7018 * napi_suspend_irqs and now, the original value still
7019 * determines the safety timeout as intended and napi_watchdog
7020 * will resume irq processing.
7021 */
7022 if (napi_get_irq_suspend_timeout(napi)) {
7023 local_bh_disable();
7024 napi_schedule(napi);
7025 local_bh_enable();
7026 }
7027 }
7028 rcu_read_unlock();
7029 }
7030
7031 #endif /* CONFIG_NET_RX_BUSY_POLL */
7032
__napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)7033 static void __napi_hash_add_with_id(struct napi_struct *napi,
7034 unsigned int napi_id)
7035 {
7036 napi->gro.cached_napi_id = napi_id;
7037
7038 WRITE_ONCE(napi->napi_id, napi_id);
7039 hlist_add_head_rcu(&napi->napi_hash_node,
7040 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
7041 }
7042
napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)7043 static void napi_hash_add_with_id(struct napi_struct *napi,
7044 unsigned int napi_id)
7045 {
7046 unsigned long flags;
7047
7048 spin_lock_irqsave(&napi_hash_lock, flags);
7049 WARN_ON_ONCE(napi_by_id(napi_id));
7050 __napi_hash_add_with_id(napi, napi_id);
7051 spin_unlock_irqrestore(&napi_hash_lock, flags);
7052 }
7053
napi_hash_add(struct napi_struct * napi)7054 static void napi_hash_add(struct napi_struct *napi)
7055 {
7056 unsigned long flags;
7057
7058 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
7059 return;
7060
7061 spin_lock_irqsave(&napi_hash_lock, flags);
7062
7063 /* 0..NR_CPUS range is reserved for sender_cpu use */
7064 do {
7065 if (unlikely(!napi_id_valid(++napi_gen_id)))
7066 napi_gen_id = MIN_NAPI_ID;
7067 } while (napi_by_id(napi_gen_id));
7068
7069 __napi_hash_add_with_id(napi, napi_gen_id);
7070
7071 spin_unlock_irqrestore(&napi_hash_lock, flags);
7072 }
7073
7074 /* Warning : caller is responsible to make sure rcu grace period
7075 * is respected before freeing memory containing @napi
7076 */
napi_hash_del(struct napi_struct * napi)7077 static void napi_hash_del(struct napi_struct *napi)
7078 {
7079 unsigned long flags;
7080
7081 spin_lock_irqsave(&napi_hash_lock, flags);
7082
7083 hlist_del_init_rcu(&napi->napi_hash_node);
7084
7085 spin_unlock_irqrestore(&napi_hash_lock, flags);
7086 }
7087
napi_watchdog(struct hrtimer * timer)7088 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
7089 {
7090 struct napi_struct *napi;
7091
7092 napi = container_of(timer, struct napi_struct, timer);
7093
7094 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
7095 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
7096 */
7097 if (!napi_disable_pending(napi) &&
7098 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
7099 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
7100 __napi_schedule_irqoff(napi);
7101 }
7102
7103 return HRTIMER_NORESTART;
7104 }
7105
napi_stop_kthread(struct napi_struct * napi)7106 static void napi_stop_kthread(struct napi_struct *napi)
7107 {
7108 unsigned long val, new;
7109
7110 /* Wait until the napi STATE_THREADED is unset. */
7111 while (true) {
7112 val = READ_ONCE(napi->state);
7113
7114 /* If napi kthread own this napi or the napi is idle,
7115 * STATE_THREADED can be unset here.
7116 */
7117 if ((val & NAPIF_STATE_SCHED_THREADED) ||
7118 !(val & NAPIF_STATE_SCHED)) {
7119 new = val & (~(NAPIF_STATE_THREADED |
7120 NAPIF_STATE_THREADED_BUSY_POLL));
7121 } else {
7122 msleep(20);
7123 continue;
7124 }
7125
7126 if (try_cmpxchg(&napi->state, &val, new))
7127 break;
7128 }
7129
7130 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
7131 * the kthread.
7132 */
7133 while (true) {
7134 if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state))
7135 break;
7136
7137 msleep(20);
7138 }
7139
7140 kthread_stop(napi->thread);
7141 napi->thread = NULL;
7142 }
7143
napi_set_threaded_state(struct napi_struct * napi,enum netdev_napi_threaded threaded_mode)7144 static void napi_set_threaded_state(struct napi_struct *napi,
7145 enum netdev_napi_threaded threaded_mode)
7146 {
7147 bool threaded = threaded_mode != NETDEV_NAPI_THREADED_DISABLED;
7148 bool busy_poll = threaded_mode == NETDEV_NAPI_THREADED_BUSY_POLL;
7149
7150 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
7151 assign_bit(NAPI_STATE_THREADED_BUSY_POLL, &napi->state, busy_poll);
7152 }
7153
napi_set_threaded(struct napi_struct * napi,enum netdev_napi_threaded threaded)7154 int napi_set_threaded(struct napi_struct *napi,
7155 enum netdev_napi_threaded threaded)
7156 {
7157 if (threaded) {
7158 if (!napi->thread) {
7159 int err = napi_kthread_create(napi);
7160
7161 if (err)
7162 return err;
7163 }
7164 }
7165
7166 if (napi->config)
7167 napi->config->threaded = threaded;
7168
7169 /* Setting/unsetting threaded mode on a napi might not immediately
7170 * take effect, if the current napi instance is actively being
7171 * polled. In this case, the switch between threaded mode and
7172 * softirq mode will happen in the next round of napi_schedule().
7173 * This should not cause hiccups/stalls to the live traffic.
7174 */
7175 if (!threaded && napi->thread) {
7176 napi_stop_kthread(napi);
7177 } else {
7178 /* Make sure kthread is created before THREADED bit is set. */
7179 smp_mb__before_atomic();
7180 napi_set_threaded_state(napi, threaded);
7181 }
7182
7183 return 0;
7184 }
7185
netif_set_threaded(struct net_device * dev,enum netdev_napi_threaded threaded)7186 int netif_set_threaded(struct net_device *dev,
7187 enum netdev_napi_threaded threaded)
7188 {
7189 struct napi_struct *napi;
7190 int i, err = 0;
7191
7192 netdev_assert_locked_or_invisible(dev);
7193
7194 if (threaded) {
7195 list_for_each_entry(napi, &dev->napi_list, dev_list) {
7196 if (!napi->thread) {
7197 err = napi_kthread_create(napi);
7198 if (err) {
7199 threaded = NETDEV_NAPI_THREADED_DISABLED;
7200 break;
7201 }
7202 }
7203 }
7204 }
7205
7206 WRITE_ONCE(dev->threaded, threaded);
7207
7208 /* The error should not occur as the kthreads are already created. */
7209 list_for_each_entry(napi, &dev->napi_list, dev_list)
7210 WARN_ON_ONCE(napi_set_threaded(napi, threaded));
7211
7212 /* Override the config for all NAPIs even if currently not listed */
7213 for (i = 0; i < dev->num_napi_configs; i++)
7214 dev->napi_config[i].threaded = threaded;
7215
7216 return err;
7217 }
7218
7219 /**
7220 * netif_threaded_enable() - enable threaded NAPIs
7221 * @dev: net_device instance
7222 *
7223 * Enable threaded mode for the NAPI instances of the device. This may be useful
7224 * for devices where multiple NAPI instances get scheduled by a single
7225 * interrupt. Threaded NAPI allows moving the NAPI processing to cores other
7226 * than the core where IRQ is mapped.
7227 *
7228 * This function should be called before @dev is registered.
7229 */
netif_threaded_enable(struct net_device * dev)7230 void netif_threaded_enable(struct net_device *dev)
7231 {
7232 WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED));
7233 }
7234 EXPORT_SYMBOL(netif_threaded_enable);
7235
7236 /**
7237 * netif_queue_set_napi - Associate queue with the napi
7238 * @dev: device to which NAPI and queue belong
7239 * @queue_index: Index of queue
7240 * @type: queue type as RX or TX
7241 * @napi: NAPI context, pass NULL to clear previously set NAPI
7242 *
7243 * Set queue with its corresponding napi context. This should be done after
7244 * registering the NAPI handler for the queue-vector and the queues have been
7245 * mapped to the corresponding interrupt vector.
7246 */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)7247 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7248 enum netdev_queue_type type, struct napi_struct *napi)
7249 {
7250 struct netdev_rx_queue *rxq;
7251 struct netdev_queue *txq;
7252
7253 if (WARN_ON_ONCE(napi && !napi->dev))
7254 return;
7255 netdev_ops_assert_locked_or_invisible(dev);
7256
7257 switch (type) {
7258 case NETDEV_QUEUE_TYPE_RX:
7259 rxq = __netif_get_rx_queue(dev, queue_index);
7260 rxq->napi = napi;
7261 return;
7262 case NETDEV_QUEUE_TYPE_TX:
7263 txq = netdev_get_tx_queue(dev, queue_index);
7264 txq->napi = napi;
7265 return;
7266 default:
7267 return;
7268 }
7269 }
7270 EXPORT_SYMBOL(netif_queue_set_napi);
7271
7272 static void
netif_napi_irq_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)7273 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7274 const cpumask_t *mask)
7275 {
7276 struct napi_struct *napi =
7277 container_of(notify, struct napi_struct, notify);
7278 #ifdef CONFIG_RFS_ACCEL
7279 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7280 int err;
7281 #endif
7282
7283 if (napi->config && napi->dev->irq_affinity_auto)
7284 cpumask_copy(&napi->config->affinity_mask, mask);
7285
7286 #ifdef CONFIG_RFS_ACCEL
7287 if (napi->dev->rx_cpu_rmap_auto) {
7288 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7289 if (err)
7290 netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7291 err);
7292 }
7293 #endif
7294 }
7295
7296 #ifdef CONFIG_RFS_ACCEL
netif_napi_affinity_release(struct kref * ref)7297 static void netif_napi_affinity_release(struct kref *ref)
7298 {
7299 struct napi_struct *napi =
7300 container_of(ref, struct napi_struct, notify.kref);
7301 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7302
7303 netdev_assert_locked(napi->dev);
7304 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7305 &napi->state));
7306
7307 if (!napi->dev->rx_cpu_rmap_auto)
7308 return;
7309 rmap->obj[napi->napi_rmap_idx] = NULL;
7310 napi->napi_rmap_idx = -1;
7311 cpu_rmap_put(rmap);
7312 }
7313
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7314 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7315 {
7316 if (dev->rx_cpu_rmap_auto)
7317 return 0;
7318
7319 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7320 if (!dev->rx_cpu_rmap)
7321 return -ENOMEM;
7322
7323 dev->rx_cpu_rmap_auto = true;
7324 return 0;
7325 }
7326 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7327
netif_del_cpu_rmap(struct net_device * dev)7328 static void netif_del_cpu_rmap(struct net_device *dev)
7329 {
7330 struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7331
7332 if (!dev->rx_cpu_rmap_auto)
7333 return;
7334
7335 /* Free the rmap */
7336 cpu_rmap_put(rmap);
7337 dev->rx_cpu_rmap = NULL;
7338 dev->rx_cpu_rmap_auto = false;
7339 }
7340
7341 #else
netif_napi_affinity_release(struct kref * ref)7342 static void netif_napi_affinity_release(struct kref *ref)
7343 {
7344 }
7345
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7346 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7347 {
7348 return 0;
7349 }
7350 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7351
netif_del_cpu_rmap(struct net_device * dev)7352 static void netif_del_cpu_rmap(struct net_device *dev)
7353 {
7354 }
7355 #endif
7356
netif_set_affinity_auto(struct net_device * dev)7357 void netif_set_affinity_auto(struct net_device *dev)
7358 {
7359 unsigned int i, maxqs, numa;
7360
7361 maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7362 numa = dev_to_node(&dev->dev);
7363
7364 for (i = 0; i < maxqs; i++)
7365 cpumask_set_cpu(cpumask_local_spread(i, numa),
7366 &dev->napi_config[i].affinity_mask);
7367
7368 dev->irq_affinity_auto = true;
7369 }
7370 EXPORT_SYMBOL(netif_set_affinity_auto);
7371
netif_napi_set_irq_locked(struct napi_struct * napi,int irq)7372 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7373 {
7374 int rc;
7375
7376 netdev_assert_locked_or_invisible(napi->dev);
7377
7378 if (napi->irq == irq)
7379 return;
7380
7381 /* Remove existing resources */
7382 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7383 irq_set_affinity_notifier(napi->irq, NULL);
7384
7385 napi->irq = irq;
7386 if (irq < 0 ||
7387 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7388 return;
7389
7390 /* Abort for buggy drivers */
7391 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7392 return;
7393
7394 #ifdef CONFIG_RFS_ACCEL
7395 if (napi->dev->rx_cpu_rmap_auto) {
7396 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7397 if (rc < 0)
7398 return;
7399
7400 cpu_rmap_get(napi->dev->rx_cpu_rmap);
7401 napi->napi_rmap_idx = rc;
7402 }
7403 #endif
7404
7405 /* Use core IRQ notifier */
7406 napi->notify.notify = netif_napi_irq_notify;
7407 napi->notify.release = netif_napi_affinity_release;
7408 rc = irq_set_affinity_notifier(irq, &napi->notify);
7409 if (rc) {
7410 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7411 rc);
7412 goto put_rmap;
7413 }
7414
7415 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7416 return;
7417
7418 put_rmap:
7419 #ifdef CONFIG_RFS_ACCEL
7420 if (napi->dev->rx_cpu_rmap_auto) {
7421 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7422 cpu_rmap_put(napi->dev->rx_cpu_rmap);
7423 napi->napi_rmap_idx = -1;
7424 }
7425 #endif
7426 napi->notify.notify = NULL;
7427 napi->notify.release = NULL;
7428 }
7429 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7430
napi_restore_config(struct napi_struct * n)7431 static void napi_restore_config(struct napi_struct *n)
7432 {
7433 n->defer_hard_irqs = n->config->defer_hard_irqs;
7434 n->gro_flush_timeout = n->config->gro_flush_timeout;
7435 n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7436
7437 if (n->dev->irq_affinity_auto &&
7438 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7439 irq_set_affinity(n->irq, &n->config->affinity_mask);
7440
7441 /* a NAPI ID might be stored in the config, if so use it. if not, use
7442 * napi_hash_add to generate one for us.
7443 */
7444 if (n->config->napi_id) {
7445 napi_hash_add_with_id(n, n->config->napi_id);
7446 } else {
7447 napi_hash_add(n);
7448 n->config->napi_id = n->napi_id;
7449 }
7450
7451 WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7452 }
7453
napi_save_config(struct napi_struct * n)7454 static void napi_save_config(struct napi_struct *n)
7455 {
7456 n->config->defer_hard_irqs = n->defer_hard_irqs;
7457 n->config->gro_flush_timeout = n->gro_flush_timeout;
7458 n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7459 napi_hash_del(n);
7460 }
7461
7462 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7463 * inherit an existing ID try to insert it at the right position.
7464 */
7465 static void
netif_napi_dev_list_add(struct net_device * dev,struct napi_struct * napi)7466 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7467 {
7468 unsigned int new_id, pos_id;
7469 struct list_head *higher;
7470 struct napi_struct *pos;
7471
7472 new_id = UINT_MAX;
7473 if (napi->config && napi->config->napi_id)
7474 new_id = napi->config->napi_id;
7475
7476 higher = &dev->napi_list;
7477 list_for_each_entry(pos, &dev->napi_list, dev_list) {
7478 if (napi_id_valid(pos->napi_id))
7479 pos_id = pos->napi_id;
7480 else if (pos->config)
7481 pos_id = pos->config->napi_id;
7482 else
7483 pos_id = UINT_MAX;
7484
7485 if (pos_id <= new_id)
7486 break;
7487 higher = &pos->dev_list;
7488 }
7489 list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7490 }
7491
7492 /* Double check that napi_get_frags() allocates skbs with
7493 * skb->head being backed by slab, not a page fragment.
7494 * This is to make sure bug fixed in 3226b158e67c
7495 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7496 * does not accidentally come back.
7497 */
napi_get_frags_check(struct napi_struct * napi)7498 static void napi_get_frags_check(struct napi_struct *napi)
7499 {
7500 struct sk_buff *skb;
7501
7502 local_bh_disable();
7503 skb = napi_get_frags(napi);
7504 WARN_ON_ONCE(skb && skb->head_frag);
7505 napi_free_frags(napi);
7506 local_bh_enable();
7507 }
7508
netif_napi_add_weight_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)7509 void netif_napi_add_weight_locked(struct net_device *dev,
7510 struct napi_struct *napi,
7511 int (*poll)(struct napi_struct *, int),
7512 int weight)
7513 {
7514 netdev_assert_locked(dev);
7515 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7516 return;
7517
7518 INIT_LIST_HEAD(&napi->poll_list);
7519 INIT_HLIST_NODE(&napi->napi_hash_node);
7520 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7521 gro_init(&napi->gro);
7522 napi->skb = NULL;
7523 napi->poll = poll;
7524 if (weight > NAPI_POLL_WEIGHT)
7525 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7526 weight);
7527 napi->weight = weight;
7528 napi->dev = dev;
7529 #ifdef CONFIG_NETPOLL
7530 napi->poll_owner = -1;
7531 #endif
7532 napi->list_owner = -1;
7533 set_bit(NAPI_STATE_SCHED, &napi->state);
7534 set_bit(NAPI_STATE_NPSVC, &napi->state);
7535 netif_napi_dev_list_add(dev, napi);
7536
7537 /* default settings from sysfs are applied to all NAPIs. any per-NAPI
7538 * configuration will be loaded in napi_enable
7539 */
7540 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7541 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7542
7543 napi_get_frags_check(napi);
7544 /* Create kthread for this napi if dev->threaded is set.
7545 * Clear dev->threaded if kthread creation failed so that
7546 * threaded mode will not be enabled in napi_enable().
7547 */
7548 if (napi_get_threaded_config(dev, napi))
7549 if (napi_kthread_create(napi))
7550 dev->threaded = NETDEV_NAPI_THREADED_DISABLED;
7551 netif_napi_set_irq_locked(napi, -1);
7552 }
7553 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7554
napi_disable_locked(struct napi_struct * n)7555 void napi_disable_locked(struct napi_struct *n)
7556 {
7557 unsigned long val, new;
7558
7559 might_sleep();
7560 netdev_assert_locked(n->dev);
7561
7562 set_bit(NAPI_STATE_DISABLE, &n->state);
7563
7564 val = READ_ONCE(n->state);
7565 do {
7566 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7567 usleep_range(20, 200);
7568 val = READ_ONCE(n->state);
7569 }
7570
7571 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7572 new &= ~(NAPIF_STATE_THREADED |
7573 NAPIF_STATE_THREADED_BUSY_POLL |
7574 NAPIF_STATE_PREFER_BUSY_POLL);
7575 } while (!try_cmpxchg(&n->state, &val, new));
7576
7577 hrtimer_cancel(&n->timer);
7578
7579 if (n->config)
7580 napi_save_config(n);
7581 else
7582 napi_hash_del(n);
7583
7584 clear_bit(NAPI_STATE_DISABLE, &n->state);
7585 }
7586 EXPORT_SYMBOL(napi_disable_locked);
7587
7588 /**
7589 * napi_disable() - prevent NAPI from scheduling
7590 * @n: NAPI context
7591 *
7592 * Stop NAPI from being scheduled on this context.
7593 * Waits till any outstanding processing completes.
7594 * Takes netdev_lock() for associated net_device.
7595 */
napi_disable(struct napi_struct * n)7596 void napi_disable(struct napi_struct *n)
7597 {
7598 netdev_lock(n->dev);
7599 napi_disable_locked(n);
7600 netdev_unlock(n->dev);
7601 }
7602 EXPORT_SYMBOL(napi_disable);
7603
napi_enable_locked(struct napi_struct * n)7604 void napi_enable_locked(struct napi_struct *n)
7605 {
7606 unsigned long new, val = READ_ONCE(n->state);
7607
7608 if (n->config)
7609 napi_restore_config(n);
7610 else
7611 napi_hash_add(n);
7612
7613 do {
7614 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7615
7616 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7617 if (n->dev->threaded && n->thread)
7618 new |= NAPIF_STATE_THREADED;
7619 } while (!try_cmpxchg(&n->state, &val, new));
7620 }
7621 EXPORT_SYMBOL(napi_enable_locked);
7622
7623 /**
7624 * napi_enable() - enable NAPI scheduling
7625 * @n: NAPI context
7626 *
7627 * Enable scheduling of a NAPI instance.
7628 * Must be paired with napi_disable().
7629 * Takes netdev_lock() for associated net_device.
7630 */
napi_enable(struct napi_struct * n)7631 void napi_enable(struct napi_struct *n)
7632 {
7633 netdev_lock(n->dev);
7634 napi_enable_locked(n);
7635 netdev_unlock(n->dev);
7636 }
7637 EXPORT_SYMBOL(napi_enable);
7638
7639 /* Must be called in process context */
__netif_napi_del_locked(struct napi_struct * napi)7640 void __netif_napi_del_locked(struct napi_struct *napi)
7641 {
7642 netdev_assert_locked(napi->dev);
7643
7644 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7645 return;
7646
7647 /* Make sure NAPI is disabled (or was never enabled). */
7648 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7649
7650 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7651 irq_set_affinity_notifier(napi->irq, NULL);
7652
7653 if (napi->config) {
7654 napi->index = -1;
7655 napi->config = NULL;
7656 }
7657
7658 list_del_rcu(&napi->dev_list);
7659 napi_free_frags(napi);
7660
7661 gro_cleanup(&napi->gro);
7662
7663 if (napi->thread) {
7664 kthread_stop(napi->thread);
7665 napi->thread = NULL;
7666 }
7667 }
7668 EXPORT_SYMBOL(__netif_napi_del_locked);
7669
__napi_poll(struct napi_struct * n,bool * repoll)7670 static int __napi_poll(struct napi_struct *n, bool *repoll)
7671 {
7672 int work, weight;
7673
7674 weight = n->weight;
7675
7676 /* This NAPI_STATE_SCHED test is for avoiding a race
7677 * with netpoll's poll_napi(). Only the entity which
7678 * obtains the lock and sees NAPI_STATE_SCHED set will
7679 * actually make the ->poll() call. Therefore we avoid
7680 * accidentally calling ->poll() when NAPI is not scheduled.
7681 */
7682 work = 0;
7683 if (napi_is_scheduled(n)) {
7684 work = n->poll(n, weight);
7685 trace_napi_poll(n, work, weight);
7686
7687 xdp_do_check_flushed(n);
7688 }
7689
7690 if (unlikely(work > weight))
7691 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7692 n->poll, work, weight);
7693
7694 if (likely(work < weight))
7695 return work;
7696
7697 /* Drivers must not modify the NAPI state if they
7698 * consume the entire weight. In such cases this code
7699 * still "owns" the NAPI instance and therefore can
7700 * move the instance around on the list at-will.
7701 */
7702 if (unlikely(napi_disable_pending(n))) {
7703 napi_complete(n);
7704 return work;
7705 }
7706
7707 /* The NAPI context has more processing work, but busy-polling
7708 * is preferred. Exit early.
7709 */
7710 if (napi_prefer_busy_poll(n)) {
7711 if (napi_complete_done(n, work)) {
7712 /* If timeout is not set, we need to make sure
7713 * that the NAPI is re-scheduled.
7714 */
7715 napi_schedule(n);
7716 }
7717 return work;
7718 }
7719
7720 /* Flush too old packets. If HZ < 1000, flush all packets */
7721 gro_flush_normal(&n->gro, HZ >= 1000);
7722
7723 /* Some drivers may have called napi_schedule
7724 * prior to exhausting their budget.
7725 */
7726 if (unlikely(!list_empty(&n->poll_list))) {
7727 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7728 n->dev ? n->dev->name : "backlog");
7729 return work;
7730 }
7731
7732 *repoll = true;
7733
7734 return work;
7735 }
7736
napi_poll(struct napi_struct * n,struct list_head * repoll)7737 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7738 {
7739 bool do_repoll = false;
7740 void *have;
7741 int work;
7742
7743 list_del_init(&n->poll_list);
7744
7745 have = netpoll_poll_lock(n);
7746
7747 work = __napi_poll(n, &do_repoll);
7748
7749 if (do_repoll) {
7750 #if defined(CONFIG_DEBUG_NET)
7751 if (unlikely(!napi_is_scheduled(n)))
7752 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7753 n->dev->name, n->poll);
7754 #endif
7755 list_add_tail(&n->poll_list, repoll);
7756 }
7757 netpoll_poll_unlock(have);
7758
7759 return work;
7760 }
7761
napi_thread_wait(struct napi_struct * napi)7762 static int napi_thread_wait(struct napi_struct *napi)
7763 {
7764 set_current_state(TASK_INTERRUPTIBLE);
7765
7766 while (!kthread_should_stop()) {
7767 /* Testing SCHED_THREADED bit here to make sure the current
7768 * kthread owns this napi and could poll on this napi.
7769 * Testing SCHED bit is not enough because SCHED bit might be
7770 * set by some other busy poll thread or by napi_disable().
7771 */
7772 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7773 WARN_ON(!list_empty(&napi->poll_list));
7774 __set_current_state(TASK_RUNNING);
7775 return 0;
7776 }
7777
7778 schedule();
7779 set_current_state(TASK_INTERRUPTIBLE);
7780 }
7781 __set_current_state(TASK_RUNNING);
7782
7783 return -1;
7784 }
7785
napi_threaded_poll_loop(struct napi_struct * napi,bool busy_poll)7786 static void napi_threaded_poll_loop(struct napi_struct *napi, bool busy_poll)
7787 {
7788 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7789 struct softnet_data *sd;
7790 unsigned long last_qs = jiffies;
7791
7792 for (;;) {
7793 bool repoll = false;
7794 void *have;
7795
7796 local_bh_disable();
7797 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7798
7799 sd = this_cpu_ptr(&softnet_data);
7800 sd->in_napi_threaded_poll = true;
7801
7802 have = netpoll_poll_lock(napi);
7803 __napi_poll(napi, &repoll);
7804 netpoll_poll_unlock(have);
7805
7806 sd->in_napi_threaded_poll = false;
7807 barrier();
7808
7809 if (sd_has_rps_ipi_waiting(sd)) {
7810 local_irq_disable();
7811 net_rps_action_and_irq_enable(sd);
7812 }
7813 skb_defer_free_flush();
7814 bpf_net_ctx_clear(bpf_net_ctx);
7815
7816 /* When busy poll is enabled, the old packets are not flushed in
7817 * napi_complete_done. So flush them here.
7818 */
7819 if (busy_poll)
7820 gro_flush_normal(&napi->gro, HZ >= 1000);
7821 local_bh_enable();
7822
7823 /* Call cond_resched here to avoid watchdog warnings. */
7824 if (repoll || busy_poll) {
7825 rcu_softirq_qs_periodic(last_qs);
7826 cond_resched();
7827 }
7828
7829 if (!repoll)
7830 break;
7831 }
7832 }
7833
napi_threaded_poll(void * data)7834 static int napi_threaded_poll(void *data)
7835 {
7836 struct napi_struct *napi = data;
7837 bool want_busy_poll;
7838 bool in_busy_poll;
7839 unsigned long val;
7840
7841 while (!napi_thread_wait(napi)) {
7842 val = READ_ONCE(napi->state);
7843
7844 want_busy_poll = val & NAPIF_STATE_THREADED_BUSY_POLL;
7845 in_busy_poll = val & NAPIF_STATE_IN_BUSY_POLL;
7846
7847 if (unlikely(val & NAPIF_STATE_DISABLE))
7848 want_busy_poll = false;
7849
7850 if (want_busy_poll != in_busy_poll)
7851 assign_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state,
7852 want_busy_poll);
7853
7854 napi_threaded_poll_loop(napi, want_busy_poll);
7855 }
7856
7857 return 0;
7858 }
7859
net_rx_action(void)7860 static __latent_entropy void net_rx_action(void)
7861 {
7862 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7863 unsigned long time_limit = jiffies +
7864 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7865 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7866 int budget = READ_ONCE(net_hotdata.netdev_budget);
7867 LIST_HEAD(list);
7868 LIST_HEAD(repoll);
7869
7870 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7871 start:
7872 sd->in_net_rx_action = true;
7873 local_irq_disable();
7874 list_splice_init(&sd->poll_list, &list);
7875 local_irq_enable();
7876
7877 for (;;) {
7878 struct napi_struct *n;
7879
7880 skb_defer_free_flush();
7881
7882 if (list_empty(&list)) {
7883 if (list_empty(&repoll)) {
7884 sd->in_net_rx_action = false;
7885 barrier();
7886 /* We need to check if ____napi_schedule()
7887 * had refilled poll_list while
7888 * sd->in_net_rx_action was true.
7889 */
7890 if (!list_empty(&sd->poll_list))
7891 goto start;
7892 if (!sd_has_rps_ipi_waiting(sd))
7893 goto end;
7894 }
7895 break;
7896 }
7897
7898 n = list_first_entry(&list, struct napi_struct, poll_list);
7899 budget -= napi_poll(n, &repoll);
7900
7901 /* If softirq window is exhausted then punt.
7902 * Allow this to run for 2 jiffies since which will allow
7903 * an average latency of 1.5/HZ.
7904 */
7905 if (unlikely(budget <= 0 ||
7906 time_after_eq(jiffies, time_limit))) {
7907 /* Pairs with READ_ONCE() in softnet_seq_show() */
7908 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7909 break;
7910 }
7911 }
7912
7913 local_irq_disable();
7914
7915 list_splice_tail_init(&sd->poll_list, &list);
7916 list_splice_tail(&repoll, &list);
7917 list_splice(&list, &sd->poll_list);
7918 if (!list_empty(&sd->poll_list))
7919 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7920 else
7921 sd->in_net_rx_action = false;
7922
7923 net_rps_action_and_irq_enable(sd);
7924 end:
7925 bpf_net_ctx_clear(bpf_net_ctx);
7926 }
7927
7928 struct netdev_adjacent {
7929 struct net_device *dev;
7930 netdevice_tracker dev_tracker;
7931
7932 /* upper master flag, there can only be one master device per list */
7933 bool master;
7934
7935 /* lookup ignore flag */
7936 bool ignore;
7937
7938 /* counter for the number of times this device was added to us */
7939 u16 ref_nr;
7940
7941 /* private field for the users */
7942 void *private;
7943
7944 struct list_head list;
7945 struct rcu_head rcu;
7946 };
7947
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7948 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7949 struct list_head *adj_list)
7950 {
7951 struct netdev_adjacent *adj;
7952
7953 list_for_each_entry(adj, adj_list, list) {
7954 if (adj->dev == adj_dev)
7955 return adj;
7956 }
7957 return NULL;
7958 }
7959
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7960 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7961 struct netdev_nested_priv *priv)
7962 {
7963 struct net_device *dev = (struct net_device *)priv->data;
7964
7965 return upper_dev == dev;
7966 }
7967
7968 /**
7969 * netdev_has_upper_dev - Check if device is linked to an upper device
7970 * @dev: device
7971 * @upper_dev: upper device to check
7972 *
7973 * Find out if a device is linked to specified upper device and return true
7974 * in case it is. Note that this checks only immediate upper device,
7975 * not through a complete stack of devices. The caller must hold the RTNL lock.
7976 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7977 bool netdev_has_upper_dev(struct net_device *dev,
7978 struct net_device *upper_dev)
7979 {
7980 struct netdev_nested_priv priv = {
7981 .data = (void *)upper_dev,
7982 };
7983
7984 ASSERT_RTNL();
7985
7986 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7987 &priv);
7988 }
7989 EXPORT_SYMBOL(netdev_has_upper_dev);
7990
7991 /**
7992 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7993 * @dev: device
7994 * @upper_dev: upper device to check
7995 *
7996 * Find out if a device is linked to specified upper device and return true
7997 * in case it is. Note that this checks the entire upper device chain.
7998 * The caller must hold rcu lock.
7999 */
8000
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)8001 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
8002 struct net_device *upper_dev)
8003 {
8004 struct netdev_nested_priv priv = {
8005 .data = (void *)upper_dev,
8006 };
8007
8008 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
8009 &priv);
8010 }
8011 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
8012
8013 /**
8014 * netdev_has_any_upper_dev - Check if device is linked to some device
8015 * @dev: device
8016 *
8017 * Find out if a device is linked to an upper device and return true in case
8018 * it is. The caller must hold the RTNL lock.
8019 */
netdev_has_any_upper_dev(struct net_device * dev)8020 bool netdev_has_any_upper_dev(struct net_device *dev)
8021 {
8022 ASSERT_RTNL();
8023
8024 return !list_empty(&dev->adj_list.upper);
8025 }
8026 EXPORT_SYMBOL(netdev_has_any_upper_dev);
8027
8028 /**
8029 * netdev_master_upper_dev_get - Get master upper device
8030 * @dev: device
8031 *
8032 * Find a master upper device and return pointer to it or NULL in case
8033 * it's not there. The caller must hold the RTNL lock.
8034 */
netdev_master_upper_dev_get(struct net_device * dev)8035 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
8036 {
8037 struct netdev_adjacent *upper;
8038
8039 ASSERT_RTNL();
8040
8041 if (list_empty(&dev->adj_list.upper))
8042 return NULL;
8043
8044 upper = list_first_entry(&dev->adj_list.upper,
8045 struct netdev_adjacent, list);
8046 if (likely(upper->master))
8047 return upper->dev;
8048 return NULL;
8049 }
8050 EXPORT_SYMBOL(netdev_master_upper_dev_get);
8051
__netdev_master_upper_dev_get(struct net_device * dev)8052 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
8053 {
8054 struct netdev_adjacent *upper;
8055
8056 ASSERT_RTNL();
8057
8058 if (list_empty(&dev->adj_list.upper))
8059 return NULL;
8060
8061 upper = list_first_entry(&dev->adj_list.upper,
8062 struct netdev_adjacent, list);
8063 if (likely(upper->master) && !upper->ignore)
8064 return upper->dev;
8065 return NULL;
8066 }
8067
8068 /**
8069 * netdev_has_any_lower_dev - Check if device is linked to some device
8070 * @dev: device
8071 *
8072 * Find out if a device is linked to a lower device and return true in case
8073 * it is. The caller must hold the RTNL lock.
8074 */
netdev_has_any_lower_dev(struct net_device * dev)8075 static bool netdev_has_any_lower_dev(struct net_device *dev)
8076 {
8077 ASSERT_RTNL();
8078
8079 return !list_empty(&dev->adj_list.lower);
8080 }
8081
netdev_adjacent_get_private(struct list_head * adj_list)8082 void *netdev_adjacent_get_private(struct list_head *adj_list)
8083 {
8084 struct netdev_adjacent *adj;
8085
8086 adj = list_entry(adj_list, struct netdev_adjacent, list);
8087
8088 return adj->private;
8089 }
8090 EXPORT_SYMBOL(netdev_adjacent_get_private);
8091
8092 /**
8093 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
8094 * @dev: device
8095 * @iter: list_head ** of the current position
8096 *
8097 * Gets the next device from the dev's upper list, starting from iter
8098 * position. The caller must hold RCU read lock.
8099 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)8100 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
8101 struct list_head **iter)
8102 {
8103 struct netdev_adjacent *upper;
8104
8105 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8106
8107 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8108
8109 if (&upper->list == &dev->adj_list.upper)
8110 return NULL;
8111
8112 *iter = &upper->list;
8113
8114 return upper->dev;
8115 }
8116 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
8117
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8118 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
8119 struct list_head **iter,
8120 bool *ignore)
8121 {
8122 struct netdev_adjacent *upper;
8123
8124 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
8125
8126 if (&upper->list == &dev->adj_list.upper)
8127 return NULL;
8128
8129 *iter = &upper->list;
8130 *ignore = upper->ignore;
8131
8132 return upper->dev;
8133 }
8134
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)8135 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
8136 struct list_head **iter)
8137 {
8138 struct netdev_adjacent *upper;
8139
8140 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8141
8142 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8143
8144 if (&upper->list == &dev->adj_list.upper)
8145 return NULL;
8146
8147 *iter = &upper->list;
8148
8149 return upper->dev;
8150 }
8151
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8152 static int __netdev_walk_all_upper_dev(struct net_device *dev,
8153 int (*fn)(struct net_device *dev,
8154 struct netdev_nested_priv *priv),
8155 struct netdev_nested_priv *priv)
8156 {
8157 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8158 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8159 int ret, cur = 0;
8160 bool ignore;
8161
8162 now = dev;
8163 iter = &dev->adj_list.upper;
8164
8165 while (1) {
8166 if (now != dev) {
8167 ret = fn(now, priv);
8168 if (ret)
8169 return ret;
8170 }
8171
8172 next = NULL;
8173 while (1) {
8174 udev = __netdev_next_upper_dev(now, &iter, &ignore);
8175 if (!udev)
8176 break;
8177 if (ignore)
8178 continue;
8179
8180 next = udev;
8181 niter = &udev->adj_list.upper;
8182 dev_stack[cur] = now;
8183 iter_stack[cur++] = iter;
8184 break;
8185 }
8186
8187 if (!next) {
8188 if (!cur)
8189 return 0;
8190 next = dev_stack[--cur];
8191 niter = iter_stack[cur];
8192 }
8193
8194 now = next;
8195 iter = niter;
8196 }
8197
8198 return 0;
8199 }
8200
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8201 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
8202 int (*fn)(struct net_device *dev,
8203 struct netdev_nested_priv *priv),
8204 struct netdev_nested_priv *priv)
8205 {
8206 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8207 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8208 int ret, cur = 0;
8209
8210 now = dev;
8211 iter = &dev->adj_list.upper;
8212
8213 while (1) {
8214 if (now != dev) {
8215 ret = fn(now, priv);
8216 if (ret)
8217 return ret;
8218 }
8219
8220 next = NULL;
8221 while (1) {
8222 udev = netdev_next_upper_dev_rcu(now, &iter);
8223 if (!udev)
8224 break;
8225
8226 next = udev;
8227 niter = &udev->adj_list.upper;
8228 dev_stack[cur] = now;
8229 iter_stack[cur++] = iter;
8230 break;
8231 }
8232
8233 if (!next) {
8234 if (!cur)
8235 return 0;
8236 next = dev_stack[--cur];
8237 niter = iter_stack[cur];
8238 }
8239
8240 now = next;
8241 iter = niter;
8242 }
8243
8244 return 0;
8245 }
8246 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8247
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)8248 static bool __netdev_has_upper_dev(struct net_device *dev,
8249 struct net_device *upper_dev)
8250 {
8251 struct netdev_nested_priv priv = {
8252 .flags = 0,
8253 .data = (void *)upper_dev,
8254 };
8255
8256 ASSERT_RTNL();
8257
8258 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8259 &priv);
8260 }
8261
8262 /**
8263 * netdev_lower_get_next_private - Get the next ->private from the
8264 * lower neighbour list
8265 * @dev: device
8266 * @iter: list_head ** of the current position
8267 *
8268 * Gets the next netdev_adjacent->private from the dev's lower neighbour
8269 * list, starting from iter position. The caller must hold either hold the
8270 * RTNL lock or its own locking that guarantees that the neighbour lower
8271 * list will remain unchanged.
8272 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)8273 void *netdev_lower_get_next_private(struct net_device *dev,
8274 struct list_head **iter)
8275 {
8276 struct netdev_adjacent *lower;
8277
8278 lower = list_entry(*iter, struct netdev_adjacent, list);
8279
8280 if (&lower->list == &dev->adj_list.lower)
8281 return NULL;
8282
8283 *iter = lower->list.next;
8284
8285 return lower->private;
8286 }
8287 EXPORT_SYMBOL(netdev_lower_get_next_private);
8288
8289 /**
8290 * netdev_lower_get_next_private_rcu - Get the next ->private from the
8291 * lower neighbour list, RCU
8292 * variant
8293 * @dev: device
8294 * @iter: list_head ** of the current position
8295 *
8296 * Gets the next netdev_adjacent->private from the dev's lower neighbour
8297 * list, starting from iter position. The caller must hold RCU read lock.
8298 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)8299 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8300 struct list_head **iter)
8301 {
8302 struct netdev_adjacent *lower;
8303
8304 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8305
8306 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8307
8308 if (&lower->list == &dev->adj_list.lower)
8309 return NULL;
8310
8311 *iter = &lower->list;
8312
8313 return lower->private;
8314 }
8315 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8316
8317 /**
8318 * netdev_lower_get_next - Get the next device from the lower neighbour
8319 * list
8320 * @dev: device
8321 * @iter: list_head ** of the current position
8322 *
8323 * Gets the next netdev_adjacent from the dev's lower neighbour
8324 * list, starting from iter position. The caller must hold RTNL lock or
8325 * its own locking that guarantees that the neighbour lower
8326 * list will remain unchanged.
8327 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)8328 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8329 {
8330 struct netdev_adjacent *lower;
8331
8332 lower = list_entry(*iter, struct netdev_adjacent, list);
8333
8334 if (&lower->list == &dev->adj_list.lower)
8335 return NULL;
8336
8337 *iter = lower->list.next;
8338
8339 return lower->dev;
8340 }
8341 EXPORT_SYMBOL(netdev_lower_get_next);
8342
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)8343 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8344 struct list_head **iter)
8345 {
8346 struct netdev_adjacent *lower;
8347
8348 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8349
8350 if (&lower->list == &dev->adj_list.lower)
8351 return NULL;
8352
8353 *iter = &lower->list;
8354
8355 return lower->dev;
8356 }
8357
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8358 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8359 struct list_head **iter,
8360 bool *ignore)
8361 {
8362 struct netdev_adjacent *lower;
8363
8364 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8365
8366 if (&lower->list == &dev->adj_list.lower)
8367 return NULL;
8368
8369 *iter = &lower->list;
8370 *ignore = lower->ignore;
8371
8372 return lower->dev;
8373 }
8374
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8375 int netdev_walk_all_lower_dev(struct net_device *dev,
8376 int (*fn)(struct net_device *dev,
8377 struct netdev_nested_priv *priv),
8378 struct netdev_nested_priv *priv)
8379 {
8380 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8381 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8382 int ret, cur = 0;
8383
8384 now = dev;
8385 iter = &dev->adj_list.lower;
8386
8387 while (1) {
8388 if (now != dev) {
8389 ret = fn(now, priv);
8390 if (ret)
8391 return ret;
8392 }
8393
8394 next = NULL;
8395 while (1) {
8396 ldev = netdev_next_lower_dev(now, &iter);
8397 if (!ldev)
8398 break;
8399
8400 next = ldev;
8401 niter = &ldev->adj_list.lower;
8402 dev_stack[cur] = now;
8403 iter_stack[cur++] = iter;
8404 break;
8405 }
8406
8407 if (!next) {
8408 if (!cur)
8409 return 0;
8410 next = dev_stack[--cur];
8411 niter = iter_stack[cur];
8412 }
8413
8414 now = next;
8415 iter = niter;
8416 }
8417
8418 return 0;
8419 }
8420 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8421
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8422 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8423 int (*fn)(struct net_device *dev,
8424 struct netdev_nested_priv *priv),
8425 struct netdev_nested_priv *priv)
8426 {
8427 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8428 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8429 int ret, cur = 0;
8430 bool ignore;
8431
8432 now = dev;
8433 iter = &dev->adj_list.lower;
8434
8435 while (1) {
8436 if (now != dev) {
8437 ret = fn(now, priv);
8438 if (ret)
8439 return ret;
8440 }
8441
8442 next = NULL;
8443 while (1) {
8444 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8445 if (!ldev)
8446 break;
8447 if (ignore)
8448 continue;
8449
8450 next = ldev;
8451 niter = &ldev->adj_list.lower;
8452 dev_stack[cur] = now;
8453 iter_stack[cur++] = iter;
8454 break;
8455 }
8456
8457 if (!next) {
8458 if (!cur)
8459 return 0;
8460 next = dev_stack[--cur];
8461 niter = iter_stack[cur];
8462 }
8463
8464 now = next;
8465 iter = niter;
8466 }
8467
8468 return 0;
8469 }
8470
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)8471 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8472 struct list_head **iter)
8473 {
8474 struct netdev_adjacent *lower;
8475
8476 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8477 if (&lower->list == &dev->adj_list.lower)
8478 return NULL;
8479
8480 *iter = &lower->list;
8481
8482 return lower->dev;
8483 }
8484 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8485
__netdev_upper_depth(struct net_device * dev)8486 static u8 __netdev_upper_depth(struct net_device *dev)
8487 {
8488 struct net_device *udev;
8489 struct list_head *iter;
8490 u8 max_depth = 0;
8491 bool ignore;
8492
8493 for (iter = &dev->adj_list.upper,
8494 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8495 udev;
8496 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8497 if (ignore)
8498 continue;
8499 if (max_depth < udev->upper_level)
8500 max_depth = udev->upper_level;
8501 }
8502
8503 return max_depth;
8504 }
8505
__netdev_lower_depth(struct net_device * dev)8506 static u8 __netdev_lower_depth(struct net_device *dev)
8507 {
8508 struct net_device *ldev;
8509 struct list_head *iter;
8510 u8 max_depth = 0;
8511 bool ignore;
8512
8513 for (iter = &dev->adj_list.lower,
8514 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8515 ldev;
8516 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8517 if (ignore)
8518 continue;
8519 if (max_depth < ldev->lower_level)
8520 max_depth = ldev->lower_level;
8521 }
8522
8523 return max_depth;
8524 }
8525
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)8526 static int __netdev_update_upper_level(struct net_device *dev,
8527 struct netdev_nested_priv *__unused)
8528 {
8529 dev->upper_level = __netdev_upper_depth(dev) + 1;
8530 return 0;
8531 }
8532
8533 #ifdef CONFIG_LOCKDEP
8534 static LIST_HEAD(net_unlink_list);
8535
net_unlink_todo(struct net_device * dev)8536 static void net_unlink_todo(struct net_device *dev)
8537 {
8538 if (list_empty(&dev->unlink_list))
8539 list_add_tail(&dev->unlink_list, &net_unlink_list);
8540 }
8541 #endif
8542
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)8543 static int __netdev_update_lower_level(struct net_device *dev,
8544 struct netdev_nested_priv *priv)
8545 {
8546 dev->lower_level = __netdev_lower_depth(dev) + 1;
8547
8548 #ifdef CONFIG_LOCKDEP
8549 if (!priv)
8550 return 0;
8551
8552 if (priv->flags & NESTED_SYNC_IMM)
8553 dev->nested_level = dev->lower_level - 1;
8554 if (priv->flags & NESTED_SYNC_TODO)
8555 net_unlink_todo(dev);
8556 #endif
8557 return 0;
8558 }
8559
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8560 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8561 int (*fn)(struct net_device *dev,
8562 struct netdev_nested_priv *priv),
8563 struct netdev_nested_priv *priv)
8564 {
8565 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8566 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8567 int ret, cur = 0;
8568
8569 now = dev;
8570 iter = &dev->adj_list.lower;
8571
8572 while (1) {
8573 if (now != dev) {
8574 ret = fn(now, priv);
8575 if (ret)
8576 return ret;
8577 }
8578
8579 next = NULL;
8580 while (1) {
8581 ldev = netdev_next_lower_dev_rcu(now, &iter);
8582 if (!ldev)
8583 break;
8584
8585 next = ldev;
8586 niter = &ldev->adj_list.lower;
8587 dev_stack[cur] = now;
8588 iter_stack[cur++] = iter;
8589 break;
8590 }
8591
8592 if (!next) {
8593 if (!cur)
8594 return 0;
8595 next = dev_stack[--cur];
8596 niter = iter_stack[cur];
8597 }
8598
8599 now = next;
8600 iter = niter;
8601 }
8602
8603 return 0;
8604 }
8605 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8606
8607 /**
8608 * netdev_lower_get_first_private_rcu - Get the first ->private from the
8609 * lower neighbour list, RCU
8610 * variant
8611 * @dev: device
8612 *
8613 * Gets the first netdev_adjacent->private from the dev's lower neighbour
8614 * list. The caller must hold RCU read lock.
8615 */
netdev_lower_get_first_private_rcu(struct net_device * dev)8616 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8617 {
8618 struct netdev_adjacent *lower;
8619
8620 lower = list_first_or_null_rcu(&dev->adj_list.lower,
8621 struct netdev_adjacent, list);
8622 if (lower)
8623 return lower->private;
8624 return NULL;
8625 }
8626 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8627
8628 /**
8629 * netdev_master_upper_dev_get_rcu - Get master upper device
8630 * @dev: device
8631 *
8632 * Find a master upper device and return pointer to it or NULL in case
8633 * it's not there. The caller must hold the RCU read lock.
8634 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)8635 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8636 {
8637 struct netdev_adjacent *upper;
8638
8639 upper = list_first_or_null_rcu(&dev->adj_list.upper,
8640 struct netdev_adjacent, list);
8641 if (upper && likely(upper->master))
8642 return upper->dev;
8643 return NULL;
8644 }
8645 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8646
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8647 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8648 struct net_device *adj_dev,
8649 struct list_head *dev_list)
8650 {
8651 char linkname[IFNAMSIZ+7];
8652
8653 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8654 "upper_%s" : "lower_%s", adj_dev->name);
8655 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8656 linkname);
8657 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)8658 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8659 char *name,
8660 struct list_head *dev_list)
8661 {
8662 char linkname[IFNAMSIZ+7];
8663
8664 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8665 "upper_%s" : "lower_%s", name);
8666 sysfs_remove_link(&(dev->dev.kobj), linkname);
8667 }
8668
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8669 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8670 struct net_device *adj_dev,
8671 struct list_head *dev_list)
8672 {
8673 return (dev_list == &dev->adj_list.upper ||
8674 dev_list == &dev->adj_list.lower) &&
8675 net_eq(dev_net(dev), dev_net(adj_dev));
8676 }
8677
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)8678 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8679 struct net_device *adj_dev,
8680 struct list_head *dev_list,
8681 void *private, bool master)
8682 {
8683 struct netdev_adjacent *adj;
8684 int ret;
8685
8686 adj = __netdev_find_adj(adj_dev, dev_list);
8687
8688 if (adj) {
8689 adj->ref_nr += 1;
8690 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8691 dev->name, adj_dev->name, adj->ref_nr);
8692
8693 return 0;
8694 }
8695
8696 adj = kmalloc_obj(*adj, GFP_KERNEL);
8697 if (!adj)
8698 return -ENOMEM;
8699
8700 adj->dev = adj_dev;
8701 adj->master = master;
8702 adj->ref_nr = 1;
8703 adj->private = private;
8704 adj->ignore = false;
8705 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8706
8707 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8708 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8709
8710 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8711 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8712 if (ret)
8713 goto free_adj;
8714 }
8715
8716 /* Ensure that master link is always the first item in list. */
8717 if (master) {
8718 ret = sysfs_create_link(&(dev->dev.kobj),
8719 &(adj_dev->dev.kobj), "master");
8720 if (ret)
8721 goto remove_symlinks;
8722
8723 list_add_rcu(&adj->list, dev_list);
8724 } else {
8725 list_add_tail_rcu(&adj->list, dev_list);
8726 }
8727
8728 return 0;
8729
8730 remove_symlinks:
8731 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8732 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8733 free_adj:
8734 netdev_put(adj_dev, &adj->dev_tracker);
8735 kfree(adj);
8736
8737 return ret;
8738 }
8739
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8740 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8741 struct net_device *adj_dev,
8742 u16 ref_nr,
8743 struct list_head *dev_list)
8744 {
8745 struct netdev_adjacent *adj;
8746
8747 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8748 dev->name, adj_dev->name, ref_nr);
8749
8750 adj = __netdev_find_adj(adj_dev, dev_list);
8751
8752 if (!adj) {
8753 pr_err("Adjacency does not exist for device %s from %s\n",
8754 dev->name, adj_dev->name);
8755 WARN_ON(1);
8756 return;
8757 }
8758
8759 if (adj->ref_nr > ref_nr) {
8760 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8761 dev->name, adj_dev->name, ref_nr,
8762 adj->ref_nr - ref_nr);
8763 adj->ref_nr -= ref_nr;
8764 return;
8765 }
8766
8767 if (adj->master)
8768 sysfs_remove_link(&(dev->dev.kobj), "master");
8769
8770 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8771 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8772
8773 list_del_rcu(&adj->list);
8774 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8775 adj_dev->name, dev->name, adj_dev->name);
8776 netdev_put(adj_dev, &adj->dev_tracker);
8777 kfree_rcu(adj, rcu);
8778 }
8779
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8780 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8781 struct net_device *upper_dev,
8782 struct list_head *up_list,
8783 struct list_head *down_list,
8784 void *private, bool master)
8785 {
8786 int ret;
8787
8788 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8789 private, master);
8790 if (ret)
8791 return ret;
8792
8793 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8794 private, false);
8795 if (ret) {
8796 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8797 return ret;
8798 }
8799
8800 return 0;
8801 }
8802
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8803 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8804 struct net_device *upper_dev,
8805 u16 ref_nr,
8806 struct list_head *up_list,
8807 struct list_head *down_list)
8808 {
8809 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8810 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8811 }
8812
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8813 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8814 struct net_device *upper_dev,
8815 void *private, bool master)
8816 {
8817 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8818 &dev->adj_list.upper,
8819 &upper_dev->adj_list.lower,
8820 private, master);
8821 }
8822
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8823 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8824 struct net_device *upper_dev)
8825 {
8826 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8827 &dev->adj_list.upper,
8828 &upper_dev->adj_list.lower);
8829 }
8830
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8831 static int __netdev_upper_dev_link(struct net_device *dev,
8832 struct net_device *upper_dev, bool master,
8833 void *upper_priv, void *upper_info,
8834 struct netdev_nested_priv *priv,
8835 struct netlink_ext_ack *extack)
8836 {
8837 struct netdev_notifier_changeupper_info changeupper_info = {
8838 .info = {
8839 .dev = dev,
8840 .extack = extack,
8841 },
8842 .upper_dev = upper_dev,
8843 .master = master,
8844 .linking = true,
8845 .upper_info = upper_info,
8846 };
8847 struct net_device *master_dev;
8848 int ret = 0;
8849
8850 ASSERT_RTNL();
8851
8852 if (dev == upper_dev)
8853 return -EBUSY;
8854
8855 /* To prevent loops, check if dev is not upper device to upper_dev. */
8856 if (__netdev_has_upper_dev(upper_dev, dev))
8857 return -EBUSY;
8858
8859 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8860 return -EMLINK;
8861
8862 if (!master) {
8863 if (__netdev_has_upper_dev(dev, upper_dev))
8864 return -EEXIST;
8865 } else {
8866 master_dev = __netdev_master_upper_dev_get(dev);
8867 if (master_dev)
8868 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8869 }
8870
8871 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8872 &changeupper_info.info);
8873 ret = notifier_to_errno(ret);
8874 if (ret)
8875 return ret;
8876
8877 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8878 master);
8879 if (ret)
8880 return ret;
8881
8882 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8883 &changeupper_info.info);
8884 ret = notifier_to_errno(ret);
8885 if (ret)
8886 goto rollback;
8887
8888 __netdev_update_upper_level(dev, NULL);
8889 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8890
8891 __netdev_update_lower_level(upper_dev, priv);
8892 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8893 priv);
8894
8895 return 0;
8896
8897 rollback:
8898 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8899
8900 return ret;
8901 }
8902
8903 /**
8904 * netdev_upper_dev_link - Add a link to the upper device
8905 * @dev: device
8906 * @upper_dev: new upper device
8907 * @extack: netlink extended ack
8908 *
8909 * Adds a link to device which is upper to this one. The caller must hold
8910 * the RTNL lock. On a failure a negative errno code is returned.
8911 * On success the reference counts are adjusted and the function
8912 * returns zero.
8913 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8914 int netdev_upper_dev_link(struct net_device *dev,
8915 struct net_device *upper_dev,
8916 struct netlink_ext_ack *extack)
8917 {
8918 struct netdev_nested_priv priv = {
8919 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8920 .data = NULL,
8921 };
8922
8923 return __netdev_upper_dev_link(dev, upper_dev, false,
8924 NULL, NULL, &priv, extack);
8925 }
8926 EXPORT_SYMBOL(netdev_upper_dev_link);
8927
8928 /**
8929 * netdev_master_upper_dev_link - Add a master link to the upper device
8930 * @dev: device
8931 * @upper_dev: new upper device
8932 * @upper_priv: upper device private
8933 * @upper_info: upper info to be passed down via notifier
8934 * @extack: netlink extended ack
8935 *
8936 * Adds a link to device which is upper to this one. In this case, only
8937 * one master upper device can be linked, although other non-master devices
8938 * might be linked as well. The caller must hold the RTNL lock.
8939 * On a failure a negative errno code is returned. On success the reference
8940 * counts are adjusted and the function returns zero.
8941 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8942 int netdev_master_upper_dev_link(struct net_device *dev,
8943 struct net_device *upper_dev,
8944 void *upper_priv, void *upper_info,
8945 struct netlink_ext_ack *extack)
8946 {
8947 struct netdev_nested_priv priv = {
8948 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8949 .data = NULL,
8950 };
8951
8952 return __netdev_upper_dev_link(dev, upper_dev, true,
8953 upper_priv, upper_info, &priv, extack);
8954 }
8955 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8956
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8957 static void __netdev_upper_dev_unlink(struct net_device *dev,
8958 struct net_device *upper_dev,
8959 struct netdev_nested_priv *priv)
8960 {
8961 struct netdev_notifier_changeupper_info changeupper_info = {
8962 .info = {
8963 .dev = dev,
8964 },
8965 .upper_dev = upper_dev,
8966 .linking = false,
8967 };
8968
8969 ASSERT_RTNL();
8970
8971 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8972
8973 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8974 &changeupper_info.info);
8975
8976 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8977
8978 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8979 &changeupper_info.info);
8980
8981 __netdev_update_upper_level(dev, NULL);
8982 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8983
8984 __netdev_update_lower_level(upper_dev, priv);
8985 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8986 priv);
8987 }
8988
8989 /**
8990 * netdev_upper_dev_unlink - Removes a link to upper device
8991 * @dev: device
8992 * @upper_dev: new upper device
8993 *
8994 * Removes a link to device which is upper to this one. The caller must hold
8995 * the RTNL lock.
8996 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8997 void netdev_upper_dev_unlink(struct net_device *dev,
8998 struct net_device *upper_dev)
8999 {
9000 struct netdev_nested_priv priv = {
9001 .flags = NESTED_SYNC_TODO,
9002 .data = NULL,
9003 };
9004
9005 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
9006 }
9007 EXPORT_SYMBOL(netdev_upper_dev_unlink);
9008
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)9009 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
9010 struct net_device *lower_dev,
9011 bool val)
9012 {
9013 struct netdev_adjacent *adj;
9014
9015 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
9016 if (adj)
9017 adj->ignore = val;
9018
9019 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
9020 if (adj)
9021 adj->ignore = val;
9022 }
9023
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)9024 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
9025 struct net_device *lower_dev)
9026 {
9027 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
9028 }
9029
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)9030 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
9031 struct net_device *lower_dev)
9032 {
9033 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
9034 }
9035
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)9036 int netdev_adjacent_change_prepare(struct net_device *old_dev,
9037 struct net_device *new_dev,
9038 struct net_device *dev,
9039 struct netlink_ext_ack *extack)
9040 {
9041 struct netdev_nested_priv priv = {
9042 .flags = 0,
9043 .data = NULL,
9044 };
9045 int err;
9046
9047 if (!new_dev)
9048 return 0;
9049
9050 if (old_dev && new_dev != old_dev)
9051 netdev_adjacent_dev_disable(dev, old_dev);
9052 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
9053 extack);
9054 if (err) {
9055 if (old_dev && new_dev != old_dev)
9056 netdev_adjacent_dev_enable(dev, old_dev);
9057 return err;
9058 }
9059
9060 return 0;
9061 }
9062 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
9063
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)9064 void netdev_adjacent_change_commit(struct net_device *old_dev,
9065 struct net_device *new_dev,
9066 struct net_device *dev)
9067 {
9068 struct netdev_nested_priv priv = {
9069 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
9070 .data = NULL,
9071 };
9072
9073 if (!new_dev || !old_dev)
9074 return;
9075
9076 if (new_dev == old_dev)
9077 return;
9078
9079 netdev_adjacent_dev_enable(dev, old_dev);
9080 __netdev_upper_dev_unlink(old_dev, dev, &priv);
9081 }
9082 EXPORT_SYMBOL(netdev_adjacent_change_commit);
9083
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)9084 void netdev_adjacent_change_abort(struct net_device *old_dev,
9085 struct net_device *new_dev,
9086 struct net_device *dev)
9087 {
9088 struct netdev_nested_priv priv = {
9089 .flags = 0,
9090 .data = NULL,
9091 };
9092
9093 if (!new_dev)
9094 return;
9095
9096 if (old_dev && new_dev != old_dev)
9097 netdev_adjacent_dev_enable(dev, old_dev);
9098
9099 __netdev_upper_dev_unlink(new_dev, dev, &priv);
9100 }
9101 EXPORT_SYMBOL(netdev_adjacent_change_abort);
9102
9103 /**
9104 * netdev_bonding_info_change - Dispatch event about slave change
9105 * @dev: device
9106 * @bonding_info: info to dispatch
9107 *
9108 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
9109 * The caller must hold the RTNL lock.
9110 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)9111 void netdev_bonding_info_change(struct net_device *dev,
9112 struct netdev_bonding_info *bonding_info)
9113 {
9114 struct netdev_notifier_bonding_info info = {
9115 .info.dev = dev,
9116 };
9117
9118 memcpy(&info.bonding_info, bonding_info,
9119 sizeof(struct netdev_bonding_info));
9120 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
9121 &info.info);
9122 }
9123 EXPORT_SYMBOL(netdev_bonding_info_change);
9124
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)9125 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
9126 struct netlink_ext_ack *extack)
9127 {
9128 struct netdev_notifier_offload_xstats_info info = {
9129 .info.dev = dev,
9130 .info.extack = extack,
9131 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9132 };
9133 int err;
9134 int rc;
9135
9136 dev->offload_xstats_l3 = kzalloc_obj(*dev->offload_xstats_l3,
9137 GFP_KERNEL);
9138 if (!dev->offload_xstats_l3)
9139 return -ENOMEM;
9140
9141 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
9142 NETDEV_OFFLOAD_XSTATS_DISABLE,
9143 &info.info);
9144 err = notifier_to_errno(rc);
9145 if (err)
9146 goto free_stats;
9147
9148 return 0;
9149
9150 free_stats:
9151 kfree(dev->offload_xstats_l3);
9152 dev->offload_xstats_l3 = NULL;
9153 return err;
9154 }
9155
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)9156 int netdev_offload_xstats_enable(struct net_device *dev,
9157 enum netdev_offload_xstats_type type,
9158 struct netlink_ext_ack *extack)
9159 {
9160 ASSERT_RTNL();
9161
9162 if (netdev_offload_xstats_enabled(dev, type))
9163 return -EALREADY;
9164
9165 switch (type) {
9166 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9167 return netdev_offload_xstats_enable_l3(dev, extack);
9168 }
9169
9170 WARN_ON(1);
9171 return -EINVAL;
9172 }
9173 EXPORT_SYMBOL(netdev_offload_xstats_enable);
9174
netdev_offload_xstats_disable_l3(struct net_device * dev)9175 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
9176 {
9177 struct netdev_notifier_offload_xstats_info info = {
9178 .info.dev = dev,
9179 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9180 };
9181
9182 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
9183 &info.info);
9184 kfree(dev->offload_xstats_l3);
9185 dev->offload_xstats_l3 = NULL;
9186 }
9187
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)9188 int netdev_offload_xstats_disable(struct net_device *dev,
9189 enum netdev_offload_xstats_type type)
9190 {
9191 ASSERT_RTNL();
9192
9193 if (!netdev_offload_xstats_enabled(dev, type))
9194 return -EALREADY;
9195
9196 switch (type) {
9197 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9198 netdev_offload_xstats_disable_l3(dev);
9199 return 0;
9200 }
9201
9202 WARN_ON(1);
9203 return -EINVAL;
9204 }
9205 EXPORT_SYMBOL(netdev_offload_xstats_disable);
9206
netdev_offload_xstats_disable_all(struct net_device * dev)9207 static void netdev_offload_xstats_disable_all(struct net_device *dev)
9208 {
9209 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
9210 }
9211
9212 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)9213 netdev_offload_xstats_get_ptr(const struct net_device *dev,
9214 enum netdev_offload_xstats_type type)
9215 {
9216 switch (type) {
9217 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9218 return dev->offload_xstats_l3;
9219 }
9220
9221 WARN_ON(1);
9222 return NULL;
9223 }
9224
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)9225 bool netdev_offload_xstats_enabled(const struct net_device *dev,
9226 enum netdev_offload_xstats_type type)
9227 {
9228 ASSERT_RTNL();
9229
9230 return netdev_offload_xstats_get_ptr(dev, type);
9231 }
9232 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9233
9234 struct netdev_notifier_offload_xstats_ru {
9235 bool used;
9236 };
9237
9238 struct netdev_notifier_offload_xstats_rd {
9239 struct rtnl_hw_stats64 stats;
9240 bool used;
9241 };
9242
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)9243 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9244 const struct rtnl_hw_stats64 *src)
9245 {
9246 dest->rx_packets += src->rx_packets;
9247 dest->tx_packets += src->tx_packets;
9248 dest->rx_bytes += src->rx_bytes;
9249 dest->tx_bytes += src->tx_bytes;
9250 dest->rx_errors += src->rx_errors;
9251 dest->tx_errors += src->tx_errors;
9252 dest->rx_dropped += src->rx_dropped;
9253 dest->tx_dropped += src->tx_dropped;
9254 dest->multicast += src->multicast;
9255 }
9256
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)9257 static int netdev_offload_xstats_get_used(struct net_device *dev,
9258 enum netdev_offload_xstats_type type,
9259 bool *p_used,
9260 struct netlink_ext_ack *extack)
9261 {
9262 struct netdev_notifier_offload_xstats_ru report_used = {};
9263 struct netdev_notifier_offload_xstats_info info = {
9264 .info.dev = dev,
9265 .info.extack = extack,
9266 .type = type,
9267 .report_used = &report_used,
9268 };
9269 int rc;
9270
9271 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9272 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9273 &info.info);
9274 *p_used = report_used.used;
9275 return notifier_to_errno(rc);
9276 }
9277
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9278 static int netdev_offload_xstats_get_stats(struct net_device *dev,
9279 enum netdev_offload_xstats_type type,
9280 struct rtnl_hw_stats64 *p_stats,
9281 bool *p_used,
9282 struct netlink_ext_ack *extack)
9283 {
9284 struct netdev_notifier_offload_xstats_rd report_delta = {};
9285 struct netdev_notifier_offload_xstats_info info = {
9286 .info.dev = dev,
9287 .info.extack = extack,
9288 .type = type,
9289 .report_delta = &report_delta,
9290 };
9291 struct rtnl_hw_stats64 *stats;
9292 int rc;
9293
9294 stats = netdev_offload_xstats_get_ptr(dev, type);
9295 if (WARN_ON(!stats))
9296 return -EINVAL;
9297
9298 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9299 &info.info);
9300
9301 /* Cache whatever we got, even if there was an error, otherwise the
9302 * successful stats retrievals would get lost.
9303 */
9304 netdev_hw_stats64_add(stats, &report_delta.stats);
9305
9306 if (p_stats)
9307 *p_stats = *stats;
9308 *p_used = report_delta.used;
9309
9310 return notifier_to_errno(rc);
9311 }
9312
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9313 int netdev_offload_xstats_get(struct net_device *dev,
9314 enum netdev_offload_xstats_type type,
9315 struct rtnl_hw_stats64 *p_stats, bool *p_used,
9316 struct netlink_ext_ack *extack)
9317 {
9318 ASSERT_RTNL();
9319
9320 if (p_stats)
9321 return netdev_offload_xstats_get_stats(dev, type, p_stats,
9322 p_used, extack);
9323 else
9324 return netdev_offload_xstats_get_used(dev, type, p_used,
9325 extack);
9326 }
9327 EXPORT_SYMBOL(netdev_offload_xstats_get);
9328
9329 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)9330 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9331 const struct rtnl_hw_stats64 *stats)
9332 {
9333 report_delta->used = true;
9334 netdev_hw_stats64_add(&report_delta->stats, stats);
9335 }
9336 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9337
9338 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)9339 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9340 {
9341 report_used->used = true;
9342 }
9343 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9344
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)9345 void netdev_offload_xstats_push_delta(struct net_device *dev,
9346 enum netdev_offload_xstats_type type,
9347 const struct rtnl_hw_stats64 *p_stats)
9348 {
9349 struct rtnl_hw_stats64 *stats;
9350
9351 ASSERT_RTNL();
9352
9353 stats = netdev_offload_xstats_get_ptr(dev, type);
9354 if (WARN_ON(!stats))
9355 return;
9356
9357 netdev_hw_stats64_add(stats, p_stats);
9358 }
9359 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9360
9361 /**
9362 * netdev_get_xmit_slave - Get the xmit slave of master device
9363 * @dev: device
9364 * @skb: The packet
9365 * @all_slaves: assume all the slaves are active
9366 *
9367 * The reference counters are not incremented so the caller must be
9368 * careful with locks. The caller must hold RCU lock.
9369 * %NULL is returned if no slave is found.
9370 */
9371
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)9372 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9373 struct sk_buff *skb,
9374 bool all_slaves)
9375 {
9376 const struct net_device_ops *ops = dev->netdev_ops;
9377
9378 if (!ops->ndo_get_xmit_slave)
9379 return NULL;
9380 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9381 }
9382 EXPORT_SYMBOL(netdev_get_xmit_slave);
9383
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)9384 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9385 struct sock *sk)
9386 {
9387 const struct net_device_ops *ops = dev->netdev_ops;
9388
9389 if (!ops->ndo_sk_get_lower_dev)
9390 return NULL;
9391 return ops->ndo_sk_get_lower_dev(dev, sk);
9392 }
9393
9394 /**
9395 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9396 * @dev: device
9397 * @sk: the socket
9398 *
9399 * %NULL is returned if no lower device is found.
9400 */
9401
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)9402 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9403 struct sock *sk)
9404 {
9405 struct net_device *lower;
9406
9407 lower = netdev_sk_get_lower_dev(dev, sk);
9408 while (lower) {
9409 dev = lower;
9410 lower = netdev_sk_get_lower_dev(dev, sk);
9411 }
9412
9413 return dev;
9414 }
9415 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9416
netdev_adjacent_add_links(struct net_device * dev)9417 static void netdev_adjacent_add_links(struct net_device *dev)
9418 {
9419 struct netdev_adjacent *iter;
9420
9421 struct net *net = dev_net(dev);
9422
9423 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9424 if (!net_eq(net, dev_net(iter->dev)))
9425 continue;
9426 netdev_adjacent_sysfs_add(iter->dev, dev,
9427 &iter->dev->adj_list.lower);
9428 netdev_adjacent_sysfs_add(dev, iter->dev,
9429 &dev->adj_list.upper);
9430 }
9431
9432 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9433 if (!net_eq(net, dev_net(iter->dev)))
9434 continue;
9435 netdev_adjacent_sysfs_add(iter->dev, dev,
9436 &iter->dev->adj_list.upper);
9437 netdev_adjacent_sysfs_add(dev, iter->dev,
9438 &dev->adj_list.lower);
9439 }
9440 }
9441
netdev_adjacent_del_links(struct net_device * dev)9442 static void netdev_adjacent_del_links(struct net_device *dev)
9443 {
9444 struct netdev_adjacent *iter;
9445
9446 struct net *net = dev_net(dev);
9447
9448 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9449 if (!net_eq(net, dev_net(iter->dev)))
9450 continue;
9451 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9452 &iter->dev->adj_list.lower);
9453 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9454 &dev->adj_list.upper);
9455 }
9456
9457 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9458 if (!net_eq(net, dev_net(iter->dev)))
9459 continue;
9460 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9461 &iter->dev->adj_list.upper);
9462 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9463 &dev->adj_list.lower);
9464 }
9465 }
9466
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)9467 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9468 {
9469 struct netdev_adjacent *iter;
9470
9471 struct net *net = dev_net(dev);
9472
9473 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9474 if (!net_eq(net, dev_net(iter->dev)))
9475 continue;
9476 netdev_adjacent_sysfs_del(iter->dev, oldname,
9477 &iter->dev->adj_list.lower);
9478 netdev_adjacent_sysfs_add(iter->dev, dev,
9479 &iter->dev->adj_list.lower);
9480 }
9481
9482 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9483 if (!net_eq(net, dev_net(iter->dev)))
9484 continue;
9485 netdev_adjacent_sysfs_del(iter->dev, oldname,
9486 &iter->dev->adj_list.upper);
9487 netdev_adjacent_sysfs_add(iter->dev, dev,
9488 &iter->dev->adj_list.upper);
9489 }
9490 }
9491
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)9492 void *netdev_lower_dev_get_private(struct net_device *dev,
9493 struct net_device *lower_dev)
9494 {
9495 struct netdev_adjacent *lower;
9496
9497 if (!lower_dev)
9498 return NULL;
9499 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9500 if (!lower)
9501 return NULL;
9502
9503 return lower->private;
9504 }
9505 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9506
9507
9508 /**
9509 * netdev_lower_state_changed - Dispatch event about lower device state change
9510 * @lower_dev: device
9511 * @lower_state_info: state to dispatch
9512 *
9513 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9514 * The caller must hold the RTNL lock.
9515 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)9516 void netdev_lower_state_changed(struct net_device *lower_dev,
9517 void *lower_state_info)
9518 {
9519 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9520 .info.dev = lower_dev,
9521 };
9522
9523 ASSERT_RTNL();
9524 changelowerstate_info.lower_state_info = lower_state_info;
9525 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9526 &changelowerstate_info.info);
9527 }
9528 EXPORT_SYMBOL(netdev_lower_state_changed);
9529
dev_change_rx_flags(struct net_device * dev,int flags)9530 static void dev_change_rx_flags(struct net_device *dev, int flags)
9531 {
9532 const struct net_device_ops *ops = dev->netdev_ops;
9533
9534 if (ops->ndo_change_rx_flags)
9535 ops->ndo_change_rx_flags(dev, flags);
9536 }
9537
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)9538 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9539 {
9540 unsigned int old_flags = dev->flags;
9541 unsigned int promiscuity, flags;
9542 kuid_t uid;
9543 kgid_t gid;
9544
9545 ASSERT_RTNL();
9546
9547 promiscuity = dev->promiscuity + inc;
9548 if (promiscuity == 0) {
9549 /*
9550 * Avoid overflow.
9551 * If inc causes overflow, untouch promisc and return error.
9552 */
9553 if (unlikely(inc > 0)) {
9554 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9555 return -EOVERFLOW;
9556 }
9557 flags = old_flags & ~IFF_PROMISC;
9558 } else {
9559 flags = old_flags | IFF_PROMISC;
9560 }
9561 WRITE_ONCE(dev->promiscuity, promiscuity);
9562 if (flags != old_flags) {
9563 WRITE_ONCE(dev->flags, flags);
9564 netdev_info(dev, "%s promiscuous mode\n",
9565 dev->flags & IFF_PROMISC ? "entered" : "left");
9566 if (audit_enabled) {
9567 current_uid_gid(&uid, &gid);
9568 audit_log(audit_context(), GFP_ATOMIC,
9569 AUDIT_ANOM_PROMISCUOUS,
9570 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9571 dev->name, (dev->flags & IFF_PROMISC),
9572 (old_flags & IFF_PROMISC),
9573 from_kuid(&init_user_ns, audit_get_loginuid(current)),
9574 from_kuid(&init_user_ns, uid),
9575 from_kgid(&init_user_ns, gid),
9576 audit_get_sessionid(current));
9577 }
9578
9579 dev_change_rx_flags(dev, IFF_PROMISC);
9580 }
9581 if (notify) {
9582 /* The ops lock is only required to ensure consistent locking
9583 * for `NETDEV_CHANGE` notifiers. This function is sometimes
9584 * called without the lock, even for devices that are ops
9585 * locked, such as in `dev_uc_sync_multiple` when using
9586 * bonding or teaming.
9587 */
9588 netdev_ops_assert_locked(dev);
9589 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9590 }
9591 return 0;
9592 }
9593
netif_set_promiscuity(struct net_device * dev,int inc)9594 int netif_set_promiscuity(struct net_device *dev, int inc)
9595 {
9596 unsigned int old_flags = dev->flags;
9597 int err;
9598
9599 err = __dev_set_promiscuity(dev, inc, true);
9600 if (err < 0)
9601 return err;
9602 if (dev->flags != old_flags)
9603 dev_set_rx_mode(dev);
9604 return err;
9605 }
9606
netif_set_allmulti(struct net_device * dev,int inc,bool notify)9607 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9608 {
9609 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9610 unsigned int allmulti, flags;
9611
9612 ASSERT_RTNL();
9613
9614 allmulti = dev->allmulti + inc;
9615 if (allmulti == 0) {
9616 /*
9617 * Avoid overflow.
9618 * If inc causes overflow, untouch allmulti and return error.
9619 */
9620 if (unlikely(inc > 0)) {
9621 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9622 return -EOVERFLOW;
9623 }
9624 flags = old_flags & ~IFF_ALLMULTI;
9625 } else {
9626 flags = old_flags | IFF_ALLMULTI;
9627 }
9628 WRITE_ONCE(dev->allmulti, allmulti);
9629 if (flags != old_flags) {
9630 WRITE_ONCE(dev->flags, flags);
9631 netdev_info(dev, "%s allmulticast mode\n",
9632 dev->flags & IFF_ALLMULTI ? "entered" : "left");
9633 dev_change_rx_flags(dev, IFF_ALLMULTI);
9634 dev_set_rx_mode(dev);
9635 if (notify)
9636 __dev_notify_flags(dev, old_flags,
9637 dev->gflags ^ old_gflags, 0, NULL);
9638 }
9639 return 0;
9640 }
9641
9642 /*
9643 * Upload unicast and multicast address lists to device and
9644 * configure RX filtering. When the device doesn't support unicast
9645 * filtering it is put in promiscuous mode while unicast addresses
9646 * are present.
9647 */
__dev_set_rx_mode(struct net_device * dev)9648 void __dev_set_rx_mode(struct net_device *dev)
9649 {
9650 const struct net_device_ops *ops = dev->netdev_ops;
9651
9652 /* dev_open will call this function so the list will stay sane. */
9653 if (!(dev->flags&IFF_UP))
9654 return;
9655
9656 if (!netif_device_present(dev))
9657 return;
9658
9659 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9660 /* Unicast addresses changes may only happen under the rtnl,
9661 * therefore calling __dev_set_promiscuity here is safe.
9662 */
9663 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9664 __dev_set_promiscuity(dev, 1, false);
9665 dev->uc_promisc = true;
9666 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9667 __dev_set_promiscuity(dev, -1, false);
9668 dev->uc_promisc = false;
9669 }
9670 }
9671
9672 if (ops->ndo_set_rx_mode)
9673 ops->ndo_set_rx_mode(dev);
9674 }
9675
dev_set_rx_mode(struct net_device * dev)9676 void dev_set_rx_mode(struct net_device *dev)
9677 {
9678 netif_addr_lock_bh(dev);
9679 __dev_set_rx_mode(dev);
9680 netif_addr_unlock_bh(dev);
9681 }
9682
9683 /**
9684 * netif_get_flags() - get flags reported to userspace
9685 * @dev: device
9686 *
9687 * Get the combination of flag bits exported through APIs to userspace.
9688 */
netif_get_flags(const struct net_device * dev)9689 unsigned int netif_get_flags(const struct net_device *dev)
9690 {
9691 unsigned int flags;
9692
9693 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9694 IFF_ALLMULTI |
9695 IFF_RUNNING |
9696 IFF_LOWER_UP |
9697 IFF_DORMANT)) |
9698 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
9699 IFF_ALLMULTI));
9700
9701 if (netif_running(dev)) {
9702 if (netif_oper_up(dev))
9703 flags |= IFF_RUNNING;
9704 if (netif_carrier_ok(dev))
9705 flags |= IFF_LOWER_UP;
9706 if (netif_dormant(dev))
9707 flags |= IFF_DORMANT;
9708 }
9709
9710 return flags;
9711 }
9712 EXPORT_SYMBOL(netif_get_flags);
9713
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9714 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9715 struct netlink_ext_ack *extack)
9716 {
9717 unsigned int old_flags = dev->flags;
9718 int ret;
9719
9720 ASSERT_RTNL();
9721
9722 /*
9723 * Set the flags on our device.
9724 */
9725
9726 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9727 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9728 IFF_AUTOMEDIA)) |
9729 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9730 IFF_ALLMULTI));
9731
9732 /*
9733 * Load in the correct multicast list now the flags have changed.
9734 */
9735
9736 if ((old_flags ^ flags) & IFF_MULTICAST)
9737 dev_change_rx_flags(dev, IFF_MULTICAST);
9738
9739 dev_set_rx_mode(dev);
9740
9741 /*
9742 * Have we downed the interface. We handle IFF_UP ourselves
9743 * according to user attempts to set it, rather than blindly
9744 * setting it.
9745 */
9746
9747 ret = 0;
9748 if ((old_flags ^ flags) & IFF_UP) {
9749 if (old_flags & IFF_UP)
9750 __dev_close(dev);
9751 else
9752 ret = __dev_open(dev, extack);
9753 }
9754
9755 if ((flags ^ dev->gflags) & IFF_PROMISC) {
9756 int inc = (flags & IFF_PROMISC) ? 1 : -1;
9757 old_flags = dev->flags;
9758
9759 dev->gflags ^= IFF_PROMISC;
9760
9761 if (__dev_set_promiscuity(dev, inc, false) >= 0)
9762 if (dev->flags != old_flags)
9763 dev_set_rx_mode(dev);
9764 }
9765
9766 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9767 * is important. Some (broken) drivers set IFF_PROMISC, when
9768 * IFF_ALLMULTI is requested not asking us and not reporting.
9769 */
9770 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9771 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9772
9773 dev->gflags ^= IFF_ALLMULTI;
9774 netif_set_allmulti(dev, inc, false);
9775 }
9776
9777 return ret;
9778 }
9779
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)9780 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9781 unsigned int gchanges, u32 portid,
9782 const struct nlmsghdr *nlh)
9783 {
9784 unsigned int changes = dev->flags ^ old_flags;
9785
9786 if (gchanges)
9787 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9788
9789 if (changes & IFF_UP) {
9790 if (dev->flags & IFF_UP)
9791 call_netdevice_notifiers(NETDEV_UP, dev);
9792 else
9793 call_netdevice_notifiers(NETDEV_DOWN, dev);
9794 }
9795
9796 if (dev->flags & IFF_UP &&
9797 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9798 struct netdev_notifier_change_info change_info = {
9799 .info = {
9800 .dev = dev,
9801 },
9802 .flags_changed = changes,
9803 };
9804
9805 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9806 }
9807 }
9808
netif_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9809 int netif_change_flags(struct net_device *dev, unsigned int flags,
9810 struct netlink_ext_ack *extack)
9811 {
9812 int ret;
9813 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9814
9815 ret = __dev_change_flags(dev, flags, extack);
9816 if (ret < 0)
9817 return ret;
9818
9819 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9820 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
9821 return ret;
9822 }
9823
__netif_set_mtu(struct net_device * dev,int new_mtu)9824 int __netif_set_mtu(struct net_device *dev, int new_mtu)
9825 {
9826 const struct net_device_ops *ops = dev->netdev_ops;
9827
9828 if (ops->ndo_change_mtu)
9829 return ops->ndo_change_mtu(dev, new_mtu);
9830
9831 /* Pairs with all the lockless reads of dev->mtu in the stack */
9832 WRITE_ONCE(dev->mtu, new_mtu);
9833 return 0;
9834 }
9835 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL");
9836
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9837 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9838 struct netlink_ext_ack *extack)
9839 {
9840 /* MTU must be positive, and in range */
9841 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9842 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9843 return -EINVAL;
9844 }
9845
9846 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9847 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9848 return -EINVAL;
9849 }
9850 return 0;
9851 }
9852
9853 /**
9854 * netif_set_mtu_ext() - Change maximum transfer unit
9855 * @dev: device
9856 * @new_mtu: new transfer unit
9857 * @extack: netlink extended ack
9858 *
9859 * Change the maximum transfer size of the network device.
9860 *
9861 * Return: 0 on success, -errno on failure.
9862 */
netif_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9863 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9864 struct netlink_ext_ack *extack)
9865 {
9866 int err, orig_mtu;
9867
9868 netdev_ops_assert_locked(dev);
9869
9870 if (new_mtu == dev->mtu)
9871 return 0;
9872
9873 err = dev_validate_mtu(dev, new_mtu, extack);
9874 if (err)
9875 return err;
9876
9877 if (!netif_device_present(dev))
9878 return -ENODEV;
9879
9880 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9881 err = notifier_to_errno(err);
9882 if (err)
9883 return err;
9884
9885 orig_mtu = dev->mtu;
9886 err = __netif_set_mtu(dev, new_mtu);
9887
9888 if (!err) {
9889 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9890 orig_mtu);
9891 err = notifier_to_errno(err);
9892 if (err) {
9893 /* setting mtu back and notifying everyone again,
9894 * so that they have a chance to revert changes.
9895 */
9896 __netif_set_mtu(dev, orig_mtu);
9897 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9898 new_mtu);
9899 }
9900 }
9901 return err;
9902 }
9903
netif_set_mtu(struct net_device * dev,int new_mtu)9904 int netif_set_mtu(struct net_device *dev, int new_mtu)
9905 {
9906 struct netlink_ext_ack extack;
9907 int err;
9908
9909 memset(&extack, 0, sizeof(extack));
9910 err = netif_set_mtu_ext(dev, new_mtu, &extack);
9911 if (err && extack._msg)
9912 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9913 return err;
9914 }
9915 EXPORT_SYMBOL(netif_set_mtu);
9916
netif_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9917 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9918 {
9919 unsigned int orig_len = dev->tx_queue_len;
9920 int res;
9921
9922 if (new_len != (unsigned int)new_len)
9923 return -ERANGE;
9924
9925 if (new_len != orig_len) {
9926 WRITE_ONCE(dev->tx_queue_len, new_len);
9927 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9928 res = notifier_to_errno(res);
9929 if (res)
9930 goto err_rollback;
9931 res = dev_qdisc_change_tx_queue_len(dev);
9932 if (res)
9933 goto err_rollback;
9934 }
9935
9936 return 0;
9937
9938 err_rollback:
9939 netdev_err(dev, "refused to change device tx_queue_len\n");
9940 WRITE_ONCE(dev->tx_queue_len, orig_len);
9941 return res;
9942 }
9943
netif_set_group(struct net_device * dev,int new_group)9944 void netif_set_group(struct net_device *dev, int new_group)
9945 {
9946 dev->group = new_group;
9947 }
9948
9949 /**
9950 * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR.
9951 * @dev: device
9952 * @addr: new address
9953 * @extack: netlink extended ack
9954 *
9955 * Return: 0 on success, -errno on failure.
9956 */
netif_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9957 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9958 struct netlink_ext_ack *extack)
9959 {
9960 struct netdev_notifier_pre_changeaddr_info info = {
9961 .info.dev = dev,
9962 .info.extack = extack,
9963 .dev_addr = addr,
9964 };
9965 int rc;
9966
9967 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9968 return notifier_to_errno(rc);
9969 }
9970 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL");
9971
netif_set_mac_address(struct net_device * dev,struct sockaddr_storage * ss,struct netlink_ext_ack * extack)9972 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9973 struct netlink_ext_ack *extack)
9974 {
9975 const struct net_device_ops *ops = dev->netdev_ops;
9976 int err;
9977
9978 if (!ops->ndo_set_mac_address)
9979 return -EOPNOTSUPP;
9980 if (ss->ss_family != dev->type)
9981 return -EINVAL;
9982 if (!netif_device_present(dev))
9983 return -ENODEV;
9984 err = netif_pre_changeaddr_notify(dev, ss->__data, extack);
9985 if (err)
9986 return err;
9987 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9988 err = ops->ndo_set_mac_address(dev, ss);
9989 if (err)
9990 return err;
9991 }
9992 dev->addr_assign_type = NET_ADDR_SET;
9993 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9994 add_device_randomness(dev->dev_addr, dev->addr_len);
9995 return 0;
9996 }
9997
9998 DECLARE_RWSEM(dev_addr_sem);
9999
10000 /* "sa" is a true struct sockaddr with limited "sa_data" member. */
netif_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)10001 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
10002 {
10003 size_t size = sizeof(sa->sa_data);
10004 struct net_device *dev;
10005 int ret = 0;
10006
10007 down_read(&dev_addr_sem);
10008 rcu_read_lock();
10009
10010 dev = dev_get_by_name_rcu(net, dev_name);
10011 if (!dev) {
10012 ret = -ENODEV;
10013 goto unlock;
10014 }
10015 if (!dev->addr_len)
10016 memset(sa->sa_data, 0, size);
10017 else
10018 memcpy(sa->sa_data, dev->dev_addr,
10019 min_t(size_t, size, dev->addr_len));
10020 sa->sa_family = dev->type;
10021
10022 unlock:
10023 rcu_read_unlock();
10024 up_read(&dev_addr_sem);
10025 return ret;
10026 }
10027 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL");
10028
netif_change_carrier(struct net_device * dev,bool new_carrier)10029 int netif_change_carrier(struct net_device *dev, bool new_carrier)
10030 {
10031 const struct net_device_ops *ops = dev->netdev_ops;
10032
10033 if (!ops->ndo_change_carrier)
10034 return -EOPNOTSUPP;
10035 if (!netif_device_present(dev))
10036 return -ENODEV;
10037 return ops->ndo_change_carrier(dev, new_carrier);
10038 }
10039
10040 /**
10041 * dev_get_phys_port_id - Get device physical port ID
10042 * @dev: device
10043 * @ppid: port ID
10044 *
10045 * Get device physical port ID
10046 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)10047 int dev_get_phys_port_id(struct net_device *dev,
10048 struct netdev_phys_item_id *ppid)
10049 {
10050 const struct net_device_ops *ops = dev->netdev_ops;
10051
10052 if (!ops->ndo_get_phys_port_id)
10053 return -EOPNOTSUPP;
10054 return ops->ndo_get_phys_port_id(dev, ppid);
10055 }
10056
10057 /**
10058 * dev_get_phys_port_name - Get device physical port name
10059 * @dev: device
10060 * @name: port name
10061 * @len: limit of bytes to copy to name
10062 *
10063 * Get device physical port name
10064 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)10065 int dev_get_phys_port_name(struct net_device *dev,
10066 char *name, size_t len)
10067 {
10068 const struct net_device_ops *ops = dev->netdev_ops;
10069 int err;
10070
10071 if (ops->ndo_get_phys_port_name) {
10072 err = ops->ndo_get_phys_port_name(dev, name, len);
10073 if (err != -EOPNOTSUPP)
10074 return err;
10075 }
10076 return devlink_compat_phys_port_name_get(dev, name, len);
10077 }
10078
10079 /**
10080 * netif_get_port_parent_id() - Get the device's port parent identifier
10081 * @dev: network device
10082 * @ppid: pointer to a storage for the port's parent identifier
10083 * @recurse: allow/disallow recursion to lower devices
10084 *
10085 * Get the devices's port parent identifier.
10086 *
10087 * Return: 0 on success, -errno on failure.
10088 */
netif_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)10089 int netif_get_port_parent_id(struct net_device *dev,
10090 struct netdev_phys_item_id *ppid, bool recurse)
10091 {
10092 const struct net_device_ops *ops = dev->netdev_ops;
10093 struct netdev_phys_item_id first = { };
10094 struct net_device *lower_dev;
10095 struct list_head *iter;
10096 int err;
10097
10098 if (ops->ndo_get_port_parent_id) {
10099 err = ops->ndo_get_port_parent_id(dev, ppid);
10100 if (err != -EOPNOTSUPP)
10101 return err;
10102 }
10103
10104 err = devlink_compat_switch_id_get(dev, ppid);
10105 if (!recurse || err != -EOPNOTSUPP)
10106 return err;
10107
10108 netdev_for_each_lower_dev(dev, lower_dev, iter) {
10109 err = netif_get_port_parent_id(lower_dev, ppid, true);
10110 if (err)
10111 break;
10112 if (!first.id_len)
10113 first = *ppid;
10114 else if (memcmp(&first, ppid, sizeof(*ppid)))
10115 return -EOPNOTSUPP;
10116 }
10117
10118 return err;
10119 }
10120 EXPORT_SYMBOL(netif_get_port_parent_id);
10121
10122 /**
10123 * netdev_port_same_parent_id - Indicate if two network devices have
10124 * the same port parent identifier
10125 * @a: first network device
10126 * @b: second network device
10127 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)10128 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
10129 {
10130 struct netdev_phys_item_id a_id = { };
10131 struct netdev_phys_item_id b_id = { };
10132
10133 if (netif_get_port_parent_id(a, &a_id, true) ||
10134 netif_get_port_parent_id(b, &b_id, true))
10135 return false;
10136
10137 return netdev_phys_item_id_same(&a_id, &b_id);
10138 }
10139 EXPORT_SYMBOL(netdev_port_same_parent_id);
10140
netif_change_proto_down(struct net_device * dev,bool proto_down)10141 int netif_change_proto_down(struct net_device *dev, bool proto_down)
10142 {
10143 if (!dev->change_proto_down)
10144 return -EOPNOTSUPP;
10145 if (!netif_device_present(dev))
10146 return -ENODEV;
10147 if (proto_down)
10148 netif_carrier_off(dev);
10149 else
10150 netif_carrier_on(dev);
10151 WRITE_ONCE(dev->proto_down, proto_down);
10152 return 0;
10153 }
10154
10155 /**
10156 * netdev_change_proto_down_reason_locked - proto down reason
10157 *
10158 * @dev: device
10159 * @mask: proto down mask
10160 * @value: proto down value
10161 */
netdev_change_proto_down_reason_locked(struct net_device * dev,unsigned long mask,u32 value)10162 void netdev_change_proto_down_reason_locked(struct net_device *dev,
10163 unsigned long mask, u32 value)
10164 {
10165 u32 proto_down_reason;
10166 int b;
10167
10168 if (!mask) {
10169 proto_down_reason = value;
10170 } else {
10171 proto_down_reason = dev->proto_down_reason;
10172 for_each_set_bit(b, &mask, 32) {
10173 if (value & (1 << b))
10174 proto_down_reason |= BIT(b);
10175 else
10176 proto_down_reason &= ~BIT(b);
10177 }
10178 }
10179 WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
10180 }
10181
10182 struct bpf_xdp_link {
10183 struct bpf_link link;
10184 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
10185 int flags;
10186 };
10187
dev_xdp_mode(struct net_device * dev,u32 flags)10188 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
10189 {
10190 if (flags & XDP_FLAGS_HW_MODE)
10191 return XDP_MODE_HW;
10192 if (flags & XDP_FLAGS_DRV_MODE)
10193 return XDP_MODE_DRV;
10194 if (flags & XDP_FLAGS_SKB_MODE)
10195 return XDP_MODE_SKB;
10196 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
10197 }
10198
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)10199 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
10200 {
10201 switch (mode) {
10202 case XDP_MODE_SKB:
10203 return generic_xdp_install;
10204 case XDP_MODE_DRV:
10205 case XDP_MODE_HW:
10206 return dev->netdev_ops->ndo_bpf;
10207 default:
10208 return NULL;
10209 }
10210 }
10211
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)10212 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
10213 enum bpf_xdp_mode mode)
10214 {
10215 return dev->xdp_state[mode].link;
10216 }
10217
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)10218 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
10219 enum bpf_xdp_mode mode)
10220 {
10221 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
10222
10223 if (link)
10224 return link->link.prog;
10225 return dev->xdp_state[mode].prog;
10226 }
10227
dev_xdp_prog_count(struct net_device * dev)10228 u8 dev_xdp_prog_count(struct net_device *dev)
10229 {
10230 u8 count = 0;
10231 int i;
10232
10233 for (i = 0; i < __MAX_XDP_MODE; i++)
10234 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
10235 count++;
10236 return count;
10237 }
10238 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10239
dev_xdp_sb_prog_count(struct net_device * dev)10240 u8 dev_xdp_sb_prog_count(struct net_device *dev)
10241 {
10242 u8 count = 0;
10243 int i;
10244
10245 for (i = 0; i < __MAX_XDP_MODE; i++)
10246 if (dev->xdp_state[i].prog &&
10247 !dev->xdp_state[i].prog->aux->xdp_has_frags)
10248 count++;
10249 return count;
10250 }
10251
netif_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)10252 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10253 {
10254 if (!dev->netdev_ops->ndo_bpf)
10255 return -EOPNOTSUPP;
10256
10257 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10258 bpf->command == XDP_SETUP_PROG &&
10259 bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10260 NL_SET_ERR_MSG(bpf->extack,
10261 "unable to propagate XDP to device using tcp-data-split");
10262 return -EBUSY;
10263 }
10264
10265 if (dev_get_min_mp_channel_count(dev)) {
10266 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10267 return -EBUSY;
10268 }
10269
10270 return dev->netdev_ops->ndo_bpf(dev, bpf);
10271 }
10272 EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10273
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)10274 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10275 {
10276 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10277
10278 return prog ? prog->aux->id : 0;
10279 }
10280
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)10281 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10282 struct bpf_xdp_link *link)
10283 {
10284 dev->xdp_state[mode].link = link;
10285 dev->xdp_state[mode].prog = NULL;
10286 }
10287
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)10288 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10289 struct bpf_prog *prog)
10290 {
10291 dev->xdp_state[mode].link = NULL;
10292 dev->xdp_state[mode].prog = prog;
10293 }
10294
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)10295 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10296 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10297 u32 flags, struct bpf_prog *prog)
10298 {
10299 struct netdev_bpf xdp;
10300 int err;
10301
10302 netdev_ops_assert_locked(dev);
10303
10304 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10305 prog && !prog->aux->xdp_has_frags) {
10306 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10307 return -EBUSY;
10308 }
10309
10310 if (dev_get_min_mp_channel_count(dev)) {
10311 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10312 return -EBUSY;
10313 }
10314
10315 memset(&xdp, 0, sizeof(xdp));
10316 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10317 xdp.extack = extack;
10318 xdp.flags = flags;
10319 xdp.prog = prog;
10320
10321 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
10322 * "moved" into driver), so they don't increment it on their own, but
10323 * they do decrement refcnt when program is detached or replaced.
10324 * Given net_device also owns link/prog, we need to bump refcnt here
10325 * to prevent drivers from underflowing it.
10326 */
10327 if (prog)
10328 bpf_prog_inc(prog);
10329 err = bpf_op(dev, &xdp);
10330 if (err) {
10331 if (prog)
10332 bpf_prog_put(prog);
10333 return err;
10334 }
10335
10336 if (mode != XDP_MODE_HW)
10337 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10338
10339 return 0;
10340 }
10341
dev_xdp_uninstall(struct net_device * dev)10342 static void dev_xdp_uninstall(struct net_device *dev)
10343 {
10344 struct bpf_xdp_link *link;
10345 struct bpf_prog *prog;
10346 enum bpf_xdp_mode mode;
10347 bpf_op_t bpf_op;
10348
10349 ASSERT_RTNL();
10350
10351 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10352 prog = dev_xdp_prog(dev, mode);
10353 if (!prog)
10354 continue;
10355
10356 bpf_op = dev_xdp_bpf_op(dev, mode);
10357 if (!bpf_op)
10358 continue;
10359
10360 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10361
10362 /* auto-detach link from net device */
10363 link = dev_xdp_link(dev, mode);
10364 if (link)
10365 link->dev = NULL;
10366 else
10367 bpf_prog_put(prog);
10368
10369 dev_xdp_set_link(dev, mode, NULL);
10370 }
10371 }
10372
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)10373 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10374 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10375 struct bpf_prog *old_prog, u32 flags)
10376 {
10377 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10378 struct bpf_prog *cur_prog;
10379 struct net_device *upper;
10380 struct list_head *iter;
10381 enum bpf_xdp_mode mode;
10382 bpf_op_t bpf_op;
10383 int err;
10384
10385 ASSERT_RTNL();
10386
10387 /* either link or prog attachment, never both */
10388 if (link && (new_prog || old_prog))
10389 return -EINVAL;
10390 /* link supports only XDP mode flags */
10391 if (link && (flags & ~XDP_FLAGS_MODES)) {
10392 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10393 return -EINVAL;
10394 }
10395 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10396 if (num_modes > 1) {
10397 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10398 return -EINVAL;
10399 }
10400 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10401 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10402 NL_SET_ERR_MSG(extack,
10403 "More than one program loaded, unset mode is ambiguous");
10404 return -EINVAL;
10405 }
10406 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10407 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10408 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10409 return -EINVAL;
10410 }
10411
10412 mode = dev_xdp_mode(dev, flags);
10413 /* can't replace attached link */
10414 if (dev_xdp_link(dev, mode)) {
10415 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10416 return -EBUSY;
10417 }
10418
10419 /* don't allow if an upper device already has a program */
10420 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10421 if (dev_xdp_prog_count(upper) > 0) {
10422 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10423 return -EEXIST;
10424 }
10425 }
10426
10427 cur_prog = dev_xdp_prog(dev, mode);
10428 /* can't replace attached prog with link */
10429 if (link && cur_prog) {
10430 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10431 return -EBUSY;
10432 }
10433 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10434 NL_SET_ERR_MSG(extack, "Active program does not match expected");
10435 return -EEXIST;
10436 }
10437
10438 /* put effective new program into new_prog */
10439 if (link)
10440 new_prog = link->link.prog;
10441
10442 if (new_prog) {
10443 bool offload = mode == XDP_MODE_HW;
10444 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10445 ? XDP_MODE_DRV : XDP_MODE_SKB;
10446
10447 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10448 NL_SET_ERR_MSG(extack, "XDP program already attached");
10449 return -EBUSY;
10450 }
10451 if (!offload && dev_xdp_prog(dev, other_mode)) {
10452 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10453 return -EEXIST;
10454 }
10455 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10456 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10457 return -EINVAL;
10458 }
10459 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10460 NL_SET_ERR_MSG(extack, "Program bound to different device");
10461 return -EINVAL;
10462 }
10463 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10464 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10465 return -EINVAL;
10466 }
10467 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10468 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10469 return -EINVAL;
10470 }
10471 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10472 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10473 return -EINVAL;
10474 }
10475 }
10476
10477 /* don't call drivers if the effective program didn't change */
10478 if (new_prog != cur_prog) {
10479 bpf_op = dev_xdp_bpf_op(dev, mode);
10480 if (!bpf_op) {
10481 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10482 return -EOPNOTSUPP;
10483 }
10484
10485 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10486 if (err)
10487 return err;
10488 }
10489
10490 if (link)
10491 dev_xdp_set_link(dev, mode, link);
10492 else
10493 dev_xdp_set_prog(dev, mode, new_prog);
10494 if (cur_prog)
10495 bpf_prog_put(cur_prog);
10496
10497 return 0;
10498 }
10499
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10500 static int dev_xdp_attach_link(struct net_device *dev,
10501 struct netlink_ext_ack *extack,
10502 struct bpf_xdp_link *link)
10503 {
10504 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10505 }
10506
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10507 static int dev_xdp_detach_link(struct net_device *dev,
10508 struct netlink_ext_ack *extack,
10509 struct bpf_xdp_link *link)
10510 {
10511 enum bpf_xdp_mode mode;
10512 bpf_op_t bpf_op;
10513
10514 ASSERT_RTNL();
10515
10516 mode = dev_xdp_mode(dev, link->flags);
10517 if (dev_xdp_link(dev, mode) != link)
10518 return -EINVAL;
10519
10520 bpf_op = dev_xdp_bpf_op(dev, mode);
10521 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10522 dev_xdp_set_link(dev, mode, NULL);
10523 return 0;
10524 }
10525
bpf_xdp_link_release(struct bpf_link * link)10526 static void bpf_xdp_link_release(struct bpf_link *link)
10527 {
10528 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10529
10530 rtnl_lock();
10531
10532 /* if racing with net_device's tear down, xdp_link->dev might be
10533 * already NULL, in which case link was already auto-detached
10534 */
10535 if (xdp_link->dev) {
10536 netdev_lock_ops(xdp_link->dev);
10537 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10538 netdev_unlock_ops(xdp_link->dev);
10539 xdp_link->dev = NULL;
10540 }
10541
10542 rtnl_unlock();
10543 }
10544
bpf_xdp_link_detach(struct bpf_link * link)10545 static int bpf_xdp_link_detach(struct bpf_link *link)
10546 {
10547 bpf_xdp_link_release(link);
10548 return 0;
10549 }
10550
bpf_xdp_link_dealloc(struct bpf_link * link)10551 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10552 {
10553 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10554
10555 kfree(xdp_link);
10556 }
10557
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)10558 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10559 struct seq_file *seq)
10560 {
10561 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10562 u32 ifindex = 0;
10563
10564 rtnl_lock();
10565 if (xdp_link->dev)
10566 ifindex = xdp_link->dev->ifindex;
10567 rtnl_unlock();
10568
10569 seq_printf(seq, "ifindex:\t%u\n", ifindex);
10570 }
10571
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)10572 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10573 struct bpf_link_info *info)
10574 {
10575 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10576 u32 ifindex = 0;
10577
10578 rtnl_lock();
10579 if (xdp_link->dev)
10580 ifindex = xdp_link->dev->ifindex;
10581 rtnl_unlock();
10582
10583 info->xdp.ifindex = ifindex;
10584 return 0;
10585 }
10586
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)10587 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10588 struct bpf_prog *old_prog)
10589 {
10590 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10591 enum bpf_xdp_mode mode;
10592 bpf_op_t bpf_op;
10593 int err = 0;
10594
10595 rtnl_lock();
10596
10597 /* link might have been auto-released already, so fail */
10598 if (!xdp_link->dev) {
10599 err = -ENOLINK;
10600 goto out_unlock;
10601 }
10602
10603 if (old_prog && link->prog != old_prog) {
10604 err = -EPERM;
10605 goto out_unlock;
10606 }
10607 old_prog = link->prog;
10608 if (old_prog->type != new_prog->type ||
10609 old_prog->expected_attach_type != new_prog->expected_attach_type) {
10610 err = -EINVAL;
10611 goto out_unlock;
10612 }
10613
10614 if (old_prog == new_prog) {
10615 /* no-op, don't disturb drivers */
10616 bpf_prog_put(new_prog);
10617 goto out_unlock;
10618 }
10619
10620 netdev_lock_ops(xdp_link->dev);
10621 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10622 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10623 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10624 xdp_link->flags, new_prog);
10625 netdev_unlock_ops(xdp_link->dev);
10626 if (err)
10627 goto out_unlock;
10628
10629 old_prog = xchg(&link->prog, new_prog);
10630 bpf_prog_put(old_prog);
10631
10632 out_unlock:
10633 rtnl_unlock();
10634 return err;
10635 }
10636
10637 static const struct bpf_link_ops bpf_xdp_link_lops = {
10638 .release = bpf_xdp_link_release,
10639 .dealloc = bpf_xdp_link_dealloc,
10640 .detach = bpf_xdp_link_detach,
10641 .show_fdinfo = bpf_xdp_link_show_fdinfo,
10642 .fill_link_info = bpf_xdp_link_fill_link_info,
10643 .update_prog = bpf_xdp_link_update,
10644 };
10645
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)10646 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10647 {
10648 struct net *net = current->nsproxy->net_ns;
10649 struct bpf_link_primer link_primer;
10650 struct netlink_ext_ack extack = {};
10651 struct bpf_xdp_link *link;
10652 struct net_device *dev;
10653 int err, fd;
10654
10655 rtnl_lock();
10656 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10657 if (!dev) {
10658 rtnl_unlock();
10659 return -EINVAL;
10660 }
10661
10662 link = kzalloc_obj(*link, GFP_USER);
10663 if (!link) {
10664 err = -ENOMEM;
10665 goto unlock;
10666 }
10667
10668 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog,
10669 attr->link_create.attach_type);
10670 link->dev = dev;
10671 link->flags = attr->link_create.flags;
10672
10673 err = bpf_link_prime(&link->link, &link_primer);
10674 if (err) {
10675 kfree(link);
10676 goto unlock;
10677 }
10678
10679 netdev_lock_ops(dev);
10680 err = dev_xdp_attach_link(dev, &extack, link);
10681 netdev_unlock_ops(dev);
10682 rtnl_unlock();
10683
10684 if (err) {
10685 link->dev = NULL;
10686 bpf_link_cleanup(&link_primer);
10687 trace_bpf_xdp_link_attach_failed(extack._msg);
10688 goto out_put_dev;
10689 }
10690
10691 fd = bpf_link_settle(&link_primer);
10692 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
10693 dev_put(dev);
10694 return fd;
10695
10696 unlock:
10697 rtnl_unlock();
10698
10699 out_put_dev:
10700 dev_put(dev);
10701 return err;
10702 }
10703
10704 /**
10705 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
10706 * @dev: device
10707 * @extack: netlink extended ack
10708 * @fd: new program fd or negative value to clear
10709 * @expected_fd: old program fd that userspace expects to replace or clear
10710 * @flags: xdp-related flags
10711 *
10712 * Set or clear a bpf program for a device
10713 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)10714 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10715 int fd, int expected_fd, u32 flags)
10716 {
10717 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10718 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10719 int err;
10720
10721 ASSERT_RTNL();
10722
10723 if (fd >= 0) {
10724 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10725 mode != XDP_MODE_SKB);
10726 if (IS_ERR(new_prog))
10727 return PTR_ERR(new_prog);
10728 }
10729
10730 if (expected_fd >= 0) {
10731 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10732 mode != XDP_MODE_SKB);
10733 if (IS_ERR(old_prog)) {
10734 err = PTR_ERR(old_prog);
10735 old_prog = NULL;
10736 goto err_out;
10737 }
10738 }
10739
10740 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10741
10742 err_out:
10743 if (err && new_prog)
10744 bpf_prog_put(new_prog);
10745 if (old_prog)
10746 bpf_prog_put(old_prog);
10747 return err;
10748 }
10749
dev_get_min_mp_channel_count(const struct net_device * dev)10750 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10751 {
10752 int i;
10753
10754 netdev_ops_assert_locked(dev);
10755
10756 for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10757 if (dev->_rx[i].mp_params.mp_priv)
10758 /* The channel count is the idx plus 1. */
10759 return i + 1;
10760
10761 return 0;
10762 }
10763
10764 /**
10765 * dev_index_reserve() - allocate an ifindex in a namespace
10766 * @net: the applicable net namespace
10767 * @ifindex: requested ifindex, pass %0 to get one allocated
10768 *
10769 * Allocate a ifindex for a new device. Caller must either use the ifindex
10770 * to store the device (via list_netdevice()) or call dev_index_release()
10771 * to give the index up.
10772 *
10773 * Return: a suitable unique value for a new device interface number or -errno.
10774 */
dev_index_reserve(struct net * net,u32 ifindex)10775 static int dev_index_reserve(struct net *net, u32 ifindex)
10776 {
10777 int err;
10778
10779 if (ifindex > INT_MAX) {
10780 DEBUG_NET_WARN_ON_ONCE(1);
10781 return -EINVAL;
10782 }
10783
10784 if (!ifindex)
10785 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10786 xa_limit_31b, &net->ifindex, GFP_KERNEL);
10787 else
10788 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10789 if (err < 0)
10790 return err;
10791
10792 return ifindex;
10793 }
10794
dev_index_release(struct net * net,int ifindex)10795 static void dev_index_release(struct net *net, int ifindex)
10796 {
10797 /* Expect only unused indexes, unlist_netdevice() removes the used */
10798 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10799 }
10800
from_cleanup_net(void)10801 static bool from_cleanup_net(void)
10802 {
10803 #ifdef CONFIG_NET_NS
10804 return current == READ_ONCE(cleanup_net_task);
10805 #else
10806 return false;
10807 #endif
10808 }
10809
10810 /* Delayed registration/unregisteration */
10811 LIST_HEAD(net_todo_list);
10812 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10813 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10814
net_set_todo(struct net_device * dev)10815 static void net_set_todo(struct net_device *dev)
10816 {
10817 list_add_tail(&dev->todo_list, &net_todo_list);
10818 }
10819
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10820 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10821 struct net_device *upper, netdev_features_t features)
10822 {
10823 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10824 netdev_features_t feature;
10825 int feature_bit;
10826
10827 for_each_netdev_feature(upper_disables, feature_bit) {
10828 feature = __NETIF_F_BIT(feature_bit);
10829 if (!(upper->wanted_features & feature)
10830 && (features & feature)) {
10831 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10832 &feature, upper->name);
10833 features &= ~feature;
10834 }
10835 }
10836
10837 return features;
10838 }
10839
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10840 static void netdev_sync_lower_features(struct net_device *upper,
10841 struct net_device *lower, netdev_features_t features)
10842 {
10843 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10844 netdev_features_t feature;
10845 int feature_bit;
10846
10847 for_each_netdev_feature(upper_disables, feature_bit) {
10848 feature = __NETIF_F_BIT(feature_bit);
10849 if (!(features & feature) && (lower->features & feature)) {
10850 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10851 &feature, lower->name);
10852 netdev_lock_ops(lower);
10853 lower->wanted_features &= ~feature;
10854 __netdev_update_features(lower);
10855
10856 if (unlikely(lower->features & feature))
10857 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10858 &feature, lower->name);
10859 else
10860 netdev_features_change(lower);
10861 netdev_unlock_ops(lower);
10862 }
10863 }
10864 }
10865
netdev_has_ip_or_hw_csum(netdev_features_t features)10866 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10867 {
10868 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10869 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10870 bool hw_csum = features & NETIF_F_HW_CSUM;
10871
10872 return ip_csum || hw_csum;
10873 }
10874
netdev_fix_features(struct net_device * dev,netdev_features_t features)10875 static netdev_features_t netdev_fix_features(struct net_device *dev,
10876 netdev_features_t features)
10877 {
10878 /* Fix illegal checksum combinations */
10879 if ((features & NETIF_F_HW_CSUM) &&
10880 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10881 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10882 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10883 }
10884
10885 /* TSO requires that SG is present as well. */
10886 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10887 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10888 features &= ~NETIF_F_ALL_TSO;
10889 }
10890
10891 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10892 !(features & NETIF_F_IP_CSUM)) {
10893 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10894 features &= ~NETIF_F_TSO;
10895 features &= ~NETIF_F_TSO_ECN;
10896 }
10897
10898 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10899 !(features & NETIF_F_IPV6_CSUM)) {
10900 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10901 features &= ~NETIF_F_TSO6;
10902 }
10903
10904 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10905 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10906 features &= ~NETIF_F_TSO_MANGLEID;
10907
10908 /* TSO ECN requires that TSO is present as well. */
10909 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10910 features &= ~NETIF_F_TSO_ECN;
10911
10912 /* Software GSO depends on SG. */
10913 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10914 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10915 features &= ~NETIF_F_GSO;
10916 }
10917
10918 /* GSO partial features require GSO partial be set */
10919 if ((features & dev->gso_partial_features) &&
10920 !(features & NETIF_F_GSO_PARTIAL)) {
10921 netdev_dbg(dev,
10922 "Dropping partially supported GSO features since no GSO partial.\n");
10923 features &= ~dev->gso_partial_features;
10924 }
10925
10926 if (!(features & NETIF_F_RXCSUM)) {
10927 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10928 * successfully merged by hardware must also have the
10929 * checksum verified by hardware. If the user does not
10930 * want to enable RXCSUM, logically, we should disable GRO_HW.
10931 */
10932 if (features & NETIF_F_GRO_HW) {
10933 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10934 features &= ~NETIF_F_GRO_HW;
10935 }
10936 }
10937
10938 /* LRO/HW-GRO features cannot be combined with RX-FCS */
10939 if (features & NETIF_F_RXFCS) {
10940 if (features & NETIF_F_LRO) {
10941 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10942 features &= ~NETIF_F_LRO;
10943 }
10944
10945 if (features & NETIF_F_GRO_HW) {
10946 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10947 features &= ~NETIF_F_GRO_HW;
10948 }
10949 }
10950
10951 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10952 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10953 features &= ~NETIF_F_LRO;
10954 }
10955
10956 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10957 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10958 features &= ~NETIF_F_HW_TLS_TX;
10959 }
10960
10961 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10962 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10963 features &= ~NETIF_F_HW_TLS_RX;
10964 }
10965
10966 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10967 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10968 features &= ~NETIF_F_GSO_UDP_L4;
10969 }
10970
10971 return features;
10972 }
10973
__netdev_update_features(struct net_device * dev)10974 int __netdev_update_features(struct net_device *dev)
10975 {
10976 struct net_device *upper, *lower;
10977 netdev_features_t features;
10978 struct list_head *iter;
10979 int err = -1;
10980
10981 ASSERT_RTNL();
10982 netdev_ops_assert_locked(dev);
10983
10984 features = netdev_get_wanted_features(dev);
10985
10986 if (dev->netdev_ops->ndo_fix_features)
10987 features = dev->netdev_ops->ndo_fix_features(dev, features);
10988
10989 /* driver might be less strict about feature dependencies */
10990 features = netdev_fix_features(dev, features);
10991
10992 /* some features can't be enabled if they're off on an upper device */
10993 netdev_for_each_upper_dev_rcu(dev, upper, iter)
10994 features = netdev_sync_upper_features(dev, upper, features);
10995
10996 if (dev->features == features)
10997 goto sync_lower;
10998
10999 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
11000 &dev->features, &features);
11001
11002 if (dev->netdev_ops->ndo_set_features)
11003 err = dev->netdev_ops->ndo_set_features(dev, features);
11004 else
11005 err = 0;
11006
11007 if (unlikely(err < 0)) {
11008 netdev_err(dev,
11009 "set_features() failed (%d); wanted %pNF, left %pNF\n",
11010 err, &features, &dev->features);
11011 /* return non-0 since some features might have changed and
11012 * it's better to fire a spurious notification than miss it
11013 */
11014 return -1;
11015 }
11016
11017 sync_lower:
11018 /* some features must be disabled on lower devices when disabled
11019 * on an upper device (think: bonding master or bridge)
11020 */
11021 netdev_for_each_lower_dev(dev, lower, iter)
11022 netdev_sync_lower_features(dev, lower, features);
11023
11024 if (!err) {
11025 netdev_features_t diff = features ^ dev->features;
11026
11027 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
11028 /* udp_tunnel_{get,drop}_rx_info both need
11029 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
11030 * device, or they won't do anything.
11031 * Thus we need to update dev->features
11032 * *before* calling udp_tunnel_get_rx_info,
11033 * but *after* calling udp_tunnel_drop_rx_info.
11034 */
11035 udp_tunnel_nic_lock(dev);
11036 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
11037 dev->features = features;
11038 udp_tunnel_get_rx_info(dev);
11039 } else {
11040 udp_tunnel_drop_rx_info(dev);
11041 }
11042 udp_tunnel_nic_unlock(dev);
11043 }
11044
11045 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
11046 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
11047 dev->features = features;
11048 err |= vlan_get_rx_ctag_filter_info(dev);
11049 } else {
11050 vlan_drop_rx_ctag_filter_info(dev);
11051 }
11052 }
11053
11054 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
11055 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
11056 dev->features = features;
11057 err |= vlan_get_rx_stag_filter_info(dev);
11058 } else {
11059 vlan_drop_rx_stag_filter_info(dev);
11060 }
11061 }
11062
11063 dev->features = features;
11064 }
11065
11066 return err < 0 ? 0 : 1;
11067 }
11068
11069 /**
11070 * netdev_update_features - recalculate device features
11071 * @dev: the device to check
11072 *
11073 * Recalculate dev->features set and send notifications if it
11074 * has changed. Should be called after driver or hardware dependent
11075 * conditions might have changed that influence the features.
11076 */
netdev_update_features(struct net_device * dev)11077 void netdev_update_features(struct net_device *dev)
11078 {
11079 if (__netdev_update_features(dev))
11080 netdev_features_change(dev);
11081 }
11082 EXPORT_SYMBOL(netdev_update_features);
11083
11084 /**
11085 * netdev_change_features - recalculate device features
11086 * @dev: the device to check
11087 *
11088 * Recalculate dev->features set and send notifications even
11089 * if they have not changed. Should be called instead of
11090 * netdev_update_features() if also dev->vlan_features might
11091 * have changed to allow the changes to be propagated to stacked
11092 * VLAN devices.
11093 */
netdev_change_features(struct net_device * dev)11094 void netdev_change_features(struct net_device *dev)
11095 {
11096 __netdev_update_features(dev);
11097 netdev_features_change(dev);
11098 }
11099 EXPORT_SYMBOL(netdev_change_features);
11100
11101 /**
11102 * netif_stacked_transfer_operstate - transfer operstate
11103 * @rootdev: the root or lower level device to transfer state from
11104 * @dev: the device to transfer operstate to
11105 *
11106 * Transfer operational state from root to device. This is normally
11107 * called when a stacking relationship exists between the root
11108 * device and the device(a leaf device).
11109 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)11110 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
11111 struct net_device *dev)
11112 {
11113 if (rootdev->operstate == IF_OPER_DORMANT)
11114 netif_dormant_on(dev);
11115 else
11116 netif_dormant_off(dev);
11117
11118 if (rootdev->operstate == IF_OPER_TESTING)
11119 netif_testing_on(dev);
11120 else
11121 netif_testing_off(dev);
11122
11123 if (netif_carrier_ok(rootdev))
11124 netif_carrier_on(dev);
11125 else
11126 netif_carrier_off(dev);
11127 }
11128 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
11129
netif_alloc_rx_queues(struct net_device * dev)11130 static int netif_alloc_rx_queues(struct net_device *dev)
11131 {
11132 unsigned int i, count = dev->num_rx_queues;
11133 struct netdev_rx_queue *rx;
11134 size_t sz = count * sizeof(*rx);
11135 int err = 0;
11136
11137 BUG_ON(count < 1);
11138
11139 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11140 if (!rx)
11141 return -ENOMEM;
11142
11143 dev->_rx = rx;
11144
11145 for (i = 0; i < count; i++) {
11146 rx[i].dev = dev;
11147
11148 /* XDP RX-queue setup */
11149 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
11150 if (err < 0)
11151 goto err_rxq_info;
11152 }
11153 return 0;
11154
11155 err_rxq_info:
11156 /* Rollback successful reg's and free other resources */
11157 while (i--)
11158 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
11159 kvfree(dev->_rx);
11160 dev->_rx = NULL;
11161 return err;
11162 }
11163
netif_free_rx_queues(struct net_device * dev)11164 static void netif_free_rx_queues(struct net_device *dev)
11165 {
11166 unsigned int i, count = dev->num_rx_queues;
11167
11168 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
11169 if (!dev->_rx)
11170 return;
11171
11172 for (i = 0; i < count; i++)
11173 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
11174
11175 kvfree(dev->_rx);
11176 }
11177
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)11178 static void netdev_init_one_queue(struct net_device *dev,
11179 struct netdev_queue *queue, void *_unused)
11180 {
11181 /* Initialize queue lock */
11182 spin_lock_init(&queue->_xmit_lock);
11183 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
11184 queue->xmit_lock_owner = -1;
11185 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
11186 queue->dev = dev;
11187 #ifdef CONFIG_BQL
11188 dql_init(&queue->dql, HZ);
11189 #endif
11190 }
11191
netif_free_tx_queues(struct net_device * dev)11192 static void netif_free_tx_queues(struct net_device *dev)
11193 {
11194 kvfree(dev->_tx);
11195 }
11196
netif_alloc_netdev_queues(struct net_device * dev)11197 static int netif_alloc_netdev_queues(struct net_device *dev)
11198 {
11199 unsigned int count = dev->num_tx_queues;
11200 struct netdev_queue *tx;
11201 size_t sz = count * sizeof(*tx);
11202
11203 if (count < 1 || count > 0xffff)
11204 return -EINVAL;
11205
11206 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11207 if (!tx)
11208 return -ENOMEM;
11209
11210 dev->_tx = tx;
11211
11212 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
11213 spin_lock_init(&dev->tx_global_lock);
11214
11215 return 0;
11216 }
11217
netif_tx_stop_all_queues(struct net_device * dev)11218 void netif_tx_stop_all_queues(struct net_device *dev)
11219 {
11220 unsigned int i;
11221
11222 for (i = 0; i < dev->num_tx_queues; i++) {
11223 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
11224
11225 netif_tx_stop_queue(txq);
11226 }
11227 }
11228 EXPORT_SYMBOL(netif_tx_stop_all_queues);
11229
netdev_do_alloc_pcpu_stats(struct net_device * dev)11230 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
11231 {
11232 void __percpu *v;
11233
11234 /* Drivers implementing ndo_get_peer_dev must support tstat
11235 * accounting, so that skb_do_redirect() can bump the dev's
11236 * RX stats upon network namespace switch.
11237 */
11238 if (dev->netdev_ops->ndo_get_peer_dev &&
11239 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11240 return -EOPNOTSUPP;
11241
11242 switch (dev->pcpu_stat_type) {
11243 case NETDEV_PCPU_STAT_NONE:
11244 return 0;
11245 case NETDEV_PCPU_STAT_LSTATS:
11246 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11247 break;
11248 case NETDEV_PCPU_STAT_TSTATS:
11249 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11250 break;
11251 case NETDEV_PCPU_STAT_DSTATS:
11252 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11253 break;
11254 default:
11255 return -EINVAL;
11256 }
11257
11258 return v ? 0 : -ENOMEM;
11259 }
11260
netdev_do_free_pcpu_stats(struct net_device * dev)11261 static void netdev_do_free_pcpu_stats(struct net_device *dev)
11262 {
11263 switch (dev->pcpu_stat_type) {
11264 case NETDEV_PCPU_STAT_NONE:
11265 return;
11266 case NETDEV_PCPU_STAT_LSTATS:
11267 free_percpu(dev->lstats);
11268 break;
11269 case NETDEV_PCPU_STAT_TSTATS:
11270 free_percpu(dev->tstats);
11271 break;
11272 case NETDEV_PCPU_STAT_DSTATS:
11273 free_percpu(dev->dstats);
11274 break;
11275 }
11276 }
11277
netdev_free_phy_link_topology(struct net_device * dev)11278 static void netdev_free_phy_link_topology(struct net_device *dev)
11279 {
11280 struct phy_link_topology *topo = dev->link_topo;
11281
11282 if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11283 xa_destroy(&topo->phys);
11284 kfree(topo);
11285 dev->link_topo = NULL;
11286 }
11287 }
11288
11289 /**
11290 * register_netdevice() - register a network device
11291 * @dev: device to register
11292 *
11293 * Take a prepared network device structure and make it externally accessible.
11294 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11295 * Callers must hold the rtnl lock - you may want register_netdev()
11296 * instead of this.
11297 */
register_netdevice(struct net_device * dev)11298 int register_netdevice(struct net_device *dev)
11299 {
11300 int ret;
11301 struct net *net = dev_net(dev);
11302
11303 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11304 NETDEV_FEATURE_COUNT);
11305 BUG_ON(dev_boot_phase);
11306 ASSERT_RTNL();
11307
11308 might_sleep();
11309
11310 /* When net_device's are persistent, this will be fatal. */
11311 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11312 BUG_ON(!net);
11313
11314 ret = ethtool_check_ops(dev->ethtool_ops);
11315 if (ret)
11316 return ret;
11317
11318 /* rss ctx ID 0 is reserved for the default context, start from 1 */
11319 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11320 mutex_init(&dev->ethtool->rss_lock);
11321
11322 spin_lock_init(&dev->addr_list_lock);
11323 netdev_set_addr_lockdep_class(dev);
11324
11325 ret = dev_get_valid_name(net, dev, dev->name);
11326 if (ret < 0)
11327 goto out;
11328
11329 ret = -ENOMEM;
11330 dev->name_node = netdev_name_node_head_alloc(dev);
11331 if (!dev->name_node)
11332 goto out;
11333
11334 /* Init, if this function is available */
11335 if (dev->netdev_ops->ndo_init) {
11336 ret = dev->netdev_ops->ndo_init(dev);
11337 if (ret) {
11338 if (ret > 0)
11339 ret = -EIO;
11340 goto err_free_name;
11341 }
11342 }
11343
11344 if (((dev->hw_features | dev->features) &
11345 NETIF_F_HW_VLAN_CTAG_FILTER) &&
11346 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11347 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11348 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11349 ret = -EINVAL;
11350 goto err_uninit;
11351 }
11352
11353 ret = netdev_do_alloc_pcpu_stats(dev);
11354 if (ret)
11355 goto err_uninit;
11356
11357 ret = dev_index_reserve(net, dev->ifindex);
11358 if (ret < 0)
11359 goto err_free_pcpu;
11360 dev->ifindex = ret;
11361
11362 /* Transfer changeable features to wanted_features and enable
11363 * software offloads (GSO and GRO).
11364 */
11365 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11366 dev->features |= NETIF_F_SOFT_FEATURES;
11367
11368 if (dev->udp_tunnel_nic_info) {
11369 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11370 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11371 }
11372
11373 dev->wanted_features = dev->features & dev->hw_features;
11374
11375 if (!(dev->flags & IFF_LOOPBACK))
11376 dev->hw_features |= NETIF_F_NOCACHE_COPY;
11377
11378 /* If IPv4 TCP segmentation offload is supported we should also
11379 * allow the device to enable segmenting the frame with the option
11380 * of ignoring a static IP ID value. This doesn't enable the
11381 * feature itself but allows the user to enable it later.
11382 */
11383 if (dev->hw_features & NETIF_F_TSO)
11384 dev->hw_features |= NETIF_F_TSO_MANGLEID;
11385 if (dev->vlan_features & NETIF_F_TSO)
11386 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11387 if (dev->mpls_features & NETIF_F_TSO)
11388 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11389 if (dev->hw_enc_features & NETIF_F_TSO)
11390 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11391
11392 /* TSO_MANGLEID belongs in mangleid_features by definition */
11393 dev->mangleid_features |= NETIF_F_TSO_MANGLEID;
11394
11395 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11396 */
11397 dev->vlan_features |= NETIF_F_HIGHDMA;
11398
11399 /* Make NETIF_F_SG inheritable to tunnel devices.
11400 */
11401 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11402
11403 /* Make NETIF_F_SG inheritable to MPLS.
11404 */
11405 dev->mpls_features |= NETIF_F_SG;
11406
11407 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11408 ret = notifier_to_errno(ret);
11409 if (ret)
11410 goto err_ifindex_release;
11411
11412 ret = netdev_register_kobject(dev);
11413
11414 netdev_lock(dev);
11415 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11416 netdev_unlock(dev);
11417
11418 if (ret)
11419 goto err_uninit_notify;
11420
11421 netdev_lock_ops(dev);
11422 __netdev_update_features(dev);
11423 netdev_unlock_ops(dev);
11424
11425 /*
11426 * Default initial state at registry is that the
11427 * device is present.
11428 */
11429
11430 set_bit(__LINK_STATE_PRESENT, &dev->state);
11431
11432 linkwatch_init_dev(dev);
11433
11434 dev_init_scheduler(dev);
11435
11436 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11437 list_netdevice(dev);
11438
11439 add_device_randomness(dev->dev_addr, dev->addr_len);
11440
11441 /* If the device has permanent device address, driver should
11442 * set dev_addr and also addr_assign_type should be set to
11443 * NET_ADDR_PERM (default value).
11444 */
11445 if (dev->addr_assign_type == NET_ADDR_PERM)
11446 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11447
11448 /* Notify protocols, that a new device appeared. */
11449 netdev_lock_ops(dev);
11450 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11451 netdev_unlock_ops(dev);
11452 ret = notifier_to_errno(ret);
11453 if (ret) {
11454 /* Expect explicit free_netdev() on failure */
11455 dev->needs_free_netdev = false;
11456 unregister_netdevice_queue(dev, NULL);
11457 goto out;
11458 }
11459 /*
11460 * Prevent userspace races by waiting until the network
11461 * device is fully setup before sending notifications.
11462 */
11463 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11464 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11465
11466 out:
11467 return ret;
11468
11469 err_uninit_notify:
11470 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11471 err_ifindex_release:
11472 dev_index_release(net, dev->ifindex);
11473 err_free_pcpu:
11474 netdev_do_free_pcpu_stats(dev);
11475 err_uninit:
11476 if (dev->netdev_ops->ndo_uninit)
11477 dev->netdev_ops->ndo_uninit(dev);
11478 if (dev->priv_destructor)
11479 dev->priv_destructor(dev);
11480 err_free_name:
11481 netdev_name_node_free(dev->name_node);
11482 goto out;
11483 }
11484 EXPORT_SYMBOL(register_netdevice);
11485
11486 /* Initialize the core of a dummy net device.
11487 * The setup steps dummy netdevs need which normal netdevs get by going
11488 * through register_netdevice().
11489 */
init_dummy_netdev(struct net_device * dev)11490 static void init_dummy_netdev(struct net_device *dev)
11491 {
11492 /* make sure we BUG if trying to hit standard
11493 * register/unregister code path
11494 */
11495 dev->reg_state = NETREG_DUMMY;
11496
11497 /* a dummy interface is started by default */
11498 set_bit(__LINK_STATE_PRESENT, &dev->state);
11499 set_bit(__LINK_STATE_START, &dev->state);
11500
11501 /* Note : We dont allocate pcpu_refcnt for dummy devices,
11502 * because users of this 'device' dont need to change
11503 * its refcount.
11504 */
11505 }
11506
11507 /**
11508 * register_netdev - register a network device
11509 * @dev: device to register
11510 *
11511 * Take a completed network device structure and add it to the kernel
11512 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11513 * chain. 0 is returned on success. A negative errno code is returned
11514 * on a failure to set up the device, or if the name is a duplicate.
11515 *
11516 * This is a wrapper around register_netdevice that takes the rtnl semaphore
11517 * and expands the device name if you passed a format string to
11518 * alloc_netdev.
11519 */
register_netdev(struct net_device * dev)11520 int register_netdev(struct net_device *dev)
11521 {
11522 struct net *net = dev_net(dev);
11523 int err;
11524
11525 if (rtnl_net_lock_killable(net))
11526 return -EINTR;
11527
11528 err = register_netdevice(dev);
11529
11530 rtnl_net_unlock(net);
11531
11532 return err;
11533 }
11534 EXPORT_SYMBOL(register_netdev);
11535
netdev_refcnt_read(const struct net_device * dev)11536 int netdev_refcnt_read(const struct net_device *dev)
11537 {
11538 #ifdef CONFIG_PCPU_DEV_REFCNT
11539 int i, refcnt = 0;
11540
11541 for_each_possible_cpu(i)
11542 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11543 return refcnt;
11544 #else
11545 return refcount_read(&dev->dev_refcnt);
11546 #endif
11547 }
11548 EXPORT_SYMBOL(netdev_refcnt_read);
11549
11550 int netdev_unregister_timeout_secs __read_mostly = 10;
11551
11552 #define WAIT_REFS_MIN_MSECS 1
11553 #define WAIT_REFS_MAX_MSECS 250
11554 /**
11555 * netdev_wait_allrefs_any - wait until all references are gone.
11556 * @list: list of net_devices to wait on
11557 *
11558 * This is called when unregistering network devices.
11559 *
11560 * Any protocol or device that holds a reference should register
11561 * for netdevice notification, and cleanup and put back the
11562 * reference if they receive an UNREGISTER event.
11563 * We can get stuck here if buggy protocols don't correctly
11564 * call dev_put.
11565 */
netdev_wait_allrefs_any(struct list_head * list)11566 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11567 {
11568 unsigned long rebroadcast_time, warning_time;
11569 struct net_device *dev;
11570 int wait = 0;
11571
11572 rebroadcast_time = warning_time = jiffies;
11573
11574 list_for_each_entry(dev, list, todo_list)
11575 if (netdev_refcnt_read(dev) == 1)
11576 return dev;
11577
11578 while (true) {
11579 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11580 rtnl_lock();
11581
11582 /* Rebroadcast unregister notification */
11583 list_for_each_entry(dev, list, todo_list)
11584 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11585
11586 __rtnl_unlock();
11587 rcu_barrier();
11588 rtnl_lock();
11589
11590 list_for_each_entry(dev, list, todo_list)
11591 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11592 &dev->state)) {
11593 /* We must not have linkwatch events
11594 * pending on unregister. If this
11595 * happens, we simply run the queue
11596 * unscheduled, resulting in a noop
11597 * for this device.
11598 */
11599 linkwatch_run_queue();
11600 break;
11601 }
11602
11603 __rtnl_unlock();
11604
11605 rebroadcast_time = jiffies;
11606 }
11607
11608 rcu_barrier();
11609
11610 if (!wait) {
11611 wait = WAIT_REFS_MIN_MSECS;
11612 } else {
11613 msleep(wait);
11614 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11615 }
11616
11617 list_for_each_entry(dev, list, todo_list)
11618 if (netdev_refcnt_read(dev) == 1)
11619 return dev;
11620
11621 if (time_after(jiffies, warning_time +
11622 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11623 list_for_each_entry(dev, list, todo_list) {
11624 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11625 dev->name, netdev_refcnt_read(dev));
11626 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11627 }
11628
11629 warning_time = jiffies;
11630 }
11631 }
11632 }
11633
11634 /* The sequence is:
11635 *
11636 * rtnl_lock();
11637 * ...
11638 * register_netdevice(x1);
11639 * register_netdevice(x2);
11640 * ...
11641 * unregister_netdevice(y1);
11642 * unregister_netdevice(y2);
11643 * ...
11644 * rtnl_unlock();
11645 * free_netdev(y1);
11646 * free_netdev(y2);
11647 *
11648 * We are invoked by rtnl_unlock().
11649 * This allows us to deal with problems:
11650 * 1) We can delete sysfs objects which invoke hotplug
11651 * without deadlocking with linkwatch via keventd.
11652 * 2) Since we run with the RTNL semaphore not held, we can sleep
11653 * safely in order to wait for the netdev refcnt to drop to zero.
11654 *
11655 * We must not return until all unregister events added during
11656 * the interval the lock was held have been completed.
11657 */
netdev_run_todo(void)11658 void netdev_run_todo(void)
11659 {
11660 struct net_device *dev, *tmp;
11661 struct list_head list;
11662 int cnt;
11663 #ifdef CONFIG_LOCKDEP
11664 struct list_head unlink_list;
11665
11666 list_replace_init(&net_unlink_list, &unlink_list);
11667
11668 while (!list_empty(&unlink_list)) {
11669 dev = list_first_entry(&unlink_list, struct net_device,
11670 unlink_list);
11671 list_del_init(&dev->unlink_list);
11672 dev->nested_level = dev->lower_level - 1;
11673 }
11674 #endif
11675
11676 /* Snapshot list, allow later requests */
11677 list_replace_init(&net_todo_list, &list);
11678
11679 __rtnl_unlock();
11680
11681 /* Wait for rcu callbacks to finish before next phase */
11682 if (!list_empty(&list))
11683 rcu_barrier();
11684
11685 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11686 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11687 netdev_WARN(dev, "run_todo but not unregistering\n");
11688 list_del(&dev->todo_list);
11689 continue;
11690 }
11691
11692 netdev_lock(dev);
11693 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11694 netdev_unlock(dev);
11695 linkwatch_sync_dev(dev);
11696 }
11697
11698 cnt = 0;
11699 while (!list_empty(&list)) {
11700 dev = netdev_wait_allrefs_any(&list);
11701 list_del(&dev->todo_list);
11702
11703 /* paranoia */
11704 BUG_ON(netdev_refcnt_read(dev) != 1);
11705 BUG_ON(!list_empty(&dev->ptype_all));
11706 BUG_ON(!list_empty(&dev->ptype_specific));
11707 WARN_ON(rcu_access_pointer(dev->ip_ptr));
11708 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11709
11710 netdev_do_free_pcpu_stats(dev);
11711 if (dev->priv_destructor)
11712 dev->priv_destructor(dev);
11713 if (dev->needs_free_netdev)
11714 free_netdev(dev);
11715
11716 cnt++;
11717
11718 /* Free network device */
11719 kobject_put(&dev->dev.kobj);
11720 }
11721 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11722 wake_up(&netdev_unregistering_wq);
11723 }
11724
11725 /* Collate per-cpu network dstats statistics
11726 *
11727 * Read per-cpu network statistics from dev->dstats and populate the related
11728 * fields in @s.
11729 */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)11730 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11731 const struct pcpu_dstats __percpu *dstats)
11732 {
11733 int cpu;
11734
11735 for_each_possible_cpu(cpu) {
11736 u64 rx_packets, rx_bytes, rx_drops;
11737 u64 tx_packets, tx_bytes, tx_drops;
11738 const struct pcpu_dstats *stats;
11739 unsigned int start;
11740
11741 stats = per_cpu_ptr(dstats, cpu);
11742 do {
11743 start = u64_stats_fetch_begin(&stats->syncp);
11744 rx_packets = u64_stats_read(&stats->rx_packets);
11745 rx_bytes = u64_stats_read(&stats->rx_bytes);
11746 rx_drops = u64_stats_read(&stats->rx_drops);
11747 tx_packets = u64_stats_read(&stats->tx_packets);
11748 tx_bytes = u64_stats_read(&stats->tx_bytes);
11749 tx_drops = u64_stats_read(&stats->tx_drops);
11750 } while (u64_stats_fetch_retry(&stats->syncp, start));
11751
11752 s->rx_packets += rx_packets;
11753 s->rx_bytes += rx_bytes;
11754 s->rx_dropped += rx_drops;
11755 s->tx_packets += tx_packets;
11756 s->tx_bytes += tx_bytes;
11757 s->tx_dropped += tx_drops;
11758 }
11759 }
11760
11761 /* ndo_get_stats64 implementation for dtstats-based accounting.
11762 *
11763 * Populate @s from dev->stats and dev->dstats. This is used internally by the
11764 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11765 */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)11766 static void dev_get_dstats64(const struct net_device *dev,
11767 struct rtnl_link_stats64 *s)
11768 {
11769 netdev_stats_to_stats64(s, &dev->stats);
11770 dev_fetch_dstats(s, dev->dstats);
11771 }
11772
11773 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11774 * all the same fields in the same order as net_device_stats, with only
11775 * the type differing, but rtnl_link_stats64 may have additional fields
11776 * at the end for newer counters.
11777 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)11778 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11779 const struct net_device_stats *netdev_stats)
11780 {
11781 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11782 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11783 u64 *dst = (u64 *)stats64;
11784
11785 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11786 for (i = 0; i < n; i++)
11787 dst[i] = (unsigned long)atomic_long_read(&src[i]);
11788 /* zero out counters that only exist in rtnl_link_stats64 */
11789 memset((char *)stats64 + n * sizeof(u64), 0,
11790 sizeof(*stats64) - n * sizeof(u64));
11791 }
11792 EXPORT_SYMBOL(netdev_stats_to_stats64);
11793
netdev_core_stats_alloc(struct net_device * dev)11794 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11795 struct net_device *dev)
11796 {
11797 struct net_device_core_stats __percpu *p;
11798
11799 p = alloc_percpu_gfp(struct net_device_core_stats,
11800 GFP_ATOMIC | __GFP_NOWARN);
11801
11802 if (p && cmpxchg(&dev->core_stats, NULL, p))
11803 free_percpu(p);
11804
11805 /* This READ_ONCE() pairs with the cmpxchg() above */
11806 return READ_ONCE(dev->core_stats);
11807 }
11808
netdev_core_stats_inc(struct net_device * dev,u32 offset)11809 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11810 {
11811 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11812 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11813 unsigned long __percpu *field;
11814
11815 if (unlikely(!p)) {
11816 p = netdev_core_stats_alloc(dev);
11817 if (!p)
11818 return;
11819 }
11820
11821 field = (unsigned long __percpu *)((void __percpu *)p + offset);
11822 this_cpu_inc(*field);
11823 }
11824 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11825
11826 /**
11827 * dev_get_stats - get network device statistics
11828 * @dev: device to get statistics from
11829 * @storage: place to store stats
11830 *
11831 * Get network statistics from device. Return @storage.
11832 * The device driver may provide its own method by setting
11833 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11834 * otherwise the internal statistics structure is used.
11835 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11836 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11837 struct rtnl_link_stats64 *storage)
11838 {
11839 const struct net_device_ops *ops = dev->netdev_ops;
11840 const struct net_device_core_stats __percpu *p;
11841
11842 /*
11843 * IPv{4,6} and udp tunnels share common stat helpers and use
11844 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11845 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11846 */
11847 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11848 offsetof(struct pcpu_dstats, rx_bytes));
11849 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11850 offsetof(struct pcpu_dstats, rx_packets));
11851 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11852 offsetof(struct pcpu_dstats, tx_bytes));
11853 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11854 offsetof(struct pcpu_dstats, tx_packets));
11855
11856 if (ops->ndo_get_stats64) {
11857 memset(storage, 0, sizeof(*storage));
11858 ops->ndo_get_stats64(dev, storage);
11859 } else if (ops->ndo_get_stats) {
11860 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11861 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11862 dev_get_tstats64(dev, storage);
11863 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11864 dev_get_dstats64(dev, storage);
11865 } else {
11866 netdev_stats_to_stats64(storage, &dev->stats);
11867 }
11868
11869 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11870 p = READ_ONCE(dev->core_stats);
11871 if (p) {
11872 const struct net_device_core_stats *core_stats;
11873 int i;
11874
11875 for_each_possible_cpu(i) {
11876 core_stats = per_cpu_ptr(p, i);
11877 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11878 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11879 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11880 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11881 }
11882 }
11883 return storage;
11884 }
11885 EXPORT_SYMBOL(dev_get_stats);
11886
11887 /**
11888 * dev_fetch_sw_netstats - get per-cpu network device statistics
11889 * @s: place to store stats
11890 * @netstats: per-cpu network stats to read from
11891 *
11892 * Read per-cpu network statistics and populate the related fields in @s.
11893 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11894 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11895 const struct pcpu_sw_netstats __percpu *netstats)
11896 {
11897 int cpu;
11898
11899 for_each_possible_cpu(cpu) {
11900 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11901 const struct pcpu_sw_netstats *stats;
11902 unsigned int start;
11903
11904 stats = per_cpu_ptr(netstats, cpu);
11905 do {
11906 start = u64_stats_fetch_begin(&stats->syncp);
11907 rx_packets = u64_stats_read(&stats->rx_packets);
11908 rx_bytes = u64_stats_read(&stats->rx_bytes);
11909 tx_packets = u64_stats_read(&stats->tx_packets);
11910 tx_bytes = u64_stats_read(&stats->tx_bytes);
11911 } while (u64_stats_fetch_retry(&stats->syncp, start));
11912
11913 s->rx_packets += rx_packets;
11914 s->rx_bytes += rx_bytes;
11915 s->tx_packets += tx_packets;
11916 s->tx_bytes += tx_bytes;
11917 }
11918 }
11919 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11920
11921 /**
11922 * dev_get_tstats64 - ndo_get_stats64 implementation
11923 * @dev: device to get statistics from
11924 * @s: place to store stats
11925 *
11926 * Populate @s from dev->stats and dev->tstats. Can be used as
11927 * ndo_get_stats64() callback.
11928 */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11929 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11930 {
11931 netdev_stats_to_stats64(s, &dev->stats);
11932 dev_fetch_sw_netstats(s, dev->tstats);
11933 }
11934 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11935
dev_ingress_queue_create(struct net_device * dev)11936 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11937 {
11938 struct netdev_queue *queue = dev_ingress_queue(dev);
11939
11940 #ifdef CONFIG_NET_CLS_ACT
11941 if (queue)
11942 return queue;
11943 queue = kzalloc_obj(*queue, GFP_KERNEL);
11944 if (!queue)
11945 return NULL;
11946 netdev_init_one_queue(dev, queue, NULL);
11947 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11948 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11949 rcu_assign_pointer(dev->ingress_queue, queue);
11950 #endif
11951 return queue;
11952 }
11953
11954 static const struct ethtool_ops default_ethtool_ops;
11955
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11956 void netdev_set_default_ethtool_ops(struct net_device *dev,
11957 const struct ethtool_ops *ops)
11958 {
11959 if (dev->ethtool_ops == &default_ethtool_ops)
11960 dev->ethtool_ops = ops;
11961 }
11962 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11963
11964 /**
11965 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11966 * @dev: netdev to enable the IRQ coalescing on
11967 *
11968 * Sets a conservative default for SW IRQ coalescing. Users can use
11969 * sysfs attributes to override the default values.
11970 */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11971 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11972 {
11973 WARN_ON(dev->reg_state == NETREG_REGISTERED);
11974
11975 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11976 netdev_set_gro_flush_timeout(dev, 20000);
11977 netdev_set_defer_hard_irqs(dev, 1);
11978 }
11979 }
11980 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11981
11982 /**
11983 * alloc_netdev_mqs - allocate network device
11984 * @sizeof_priv: size of private data to allocate space for
11985 * @name: device name format string
11986 * @name_assign_type: origin of device name
11987 * @setup: callback to initialize device
11988 * @txqs: the number of TX subqueues to allocate
11989 * @rxqs: the number of RX subqueues to allocate
11990 *
11991 * Allocates a struct net_device with private data area for driver use
11992 * and performs basic initialization. Also allocates subqueue structs
11993 * for each queue on the device.
11994 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11995 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11996 unsigned char name_assign_type,
11997 void (*setup)(struct net_device *),
11998 unsigned int txqs, unsigned int rxqs)
11999 {
12000 struct net_device *dev;
12001 size_t napi_config_sz;
12002 unsigned int maxqs;
12003
12004 BUG_ON(strlen(name) >= sizeof(dev->name));
12005
12006 if (txqs < 1) {
12007 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
12008 return NULL;
12009 }
12010
12011 if (rxqs < 1) {
12012 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
12013 return NULL;
12014 }
12015
12016 maxqs = max(txqs, rxqs);
12017
12018 dev = kvzalloc_flex(*dev, priv, sizeof_priv,
12019 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
12020 if (!dev)
12021 return NULL;
12022
12023 dev->priv_len = sizeof_priv;
12024
12025 ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
12026 #ifdef CONFIG_PCPU_DEV_REFCNT
12027 dev->pcpu_refcnt = alloc_percpu(int);
12028 if (!dev->pcpu_refcnt)
12029 goto free_dev;
12030 __dev_hold(dev);
12031 #else
12032 refcount_set(&dev->dev_refcnt, 1);
12033 #endif
12034
12035 if (dev_addr_init(dev))
12036 goto free_pcpu;
12037
12038 dev_mc_init(dev);
12039 dev_uc_init(dev);
12040
12041 dev_net_set(dev, &init_net);
12042
12043 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
12044 dev->xdp_zc_max_segs = 1;
12045 dev->gso_max_segs = GSO_MAX_SEGS;
12046 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
12047 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
12048 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
12049 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
12050 dev->tso_max_segs = TSO_MAX_SEGS;
12051 dev->upper_level = 1;
12052 dev->lower_level = 1;
12053 #ifdef CONFIG_LOCKDEP
12054 dev->nested_level = 0;
12055 INIT_LIST_HEAD(&dev->unlink_list);
12056 #endif
12057
12058 INIT_LIST_HEAD(&dev->napi_list);
12059 INIT_LIST_HEAD(&dev->unreg_list);
12060 INIT_LIST_HEAD(&dev->close_list);
12061 INIT_LIST_HEAD(&dev->link_watch_list);
12062 INIT_LIST_HEAD(&dev->adj_list.upper);
12063 INIT_LIST_HEAD(&dev->adj_list.lower);
12064 INIT_LIST_HEAD(&dev->ptype_all);
12065 INIT_LIST_HEAD(&dev->ptype_specific);
12066 INIT_LIST_HEAD(&dev->net_notifier_list);
12067 #ifdef CONFIG_NET_SCHED
12068 hash_init(dev->qdisc_hash);
12069 #endif
12070
12071 mutex_init(&dev->lock);
12072
12073 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
12074 setup(dev);
12075
12076 if (!dev->tx_queue_len) {
12077 dev->priv_flags |= IFF_NO_QUEUE;
12078 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
12079 }
12080
12081 dev->num_tx_queues = txqs;
12082 dev->real_num_tx_queues = txqs;
12083 if (netif_alloc_netdev_queues(dev))
12084 goto free_all;
12085
12086 dev->num_rx_queues = rxqs;
12087 dev->real_num_rx_queues = rxqs;
12088 if (netif_alloc_rx_queues(dev))
12089 goto free_all;
12090 dev->ethtool = kzalloc_obj(*dev->ethtool, GFP_KERNEL_ACCOUNT);
12091 if (!dev->ethtool)
12092 goto free_all;
12093
12094 dev->cfg = kzalloc_obj(*dev->cfg, GFP_KERNEL_ACCOUNT);
12095 if (!dev->cfg)
12096 goto free_all;
12097 dev->cfg_pending = dev->cfg;
12098
12099 dev->num_napi_configs = maxqs;
12100 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
12101 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
12102 if (!dev->napi_config)
12103 goto free_all;
12104
12105 strscpy(dev->name, name);
12106 dev->name_assign_type = name_assign_type;
12107 dev->group = INIT_NETDEV_GROUP;
12108 if (!dev->ethtool_ops)
12109 dev->ethtool_ops = &default_ethtool_ops;
12110
12111 nf_hook_netdev_init(dev);
12112
12113 return dev;
12114
12115 free_all:
12116 free_netdev(dev);
12117 return NULL;
12118
12119 free_pcpu:
12120 #ifdef CONFIG_PCPU_DEV_REFCNT
12121 free_percpu(dev->pcpu_refcnt);
12122 free_dev:
12123 #endif
12124 kvfree(dev);
12125 return NULL;
12126 }
12127 EXPORT_SYMBOL(alloc_netdev_mqs);
12128
netdev_napi_exit(struct net_device * dev)12129 static void netdev_napi_exit(struct net_device *dev)
12130 {
12131 if (!list_empty(&dev->napi_list)) {
12132 struct napi_struct *p, *n;
12133
12134 netdev_lock(dev);
12135 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
12136 __netif_napi_del_locked(p);
12137 netdev_unlock(dev);
12138
12139 synchronize_net();
12140 }
12141
12142 kvfree(dev->napi_config);
12143 }
12144
12145 /**
12146 * free_netdev - free network device
12147 * @dev: device
12148 *
12149 * This function does the last stage of destroying an allocated device
12150 * interface. The reference to the device object is released. If this
12151 * is the last reference then it will be freed.Must be called in process
12152 * context.
12153 */
free_netdev(struct net_device * dev)12154 void free_netdev(struct net_device *dev)
12155 {
12156 might_sleep();
12157
12158 /* When called immediately after register_netdevice() failed the unwind
12159 * handling may still be dismantling the device. Handle that case by
12160 * deferring the free.
12161 */
12162 if (dev->reg_state == NETREG_UNREGISTERING) {
12163 ASSERT_RTNL();
12164 dev->needs_free_netdev = true;
12165 return;
12166 }
12167
12168 WARN_ON(dev->cfg != dev->cfg_pending);
12169 kfree(dev->cfg);
12170 kfree(dev->ethtool);
12171 netif_free_tx_queues(dev);
12172 netif_free_rx_queues(dev);
12173
12174 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
12175
12176 /* Flush device addresses */
12177 dev_addr_flush(dev);
12178
12179 netdev_napi_exit(dev);
12180
12181 netif_del_cpu_rmap(dev);
12182
12183 ref_tracker_dir_exit(&dev->refcnt_tracker);
12184 #ifdef CONFIG_PCPU_DEV_REFCNT
12185 free_percpu(dev->pcpu_refcnt);
12186 dev->pcpu_refcnt = NULL;
12187 #endif
12188 free_percpu(dev->core_stats);
12189 dev->core_stats = NULL;
12190 free_percpu(dev->xdp_bulkq);
12191 dev->xdp_bulkq = NULL;
12192
12193 netdev_free_phy_link_topology(dev);
12194
12195 mutex_destroy(&dev->lock);
12196
12197 /* Compatibility with error handling in drivers */
12198 if (dev->reg_state == NETREG_UNINITIALIZED ||
12199 dev->reg_state == NETREG_DUMMY) {
12200 kvfree(dev);
12201 return;
12202 }
12203
12204 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
12205 WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
12206
12207 /* will free via device release */
12208 put_device(&dev->dev);
12209 }
12210 EXPORT_SYMBOL(free_netdev);
12211
12212 /**
12213 * alloc_netdev_dummy - Allocate and initialize a dummy net device.
12214 * @sizeof_priv: size of private data to allocate space for
12215 *
12216 * Return: the allocated net_device on success, NULL otherwise
12217 */
alloc_netdev_dummy(int sizeof_priv)12218 struct net_device *alloc_netdev_dummy(int sizeof_priv)
12219 {
12220 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
12221 init_dummy_netdev);
12222 }
12223 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
12224
12225 /**
12226 * synchronize_net - Synchronize with packet receive processing
12227 *
12228 * Wait for packets currently being received to be done.
12229 * Does not block later packets from starting.
12230 */
synchronize_net(void)12231 void synchronize_net(void)
12232 {
12233 might_sleep();
12234 if (from_cleanup_net() || rtnl_is_locked())
12235 synchronize_rcu_expedited();
12236 else
12237 synchronize_rcu();
12238 }
12239 EXPORT_SYMBOL(synchronize_net);
12240
netdev_rss_contexts_free(struct net_device * dev)12241 static void netdev_rss_contexts_free(struct net_device *dev)
12242 {
12243 struct ethtool_rxfh_context *ctx;
12244 unsigned long context;
12245
12246 mutex_lock(&dev->ethtool->rss_lock);
12247 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12248 xa_erase(&dev->ethtool->rss_ctx, context);
12249 dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12250 kfree(ctx);
12251 }
12252 xa_destroy(&dev->ethtool->rss_ctx);
12253 mutex_unlock(&dev->ethtool->rss_lock);
12254 }
12255
12256 /**
12257 * unregister_netdevice_queue - remove device from the kernel
12258 * @dev: device
12259 * @head: list
12260 *
12261 * This function shuts down a device interface and removes it
12262 * from the kernel tables.
12263 * If head not NULL, device is queued to be unregistered later.
12264 *
12265 * Callers must hold the rtnl semaphore. You may want
12266 * unregister_netdev() instead of this.
12267 */
12268
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)12269 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12270 {
12271 ASSERT_RTNL();
12272
12273 if (head) {
12274 list_move_tail(&dev->unreg_list, head);
12275 } else {
12276 LIST_HEAD(single);
12277
12278 list_add(&dev->unreg_list, &single);
12279 unregister_netdevice_many(&single);
12280 }
12281 }
12282 EXPORT_SYMBOL(unregister_netdevice_queue);
12283
dev_memory_provider_uninstall(struct net_device * dev)12284 static void dev_memory_provider_uninstall(struct net_device *dev)
12285 {
12286 unsigned int i;
12287
12288 for (i = 0; i < dev->real_num_rx_queues; i++) {
12289 struct netdev_rx_queue *rxq = &dev->_rx[i];
12290 struct pp_memory_provider_params *p = &rxq->mp_params;
12291
12292 if (p->mp_ops && p->mp_ops->uninstall)
12293 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12294 }
12295 }
12296
12297 /* devices must be UP and netdev_lock()'d */
netif_close_many_and_unlock(struct list_head * close_head)12298 static void netif_close_many_and_unlock(struct list_head *close_head)
12299 {
12300 struct net_device *dev, *tmp;
12301
12302 netif_close_many(close_head, false);
12303
12304 /* ... now unlock them */
12305 list_for_each_entry_safe(dev, tmp, close_head, close_list) {
12306 netdev_unlock(dev);
12307 list_del_init(&dev->close_list);
12308 }
12309 }
12310
netif_close_many_and_unlock_cond(struct list_head * close_head)12311 static void netif_close_many_and_unlock_cond(struct list_head *close_head)
12312 {
12313 #ifdef CONFIG_LOCKDEP
12314 /* We can only track up to MAX_LOCK_DEPTH locks per task.
12315 *
12316 * Reserve half the available slots for additional locks possibly
12317 * taken by notifiers and (soft)irqs.
12318 */
12319 unsigned int limit = MAX_LOCK_DEPTH / 2;
12320
12321 if (lockdep_depth(current) > limit)
12322 netif_close_many_and_unlock(close_head);
12323 #endif
12324 }
12325
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)12326 void unregister_netdevice_many_notify(struct list_head *head,
12327 u32 portid, const struct nlmsghdr *nlh)
12328 {
12329 struct net_device *dev, *tmp;
12330 LIST_HEAD(close_head);
12331 int cnt = 0;
12332
12333 BUG_ON(dev_boot_phase);
12334 ASSERT_RTNL();
12335
12336 if (list_empty(head))
12337 return;
12338
12339 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12340 /* Some devices call without registering
12341 * for initialization unwind. Remove those
12342 * devices and proceed with the remaining.
12343 */
12344 if (dev->reg_state == NETREG_UNINITIALIZED) {
12345 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12346 dev->name, dev);
12347
12348 WARN_ON(1);
12349 list_del(&dev->unreg_list);
12350 continue;
12351 }
12352 dev->dismantle = true;
12353 BUG_ON(dev->reg_state != NETREG_REGISTERED);
12354 }
12355
12356 /* If device is running, close it first. Start with ops locked... */
12357 list_for_each_entry(dev, head, unreg_list) {
12358 if (!(dev->flags & IFF_UP))
12359 continue;
12360 if (netdev_need_ops_lock(dev)) {
12361 list_add_tail(&dev->close_list, &close_head);
12362 netdev_lock(dev);
12363 }
12364 netif_close_many_and_unlock_cond(&close_head);
12365 }
12366 netif_close_many_and_unlock(&close_head);
12367 /* ... now go over the rest. */
12368 list_for_each_entry(dev, head, unreg_list) {
12369 if (!netdev_need_ops_lock(dev))
12370 list_add_tail(&dev->close_list, &close_head);
12371 }
12372 netif_close_many(&close_head, true);
12373
12374 list_for_each_entry(dev, head, unreg_list) {
12375 /* And unlink it from device chain. */
12376 unlist_netdevice(dev);
12377 netdev_lock(dev);
12378 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12379 netdev_unlock(dev);
12380 }
12381 flush_all_backlogs();
12382
12383 synchronize_net();
12384
12385 list_for_each_entry(dev, head, unreg_list) {
12386 struct sk_buff *skb = NULL;
12387
12388 /* Shutdown queueing discipline. */
12389 netdev_lock_ops(dev);
12390 dev_shutdown(dev);
12391 dev_tcx_uninstall(dev);
12392 dev_xdp_uninstall(dev);
12393 dev_memory_provider_uninstall(dev);
12394 netdev_unlock_ops(dev);
12395 bpf_dev_bound_netdev_unregister(dev);
12396
12397 netdev_offload_xstats_disable_all(dev);
12398
12399 /* Notify protocols, that we are about to destroy
12400 * this device. They should clean all the things.
12401 */
12402 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12403
12404 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12405 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12406 GFP_KERNEL, NULL, 0,
12407 portid, nlh);
12408
12409 /*
12410 * Flush the unicast and multicast chains
12411 */
12412 dev_uc_flush(dev);
12413 dev_mc_flush(dev);
12414
12415 netdev_name_node_alt_flush(dev);
12416 netdev_name_node_free(dev->name_node);
12417
12418 netdev_rss_contexts_free(dev);
12419
12420 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12421
12422 if (dev->netdev_ops->ndo_uninit)
12423 dev->netdev_ops->ndo_uninit(dev);
12424
12425 mutex_destroy(&dev->ethtool->rss_lock);
12426
12427 net_shaper_flush_netdev(dev);
12428
12429 if (skb)
12430 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12431
12432 /* Notifier chain MUST detach us all upper devices. */
12433 WARN_ON(netdev_has_any_upper_dev(dev));
12434 WARN_ON(netdev_has_any_lower_dev(dev));
12435
12436 /* Remove entries from kobject tree */
12437 netdev_unregister_kobject(dev);
12438 #ifdef CONFIG_XPS
12439 /* Remove XPS queueing entries */
12440 netif_reset_xps_queues_gt(dev, 0);
12441 #endif
12442 }
12443
12444 synchronize_net();
12445
12446 list_for_each_entry(dev, head, unreg_list) {
12447 netdev_put(dev, &dev->dev_registered_tracker);
12448 net_set_todo(dev);
12449 cnt++;
12450 }
12451 atomic_add(cnt, &dev_unreg_count);
12452
12453 list_del(head);
12454 }
12455
12456 /**
12457 * unregister_netdevice_many - unregister many devices
12458 * @head: list of devices
12459 *
12460 * Note: As most callers use a stack allocated list_head,
12461 * we force a list_del() to make sure stack won't be corrupted later.
12462 */
unregister_netdevice_many(struct list_head * head)12463 void unregister_netdevice_many(struct list_head *head)
12464 {
12465 unregister_netdevice_many_notify(head, 0, NULL);
12466 }
12467 EXPORT_SYMBOL(unregister_netdevice_many);
12468
12469 /**
12470 * unregister_netdev - remove device from the kernel
12471 * @dev: device
12472 *
12473 * This function shuts down a device interface and removes it
12474 * from the kernel tables.
12475 *
12476 * This is just a wrapper for unregister_netdevice that takes
12477 * the rtnl semaphore. In general you want to use this and not
12478 * unregister_netdevice.
12479 */
unregister_netdev(struct net_device * dev)12480 void unregister_netdev(struct net_device *dev)
12481 {
12482 rtnl_net_dev_lock(dev);
12483 unregister_netdevice(dev);
12484 rtnl_net_dev_unlock(dev);
12485 }
12486 EXPORT_SYMBOL(unregister_netdev);
12487
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex,struct netlink_ext_ack * extack)12488 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12489 const char *pat, int new_ifindex,
12490 struct netlink_ext_ack *extack)
12491 {
12492 struct netdev_name_node *name_node;
12493 struct net *net_old = dev_net(dev);
12494 char new_name[IFNAMSIZ] = {};
12495 int err, new_nsid;
12496
12497 ASSERT_RTNL();
12498
12499 /* Don't allow namespace local devices to be moved. */
12500 err = -EINVAL;
12501 if (dev->netns_immutable) {
12502 NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12503 goto out;
12504 }
12505
12506 /* Ensure the device has been registered */
12507 if (dev->reg_state != NETREG_REGISTERED) {
12508 NL_SET_ERR_MSG(extack, "The interface isn't registered");
12509 goto out;
12510 }
12511
12512 /* Get out if there is nothing todo */
12513 err = 0;
12514 if (net_eq(net_old, net))
12515 goto out;
12516
12517 /* Pick the destination device name, and ensure
12518 * we can use it in the destination network namespace.
12519 */
12520 err = -EEXIST;
12521 if (netdev_name_in_use(net, dev->name)) {
12522 /* We get here if we can't use the current device name */
12523 if (!pat) {
12524 NL_SET_ERR_MSG(extack,
12525 "An interface with the same name exists in the target netns");
12526 goto out;
12527 }
12528 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12529 if (err < 0) {
12530 NL_SET_ERR_MSG_FMT(extack,
12531 "Unable to use '%s' for the new interface name in the target netns",
12532 pat);
12533 goto out;
12534 }
12535 }
12536 /* Check that none of the altnames conflicts. */
12537 err = -EEXIST;
12538 netdev_for_each_altname(dev, name_node) {
12539 if (netdev_name_in_use(net, name_node->name)) {
12540 NL_SET_ERR_MSG_FMT(extack,
12541 "An interface with the altname %s exists in the target netns",
12542 name_node->name);
12543 goto out;
12544 }
12545 }
12546
12547 /* Check that new_ifindex isn't used yet. */
12548 if (new_ifindex) {
12549 err = dev_index_reserve(net, new_ifindex);
12550 if (err < 0) {
12551 NL_SET_ERR_MSG_FMT(extack,
12552 "The ifindex %d is not available in the target netns",
12553 new_ifindex);
12554 goto out;
12555 }
12556 } else {
12557 /* If there is an ifindex conflict assign a new one */
12558 err = dev_index_reserve(net, dev->ifindex);
12559 if (err == -EBUSY)
12560 err = dev_index_reserve(net, 0);
12561 if (err < 0) {
12562 NL_SET_ERR_MSG(extack,
12563 "Unable to allocate a new ifindex in the target netns");
12564 goto out;
12565 }
12566 new_ifindex = err;
12567 }
12568
12569 /*
12570 * And now a mini version of register_netdevice unregister_netdevice.
12571 */
12572
12573 netdev_lock_ops(dev);
12574 /* If device is running close it first. */
12575 netif_close(dev);
12576 /* And unlink it from device chain */
12577 unlist_netdevice(dev);
12578
12579 if (!netdev_need_ops_lock(dev))
12580 netdev_lock(dev);
12581 dev->moving_ns = true;
12582 netdev_unlock(dev);
12583
12584 synchronize_net();
12585
12586 /* Shutdown queueing discipline. */
12587 netdev_lock_ops(dev);
12588 dev_shutdown(dev);
12589 netdev_unlock_ops(dev);
12590
12591 /* Notify protocols, that we are about to destroy
12592 * this device. They should clean all the things.
12593 *
12594 * Note that dev->reg_state stays at NETREG_REGISTERED.
12595 * This is wanted because this way 8021q and macvlan know
12596 * the device is just moving and can keep their slaves up.
12597 */
12598 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12599 rcu_barrier();
12600
12601 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12602
12603 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12604 new_ifindex);
12605
12606 /*
12607 * Flush the unicast and multicast chains
12608 */
12609 dev_uc_flush(dev);
12610 dev_mc_flush(dev);
12611
12612 /* Send a netdev-removed uevent to the old namespace */
12613 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12614 netdev_adjacent_del_links(dev);
12615
12616 /* Move per-net netdevice notifiers that are following the netdevice */
12617 move_netdevice_notifiers_dev_net(dev, net);
12618
12619 /* Actually switch the network namespace */
12620 netdev_lock(dev);
12621 dev_net_set(dev, net);
12622 netdev_unlock(dev);
12623 dev->ifindex = new_ifindex;
12624
12625 if (new_name[0]) {
12626 /* Rename the netdev to prepared name */
12627 write_seqlock_bh(&netdev_rename_lock);
12628 strscpy(dev->name, new_name, IFNAMSIZ);
12629 write_sequnlock_bh(&netdev_rename_lock);
12630 }
12631
12632 /* Fixup kobjects */
12633 dev_set_uevent_suppress(&dev->dev, 1);
12634 err = device_rename(&dev->dev, dev->name);
12635 dev_set_uevent_suppress(&dev->dev, 0);
12636 WARN_ON(err);
12637
12638 /* Send a netdev-add uevent to the new namespace */
12639 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12640 netdev_adjacent_add_links(dev);
12641
12642 /* Adapt owner in case owning user namespace of target network
12643 * namespace is different from the original one.
12644 */
12645 err = netdev_change_owner(dev, net_old, net);
12646 WARN_ON(err);
12647
12648 netdev_lock(dev);
12649 dev->moving_ns = false;
12650 if (!netdev_need_ops_lock(dev))
12651 netdev_unlock(dev);
12652
12653 /* Add the device back in the hashes */
12654 list_netdevice(dev);
12655 /* Notify protocols, that a new device appeared. */
12656 call_netdevice_notifiers(NETDEV_REGISTER, dev);
12657 netdev_unlock_ops(dev);
12658
12659 /*
12660 * Prevent userspace races by waiting until the network
12661 * device is fully setup before sending notifications.
12662 */
12663 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12664
12665 synchronize_net();
12666 err = 0;
12667 out:
12668 return err;
12669 }
12670
dev_cpu_dead(unsigned int oldcpu)12671 static int dev_cpu_dead(unsigned int oldcpu)
12672 {
12673 struct sk_buff **list_skb;
12674 struct sk_buff *skb;
12675 unsigned int cpu;
12676 struct softnet_data *sd, *oldsd, *remsd = NULL;
12677
12678 local_irq_disable();
12679 cpu = smp_processor_id();
12680 sd = &per_cpu(softnet_data, cpu);
12681 oldsd = &per_cpu(softnet_data, oldcpu);
12682
12683 /* Find end of our completion_queue. */
12684 list_skb = &sd->completion_queue;
12685 while (*list_skb)
12686 list_skb = &(*list_skb)->next;
12687 /* Append completion queue from offline CPU. */
12688 *list_skb = oldsd->completion_queue;
12689 oldsd->completion_queue = NULL;
12690
12691 /* Append output queue from offline CPU. */
12692 if (oldsd->output_queue) {
12693 *sd->output_queue_tailp = oldsd->output_queue;
12694 sd->output_queue_tailp = oldsd->output_queue_tailp;
12695 oldsd->output_queue = NULL;
12696 oldsd->output_queue_tailp = &oldsd->output_queue;
12697 }
12698 /* Append NAPI poll list from offline CPU, with one exception :
12699 * process_backlog() must be called by cpu owning percpu backlog.
12700 * We properly handle process_queue & input_pkt_queue later.
12701 */
12702 while (!list_empty(&oldsd->poll_list)) {
12703 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12704 struct napi_struct,
12705 poll_list);
12706
12707 list_del_init(&napi->poll_list);
12708 if (napi->poll == process_backlog)
12709 napi->state &= NAPIF_STATE_THREADED;
12710 else
12711 ____napi_schedule(sd, napi);
12712 }
12713
12714 raise_softirq_irqoff(NET_TX_SOFTIRQ);
12715 local_irq_enable();
12716
12717 if (!use_backlog_threads()) {
12718 #ifdef CONFIG_RPS
12719 remsd = oldsd->rps_ipi_list;
12720 oldsd->rps_ipi_list = NULL;
12721 #endif
12722 /* send out pending IPI's on offline CPU */
12723 net_rps_send_ipi(remsd);
12724 }
12725
12726 /* Process offline CPU's input_pkt_queue */
12727 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12728 netif_rx(skb);
12729 rps_input_queue_head_incr(oldsd);
12730 }
12731 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12732 netif_rx(skb);
12733 rps_input_queue_head_incr(oldsd);
12734 }
12735
12736 return 0;
12737 }
12738
12739 /**
12740 * netdev_increment_features - increment feature set by one
12741 * @all: current feature set
12742 * @one: new feature set
12743 * @mask: mask feature set
12744 *
12745 * Computes a new feature set after adding a device with feature set
12746 * @one to the master device with current feature set @all. Will not
12747 * enable anything that is off in @mask. Returns the new feature set.
12748 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)12749 netdev_features_t netdev_increment_features(netdev_features_t all,
12750 netdev_features_t one, netdev_features_t mask)
12751 {
12752 if (mask & NETIF_F_HW_CSUM)
12753 mask |= NETIF_F_CSUM_MASK;
12754 mask |= NETIF_F_VLAN_CHALLENGED;
12755
12756 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12757 all &= one | ~NETIF_F_ALL_FOR_ALL;
12758
12759 /* If one device supports hw checksumming, set for all. */
12760 if (all & NETIF_F_HW_CSUM)
12761 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12762
12763 return all;
12764 }
12765 EXPORT_SYMBOL(netdev_increment_features);
12766
12767 /**
12768 * netdev_compute_master_upper_features - compute feature from lowers
12769 * @dev: the upper device
12770 * @update_header: whether to update upper device's header_len/headroom/tailroom
12771 *
12772 * Recompute the upper device's feature based on all lower devices.
12773 */
netdev_compute_master_upper_features(struct net_device * dev,bool update_header)12774 void netdev_compute_master_upper_features(struct net_device *dev, bool update_header)
12775 {
12776 unsigned int dst_release_flag = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
12777 netdev_features_t gso_partial_features = MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES;
12778 netdev_features_t xfrm_features = MASTER_UPPER_DEV_XFRM_FEATURES;
12779 netdev_features_t mpls_features = MASTER_UPPER_DEV_MPLS_FEATURES;
12780 netdev_features_t vlan_features = MASTER_UPPER_DEV_VLAN_FEATURES;
12781 netdev_features_t enc_features = MASTER_UPPER_DEV_ENC_FEATURES;
12782 unsigned short max_header_len = ETH_HLEN;
12783 unsigned int tso_max_size = TSO_MAX_SIZE;
12784 unsigned short max_headroom = 0;
12785 unsigned short max_tailroom = 0;
12786 u16 tso_max_segs = TSO_MAX_SEGS;
12787 struct net_device *lower_dev;
12788 struct list_head *iter;
12789
12790 mpls_features = netdev_base_features(mpls_features);
12791 vlan_features = netdev_base_features(vlan_features);
12792 enc_features = netdev_base_features(enc_features);
12793
12794 netdev_for_each_lower_dev(dev, lower_dev, iter) {
12795 gso_partial_features = netdev_increment_features(gso_partial_features,
12796 lower_dev->gso_partial_features,
12797 MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES);
12798
12799 vlan_features = netdev_increment_features(vlan_features,
12800 lower_dev->vlan_features,
12801 MASTER_UPPER_DEV_VLAN_FEATURES);
12802
12803 enc_features = netdev_increment_features(enc_features,
12804 lower_dev->hw_enc_features,
12805 MASTER_UPPER_DEV_ENC_FEATURES);
12806
12807 if (IS_ENABLED(CONFIG_XFRM_OFFLOAD))
12808 xfrm_features = netdev_increment_features(xfrm_features,
12809 lower_dev->hw_enc_features,
12810 MASTER_UPPER_DEV_XFRM_FEATURES);
12811
12812 mpls_features = netdev_increment_features(mpls_features,
12813 lower_dev->mpls_features,
12814 MASTER_UPPER_DEV_MPLS_FEATURES);
12815
12816 dst_release_flag &= lower_dev->priv_flags;
12817
12818 if (update_header) {
12819 max_header_len = max(max_header_len, lower_dev->hard_header_len);
12820 max_headroom = max(max_headroom, lower_dev->needed_headroom);
12821 max_tailroom = max(max_tailroom, lower_dev->needed_tailroom);
12822 }
12823
12824 tso_max_size = min(tso_max_size, lower_dev->tso_max_size);
12825 tso_max_segs = min(tso_max_segs, lower_dev->tso_max_segs);
12826 }
12827
12828 dev->gso_partial_features = gso_partial_features;
12829 dev->vlan_features = vlan_features;
12830 dev->hw_enc_features = enc_features | NETIF_F_GSO_ENCAP_ALL |
12831 NETIF_F_HW_VLAN_CTAG_TX |
12832 NETIF_F_HW_VLAN_STAG_TX;
12833 if (IS_ENABLED(CONFIG_XFRM_OFFLOAD))
12834 dev->hw_enc_features |= xfrm_features;
12835 dev->mpls_features = mpls_features;
12836
12837 dev->priv_flags &= ~IFF_XMIT_DST_RELEASE;
12838 if ((dev->priv_flags & IFF_XMIT_DST_RELEASE_PERM) &&
12839 dst_release_flag == (IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM))
12840 dev->priv_flags |= IFF_XMIT_DST_RELEASE;
12841
12842 if (update_header) {
12843 dev->hard_header_len = max_header_len;
12844 dev->needed_headroom = max_headroom;
12845 dev->needed_tailroom = max_tailroom;
12846 }
12847
12848 netif_set_tso_max_segs(dev, tso_max_segs);
12849 netif_set_tso_max_size(dev, tso_max_size);
12850
12851 netdev_change_features(dev);
12852 }
12853 EXPORT_SYMBOL(netdev_compute_master_upper_features);
12854
netdev_create_hash(void)12855 static struct hlist_head * __net_init netdev_create_hash(void)
12856 {
12857 int i;
12858 struct hlist_head *hash;
12859
12860 hash = kmalloc_objs(*hash, NETDEV_HASHENTRIES, GFP_KERNEL);
12861 if (hash != NULL)
12862 for (i = 0; i < NETDEV_HASHENTRIES; i++)
12863 INIT_HLIST_HEAD(&hash[i]);
12864
12865 return hash;
12866 }
12867
12868 /* Initialize per network namespace state */
netdev_init(struct net * net)12869 static int __net_init netdev_init(struct net *net)
12870 {
12871 BUILD_BUG_ON(GRO_HASH_BUCKETS >
12872 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12873
12874 INIT_LIST_HEAD(&net->dev_base_head);
12875
12876 net->dev_name_head = netdev_create_hash();
12877 if (net->dev_name_head == NULL)
12878 goto err_name;
12879
12880 net->dev_index_head = netdev_create_hash();
12881 if (net->dev_index_head == NULL)
12882 goto err_idx;
12883
12884 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12885
12886 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12887
12888 return 0;
12889
12890 err_idx:
12891 kfree(net->dev_name_head);
12892 err_name:
12893 return -ENOMEM;
12894 }
12895
12896 /**
12897 * netdev_drivername - network driver for the device
12898 * @dev: network device
12899 *
12900 * Determine network driver for device.
12901 */
netdev_drivername(const struct net_device * dev)12902 const char *netdev_drivername(const struct net_device *dev)
12903 {
12904 const struct device_driver *driver;
12905 const struct device *parent;
12906 const char *empty = "";
12907
12908 parent = dev->dev.parent;
12909 if (!parent)
12910 return empty;
12911
12912 driver = parent->driver;
12913 if (driver && driver->name)
12914 return driver->name;
12915 return empty;
12916 }
12917
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)12918 static void __netdev_printk(const char *level, const struct net_device *dev,
12919 struct va_format *vaf)
12920 {
12921 if (dev && dev->dev.parent) {
12922 dev_printk_emit(level[1] - '0',
12923 dev->dev.parent,
12924 "%s %s %s%s: %pV",
12925 dev_driver_string(dev->dev.parent),
12926 dev_name(dev->dev.parent),
12927 netdev_name(dev), netdev_reg_state(dev),
12928 vaf);
12929 } else if (dev) {
12930 printk("%s%s%s: %pV",
12931 level, netdev_name(dev), netdev_reg_state(dev), vaf);
12932 } else {
12933 printk("%s(NULL net_device): %pV", level, vaf);
12934 }
12935 }
12936
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)12937 void netdev_printk(const char *level, const struct net_device *dev,
12938 const char *format, ...)
12939 {
12940 struct va_format vaf;
12941 va_list args;
12942
12943 va_start(args, format);
12944
12945 vaf.fmt = format;
12946 vaf.va = &args;
12947
12948 __netdev_printk(level, dev, &vaf);
12949
12950 va_end(args);
12951 }
12952 EXPORT_SYMBOL(netdev_printk);
12953
12954 #define define_netdev_printk_level(func, level) \
12955 void func(const struct net_device *dev, const char *fmt, ...) \
12956 { \
12957 struct va_format vaf; \
12958 va_list args; \
12959 \
12960 va_start(args, fmt); \
12961 \
12962 vaf.fmt = fmt; \
12963 vaf.va = &args; \
12964 \
12965 __netdev_printk(level, dev, &vaf); \
12966 \
12967 va_end(args); \
12968 } \
12969 EXPORT_SYMBOL(func);
12970
12971 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12972 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12973 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12974 define_netdev_printk_level(netdev_err, KERN_ERR);
12975 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12976 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12977 define_netdev_printk_level(netdev_info, KERN_INFO);
12978
netdev_exit(struct net * net)12979 static void __net_exit netdev_exit(struct net *net)
12980 {
12981 kfree(net->dev_name_head);
12982 kfree(net->dev_index_head);
12983 xa_destroy(&net->dev_by_index);
12984 if (net != &init_net)
12985 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12986 }
12987
12988 static struct pernet_operations __net_initdata netdev_net_ops = {
12989 .init = netdev_init,
12990 .exit = netdev_exit,
12991 };
12992
default_device_exit_net(struct net * net)12993 static void __net_exit default_device_exit_net(struct net *net)
12994 {
12995 struct netdev_name_node *name_node, *tmp;
12996 struct net_device *dev, *aux;
12997 /*
12998 * Push all migratable network devices back to the
12999 * initial network namespace
13000 */
13001 ASSERT_RTNL();
13002 for_each_netdev_safe(net, dev, aux) {
13003 int err;
13004 char fb_name[IFNAMSIZ];
13005
13006 /* Ignore unmoveable devices (i.e. loopback) */
13007 if (dev->netns_immutable)
13008 continue;
13009
13010 /* Leave virtual devices for the generic cleanup */
13011 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
13012 continue;
13013
13014 /* Push remaining network devices to init_net */
13015 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
13016 if (netdev_name_in_use(&init_net, fb_name))
13017 snprintf(fb_name, IFNAMSIZ, "dev%%d");
13018
13019 netdev_for_each_altname_safe(dev, name_node, tmp)
13020 if (netdev_name_in_use(&init_net, name_node->name))
13021 __netdev_name_node_alt_destroy(name_node);
13022
13023 err = dev_change_net_namespace(dev, &init_net, fb_name);
13024 if (err) {
13025 pr_emerg("%s: failed to move %s to init_net: %d\n",
13026 __func__, dev->name, err);
13027 BUG();
13028 }
13029 }
13030 }
13031
default_device_exit_batch(struct list_head * net_list)13032 static void __net_exit default_device_exit_batch(struct list_head *net_list)
13033 {
13034 /* At exit all network devices most be removed from a network
13035 * namespace. Do this in the reverse order of registration.
13036 * Do this across as many network namespaces as possible to
13037 * improve batching efficiency.
13038 */
13039 struct net_device *dev;
13040 struct net *net;
13041 LIST_HEAD(dev_kill_list);
13042
13043 rtnl_lock();
13044 list_for_each_entry(net, net_list, exit_list) {
13045 default_device_exit_net(net);
13046 cond_resched();
13047 }
13048
13049 list_for_each_entry(net, net_list, exit_list) {
13050 for_each_netdev_reverse(net, dev) {
13051 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
13052 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
13053 else
13054 unregister_netdevice_queue(dev, &dev_kill_list);
13055 }
13056 }
13057 unregister_netdevice_many(&dev_kill_list);
13058 rtnl_unlock();
13059 }
13060
13061 static struct pernet_operations __net_initdata default_device_ops = {
13062 .exit_batch = default_device_exit_batch,
13063 };
13064
net_dev_struct_check(void)13065 static void __init net_dev_struct_check(void)
13066 {
13067 /* TX read-mostly hotpath */
13068 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
13069 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
13070 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
13071 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
13072 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
13073 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
13074 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
13075 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
13076 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
13077 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
13078 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
13079 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
13080 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
13081 #ifdef CONFIG_XPS
13082 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
13083 #endif
13084 #ifdef CONFIG_NETFILTER_EGRESS
13085 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
13086 #endif
13087 #ifdef CONFIG_NET_XGRESS
13088 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
13089 #endif
13090 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
13091
13092 /* TXRX read-mostly hotpath */
13093 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
13094 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
13095 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
13096 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
13097 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
13098 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
13099 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
13100
13101 /* RX read-mostly hotpath */
13102 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
13103 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
13104 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
13105 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
13106 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
13107 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
13108 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
13109 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
13110 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
13111 #ifdef CONFIG_NETPOLL
13112 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
13113 #endif
13114 #ifdef CONFIG_NET_XGRESS
13115 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
13116 #endif
13117 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
13118 }
13119
13120 /*
13121 * Initialize the DEV module. At boot time this walks the device list and
13122 * unhooks any devices that fail to initialise (normally hardware not
13123 * present) and leaves us with a valid list of present and active devices.
13124 *
13125 */
13126
13127 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
13128 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
13129
net_page_pool_create(int cpuid)13130 static int net_page_pool_create(int cpuid)
13131 {
13132 #if IS_ENABLED(CONFIG_PAGE_POOL)
13133 struct page_pool_params page_pool_params = {
13134 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
13135 .flags = PP_FLAG_SYSTEM_POOL,
13136 .nid = cpu_to_mem(cpuid),
13137 };
13138 struct page_pool *pp_ptr;
13139 int err;
13140
13141 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
13142 if (IS_ERR(pp_ptr))
13143 return -ENOMEM;
13144
13145 err = xdp_reg_page_pool(pp_ptr);
13146 if (err) {
13147 page_pool_destroy(pp_ptr);
13148 return err;
13149 }
13150
13151 per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
13152 #endif
13153 return 0;
13154 }
13155
backlog_napi_should_run(unsigned int cpu)13156 static int backlog_napi_should_run(unsigned int cpu)
13157 {
13158 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13159 struct napi_struct *napi = &sd->backlog;
13160
13161 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
13162 }
13163
run_backlog_napi(unsigned int cpu)13164 static void run_backlog_napi(unsigned int cpu)
13165 {
13166 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13167
13168 napi_threaded_poll_loop(&sd->backlog, false);
13169 }
13170
backlog_napi_setup(unsigned int cpu)13171 static void backlog_napi_setup(unsigned int cpu)
13172 {
13173 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13174 struct napi_struct *napi = &sd->backlog;
13175
13176 napi->thread = this_cpu_read(backlog_napi);
13177 set_bit(NAPI_STATE_THREADED, &napi->state);
13178 }
13179
13180 static struct smp_hotplug_thread backlog_threads = {
13181 .store = &backlog_napi,
13182 .thread_should_run = backlog_napi_should_run,
13183 .thread_fn = run_backlog_napi,
13184 .thread_comm = "backlog_napi/%u",
13185 .setup = backlog_napi_setup,
13186 };
13187
13188 /*
13189 * This is called single threaded during boot, so no need
13190 * to take the rtnl semaphore.
13191 */
net_dev_init(void)13192 static int __init net_dev_init(void)
13193 {
13194 int i, rc = -ENOMEM;
13195
13196 BUG_ON(!dev_boot_phase);
13197
13198 net_dev_struct_check();
13199
13200 if (dev_proc_init())
13201 goto out;
13202
13203 if (netdev_kobject_init())
13204 goto out;
13205
13206 for (i = 0; i < PTYPE_HASH_SIZE; i++)
13207 INIT_LIST_HEAD(&ptype_base[i]);
13208
13209 if (register_pernet_subsys(&netdev_net_ops))
13210 goto out;
13211
13212 /*
13213 * Initialise the packet receive queues.
13214 */
13215
13216 flush_backlogs_fallback = flush_backlogs_alloc();
13217 if (!flush_backlogs_fallback)
13218 goto out;
13219
13220 for_each_possible_cpu(i) {
13221 struct softnet_data *sd = &per_cpu(softnet_data, i);
13222
13223 skb_queue_head_init(&sd->input_pkt_queue);
13224 skb_queue_head_init(&sd->process_queue);
13225 #ifdef CONFIG_XFRM_OFFLOAD
13226 skb_queue_head_init(&sd->xfrm_backlog);
13227 #endif
13228 INIT_LIST_HEAD(&sd->poll_list);
13229 sd->output_queue_tailp = &sd->output_queue;
13230 #ifdef CONFIG_RPS
13231 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
13232 sd->cpu = i;
13233 #endif
13234 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
13235
13236 gro_init(&sd->backlog.gro);
13237 sd->backlog.poll = process_backlog;
13238 sd->backlog.weight = weight_p;
13239 INIT_LIST_HEAD(&sd->backlog.poll_list);
13240
13241 if (net_page_pool_create(i))
13242 goto out;
13243 }
13244 net_hotdata.skb_defer_nodes =
13245 __alloc_percpu(sizeof(struct skb_defer_node) * nr_node_ids,
13246 __alignof__(struct skb_defer_node));
13247 if (!net_hotdata.skb_defer_nodes)
13248 goto out;
13249 if (use_backlog_threads())
13250 smpboot_register_percpu_thread(&backlog_threads);
13251
13252 dev_boot_phase = 0;
13253
13254 /* The loopback device is special if any other network devices
13255 * is present in a network namespace the loopback device must
13256 * be present. Since we now dynamically allocate and free the
13257 * loopback device ensure this invariant is maintained by
13258 * keeping the loopback device as the first device on the
13259 * list of network devices. Ensuring the loopback devices
13260 * is the first device that appears and the last network device
13261 * that disappears.
13262 */
13263 if (register_pernet_device(&loopback_net_ops))
13264 goto out;
13265
13266 if (register_pernet_device(&default_device_ops))
13267 goto out;
13268
13269 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
13270 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
13271
13272 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
13273 NULL, dev_cpu_dead);
13274 WARN_ON(rc < 0);
13275 rc = 0;
13276
13277 /* avoid static key IPIs to isolated CPUs */
13278 if (housekeeping_enabled(HK_TYPE_MISC))
13279 net_enable_timestamp();
13280 out:
13281 if (rc < 0) {
13282 for_each_possible_cpu(i) {
13283 struct page_pool *pp_ptr;
13284
13285 pp_ptr = per_cpu(system_page_pool.pool, i);
13286 if (!pp_ptr)
13287 continue;
13288
13289 xdp_unreg_page_pool(pp_ptr);
13290 page_pool_destroy(pp_ptr);
13291 per_cpu(system_page_pool.pool, i) = NULL;
13292 }
13293 }
13294
13295 return rc;
13296 }
13297
13298 subsys_initcall(net_dev_init);
13299