xref: /linux/net/core/dev.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166 
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170 
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 					   struct net_device *dev,
177 					   struct netlink_ext_ack *extack);
178 
179 static DEFINE_MUTEX(ifalias_mutex);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186 
dev_base_seq_inc(struct net * net)187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 	unsigned int val = net->dev_base_seq + 1;
190 
191 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193 
dev_name_hash(struct net * net,const char * name)194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
dev_index_hash(struct net * net,int ifindex)201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 #ifndef CONFIG_PREEMPT_RT
207 
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209 
setup_backlog_napi_threads(char * arg)210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 	static_branch_enable(&use_backlog_threads_key);
213 	return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216 
use_backlog_threads(void)217 static bool use_backlog_threads(void)
218 {
219 	return static_branch_unlikely(&use_backlog_threads_key);
220 }
221 
222 #else
223 
use_backlog_threads(void)224 static bool use_backlog_threads(void)
225 {
226 	return true;
227 }
228 
229 #endif
230 
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 					 unsigned long *flags)
233 {
234 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 	else
237 		local_irq_save(*flags);
238 }
239 
backlog_lock_irq_disable(struct softnet_data * sd)240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 		spin_lock_irq(&sd->input_pkt_queue.lock);
244 	else
245 		local_irq_disable();
246 }
247 
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 					      unsigned long *flags)
250 {
251 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 	else
254 		local_irq_restore(*flags);
255 }
256 
backlog_unlock_irq_enable(struct softnet_data * sd)257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 		spin_unlock_irq(&sd->input_pkt_queue.lock);
261 	else
262 		local_irq_enable();
263 }
264 
netdev_name_node_alloc(struct net_device * dev,const char * name)265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 						       const char *name)
267 {
268 	struct netdev_name_node *name_node;
269 
270 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 	if (!name_node)
272 		return NULL;
273 	INIT_HLIST_NODE(&name_node->hlist);
274 	name_node->dev = dev;
275 	name_node->name = name;
276 	return name_node;
277 }
278 
279 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 	struct netdev_name_node *name_node;
283 
284 	name_node = netdev_name_node_alloc(dev, dev->name);
285 	if (!name_node)
286 		return NULL;
287 	INIT_LIST_HEAD(&name_node->list);
288 	return name_node;
289 }
290 
netdev_name_node_free(struct netdev_name_node * name_node)291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 	kfree(name_node);
294 }
295 
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)296 static void netdev_name_node_add(struct net *net,
297 				 struct netdev_name_node *name_node)
298 {
299 	hlist_add_head_rcu(&name_node->hlist,
300 			   dev_name_hash(net, name_node->name));
301 }
302 
netdev_name_node_del(struct netdev_name_node * name_node)303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 	hlist_del_rcu(&name_node->hlist);
306 }
307 
netdev_name_node_lookup(struct net * net,const char * name)308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 							const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
netdev_name_node_lookup_rcu(struct net * net,const char * name)320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 							    const char *name)
322 {
323 	struct hlist_head *head = dev_name_hash(net, name);
324 	struct netdev_name_node *name_node;
325 
326 	hlist_for_each_entry_rcu(name_node, head, hlist)
327 		if (!strcmp(name_node->name, name))
328 			return name_node;
329 	return NULL;
330 }
331 
netdev_name_in_use(struct net * net,const char * name)332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 	return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337 
netdev_name_node_alt_create(struct net_device * dev,const char * name)338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 	struct netdev_name_node *name_node;
341 	struct net *net = dev_net(dev);
342 
343 	name_node = netdev_name_node_lookup(net, name);
344 	if (name_node)
345 		return -EEXIST;
346 	name_node = netdev_name_node_alloc(dev, name);
347 	if (!name_node)
348 		return -ENOMEM;
349 	netdev_name_node_add(net, name_node);
350 	/* The node that holds dev->name acts as a head of per-device list. */
351 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352 
353 	return 0;
354 }
355 
netdev_name_node_alt_free(struct rcu_head * head)356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 	struct netdev_name_node *name_node =
359 		container_of(head, struct netdev_name_node, rcu);
360 
361 	kfree(name_node->name);
362 	netdev_name_node_free(name_node);
363 }
364 
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 	netdev_name_node_del(name_node);
368 	list_del(&name_node->list);
369 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371 
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 	struct netdev_name_node *name_node;
375 	struct net *net = dev_net(dev);
376 
377 	name_node = netdev_name_node_lookup(net, name);
378 	if (!name_node)
379 		return -ENOENT;
380 	/* lookup might have found our primary name or a name belonging
381 	 * to another device.
382 	 */
383 	if (name_node == dev->name_node || name_node->dev != dev)
384 		return -EINVAL;
385 
386 	__netdev_name_node_alt_destroy(name_node);
387 	return 0;
388 }
389 
netdev_name_node_alt_flush(struct net_device * dev)390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 	struct netdev_name_node *name_node, *tmp;
393 
394 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 		list_del(&name_node->list);
396 		netdev_name_node_alt_free(&name_node->rcu);
397 	}
398 }
399 
400 /* Device list insertion */
list_netdevice(struct net_device * dev)401 static void list_netdevice(struct net_device *dev)
402 {
403 	struct netdev_name_node *name_node;
404 	struct net *net = dev_net(dev);
405 
406 	ASSERT_RTNL();
407 
408 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 	netdev_name_node_add(net, dev->name_node);
410 	hlist_add_head_rcu(&dev->index_hlist,
411 			   dev_index_hash(net, dev->ifindex));
412 
413 	netdev_for_each_altname(dev, name_node)
414 		netdev_name_node_add(net, name_node);
415 
416 	/* We reserved the ifindex, this can't fail */
417 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418 
419 	dev_base_seq_inc(net);
420 }
421 
422 /* Device list removal
423  * caller must respect a RCU grace period before freeing/reusing dev
424  */
unlist_netdevice(struct net_device * dev)425 static void unlist_netdevice(struct net_device *dev)
426 {
427 	struct netdev_name_node *name_node;
428 	struct net *net = dev_net(dev);
429 
430 	ASSERT_RTNL();
431 
432 	xa_erase(&net->dev_by_index, dev->ifindex);
433 
434 	netdev_for_each_altname(dev, name_node)
435 		netdev_name_node_del(name_node);
436 
437 	/* Unlink dev from the device chain */
438 	list_del_rcu(&dev->dev_list);
439 	netdev_name_node_del(dev->name_node);
440 	hlist_del_rcu(&dev->index_hlist);
441 
442 	dev_base_seq_inc(dev_net(dev));
443 }
444 
445 /*
446  *	Our notifier list
447  */
448 
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450 
451 /*
452  *	Device drivers call our routines to queue packets here. We empty the
453  *	queue in the local softnet handler.
454  */
455 
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460 
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462  * PP consumers must pay attention to run APIs in the appropriate context
463  * (e.g. NAPI context).
464  */
465 DEFINE_PER_CPU(struct page_pool *, system_page_pool);
466 
467 #ifdef CONFIG_LOCKDEP
468 /*
469  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
470  * according to dev->type
471  */
472 static const unsigned short netdev_lock_type[] = {
473 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
474 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
475 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
476 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
477 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
478 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
479 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
480 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
481 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
482 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
483 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
484 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
485 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
486 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
487 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
488 
489 static const char *const netdev_lock_name[] = {
490 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
491 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
492 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
493 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
494 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
495 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
496 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
497 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
498 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
499 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
500 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
501 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
502 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
503 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
504 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
505 
506 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
507 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
508 
netdev_lock_pos(unsigned short dev_type)509 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
510 {
511 	int i;
512 
513 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
514 		if (netdev_lock_type[i] == dev_type)
515 			return i;
516 	/* the last key is used by default */
517 	return ARRAY_SIZE(netdev_lock_type) - 1;
518 }
519 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)520 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
521 						 unsigned short dev_type)
522 {
523 	int i;
524 
525 	i = netdev_lock_pos(dev_type);
526 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
527 				   netdev_lock_name[i]);
528 }
529 
netdev_set_addr_lockdep_class(struct net_device * dev)530 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
531 {
532 	int i;
533 
534 	i = netdev_lock_pos(dev->type);
535 	lockdep_set_class_and_name(&dev->addr_list_lock,
536 				   &netdev_addr_lock_key[i],
537 				   netdev_lock_name[i]);
538 }
539 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)540 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
541 						 unsigned short dev_type)
542 {
543 }
544 
netdev_set_addr_lockdep_class(struct net_device * dev)545 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
546 {
547 }
548 #endif
549 
550 /*******************************************************************************
551  *
552  *		Protocol management and registration routines
553  *
554  *******************************************************************************/
555 
556 
557 /*
558  *	Add a protocol ID to the list. Now that the input handler is
559  *	smarter we can dispense with all the messy stuff that used to be
560  *	here.
561  *
562  *	BEWARE!!! Protocol handlers, mangling input packets,
563  *	MUST BE last in hash buckets and checking protocol handlers
564  *	MUST start from promiscuous ptype_all chain in net_bh.
565  *	It is true now, do not change it.
566  *	Explanation follows: if protocol handler, mangling packet, will
567  *	be the first on list, it is not able to sense, that packet
568  *	is cloned and should be copied-on-write, so that it will
569  *	change it and subsequent readers will get broken packet.
570  *							--ANK (980803)
571  */
572 
ptype_head(const struct packet_type * pt)573 static inline struct list_head *ptype_head(const struct packet_type *pt)
574 {
575 	if (pt->type == htons(ETH_P_ALL)) {
576 		if (!pt->af_packet_net && !pt->dev)
577 			return NULL;
578 
579 		return pt->dev ? &pt->dev->ptype_all :
580 				 &pt->af_packet_net->ptype_all;
581 	}
582 
583 	if (pt->dev)
584 		return &pt->dev->ptype_specific;
585 
586 	return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
587 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
588 }
589 
590 /**
591  *	dev_add_pack - add packet handler
592  *	@pt: packet type declaration
593  *
594  *	Add a protocol handler to the networking stack. The passed &packet_type
595  *	is linked into kernel lists and may not be freed until it has been
596  *	removed from the kernel lists.
597  *
598  *	This call does not sleep therefore it can not
599  *	guarantee all CPU's that are in middle of receiving packets
600  *	will see the new packet type (until the next received packet).
601  */
602 
dev_add_pack(struct packet_type * pt)603 void dev_add_pack(struct packet_type *pt)
604 {
605 	struct list_head *head = ptype_head(pt);
606 
607 	if (WARN_ON_ONCE(!head))
608 		return;
609 
610 	spin_lock(&ptype_lock);
611 	list_add_rcu(&pt->list, head);
612 	spin_unlock(&ptype_lock);
613 }
614 EXPORT_SYMBOL(dev_add_pack);
615 
616 /**
617  *	__dev_remove_pack	 - remove packet handler
618  *	@pt: packet type declaration
619  *
620  *	Remove a protocol handler that was previously added to the kernel
621  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
622  *	from the kernel lists and can be freed or reused once this function
623  *	returns.
624  *
625  *      The packet type might still be in use by receivers
626  *	and must not be freed until after all the CPU's have gone
627  *	through a quiescent state.
628  */
__dev_remove_pack(struct packet_type * pt)629 void __dev_remove_pack(struct packet_type *pt)
630 {
631 	struct list_head *head = ptype_head(pt);
632 	struct packet_type *pt1;
633 
634 	if (!head)
635 		return;
636 
637 	spin_lock(&ptype_lock);
638 
639 	list_for_each_entry(pt1, head, list) {
640 		if (pt == pt1) {
641 			list_del_rcu(&pt->list);
642 			goto out;
643 		}
644 	}
645 
646 	pr_warn("dev_remove_pack: %p not found\n", pt);
647 out:
648 	spin_unlock(&ptype_lock);
649 }
650 EXPORT_SYMBOL(__dev_remove_pack);
651 
652 /**
653  *	dev_remove_pack	 - remove packet handler
654  *	@pt: packet type declaration
655  *
656  *	Remove a protocol handler that was previously added to the kernel
657  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
658  *	from the kernel lists and can be freed or reused once this function
659  *	returns.
660  *
661  *	This call sleeps to guarantee that no CPU is looking at the packet
662  *	type after return.
663  */
dev_remove_pack(struct packet_type * pt)664 void dev_remove_pack(struct packet_type *pt)
665 {
666 	__dev_remove_pack(pt);
667 
668 	synchronize_net();
669 }
670 EXPORT_SYMBOL(dev_remove_pack);
671 
672 
673 /*******************************************************************************
674  *
675  *			    Device Interface Subroutines
676  *
677  *******************************************************************************/
678 
679 /**
680  *	dev_get_iflink	- get 'iflink' value of a interface
681  *	@dev: targeted interface
682  *
683  *	Indicates the ifindex the interface is linked to.
684  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686 
dev_get_iflink(const struct net_device * dev)687 int dev_get_iflink(const struct net_device *dev)
688 {
689 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 		return dev->netdev_ops->ndo_get_iflink(dev);
691 
692 	return READ_ONCE(dev->ifindex);
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695 
696 /**
697  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *	@dev: targeted interface
699  *	@skb: The packet.
700  *
701  *	For better visibility of tunnel traffic OVS needs to retrieve
702  *	egress tunnel information for a packet. Following API allows
703  *	user to get this info.
704  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 	struct ip_tunnel_info *info;
708 
709 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710 		return -EINVAL;
711 
712 	info = skb_tunnel_info_unclone(skb);
713 	if (!info)
714 		return -ENOMEM;
715 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 		return -EINVAL;
717 
718 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721 
dev_fwd_path(struct net_device_path_stack * stack)722 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
723 {
724 	int k = stack->num_paths++;
725 
726 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
727 		return NULL;
728 
729 	return &stack->path[k];
730 }
731 
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)732 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
733 			  struct net_device_path_stack *stack)
734 {
735 	const struct net_device *last_dev;
736 	struct net_device_path_ctx ctx = {
737 		.dev	= dev,
738 	};
739 	struct net_device_path *path;
740 	int ret = 0;
741 
742 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
743 	stack->num_paths = 0;
744 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
745 		last_dev = ctx.dev;
746 		path = dev_fwd_path(stack);
747 		if (!path)
748 			return -1;
749 
750 		memset(path, 0, sizeof(struct net_device_path));
751 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
752 		if (ret < 0)
753 			return -1;
754 
755 		if (WARN_ON_ONCE(last_dev == ctx.dev))
756 			return -1;
757 	}
758 
759 	if (!ctx.dev)
760 		return ret;
761 
762 	path = dev_fwd_path(stack);
763 	if (!path)
764 		return -1;
765 	path->type = DEV_PATH_ETHERNET;
766 	path->dev = ctx.dev;
767 
768 	return ret;
769 }
770 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
771 
772 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)773 static struct napi_struct *napi_by_id(unsigned int napi_id)
774 {
775 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
776 	struct napi_struct *napi;
777 
778 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
779 		if (napi->napi_id == napi_id)
780 			return napi;
781 
782 	return NULL;
783 }
784 
785 /* must be called under rcu_read_lock(), as we dont take a reference */
786 static struct napi_struct *
netdev_napi_by_id(struct net * net,unsigned int napi_id)787 netdev_napi_by_id(struct net *net, unsigned int napi_id)
788 {
789 	struct napi_struct *napi;
790 
791 	napi = napi_by_id(napi_id);
792 	if (!napi)
793 		return NULL;
794 
795 	if (WARN_ON_ONCE(!napi->dev))
796 		return NULL;
797 	if (!net_eq(net, dev_net(napi->dev)))
798 		return NULL;
799 
800 	return napi;
801 }
802 
803 /**
804  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
805  *	@net: the applicable net namespace
806  *	@napi_id: ID of a NAPI of a target device
807  *
808  *	Find a NAPI instance with @napi_id. Lock its device.
809  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
810  *	netdev_unlock() must be called to release it.
811  *
812  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
813  */
814 struct napi_struct *
netdev_napi_by_id_lock(struct net * net,unsigned int napi_id)815 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
816 {
817 	struct napi_struct *napi;
818 	struct net_device *dev;
819 
820 	rcu_read_lock();
821 	napi = netdev_napi_by_id(net, napi_id);
822 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
823 		rcu_read_unlock();
824 		return NULL;
825 	}
826 
827 	dev = napi->dev;
828 	dev_hold(dev);
829 	rcu_read_unlock();
830 
831 	dev = __netdev_put_lock(dev);
832 	if (!dev)
833 		return NULL;
834 
835 	rcu_read_lock();
836 	napi = netdev_napi_by_id(net, napi_id);
837 	if (napi && napi->dev != dev)
838 		napi = NULL;
839 	rcu_read_unlock();
840 
841 	if (!napi)
842 		netdev_unlock(dev);
843 	return napi;
844 }
845 
846 /**
847  *	__dev_get_by_name	- find a device by its name
848  *	@net: the applicable net namespace
849  *	@name: name to find
850  *
851  *	Find an interface by name. Must be called under RTNL semaphore.
852  *	If the name is found a pointer to the device is returned.
853  *	If the name is not found then %NULL is returned. The
854  *	reference counters are not incremented so the caller must be
855  *	careful with locks.
856  */
857 
__dev_get_by_name(struct net * net,const char * name)858 struct net_device *__dev_get_by_name(struct net *net, const char *name)
859 {
860 	struct netdev_name_node *node_name;
861 
862 	node_name = netdev_name_node_lookup(net, name);
863 	return node_name ? node_name->dev : NULL;
864 }
865 EXPORT_SYMBOL(__dev_get_by_name);
866 
867 /**
868  * dev_get_by_name_rcu	- find a device by its name
869  * @net: the applicable net namespace
870  * @name: name to find
871  *
872  * Find an interface by name.
873  * If the name is found a pointer to the device is returned.
874  * If the name is not found then %NULL is returned.
875  * The reference counters are not incremented so the caller must be
876  * careful with locks. The caller must hold RCU lock.
877  */
878 
dev_get_by_name_rcu(struct net * net,const char * name)879 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
880 {
881 	struct netdev_name_node *node_name;
882 
883 	node_name = netdev_name_node_lookup_rcu(net, name);
884 	return node_name ? node_name->dev : NULL;
885 }
886 EXPORT_SYMBOL(dev_get_by_name_rcu);
887 
888 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)889 struct net_device *dev_get_by_name(struct net *net, const char *name)
890 {
891 	struct net_device *dev;
892 
893 	rcu_read_lock();
894 	dev = dev_get_by_name_rcu(net, name);
895 	dev_hold(dev);
896 	rcu_read_unlock();
897 	return dev;
898 }
899 EXPORT_SYMBOL(dev_get_by_name);
900 
901 /**
902  *	netdev_get_by_name() - find a device by its name
903  *	@net: the applicable net namespace
904  *	@name: name to find
905  *	@tracker: tracking object for the acquired reference
906  *	@gfp: allocation flags for the tracker
907  *
908  *	Find an interface by name. This can be called from any
909  *	context and does its own locking. The returned handle has
910  *	the usage count incremented and the caller must use netdev_put() to
911  *	release it when it is no longer needed. %NULL is returned if no
912  *	matching device is found.
913  */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)914 struct net_device *netdev_get_by_name(struct net *net, const char *name,
915 				      netdevice_tracker *tracker, gfp_t gfp)
916 {
917 	struct net_device *dev;
918 
919 	dev = dev_get_by_name(net, name);
920 	if (dev)
921 		netdev_tracker_alloc(dev, tracker, gfp);
922 	return dev;
923 }
924 EXPORT_SYMBOL(netdev_get_by_name);
925 
926 /**
927  *	__dev_get_by_index - find a device by its ifindex
928  *	@net: the applicable net namespace
929  *	@ifindex: index of device
930  *
931  *	Search for an interface by index. Returns %NULL if the device
932  *	is not found or a pointer to the device. The device has not
933  *	had its reference counter increased so the caller must be careful
934  *	about locking. The caller must hold the RTNL semaphore.
935  */
936 
__dev_get_by_index(struct net * net,int ifindex)937 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
938 {
939 	struct net_device *dev;
940 	struct hlist_head *head = dev_index_hash(net, ifindex);
941 
942 	hlist_for_each_entry(dev, head, index_hlist)
943 		if (dev->ifindex == ifindex)
944 			return dev;
945 
946 	return NULL;
947 }
948 EXPORT_SYMBOL(__dev_get_by_index);
949 
950 /**
951  *	dev_get_by_index_rcu - find a device by its ifindex
952  *	@net: the applicable net namespace
953  *	@ifindex: index of device
954  *
955  *	Search for an interface by index. Returns %NULL if the device
956  *	is not found or a pointer to the device. The device has not
957  *	had its reference counter increased so the caller must be careful
958  *	about locking. The caller must hold RCU lock.
959  */
960 
dev_get_by_index_rcu(struct net * net,int ifindex)961 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
962 {
963 	struct net_device *dev;
964 	struct hlist_head *head = dev_index_hash(net, ifindex);
965 
966 	hlist_for_each_entry_rcu(dev, head, index_hlist)
967 		if (dev->ifindex == ifindex)
968 			return dev;
969 
970 	return NULL;
971 }
972 EXPORT_SYMBOL(dev_get_by_index_rcu);
973 
974 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)975 struct net_device *dev_get_by_index(struct net *net, int ifindex)
976 {
977 	struct net_device *dev;
978 
979 	rcu_read_lock();
980 	dev = dev_get_by_index_rcu(net, ifindex);
981 	dev_hold(dev);
982 	rcu_read_unlock();
983 	return dev;
984 }
985 EXPORT_SYMBOL(dev_get_by_index);
986 
987 /**
988  *	netdev_get_by_index() - find a device by its ifindex
989  *	@net: the applicable net namespace
990  *	@ifindex: index of device
991  *	@tracker: tracking object for the acquired reference
992  *	@gfp: allocation flags for the tracker
993  *
994  *	Search for an interface by index. Returns NULL if the device
995  *	is not found or a pointer to the device. The device returned has
996  *	had a reference added and the pointer is safe until the user calls
997  *	netdev_put() to indicate they have finished with it.
998  */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)999 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1000 				       netdevice_tracker *tracker, gfp_t gfp)
1001 {
1002 	struct net_device *dev;
1003 
1004 	dev = dev_get_by_index(net, ifindex);
1005 	if (dev)
1006 		netdev_tracker_alloc(dev, tracker, gfp);
1007 	return dev;
1008 }
1009 EXPORT_SYMBOL(netdev_get_by_index);
1010 
1011 /**
1012  *	dev_get_by_napi_id - find a device by napi_id
1013  *	@napi_id: ID of the NAPI struct
1014  *
1015  *	Search for an interface by NAPI ID. Returns %NULL if the device
1016  *	is not found or a pointer to the device. The device has not had
1017  *	its reference counter increased so the caller must be careful
1018  *	about locking. The caller must hold RCU lock.
1019  */
dev_get_by_napi_id(unsigned int napi_id)1020 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1021 {
1022 	struct napi_struct *napi;
1023 
1024 	WARN_ON_ONCE(!rcu_read_lock_held());
1025 
1026 	if (!napi_id_valid(napi_id))
1027 		return NULL;
1028 
1029 	napi = napi_by_id(napi_id);
1030 
1031 	return napi ? napi->dev : NULL;
1032 }
1033 
1034 /* Release the held reference on the net_device, and if the net_device
1035  * is still registered try to lock the instance lock. If device is being
1036  * unregistered NULL will be returned (but the reference has been released,
1037  * either way!)
1038  *
1039  * This helper is intended for locking net_device after it has been looked up
1040  * using a lockless lookup helper. Lock prevents the instance from going away.
1041  */
__netdev_put_lock(struct net_device * dev)1042 struct net_device *__netdev_put_lock(struct net_device *dev)
1043 {
1044 	netdev_lock(dev);
1045 	if (dev->reg_state > NETREG_REGISTERED) {
1046 		netdev_unlock(dev);
1047 		dev_put(dev);
1048 		return NULL;
1049 	}
1050 	dev_put(dev);
1051 	return dev;
1052 }
1053 
1054 /**
1055  *	netdev_get_by_index_lock() - find a device by its ifindex
1056  *	@net: the applicable net namespace
1057  *	@ifindex: index of device
1058  *
1059  *	Search for an interface by index. If a valid device
1060  *	with @ifindex is found it will be returned with netdev->lock held.
1061  *	netdev_unlock() must be called to release it.
1062  *
1063  *	Return: pointer to a device with lock held, NULL if not found.
1064  */
netdev_get_by_index_lock(struct net * net,int ifindex)1065 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1066 {
1067 	struct net_device *dev;
1068 
1069 	dev = dev_get_by_index(net, ifindex);
1070 	if (!dev)
1071 		return NULL;
1072 
1073 	return __netdev_put_lock(dev);
1074 }
1075 
1076 struct net_device *
netdev_xa_find_lock(struct net * net,struct net_device * dev,unsigned long * index)1077 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1078 		    unsigned long *index)
1079 {
1080 	if (dev)
1081 		netdev_unlock(dev);
1082 
1083 	do {
1084 		rcu_read_lock();
1085 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1086 		if (!dev) {
1087 			rcu_read_unlock();
1088 			return NULL;
1089 		}
1090 		dev_hold(dev);
1091 		rcu_read_unlock();
1092 
1093 		dev = __netdev_put_lock(dev);
1094 		if (dev)
1095 			return dev;
1096 
1097 		(*index)++;
1098 	} while (true);
1099 }
1100 
1101 static DEFINE_SEQLOCK(netdev_rename_lock);
1102 
netdev_copy_name(struct net_device * dev,char * name)1103 void netdev_copy_name(struct net_device *dev, char *name)
1104 {
1105 	unsigned int seq;
1106 
1107 	do {
1108 		seq = read_seqbegin(&netdev_rename_lock);
1109 		strscpy(name, dev->name, IFNAMSIZ);
1110 	} while (read_seqretry(&netdev_rename_lock, seq));
1111 }
1112 
1113 /**
1114  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1115  *	@net: network namespace
1116  *	@name: a pointer to the buffer where the name will be stored.
1117  *	@ifindex: the ifindex of the interface to get the name from.
1118  */
netdev_get_name(struct net * net,char * name,int ifindex)1119 int netdev_get_name(struct net *net, char *name, int ifindex)
1120 {
1121 	struct net_device *dev;
1122 	int ret;
1123 
1124 	rcu_read_lock();
1125 
1126 	dev = dev_get_by_index_rcu(net, ifindex);
1127 	if (!dev) {
1128 		ret = -ENODEV;
1129 		goto out;
1130 	}
1131 
1132 	netdev_copy_name(dev, name);
1133 
1134 	ret = 0;
1135 out:
1136 	rcu_read_unlock();
1137 	return ret;
1138 }
1139 
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1140 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1141 			 const char *ha)
1142 {
1143 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1144 }
1145 
1146 /**
1147  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1148  *	@net: the applicable net namespace
1149  *	@type: media type of device
1150  *	@ha: hardware address
1151  *
1152  *	Search for an interface by MAC address. Returns NULL if the device
1153  *	is not found or a pointer to the device.
1154  *	The caller must hold RCU.
1155  *	The returned device has not had its ref count increased
1156  *	and the caller must therefore be careful about locking
1157  *
1158  */
1159 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1160 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1161 				       const char *ha)
1162 {
1163 	struct net_device *dev;
1164 
1165 	for_each_netdev_rcu(net, dev)
1166 		if (dev_addr_cmp(dev, type, ha))
1167 			return dev;
1168 
1169 	return NULL;
1170 }
1171 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1172 
1173 /**
1174  * dev_getbyhwaddr() - find a device by its hardware address
1175  * @net: the applicable net namespace
1176  * @type: media type of device
1177  * @ha: hardware address
1178  *
1179  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1180  * rtnl_lock.
1181  *
1182  * Context: rtnl_lock() must be held.
1183  * Return: pointer to the net_device, or NULL if not found
1184  */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1185 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1186 				   const char *ha)
1187 {
1188 	struct net_device *dev;
1189 
1190 	ASSERT_RTNL();
1191 	for_each_netdev(net, dev)
1192 		if (dev_addr_cmp(dev, type, ha))
1193 			return dev;
1194 
1195 	return NULL;
1196 }
1197 EXPORT_SYMBOL(dev_getbyhwaddr);
1198 
dev_getfirstbyhwtype(struct net * net,unsigned short type)1199 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1200 {
1201 	struct net_device *dev, *ret = NULL;
1202 
1203 	rcu_read_lock();
1204 	for_each_netdev_rcu(net, dev)
1205 		if (dev->type == type) {
1206 			dev_hold(dev);
1207 			ret = dev;
1208 			break;
1209 		}
1210 	rcu_read_unlock();
1211 	return ret;
1212 }
1213 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1214 
1215 /**
1216  *	__dev_get_by_flags - find any device with given flags
1217  *	@net: the applicable net namespace
1218  *	@if_flags: IFF_* values
1219  *	@mask: bitmask of bits in if_flags to check
1220  *
1221  *	Search for any interface with the given flags. Returns NULL if a device
1222  *	is not found or a pointer to the device. Must be called inside
1223  *	rtnl_lock(), and result refcount is unchanged.
1224  */
1225 
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1226 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1227 				      unsigned short mask)
1228 {
1229 	struct net_device *dev, *ret;
1230 
1231 	ASSERT_RTNL();
1232 
1233 	ret = NULL;
1234 	for_each_netdev(net, dev) {
1235 		if (((dev->flags ^ if_flags) & mask) == 0) {
1236 			ret = dev;
1237 			break;
1238 		}
1239 	}
1240 	return ret;
1241 }
1242 EXPORT_SYMBOL(__dev_get_by_flags);
1243 
1244 /**
1245  *	dev_valid_name - check if name is okay for network device
1246  *	@name: name string
1247  *
1248  *	Network device names need to be valid file names to
1249  *	allow sysfs to work.  We also disallow any kind of
1250  *	whitespace.
1251  */
dev_valid_name(const char * name)1252 bool dev_valid_name(const char *name)
1253 {
1254 	if (*name == '\0')
1255 		return false;
1256 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1257 		return false;
1258 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1259 		return false;
1260 
1261 	while (*name) {
1262 		if (*name == '/' || *name == ':' || isspace(*name))
1263 			return false;
1264 		name++;
1265 	}
1266 	return true;
1267 }
1268 EXPORT_SYMBOL(dev_valid_name);
1269 
1270 /**
1271  *	__dev_alloc_name - allocate a name for a device
1272  *	@net: network namespace to allocate the device name in
1273  *	@name: name format string
1274  *	@res: result name string
1275  *
1276  *	Passed a format string - eg "lt%d" it will try and find a suitable
1277  *	id. It scans list of devices to build up a free map, then chooses
1278  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1279  *	while allocating the name and adding the device in order to avoid
1280  *	duplicates.
1281  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1282  *	Returns the number of the unit assigned or a negative errno code.
1283  */
1284 
__dev_alloc_name(struct net * net,const char * name,char * res)1285 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1286 {
1287 	int i = 0;
1288 	const char *p;
1289 	const int max_netdevices = 8*PAGE_SIZE;
1290 	unsigned long *inuse;
1291 	struct net_device *d;
1292 	char buf[IFNAMSIZ];
1293 
1294 	/* Verify the string as this thing may have come from the user.
1295 	 * There must be one "%d" and no other "%" characters.
1296 	 */
1297 	p = strchr(name, '%');
1298 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1299 		return -EINVAL;
1300 
1301 	/* Use one page as a bit array of possible slots */
1302 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1303 	if (!inuse)
1304 		return -ENOMEM;
1305 
1306 	for_each_netdev(net, d) {
1307 		struct netdev_name_node *name_node;
1308 
1309 		netdev_for_each_altname(d, name_node) {
1310 			if (!sscanf(name_node->name, name, &i))
1311 				continue;
1312 			if (i < 0 || i >= max_netdevices)
1313 				continue;
1314 
1315 			/* avoid cases where sscanf is not exact inverse of printf */
1316 			snprintf(buf, IFNAMSIZ, name, i);
1317 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1318 				__set_bit(i, inuse);
1319 		}
1320 		if (!sscanf(d->name, name, &i))
1321 			continue;
1322 		if (i < 0 || i >= max_netdevices)
1323 			continue;
1324 
1325 		/* avoid cases where sscanf is not exact inverse of printf */
1326 		snprintf(buf, IFNAMSIZ, name, i);
1327 		if (!strncmp(buf, d->name, IFNAMSIZ))
1328 			__set_bit(i, inuse);
1329 	}
1330 
1331 	i = find_first_zero_bit(inuse, max_netdevices);
1332 	bitmap_free(inuse);
1333 	if (i == max_netdevices)
1334 		return -ENFILE;
1335 
1336 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1337 	strscpy(buf, name, IFNAMSIZ);
1338 	snprintf(res, IFNAMSIZ, buf, i);
1339 	return i;
1340 }
1341 
1342 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1343 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1344 			       const char *want_name, char *out_name,
1345 			       int dup_errno)
1346 {
1347 	if (!dev_valid_name(want_name))
1348 		return -EINVAL;
1349 
1350 	if (strchr(want_name, '%'))
1351 		return __dev_alloc_name(net, want_name, out_name);
1352 
1353 	if (netdev_name_in_use(net, want_name))
1354 		return -dup_errno;
1355 	if (out_name != want_name)
1356 		strscpy(out_name, want_name, IFNAMSIZ);
1357 	return 0;
1358 }
1359 
1360 /**
1361  *	dev_alloc_name - allocate a name for a device
1362  *	@dev: device
1363  *	@name: name format string
1364  *
1365  *	Passed a format string - eg "lt%d" it will try and find a suitable
1366  *	id. It scans list of devices to build up a free map, then chooses
1367  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1368  *	while allocating the name and adding the device in order to avoid
1369  *	duplicates.
1370  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1371  *	Returns the number of the unit assigned or a negative errno code.
1372  */
1373 
dev_alloc_name(struct net_device * dev,const char * name)1374 int dev_alloc_name(struct net_device *dev, const char *name)
1375 {
1376 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1377 }
1378 EXPORT_SYMBOL(dev_alloc_name);
1379 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1380 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1381 			      const char *name)
1382 {
1383 	int ret;
1384 
1385 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1386 	return ret < 0 ? ret : 0;
1387 }
1388 
netif_change_name(struct net_device * dev,const char * newname)1389 int netif_change_name(struct net_device *dev, const char *newname)
1390 {
1391 	struct net *net = dev_net(dev);
1392 	unsigned char old_assign_type;
1393 	char oldname[IFNAMSIZ];
1394 	int err = 0;
1395 	int ret;
1396 
1397 	ASSERT_RTNL_NET(net);
1398 
1399 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1400 		return 0;
1401 
1402 	memcpy(oldname, dev->name, IFNAMSIZ);
1403 
1404 	write_seqlock_bh(&netdev_rename_lock);
1405 	err = dev_get_valid_name(net, dev, newname);
1406 	write_sequnlock_bh(&netdev_rename_lock);
1407 
1408 	if (err < 0)
1409 		return err;
1410 
1411 	if (oldname[0] && !strchr(oldname, '%'))
1412 		netdev_info(dev, "renamed from %s%s\n", oldname,
1413 			    dev->flags & IFF_UP ? " (while UP)" : "");
1414 
1415 	old_assign_type = dev->name_assign_type;
1416 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1417 
1418 rollback:
1419 	ret = device_rename(&dev->dev, dev->name);
1420 	if (ret) {
1421 		write_seqlock_bh(&netdev_rename_lock);
1422 		memcpy(dev->name, oldname, IFNAMSIZ);
1423 		write_sequnlock_bh(&netdev_rename_lock);
1424 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1425 		return ret;
1426 	}
1427 
1428 	netdev_adjacent_rename_links(dev, oldname);
1429 
1430 	netdev_name_node_del(dev->name_node);
1431 
1432 	synchronize_net();
1433 
1434 	netdev_name_node_add(net, dev->name_node);
1435 
1436 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1437 	ret = notifier_to_errno(ret);
1438 
1439 	if (ret) {
1440 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1441 		if (err >= 0) {
1442 			err = ret;
1443 			write_seqlock_bh(&netdev_rename_lock);
1444 			memcpy(dev->name, oldname, IFNAMSIZ);
1445 			write_sequnlock_bh(&netdev_rename_lock);
1446 			memcpy(oldname, newname, IFNAMSIZ);
1447 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1448 			old_assign_type = NET_NAME_RENAMED;
1449 			goto rollback;
1450 		} else {
1451 			netdev_err(dev, "name change rollback failed: %d\n",
1452 				   ret);
1453 		}
1454 	}
1455 
1456 	return err;
1457 }
1458 
netif_set_alias(struct net_device * dev,const char * alias,size_t len)1459 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1460 {
1461 	struct dev_ifalias *new_alias = NULL;
1462 
1463 	if (len >= IFALIASZ)
1464 		return -EINVAL;
1465 
1466 	if (len) {
1467 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1468 		if (!new_alias)
1469 			return -ENOMEM;
1470 
1471 		memcpy(new_alias->ifalias, alias, len);
1472 		new_alias->ifalias[len] = 0;
1473 	}
1474 
1475 	mutex_lock(&ifalias_mutex);
1476 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1477 					mutex_is_locked(&ifalias_mutex));
1478 	mutex_unlock(&ifalias_mutex);
1479 
1480 	if (new_alias)
1481 		kfree_rcu(new_alias, rcuhead);
1482 
1483 	return len;
1484 }
1485 
1486 /**
1487  *	dev_get_alias - get ifalias of a device
1488  *	@dev: device
1489  *	@name: buffer to store name of ifalias
1490  *	@len: size of buffer
1491  *
1492  *	get ifalias for a device.  Caller must make sure dev cannot go
1493  *	away,  e.g. rcu read lock or own a reference count to device.
1494  */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1495 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1496 {
1497 	const struct dev_ifalias *alias;
1498 	int ret = 0;
1499 
1500 	rcu_read_lock();
1501 	alias = rcu_dereference(dev->ifalias);
1502 	if (alias)
1503 		ret = snprintf(name, len, "%s", alias->ifalias);
1504 	rcu_read_unlock();
1505 
1506 	return ret;
1507 }
1508 
1509 /**
1510  *	netdev_features_change - device changes features
1511  *	@dev: device to cause notification
1512  *
1513  *	Called to indicate a device has changed features.
1514  */
netdev_features_change(struct net_device * dev)1515 void netdev_features_change(struct net_device *dev)
1516 {
1517 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1518 }
1519 EXPORT_SYMBOL(netdev_features_change);
1520 
1521 /**
1522  *	netdev_state_change - device changes state
1523  *	@dev: device to cause notification
1524  *
1525  *	Called to indicate a device has changed state. This function calls
1526  *	the notifier chains for netdev_chain and sends a NEWLINK message
1527  *	to the routing socket.
1528  */
netdev_state_change(struct net_device * dev)1529 void netdev_state_change(struct net_device *dev)
1530 {
1531 	if (dev->flags & IFF_UP) {
1532 		struct netdev_notifier_change_info change_info = {
1533 			.info.dev = dev,
1534 		};
1535 
1536 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1537 					      &change_info.info);
1538 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1539 	}
1540 }
1541 EXPORT_SYMBOL(netdev_state_change);
1542 
1543 /**
1544  * __netdev_notify_peers - notify network peers about existence of @dev,
1545  * to be called when rtnl lock is already held.
1546  * @dev: network device
1547  *
1548  * Generate traffic such that interested network peers are aware of
1549  * @dev, such as by generating a gratuitous ARP. This may be used when
1550  * a device wants to inform the rest of the network about some sort of
1551  * reconfiguration such as a failover event or virtual machine
1552  * migration.
1553  */
__netdev_notify_peers(struct net_device * dev)1554 void __netdev_notify_peers(struct net_device *dev)
1555 {
1556 	ASSERT_RTNL();
1557 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1558 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1559 }
1560 EXPORT_SYMBOL(__netdev_notify_peers);
1561 
1562 /**
1563  * netdev_notify_peers - notify network peers about existence of @dev
1564  * @dev: network device
1565  *
1566  * Generate traffic such that interested network peers are aware of
1567  * @dev, such as by generating a gratuitous ARP. This may be used when
1568  * a device wants to inform the rest of the network about some sort of
1569  * reconfiguration such as a failover event or virtual machine
1570  * migration.
1571  */
netdev_notify_peers(struct net_device * dev)1572 void netdev_notify_peers(struct net_device *dev)
1573 {
1574 	rtnl_lock();
1575 	__netdev_notify_peers(dev);
1576 	rtnl_unlock();
1577 }
1578 EXPORT_SYMBOL(netdev_notify_peers);
1579 
1580 static int napi_threaded_poll(void *data);
1581 
napi_kthread_create(struct napi_struct * n)1582 static int napi_kthread_create(struct napi_struct *n)
1583 {
1584 	int err = 0;
1585 
1586 	/* Create and wake up the kthread once to put it in
1587 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1588 	 * warning and work with loadavg.
1589 	 */
1590 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1591 				n->dev->name, n->napi_id);
1592 	if (IS_ERR(n->thread)) {
1593 		err = PTR_ERR(n->thread);
1594 		pr_err("kthread_run failed with err %d\n", err);
1595 		n->thread = NULL;
1596 	}
1597 
1598 	return err;
1599 }
1600 
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1601 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1602 {
1603 	const struct net_device_ops *ops = dev->netdev_ops;
1604 	int ret;
1605 
1606 	ASSERT_RTNL();
1607 	dev_addr_check(dev);
1608 
1609 	if (!netif_device_present(dev)) {
1610 		/* may be detached because parent is runtime-suspended */
1611 		if (dev->dev.parent)
1612 			pm_runtime_resume(dev->dev.parent);
1613 		if (!netif_device_present(dev))
1614 			return -ENODEV;
1615 	}
1616 
1617 	/* Block netpoll from trying to do any rx path servicing.
1618 	 * If we don't do this there is a chance ndo_poll_controller
1619 	 * or ndo_poll may be running while we open the device
1620 	 */
1621 	netpoll_poll_disable(dev);
1622 
1623 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1624 	ret = notifier_to_errno(ret);
1625 	if (ret)
1626 		return ret;
1627 
1628 	set_bit(__LINK_STATE_START, &dev->state);
1629 
1630 	netdev_ops_assert_locked(dev);
1631 
1632 	if (ops->ndo_validate_addr)
1633 		ret = ops->ndo_validate_addr(dev);
1634 
1635 	if (!ret && ops->ndo_open)
1636 		ret = ops->ndo_open(dev);
1637 
1638 	netpoll_poll_enable(dev);
1639 
1640 	if (ret)
1641 		clear_bit(__LINK_STATE_START, &dev->state);
1642 	else {
1643 		netif_set_up(dev, true);
1644 		dev_set_rx_mode(dev);
1645 		dev_activate(dev);
1646 		add_device_randomness(dev->dev_addr, dev->addr_len);
1647 	}
1648 
1649 	return ret;
1650 }
1651 
netif_open(struct net_device * dev,struct netlink_ext_ack * extack)1652 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1653 {
1654 	int ret;
1655 
1656 	if (dev->flags & IFF_UP)
1657 		return 0;
1658 
1659 	ret = __dev_open(dev, extack);
1660 	if (ret < 0)
1661 		return ret;
1662 
1663 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1664 	call_netdevice_notifiers(NETDEV_UP, dev);
1665 
1666 	return ret;
1667 }
1668 
__dev_close_many(struct list_head * head)1669 static void __dev_close_many(struct list_head *head)
1670 {
1671 	struct net_device *dev;
1672 
1673 	ASSERT_RTNL();
1674 	might_sleep();
1675 
1676 	list_for_each_entry(dev, head, close_list) {
1677 		/* Temporarily disable netpoll until the interface is down */
1678 		netpoll_poll_disable(dev);
1679 
1680 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1681 
1682 		clear_bit(__LINK_STATE_START, &dev->state);
1683 
1684 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1685 		 * can be even on different cpu. So just clear netif_running().
1686 		 *
1687 		 * dev->stop() will invoke napi_disable() on all of it's
1688 		 * napi_struct instances on this device.
1689 		 */
1690 		smp_mb__after_atomic(); /* Commit netif_running(). */
1691 	}
1692 
1693 	dev_deactivate_many(head);
1694 
1695 	list_for_each_entry(dev, head, close_list) {
1696 		const struct net_device_ops *ops = dev->netdev_ops;
1697 
1698 		/*
1699 		 *	Call the device specific close. This cannot fail.
1700 		 *	Only if device is UP
1701 		 *
1702 		 *	We allow it to be called even after a DETACH hot-plug
1703 		 *	event.
1704 		 */
1705 
1706 		netdev_ops_assert_locked(dev);
1707 
1708 		if (ops->ndo_stop)
1709 			ops->ndo_stop(dev);
1710 
1711 		netif_set_up(dev, false);
1712 		netpoll_poll_enable(dev);
1713 	}
1714 }
1715 
__dev_close(struct net_device * dev)1716 static void __dev_close(struct net_device *dev)
1717 {
1718 	LIST_HEAD(single);
1719 
1720 	list_add(&dev->close_list, &single);
1721 	__dev_close_many(&single);
1722 	list_del(&single);
1723 }
1724 
dev_close_many(struct list_head * head,bool unlink)1725 void dev_close_many(struct list_head *head, bool unlink)
1726 {
1727 	struct net_device *dev, *tmp;
1728 
1729 	/* Remove the devices that don't need to be closed */
1730 	list_for_each_entry_safe(dev, tmp, head, close_list)
1731 		if (!(dev->flags & IFF_UP))
1732 			list_del_init(&dev->close_list);
1733 
1734 	__dev_close_many(head);
1735 
1736 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1737 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1738 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1739 		if (unlink)
1740 			list_del_init(&dev->close_list);
1741 	}
1742 }
1743 EXPORT_SYMBOL(dev_close_many);
1744 
netif_close(struct net_device * dev)1745 void netif_close(struct net_device *dev)
1746 {
1747 	if (dev->flags & IFF_UP) {
1748 		LIST_HEAD(single);
1749 
1750 		list_add(&dev->close_list, &single);
1751 		dev_close_many(&single, true);
1752 		list_del(&single);
1753 	}
1754 }
1755 EXPORT_SYMBOL(netif_close);
1756 
netif_disable_lro(struct net_device * dev)1757 void netif_disable_lro(struct net_device *dev)
1758 {
1759 	struct net_device *lower_dev;
1760 	struct list_head *iter;
1761 
1762 	dev->wanted_features &= ~NETIF_F_LRO;
1763 	netdev_update_features(dev);
1764 
1765 	if (unlikely(dev->features & NETIF_F_LRO))
1766 		netdev_WARN(dev, "failed to disable LRO!\n");
1767 
1768 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1769 		netdev_lock_ops(lower_dev);
1770 		netif_disable_lro(lower_dev);
1771 		netdev_unlock_ops(lower_dev);
1772 	}
1773 }
1774 
1775 /**
1776  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1777  *	@dev: device
1778  *
1779  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1780  *	called under RTNL.  This is needed if Generic XDP is installed on
1781  *	the device.
1782  */
dev_disable_gro_hw(struct net_device * dev)1783 static void dev_disable_gro_hw(struct net_device *dev)
1784 {
1785 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1786 	netdev_update_features(dev);
1787 
1788 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1789 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1790 }
1791 
netdev_cmd_to_name(enum netdev_cmd cmd)1792 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1793 {
1794 #define N(val) 						\
1795 	case NETDEV_##val:				\
1796 		return "NETDEV_" __stringify(val);
1797 	switch (cmd) {
1798 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1799 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1800 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1801 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1802 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1803 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1804 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1805 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1806 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1807 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1808 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1809 	N(XDP_FEAT_CHANGE)
1810 	}
1811 #undef N
1812 	return "UNKNOWN_NETDEV_EVENT";
1813 }
1814 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1815 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1816 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1817 				   struct net_device *dev)
1818 {
1819 	struct netdev_notifier_info info = {
1820 		.dev = dev,
1821 	};
1822 
1823 	return nb->notifier_call(nb, val, &info);
1824 }
1825 
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1826 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1827 					     struct net_device *dev)
1828 {
1829 	int err;
1830 
1831 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1832 	err = notifier_to_errno(err);
1833 	if (err)
1834 		return err;
1835 
1836 	if (!(dev->flags & IFF_UP))
1837 		return 0;
1838 
1839 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1840 	return 0;
1841 }
1842 
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1843 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1844 						struct net_device *dev)
1845 {
1846 	if (dev->flags & IFF_UP) {
1847 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1848 					dev);
1849 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1850 	}
1851 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1852 }
1853 
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1854 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1855 						 struct net *net)
1856 {
1857 	struct net_device *dev;
1858 	int err;
1859 
1860 	for_each_netdev(net, dev) {
1861 		err = call_netdevice_register_notifiers(nb, dev);
1862 		if (err)
1863 			goto rollback;
1864 	}
1865 	return 0;
1866 
1867 rollback:
1868 	for_each_netdev_continue_reverse(net, dev)
1869 		call_netdevice_unregister_notifiers(nb, dev);
1870 	return err;
1871 }
1872 
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1873 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1874 						    struct net *net)
1875 {
1876 	struct net_device *dev;
1877 
1878 	for_each_netdev(net, dev)
1879 		call_netdevice_unregister_notifiers(nb, dev);
1880 }
1881 
1882 static int dev_boot_phase = 1;
1883 
1884 /**
1885  * register_netdevice_notifier - register a network notifier block
1886  * @nb: notifier
1887  *
1888  * Register a notifier to be called when network device events occur.
1889  * The notifier passed is linked into the kernel structures and must
1890  * not be reused until it has been unregistered. A negative errno code
1891  * is returned on a failure.
1892  *
1893  * When registered all registration and up events are replayed
1894  * to the new notifier to allow device to have a race free
1895  * view of the network device list.
1896  */
1897 
register_netdevice_notifier(struct notifier_block * nb)1898 int register_netdevice_notifier(struct notifier_block *nb)
1899 {
1900 	struct net *net;
1901 	int err;
1902 
1903 	/* Close race with setup_net() and cleanup_net() */
1904 	down_write(&pernet_ops_rwsem);
1905 
1906 	/* When RTNL is removed, we need protection for netdev_chain. */
1907 	rtnl_lock();
1908 
1909 	err = raw_notifier_chain_register(&netdev_chain, nb);
1910 	if (err)
1911 		goto unlock;
1912 	if (dev_boot_phase)
1913 		goto unlock;
1914 	for_each_net(net) {
1915 		__rtnl_net_lock(net);
1916 		err = call_netdevice_register_net_notifiers(nb, net);
1917 		__rtnl_net_unlock(net);
1918 		if (err)
1919 			goto rollback;
1920 	}
1921 
1922 unlock:
1923 	rtnl_unlock();
1924 	up_write(&pernet_ops_rwsem);
1925 	return err;
1926 
1927 rollback:
1928 	for_each_net_continue_reverse(net) {
1929 		__rtnl_net_lock(net);
1930 		call_netdevice_unregister_net_notifiers(nb, net);
1931 		__rtnl_net_unlock(net);
1932 	}
1933 
1934 	raw_notifier_chain_unregister(&netdev_chain, nb);
1935 	goto unlock;
1936 }
1937 EXPORT_SYMBOL(register_netdevice_notifier);
1938 
1939 /**
1940  * unregister_netdevice_notifier - unregister a network notifier block
1941  * @nb: notifier
1942  *
1943  * Unregister a notifier previously registered by
1944  * register_netdevice_notifier(). The notifier is unlinked into the
1945  * kernel structures and may then be reused. A negative errno code
1946  * is returned on a failure.
1947  *
1948  * After unregistering unregister and down device events are synthesized
1949  * for all devices on the device list to the removed notifier to remove
1950  * the need for special case cleanup code.
1951  */
1952 
unregister_netdevice_notifier(struct notifier_block * nb)1953 int unregister_netdevice_notifier(struct notifier_block *nb)
1954 {
1955 	struct net *net;
1956 	int err;
1957 
1958 	/* Close race with setup_net() and cleanup_net() */
1959 	down_write(&pernet_ops_rwsem);
1960 	rtnl_lock();
1961 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1962 	if (err)
1963 		goto unlock;
1964 
1965 	for_each_net(net) {
1966 		__rtnl_net_lock(net);
1967 		call_netdevice_unregister_net_notifiers(nb, net);
1968 		__rtnl_net_unlock(net);
1969 	}
1970 
1971 unlock:
1972 	rtnl_unlock();
1973 	up_write(&pernet_ops_rwsem);
1974 	return err;
1975 }
1976 EXPORT_SYMBOL(unregister_netdevice_notifier);
1977 
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1978 static int __register_netdevice_notifier_net(struct net *net,
1979 					     struct notifier_block *nb,
1980 					     bool ignore_call_fail)
1981 {
1982 	int err;
1983 
1984 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1985 	if (err)
1986 		return err;
1987 	if (dev_boot_phase)
1988 		return 0;
1989 
1990 	err = call_netdevice_register_net_notifiers(nb, net);
1991 	if (err && !ignore_call_fail)
1992 		goto chain_unregister;
1993 
1994 	return 0;
1995 
1996 chain_unregister:
1997 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1998 	return err;
1999 }
2000 
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2001 static int __unregister_netdevice_notifier_net(struct net *net,
2002 					       struct notifier_block *nb)
2003 {
2004 	int err;
2005 
2006 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2007 	if (err)
2008 		return err;
2009 
2010 	call_netdevice_unregister_net_notifiers(nb, net);
2011 	return 0;
2012 }
2013 
2014 /**
2015  * register_netdevice_notifier_net - register a per-netns network notifier block
2016  * @net: network namespace
2017  * @nb: notifier
2018  *
2019  * Register a notifier to be called when network device events occur.
2020  * The notifier passed is linked into the kernel structures and must
2021  * not be reused until it has been unregistered. A negative errno code
2022  * is returned on a failure.
2023  *
2024  * When registered all registration and up events are replayed
2025  * to the new notifier to allow device to have a race free
2026  * view of the network device list.
2027  */
2028 
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2029 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2030 {
2031 	int err;
2032 
2033 	rtnl_net_lock(net);
2034 	err = __register_netdevice_notifier_net(net, nb, false);
2035 	rtnl_net_unlock(net);
2036 
2037 	return err;
2038 }
2039 EXPORT_SYMBOL(register_netdevice_notifier_net);
2040 
2041 /**
2042  * unregister_netdevice_notifier_net - unregister a per-netns
2043  *                                     network notifier block
2044  * @net: network namespace
2045  * @nb: notifier
2046  *
2047  * Unregister a notifier previously registered by
2048  * register_netdevice_notifier_net(). The notifier is unlinked from the
2049  * kernel structures and may then be reused. A negative errno code
2050  * is returned on a failure.
2051  *
2052  * After unregistering unregister and down device events are synthesized
2053  * for all devices on the device list to the removed notifier to remove
2054  * the need for special case cleanup code.
2055  */
2056 
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2057 int unregister_netdevice_notifier_net(struct net *net,
2058 				      struct notifier_block *nb)
2059 {
2060 	int err;
2061 
2062 	rtnl_net_lock(net);
2063 	err = __unregister_netdevice_notifier_net(net, nb);
2064 	rtnl_net_unlock(net);
2065 
2066 	return err;
2067 }
2068 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2069 
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)2070 static void __move_netdevice_notifier_net(struct net *src_net,
2071 					  struct net *dst_net,
2072 					  struct notifier_block *nb)
2073 {
2074 	__unregister_netdevice_notifier_net(src_net, nb);
2075 	__register_netdevice_notifier_net(dst_net, nb, true);
2076 }
2077 
rtnl_net_dev_lock(struct net_device * dev)2078 static void rtnl_net_dev_lock(struct net_device *dev)
2079 {
2080 	bool again;
2081 
2082 	do {
2083 		struct net *net;
2084 
2085 		again = false;
2086 
2087 		/* netns might be being dismantled. */
2088 		rcu_read_lock();
2089 		net = dev_net_rcu(dev);
2090 		net_passive_inc(net);
2091 		rcu_read_unlock();
2092 
2093 		rtnl_net_lock(net);
2094 
2095 #ifdef CONFIG_NET_NS
2096 		/* dev might have been moved to another netns. */
2097 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2098 			rtnl_net_unlock(net);
2099 			net_passive_dec(net);
2100 			again = true;
2101 		}
2102 #endif
2103 	} while (again);
2104 }
2105 
rtnl_net_dev_unlock(struct net_device * dev)2106 static void rtnl_net_dev_unlock(struct net_device *dev)
2107 {
2108 	struct net *net = dev_net(dev);
2109 
2110 	rtnl_net_unlock(net);
2111 	net_passive_dec(net);
2112 }
2113 
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2114 int register_netdevice_notifier_dev_net(struct net_device *dev,
2115 					struct notifier_block *nb,
2116 					struct netdev_net_notifier *nn)
2117 {
2118 	int err;
2119 
2120 	rtnl_net_dev_lock(dev);
2121 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2122 	if (!err) {
2123 		nn->nb = nb;
2124 		list_add(&nn->list, &dev->net_notifier_list);
2125 	}
2126 	rtnl_net_dev_unlock(dev);
2127 
2128 	return err;
2129 }
2130 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2131 
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2132 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2133 					  struct notifier_block *nb,
2134 					  struct netdev_net_notifier *nn)
2135 {
2136 	int err;
2137 
2138 	rtnl_net_dev_lock(dev);
2139 	list_del(&nn->list);
2140 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2141 	rtnl_net_dev_unlock(dev);
2142 
2143 	return err;
2144 }
2145 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2146 
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2147 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2148 					     struct net *net)
2149 {
2150 	struct netdev_net_notifier *nn;
2151 
2152 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2153 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2154 }
2155 
2156 /**
2157  *	call_netdevice_notifiers_info - call all network notifier blocks
2158  *	@val: value passed unmodified to notifier function
2159  *	@info: notifier information data
2160  *
2161  *	Call all network notifier blocks.  Parameters and return value
2162  *	are as for raw_notifier_call_chain().
2163  */
2164 
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2165 int call_netdevice_notifiers_info(unsigned long val,
2166 				  struct netdev_notifier_info *info)
2167 {
2168 	struct net *net = dev_net(info->dev);
2169 	int ret;
2170 
2171 	ASSERT_RTNL();
2172 
2173 	/* Run per-netns notifier block chain first, then run the global one.
2174 	 * Hopefully, one day, the global one is going to be removed after
2175 	 * all notifier block registrators get converted to be per-netns.
2176 	 */
2177 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2178 	if (ret & NOTIFY_STOP_MASK)
2179 		return ret;
2180 	return raw_notifier_call_chain(&netdev_chain, val, info);
2181 }
2182 
2183 /**
2184  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2185  *	                                       for and rollback on error
2186  *	@val_up: value passed unmodified to notifier function
2187  *	@val_down: value passed unmodified to the notifier function when
2188  *	           recovering from an error on @val_up
2189  *	@info: notifier information data
2190  *
2191  *	Call all per-netns network notifier blocks, but not notifier blocks on
2192  *	the global notifier chain. Parameters and return value are as for
2193  *	raw_notifier_call_chain_robust().
2194  */
2195 
2196 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2197 call_netdevice_notifiers_info_robust(unsigned long val_up,
2198 				     unsigned long val_down,
2199 				     struct netdev_notifier_info *info)
2200 {
2201 	struct net *net = dev_net(info->dev);
2202 
2203 	ASSERT_RTNL();
2204 
2205 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2206 					      val_up, val_down, info);
2207 }
2208 
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2209 static int call_netdevice_notifiers_extack(unsigned long val,
2210 					   struct net_device *dev,
2211 					   struct netlink_ext_ack *extack)
2212 {
2213 	struct netdev_notifier_info info = {
2214 		.dev = dev,
2215 		.extack = extack,
2216 	};
2217 
2218 	return call_netdevice_notifiers_info(val, &info);
2219 }
2220 
2221 /**
2222  *	call_netdevice_notifiers - call all network notifier blocks
2223  *      @val: value passed unmodified to notifier function
2224  *      @dev: net_device pointer passed unmodified to notifier function
2225  *
2226  *	Call all network notifier blocks.  Parameters and return value
2227  *	are as for raw_notifier_call_chain().
2228  */
2229 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2230 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2231 {
2232 	return call_netdevice_notifiers_extack(val, dev, NULL);
2233 }
2234 EXPORT_SYMBOL(call_netdevice_notifiers);
2235 
2236 /**
2237  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2238  *	@val: value passed unmodified to notifier function
2239  *	@dev: net_device pointer passed unmodified to notifier function
2240  *	@arg: additional u32 argument passed to the notifier function
2241  *
2242  *	Call all network notifier blocks.  Parameters and return value
2243  *	are as for raw_notifier_call_chain().
2244  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2245 static int call_netdevice_notifiers_mtu(unsigned long val,
2246 					struct net_device *dev, u32 arg)
2247 {
2248 	struct netdev_notifier_info_ext info = {
2249 		.info.dev = dev,
2250 		.ext.mtu = arg,
2251 	};
2252 
2253 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2254 
2255 	return call_netdevice_notifiers_info(val, &info.info);
2256 }
2257 
2258 #ifdef CONFIG_NET_INGRESS
2259 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2260 
net_inc_ingress_queue(void)2261 void net_inc_ingress_queue(void)
2262 {
2263 	static_branch_inc(&ingress_needed_key);
2264 }
2265 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2266 
net_dec_ingress_queue(void)2267 void net_dec_ingress_queue(void)
2268 {
2269 	static_branch_dec(&ingress_needed_key);
2270 }
2271 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2272 #endif
2273 
2274 #ifdef CONFIG_NET_EGRESS
2275 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2276 
net_inc_egress_queue(void)2277 void net_inc_egress_queue(void)
2278 {
2279 	static_branch_inc(&egress_needed_key);
2280 }
2281 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2282 
net_dec_egress_queue(void)2283 void net_dec_egress_queue(void)
2284 {
2285 	static_branch_dec(&egress_needed_key);
2286 }
2287 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2288 #endif
2289 
2290 #ifdef CONFIG_NET_CLS_ACT
2291 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2292 EXPORT_SYMBOL(tcf_sw_enabled_key);
2293 #endif
2294 
2295 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2296 EXPORT_SYMBOL(netstamp_needed_key);
2297 #ifdef CONFIG_JUMP_LABEL
2298 static atomic_t netstamp_needed_deferred;
2299 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2300 static void netstamp_clear(struct work_struct *work)
2301 {
2302 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2303 	int wanted;
2304 
2305 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2306 	if (wanted > 0)
2307 		static_branch_enable(&netstamp_needed_key);
2308 	else
2309 		static_branch_disable(&netstamp_needed_key);
2310 }
2311 static DECLARE_WORK(netstamp_work, netstamp_clear);
2312 #endif
2313 
net_enable_timestamp(void)2314 void net_enable_timestamp(void)
2315 {
2316 #ifdef CONFIG_JUMP_LABEL
2317 	int wanted = atomic_read(&netstamp_wanted);
2318 
2319 	while (wanted > 0) {
2320 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2321 			return;
2322 	}
2323 	atomic_inc(&netstamp_needed_deferred);
2324 	schedule_work(&netstamp_work);
2325 #else
2326 	static_branch_inc(&netstamp_needed_key);
2327 #endif
2328 }
2329 EXPORT_SYMBOL(net_enable_timestamp);
2330 
net_disable_timestamp(void)2331 void net_disable_timestamp(void)
2332 {
2333 #ifdef CONFIG_JUMP_LABEL
2334 	int wanted = atomic_read(&netstamp_wanted);
2335 
2336 	while (wanted > 1) {
2337 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2338 			return;
2339 	}
2340 	atomic_dec(&netstamp_needed_deferred);
2341 	schedule_work(&netstamp_work);
2342 #else
2343 	static_branch_dec(&netstamp_needed_key);
2344 #endif
2345 }
2346 EXPORT_SYMBOL(net_disable_timestamp);
2347 
net_timestamp_set(struct sk_buff * skb)2348 static inline void net_timestamp_set(struct sk_buff *skb)
2349 {
2350 	skb->tstamp = 0;
2351 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2352 	if (static_branch_unlikely(&netstamp_needed_key))
2353 		skb->tstamp = ktime_get_real();
2354 }
2355 
2356 #define net_timestamp_check(COND, SKB)				\
2357 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2358 		if ((COND) && !(SKB)->tstamp)			\
2359 			(SKB)->tstamp = ktime_get_real();	\
2360 	}							\
2361 
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2362 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2363 {
2364 	return __is_skb_forwardable(dev, skb, true);
2365 }
2366 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2367 
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2368 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2369 			      bool check_mtu)
2370 {
2371 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2372 
2373 	if (likely(!ret)) {
2374 		skb->protocol = eth_type_trans(skb, dev);
2375 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2376 	}
2377 
2378 	return ret;
2379 }
2380 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2381 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2382 {
2383 	return __dev_forward_skb2(dev, skb, true);
2384 }
2385 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2386 
2387 /**
2388  * dev_forward_skb - loopback an skb to another netif
2389  *
2390  * @dev: destination network device
2391  * @skb: buffer to forward
2392  *
2393  * return values:
2394  *	NET_RX_SUCCESS	(no congestion)
2395  *	NET_RX_DROP     (packet was dropped, but freed)
2396  *
2397  * dev_forward_skb can be used for injecting an skb from the
2398  * start_xmit function of one device into the receive queue
2399  * of another device.
2400  *
2401  * The receiving device may be in another namespace, so
2402  * we have to clear all information in the skb that could
2403  * impact namespace isolation.
2404  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2405 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2406 {
2407 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2408 }
2409 EXPORT_SYMBOL_GPL(dev_forward_skb);
2410 
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2411 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2412 {
2413 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2414 }
2415 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2416 static inline int deliver_skb(struct sk_buff *skb,
2417 			      struct packet_type *pt_prev,
2418 			      struct net_device *orig_dev)
2419 {
2420 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2421 		return -ENOMEM;
2422 	refcount_inc(&skb->users);
2423 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2424 }
2425 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2426 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2427 					  struct packet_type **pt,
2428 					  struct net_device *orig_dev,
2429 					  __be16 type,
2430 					  struct list_head *ptype_list)
2431 {
2432 	struct packet_type *ptype, *pt_prev = *pt;
2433 
2434 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2435 		if (ptype->type != type)
2436 			continue;
2437 		if (pt_prev)
2438 			deliver_skb(skb, pt_prev, orig_dev);
2439 		pt_prev = ptype;
2440 	}
2441 	*pt = pt_prev;
2442 }
2443 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2444 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2445 {
2446 	if (!ptype->af_packet_priv || !skb->sk)
2447 		return false;
2448 
2449 	if (ptype->id_match)
2450 		return ptype->id_match(ptype, skb->sk);
2451 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2452 		return true;
2453 
2454 	return false;
2455 }
2456 
2457 /**
2458  * dev_nit_active_rcu - return true if any network interface taps are in use
2459  *
2460  * The caller must hold the RCU lock
2461  *
2462  * @dev: network device to check for the presence of taps
2463  */
dev_nit_active_rcu(const struct net_device * dev)2464 bool dev_nit_active_rcu(const struct net_device *dev)
2465 {
2466 	/* Callers may hold either RCU or RCU BH lock */
2467 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2468 
2469 	return !list_empty(&dev_net(dev)->ptype_all) ||
2470 	       !list_empty(&dev->ptype_all);
2471 }
2472 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2473 
2474 /*
2475  *	Support routine. Sends outgoing frames to any network
2476  *	taps currently in use.
2477  */
2478 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2479 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2480 {
2481 	struct packet_type *ptype, *pt_prev = NULL;
2482 	struct list_head *ptype_list;
2483 	struct sk_buff *skb2 = NULL;
2484 
2485 	rcu_read_lock();
2486 	ptype_list = &dev_net_rcu(dev)->ptype_all;
2487 again:
2488 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2489 		if (READ_ONCE(ptype->ignore_outgoing))
2490 			continue;
2491 
2492 		/* Never send packets back to the socket
2493 		 * they originated from - MvS (miquels@drinkel.ow.org)
2494 		 */
2495 		if (skb_loop_sk(ptype, skb))
2496 			continue;
2497 
2498 		if (pt_prev) {
2499 			deliver_skb(skb2, pt_prev, skb->dev);
2500 			pt_prev = ptype;
2501 			continue;
2502 		}
2503 
2504 		/* need to clone skb, done only once */
2505 		skb2 = skb_clone(skb, GFP_ATOMIC);
2506 		if (!skb2)
2507 			goto out_unlock;
2508 
2509 		net_timestamp_set(skb2);
2510 
2511 		/* skb->nh should be correctly
2512 		 * set by sender, so that the second statement is
2513 		 * just protection against buggy protocols.
2514 		 */
2515 		skb_reset_mac_header(skb2);
2516 
2517 		if (skb_network_header(skb2) < skb2->data ||
2518 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2519 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2520 					     ntohs(skb2->protocol),
2521 					     dev->name);
2522 			skb_reset_network_header(skb2);
2523 		}
2524 
2525 		skb2->transport_header = skb2->network_header;
2526 		skb2->pkt_type = PACKET_OUTGOING;
2527 		pt_prev = ptype;
2528 	}
2529 
2530 	if (ptype_list != &dev->ptype_all) {
2531 		ptype_list = &dev->ptype_all;
2532 		goto again;
2533 	}
2534 out_unlock:
2535 	if (pt_prev) {
2536 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2537 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2538 		else
2539 			kfree_skb(skb2);
2540 	}
2541 	rcu_read_unlock();
2542 }
2543 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2544 
2545 /**
2546  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2547  * @dev: Network device
2548  * @txq: number of queues available
2549  *
2550  * If real_num_tx_queues is changed the tc mappings may no longer be
2551  * valid. To resolve this verify the tc mapping remains valid and if
2552  * not NULL the mapping. With no priorities mapping to this
2553  * offset/count pair it will no longer be used. In the worst case TC0
2554  * is invalid nothing can be done so disable priority mappings. If is
2555  * expected that drivers will fix this mapping if they can before
2556  * calling netif_set_real_num_tx_queues.
2557  */
netif_setup_tc(struct net_device * dev,unsigned int txq)2558 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2559 {
2560 	int i;
2561 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2562 
2563 	/* If TC0 is invalidated disable TC mapping */
2564 	if (tc->offset + tc->count > txq) {
2565 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2566 		dev->num_tc = 0;
2567 		return;
2568 	}
2569 
2570 	/* Invalidated prio to tc mappings set to TC0 */
2571 	for (i = 1; i < TC_BITMASK + 1; i++) {
2572 		int q = netdev_get_prio_tc_map(dev, i);
2573 
2574 		tc = &dev->tc_to_txq[q];
2575 		if (tc->offset + tc->count > txq) {
2576 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2577 				    i, q);
2578 			netdev_set_prio_tc_map(dev, i, 0);
2579 		}
2580 	}
2581 }
2582 
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2583 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2584 {
2585 	if (dev->num_tc) {
2586 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2587 		int i;
2588 
2589 		/* walk through the TCs and see if it falls into any of them */
2590 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2591 			if ((txq - tc->offset) < tc->count)
2592 				return i;
2593 		}
2594 
2595 		/* didn't find it, just return -1 to indicate no match */
2596 		return -1;
2597 	}
2598 
2599 	return 0;
2600 }
2601 EXPORT_SYMBOL(netdev_txq_to_tc);
2602 
2603 #ifdef CONFIG_XPS
2604 static struct static_key xps_needed __read_mostly;
2605 static struct static_key xps_rxqs_needed __read_mostly;
2606 static DEFINE_MUTEX(xps_map_mutex);
2607 #define xmap_dereference(P)		\
2608 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2609 
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2610 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2611 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2612 {
2613 	struct xps_map *map = NULL;
2614 	int pos;
2615 
2616 	map = xmap_dereference(dev_maps->attr_map[tci]);
2617 	if (!map)
2618 		return false;
2619 
2620 	for (pos = map->len; pos--;) {
2621 		if (map->queues[pos] != index)
2622 			continue;
2623 
2624 		if (map->len > 1) {
2625 			map->queues[pos] = map->queues[--map->len];
2626 			break;
2627 		}
2628 
2629 		if (old_maps)
2630 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2631 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2632 		kfree_rcu(map, rcu);
2633 		return false;
2634 	}
2635 
2636 	return true;
2637 }
2638 
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2639 static bool remove_xps_queue_cpu(struct net_device *dev,
2640 				 struct xps_dev_maps *dev_maps,
2641 				 int cpu, u16 offset, u16 count)
2642 {
2643 	int num_tc = dev_maps->num_tc;
2644 	bool active = false;
2645 	int tci;
2646 
2647 	for (tci = cpu * num_tc; num_tc--; tci++) {
2648 		int i, j;
2649 
2650 		for (i = count, j = offset; i--; j++) {
2651 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2652 				break;
2653 		}
2654 
2655 		active |= i < 0;
2656 	}
2657 
2658 	return active;
2659 }
2660 
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2661 static void reset_xps_maps(struct net_device *dev,
2662 			   struct xps_dev_maps *dev_maps,
2663 			   enum xps_map_type type)
2664 {
2665 	static_key_slow_dec_cpuslocked(&xps_needed);
2666 	if (type == XPS_RXQS)
2667 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2668 
2669 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2670 
2671 	kfree_rcu(dev_maps, rcu);
2672 }
2673 
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2674 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2675 			   u16 offset, u16 count)
2676 {
2677 	struct xps_dev_maps *dev_maps;
2678 	bool active = false;
2679 	int i, j;
2680 
2681 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2682 	if (!dev_maps)
2683 		return;
2684 
2685 	for (j = 0; j < dev_maps->nr_ids; j++)
2686 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2687 	if (!active)
2688 		reset_xps_maps(dev, dev_maps, type);
2689 
2690 	if (type == XPS_CPUS) {
2691 		for (i = offset + (count - 1); count--; i--)
2692 			netdev_queue_numa_node_write(
2693 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2694 	}
2695 }
2696 
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2697 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2698 				   u16 count)
2699 {
2700 	if (!static_key_false(&xps_needed))
2701 		return;
2702 
2703 	cpus_read_lock();
2704 	mutex_lock(&xps_map_mutex);
2705 
2706 	if (static_key_false(&xps_rxqs_needed))
2707 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2708 
2709 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2710 
2711 	mutex_unlock(&xps_map_mutex);
2712 	cpus_read_unlock();
2713 }
2714 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2715 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2716 {
2717 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2718 }
2719 
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2720 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2721 				      u16 index, bool is_rxqs_map)
2722 {
2723 	struct xps_map *new_map;
2724 	int alloc_len = XPS_MIN_MAP_ALLOC;
2725 	int i, pos;
2726 
2727 	for (pos = 0; map && pos < map->len; pos++) {
2728 		if (map->queues[pos] != index)
2729 			continue;
2730 		return map;
2731 	}
2732 
2733 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2734 	if (map) {
2735 		if (pos < map->alloc_len)
2736 			return map;
2737 
2738 		alloc_len = map->alloc_len * 2;
2739 	}
2740 
2741 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2742 	 *  map
2743 	 */
2744 	if (is_rxqs_map)
2745 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2746 	else
2747 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2748 				       cpu_to_node(attr_index));
2749 	if (!new_map)
2750 		return NULL;
2751 
2752 	for (i = 0; i < pos; i++)
2753 		new_map->queues[i] = map->queues[i];
2754 	new_map->alloc_len = alloc_len;
2755 	new_map->len = pos;
2756 
2757 	return new_map;
2758 }
2759 
2760 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2761 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2762 			      struct xps_dev_maps *new_dev_maps, int index,
2763 			      int tc, bool skip_tc)
2764 {
2765 	int i, tci = index * dev_maps->num_tc;
2766 	struct xps_map *map;
2767 
2768 	/* copy maps belonging to foreign traffic classes */
2769 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2770 		if (i == tc && skip_tc)
2771 			continue;
2772 
2773 		/* fill in the new device map from the old device map */
2774 		map = xmap_dereference(dev_maps->attr_map[tci]);
2775 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2776 	}
2777 }
2778 
2779 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2780 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2781 			  u16 index, enum xps_map_type type)
2782 {
2783 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2784 	const unsigned long *online_mask = NULL;
2785 	bool active = false, copy = false;
2786 	int i, j, tci, numa_node_id = -2;
2787 	int maps_sz, num_tc = 1, tc = 0;
2788 	struct xps_map *map, *new_map;
2789 	unsigned int nr_ids;
2790 
2791 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2792 
2793 	if (dev->num_tc) {
2794 		/* Do not allow XPS on subordinate device directly */
2795 		num_tc = dev->num_tc;
2796 		if (num_tc < 0)
2797 			return -EINVAL;
2798 
2799 		/* If queue belongs to subordinate dev use its map */
2800 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2801 
2802 		tc = netdev_txq_to_tc(dev, index);
2803 		if (tc < 0)
2804 			return -EINVAL;
2805 	}
2806 
2807 	mutex_lock(&xps_map_mutex);
2808 
2809 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2810 	if (type == XPS_RXQS) {
2811 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2812 		nr_ids = dev->num_rx_queues;
2813 	} else {
2814 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2815 		if (num_possible_cpus() > 1)
2816 			online_mask = cpumask_bits(cpu_online_mask);
2817 		nr_ids = nr_cpu_ids;
2818 	}
2819 
2820 	if (maps_sz < L1_CACHE_BYTES)
2821 		maps_sz = L1_CACHE_BYTES;
2822 
2823 	/* The old dev_maps could be larger or smaller than the one we're
2824 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2825 	 * between. We could try to be smart, but let's be safe instead and only
2826 	 * copy foreign traffic classes if the two map sizes match.
2827 	 */
2828 	if (dev_maps &&
2829 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2830 		copy = true;
2831 
2832 	/* allocate memory for queue storage */
2833 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2834 	     j < nr_ids;) {
2835 		if (!new_dev_maps) {
2836 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2837 			if (!new_dev_maps) {
2838 				mutex_unlock(&xps_map_mutex);
2839 				return -ENOMEM;
2840 			}
2841 
2842 			new_dev_maps->nr_ids = nr_ids;
2843 			new_dev_maps->num_tc = num_tc;
2844 		}
2845 
2846 		tci = j * num_tc + tc;
2847 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2848 
2849 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2850 		if (!map)
2851 			goto error;
2852 
2853 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2854 	}
2855 
2856 	if (!new_dev_maps)
2857 		goto out_no_new_maps;
2858 
2859 	if (!dev_maps) {
2860 		/* Increment static keys at most once per type */
2861 		static_key_slow_inc_cpuslocked(&xps_needed);
2862 		if (type == XPS_RXQS)
2863 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2864 	}
2865 
2866 	for (j = 0; j < nr_ids; j++) {
2867 		bool skip_tc = false;
2868 
2869 		tci = j * num_tc + tc;
2870 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2871 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2872 			/* add tx-queue to CPU/rx-queue maps */
2873 			int pos = 0;
2874 
2875 			skip_tc = true;
2876 
2877 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2878 			while ((pos < map->len) && (map->queues[pos] != index))
2879 				pos++;
2880 
2881 			if (pos == map->len)
2882 				map->queues[map->len++] = index;
2883 #ifdef CONFIG_NUMA
2884 			if (type == XPS_CPUS) {
2885 				if (numa_node_id == -2)
2886 					numa_node_id = cpu_to_node(j);
2887 				else if (numa_node_id != cpu_to_node(j))
2888 					numa_node_id = -1;
2889 			}
2890 #endif
2891 		}
2892 
2893 		if (copy)
2894 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2895 					  skip_tc);
2896 	}
2897 
2898 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2899 
2900 	/* Cleanup old maps */
2901 	if (!dev_maps)
2902 		goto out_no_old_maps;
2903 
2904 	for (j = 0; j < dev_maps->nr_ids; j++) {
2905 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2906 			map = xmap_dereference(dev_maps->attr_map[tci]);
2907 			if (!map)
2908 				continue;
2909 
2910 			if (copy) {
2911 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2912 				if (map == new_map)
2913 					continue;
2914 			}
2915 
2916 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2917 			kfree_rcu(map, rcu);
2918 		}
2919 	}
2920 
2921 	old_dev_maps = dev_maps;
2922 
2923 out_no_old_maps:
2924 	dev_maps = new_dev_maps;
2925 	active = true;
2926 
2927 out_no_new_maps:
2928 	if (type == XPS_CPUS)
2929 		/* update Tx queue numa node */
2930 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2931 					     (numa_node_id >= 0) ?
2932 					     numa_node_id : NUMA_NO_NODE);
2933 
2934 	if (!dev_maps)
2935 		goto out_no_maps;
2936 
2937 	/* removes tx-queue from unused CPUs/rx-queues */
2938 	for (j = 0; j < dev_maps->nr_ids; j++) {
2939 		tci = j * dev_maps->num_tc;
2940 
2941 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2942 			if (i == tc &&
2943 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2944 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2945 				continue;
2946 
2947 			active |= remove_xps_queue(dev_maps,
2948 						   copy ? old_dev_maps : NULL,
2949 						   tci, index);
2950 		}
2951 	}
2952 
2953 	if (old_dev_maps)
2954 		kfree_rcu(old_dev_maps, rcu);
2955 
2956 	/* free map if not active */
2957 	if (!active)
2958 		reset_xps_maps(dev, dev_maps, type);
2959 
2960 out_no_maps:
2961 	mutex_unlock(&xps_map_mutex);
2962 
2963 	return 0;
2964 error:
2965 	/* remove any maps that we added */
2966 	for (j = 0; j < nr_ids; j++) {
2967 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2968 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2969 			map = copy ?
2970 			      xmap_dereference(dev_maps->attr_map[tci]) :
2971 			      NULL;
2972 			if (new_map && new_map != map)
2973 				kfree(new_map);
2974 		}
2975 	}
2976 
2977 	mutex_unlock(&xps_map_mutex);
2978 
2979 	kfree(new_dev_maps);
2980 	return -ENOMEM;
2981 }
2982 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2983 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2984 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2985 			u16 index)
2986 {
2987 	int ret;
2988 
2989 	cpus_read_lock();
2990 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2991 	cpus_read_unlock();
2992 
2993 	return ret;
2994 }
2995 EXPORT_SYMBOL(netif_set_xps_queue);
2996 
2997 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2998 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2999 {
3000 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3001 
3002 	/* Unbind any subordinate channels */
3003 	while (txq-- != &dev->_tx[0]) {
3004 		if (txq->sb_dev)
3005 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3006 	}
3007 }
3008 
netdev_reset_tc(struct net_device * dev)3009 void netdev_reset_tc(struct net_device *dev)
3010 {
3011 #ifdef CONFIG_XPS
3012 	netif_reset_xps_queues_gt(dev, 0);
3013 #endif
3014 	netdev_unbind_all_sb_channels(dev);
3015 
3016 	/* Reset TC configuration of device */
3017 	dev->num_tc = 0;
3018 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3019 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3020 }
3021 EXPORT_SYMBOL(netdev_reset_tc);
3022 
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)3023 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3024 {
3025 	if (tc >= dev->num_tc)
3026 		return -EINVAL;
3027 
3028 #ifdef CONFIG_XPS
3029 	netif_reset_xps_queues(dev, offset, count);
3030 #endif
3031 	dev->tc_to_txq[tc].count = count;
3032 	dev->tc_to_txq[tc].offset = offset;
3033 	return 0;
3034 }
3035 EXPORT_SYMBOL(netdev_set_tc_queue);
3036 
netdev_set_num_tc(struct net_device * dev,u8 num_tc)3037 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3038 {
3039 	if (num_tc > TC_MAX_QUEUE)
3040 		return -EINVAL;
3041 
3042 #ifdef CONFIG_XPS
3043 	netif_reset_xps_queues_gt(dev, 0);
3044 #endif
3045 	netdev_unbind_all_sb_channels(dev);
3046 
3047 	dev->num_tc = num_tc;
3048 	return 0;
3049 }
3050 EXPORT_SYMBOL(netdev_set_num_tc);
3051 
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)3052 void netdev_unbind_sb_channel(struct net_device *dev,
3053 			      struct net_device *sb_dev)
3054 {
3055 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3056 
3057 #ifdef CONFIG_XPS
3058 	netif_reset_xps_queues_gt(sb_dev, 0);
3059 #endif
3060 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3061 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3062 
3063 	while (txq-- != &dev->_tx[0]) {
3064 		if (txq->sb_dev == sb_dev)
3065 			txq->sb_dev = NULL;
3066 	}
3067 }
3068 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3069 
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)3070 int netdev_bind_sb_channel_queue(struct net_device *dev,
3071 				 struct net_device *sb_dev,
3072 				 u8 tc, u16 count, u16 offset)
3073 {
3074 	/* Make certain the sb_dev and dev are already configured */
3075 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3076 		return -EINVAL;
3077 
3078 	/* We cannot hand out queues we don't have */
3079 	if ((offset + count) > dev->real_num_tx_queues)
3080 		return -EINVAL;
3081 
3082 	/* Record the mapping */
3083 	sb_dev->tc_to_txq[tc].count = count;
3084 	sb_dev->tc_to_txq[tc].offset = offset;
3085 
3086 	/* Provide a way for Tx queue to find the tc_to_txq map or
3087 	 * XPS map for itself.
3088 	 */
3089 	while (count--)
3090 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3091 
3092 	return 0;
3093 }
3094 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3095 
netdev_set_sb_channel(struct net_device * dev,u16 channel)3096 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3097 {
3098 	/* Do not use a multiqueue device to represent a subordinate channel */
3099 	if (netif_is_multiqueue(dev))
3100 		return -ENODEV;
3101 
3102 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3103 	 * Channel 0 is meant to be "native" mode and used only to represent
3104 	 * the main root device. We allow writing 0 to reset the device back
3105 	 * to normal mode after being used as a subordinate channel.
3106 	 */
3107 	if (channel > S16_MAX)
3108 		return -EINVAL;
3109 
3110 	dev->num_tc = -channel;
3111 
3112 	return 0;
3113 }
3114 EXPORT_SYMBOL(netdev_set_sb_channel);
3115 
3116 /*
3117  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3118  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3119  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3120 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3121 {
3122 	bool disabling;
3123 	int rc;
3124 
3125 	disabling = txq < dev->real_num_tx_queues;
3126 
3127 	if (txq < 1 || txq > dev->num_tx_queues)
3128 		return -EINVAL;
3129 
3130 	if (dev->reg_state == NETREG_REGISTERED ||
3131 	    dev->reg_state == NETREG_UNREGISTERING) {
3132 		ASSERT_RTNL();
3133 		netdev_ops_assert_locked(dev);
3134 
3135 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3136 						  txq);
3137 		if (rc)
3138 			return rc;
3139 
3140 		if (dev->num_tc)
3141 			netif_setup_tc(dev, txq);
3142 
3143 		net_shaper_set_real_num_tx_queues(dev, txq);
3144 
3145 		dev_qdisc_change_real_num_tx(dev, txq);
3146 
3147 		dev->real_num_tx_queues = txq;
3148 
3149 		if (disabling) {
3150 			synchronize_net();
3151 			qdisc_reset_all_tx_gt(dev, txq);
3152 #ifdef CONFIG_XPS
3153 			netif_reset_xps_queues_gt(dev, txq);
3154 #endif
3155 		}
3156 	} else {
3157 		dev->real_num_tx_queues = txq;
3158 	}
3159 
3160 	return 0;
3161 }
3162 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3163 
3164 /**
3165  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3166  *	@dev: Network device
3167  *	@rxq: Actual number of RX queues
3168  *
3169  *	This must be called either with the rtnl_lock held or before
3170  *	registration of the net device.  Returns 0 on success, or a
3171  *	negative error code.  If called before registration, it always
3172  *	succeeds.
3173  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3174 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3175 {
3176 	int rc;
3177 
3178 	if (rxq < 1 || rxq > dev->num_rx_queues)
3179 		return -EINVAL;
3180 
3181 	if (dev->reg_state == NETREG_REGISTERED) {
3182 		ASSERT_RTNL();
3183 		netdev_ops_assert_locked(dev);
3184 
3185 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3186 						  rxq);
3187 		if (rc)
3188 			return rc;
3189 	}
3190 
3191 	dev->real_num_rx_queues = rxq;
3192 	return 0;
3193 }
3194 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3195 
3196 /**
3197  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3198  *	@dev: Network device
3199  *	@txq: Actual number of TX queues
3200  *	@rxq: Actual number of RX queues
3201  *
3202  *	Set the real number of both TX and RX queues.
3203  *	Does nothing if the number of queues is already correct.
3204  */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3205 int netif_set_real_num_queues(struct net_device *dev,
3206 			      unsigned int txq, unsigned int rxq)
3207 {
3208 	unsigned int old_rxq = dev->real_num_rx_queues;
3209 	int err;
3210 
3211 	if (txq < 1 || txq > dev->num_tx_queues ||
3212 	    rxq < 1 || rxq > dev->num_rx_queues)
3213 		return -EINVAL;
3214 
3215 	/* Start from increases, so the error path only does decreases -
3216 	 * decreases can't fail.
3217 	 */
3218 	if (rxq > dev->real_num_rx_queues) {
3219 		err = netif_set_real_num_rx_queues(dev, rxq);
3220 		if (err)
3221 			return err;
3222 	}
3223 	if (txq > dev->real_num_tx_queues) {
3224 		err = netif_set_real_num_tx_queues(dev, txq);
3225 		if (err)
3226 			goto undo_rx;
3227 	}
3228 	if (rxq < dev->real_num_rx_queues)
3229 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3230 	if (txq < dev->real_num_tx_queues)
3231 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3232 
3233 	return 0;
3234 undo_rx:
3235 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3236 	return err;
3237 }
3238 EXPORT_SYMBOL(netif_set_real_num_queues);
3239 
3240 /**
3241  * netif_set_tso_max_size() - set the max size of TSO frames supported
3242  * @dev:	netdev to update
3243  * @size:	max skb->len of a TSO frame
3244  *
3245  * Set the limit on the size of TSO super-frames the device can handle.
3246  * Unless explicitly set the stack will assume the value of
3247  * %GSO_LEGACY_MAX_SIZE.
3248  */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3249 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3250 {
3251 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3252 	if (size < READ_ONCE(dev->gso_max_size))
3253 		netif_set_gso_max_size(dev, size);
3254 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3255 		netif_set_gso_ipv4_max_size(dev, size);
3256 }
3257 EXPORT_SYMBOL(netif_set_tso_max_size);
3258 
3259 /**
3260  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3261  * @dev:	netdev to update
3262  * @segs:	max number of TCP segments
3263  *
3264  * Set the limit on the number of TCP segments the device can generate from
3265  * a single TSO super-frame.
3266  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3267  */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3268 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3269 {
3270 	dev->tso_max_segs = segs;
3271 	if (segs < READ_ONCE(dev->gso_max_segs))
3272 		netif_set_gso_max_segs(dev, segs);
3273 }
3274 EXPORT_SYMBOL(netif_set_tso_max_segs);
3275 
3276 /**
3277  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3278  * @to:		netdev to update
3279  * @from:	netdev from which to copy the limits
3280  */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3281 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3282 {
3283 	netif_set_tso_max_size(to, from->tso_max_size);
3284 	netif_set_tso_max_segs(to, from->tso_max_segs);
3285 }
3286 EXPORT_SYMBOL(netif_inherit_tso_max);
3287 
3288 /**
3289  * netif_get_num_default_rss_queues - default number of RSS queues
3290  *
3291  * Default value is the number of physical cores if there are only 1 or 2, or
3292  * divided by 2 if there are more.
3293  */
netif_get_num_default_rss_queues(void)3294 int netif_get_num_default_rss_queues(void)
3295 {
3296 	cpumask_var_t cpus;
3297 	int cpu, count = 0;
3298 
3299 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3300 		return 1;
3301 
3302 	cpumask_copy(cpus, cpu_online_mask);
3303 	for_each_cpu(cpu, cpus) {
3304 		++count;
3305 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3306 	}
3307 	free_cpumask_var(cpus);
3308 
3309 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3310 }
3311 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3312 
__netif_reschedule(struct Qdisc * q)3313 static void __netif_reschedule(struct Qdisc *q)
3314 {
3315 	struct softnet_data *sd;
3316 	unsigned long flags;
3317 
3318 	local_irq_save(flags);
3319 	sd = this_cpu_ptr(&softnet_data);
3320 	q->next_sched = NULL;
3321 	*sd->output_queue_tailp = q;
3322 	sd->output_queue_tailp = &q->next_sched;
3323 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3324 	local_irq_restore(flags);
3325 }
3326 
__netif_schedule(struct Qdisc * q)3327 void __netif_schedule(struct Qdisc *q)
3328 {
3329 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3330 		__netif_reschedule(q);
3331 }
3332 EXPORT_SYMBOL(__netif_schedule);
3333 
3334 struct dev_kfree_skb_cb {
3335 	enum skb_drop_reason reason;
3336 };
3337 
get_kfree_skb_cb(const struct sk_buff * skb)3338 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3339 {
3340 	return (struct dev_kfree_skb_cb *)skb->cb;
3341 }
3342 
netif_schedule_queue(struct netdev_queue * txq)3343 void netif_schedule_queue(struct netdev_queue *txq)
3344 {
3345 	rcu_read_lock();
3346 	if (!netif_xmit_stopped(txq)) {
3347 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3348 
3349 		__netif_schedule(q);
3350 	}
3351 	rcu_read_unlock();
3352 }
3353 EXPORT_SYMBOL(netif_schedule_queue);
3354 
netif_tx_wake_queue(struct netdev_queue * dev_queue)3355 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3356 {
3357 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3358 		struct Qdisc *q;
3359 
3360 		rcu_read_lock();
3361 		q = rcu_dereference(dev_queue->qdisc);
3362 		__netif_schedule(q);
3363 		rcu_read_unlock();
3364 	}
3365 }
3366 EXPORT_SYMBOL(netif_tx_wake_queue);
3367 
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3368 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3369 {
3370 	unsigned long flags;
3371 
3372 	if (unlikely(!skb))
3373 		return;
3374 
3375 	if (likely(refcount_read(&skb->users) == 1)) {
3376 		smp_rmb();
3377 		refcount_set(&skb->users, 0);
3378 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3379 		return;
3380 	}
3381 	get_kfree_skb_cb(skb)->reason = reason;
3382 	local_irq_save(flags);
3383 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3384 	__this_cpu_write(softnet_data.completion_queue, skb);
3385 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3386 	local_irq_restore(flags);
3387 }
3388 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3389 
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3390 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3391 {
3392 	if (in_hardirq() || irqs_disabled())
3393 		dev_kfree_skb_irq_reason(skb, reason);
3394 	else
3395 		kfree_skb_reason(skb, reason);
3396 }
3397 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3398 
3399 
3400 /**
3401  * netif_device_detach - mark device as removed
3402  * @dev: network device
3403  *
3404  * Mark device as removed from system and therefore no longer available.
3405  */
netif_device_detach(struct net_device * dev)3406 void netif_device_detach(struct net_device *dev)
3407 {
3408 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3409 	    netif_running(dev)) {
3410 		netif_tx_stop_all_queues(dev);
3411 	}
3412 }
3413 EXPORT_SYMBOL(netif_device_detach);
3414 
3415 /**
3416  * netif_device_attach - mark device as attached
3417  * @dev: network device
3418  *
3419  * Mark device as attached from system and restart if needed.
3420  */
netif_device_attach(struct net_device * dev)3421 void netif_device_attach(struct net_device *dev)
3422 {
3423 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3424 	    netif_running(dev)) {
3425 		netif_tx_wake_all_queues(dev);
3426 		netdev_watchdog_up(dev);
3427 	}
3428 }
3429 EXPORT_SYMBOL(netif_device_attach);
3430 
3431 /*
3432  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3433  * to be used as a distribution range.
3434  */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3435 static u16 skb_tx_hash(const struct net_device *dev,
3436 		       const struct net_device *sb_dev,
3437 		       struct sk_buff *skb)
3438 {
3439 	u32 hash;
3440 	u16 qoffset = 0;
3441 	u16 qcount = dev->real_num_tx_queues;
3442 
3443 	if (dev->num_tc) {
3444 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3445 
3446 		qoffset = sb_dev->tc_to_txq[tc].offset;
3447 		qcount = sb_dev->tc_to_txq[tc].count;
3448 		if (unlikely(!qcount)) {
3449 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3450 					     sb_dev->name, qoffset, tc);
3451 			qoffset = 0;
3452 			qcount = dev->real_num_tx_queues;
3453 		}
3454 	}
3455 
3456 	if (skb_rx_queue_recorded(skb)) {
3457 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3458 		hash = skb_get_rx_queue(skb);
3459 		if (hash >= qoffset)
3460 			hash -= qoffset;
3461 		while (unlikely(hash >= qcount))
3462 			hash -= qcount;
3463 		return hash + qoffset;
3464 	}
3465 
3466 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3467 }
3468 
skb_warn_bad_offload(const struct sk_buff * skb)3469 void skb_warn_bad_offload(const struct sk_buff *skb)
3470 {
3471 	static const netdev_features_t null_features;
3472 	struct net_device *dev = skb->dev;
3473 	const char *name = "";
3474 
3475 	if (!net_ratelimit())
3476 		return;
3477 
3478 	if (dev) {
3479 		if (dev->dev.parent)
3480 			name = dev_driver_string(dev->dev.parent);
3481 		else
3482 			name = netdev_name(dev);
3483 	}
3484 	skb_dump(KERN_WARNING, skb, false);
3485 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3486 	     name, dev ? &dev->features : &null_features,
3487 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3488 }
3489 
3490 /*
3491  * Invalidate hardware checksum when packet is to be mangled, and
3492  * complete checksum manually on outgoing path.
3493  */
skb_checksum_help(struct sk_buff * skb)3494 int skb_checksum_help(struct sk_buff *skb)
3495 {
3496 	__wsum csum;
3497 	int ret = 0, offset;
3498 
3499 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3500 		goto out_set_summed;
3501 
3502 	if (unlikely(skb_is_gso(skb))) {
3503 		skb_warn_bad_offload(skb);
3504 		return -EINVAL;
3505 	}
3506 
3507 	if (!skb_frags_readable(skb)) {
3508 		return -EFAULT;
3509 	}
3510 
3511 	/* Before computing a checksum, we should make sure no frag could
3512 	 * be modified by an external entity : checksum could be wrong.
3513 	 */
3514 	if (skb_has_shared_frag(skb)) {
3515 		ret = __skb_linearize(skb);
3516 		if (ret)
3517 			goto out;
3518 	}
3519 
3520 	offset = skb_checksum_start_offset(skb);
3521 	ret = -EINVAL;
3522 	if (unlikely(offset >= skb_headlen(skb))) {
3523 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3524 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3525 			  offset, skb_headlen(skb));
3526 		goto out;
3527 	}
3528 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3529 
3530 	offset += skb->csum_offset;
3531 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3532 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3533 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3534 			  offset + sizeof(__sum16), skb_headlen(skb));
3535 		goto out;
3536 	}
3537 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3538 	if (ret)
3539 		goto out;
3540 
3541 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3542 out_set_summed:
3543 	skb->ip_summed = CHECKSUM_NONE;
3544 out:
3545 	return ret;
3546 }
3547 EXPORT_SYMBOL(skb_checksum_help);
3548 
skb_crc32c_csum_help(struct sk_buff * skb)3549 int skb_crc32c_csum_help(struct sk_buff *skb)
3550 {
3551 	__le32 crc32c_csum;
3552 	int ret = 0, offset, start;
3553 
3554 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3555 		goto out;
3556 
3557 	if (unlikely(skb_is_gso(skb)))
3558 		goto out;
3559 
3560 	/* Before computing a checksum, we should make sure no frag could
3561 	 * be modified by an external entity : checksum could be wrong.
3562 	 */
3563 	if (unlikely(skb_has_shared_frag(skb))) {
3564 		ret = __skb_linearize(skb);
3565 		if (ret)
3566 			goto out;
3567 	}
3568 	start = skb_checksum_start_offset(skb);
3569 	offset = start + offsetof(struct sctphdr, checksum);
3570 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3571 		ret = -EINVAL;
3572 		goto out;
3573 	}
3574 
3575 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3576 	if (ret)
3577 		goto out;
3578 
3579 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3580 						  skb->len - start, ~(__u32)0,
3581 						  crc32c_csum_stub));
3582 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3583 	skb_reset_csum_not_inet(skb);
3584 out:
3585 	return ret;
3586 }
3587 EXPORT_SYMBOL(skb_crc32c_csum_help);
3588 
skb_network_protocol(struct sk_buff * skb,int * depth)3589 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3590 {
3591 	__be16 type = skb->protocol;
3592 
3593 	/* Tunnel gso handlers can set protocol to ethernet. */
3594 	if (type == htons(ETH_P_TEB)) {
3595 		struct ethhdr *eth;
3596 
3597 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3598 			return 0;
3599 
3600 		eth = (struct ethhdr *)skb->data;
3601 		type = eth->h_proto;
3602 	}
3603 
3604 	return vlan_get_protocol_and_depth(skb, type, depth);
3605 }
3606 
3607 
3608 /* Take action when hardware reception checksum errors are detected. */
3609 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3610 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3611 {
3612 	netdev_err(dev, "hw csum failure\n");
3613 	skb_dump(KERN_ERR, skb, true);
3614 	dump_stack();
3615 }
3616 
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3617 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3618 {
3619 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3620 }
3621 EXPORT_SYMBOL(netdev_rx_csum_fault);
3622 #endif
3623 
3624 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3625 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3626 {
3627 #ifdef CONFIG_HIGHMEM
3628 	int i;
3629 
3630 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3631 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3632 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3633 			struct page *page = skb_frag_page(frag);
3634 
3635 			if (page && PageHighMem(page))
3636 				return 1;
3637 		}
3638 	}
3639 #endif
3640 	return 0;
3641 }
3642 
3643 /* If MPLS offload request, verify we are testing hardware MPLS features
3644  * instead of standard features for the netdev.
3645  */
3646 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3647 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3648 					   netdev_features_t features,
3649 					   __be16 type)
3650 {
3651 	if (eth_p_mpls(type))
3652 		features &= skb->dev->mpls_features;
3653 
3654 	return features;
3655 }
3656 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3657 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3658 					   netdev_features_t features,
3659 					   __be16 type)
3660 {
3661 	return features;
3662 }
3663 #endif
3664 
harmonize_features(struct sk_buff * skb,netdev_features_t features)3665 static netdev_features_t harmonize_features(struct sk_buff *skb,
3666 	netdev_features_t features)
3667 {
3668 	__be16 type;
3669 
3670 	type = skb_network_protocol(skb, NULL);
3671 	features = net_mpls_features(skb, features, type);
3672 
3673 	if (skb->ip_summed != CHECKSUM_NONE &&
3674 	    !can_checksum_protocol(features, type)) {
3675 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3676 	}
3677 	if (illegal_highdma(skb->dev, skb))
3678 		features &= ~NETIF_F_SG;
3679 
3680 	return features;
3681 }
3682 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3683 netdev_features_t passthru_features_check(struct sk_buff *skb,
3684 					  struct net_device *dev,
3685 					  netdev_features_t features)
3686 {
3687 	return features;
3688 }
3689 EXPORT_SYMBOL(passthru_features_check);
3690 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3691 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3692 					     struct net_device *dev,
3693 					     netdev_features_t features)
3694 {
3695 	return vlan_features_check(skb, features);
3696 }
3697 
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3698 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3699 					    struct net_device *dev,
3700 					    netdev_features_t features)
3701 {
3702 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3703 
3704 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3705 		return features & ~NETIF_F_GSO_MASK;
3706 
3707 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3708 		return features & ~NETIF_F_GSO_MASK;
3709 
3710 	if (!skb_shinfo(skb)->gso_type) {
3711 		skb_warn_bad_offload(skb);
3712 		return features & ~NETIF_F_GSO_MASK;
3713 	}
3714 
3715 	/* Support for GSO partial features requires software
3716 	 * intervention before we can actually process the packets
3717 	 * so we need to strip support for any partial features now
3718 	 * and we can pull them back in after we have partially
3719 	 * segmented the frame.
3720 	 */
3721 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3722 		features &= ~dev->gso_partial_features;
3723 
3724 	/* Make sure to clear the IPv4 ID mangling feature if the
3725 	 * IPv4 header has the potential to be fragmented.
3726 	 */
3727 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3728 		struct iphdr *iph = skb->encapsulation ?
3729 				    inner_ip_hdr(skb) : ip_hdr(skb);
3730 
3731 		if (!(iph->frag_off & htons(IP_DF)))
3732 			features &= ~NETIF_F_TSO_MANGLEID;
3733 	}
3734 
3735 	return features;
3736 }
3737 
netif_skb_features(struct sk_buff * skb)3738 netdev_features_t netif_skb_features(struct sk_buff *skb)
3739 {
3740 	struct net_device *dev = skb->dev;
3741 	netdev_features_t features = dev->features;
3742 
3743 	if (skb_is_gso(skb))
3744 		features = gso_features_check(skb, dev, features);
3745 
3746 	/* If encapsulation offload request, verify we are testing
3747 	 * hardware encapsulation features instead of standard
3748 	 * features for the netdev
3749 	 */
3750 	if (skb->encapsulation)
3751 		features &= dev->hw_enc_features;
3752 
3753 	if (skb_vlan_tagged(skb))
3754 		features = netdev_intersect_features(features,
3755 						     dev->vlan_features |
3756 						     NETIF_F_HW_VLAN_CTAG_TX |
3757 						     NETIF_F_HW_VLAN_STAG_TX);
3758 
3759 	if (dev->netdev_ops->ndo_features_check)
3760 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3761 								features);
3762 	else
3763 		features &= dflt_features_check(skb, dev, features);
3764 
3765 	return harmonize_features(skb, features);
3766 }
3767 EXPORT_SYMBOL(netif_skb_features);
3768 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3769 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3770 		    struct netdev_queue *txq, bool more)
3771 {
3772 	unsigned int len;
3773 	int rc;
3774 
3775 	if (dev_nit_active_rcu(dev))
3776 		dev_queue_xmit_nit(skb, dev);
3777 
3778 	len = skb->len;
3779 	trace_net_dev_start_xmit(skb, dev);
3780 	rc = netdev_start_xmit(skb, dev, txq, more);
3781 	trace_net_dev_xmit(skb, rc, dev, len);
3782 
3783 	return rc;
3784 }
3785 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3786 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3787 				    struct netdev_queue *txq, int *ret)
3788 {
3789 	struct sk_buff *skb = first;
3790 	int rc = NETDEV_TX_OK;
3791 
3792 	while (skb) {
3793 		struct sk_buff *next = skb->next;
3794 
3795 		skb_mark_not_on_list(skb);
3796 		rc = xmit_one(skb, dev, txq, next != NULL);
3797 		if (unlikely(!dev_xmit_complete(rc))) {
3798 			skb->next = next;
3799 			goto out;
3800 		}
3801 
3802 		skb = next;
3803 		if (netif_tx_queue_stopped(txq) && skb) {
3804 			rc = NETDEV_TX_BUSY;
3805 			break;
3806 		}
3807 	}
3808 
3809 out:
3810 	*ret = rc;
3811 	return skb;
3812 }
3813 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3814 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3815 					  netdev_features_t features)
3816 {
3817 	if (skb_vlan_tag_present(skb) &&
3818 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3819 		skb = __vlan_hwaccel_push_inside(skb);
3820 	return skb;
3821 }
3822 
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3823 int skb_csum_hwoffload_help(struct sk_buff *skb,
3824 			    const netdev_features_t features)
3825 {
3826 	if (unlikely(skb_csum_is_sctp(skb)))
3827 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3828 			skb_crc32c_csum_help(skb);
3829 
3830 	if (features & NETIF_F_HW_CSUM)
3831 		return 0;
3832 
3833 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3834 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3835 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3836 		    !ipv6_has_hopopt_jumbo(skb))
3837 			goto sw_checksum;
3838 
3839 		switch (skb->csum_offset) {
3840 		case offsetof(struct tcphdr, check):
3841 		case offsetof(struct udphdr, check):
3842 			return 0;
3843 		}
3844 	}
3845 
3846 sw_checksum:
3847 	return skb_checksum_help(skb);
3848 }
3849 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3850 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3851 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3852 {
3853 	netdev_features_t features;
3854 
3855 	if (!skb_frags_readable(skb))
3856 		goto out_kfree_skb;
3857 
3858 	features = netif_skb_features(skb);
3859 	skb = validate_xmit_vlan(skb, features);
3860 	if (unlikely(!skb))
3861 		goto out_null;
3862 
3863 	skb = sk_validate_xmit_skb(skb, dev);
3864 	if (unlikely(!skb))
3865 		goto out_null;
3866 
3867 	if (netif_needs_gso(skb, features)) {
3868 		struct sk_buff *segs;
3869 
3870 		segs = skb_gso_segment(skb, features);
3871 		if (IS_ERR(segs)) {
3872 			goto out_kfree_skb;
3873 		} else if (segs) {
3874 			consume_skb(skb);
3875 			skb = segs;
3876 		}
3877 	} else {
3878 		if (skb_needs_linearize(skb, features) &&
3879 		    __skb_linearize(skb))
3880 			goto out_kfree_skb;
3881 
3882 		/* If packet is not checksummed and device does not
3883 		 * support checksumming for this protocol, complete
3884 		 * checksumming here.
3885 		 */
3886 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3887 			if (skb->encapsulation)
3888 				skb_set_inner_transport_header(skb,
3889 							       skb_checksum_start_offset(skb));
3890 			else
3891 				skb_set_transport_header(skb,
3892 							 skb_checksum_start_offset(skb));
3893 			if (skb_csum_hwoffload_help(skb, features))
3894 				goto out_kfree_skb;
3895 		}
3896 	}
3897 
3898 	skb = validate_xmit_xfrm(skb, features, again);
3899 
3900 	return skb;
3901 
3902 out_kfree_skb:
3903 	kfree_skb(skb);
3904 out_null:
3905 	dev_core_stats_tx_dropped_inc(dev);
3906 	return NULL;
3907 }
3908 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3909 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3910 {
3911 	struct sk_buff *next, *head = NULL, *tail;
3912 
3913 	for (; skb != NULL; skb = next) {
3914 		next = skb->next;
3915 		skb_mark_not_on_list(skb);
3916 
3917 		/* in case skb won't be segmented, point to itself */
3918 		skb->prev = skb;
3919 
3920 		skb = validate_xmit_skb(skb, dev, again);
3921 		if (!skb)
3922 			continue;
3923 
3924 		if (!head)
3925 			head = skb;
3926 		else
3927 			tail->next = skb;
3928 		/* If skb was segmented, skb->prev points to
3929 		 * the last segment. If not, it still contains skb.
3930 		 */
3931 		tail = skb->prev;
3932 	}
3933 	return head;
3934 }
3935 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3936 
qdisc_pkt_len_init(struct sk_buff * skb)3937 static void qdisc_pkt_len_init(struct sk_buff *skb)
3938 {
3939 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3940 
3941 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3942 
3943 	/* To get more precise estimation of bytes sent on wire,
3944 	 * we add to pkt_len the headers size of all segments
3945 	 */
3946 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3947 		u16 gso_segs = shinfo->gso_segs;
3948 		unsigned int hdr_len;
3949 
3950 		/* mac layer + network layer */
3951 		hdr_len = skb_transport_offset(skb);
3952 
3953 		/* + transport layer */
3954 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3955 			const struct tcphdr *th;
3956 			struct tcphdr _tcphdr;
3957 
3958 			th = skb_header_pointer(skb, hdr_len,
3959 						sizeof(_tcphdr), &_tcphdr);
3960 			if (likely(th))
3961 				hdr_len += __tcp_hdrlen(th);
3962 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3963 			struct udphdr _udphdr;
3964 
3965 			if (skb_header_pointer(skb, hdr_len,
3966 					       sizeof(_udphdr), &_udphdr))
3967 				hdr_len += sizeof(struct udphdr);
3968 		}
3969 
3970 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3971 			int payload = skb->len - hdr_len;
3972 
3973 			/* Malicious packet. */
3974 			if (payload <= 0)
3975 				return;
3976 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3977 		}
3978 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3979 	}
3980 }
3981 
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)3982 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3983 			     struct sk_buff **to_free,
3984 			     struct netdev_queue *txq)
3985 {
3986 	int rc;
3987 
3988 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3989 	if (rc == NET_XMIT_SUCCESS)
3990 		trace_qdisc_enqueue(q, txq, skb);
3991 	return rc;
3992 }
3993 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3994 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3995 				 struct net_device *dev,
3996 				 struct netdev_queue *txq)
3997 {
3998 	spinlock_t *root_lock = qdisc_lock(q);
3999 	struct sk_buff *to_free = NULL;
4000 	bool contended;
4001 	int rc;
4002 
4003 	qdisc_calculate_pkt_len(skb, q);
4004 
4005 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4006 
4007 	if (q->flags & TCQ_F_NOLOCK) {
4008 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4009 		    qdisc_run_begin(q)) {
4010 			/* Retest nolock_qdisc_is_empty() within the protection
4011 			 * of q->seqlock to protect from racing with requeuing.
4012 			 */
4013 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4014 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4015 				__qdisc_run(q);
4016 				qdisc_run_end(q);
4017 
4018 				goto no_lock_out;
4019 			}
4020 
4021 			qdisc_bstats_cpu_update(q, skb);
4022 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4023 			    !nolock_qdisc_is_empty(q))
4024 				__qdisc_run(q);
4025 
4026 			qdisc_run_end(q);
4027 			return NET_XMIT_SUCCESS;
4028 		}
4029 
4030 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4031 		qdisc_run(q);
4032 
4033 no_lock_out:
4034 		if (unlikely(to_free))
4035 			kfree_skb_list_reason(to_free,
4036 					      tcf_get_drop_reason(to_free));
4037 		return rc;
4038 	}
4039 
4040 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4041 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4042 		return NET_XMIT_DROP;
4043 	}
4044 	/*
4045 	 * Heuristic to force contended enqueues to serialize on a
4046 	 * separate lock before trying to get qdisc main lock.
4047 	 * This permits qdisc->running owner to get the lock more
4048 	 * often and dequeue packets faster.
4049 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4050 	 * and then other tasks will only enqueue packets. The packets will be
4051 	 * sent after the qdisc owner is scheduled again. To prevent this
4052 	 * scenario the task always serialize on the lock.
4053 	 */
4054 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4055 	if (unlikely(contended))
4056 		spin_lock(&q->busylock);
4057 
4058 	spin_lock(root_lock);
4059 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4060 		__qdisc_drop(skb, &to_free);
4061 		rc = NET_XMIT_DROP;
4062 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4063 		   qdisc_run_begin(q)) {
4064 		/*
4065 		 * This is a work-conserving queue; there are no old skbs
4066 		 * waiting to be sent out; and the qdisc is not running -
4067 		 * xmit the skb directly.
4068 		 */
4069 
4070 		qdisc_bstats_update(q, skb);
4071 
4072 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4073 			if (unlikely(contended)) {
4074 				spin_unlock(&q->busylock);
4075 				contended = false;
4076 			}
4077 			__qdisc_run(q);
4078 		}
4079 
4080 		qdisc_run_end(q);
4081 		rc = NET_XMIT_SUCCESS;
4082 	} else {
4083 		WRITE_ONCE(q->owner, smp_processor_id());
4084 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4085 		WRITE_ONCE(q->owner, -1);
4086 		if (qdisc_run_begin(q)) {
4087 			if (unlikely(contended)) {
4088 				spin_unlock(&q->busylock);
4089 				contended = false;
4090 			}
4091 			__qdisc_run(q);
4092 			qdisc_run_end(q);
4093 		}
4094 	}
4095 	spin_unlock(root_lock);
4096 	if (unlikely(to_free))
4097 		kfree_skb_list_reason(to_free,
4098 				      tcf_get_drop_reason(to_free));
4099 	if (unlikely(contended))
4100 		spin_unlock(&q->busylock);
4101 	return rc;
4102 }
4103 
4104 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)4105 static void skb_update_prio(struct sk_buff *skb)
4106 {
4107 	const struct netprio_map *map;
4108 	const struct sock *sk;
4109 	unsigned int prioidx;
4110 
4111 	if (skb->priority)
4112 		return;
4113 	map = rcu_dereference_bh(skb->dev->priomap);
4114 	if (!map)
4115 		return;
4116 	sk = skb_to_full_sk(skb);
4117 	if (!sk)
4118 		return;
4119 
4120 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4121 
4122 	if (prioidx < map->priomap_len)
4123 		skb->priority = map->priomap[prioidx];
4124 }
4125 #else
4126 #define skb_update_prio(skb)
4127 #endif
4128 
4129 /**
4130  *	dev_loopback_xmit - loop back @skb
4131  *	@net: network namespace this loopback is happening in
4132  *	@sk:  sk needed to be a netfilter okfn
4133  *	@skb: buffer to transmit
4134  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4135 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4136 {
4137 	skb_reset_mac_header(skb);
4138 	__skb_pull(skb, skb_network_offset(skb));
4139 	skb->pkt_type = PACKET_LOOPBACK;
4140 	if (skb->ip_summed == CHECKSUM_NONE)
4141 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4142 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4143 	skb_dst_force(skb);
4144 	netif_rx(skb);
4145 	return 0;
4146 }
4147 EXPORT_SYMBOL(dev_loopback_xmit);
4148 
4149 #ifdef CONFIG_NET_EGRESS
4150 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4151 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4152 {
4153 	int qm = skb_get_queue_mapping(skb);
4154 
4155 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4156 }
4157 
4158 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4159 static bool netdev_xmit_txqueue_skipped(void)
4160 {
4161 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4162 }
4163 
netdev_xmit_skip_txqueue(bool skip)4164 void netdev_xmit_skip_txqueue(bool skip)
4165 {
4166 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4167 }
4168 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4169 
4170 #else
netdev_xmit_txqueue_skipped(void)4171 static bool netdev_xmit_txqueue_skipped(void)
4172 {
4173 	return current->net_xmit.skip_txqueue;
4174 }
4175 
netdev_xmit_skip_txqueue(bool skip)4176 void netdev_xmit_skip_txqueue(bool skip)
4177 {
4178 	current->net_xmit.skip_txqueue = skip;
4179 }
4180 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4181 #endif
4182 #endif /* CONFIG_NET_EGRESS */
4183 
4184 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4185 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4186 		  enum skb_drop_reason *drop_reason)
4187 {
4188 	int ret = TC_ACT_UNSPEC;
4189 #ifdef CONFIG_NET_CLS_ACT
4190 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4191 	struct tcf_result res;
4192 
4193 	if (!miniq)
4194 		return ret;
4195 
4196 	/* Global bypass */
4197 	if (!static_branch_likely(&tcf_sw_enabled_key))
4198 		return ret;
4199 
4200 	/* Block-wise bypass */
4201 	if (tcf_block_bypass_sw(miniq->block))
4202 		return ret;
4203 
4204 	tc_skb_cb(skb)->mru = 0;
4205 	tc_skb_cb(skb)->post_ct = false;
4206 	tcf_set_drop_reason(skb, *drop_reason);
4207 
4208 	mini_qdisc_bstats_cpu_update(miniq, skb);
4209 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4210 	/* Only tcf related quirks below. */
4211 	switch (ret) {
4212 	case TC_ACT_SHOT:
4213 		*drop_reason = tcf_get_drop_reason(skb);
4214 		mini_qdisc_qstats_cpu_drop(miniq);
4215 		break;
4216 	case TC_ACT_OK:
4217 	case TC_ACT_RECLASSIFY:
4218 		skb->tc_index = TC_H_MIN(res.classid);
4219 		break;
4220 	}
4221 #endif /* CONFIG_NET_CLS_ACT */
4222 	return ret;
4223 }
4224 
4225 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4226 
tcx_inc(void)4227 void tcx_inc(void)
4228 {
4229 	static_branch_inc(&tcx_needed_key);
4230 }
4231 
tcx_dec(void)4232 void tcx_dec(void)
4233 {
4234 	static_branch_dec(&tcx_needed_key);
4235 }
4236 
4237 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4238 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4239 	const bool needs_mac)
4240 {
4241 	const struct bpf_mprog_fp *fp;
4242 	const struct bpf_prog *prog;
4243 	int ret = TCX_NEXT;
4244 
4245 	if (needs_mac)
4246 		__skb_push(skb, skb->mac_len);
4247 	bpf_mprog_foreach_prog(entry, fp, prog) {
4248 		bpf_compute_data_pointers(skb);
4249 		ret = bpf_prog_run(prog, skb);
4250 		if (ret != TCX_NEXT)
4251 			break;
4252 	}
4253 	if (needs_mac)
4254 		__skb_pull(skb, skb->mac_len);
4255 	return tcx_action_code(skb, ret);
4256 }
4257 
4258 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4259 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4260 		   struct net_device *orig_dev, bool *another)
4261 {
4262 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4263 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4264 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4265 	int sch_ret;
4266 
4267 	if (!entry)
4268 		return skb;
4269 
4270 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4271 	if (*pt_prev) {
4272 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4273 		*pt_prev = NULL;
4274 	}
4275 
4276 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4277 	tcx_set_ingress(skb, true);
4278 
4279 	if (static_branch_unlikely(&tcx_needed_key)) {
4280 		sch_ret = tcx_run(entry, skb, true);
4281 		if (sch_ret != TC_ACT_UNSPEC)
4282 			goto ingress_verdict;
4283 	}
4284 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4285 ingress_verdict:
4286 	switch (sch_ret) {
4287 	case TC_ACT_REDIRECT:
4288 		/* skb_mac_header check was done by BPF, so we can safely
4289 		 * push the L2 header back before redirecting to another
4290 		 * netdev.
4291 		 */
4292 		__skb_push(skb, skb->mac_len);
4293 		if (skb_do_redirect(skb) == -EAGAIN) {
4294 			__skb_pull(skb, skb->mac_len);
4295 			*another = true;
4296 			break;
4297 		}
4298 		*ret = NET_RX_SUCCESS;
4299 		bpf_net_ctx_clear(bpf_net_ctx);
4300 		return NULL;
4301 	case TC_ACT_SHOT:
4302 		kfree_skb_reason(skb, drop_reason);
4303 		*ret = NET_RX_DROP;
4304 		bpf_net_ctx_clear(bpf_net_ctx);
4305 		return NULL;
4306 	/* used by tc_run */
4307 	case TC_ACT_STOLEN:
4308 	case TC_ACT_QUEUED:
4309 	case TC_ACT_TRAP:
4310 		consume_skb(skb);
4311 		fallthrough;
4312 	case TC_ACT_CONSUMED:
4313 		*ret = NET_RX_SUCCESS;
4314 		bpf_net_ctx_clear(bpf_net_ctx);
4315 		return NULL;
4316 	}
4317 	bpf_net_ctx_clear(bpf_net_ctx);
4318 
4319 	return skb;
4320 }
4321 
4322 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4323 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4324 {
4325 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4326 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4327 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4328 	int sch_ret;
4329 
4330 	if (!entry)
4331 		return skb;
4332 
4333 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4334 
4335 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4336 	 * already set by the caller.
4337 	 */
4338 	if (static_branch_unlikely(&tcx_needed_key)) {
4339 		sch_ret = tcx_run(entry, skb, false);
4340 		if (sch_ret != TC_ACT_UNSPEC)
4341 			goto egress_verdict;
4342 	}
4343 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4344 egress_verdict:
4345 	switch (sch_ret) {
4346 	case TC_ACT_REDIRECT:
4347 		/* No need to push/pop skb's mac_header here on egress! */
4348 		skb_do_redirect(skb);
4349 		*ret = NET_XMIT_SUCCESS;
4350 		bpf_net_ctx_clear(bpf_net_ctx);
4351 		return NULL;
4352 	case TC_ACT_SHOT:
4353 		kfree_skb_reason(skb, drop_reason);
4354 		*ret = NET_XMIT_DROP;
4355 		bpf_net_ctx_clear(bpf_net_ctx);
4356 		return NULL;
4357 	/* used by tc_run */
4358 	case TC_ACT_STOLEN:
4359 	case TC_ACT_QUEUED:
4360 	case TC_ACT_TRAP:
4361 		consume_skb(skb);
4362 		fallthrough;
4363 	case TC_ACT_CONSUMED:
4364 		*ret = NET_XMIT_SUCCESS;
4365 		bpf_net_ctx_clear(bpf_net_ctx);
4366 		return NULL;
4367 	}
4368 	bpf_net_ctx_clear(bpf_net_ctx);
4369 
4370 	return skb;
4371 }
4372 #else
4373 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4374 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4375 		   struct net_device *orig_dev, bool *another)
4376 {
4377 	return skb;
4378 }
4379 
4380 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4381 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4382 {
4383 	return skb;
4384 }
4385 #endif /* CONFIG_NET_XGRESS */
4386 
4387 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4388 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4389 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4390 {
4391 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4392 	struct xps_map *map;
4393 	int queue_index = -1;
4394 
4395 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4396 		return queue_index;
4397 
4398 	tci *= dev_maps->num_tc;
4399 	tci += tc;
4400 
4401 	map = rcu_dereference(dev_maps->attr_map[tci]);
4402 	if (map) {
4403 		if (map->len == 1)
4404 			queue_index = map->queues[0];
4405 		else
4406 			queue_index = map->queues[reciprocal_scale(
4407 						skb_get_hash(skb), map->len)];
4408 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4409 			queue_index = -1;
4410 	}
4411 	return queue_index;
4412 }
4413 #endif
4414 
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4415 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4416 			 struct sk_buff *skb)
4417 {
4418 #ifdef CONFIG_XPS
4419 	struct xps_dev_maps *dev_maps;
4420 	struct sock *sk = skb->sk;
4421 	int queue_index = -1;
4422 
4423 	if (!static_key_false(&xps_needed))
4424 		return -1;
4425 
4426 	rcu_read_lock();
4427 	if (!static_key_false(&xps_rxqs_needed))
4428 		goto get_cpus_map;
4429 
4430 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4431 	if (dev_maps) {
4432 		int tci = sk_rx_queue_get(sk);
4433 
4434 		if (tci >= 0)
4435 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4436 							  tci);
4437 	}
4438 
4439 get_cpus_map:
4440 	if (queue_index < 0) {
4441 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4442 		if (dev_maps) {
4443 			unsigned int tci = skb->sender_cpu - 1;
4444 
4445 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4446 							  tci);
4447 		}
4448 	}
4449 	rcu_read_unlock();
4450 
4451 	return queue_index;
4452 #else
4453 	return -1;
4454 #endif
4455 }
4456 
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4457 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4458 		     struct net_device *sb_dev)
4459 {
4460 	return 0;
4461 }
4462 EXPORT_SYMBOL(dev_pick_tx_zero);
4463 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4464 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4465 		     struct net_device *sb_dev)
4466 {
4467 	struct sock *sk = skb->sk;
4468 	int queue_index = sk_tx_queue_get(sk);
4469 
4470 	sb_dev = sb_dev ? : dev;
4471 
4472 	if (queue_index < 0 || skb->ooo_okay ||
4473 	    queue_index >= dev->real_num_tx_queues) {
4474 		int new_index = get_xps_queue(dev, sb_dev, skb);
4475 
4476 		if (new_index < 0)
4477 			new_index = skb_tx_hash(dev, sb_dev, skb);
4478 
4479 		if (queue_index != new_index && sk &&
4480 		    sk_fullsock(sk) &&
4481 		    rcu_access_pointer(sk->sk_dst_cache))
4482 			sk_tx_queue_set(sk, new_index);
4483 
4484 		queue_index = new_index;
4485 	}
4486 
4487 	return queue_index;
4488 }
4489 EXPORT_SYMBOL(netdev_pick_tx);
4490 
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4491 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4492 					 struct sk_buff *skb,
4493 					 struct net_device *sb_dev)
4494 {
4495 	int queue_index = 0;
4496 
4497 #ifdef CONFIG_XPS
4498 	u32 sender_cpu = skb->sender_cpu - 1;
4499 
4500 	if (sender_cpu >= (u32)NR_CPUS)
4501 		skb->sender_cpu = raw_smp_processor_id() + 1;
4502 #endif
4503 
4504 	if (dev->real_num_tx_queues != 1) {
4505 		const struct net_device_ops *ops = dev->netdev_ops;
4506 
4507 		if (ops->ndo_select_queue)
4508 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4509 		else
4510 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4511 
4512 		queue_index = netdev_cap_txqueue(dev, queue_index);
4513 	}
4514 
4515 	skb_set_queue_mapping(skb, queue_index);
4516 	return netdev_get_tx_queue(dev, queue_index);
4517 }
4518 
4519 /**
4520  * __dev_queue_xmit() - transmit a buffer
4521  * @skb:	buffer to transmit
4522  * @sb_dev:	suboordinate device used for L2 forwarding offload
4523  *
4524  * Queue a buffer for transmission to a network device. The caller must
4525  * have set the device and priority and built the buffer before calling
4526  * this function. The function can be called from an interrupt.
4527  *
4528  * When calling this method, interrupts MUST be enabled. This is because
4529  * the BH enable code must have IRQs enabled so that it will not deadlock.
4530  *
4531  * Regardless of the return value, the skb is consumed, so it is currently
4532  * difficult to retry a send to this method. (You can bump the ref count
4533  * before sending to hold a reference for retry if you are careful.)
4534  *
4535  * Return:
4536  * * 0				- buffer successfully transmitted
4537  * * positive qdisc return code	- NET_XMIT_DROP etc.
4538  * * negative errno		- other errors
4539  */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4540 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4541 {
4542 	struct net_device *dev = skb->dev;
4543 	struct netdev_queue *txq = NULL;
4544 	struct Qdisc *q;
4545 	int rc = -ENOMEM;
4546 	bool again = false;
4547 
4548 	skb_reset_mac_header(skb);
4549 	skb_assert_len(skb);
4550 
4551 	if (unlikely(skb_shinfo(skb)->tx_flags &
4552 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4553 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4554 
4555 	/* Disable soft irqs for various locks below. Also
4556 	 * stops preemption for RCU.
4557 	 */
4558 	rcu_read_lock_bh();
4559 
4560 	skb_update_prio(skb);
4561 
4562 	qdisc_pkt_len_init(skb);
4563 	tcx_set_ingress(skb, false);
4564 #ifdef CONFIG_NET_EGRESS
4565 	if (static_branch_unlikely(&egress_needed_key)) {
4566 		if (nf_hook_egress_active()) {
4567 			skb = nf_hook_egress(skb, &rc, dev);
4568 			if (!skb)
4569 				goto out;
4570 		}
4571 
4572 		netdev_xmit_skip_txqueue(false);
4573 
4574 		nf_skip_egress(skb, true);
4575 		skb = sch_handle_egress(skb, &rc, dev);
4576 		if (!skb)
4577 			goto out;
4578 		nf_skip_egress(skb, false);
4579 
4580 		if (netdev_xmit_txqueue_skipped())
4581 			txq = netdev_tx_queue_mapping(dev, skb);
4582 	}
4583 #endif
4584 	/* If device/qdisc don't need skb->dst, release it right now while
4585 	 * its hot in this cpu cache.
4586 	 */
4587 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4588 		skb_dst_drop(skb);
4589 	else
4590 		skb_dst_force(skb);
4591 
4592 	if (!txq)
4593 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4594 
4595 	q = rcu_dereference_bh(txq->qdisc);
4596 
4597 	trace_net_dev_queue(skb);
4598 	if (q->enqueue) {
4599 		rc = __dev_xmit_skb(skb, q, dev, txq);
4600 		goto out;
4601 	}
4602 
4603 	/* The device has no queue. Common case for software devices:
4604 	 * loopback, all the sorts of tunnels...
4605 
4606 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4607 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4608 	 * counters.)
4609 	 * However, it is possible, that they rely on protection
4610 	 * made by us here.
4611 
4612 	 * Check this and shot the lock. It is not prone from deadlocks.
4613 	 *Either shot noqueue qdisc, it is even simpler 8)
4614 	 */
4615 	if (dev->flags & IFF_UP) {
4616 		int cpu = smp_processor_id(); /* ok because BHs are off */
4617 
4618 		/* Other cpus might concurrently change txq->xmit_lock_owner
4619 		 * to -1 or to their cpu id, but not to our id.
4620 		 */
4621 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4622 			if (dev_xmit_recursion())
4623 				goto recursion_alert;
4624 
4625 			skb = validate_xmit_skb(skb, dev, &again);
4626 			if (!skb)
4627 				goto out;
4628 
4629 			HARD_TX_LOCK(dev, txq, cpu);
4630 
4631 			if (!netif_xmit_stopped(txq)) {
4632 				dev_xmit_recursion_inc();
4633 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4634 				dev_xmit_recursion_dec();
4635 				if (dev_xmit_complete(rc)) {
4636 					HARD_TX_UNLOCK(dev, txq);
4637 					goto out;
4638 				}
4639 			}
4640 			HARD_TX_UNLOCK(dev, txq);
4641 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4642 					     dev->name);
4643 		} else {
4644 			/* Recursion is detected! It is possible,
4645 			 * unfortunately
4646 			 */
4647 recursion_alert:
4648 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4649 					     dev->name);
4650 		}
4651 	}
4652 
4653 	rc = -ENETDOWN;
4654 	rcu_read_unlock_bh();
4655 
4656 	dev_core_stats_tx_dropped_inc(dev);
4657 	kfree_skb_list(skb);
4658 	return rc;
4659 out:
4660 	rcu_read_unlock_bh();
4661 	return rc;
4662 }
4663 EXPORT_SYMBOL(__dev_queue_xmit);
4664 
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4665 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4666 {
4667 	struct net_device *dev = skb->dev;
4668 	struct sk_buff *orig_skb = skb;
4669 	struct netdev_queue *txq;
4670 	int ret = NETDEV_TX_BUSY;
4671 	bool again = false;
4672 
4673 	if (unlikely(!netif_running(dev) ||
4674 		     !netif_carrier_ok(dev)))
4675 		goto drop;
4676 
4677 	skb = validate_xmit_skb_list(skb, dev, &again);
4678 	if (skb != orig_skb)
4679 		goto drop;
4680 
4681 	skb_set_queue_mapping(skb, queue_id);
4682 	txq = skb_get_tx_queue(dev, skb);
4683 
4684 	local_bh_disable();
4685 
4686 	dev_xmit_recursion_inc();
4687 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4688 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4689 		ret = netdev_start_xmit(skb, dev, txq, false);
4690 	HARD_TX_UNLOCK(dev, txq);
4691 	dev_xmit_recursion_dec();
4692 
4693 	local_bh_enable();
4694 	return ret;
4695 drop:
4696 	dev_core_stats_tx_dropped_inc(dev);
4697 	kfree_skb_list(skb);
4698 	return NET_XMIT_DROP;
4699 }
4700 EXPORT_SYMBOL(__dev_direct_xmit);
4701 
4702 /*************************************************************************
4703  *			Receiver routines
4704  *************************************************************************/
4705 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4706 
4707 int weight_p __read_mostly = 64;           /* old backlog weight */
4708 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4709 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4710 
4711 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4712 static inline void ____napi_schedule(struct softnet_data *sd,
4713 				     struct napi_struct *napi)
4714 {
4715 	struct task_struct *thread;
4716 
4717 	lockdep_assert_irqs_disabled();
4718 
4719 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4720 		/* Paired with smp_mb__before_atomic() in
4721 		 * napi_enable()/dev_set_threaded().
4722 		 * Use READ_ONCE() to guarantee a complete
4723 		 * read on napi->thread. Only call
4724 		 * wake_up_process() when it's not NULL.
4725 		 */
4726 		thread = READ_ONCE(napi->thread);
4727 		if (thread) {
4728 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4729 				goto use_local_napi;
4730 
4731 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4732 			wake_up_process(thread);
4733 			return;
4734 		}
4735 	}
4736 
4737 use_local_napi:
4738 	list_add_tail(&napi->poll_list, &sd->poll_list);
4739 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4740 	/* If not called from net_rx_action()
4741 	 * we have to raise NET_RX_SOFTIRQ.
4742 	 */
4743 	if (!sd->in_net_rx_action)
4744 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4745 }
4746 
4747 #ifdef CONFIG_RPS
4748 
4749 struct static_key_false rps_needed __read_mostly;
4750 EXPORT_SYMBOL(rps_needed);
4751 struct static_key_false rfs_needed __read_mostly;
4752 EXPORT_SYMBOL(rfs_needed);
4753 
rfs_slot(u32 hash,const struct rps_dev_flow_table * flow_table)4754 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4755 {
4756 	return hash_32(hash, flow_table->log);
4757 }
4758 
4759 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4760 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4761 	    struct rps_dev_flow *rflow, u16 next_cpu)
4762 {
4763 	if (next_cpu < nr_cpu_ids) {
4764 		u32 head;
4765 #ifdef CONFIG_RFS_ACCEL
4766 		struct netdev_rx_queue *rxqueue;
4767 		struct rps_dev_flow_table *flow_table;
4768 		struct rps_dev_flow *old_rflow;
4769 		u16 rxq_index;
4770 		u32 flow_id;
4771 		int rc;
4772 
4773 		/* Should we steer this flow to a different hardware queue? */
4774 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4775 		    !(dev->features & NETIF_F_NTUPLE))
4776 			goto out;
4777 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4778 		if (rxq_index == skb_get_rx_queue(skb))
4779 			goto out;
4780 
4781 		rxqueue = dev->_rx + rxq_index;
4782 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4783 		if (!flow_table)
4784 			goto out;
4785 		flow_id = rfs_slot(skb_get_hash(skb), flow_table);
4786 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4787 							rxq_index, flow_id);
4788 		if (rc < 0)
4789 			goto out;
4790 		old_rflow = rflow;
4791 		rflow = &flow_table->flows[flow_id];
4792 		WRITE_ONCE(rflow->filter, rc);
4793 		if (old_rflow->filter == rc)
4794 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4795 	out:
4796 #endif
4797 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4798 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4799 	}
4800 
4801 	WRITE_ONCE(rflow->cpu, next_cpu);
4802 	return rflow;
4803 }
4804 
4805 /*
4806  * get_rps_cpu is called from netif_receive_skb and returns the target
4807  * CPU from the RPS map of the receiving queue for a given skb.
4808  * rcu_read_lock must be held on entry.
4809  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4810 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4811 		       struct rps_dev_flow **rflowp)
4812 {
4813 	const struct rps_sock_flow_table *sock_flow_table;
4814 	struct netdev_rx_queue *rxqueue = dev->_rx;
4815 	struct rps_dev_flow_table *flow_table;
4816 	struct rps_map *map;
4817 	int cpu = -1;
4818 	u32 tcpu;
4819 	u32 hash;
4820 
4821 	if (skb_rx_queue_recorded(skb)) {
4822 		u16 index = skb_get_rx_queue(skb);
4823 
4824 		if (unlikely(index >= dev->real_num_rx_queues)) {
4825 			WARN_ONCE(dev->real_num_rx_queues > 1,
4826 				  "%s received packet on queue %u, but number "
4827 				  "of RX queues is %u\n",
4828 				  dev->name, index, dev->real_num_rx_queues);
4829 			goto done;
4830 		}
4831 		rxqueue += index;
4832 	}
4833 
4834 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4835 
4836 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4837 	map = rcu_dereference(rxqueue->rps_map);
4838 	if (!flow_table && !map)
4839 		goto done;
4840 
4841 	skb_reset_network_header(skb);
4842 	hash = skb_get_hash(skb);
4843 	if (!hash)
4844 		goto done;
4845 
4846 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4847 	if (flow_table && sock_flow_table) {
4848 		struct rps_dev_flow *rflow;
4849 		u32 next_cpu;
4850 		u32 ident;
4851 
4852 		/* First check into global flow table if there is a match.
4853 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4854 		 */
4855 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4856 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4857 			goto try_rps;
4858 
4859 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4860 
4861 		/* OK, now we know there is a match,
4862 		 * we can look at the local (per receive queue) flow table
4863 		 */
4864 		rflow = &flow_table->flows[rfs_slot(hash, flow_table)];
4865 		tcpu = rflow->cpu;
4866 
4867 		/*
4868 		 * If the desired CPU (where last recvmsg was done) is
4869 		 * different from current CPU (one in the rx-queue flow
4870 		 * table entry), switch if one of the following holds:
4871 		 *   - Current CPU is unset (>= nr_cpu_ids).
4872 		 *   - Current CPU is offline.
4873 		 *   - The current CPU's queue tail has advanced beyond the
4874 		 *     last packet that was enqueued using this table entry.
4875 		 *     This guarantees that all previous packets for the flow
4876 		 *     have been dequeued, thus preserving in order delivery.
4877 		 */
4878 		if (unlikely(tcpu != next_cpu) &&
4879 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4880 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4881 		      rflow->last_qtail)) >= 0)) {
4882 			tcpu = next_cpu;
4883 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4884 		}
4885 
4886 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4887 			*rflowp = rflow;
4888 			cpu = tcpu;
4889 			goto done;
4890 		}
4891 	}
4892 
4893 try_rps:
4894 
4895 	if (map) {
4896 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4897 		if (cpu_online(tcpu)) {
4898 			cpu = tcpu;
4899 			goto done;
4900 		}
4901 	}
4902 
4903 done:
4904 	return cpu;
4905 }
4906 
4907 #ifdef CONFIG_RFS_ACCEL
4908 
4909 /**
4910  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4911  * @dev: Device on which the filter was set
4912  * @rxq_index: RX queue index
4913  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4914  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4915  *
4916  * Drivers that implement ndo_rx_flow_steer() should periodically call
4917  * this function for each installed filter and remove the filters for
4918  * which it returns %true.
4919  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4920 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4921 			 u32 flow_id, u16 filter_id)
4922 {
4923 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4924 	struct rps_dev_flow_table *flow_table;
4925 	struct rps_dev_flow *rflow;
4926 	bool expire = true;
4927 	unsigned int cpu;
4928 
4929 	rcu_read_lock();
4930 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4931 	if (flow_table && flow_id < (1UL << flow_table->log)) {
4932 		rflow = &flow_table->flows[flow_id];
4933 		cpu = READ_ONCE(rflow->cpu);
4934 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4935 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4936 			   READ_ONCE(rflow->last_qtail)) <
4937 		     (int)(10 << flow_table->log)))
4938 			expire = false;
4939 	}
4940 	rcu_read_unlock();
4941 	return expire;
4942 }
4943 EXPORT_SYMBOL(rps_may_expire_flow);
4944 
4945 #endif /* CONFIG_RFS_ACCEL */
4946 
4947 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4948 static void rps_trigger_softirq(void *data)
4949 {
4950 	struct softnet_data *sd = data;
4951 
4952 	____napi_schedule(sd, &sd->backlog);
4953 	sd->received_rps++;
4954 }
4955 
4956 #endif /* CONFIG_RPS */
4957 
4958 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)4959 static void trigger_rx_softirq(void *data)
4960 {
4961 	struct softnet_data *sd = data;
4962 
4963 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4964 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4965 }
4966 
4967 /*
4968  * After we queued a packet into sd->input_pkt_queue,
4969  * we need to make sure this queue is serviced soon.
4970  *
4971  * - If this is another cpu queue, link it to our rps_ipi_list,
4972  *   and make sure we will process rps_ipi_list from net_rx_action().
4973  *
4974  * - If this is our own queue, NAPI schedule our backlog.
4975  *   Note that this also raises NET_RX_SOFTIRQ.
4976  */
napi_schedule_rps(struct softnet_data * sd)4977 static void napi_schedule_rps(struct softnet_data *sd)
4978 {
4979 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4980 
4981 #ifdef CONFIG_RPS
4982 	if (sd != mysd) {
4983 		if (use_backlog_threads()) {
4984 			__napi_schedule_irqoff(&sd->backlog);
4985 			return;
4986 		}
4987 
4988 		sd->rps_ipi_next = mysd->rps_ipi_list;
4989 		mysd->rps_ipi_list = sd;
4990 
4991 		/* If not called from net_rx_action() or napi_threaded_poll()
4992 		 * we have to raise NET_RX_SOFTIRQ.
4993 		 */
4994 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4995 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4996 		return;
4997 	}
4998 #endif /* CONFIG_RPS */
4999 	__napi_schedule_irqoff(&mysd->backlog);
5000 }
5001 
kick_defer_list_purge(struct softnet_data * sd,unsigned int cpu)5002 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5003 {
5004 	unsigned long flags;
5005 
5006 	if (use_backlog_threads()) {
5007 		backlog_lock_irq_save(sd, &flags);
5008 
5009 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5010 			__napi_schedule_irqoff(&sd->backlog);
5011 
5012 		backlog_unlock_irq_restore(sd, &flags);
5013 
5014 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5015 		smp_call_function_single_async(cpu, &sd->defer_csd);
5016 	}
5017 }
5018 
5019 #ifdef CONFIG_NET_FLOW_LIMIT
5020 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5021 #endif
5022 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)5023 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5024 {
5025 #ifdef CONFIG_NET_FLOW_LIMIT
5026 	struct sd_flow_limit *fl;
5027 	struct softnet_data *sd;
5028 	unsigned int old_flow, new_flow;
5029 
5030 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5031 		return false;
5032 
5033 	sd = this_cpu_ptr(&softnet_data);
5034 
5035 	rcu_read_lock();
5036 	fl = rcu_dereference(sd->flow_limit);
5037 	if (fl) {
5038 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
5039 		old_flow = fl->history[fl->history_head];
5040 		fl->history[fl->history_head] = new_flow;
5041 
5042 		fl->history_head++;
5043 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5044 
5045 		if (likely(fl->buckets[old_flow]))
5046 			fl->buckets[old_flow]--;
5047 
5048 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5049 			fl->count++;
5050 			rcu_read_unlock();
5051 			return true;
5052 		}
5053 	}
5054 	rcu_read_unlock();
5055 #endif
5056 	return false;
5057 }
5058 
5059 /*
5060  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5061  * queue (may be a remote CPU queue).
5062  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)5063 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5064 			      unsigned int *qtail)
5065 {
5066 	enum skb_drop_reason reason;
5067 	struct softnet_data *sd;
5068 	unsigned long flags;
5069 	unsigned int qlen;
5070 	int max_backlog;
5071 	u32 tail;
5072 
5073 	reason = SKB_DROP_REASON_DEV_READY;
5074 	if (!netif_running(skb->dev))
5075 		goto bad_dev;
5076 
5077 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5078 	sd = &per_cpu(softnet_data, cpu);
5079 
5080 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5081 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5082 	if (unlikely(qlen > max_backlog))
5083 		goto cpu_backlog_drop;
5084 	backlog_lock_irq_save(sd, &flags);
5085 	qlen = skb_queue_len(&sd->input_pkt_queue);
5086 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5087 		if (!qlen) {
5088 			/* Schedule NAPI for backlog device. We can use
5089 			 * non atomic operation as we own the queue lock.
5090 			 */
5091 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5092 						&sd->backlog.state))
5093 				napi_schedule_rps(sd);
5094 		}
5095 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5096 		tail = rps_input_queue_tail_incr(sd);
5097 		backlog_unlock_irq_restore(sd, &flags);
5098 
5099 		/* save the tail outside of the critical section */
5100 		rps_input_queue_tail_save(qtail, tail);
5101 		return NET_RX_SUCCESS;
5102 	}
5103 
5104 	backlog_unlock_irq_restore(sd, &flags);
5105 
5106 cpu_backlog_drop:
5107 	atomic_inc(&sd->dropped);
5108 bad_dev:
5109 	dev_core_stats_rx_dropped_inc(skb->dev);
5110 	kfree_skb_reason(skb, reason);
5111 	return NET_RX_DROP;
5112 }
5113 
netif_get_rxqueue(struct sk_buff * skb)5114 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5115 {
5116 	struct net_device *dev = skb->dev;
5117 	struct netdev_rx_queue *rxqueue;
5118 
5119 	rxqueue = dev->_rx;
5120 
5121 	if (skb_rx_queue_recorded(skb)) {
5122 		u16 index = skb_get_rx_queue(skb);
5123 
5124 		if (unlikely(index >= dev->real_num_rx_queues)) {
5125 			WARN_ONCE(dev->real_num_rx_queues > 1,
5126 				  "%s received packet on queue %u, but number "
5127 				  "of RX queues is %u\n",
5128 				  dev->name, index, dev->real_num_rx_queues);
5129 
5130 			return rxqueue; /* Return first rxqueue */
5131 		}
5132 		rxqueue += index;
5133 	}
5134 	return rxqueue;
5135 }
5136 
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5137 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5138 			     const struct bpf_prog *xdp_prog)
5139 {
5140 	void *orig_data, *orig_data_end, *hard_start;
5141 	struct netdev_rx_queue *rxqueue;
5142 	bool orig_bcast, orig_host;
5143 	u32 mac_len, frame_sz;
5144 	__be16 orig_eth_type;
5145 	struct ethhdr *eth;
5146 	u32 metalen, act;
5147 	int off;
5148 
5149 	/* The XDP program wants to see the packet starting at the MAC
5150 	 * header.
5151 	 */
5152 	mac_len = skb->data - skb_mac_header(skb);
5153 	hard_start = skb->data - skb_headroom(skb);
5154 
5155 	/* SKB "head" area always have tailroom for skb_shared_info */
5156 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5157 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5158 
5159 	rxqueue = netif_get_rxqueue(skb);
5160 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5161 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5162 			 skb_headlen(skb) + mac_len, true);
5163 	if (skb_is_nonlinear(skb)) {
5164 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5165 		xdp_buff_set_frags_flag(xdp);
5166 	} else {
5167 		xdp_buff_clear_frags_flag(xdp);
5168 	}
5169 
5170 	orig_data_end = xdp->data_end;
5171 	orig_data = xdp->data;
5172 	eth = (struct ethhdr *)xdp->data;
5173 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5174 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5175 	orig_eth_type = eth->h_proto;
5176 
5177 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5178 
5179 	/* check if bpf_xdp_adjust_head was used */
5180 	off = xdp->data - orig_data;
5181 	if (off) {
5182 		if (off > 0)
5183 			__skb_pull(skb, off);
5184 		else if (off < 0)
5185 			__skb_push(skb, -off);
5186 
5187 		skb->mac_header += off;
5188 		skb_reset_network_header(skb);
5189 	}
5190 
5191 	/* check if bpf_xdp_adjust_tail was used */
5192 	off = xdp->data_end - orig_data_end;
5193 	if (off != 0) {
5194 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5195 		skb->len += off; /* positive on grow, negative on shrink */
5196 	}
5197 
5198 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5199 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5200 	 */
5201 	if (xdp_buff_has_frags(xdp))
5202 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5203 	else
5204 		skb->data_len = 0;
5205 
5206 	/* check if XDP changed eth hdr such SKB needs update */
5207 	eth = (struct ethhdr *)xdp->data;
5208 	if ((orig_eth_type != eth->h_proto) ||
5209 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5210 						  skb->dev->dev_addr)) ||
5211 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5212 		__skb_push(skb, ETH_HLEN);
5213 		skb->pkt_type = PACKET_HOST;
5214 		skb->protocol = eth_type_trans(skb, skb->dev);
5215 	}
5216 
5217 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5218 	 * before calling us again on redirect path. We do not call do_redirect
5219 	 * as we leave that up to the caller.
5220 	 *
5221 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5222 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5223 	 */
5224 	switch (act) {
5225 	case XDP_REDIRECT:
5226 	case XDP_TX:
5227 		__skb_push(skb, mac_len);
5228 		break;
5229 	case XDP_PASS:
5230 		metalen = xdp->data - xdp->data_meta;
5231 		if (metalen)
5232 			skb_metadata_set(skb, metalen);
5233 		break;
5234 	}
5235 
5236 	return act;
5237 }
5238 
5239 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,const struct bpf_prog * prog)5240 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5241 {
5242 	struct sk_buff *skb = *pskb;
5243 	int err, hroom, troom;
5244 
5245 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5246 		return 0;
5247 
5248 	/* In case we have to go down the path and also linearize,
5249 	 * then lets do the pskb_expand_head() work just once here.
5250 	 */
5251 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5252 	troom = skb->tail + skb->data_len - skb->end;
5253 	err = pskb_expand_head(skb,
5254 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5255 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5256 	if (err)
5257 		return err;
5258 
5259 	return skb_linearize(skb);
5260 }
5261 
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5262 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5263 				     struct xdp_buff *xdp,
5264 				     const struct bpf_prog *xdp_prog)
5265 {
5266 	struct sk_buff *skb = *pskb;
5267 	u32 mac_len, act = XDP_DROP;
5268 
5269 	/* Reinjected packets coming from act_mirred or similar should
5270 	 * not get XDP generic processing.
5271 	 */
5272 	if (skb_is_redirected(skb))
5273 		return XDP_PASS;
5274 
5275 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5276 	 * bytes. This is the guarantee that also native XDP provides,
5277 	 * thus we need to do it here as well.
5278 	 */
5279 	mac_len = skb->data - skb_mac_header(skb);
5280 	__skb_push(skb, mac_len);
5281 
5282 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5283 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5284 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5285 			goto do_drop;
5286 	}
5287 
5288 	__skb_pull(*pskb, mac_len);
5289 
5290 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5291 	switch (act) {
5292 	case XDP_REDIRECT:
5293 	case XDP_TX:
5294 	case XDP_PASS:
5295 		break;
5296 	default:
5297 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5298 		fallthrough;
5299 	case XDP_ABORTED:
5300 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5301 		fallthrough;
5302 	case XDP_DROP:
5303 	do_drop:
5304 		kfree_skb(*pskb);
5305 		break;
5306 	}
5307 
5308 	return act;
5309 }
5310 
5311 /* When doing generic XDP we have to bypass the qdisc layer and the
5312  * network taps in order to match in-driver-XDP behavior. This also means
5313  * that XDP packets are able to starve other packets going through a qdisc,
5314  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5315  * queues, so they do not have this starvation issue.
5316  */
generic_xdp_tx(struct sk_buff * skb,const struct bpf_prog * xdp_prog)5317 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5318 {
5319 	struct net_device *dev = skb->dev;
5320 	struct netdev_queue *txq;
5321 	bool free_skb = true;
5322 	int cpu, rc;
5323 
5324 	txq = netdev_core_pick_tx(dev, skb, NULL);
5325 	cpu = smp_processor_id();
5326 	HARD_TX_LOCK(dev, txq, cpu);
5327 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5328 		rc = netdev_start_xmit(skb, dev, txq, 0);
5329 		if (dev_xmit_complete(rc))
5330 			free_skb = false;
5331 	}
5332 	HARD_TX_UNLOCK(dev, txq);
5333 	if (free_skb) {
5334 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5335 		dev_core_stats_tx_dropped_inc(dev);
5336 		kfree_skb(skb);
5337 	}
5338 }
5339 
5340 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5341 
do_xdp_generic(const struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5342 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5343 {
5344 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5345 
5346 	if (xdp_prog) {
5347 		struct xdp_buff xdp;
5348 		u32 act;
5349 		int err;
5350 
5351 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5352 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5353 		if (act != XDP_PASS) {
5354 			switch (act) {
5355 			case XDP_REDIRECT:
5356 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5357 							      &xdp, xdp_prog);
5358 				if (err)
5359 					goto out_redir;
5360 				break;
5361 			case XDP_TX:
5362 				generic_xdp_tx(*pskb, xdp_prog);
5363 				break;
5364 			}
5365 			bpf_net_ctx_clear(bpf_net_ctx);
5366 			return XDP_DROP;
5367 		}
5368 		bpf_net_ctx_clear(bpf_net_ctx);
5369 	}
5370 	return XDP_PASS;
5371 out_redir:
5372 	bpf_net_ctx_clear(bpf_net_ctx);
5373 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5374 	return XDP_DROP;
5375 }
5376 EXPORT_SYMBOL_GPL(do_xdp_generic);
5377 
netif_rx_internal(struct sk_buff * skb)5378 static int netif_rx_internal(struct sk_buff *skb)
5379 {
5380 	int ret;
5381 
5382 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5383 
5384 	trace_netif_rx(skb);
5385 
5386 #ifdef CONFIG_RPS
5387 	if (static_branch_unlikely(&rps_needed)) {
5388 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5389 		int cpu;
5390 
5391 		rcu_read_lock();
5392 
5393 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5394 		if (cpu < 0)
5395 			cpu = smp_processor_id();
5396 
5397 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5398 
5399 		rcu_read_unlock();
5400 	} else
5401 #endif
5402 	{
5403 		unsigned int qtail;
5404 
5405 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5406 	}
5407 	return ret;
5408 }
5409 
5410 /**
5411  *	__netif_rx	-	Slightly optimized version of netif_rx
5412  *	@skb: buffer to post
5413  *
5414  *	This behaves as netif_rx except that it does not disable bottom halves.
5415  *	As a result this function may only be invoked from the interrupt context
5416  *	(either hard or soft interrupt).
5417  */
__netif_rx(struct sk_buff * skb)5418 int __netif_rx(struct sk_buff *skb)
5419 {
5420 	int ret;
5421 
5422 	lockdep_assert_once(hardirq_count() | softirq_count());
5423 
5424 	trace_netif_rx_entry(skb);
5425 	ret = netif_rx_internal(skb);
5426 	trace_netif_rx_exit(ret);
5427 	return ret;
5428 }
5429 EXPORT_SYMBOL(__netif_rx);
5430 
5431 /**
5432  *	netif_rx	-	post buffer to the network code
5433  *	@skb: buffer to post
5434  *
5435  *	This function receives a packet from a device driver and queues it for
5436  *	the upper (protocol) levels to process via the backlog NAPI device. It
5437  *	always succeeds. The buffer may be dropped during processing for
5438  *	congestion control or by the protocol layers.
5439  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5440  *	driver should use NAPI and GRO.
5441  *	This function can used from interrupt and from process context. The
5442  *	caller from process context must not disable interrupts before invoking
5443  *	this function.
5444  *
5445  *	return values:
5446  *	NET_RX_SUCCESS	(no congestion)
5447  *	NET_RX_DROP     (packet was dropped)
5448  *
5449  */
netif_rx(struct sk_buff * skb)5450 int netif_rx(struct sk_buff *skb)
5451 {
5452 	bool need_bh_off = !(hardirq_count() | softirq_count());
5453 	int ret;
5454 
5455 	if (need_bh_off)
5456 		local_bh_disable();
5457 	trace_netif_rx_entry(skb);
5458 	ret = netif_rx_internal(skb);
5459 	trace_netif_rx_exit(ret);
5460 	if (need_bh_off)
5461 		local_bh_enable();
5462 	return ret;
5463 }
5464 EXPORT_SYMBOL(netif_rx);
5465 
net_tx_action(void)5466 static __latent_entropy void net_tx_action(void)
5467 {
5468 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5469 
5470 	if (sd->completion_queue) {
5471 		struct sk_buff *clist;
5472 
5473 		local_irq_disable();
5474 		clist = sd->completion_queue;
5475 		sd->completion_queue = NULL;
5476 		local_irq_enable();
5477 
5478 		while (clist) {
5479 			struct sk_buff *skb = clist;
5480 
5481 			clist = clist->next;
5482 
5483 			WARN_ON(refcount_read(&skb->users));
5484 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5485 				trace_consume_skb(skb, net_tx_action);
5486 			else
5487 				trace_kfree_skb(skb, net_tx_action,
5488 						get_kfree_skb_cb(skb)->reason, NULL);
5489 
5490 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5491 				__kfree_skb(skb);
5492 			else
5493 				__napi_kfree_skb(skb,
5494 						 get_kfree_skb_cb(skb)->reason);
5495 		}
5496 	}
5497 
5498 	if (sd->output_queue) {
5499 		struct Qdisc *head;
5500 
5501 		local_irq_disable();
5502 		head = sd->output_queue;
5503 		sd->output_queue = NULL;
5504 		sd->output_queue_tailp = &sd->output_queue;
5505 		local_irq_enable();
5506 
5507 		rcu_read_lock();
5508 
5509 		while (head) {
5510 			struct Qdisc *q = head;
5511 			spinlock_t *root_lock = NULL;
5512 
5513 			head = head->next_sched;
5514 
5515 			/* We need to make sure head->next_sched is read
5516 			 * before clearing __QDISC_STATE_SCHED
5517 			 */
5518 			smp_mb__before_atomic();
5519 
5520 			if (!(q->flags & TCQ_F_NOLOCK)) {
5521 				root_lock = qdisc_lock(q);
5522 				spin_lock(root_lock);
5523 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5524 						     &q->state))) {
5525 				/* There is a synchronize_net() between
5526 				 * STATE_DEACTIVATED flag being set and
5527 				 * qdisc_reset()/some_qdisc_is_busy() in
5528 				 * dev_deactivate(), so we can safely bail out
5529 				 * early here to avoid data race between
5530 				 * qdisc_deactivate() and some_qdisc_is_busy()
5531 				 * for lockless qdisc.
5532 				 */
5533 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5534 				continue;
5535 			}
5536 
5537 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5538 			qdisc_run(q);
5539 			if (root_lock)
5540 				spin_unlock(root_lock);
5541 		}
5542 
5543 		rcu_read_unlock();
5544 	}
5545 
5546 	xfrm_dev_backlog(sd);
5547 }
5548 
5549 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5550 /* This hook is defined here for ATM LANE */
5551 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5552 			     unsigned char *addr) __read_mostly;
5553 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5554 #endif
5555 
5556 /**
5557  *	netdev_is_rx_handler_busy - check if receive handler is registered
5558  *	@dev: device to check
5559  *
5560  *	Check if a receive handler is already registered for a given device.
5561  *	Return true if there one.
5562  *
5563  *	The caller must hold the rtnl_mutex.
5564  */
netdev_is_rx_handler_busy(struct net_device * dev)5565 bool netdev_is_rx_handler_busy(struct net_device *dev)
5566 {
5567 	ASSERT_RTNL();
5568 	return dev && rtnl_dereference(dev->rx_handler);
5569 }
5570 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5571 
5572 /**
5573  *	netdev_rx_handler_register - register receive handler
5574  *	@dev: device to register a handler for
5575  *	@rx_handler: receive handler to register
5576  *	@rx_handler_data: data pointer that is used by rx handler
5577  *
5578  *	Register a receive handler for a device. This handler will then be
5579  *	called from __netif_receive_skb. A negative errno code is returned
5580  *	on a failure.
5581  *
5582  *	The caller must hold the rtnl_mutex.
5583  *
5584  *	For a general description of rx_handler, see enum rx_handler_result.
5585  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5586 int netdev_rx_handler_register(struct net_device *dev,
5587 			       rx_handler_func_t *rx_handler,
5588 			       void *rx_handler_data)
5589 {
5590 	if (netdev_is_rx_handler_busy(dev))
5591 		return -EBUSY;
5592 
5593 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5594 		return -EINVAL;
5595 
5596 	/* Note: rx_handler_data must be set before rx_handler */
5597 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5598 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5599 
5600 	return 0;
5601 }
5602 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5603 
5604 /**
5605  *	netdev_rx_handler_unregister - unregister receive handler
5606  *	@dev: device to unregister a handler from
5607  *
5608  *	Unregister a receive handler from a device.
5609  *
5610  *	The caller must hold the rtnl_mutex.
5611  */
netdev_rx_handler_unregister(struct net_device * dev)5612 void netdev_rx_handler_unregister(struct net_device *dev)
5613 {
5614 
5615 	ASSERT_RTNL();
5616 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5617 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5618 	 * section has a guarantee to see a non NULL rx_handler_data
5619 	 * as well.
5620 	 */
5621 	synchronize_net();
5622 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5623 }
5624 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5625 
5626 /*
5627  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5628  * the special handling of PFMEMALLOC skbs.
5629  */
skb_pfmemalloc_protocol(struct sk_buff * skb)5630 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5631 {
5632 	switch (skb->protocol) {
5633 	case htons(ETH_P_ARP):
5634 	case htons(ETH_P_IP):
5635 	case htons(ETH_P_IPV6):
5636 	case htons(ETH_P_8021Q):
5637 	case htons(ETH_P_8021AD):
5638 		return true;
5639 	default:
5640 		return false;
5641 	}
5642 }
5643 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5644 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5645 			     int *ret, struct net_device *orig_dev)
5646 {
5647 	if (nf_hook_ingress_active(skb)) {
5648 		int ingress_retval;
5649 
5650 		if (*pt_prev) {
5651 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5652 			*pt_prev = NULL;
5653 		}
5654 
5655 		rcu_read_lock();
5656 		ingress_retval = nf_hook_ingress(skb);
5657 		rcu_read_unlock();
5658 		return ingress_retval;
5659 	}
5660 	return 0;
5661 }
5662 
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5663 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5664 				    struct packet_type **ppt_prev)
5665 {
5666 	struct packet_type *ptype, *pt_prev;
5667 	rx_handler_func_t *rx_handler;
5668 	struct sk_buff *skb = *pskb;
5669 	struct net_device *orig_dev;
5670 	bool deliver_exact = false;
5671 	int ret = NET_RX_DROP;
5672 	__be16 type;
5673 
5674 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5675 
5676 	trace_netif_receive_skb(skb);
5677 
5678 	orig_dev = skb->dev;
5679 
5680 	skb_reset_network_header(skb);
5681 #if !defined(CONFIG_DEBUG_NET)
5682 	/* We plan to no longer reset the transport header here.
5683 	 * Give some time to fuzzers and dev build to catch bugs
5684 	 * in network stacks.
5685 	 */
5686 	if (!skb_transport_header_was_set(skb))
5687 		skb_reset_transport_header(skb);
5688 #endif
5689 	skb_reset_mac_len(skb);
5690 
5691 	pt_prev = NULL;
5692 
5693 another_round:
5694 	skb->skb_iif = skb->dev->ifindex;
5695 
5696 	__this_cpu_inc(softnet_data.processed);
5697 
5698 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5699 		int ret2;
5700 
5701 		migrate_disable();
5702 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5703 				      &skb);
5704 		migrate_enable();
5705 
5706 		if (ret2 != XDP_PASS) {
5707 			ret = NET_RX_DROP;
5708 			goto out;
5709 		}
5710 	}
5711 
5712 	if (eth_type_vlan(skb->protocol)) {
5713 		skb = skb_vlan_untag(skb);
5714 		if (unlikely(!skb))
5715 			goto out;
5716 	}
5717 
5718 	if (skb_skip_tc_classify(skb))
5719 		goto skip_classify;
5720 
5721 	if (pfmemalloc)
5722 		goto skip_taps;
5723 
5724 	list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5725 				list) {
5726 		if (pt_prev)
5727 			ret = deliver_skb(skb, pt_prev, orig_dev);
5728 		pt_prev = ptype;
5729 	}
5730 
5731 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5732 		if (pt_prev)
5733 			ret = deliver_skb(skb, pt_prev, orig_dev);
5734 		pt_prev = ptype;
5735 	}
5736 
5737 skip_taps:
5738 #ifdef CONFIG_NET_INGRESS
5739 	if (static_branch_unlikely(&ingress_needed_key)) {
5740 		bool another = false;
5741 
5742 		nf_skip_egress(skb, true);
5743 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5744 					 &another);
5745 		if (another)
5746 			goto another_round;
5747 		if (!skb)
5748 			goto out;
5749 
5750 		nf_skip_egress(skb, false);
5751 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5752 			goto out;
5753 	}
5754 #endif
5755 	skb_reset_redirect(skb);
5756 skip_classify:
5757 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5758 		goto drop;
5759 
5760 	if (skb_vlan_tag_present(skb)) {
5761 		if (pt_prev) {
5762 			ret = deliver_skb(skb, pt_prev, orig_dev);
5763 			pt_prev = NULL;
5764 		}
5765 		if (vlan_do_receive(&skb))
5766 			goto another_round;
5767 		else if (unlikely(!skb))
5768 			goto out;
5769 	}
5770 
5771 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5772 	if (rx_handler) {
5773 		if (pt_prev) {
5774 			ret = deliver_skb(skb, pt_prev, orig_dev);
5775 			pt_prev = NULL;
5776 		}
5777 		switch (rx_handler(&skb)) {
5778 		case RX_HANDLER_CONSUMED:
5779 			ret = NET_RX_SUCCESS;
5780 			goto out;
5781 		case RX_HANDLER_ANOTHER:
5782 			goto another_round;
5783 		case RX_HANDLER_EXACT:
5784 			deliver_exact = true;
5785 			break;
5786 		case RX_HANDLER_PASS:
5787 			break;
5788 		default:
5789 			BUG();
5790 		}
5791 	}
5792 
5793 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5794 check_vlan_id:
5795 		if (skb_vlan_tag_get_id(skb)) {
5796 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5797 			 * find vlan device.
5798 			 */
5799 			skb->pkt_type = PACKET_OTHERHOST;
5800 		} else if (eth_type_vlan(skb->protocol)) {
5801 			/* Outer header is 802.1P with vlan 0, inner header is
5802 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5803 			 * not find vlan dev for vlan id 0.
5804 			 */
5805 			__vlan_hwaccel_clear_tag(skb);
5806 			skb = skb_vlan_untag(skb);
5807 			if (unlikely(!skb))
5808 				goto out;
5809 			if (vlan_do_receive(&skb))
5810 				/* After stripping off 802.1P header with vlan 0
5811 				 * vlan dev is found for inner header.
5812 				 */
5813 				goto another_round;
5814 			else if (unlikely(!skb))
5815 				goto out;
5816 			else
5817 				/* We have stripped outer 802.1P vlan 0 header.
5818 				 * But could not find vlan dev.
5819 				 * check again for vlan id to set OTHERHOST.
5820 				 */
5821 				goto check_vlan_id;
5822 		}
5823 		/* Note: we might in the future use prio bits
5824 		 * and set skb->priority like in vlan_do_receive()
5825 		 * For the time being, just ignore Priority Code Point
5826 		 */
5827 		__vlan_hwaccel_clear_tag(skb);
5828 	}
5829 
5830 	type = skb->protocol;
5831 
5832 	/* deliver only exact match when indicated */
5833 	if (likely(!deliver_exact)) {
5834 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5835 				       &ptype_base[ntohs(type) &
5836 						   PTYPE_HASH_MASK]);
5837 
5838 		/* orig_dev and skb->dev could belong to different netns;
5839 		 * Even in such case we need to traverse only the list
5840 		 * coming from skb->dev, as the ptype owner (packet socket)
5841 		 * will use dev_net(skb->dev) to do namespace filtering.
5842 		 */
5843 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5844 				       &dev_net_rcu(skb->dev)->ptype_specific);
5845 	}
5846 
5847 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5848 			       &orig_dev->ptype_specific);
5849 
5850 	if (unlikely(skb->dev != orig_dev)) {
5851 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5852 				       &skb->dev->ptype_specific);
5853 	}
5854 
5855 	if (pt_prev) {
5856 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5857 			goto drop;
5858 		*ppt_prev = pt_prev;
5859 	} else {
5860 drop:
5861 		if (!deliver_exact)
5862 			dev_core_stats_rx_dropped_inc(skb->dev);
5863 		else
5864 			dev_core_stats_rx_nohandler_inc(skb->dev);
5865 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5866 		/* Jamal, now you will not able to escape explaining
5867 		 * me how you were going to use this. :-)
5868 		 */
5869 		ret = NET_RX_DROP;
5870 	}
5871 
5872 out:
5873 	/* The invariant here is that if *ppt_prev is not NULL
5874 	 * then skb should also be non-NULL.
5875 	 *
5876 	 * Apparently *ppt_prev assignment above holds this invariant due to
5877 	 * skb dereferencing near it.
5878 	 */
5879 	*pskb = skb;
5880 	return ret;
5881 }
5882 
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5883 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5884 {
5885 	struct net_device *orig_dev = skb->dev;
5886 	struct packet_type *pt_prev = NULL;
5887 	int ret;
5888 
5889 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5890 	if (pt_prev)
5891 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5892 					 skb->dev, pt_prev, orig_dev);
5893 	return ret;
5894 }
5895 
5896 /**
5897  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5898  *	@skb: buffer to process
5899  *
5900  *	More direct receive version of netif_receive_skb().  It should
5901  *	only be used by callers that have a need to skip RPS and Generic XDP.
5902  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5903  *
5904  *	This function may only be called from softirq context and interrupts
5905  *	should be enabled.
5906  *
5907  *	Return values (usually ignored):
5908  *	NET_RX_SUCCESS: no congestion
5909  *	NET_RX_DROP: packet was dropped
5910  */
netif_receive_skb_core(struct sk_buff * skb)5911 int netif_receive_skb_core(struct sk_buff *skb)
5912 {
5913 	int ret;
5914 
5915 	rcu_read_lock();
5916 	ret = __netif_receive_skb_one_core(skb, false);
5917 	rcu_read_unlock();
5918 
5919 	return ret;
5920 }
5921 EXPORT_SYMBOL(netif_receive_skb_core);
5922 
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5923 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5924 						  struct packet_type *pt_prev,
5925 						  struct net_device *orig_dev)
5926 {
5927 	struct sk_buff *skb, *next;
5928 
5929 	if (!pt_prev)
5930 		return;
5931 	if (list_empty(head))
5932 		return;
5933 	if (pt_prev->list_func != NULL)
5934 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5935 				   ip_list_rcv, head, pt_prev, orig_dev);
5936 	else
5937 		list_for_each_entry_safe(skb, next, head, list) {
5938 			skb_list_del_init(skb);
5939 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5940 		}
5941 }
5942 
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5943 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5944 {
5945 	/* Fast-path assumptions:
5946 	 * - There is no RX handler.
5947 	 * - Only one packet_type matches.
5948 	 * If either of these fails, we will end up doing some per-packet
5949 	 * processing in-line, then handling the 'last ptype' for the whole
5950 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5951 	 * because the 'last ptype' must be constant across the sublist, and all
5952 	 * other ptypes are handled per-packet.
5953 	 */
5954 	/* Current (common) ptype of sublist */
5955 	struct packet_type *pt_curr = NULL;
5956 	/* Current (common) orig_dev of sublist */
5957 	struct net_device *od_curr = NULL;
5958 	struct sk_buff *skb, *next;
5959 	LIST_HEAD(sublist);
5960 
5961 	list_for_each_entry_safe(skb, next, head, list) {
5962 		struct net_device *orig_dev = skb->dev;
5963 		struct packet_type *pt_prev = NULL;
5964 
5965 		skb_list_del_init(skb);
5966 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5967 		if (!pt_prev)
5968 			continue;
5969 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5970 			/* dispatch old sublist */
5971 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5972 			/* start new sublist */
5973 			INIT_LIST_HEAD(&sublist);
5974 			pt_curr = pt_prev;
5975 			od_curr = orig_dev;
5976 		}
5977 		list_add_tail(&skb->list, &sublist);
5978 	}
5979 
5980 	/* dispatch final sublist */
5981 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5982 }
5983 
__netif_receive_skb(struct sk_buff * skb)5984 static int __netif_receive_skb(struct sk_buff *skb)
5985 {
5986 	int ret;
5987 
5988 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5989 		unsigned int noreclaim_flag;
5990 
5991 		/*
5992 		 * PFMEMALLOC skbs are special, they should
5993 		 * - be delivered to SOCK_MEMALLOC sockets only
5994 		 * - stay away from userspace
5995 		 * - have bounded memory usage
5996 		 *
5997 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5998 		 * context down to all allocation sites.
5999 		 */
6000 		noreclaim_flag = memalloc_noreclaim_save();
6001 		ret = __netif_receive_skb_one_core(skb, true);
6002 		memalloc_noreclaim_restore(noreclaim_flag);
6003 	} else
6004 		ret = __netif_receive_skb_one_core(skb, false);
6005 
6006 	return ret;
6007 }
6008 
__netif_receive_skb_list(struct list_head * head)6009 static void __netif_receive_skb_list(struct list_head *head)
6010 {
6011 	unsigned long noreclaim_flag = 0;
6012 	struct sk_buff *skb, *next;
6013 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6014 
6015 	list_for_each_entry_safe(skb, next, head, list) {
6016 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6017 			struct list_head sublist;
6018 
6019 			/* Handle the previous sublist */
6020 			list_cut_before(&sublist, head, &skb->list);
6021 			if (!list_empty(&sublist))
6022 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6023 			pfmemalloc = !pfmemalloc;
6024 			/* See comments in __netif_receive_skb */
6025 			if (pfmemalloc)
6026 				noreclaim_flag = memalloc_noreclaim_save();
6027 			else
6028 				memalloc_noreclaim_restore(noreclaim_flag);
6029 		}
6030 	}
6031 	/* Handle the remaining sublist */
6032 	if (!list_empty(head))
6033 		__netif_receive_skb_list_core(head, pfmemalloc);
6034 	/* Restore pflags */
6035 	if (pfmemalloc)
6036 		memalloc_noreclaim_restore(noreclaim_flag);
6037 }
6038 
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)6039 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6040 {
6041 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6042 	struct bpf_prog *new = xdp->prog;
6043 	int ret = 0;
6044 
6045 	switch (xdp->command) {
6046 	case XDP_SETUP_PROG:
6047 		rcu_assign_pointer(dev->xdp_prog, new);
6048 		if (old)
6049 			bpf_prog_put(old);
6050 
6051 		if (old && !new) {
6052 			static_branch_dec(&generic_xdp_needed_key);
6053 		} else if (new && !old) {
6054 			static_branch_inc(&generic_xdp_needed_key);
6055 			netif_disable_lro(dev);
6056 			dev_disable_gro_hw(dev);
6057 		}
6058 		break;
6059 
6060 	default:
6061 		ret = -EINVAL;
6062 		break;
6063 	}
6064 
6065 	return ret;
6066 }
6067 
netif_receive_skb_internal(struct sk_buff * skb)6068 static int netif_receive_skb_internal(struct sk_buff *skb)
6069 {
6070 	int ret;
6071 
6072 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6073 
6074 	if (skb_defer_rx_timestamp(skb))
6075 		return NET_RX_SUCCESS;
6076 
6077 	rcu_read_lock();
6078 #ifdef CONFIG_RPS
6079 	if (static_branch_unlikely(&rps_needed)) {
6080 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6081 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6082 
6083 		if (cpu >= 0) {
6084 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6085 			rcu_read_unlock();
6086 			return ret;
6087 		}
6088 	}
6089 #endif
6090 	ret = __netif_receive_skb(skb);
6091 	rcu_read_unlock();
6092 	return ret;
6093 }
6094 
netif_receive_skb_list_internal(struct list_head * head)6095 void netif_receive_skb_list_internal(struct list_head *head)
6096 {
6097 	struct sk_buff *skb, *next;
6098 	LIST_HEAD(sublist);
6099 
6100 	list_for_each_entry_safe(skb, next, head, list) {
6101 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6102 				    skb);
6103 		skb_list_del_init(skb);
6104 		if (!skb_defer_rx_timestamp(skb))
6105 			list_add_tail(&skb->list, &sublist);
6106 	}
6107 	list_splice_init(&sublist, head);
6108 
6109 	rcu_read_lock();
6110 #ifdef CONFIG_RPS
6111 	if (static_branch_unlikely(&rps_needed)) {
6112 		list_for_each_entry_safe(skb, next, head, list) {
6113 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6114 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6115 
6116 			if (cpu >= 0) {
6117 				/* Will be handled, remove from list */
6118 				skb_list_del_init(skb);
6119 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6120 			}
6121 		}
6122 	}
6123 #endif
6124 	__netif_receive_skb_list(head);
6125 	rcu_read_unlock();
6126 }
6127 
6128 /**
6129  *	netif_receive_skb - process receive buffer from network
6130  *	@skb: buffer to process
6131  *
6132  *	netif_receive_skb() is the main receive data processing function.
6133  *	It always succeeds. The buffer may be dropped during processing
6134  *	for congestion control or by the protocol layers.
6135  *
6136  *	This function may only be called from softirq context and interrupts
6137  *	should be enabled.
6138  *
6139  *	Return values (usually ignored):
6140  *	NET_RX_SUCCESS: no congestion
6141  *	NET_RX_DROP: packet was dropped
6142  */
netif_receive_skb(struct sk_buff * skb)6143 int netif_receive_skb(struct sk_buff *skb)
6144 {
6145 	int ret;
6146 
6147 	trace_netif_receive_skb_entry(skb);
6148 
6149 	ret = netif_receive_skb_internal(skb);
6150 	trace_netif_receive_skb_exit(ret);
6151 
6152 	return ret;
6153 }
6154 EXPORT_SYMBOL(netif_receive_skb);
6155 
6156 /**
6157  *	netif_receive_skb_list - process many receive buffers from network
6158  *	@head: list of skbs to process.
6159  *
6160  *	Since return value of netif_receive_skb() is normally ignored, and
6161  *	wouldn't be meaningful for a list, this function returns void.
6162  *
6163  *	This function may only be called from softirq context and interrupts
6164  *	should be enabled.
6165  */
netif_receive_skb_list(struct list_head * head)6166 void netif_receive_skb_list(struct list_head *head)
6167 {
6168 	struct sk_buff *skb;
6169 
6170 	if (list_empty(head))
6171 		return;
6172 	if (trace_netif_receive_skb_list_entry_enabled()) {
6173 		list_for_each_entry(skb, head, list)
6174 			trace_netif_receive_skb_list_entry(skb);
6175 	}
6176 	netif_receive_skb_list_internal(head);
6177 	trace_netif_receive_skb_list_exit(0);
6178 }
6179 EXPORT_SYMBOL(netif_receive_skb_list);
6180 
6181 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6182 static void flush_backlog(struct work_struct *work)
6183 {
6184 	struct sk_buff *skb, *tmp;
6185 	struct sk_buff_head list;
6186 	struct softnet_data *sd;
6187 
6188 	__skb_queue_head_init(&list);
6189 	local_bh_disable();
6190 	sd = this_cpu_ptr(&softnet_data);
6191 
6192 	backlog_lock_irq_disable(sd);
6193 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6194 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6195 			__skb_unlink(skb, &sd->input_pkt_queue);
6196 			__skb_queue_tail(&list, skb);
6197 			rps_input_queue_head_incr(sd);
6198 		}
6199 	}
6200 	backlog_unlock_irq_enable(sd);
6201 
6202 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6203 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6204 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6205 			__skb_unlink(skb, &sd->process_queue);
6206 			__skb_queue_tail(&list, skb);
6207 			rps_input_queue_head_incr(sd);
6208 		}
6209 	}
6210 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6211 	local_bh_enable();
6212 
6213 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6214 }
6215 
flush_required(int cpu)6216 static bool flush_required(int cpu)
6217 {
6218 #if IS_ENABLED(CONFIG_RPS)
6219 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6220 	bool do_flush;
6221 
6222 	backlog_lock_irq_disable(sd);
6223 
6224 	/* as insertion into process_queue happens with the rps lock held,
6225 	 * process_queue access may race only with dequeue
6226 	 */
6227 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6228 		   !skb_queue_empty_lockless(&sd->process_queue);
6229 	backlog_unlock_irq_enable(sd);
6230 
6231 	return do_flush;
6232 #endif
6233 	/* without RPS we can't safely check input_pkt_queue: during a
6234 	 * concurrent remote skb_queue_splice() we can detect as empty both
6235 	 * input_pkt_queue and process_queue even if the latter could end-up
6236 	 * containing a lot of packets.
6237 	 */
6238 	return true;
6239 }
6240 
6241 struct flush_backlogs {
6242 	cpumask_t		flush_cpus;
6243 	struct work_struct	w[];
6244 };
6245 
flush_backlogs_alloc(void)6246 static struct flush_backlogs *flush_backlogs_alloc(void)
6247 {
6248 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6249 		       GFP_KERNEL);
6250 }
6251 
6252 static struct flush_backlogs *flush_backlogs_fallback;
6253 static DEFINE_MUTEX(flush_backlogs_mutex);
6254 
flush_all_backlogs(void)6255 static void flush_all_backlogs(void)
6256 {
6257 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6258 	unsigned int cpu;
6259 
6260 	if (!ptr) {
6261 		mutex_lock(&flush_backlogs_mutex);
6262 		ptr = flush_backlogs_fallback;
6263 	}
6264 	cpumask_clear(&ptr->flush_cpus);
6265 
6266 	cpus_read_lock();
6267 
6268 	for_each_online_cpu(cpu) {
6269 		if (flush_required(cpu)) {
6270 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6271 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6272 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6273 		}
6274 	}
6275 
6276 	/* we can have in flight packet[s] on the cpus we are not flushing,
6277 	 * synchronize_net() in unregister_netdevice_many() will take care of
6278 	 * them.
6279 	 */
6280 	for_each_cpu(cpu, &ptr->flush_cpus)
6281 		flush_work(&ptr->w[cpu]);
6282 
6283 	cpus_read_unlock();
6284 
6285 	if (ptr != flush_backlogs_fallback)
6286 		kfree(ptr);
6287 	else
6288 		mutex_unlock(&flush_backlogs_mutex);
6289 }
6290 
net_rps_send_ipi(struct softnet_data * remsd)6291 static void net_rps_send_ipi(struct softnet_data *remsd)
6292 {
6293 #ifdef CONFIG_RPS
6294 	while (remsd) {
6295 		struct softnet_data *next = remsd->rps_ipi_next;
6296 
6297 		if (cpu_online(remsd->cpu))
6298 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6299 		remsd = next;
6300 	}
6301 #endif
6302 }
6303 
6304 /*
6305  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6306  * Note: called with local irq disabled, but exits with local irq enabled.
6307  */
net_rps_action_and_irq_enable(struct softnet_data * sd)6308 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6309 {
6310 #ifdef CONFIG_RPS
6311 	struct softnet_data *remsd = sd->rps_ipi_list;
6312 
6313 	if (!use_backlog_threads() && remsd) {
6314 		sd->rps_ipi_list = NULL;
6315 
6316 		local_irq_enable();
6317 
6318 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6319 		net_rps_send_ipi(remsd);
6320 	} else
6321 #endif
6322 		local_irq_enable();
6323 }
6324 
sd_has_rps_ipi_waiting(struct softnet_data * sd)6325 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6326 {
6327 #ifdef CONFIG_RPS
6328 	return !use_backlog_threads() && sd->rps_ipi_list;
6329 #else
6330 	return false;
6331 #endif
6332 }
6333 
process_backlog(struct napi_struct * napi,int quota)6334 static int process_backlog(struct napi_struct *napi, int quota)
6335 {
6336 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6337 	bool again = true;
6338 	int work = 0;
6339 
6340 	/* Check if we have pending ipi, its better to send them now,
6341 	 * not waiting net_rx_action() end.
6342 	 */
6343 	if (sd_has_rps_ipi_waiting(sd)) {
6344 		local_irq_disable();
6345 		net_rps_action_and_irq_enable(sd);
6346 	}
6347 
6348 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6349 	while (again) {
6350 		struct sk_buff *skb;
6351 
6352 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6353 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6354 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6355 			rcu_read_lock();
6356 			__netif_receive_skb(skb);
6357 			rcu_read_unlock();
6358 			if (++work >= quota) {
6359 				rps_input_queue_head_add(sd, work);
6360 				return work;
6361 			}
6362 
6363 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6364 		}
6365 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6366 
6367 		backlog_lock_irq_disable(sd);
6368 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6369 			/*
6370 			 * Inline a custom version of __napi_complete().
6371 			 * only current cpu owns and manipulates this napi,
6372 			 * and NAPI_STATE_SCHED is the only possible flag set
6373 			 * on backlog.
6374 			 * We can use a plain write instead of clear_bit(),
6375 			 * and we dont need an smp_mb() memory barrier.
6376 			 */
6377 			napi->state &= NAPIF_STATE_THREADED;
6378 			again = false;
6379 		} else {
6380 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6381 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6382 						   &sd->process_queue);
6383 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6384 		}
6385 		backlog_unlock_irq_enable(sd);
6386 	}
6387 
6388 	if (work)
6389 		rps_input_queue_head_add(sd, work);
6390 	return work;
6391 }
6392 
6393 /**
6394  * __napi_schedule - schedule for receive
6395  * @n: entry to schedule
6396  *
6397  * The entry's receive function will be scheduled to run.
6398  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6399  */
__napi_schedule(struct napi_struct * n)6400 void __napi_schedule(struct napi_struct *n)
6401 {
6402 	unsigned long flags;
6403 
6404 	local_irq_save(flags);
6405 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6406 	local_irq_restore(flags);
6407 }
6408 EXPORT_SYMBOL(__napi_schedule);
6409 
6410 /**
6411  *	napi_schedule_prep - check if napi can be scheduled
6412  *	@n: napi context
6413  *
6414  * Test if NAPI routine is already running, and if not mark
6415  * it as running.  This is used as a condition variable to
6416  * insure only one NAPI poll instance runs.  We also make
6417  * sure there is no pending NAPI disable.
6418  */
napi_schedule_prep(struct napi_struct * n)6419 bool napi_schedule_prep(struct napi_struct *n)
6420 {
6421 	unsigned long new, val = READ_ONCE(n->state);
6422 
6423 	do {
6424 		if (unlikely(val & NAPIF_STATE_DISABLE))
6425 			return false;
6426 		new = val | NAPIF_STATE_SCHED;
6427 
6428 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6429 		 * This was suggested by Alexander Duyck, as compiler
6430 		 * emits better code than :
6431 		 * if (val & NAPIF_STATE_SCHED)
6432 		 *     new |= NAPIF_STATE_MISSED;
6433 		 */
6434 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6435 						   NAPIF_STATE_MISSED;
6436 	} while (!try_cmpxchg(&n->state, &val, new));
6437 
6438 	return !(val & NAPIF_STATE_SCHED);
6439 }
6440 EXPORT_SYMBOL(napi_schedule_prep);
6441 
6442 /**
6443  * __napi_schedule_irqoff - schedule for receive
6444  * @n: entry to schedule
6445  *
6446  * Variant of __napi_schedule() assuming hard irqs are masked.
6447  *
6448  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6449  * because the interrupt disabled assumption might not be true
6450  * due to force-threaded interrupts and spinlock substitution.
6451  */
__napi_schedule_irqoff(struct napi_struct * n)6452 void __napi_schedule_irqoff(struct napi_struct *n)
6453 {
6454 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6455 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6456 	else
6457 		__napi_schedule(n);
6458 }
6459 EXPORT_SYMBOL(__napi_schedule_irqoff);
6460 
napi_complete_done(struct napi_struct * n,int work_done)6461 bool napi_complete_done(struct napi_struct *n, int work_done)
6462 {
6463 	unsigned long flags, val, new, timeout = 0;
6464 	bool ret = true;
6465 
6466 	/*
6467 	 * 1) Don't let napi dequeue from the cpu poll list
6468 	 *    just in case its running on a different cpu.
6469 	 * 2) If we are busy polling, do nothing here, we have
6470 	 *    the guarantee we will be called later.
6471 	 */
6472 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6473 				 NAPIF_STATE_IN_BUSY_POLL)))
6474 		return false;
6475 
6476 	if (work_done) {
6477 		if (n->gro.bitmask)
6478 			timeout = napi_get_gro_flush_timeout(n);
6479 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6480 	}
6481 	if (n->defer_hard_irqs_count > 0) {
6482 		n->defer_hard_irqs_count--;
6483 		timeout = napi_get_gro_flush_timeout(n);
6484 		if (timeout)
6485 			ret = false;
6486 	}
6487 
6488 	/*
6489 	 * When the NAPI instance uses a timeout and keeps postponing
6490 	 * it, we need to bound somehow the time packets are kept in
6491 	 * the GRO layer.
6492 	 */
6493 	gro_flush(&n->gro, !!timeout);
6494 	gro_normal_list(&n->gro);
6495 
6496 	if (unlikely(!list_empty(&n->poll_list))) {
6497 		/* If n->poll_list is not empty, we need to mask irqs */
6498 		local_irq_save(flags);
6499 		list_del_init(&n->poll_list);
6500 		local_irq_restore(flags);
6501 	}
6502 	WRITE_ONCE(n->list_owner, -1);
6503 
6504 	val = READ_ONCE(n->state);
6505 	do {
6506 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6507 
6508 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6509 			      NAPIF_STATE_SCHED_THREADED |
6510 			      NAPIF_STATE_PREFER_BUSY_POLL);
6511 
6512 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6513 		 * because we will call napi->poll() one more time.
6514 		 * This C code was suggested by Alexander Duyck to help gcc.
6515 		 */
6516 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6517 						    NAPIF_STATE_SCHED;
6518 	} while (!try_cmpxchg(&n->state, &val, new));
6519 
6520 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6521 		__napi_schedule(n);
6522 		return false;
6523 	}
6524 
6525 	if (timeout)
6526 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6527 			      HRTIMER_MODE_REL_PINNED);
6528 	return ret;
6529 }
6530 EXPORT_SYMBOL(napi_complete_done);
6531 
skb_defer_free_flush(struct softnet_data * sd)6532 static void skb_defer_free_flush(struct softnet_data *sd)
6533 {
6534 	struct sk_buff *skb, *next;
6535 
6536 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6537 	if (!READ_ONCE(sd->defer_list))
6538 		return;
6539 
6540 	spin_lock(&sd->defer_lock);
6541 	skb = sd->defer_list;
6542 	sd->defer_list = NULL;
6543 	sd->defer_count = 0;
6544 	spin_unlock(&sd->defer_lock);
6545 
6546 	while (skb != NULL) {
6547 		next = skb->next;
6548 		napi_consume_skb(skb, 1);
6549 		skb = next;
6550 	}
6551 }
6552 
6553 #if defined(CONFIG_NET_RX_BUSY_POLL)
6554 
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6555 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6556 {
6557 	if (!skip_schedule) {
6558 		gro_normal_list(&napi->gro);
6559 		__napi_schedule(napi);
6560 		return;
6561 	}
6562 
6563 	/* Flush too old packets. If HZ < 1000, flush all packets */
6564 	gro_flush(&napi->gro, HZ >= 1000);
6565 	gro_normal_list(&napi->gro);
6566 
6567 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6568 }
6569 
6570 enum {
6571 	NAPI_F_PREFER_BUSY_POLL	= 1,
6572 	NAPI_F_END_ON_RESCHED	= 2,
6573 };
6574 
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6575 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6576 			   unsigned flags, u16 budget)
6577 {
6578 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6579 	bool skip_schedule = false;
6580 	unsigned long timeout;
6581 	int rc;
6582 
6583 	/* Busy polling means there is a high chance device driver hard irq
6584 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6585 	 * set in napi_schedule_prep().
6586 	 * Since we are about to call napi->poll() once more, we can safely
6587 	 * clear NAPI_STATE_MISSED.
6588 	 *
6589 	 * Note: x86 could use a single "lock and ..." instruction
6590 	 * to perform these two clear_bit()
6591 	 */
6592 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6593 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6594 
6595 	local_bh_disable();
6596 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6597 
6598 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6599 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6600 		timeout = napi_get_gro_flush_timeout(napi);
6601 		if (napi->defer_hard_irqs_count && timeout) {
6602 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6603 			skip_schedule = true;
6604 		}
6605 	}
6606 
6607 	/* All we really want here is to re-enable device interrupts.
6608 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6609 	 */
6610 	rc = napi->poll(napi, budget);
6611 	/* We can't gro_normal_list() here, because napi->poll() might have
6612 	 * rearmed the napi (napi_complete_done()) in which case it could
6613 	 * already be running on another CPU.
6614 	 */
6615 	trace_napi_poll(napi, rc, budget);
6616 	netpoll_poll_unlock(have_poll_lock);
6617 	if (rc == budget)
6618 		__busy_poll_stop(napi, skip_schedule);
6619 	bpf_net_ctx_clear(bpf_net_ctx);
6620 	local_bh_enable();
6621 }
6622 
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6623 static void __napi_busy_loop(unsigned int napi_id,
6624 		      bool (*loop_end)(void *, unsigned long),
6625 		      void *loop_end_arg, unsigned flags, u16 budget)
6626 {
6627 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6628 	int (*napi_poll)(struct napi_struct *napi, int budget);
6629 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6630 	void *have_poll_lock = NULL;
6631 	struct napi_struct *napi;
6632 
6633 	WARN_ON_ONCE(!rcu_read_lock_held());
6634 
6635 restart:
6636 	napi_poll = NULL;
6637 
6638 	napi = napi_by_id(napi_id);
6639 	if (!napi)
6640 		return;
6641 
6642 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6643 		preempt_disable();
6644 	for (;;) {
6645 		int work = 0;
6646 
6647 		local_bh_disable();
6648 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6649 		if (!napi_poll) {
6650 			unsigned long val = READ_ONCE(napi->state);
6651 
6652 			/* If multiple threads are competing for this napi,
6653 			 * we avoid dirtying napi->state as much as we can.
6654 			 */
6655 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6656 				   NAPIF_STATE_IN_BUSY_POLL)) {
6657 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6658 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6659 				goto count;
6660 			}
6661 			if (cmpxchg(&napi->state, val,
6662 				    val | NAPIF_STATE_IN_BUSY_POLL |
6663 					  NAPIF_STATE_SCHED) != val) {
6664 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6665 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6666 				goto count;
6667 			}
6668 			have_poll_lock = netpoll_poll_lock(napi);
6669 			napi_poll = napi->poll;
6670 		}
6671 		work = napi_poll(napi, budget);
6672 		trace_napi_poll(napi, work, budget);
6673 		gro_normal_list(&napi->gro);
6674 count:
6675 		if (work > 0)
6676 			__NET_ADD_STATS(dev_net(napi->dev),
6677 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6678 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6679 		bpf_net_ctx_clear(bpf_net_ctx);
6680 		local_bh_enable();
6681 
6682 		if (!loop_end || loop_end(loop_end_arg, start_time))
6683 			break;
6684 
6685 		if (unlikely(need_resched())) {
6686 			if (flags & NAPI_F_END_ON_RESCHED)
6687 				break;
6688 			if (napi_poll)
6689 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6690 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6691 				preempt_enable();
6692 			rcu_read_unlock();
6693 			cond_resched();
6694 			rcu_read_lock();
6695 			if (loop_end(loop_end_arg, start_time))
6696 				return;
6697 			goto restart;
6698 		}
6699 		cpu_relax();
6700 	}
6701 	if (napi_poll)
6702 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6703 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6704 		preempt_enable();
6705 }
6706 
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6707 void napi_busy_loop_rcu(unsigned int napi_id,
6708 			bool (*loop_end)(void *, unsigned long),
6709 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6710 {
6711 	unsigned flags = NAPI_F_END_ON_RESCHED;
6712 
6713 	if (prefer_busy_poll)
6714 		flags |= NAPI_F_PREFER_BUSY_POLL;
6715 
6716 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6717 }
6718 
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6719 void napi_busy_loop(unsigned int napi_id,
6720 		    bool (*loop_end)(void *, unsigned long),
6721 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6722 {
6723 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6724 
6725 	rcu_read_lock();
6726 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6727 	rcu_read_unlock();
6728 }
6729 EXPORT_SYMBOL(napi_busy_loop);
6730 
napi_suspend_irqs(unsigned int napi_id)6731 void napi_suspend_irqs(unsigned int napi_id)
6732 {
6733 	struct napi_struct *napi;
6734 
6735 	rcu_read_lock();
6736 	napi = napi_by_id(napi_id);
6737 	if (napi) {
6738 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6739 
6740 		if (timeout)
6741 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6742 				      HRTIMER_MODE_REL_PINNED);
6743 	}
6744 	rcu_read_unlock();
6745 }
6746 
napi_resume_irqs(unsigned int napi_id)6747 void napi_resume_irqs(unsigned int napi_id)
6748 {
6749 	struct napi_struct *napi;
6750 
6751 	rcu_read_lock();
6752 	napi = napi_by_id(napi_id);
6753 	if (napi) {
6754 		/* If irq_suspend_timeout is set to 0 between the call to
6755 		 * napi_suspend_irqs and now, the original value still
6756 		 * determines the safety timeout as intended and napi_watchdog
6757 		 * will resume irq processing.
6758 		 */
6759 		if (napi_get_irq_suspend_timeout(napi)) {
6760 			local_bh_disable();
6761 			napi_schedule(napi);
6762 			local_bh_enable();
6763 		}
6764 	}
6765 	rcu_read_unlock();
6766 }
6767 
6768 #endif /* CONFIG_NET_RX_BUSY_POLL */
6769 
__napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6770 static void __napi_hash_add_with_id(struct napi_struct *napi,
6771 				    unsigned int napi_id)
6772 {
6773 	napi->gro.cached_napi_id = napi_id;
6774 
6775 	WRITE_ONCE(napi->napi_id, napi_id);
6776 	hlist_add_head_rcu(&napi->napi_hash_node,
6777 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6778 }
6779 
napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6780 static void napi_hash_add_with_id(struct napi_struct *napi,
6781 				  unsigned int napi_id)
6782 {
6783 	unsigned long flags;
6784 
6785 	spin_lock_irqsave(&napi_hash_lock, flags);
6786 	WARN_ON_ONCE(napi_by_id(napi_id));
6787 	__napi_hash_add_with_id(napi, napi_id);
6788 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6789 }
6790 
napi_hash_add(struct napi_struct * napi)6791 static void napi_hash_add(struct napi_struct *napi)
6792 {
6793 	unsigned long flags;
6794 
6795 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6796 		return;
6797 
6798 	spin_lock_irqsave(&napi_hash_lock, flags);
6799 
6800 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6801 	do {
6802 		if (unlikely(!napi_id_valid(++napi_gen_id)))
6803 			napi_gen_id = MIN_NAPI_ID;
6804 	} while (napi_by_id(napi_gen_id));
6805 
6806 	__napi_hash_add_with_id(napi, napi_gen_id);
6807 
6808 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6809 }
6810 
6811 /* Warning : caller is responsible to make sure rcu grace period
6812  * is respected before freeing memory containing @napi
6813  */
napi_hash_del(struct napi_struct * napi)6814 static void napi_hash_del(struct napi_struct *napi)
6815 {
6816 	unsigned long flags;
6817 
6818 	spin_lock_irqsave(&napi_hash_lock, flags);
6819 
6820 	hlist_del_init_rcu(&napi->napi_hash_node);
6821 
6822 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6823 }
6824 
napi_watchdog(struct hrtimer * timer)6825 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6826 {
6827 	struct napi_struct *napi;
6828 
6829 	napi = container_of(timer, struct napi_struct, timer);
6830 
6831 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6832 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6833 	 */
6834 	if (!napi_disable_pending(napi) &&
6835 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6836 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6837 		__napi_schedule_irqoff(napi);
6838 	}
6839 
6840 	return HRTIMER_NORESTART;
6841 }
6842 
dev_set_threaded(struct net_device * dev,bool threaded)6843 int dev_set_threaded(struct net_device *dev, bool threaded)
6844 {
6845 	struct napi_struct *napi;
6846 	int err = 0;
6847 
6848 	netdev_assert_locked_or_invisible(dev);
6849 
6850 	if (dev->threaded == threaded)
6851 		return 0;
6852 
6853 	if (threaded) {
6854 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6855 			if (!napi->thread) {
6856 				err = napi_kthread_create(napi);
6857 				if (err) {
6858 					threaded = false;
6859 					break;
6860 				}
6861 			}
6862 		}
6863 	}
6864 
6865 	WRITE_ONCE(dev->threaded, threaded);
6866 
6867 	/* Make sure kthread is created before THREADED bit
6868 	 * is set.
6869 	 */
6870 	smp_mb__before_atomic();
6871 
6872 	/* Setting/unsetting threaded mode on a napi might not immediately
6873 	 * take effect, if the current napi instance is actively being
6874 	 * polled. In this case, the switch between threaded mode and
6875 	 * softirq mode will happen in the next round of napi_schedule().
6876 	 * This should not cause hiccups/stalls to the live traffic.
6877 	 */
6878 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6879 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6880 
6881 	return err;
6882 }
6883 EXPORT_SYMBOL(dev_set_threaded);
6884 
6885 /**
6886  * netif_queue_set_napi - Associate queue with the napi
6887  * @dev: device to which NAPI and queue belong
6888  * @queue_index: Index of queue
6889  * @type: queue type as RX or TX
6890  * @napi: NAPI context, pass NULL to clear previously set NAPI
6891  *
6892  * Set queue with its corresponding napi context. This should be done after
6893  * registering the NAPI handler for the queue-vector and the queues have been
6894  * mapped to the corresponding interrupt vector.
6895  */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)6896 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6897 			  enum netdev_queue_type type, struct napi_struct *napi)
6898 {
6899 	struct netdev_rx_queue *rxq;
6900 	struct netdev_queue *txq;
6901 
6902 	if (WARN_ON_ONCE(napi && !napi->dev))
6903 		return;
6904 	netdev_ops_assert_locked_or_invisible(dev);
6905 
6906 	switch (type) {
6907 	case NETDEV_QUEUE_TYPE_RX:
6908 		rxq = __netif_get_rx_queue(dev, queue_index);
6909 		rxq->napi = napi;
6910 		return;
6911 	case NETDEV_QUEUE_TYPE_TX:
6912 		txq = netdev_get_tx_queue(dev, queue_index);
6913 		txq->napi = napi;
6914 		return;
6915 	default:
6916 		return;
6917 	}
6918 }
6919 EXPORT_SYMBOL(netif_queue_set_napi);
6920 
6921 static void
netif_napi_irq_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)6922 netif_napi_irq_notify(struct irq_affinity_notify *notify,
6923 		      const cpumask_t *mask)
6924 {
6925 	struct napi_struct *napi =
6926 		container_of(notify, struct napi_struct, notify);
6927 #ifdef CONFIG_RFS_ACCEL
6928 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6929 	int err;
6930 #endif
6931 
6932 	if (napi->config && napi->dev->irq_affinity_auto)
6933 		cpumask_copy(&napi->config->affinity_mask, mask);
6934 
6935 #ifdef CONFIG_RFS_ACCEL
6936 	if (napi->dev->rx_cpu_rmap_auto) {
6937 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
6938 		if (err)
6939 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
6940 				    err);
6941 	}
6942 #endif
6943 }
6944 
6945 #ifdef CONFIG_RFS_ACCEL
netif_napi_affinity_release(struct kref * ref)6946 static void netif_napi_affinity_release(struct kref *ref)
6947 {
6948 	struct napi_struct *napi =
6949 		container_of(ref, struct napi_struct, notify.kref);
6950 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6951 
6952 	netdev_assert_locked(napi->dev);
6953 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
6954 				   &napi->state));
6955 
6956 	if (!napi->dev->rx_cpu_rmap_auto)
6957 		return;
6958 	rmap->obj[napi->napi_rmap_idx] = NULL;
6959 	napi->napi_rmap_idx = -1;
6960 	cpu_rmap_put(rmap);
6961 }
6962 
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)6963 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6964 {
6965 	if (dev->rx_cpu_rmap_auto)
6966 		return 0;
6967 
6968 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
6969 	if (!dev->rx_cpu_rmap)
6970 		return -ENOMEM;
6971 
6972 	dev->rx_cpu_rmap_auto = true;
6973 	return 0;
6974 }
6975 EXPORT_SYMBOL(netif_enable_cpu_rmap);
6976 
netif_del_cpu_rmap(struct net_device * dev)6977 static void netif_del_cpu_rmap(struct net_device *dev)
6978 {
6979 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
6980 
6981 	if (!dev->rx_cpu_rmap_auto)
6982 		return;
6983 
6984 	/* Free the rmap */
6985 	cpu_rmap_put(rmap);
6986 	dev->rx_cpu_rmap = NULL;
6987 	dev->rx_cpu_rmap_auto = false;
6988 }
6989 
6990 #else
netif_napi_affinity_release(struct kref * ref)6991 static void netif_napi_affinity_release(struct kref *ref)
6992 {
6993 }
6994 
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)6995 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6996 {
6997 	return 0;
6998 }
6999 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7000 
netif_del_cpu_rmap(struct net_device * dev)7001 static void netif_del_cpu_rmap(struct net_device *dev)
7002 {
7003 }
7004 #endif
7005 
netif_set_affinity_auto(struct net_device * dev)7006 void netif_set_affinity_auto(struct net_device *dev)
7007 {
7008 	unsigned int i, maxqs, numa;
7009 
7010 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7011 	numa = dev_to_node(&dev->dev);
7012 
7013 	for (i = 0; i < maxqs; i++)
7014 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7015 				&dev->napi_config[i].affinity_mask);
7016 
7017 	dev->irq_affinity_auto = true;
7018 }
7019 EXPORT_SYMBOL(netif_set_affinity_auto);
7020 
netif_napi_set_irq_locked(struct napi_struct * napi,int irq)7021 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7022 {
7023 	int rc;
7024 
7025 	netdev_assert_locked_or_invisible(napi->dev);
7026 
7027 	if (napi->irq == irq)
7028 		return;
7029 
7030 	/* Remove existing resources */
7031 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7032 		irq_set_affinity_notifier(napi->irq, NULL);
7033 
7034 	napi->irq = irq;
7035 	if (irq < 0 ||
7036 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7037 		return;
7038 
7039 	/* Abort for buggy drivers */
7040 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7041 		return;
7042 
7043 #ifdef CONFIG_RFS_ACCEL
7044 	if (napi->dev->rx_cpu_rmap_auto) {
7045 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7046 		if (rc < 0)
7047 			return;
7048 
7049 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7050 		napi->napi_rmap_idx = rc;
7051 	}
7052 #endif
7053 
7054 	/* Use core IRQ notifier */
7055 	napi->notify.notify = netif_napi_irq_notify;
7056 	napi->notify.release = netif_napi_affinity_release;
7057 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7058 	if (rc) {
7059 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7060 			    rc);
7061 		goto put_rmap;
7062 	}
7063 
7064 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7065 	return;
7066 
7067 put_rmap:
7068 #ifdef CONFIG_RFS_ACCEL
7069 	if (napi->dev->rx_cpu_rmap_auto) {
7070 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7071 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7072 		napi->napi_rmap_idx = -1;
7073 	}
7074 #endif
7075 	napi->notify.notify = NULL;
7076 	napi->notify.release = NULL;
7077 }
7078 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7079 
napi_restore_config(struct napi_struct * n)7080 static void napi_restore_config(struct napi_struct *n)
7081 {
7082 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7083 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7084 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7085 
7086 	if (n->dev->irq_affinity_auto &&
7087 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7088 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7089 
7090 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7091 	 * napi_hash_add to generate one for us.
7092 	 */
7093 	if (n->config->napi_id) {
7094 		napi_hash_add_with_id(n, n->config->napi_id);
7095 	} else {
7096 		napi_hash_add(n);
7097 		n->config->napi_id = n->napi_id;
7098 	}
7099 }
7100 
napi_save_config(struct napi_struct * n)7101 static void napi_save_config(struct napi_struct *n)
7102 {
7103 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7104 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7105 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7106 	napi_hash_del(n);
7107 }
7108 
7109 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7110  * inherit an existing ID try to insert it at the right position.
7111  */
7112 static void
netif_napi_dev_list_add(struct net_device * dev,struct napi_struct * napi)7113 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7114 {
7115 	unsigned int new_id, pos_id;
7116 	struct list_head *higher;
7117 	struct napi_struct *pos;
7118 
7119 	new_id = UINT_MAX;
7120 	if (napi->config && napi->config->napi_id)
7121 		new_id = napi->config->napi_id;
7122 
7123 	higher = &dev->napi_list;
7124 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7125 		if (napi_id_valid(pos->napi_id))
7126 			pos_id = pos->napi_id;
7127 		else if (pos->config)
7128 			pos_id = pos->config->napi_id;
7129 		else
7130 			pos_id = UINT_MAX;
7131 
7132 		if (pos_id <= new_id)
7133 			break;
7134 		higher = &pos->dev_list;
7135 	}
7136 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7137 }
7138 
7139 /* Double check that napi_get_frags() allocates skbs with
7140  * skb->head being backed by slab, not a page fragment.
7141  * This is to make sure bug fixed in 3226b158e67c
7142  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7143  * does not accidentally come back.
7144  */
napi_get_frags_check(struct napi_struct * napi)7145 static void napi_get_frags_check(struct napi_struct *napi)
7146 {
7147 	struct sk_buff *skb;
7148 
7149 	local_bh_disable();
7150 	skb = napi_get_frags(napi);
7151 	WARN_ON_ONCE(skb && skb->head_frag);
7152 	napi_free_frags(napi);
7153 	local_bh_enable();
7154 }
7155 
netif_napi_add_weight_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)7156 void netif_napi_add_weight_locked(struct net_device *dev,
7157 				  struct napi_struct *napi,
7158 				  int (*poll)(struct napi_struct *, int),
7159 				  int weight)
7160 {
7161 	netdev_assert_locked(dev);
7162 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7163 		return;
7164 
7165 	INIT_LIST_HEAD(&napi->poll_list);
7166 	INIT_HLIST_NODE(&napi->napi_hash_node);
7167 	hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7168 	gro_init(&napi->gro);
7169 	napi->skb = NULL;
7170 	napi->poll = poll;
7171 	if (weight > NAPI_POLL_WEIGHT)
7172 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7173 				weight);
7174 	napi->weight = weight;
7175 	napi->dev = dev;
7176 #ifdef CONFIG_NETPOLL
7177 	napi->poll_owner = -1;
7178 #endif
7179 	napi->list_owner = -1;
7180 	set_bit(NAPI_STATE_SCHED, &napi->state);
7181 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7182 	netif_napi_dev_list_add(dev, napi);
7183 
7184 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7185 	 * configuration will be loaded in napi_enable
7186 	 */
7187 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7188 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7189 
7190 	napi_get_frags_check(napi);
7191 	/* Create kthread for this napi if dev->threaded is set.
7192 	 * Clear dev->threaded if kthread creation failed so that
7193 	 * threaded mode will not be enabled in napi_enable().
7194 	 */
7195 	if (dev->threaded && napi_kthread_create(napi))
7196 		dev->threaded = false;
7197 	netif_napi_set_irq_locked(napi, -1);
7198 }
7199 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7200 
napi_disable_locked(struct napi_struct * n)7201 void napi_disable_locked(struct napi_struct *n)
7202 {
7203 	unsigned long val, new;
7204 
7205 	might_sleep();
7206 	netdev_assert_locked(n->dev);
7207 
7208 	set_bit(NAPI_STATE_DISABLE, &n->state);
7209 
7210 	val = READ_ONCE(n->state);
7211 	do {
7212 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7213 			usleep_range(20, 200);
7214 			val = READ_ONCE(n->state);
7215 		}
7216 
7217 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7218 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7219 	} while (!try_cmpxchg(&n->state, &val, new));
7220 
7221 	hrtimer_cancel(&n->timer);
7222 
7223 	if (n->config)
7224 		napi_save_config(n);
7225 	else
7226 		napi_hash_del(n);
7227 
7228 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7229 }
7230 EXPORT_SYMBOL(napi_disable_locked);
7231 
7232 /**
7233  * napi_disable() - prevent NAPI from scheduling
7234  * @n: NAPI context
7235  *
7236  * Stop NAPI from being scheduled on this context.
7237  * Waits till any outstanding processing completes.
7238  * Takes netdev_lock() for associated net_device.
7239  */
napi_disable(struct napi_struct * n)7240 void napi_disable(struct napi_struct *n)
7241 {
7242 	netdev_lock(n->dev);
7243 	napi_disable_locked(n);
7244 	netdev_unlock(n->dev);
7245 }
7246 EXPORT_SYMBOL(napi_disable);
7247 
napi_enable_locked(struct napi_struct * n)7248 void napi_enable_locked(struct napi_struct *n)
7249 {
7250 	unsigned long new, val = READ_ONCE(n->state);
7251 
7252 	if (n->config)
7253 		napi_restore_config(n);
7254 	else
7255 		napi_hash_add(n);
7256 
7257 	do {
7258 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7259 
7260 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7261 		if (n->dev->threaded && n->thread)
7262 			new |= NAPIF_STATE_THREADED;
7263 	} while (!try_cmpxchg(&n->state, &val, new));
7264 }
7265 EXPORT_SYMBOL(napi_enable_locked);
7266 
7267 /**
7268  * napi_enable() - enable NAPI scheduling
7269  * @n: NAPI context
7270  *
7271  * Enable scheduling of a NAPI instance.
7272  * Must be paired with napi_disable().
7273  * Takes netdev_lock() for associated net_device.
7274  */
napi_enable(struct napi_struct * n)7275 void napi_enable(struct napi_struct *n)
7276 {
7277 	netdev_lock(n->dev);
7278 	napi_enable_locked(n);
7279 	netdev_unlock(n->dev);
7280 }
7281 EXPORT_SYMBOL(napi_enable);
7282 
7283 /* Must be called in process context */
__netif_napi_del_locked(struct napi_struct * napi)7284 void __netif_napi_del_locked(struct napi_struct *napi)
7285 {
7286 	netdev_assert_locked(napi->dev);
7287 
7288 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7289 		return;
7290 
7291 	/* Make sure NAPI is disabled (or was never enabled). */
7292 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7293 
7294 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7295 		irq_set_affinity_notifier(napi->irq, NULL);
7296 
7297 	if (napi->config) {
7298 		napi->index = -1;
7299 		napi->config = NULL;
7300 	}
7301 
7302 	list_del_rcu(&napi->dev_list);
7303 	napi_free_frags(napi);
7304 
7305 	gro_cleanup(&napi->gro);
7306 
7307 	if (napi->thread) {
7308 		kthread_stop(napi->thread);
7309 		napi->thread = NULL;
7310 	}
7311 }
7312 EXPORT_SYMBOL(__netif_napi_del_locked);
7313 
__napi_poll(struct napi_struct * n,bool * repoll)7314 static int __napi_poll(struct napi_struct *n, bool *repoll)
7315 {
7316 	int work, weight;
7317 
7318 	weight = n->weight;
7319 
7320 	/* This NAPI_STATE_SCHED test is for avoiding a race
7321 	 * with netpoll's poll_napi().  Only the entity which
7322 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7323 	 * actually make the ->poll() call.  Therefore we avoid
7324 	 * accidentally calling ->poll() when NAPI is not scheduled.
7325 	 */
7326 	work = 0;
7327 	if (napi_is_scheduled(n)) {
7328 		work = n->poll(n, weight);
7329 		trace_napi_poll(n, work, weight);
7330 
7331 		xdp_do_check_flushed(n);
7332 	}
7333 
7334 	if (unlikely(work > weight))
7335 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7336 				n->poll, work, weight);
7337 
7338 	if (likely(work < weight))
7339 		return work;
7340 
7341 	/* Drivers must not modify the NAPI state if they
7342 	 * consume the entire weight.  In such cases this code
7343 	 * still "owns" the NAPI instance and therefore can
7344 	 * move the instance around on the list at-will.
7345 	 */
7346 	if (unlikely(napi_disable_pending(n))) {
7347 		napi_complete(n);
7348 		return work;
7349 	}
7350 
7351 	/* The NAPI context has more processing work, but busy-polling
7352 	 * is preferred. Exit early.
7353 	 */
7354 	if (napi_prefer_busy_poll(n)) {
7355 		if (napi_complete_done(n, work)) {
7356 			/* If timeout is not set, we need to make sure
7357 			 * that the NAPI is re-scheduled.
7358 			 */
7359 			napi_schedule(n);
7360 		}
7361 		return work;
7362 	}
7363 
7364 	/* Flush too old packets. If HZ < 1000, flush all packets */
7365 	gro_flush(&n->gro, HZ >= 1000);
7366 	gro_normal_list(&n->gro);
7367 
7368 	/* Some drivers may have called napi_schedule
7369 	 * prior to exhausting their budget.
7370 	 */
7371 	if (unlikely(!list_empty(&n->poll_list))) {
7372 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7373 			     n->dev ? n->dev->name : "backlog");
7374 		return work;
7375 	}
7376 
7377 	*repoll = true;
7378 
7379 	return work;
7380 }
7381 
napi_poll(struct napi_struct * n,struct list_head * repoll)7382 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7383 {
7384 	bool do_repoll = false;
7385 	void *have;
7386 	int work;
7387 
7388 	list_del_init(&n->poll_list);
7389 
7390 	have = netpoll_poll_lock(n);
7391 
7392 	work = __napi_poll(n, &do_repoll);
7393 
7394 	if (do_repoll)
7395 		list_add_tail(&n->poll_list, repoll);
7396 
7397 	netpoll_poll_unlock(have);
7398 
7399 	return work;
7400 }
7401 
napi_thread_wait(struct napi_struct * napi)7402 static int napi_thread_wait(struct napi_struct *napi)
7403 {
7404 	set_current_state(TASK_INTERRUPTIBLE);
7405 
7406 	while (!kthread_should_stop()) {
7407 		/* Testing SCHED_THREADED bit here to make sure the current
7408 		 * kthread owns this napi and could poll on this napi.
7409 		 * Testing SCHED bit is not enough because SCHED bit might be
7410 		 * set by some other busy poll thread or by napi_disable().
7411 		 */
7412 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7413 			WARN_ON(!list_empty(&napi->poll_list));
7414 			__set_current_state(TASK_RUNNING);
7415 			return 0;
7416 		}
7417 
7418 		schedule();
7419 		set_current_state(TASK_INTERRUPTIBLE);
7420 	}
7421 	__set_current_state(TASK_RUNNING);
7422 
7423 	return -1;
7424 }
7425 
napi_threaded_poll_loop(struct napi_struct * napi)7426 static void napi_threaded_poll_loop(struct napi_struct *napi)
7427 {
7428 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7429 	struct softnet_data *sd;
7430 	unsigned long last_qs = jiffies;
7431 
7432 	for (;;) {
7433 		bool repoll = false;
7434 		void *have;
7435 
7436 		local_bh_disable();
7437 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7438 
7439 		sd = this_cpu_ptr(&softnet_data);
7440 		sd->in_napi_threaded_poll = true;
7441 
7442 		have = netpoll_poll_lock(napi);
7443 		__napi_poll(napi, &repoll);
7444 		netpoll_poll_unlock(have);
7445 
7446 		sd->in_napi_threaded_poll = false;
7447 		barrier();
7448 
7449 		if (sd_has_rps_ipi_waiting(sd)) {
7450 			local_irq_disable();
7451 			net_rps_action_and_irq_enable(sd);
7452 		}
7453 		skb_defer_free_flush(sd);
7454 		bpf_net_ctx_clear(bpf_net_ctx);
7455 		local_bh_enable();
7456 
7457 		if (!repoll)
7458 			break;
7459 
7460 		rcu_softirq_qs_periodic(last_qs);
7461 		cond_resched();
7462 	}
7463 }
7464 
napi_threaded_poll(void * data)7465 static int napi_threaded_poll(void *data)
7466 {
7467 	struct napi_struct *napi = data;
7468 
7469 	while (!napi_thread_wait(napi))
7470 		napi_threaded_poll_loop(napi);
7471 
7472 	return 0;
7473 }
7474 
net_rx_action(void)7475 static __latent_entropy void net_rx_action(void)
7476 {
7477 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7478 	unsigned long time_limit = jiffies +
7479 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7480 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7481 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7482 	LIST_HEAD(list);
7483 	LIST_HEAD(repoll);
7484 
7485 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7486 start:
7487 	sd->in_net_rx_action = true;
7488 	local_irq_disable();
7489 	list_splice_init(&sd->poll_list, &list);
7490 	local_irq_enable();
7491 
7492 	for (;;) {
7493 		struct napi_struct *n;
7494 
7495 		skb_defer_free_flush(sd);
7496 
7497 		if (list_empty(&list)) {
7498 			if (list_empty(&repoll)) {
7499 				sd->in_net_rx_action = false;
7500 				barrier();
7501 				/* We need to check if ____napi_schedule()
7502 				 * had refilled poll_list while
7503 				 * sd->in_net_rx_action was true.
7504 				 */
7505 				if (!list_empty(&sd->poll_list))
7506 					goto start;
7507 				if (!sd_has_rps_ipi_waiting(sd))
7508 					goto end;
7509 			}
7510 			break;
7511 		}
7512 
7513 		n = list_first_entry(&list, struct napi_struct, poll_list);
7514 		budget -= napi_poll(n, &repoll);
7515 
7516 		/* If softirq window is exhausted then punt.
7517 		 * Allow this to run for 2 jiffies since which will allow
7518 		 * an average latency of 1.5/HZ.
7519 		 */
7520 		if (unlikely(budget <= 0 ||
7521 			     time_after_eq(jiffies, time_limit))) {
7522 			sd->time_squeeze++;
7523 			break;
7524 		}
7525 	}
7526 
7527 	local_irq_disable();
7528 
7529 	list_splice_tail_init(&sd->poll_list, &list);
7530 	list_splice_tail(&repoll, &list);
7531 	list_splice(&list, &sd->poll_list);
7532 	if (!list_empty(&sd->poll_list))
7533 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7534 	else
7535 		sd->in_net_rx_action = false;
7536 
7537 	net_rps_action_and_irq_enable(sd);
7538 end:
7539 	bpf_net_ctx_clear(bpf_net_ctx);
7540 }
7541 
7542 struct netdev_adjacent {
7543 	struct net_device *dev;
7544 	netdevice_tracker dev_tracker;
7545 
7546 	/* upper master flag, there can only be one master device per list */
7547 	bool master;
7548 
7549 	/* lookup ignore flag */
7550 	bool ignore;
7551 
7552 	/* counter for the number of times this device was added to us */
7553 	u16 ref_nr;
7554 
7555 	/* private field for the users */
7556 	void *private;
7557 
7558 	struct list_head list;
7559 	struct rcu_head rcu;
7560 };
7561 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7562 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7563 						 struct list_head *adj_list)
7564 {
7565 	struct netdev_adjacent *adj;
7566 
7567 	list_for_each_entry(adj, adj_list, list) {
7568 		if (adj->dev == adj_dev)
7569 			return adj;
7570 	}
7571 	return NULL;
7572 }
7573 
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7574 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7575 				    struct netdev_nested_priv *priv)
7576 {
7577 	struct net_device *dev = (struct net_device *)priv->data;
7578 
7579 	return upper_dev == dev;
7580 }
7581 
7582 /**
7583  * netdev_has_upper_dev - Check if device is linked to an upper device
7584  * @dev: device
7585  * @upper_dev: upper device to check
7586  *
7587  * Find out if a device is linked to specified upper device and return true
7588  * in case it is. Note that this checks only immediate upper device,
7589  * not through a complete stack of devices. The caller must hold the RTNL lock.
7590  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7591 bool netdev_has_upper_dev(struct net_device *dev,
7592 			  struct net_device *upper_dev)
7593 {
7594 	struct netdev_nested_priv priv = {
7595 		.data = (void *)upper_dev,
7596 	};
7597 
7598 	ASSERT_RTNL();
7599 
7600 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7601 					     &priv);
7602 }
7603 EXPORT_SYMBOL(netdev_has_upper_dev);
7604 
7605 /**
7606  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7607  * @dev: device
7608  * @upper_dev: upper device to check
7609  *
7610  * Find out if a device is linked to specified upper device and return true
7611  * in case it is. Note that this checks the entire upper device chain.
7612  * The caller must hold rcu lock.
7613  */
7614 
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7615 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7616 				  struct net_device *upper_dev)
7617 {
7618 	struct netdev_nested_priv priv = {
7619 		.data = (void *)upper_dev,
7620 	};
7621 
7622 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7623 					       &priv);
7624 }
7625 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7626 
7627 /**
7628  * netdev_has_any_upper_dev - Check if device is linked to some device
7629  * @dev: device
7630  *
7631  * Find out if a device is linked to an upper device and return true in case
7632  * it is. The caller must hold the RTNL lock.
7633  */
netdev_has_any_upper_dev(struct net_device * dev)7634 bool netdev_has_any_upper_dev(struct net_device *dev)
7635 {
7636 	ASSERT_RTNL();
7637 
7638 	return !list_empty(&dev->adj_list.upper);
7639 }
7640 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7641 
7642 /**
7643  * netdev_master_upper_dev_get - Get master upper device
7644  * @dev: device
7645  *
7646  * Find a master upper device and return pointer to it or NULL in case
7647  * it's not there. The caller must hold the RTNL lock.
7648  */
netdev_master_upper_dev_get(struct net_device * dev)7649 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7650 {
7651 	struct netdev_adjacent *upper;
7652 
7653 	ASSERT_RTNL();
7654 
7655 	if (list_empty(&dev->adj_list.upper))
7656 		return NULL;
7657 
7658 	upper = list_first_entry(&dev->adj_list.upper,
7659 				 struct netdev_adjacent, list);
7660 	if (likely(upper->master))
7661 		return upper->dev;
7662 	return NULL;
7663 }
7664 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7665 
__netdev_master_upper_dev_get(struct net_device * dev)7666 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7667 {
7668 	struct netdev_adjacent *upper;
7669 
7670 	ASSERT_RTNL();
7671 
7672 	if (list_empty(&dev->adj_list.upper))
7673 		return NULL;
7674 
7675 	upper = list_first_entry(&dev->adj_list.upper,
7676 				 struct netdev_adjacent, list);
7677 	if (likely(upper->master) && !upper->ignore)
7678 		return upper->dev;
7679 	return NULL;
7680 }
7681 
7682 /**
7683  * netdev_has_any_lower_dev - Check if device is linked to some device
7684  * @dev: device
7685  *
7686  * Find out if a device is linked to a lower device and return true in case
7687  * it is. The caller must hold the RTNL lock.
7688  */
netdev_has_any_lower_dev(struct net_device * dev)7689 static bool netdev_has_any_lower_dev(struct net_device *dev)
7690 {
7691 	ASSERT_RTNL();
7692 
7693 	return !list_empty(&dev->adj_list.lower);
7694 }
7695 
netdev_adjacent_get_private(struct list_head * adj_list)7696 void *netdev_adjacent_get_private(struct list_head *adj_list)
7697 {
7698 	struct netdev_adjacent *adj;
7699 
7700 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7701 
7702 	return adj->private;
7703 }
7704 EXPORT_SYMBOL(netdev_adjacent_get_private);
7705 
7706 /**
7707  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7708  * @dev: device
7709  * @iter: list_head ** of the current position
7710  *
7711  * Gets the next device from the dev's upper list, starting from iter
7712  * position. The caller must hold RCU read lock.
7713  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7714 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7715 						 struct list_head **iter)
7716 {
7717 	struct netdev_adjacent *upper;
7718 
7719 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7720 
7721 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7722 
7723 	if (&upper->list == &dev->adj_list.upper)
7724 		return NULL;
7725 
7726 	*iter = &upper->list;
7727 
7728 	return upper->dev;
7729 }
7730 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7731 
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7732 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7733 						  struct list_head **iter,
7734 						  bool *ignore)
7735 {
7736 	struct netdev_adjacent *upper;
7737 
7738 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7739 
7740 	if (&upper->list == &dev->adj_list.upper)
7741 		return NULL;
7742 
7743 	*iter = &upper->list;
7744 	*ignore = upper->ignore;
7745 
7746 	return upper->dev;
7747 }
7748 
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7749 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7750 						    struct list_head **iter)
7751 {
7752 	struct netdev_adjacent *upper;
7753 
7754 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7755 
7756 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7757 
7758 	if (&upper->list == &dev->adj_list.upper)
7759 		return NULL;
7760 
7761 	*iter = &upper->list;
7762 
7763 	return upper->dev;
7764 }
7765 
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7766 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7767 				       int (*fn)(struct net_device *dev,
7768 					 struct netdev_nested_priv *priv),
7769 				       struct netdev_nested_priv *priv)
7770 {
7771 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7772 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7773 	int ret, cur = 0;
7774 	bool ignore;
7775 
7776 	now = dev;
7777 	iter = &dev->adj_list.upper;
7778 
7779 	while (1) {
7780 		if (now != dev) {
7781 			ret = fn(now, priv);
7782 			if (ret)
7783 				return ret;
7784 		}
7785 
7786 		next = NULL;
7787 		while (1) {
7788 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7789 			if (!udev)
7790 				break;
7791 			if (ignore)
7792 				continue;
7793 
7794 			next = udev;
7795 			niter = &udev->adj_list.upper;
7796 			dev_stack[cur] = now;
7797 			iter_stack[cur++] = iter;
7798 			break;
7799 		}
7800 
7801 		if (!next) {
7802 			if (!cur)
7803 				return 0;
7804 			next = dev_stack[--cur];
7805 			niter = iter_stack[cur];
7806 		}
7807 
7808 		now = next;
7809 		iter = niter;
7810 	}
7811 
7812 	return 0;
7813 }
7814 
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7815 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7816 				  int (*fn)(struct net_device *dev,
7817 					    struct netdev_nested_priv *priv),
7818 				  struct netdev_nested_priv *priv)
7819 {
7820 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7821 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7822 	int ret, cur = 0;
7823 
7824 	now = dev;
7825 	iter = &dev->adj_list.upper;
7826 
7827 	while (1) {
7828 		if (now != dev) {
7829 			ret = fn(now, priv);
7830 			if (ret)
7831 				return ret;
7832 		}
7833 
7834 		next = NULL;
7835 		while (1) {
7836 			udev = netdev_next_upper_dev_rcu(now, &iter);
7837 			if (!udev)
7838 				break;
7839 
7840 			next = udev;
7841 			niter = &udev->adj_list.upper;
7842 			dev_stack[cur] = now;
7843 			iter_stack[cur++] = iter;
7844 			break;
7845 		}
7846 
7847 		if (!next) {
7848 			if (!cur)
7849 				return 0;
7850 			next = dev_stack[--cur];
7851 			niter = iter_stack[cur];
7852 		}
7853 
7854 		now = next;
7855 		iter = niter;
7856 	}
7857 
7858 	return 0;
7859 }
7860 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7861 
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7862 static bool __netdev_has_upper_dev(struct net_device *dev,
7863 				   struct net_device *upper_dev)
7864 {
7865 	struct netdev_nested_priv priv = {
7866 		.flags = 0,
7867 		.data = (void *)upper_dev,
7868 	};
7869 
7870 	ASSERT_RTNL();
7871 
7872 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7873 					   &priv);
7874 }
7875 
7876 /**
7877  * netdev_lower_get_next_private - Get the next ->private from the
7878  *				   lower neighbour list
7879  * @dev: device
7880  * @iter: list_head ** of the current position
7881  *
7882  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7883  * list, starting from iter position. The caller must hold either hold the
7884  * RTNL lock or its own locking that guarantees that the neighbour lower
7885  * list will remain unchanged.
7886  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7887 void *netdev_lower_get_next_private(struct net_device *dev,
7888 				    struct list_head **iter)
7889 {
7890 	struct netdev_adjacent *lower;
7891 
7892 	lower = list_entry(*iter, struct netdev_adjacent, list);
7893 
7894 	if (&lower->list == &dev->adj_list.lower)
7895 		return NULL;
7896 
7897 	*iter = lower->list.next;
7898 
7899 	return lower->private;
7900 }
7901 EXPORT_SYMBOL(netdev_lower_get_next_private);
7902 
7903 /**
7904  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7905  *				       lower neighbour list, RCU
7906  *				       variant
7907  * @dev: device
7908  * @iter: list_head ** of the current position
7909  *
7910  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7911  * list, starting from iter position. The caller must hold RCU read lock.
7912  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7913 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7914 					struct list_head **iter)
7915 {
7916 	struct netdev_adjacent *lower;
7917 
7918 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7919 
7920 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7921 
7922 	if (&lower->list == &dev->adj_list.lower)
7923 		return NULL;
7924 
7925 	*iter = &lower->list;
7926 
7927 	return lower->private;
7928 }
7929 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7930 
7931 /**
7932  * netdev_lower_get_next - Get the next device from the lower neighbour
7933  *                         list
7934  * @dev: device
7935  * @iter: list_head ** of the current position
7936  *
7937  * Gets the next netdev_adjacent from the dev's lower neighbour
7938  * list, starting from iter position. The caller must hold RTNL lock or
7939  * its own locking that guarantees that the neighbour lower
7940  * list will remain unchanged.
7941  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7942 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7943 {
7944 	struct netdev_adjacent *lower;
7945 
7946 	lower = list_entry(*iter, struct netdev_adjacent, list);
7947 
7948 	if (&lower->list == &dev->adj_list.lower)
7949 		return NULL;
7950 
7951 	*iter = lower->list.next;
7952 
7953 	return lower->dev;
7954 }
7955 EXPORT_SYMBOL(netdev_lower_get_next);
7956 
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7957 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7958 						struct list_head **iter)
7959 {
7960 	struct netdev_adjacent *lower;
7961 
7962 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7963 
7964 	if (&lower->list == &dev->adj_list.lower)
7965 		return NULL;
7966 
7967 	*iter = &lower->list;
7968 
7969 	return lower->dev;
7970 }
7971 
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7972 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7973 						  struct list_head **iter,
7974 						  bool *ignore)
7975 {
7976 	struct netdev_adjacent *lower;
7977 
7978 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7979 
7980 	if (&lower->list == &dev->adj_list.lower)
7981 		return NULL;
7982 
7983 	*iter = &lower->list;
7984 	*ignore = lower->ignore;
7985 
7986 	return lower->dev;
7987 }
7988 
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7989 int netdev_walk_all_lower_dev(struct net_device *dev,
7990 			      int (*fn)(struct net_device *dev,
7991 					struct netdev_nested_priv *priv),
7992 			      struct netdev_nested_priv *priv)
7993 {
7994 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7995 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7996 	int ret, cur = 0;
7997 
7998 	now = dev;
7999 	iter = &dev->adj_list.lower;
8000 
8001 	while (1) {
8002 		if (now != dev) {
8003 			ret = fn(now, priv);
8004 			if (ret)
8005 				return ret;
8006 		}
8007 
8008 		next = NULL;
8009 		while (1) {
8010 			ldev = netdev_next_lower_dev(now, &iter);
8011 			if (!ldev)
8012 				break;
8013 
8014 			next = ldev;
8015 			niter = &ldev->adj_list.lower;
8016 			dev_stack[cur] = now;
8017 			iter_stack[cur++] = iter;
8018 			break;
8019 		}
8020 
8021 		if (!next) {
8022 			if (!cur)
8023 				return 0;
8024 			next = dev_stack[--cur];
8025 			niter = iter_stack[cur];
8026 		}
8027 
8028 		now = next;
8029 		iter = niter;
8030 	}
8031 
8032 	return 0;
8033 }
8034 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8035 
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8036 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8037 				       int (*fn)(struct net_device *dev,
8038 					 struct netdev_nested_priv *priv),
8039 				       struct netdev_nested_priv *priv)
8040 {
8041 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8042 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8043 	int ret, cur = 0;
8044 	bool ignore;
8045 
8046 	now = dev;
8047 	iter = &dev->adj_list.lower;
8048 
8049 	while (1) {
8050 		if (now != dev) {
8051 			ret = fn(now, priv);
8052 			if (ret)
8053 				return ret;
8054 		}
8055 
8056 		next = NULL;
8057 		while (1) {
8058 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8059 			if (!ldev)
8060 				break;
8061 			if (ignore)
8062 				continue;
8063 
8064 			next = ldev;
8065 			niter = &ldev->adj_list.lower;
8066 			dev_stack[cur] = now;
8067 			iter_stack[cur++] = iter;
8068 			break;
8069 		}
8070 
8071 		if (!next) {
8072 			if (!cur)
8073 				return 0;
8074 			next = dev_stack[--cur];
8075 			niter = iter_stack[cur];
8076 		}
8077 
8078 		now = next;
8079 		iter = niter;
8080 	}
8081 
8082 	return 0;
8083 }
8084 
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)8085 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8086 					     struct list_head **iter)
8087 {
8088 	struct netdev_adjacent *lower;
8089 
8090 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8091 	if (&lower->list == &dev->adj_list.lower)
8092 		return NULL;
8093 
8094 	*iter = &lower->list;
8095 
8096 	return lower->dev;
8097 }
8098 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8099 
__netdev_upper_depth(struct net_device * dev)8100 static u8 __netdev_upper_depth(struct net_device *dev)
8101 {
8102 	struct net_device *udev;
8103 	struct list_head *iter;
8104 	u8 max_depth = 0;
8105 	bool ignore;
8106 
8107 	for (iter = &dev->adj_list.upper,
8108 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8109 	     udev;
8110 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8111 		if (ignore)
8112 			continue;
8113 		if (max_depth < udev->upper_level)
8114 			max_depth = udev->upper_level;
8115 	}
8116 
8117 	return max_depth;
8118 }
8119 
__netdev_lower_depth(struct net_device * dev)8120 static u8 __netdev_lower_depth(struct net_device *dev)
8121 {
8122 	struct net_device *ldev;
8123 	struct list_head *iter;
8124 	u8 max_depth = 0;
8125 	bool ignore;
8126 
8127 	for (iter = &dev->adj_list.lower,
8128 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8129 	     ldev;
8130 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8131 		if (ignore)
8132 			continue;
8133 		if (max_depth < ldev->lower_level)
8134 			max_depth = ldev->lower_level;
8135 	}
8136 
8137 	return max_depth;
8138 }
8139 
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)8140 static int __netdev_update_upper_level(struct net_device *dev,
8141 				       struct netdev_nested_priv *__unused)
8142 {
8143 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8144 	return 0;
8145 }
8146 
8147 #ifdef CONFIG_LOCKDEP
8148 static LIST_HEAD(net_unlink_list);
8149 
net_unlink_todo(struct net_device * dev)8150 static void net_unlink_todo(struct net_device *dev)
8151 {
8152 	if (list_empty(&dev->unlink_list))
8153 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8154 }
8155 #endif
8156 
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)8157 static int __netdev_update_lower_level(struct net_device *dev,
8158 				       struct netdev_nested_priv *priv)
8159 {
8160 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8161 
8162 #ifdef CONFIG_LOCKDEP
8163 	if (!priv)
8164 		return 0;
8165 
8166 	if (priv->flags & NESTED_SYNC_IMM)
8167 		dev->nested_level = dev->lower_level - 1;
8168 	if (priv->flags & NESTED_SYNC_TODO)
8169 		net_unlink_todo(dev);
8170 #endif
8171 	return 0;
8172 }
8173 
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8174 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8175 				  int (*fn)(struct net_device *dev,
8176 					    struct netdev_nested_priv *priv),
8177 				  struct netdev_nested_priv *priv)
8178 {
8179 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8180 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8181 	int ret, cur = 0;
8182 
8183 	now = dev;
8184 	iter = &dev->adj_list.lower;
8185 
8186 	while (1) {
8187 		if (now != dev) {
8188 			ret = fn(now, priv);
8189 			if (ret)
8190 				return ret;
8191 		}
8192 
8193 		next = NULL;
8194 		while (1) {
8195 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8196 			if (!ldev)
8197 				break;
8198 
8199 			next = ldev;
8200 			niter = &ldev->adj_list.lower;
8201 			dev_stack[cur] = now;
8202 			iter_stack[cur++] = iter;
8203 			break;
8204 		}
8205 
8206 		if (!next) {
8207 			if (!cur)
8208 				return 0;
8209 			next = dev_stack[--cur];
8210 			niter = iter_stack[cur];
8211 		}
8212 
8213 		now = next;
8214 		iter = niter;
8215 	}
8216 
8217 	return 0;
8218 }
8219 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8220 
8221 /**
8222  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8223  *				       lower neighbour list, RCU
8224  *				       variant
8225  * @dev: device
8226  *
8227  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8228  * list. The caller must hold RCU read lock.
8229  */
netdev_lower_get_first_private_rcu(struct net_device * dev)8230 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8231 {
8232 	struct netdev_adjacent *lower;
8233 
8234 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8235 			struct netdev_adjacent, list);
8236 	if (lower)
8237 		return lower->private;
8238 	return NULL;
8239 }
8240 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8241 
8242 /**
8243  * netdev_master_upper_dev_get_rcu - Get master upper device
8244  * @dev: device
8245  *
8246  * Find a master upper device and return pointer to it or NULL in case
8247  * it's not there. The caller must hold the RCU read lock.
8248  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)8249 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8250 {
8251 	struct netdev_adjacent *upper;
8252 
8253 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8254 				       struct netdev_adjacent, list);
8255 	if (upper && likely(upper->master))
8256 		return upper->dev;
8257 	return NULL;
8258 }
8259 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8260 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8261 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8262 			      struct net_device *adj_dev,
8263 			      struct list_head *dev_list)
8264 {
8265 	char linkname[IFNAMSIZ+7];
8266 
8267 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8268 		"upper_%s" : "lower_%s", adj_dev->name);
8269 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8270 				 linkname);
8271 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)8272 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8273 			       char *name,
8274 			       struct list_head *dev_list)
8275 {
8276 	char linkname[IFNAMSIZ+7];
8277 
8278 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8279 		"upper_%s" : "lower_%s", name);
8280 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8281 }
8282 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8283 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8284 						 struct net_device *adj_dev,
8285 						 struct list_head *dev_list)
8286 {
8287 	return (dev_list == &dev->adj_list.upper ||
8288 		dev_list == &dev->adj_list.lower) &&
8289 		net_eq(dev_net(dev), dev_net(adj_dev));
8290 }
8291 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)8292 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8293 					struct net_device *adj_dev,
8294 					struct list_head *dev_list,
8295 					void *private, bool master)
8296 {
8297 	struct netdev_adjacent *adj;
8298 	int ret;
8299 
8300 	adj = __netdev_find_adj(adj_dev, dev_list);
8301 
8302 	if (adj) {
8303 		adj->ref_nr += 1;
8304 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8305 			 dev->name, adj_dev->name, adj->ref_nr);
8306 
8307 		return 0;
8308 	}
8309 
8310 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8311 	if (!adj)
8312 		return -ENOMEM;
8313 
8314 	adj->dev = adj_dev;
8315 	adj->master = master;
8316 	adj->ref_nr = 1;
8317 	adj->private = private;
8318 	adj->ignore = false;
8319 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8320 
8321 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8322 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8323 
8324 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8325 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8326 		if (ret)
8327 			goto free_adj;
8328 	}
8329 
8330 	/* Ensure that master link is always the first item in list. */
8331 	if (master) {
8332 		ret = sysfs_create_link(&(dev->dev.kobj),
8333 					&(adj_dev->dev.kobj), "master");
8334 		if (ret)
8335 			goto remove_symlinks;
8336 
8337 		list_add_rcu(&adj->list, dev_list);
8338 	} else {
8339 		list_add_tail_rcu(&adj->list, dev_list);
8340 	}
8341 
8342 	return 0;
8343 
8344 remove_symlinks:
8345 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8346 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8347 free_adj:
8348 	netdev_put(adj_dev, &adj->dev_tracker);
8349 	kfree(adj);
8350 
8351 	return ret;
8352 }
8353 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8354 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8355 					 struct net_device *adj_dev,
8356 					 u16 ref_nr,
8357 					 struct list_head *dev_list)
8358 {
8359 	struct netdev_adjacent *adj;
8360 
8361 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8362 		 dev->name, adj_dev->name, ref_nr);
8363 
8364 	adj = __netdev_find_adj(adj_dev, dev_list);
8365 
8366 	if (!adj) {
8367 		pr_err("Adjacency does not exist for device %s from %s\n",
8368 		       dev->name, adj_dev->name);
8369 		WARN_ON(1);
8370 		return;
8371 	}
8372 
8373 	if (adj->ref_nr > ref_nr) {
8374 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8375 			 dev->name, adj_dev->name, ref_nr,
8376 			 adj->ref_nr - ref_nr);
8377 		adj->ref_nr -= ref_nr;
8378 		return;
8379 	}
8380 
8381 	if (adj->master)
8382 		sysfs_remove_link(&(dev->dev.kobj), "master");
8383 
8384 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8385 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8386 
8387 	list_del_rcu(&adj->list);
8388 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8389 		 adj_dev->name, dev->name, adj_dev->name);
8390 	netdev_put(adj_dev, &adj->dev_tracker);
8391 	kfree_rcu(adj, rcu);
8392 }
8393 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8394 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8395 					    struct net_device *upper_dev,
8396 					    struct list_head *up_list,
8397 					    struct list_head *down_list,
8398 					    void *private, bool master)
8399 {
8400 	int ret;
8401 
8402 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8403 					   private, master);
8404 	if (ret)
8405 		return ret;
8406 
8407 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8408 					   private, false);
8409 	if (ret) {
8410 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8411 		return ret;
8412 	}
8413 
8414 	return 0;
8415 }
8416 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8417 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8418 					       struct net_device *upper_dev,
8419 					       u16 ref_nr,
8420 					       struct list_head *up_list,
8421 					       struct list_head *down_list)
8422 {
8423 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8424 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8425 }
8426 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8427 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8428 						struct net_device *upper_dev,
8429 						void *private, bool master)
8430 {
8431 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8432 						&dev->adj_list.upper,
8433 						&upper_dev->adj_list.lower,
8434 						private, master);
8435 }
8436 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8437 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8438 						   struct net_device *upper_dev)
8439 {
8440 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8441 					   &dev->adj_list.upper,
8442 					   &upper_dev->adj_list.lower);
8443 }
8444 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8445 static int __netdev_upper_dev_link(struct net_device *dev,
8446 				   struct net_device *upper_dev, bool master,
8447 				   void *upper_priv, void *upper_info,
8448 				   struct netdev_nested_priv *priv,
8449 				   struct netlink_ext_ack *extack)
8450 {
8451 	struct netdev_notifier_changeupper_info changeupper_info = {
8452 		.info = {
8453 			.dev = dev,
8454 			.extack = extack,
8455 		},
8456 		.upper_dev = upper_dev,
8457 		.master = master,
8458 		.linking = true,
8459 		.upper_info = upper_info,
8460 	};
8461 	struct net_device *master_dev;
8462 	int ret = 0;
8463 
8464 	ASSERT_RTNL();
8465 
8466 	if (dev == upper_dev)
8467 		return -EBUSY;
8468 
8469 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8470 	if (__netdev_has_upper_dev(upper_dev, dev))
8471 		return -EBUSY;
8472 
8473 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8474 		return -EMLINK;
8475 
8476 	if (!master) {
8477 		if (__netdev_has_upper_dev(dev, upper_dev))
8478 			return -EEXIST;
8479 	} else {
8480 		master_dev = __netdev_master_upper_dev_get(dev);
8481 		if (master_dev)
8482 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8483 	}
8484 
8485 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8486 					    &changeupper_info.info);
8487 	ret = notifier_to_errno(ret);
8488 	if (ret)
8489 		return ret;
8490 
8491 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8492 						   master);
8493 	if (ret)
8494 		return ret;
8495 
8496 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8497 					    &changeupper_info.info);
8498 	ret = notifier_to_errno(ret);
8499 	if (ret)
8500 		goto rollback;
8501 
8502 	__netdev_update_upper_level(dev, NULL);
8503 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8504 
8505 	__netdev_update_lower_level(upper_dev, priv);
8506 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8507 				    priv);
8508 
8509 	return 0;
8510 
8511 rollback:
8512 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8513 
8514 	return ret;
8515 }
8516 
8517 /**
8518  * netdev_upper_dev_link - Add a link to the upper device
8519  * @dev: device
8520  * @upper_dev: new upper device
8521  * @extack: netlink extended ack
8522  *
8523  * Adds a link to device which is upper to this one. The caller must hold
8524  * the RTNL lock. On a failure a negative errno code is returned.
8525  * On success the reference counts are adjusted and the function
8526  * returns zero.
8527  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8528 int netdev_upper_dev_link(struct net_device *dev,
8529 			  struct net_device *upper_dev,
8530 			  struct netlink_ext_ack *extack)
8531 {
8532 	struct netdev_nested_priv priv = {
8533 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8534 		.data = NULL,
8535 	};
8536 
8537 	return __netdev_upper_dev_link(dev, upper_dev, false,
8538 				       NULL, NULL, &priv, extack);
8539 }
8540 EXPORT_SYMBOL(netdev_upper_dev_link);
8541 
8542 /**
8543  * netdev_master_upper_dev_link - Add a master link to the upper device
8544  * @dev: device
8545  * @upper_dev: new upper device
8546  * @upper_priv: upper device private
8547  * @upper_info: upper info to be passed down via notifier
8548  * @extack: netlink extended ack
8549  *
8550  * Adds a link to device which is upper to this one. In this case, only
8551  * one master upper device can be linked, although other non-master devices
8552  * might be linked as well. The caller must hold the RTNL lock.
8553  * On a failure a negative errno code is returned. On success the reference
8554  * counts are adjusted and the function returns zero.
8555  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8556 int netdev_master_upper_dev_link(struct net_device *dev,
8557 				 struct net_device *upper_dev,
8558 				 void *upper_priv, void *upper_info,
8559 				 struct netlink_ext_ack *extack)
8560 {
8561 	struct netdev_nested_priv priv = {
8562 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8563 		.data = NULL,
8564 	};
8565 
8566 	return __netdev_upper_dev_link(dev, upper_dev, true,
8567 				       upper_priv, upper_info, &priv, extack);
8568 }
8569 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8570 
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8571 static void __netdev_upper_dev_unlink(struct net_device *dev,
8572 				      struct net_device *upper_dev,
8573 				      struct netdev_nested_priv *priv)
8574 {
8575 	struct netdev_notifier_changeupper_info changeupper_info = {
8576 		.info = {
8577 			.dev = dev,
8578 		},
8579 		.upper_dev = upper_dev,
8580 		.linking = false,
8581 	};
8582 
8583 	ASSERT_RTNL();
8584 
8585 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8586 
8587 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8588 				      &changeupper_info.info);
8589 
8590 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8591 
8592 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8593 				      &changeupper_info.info);
8594 
8595 	__netdev_update_upper_level(dev, NULL);
8596 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8597 
8598 	__netdev_update_lower_level(upper_dev, priv);
8599 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8600 				    priv);
8601 }
8602 
8603 /**
8604  * netdev_upper_dev_unlink - Removes a link to upper device
8605  * @dev: device
8606  * @upper_dev: new upper device
8607  *
8608  * Removes a link to device which is upper to this one. The caller must hold
8609  * the RTNL lock.
8610  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8611 void netdev_upper_dev_unlink(struct net_device *dev,
8612 			     struct net_device *upper_dev)
8613 {
8614 	struct netdev_nested_priv priv = {
8615 		.flags = NESTED_SYNC_TODO,
8616 		.data = NULL,
8617 	};
8618 
8619 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8620 }
8621 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8622 
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8623 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8624 				      struct net_device *lower_dev,
8625 				      bool val)
8626 {
8627 	struct netdev_adjacent *adj;
8628 
8629 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8630 	if (adj)
8631 		adj->ignore = val;
8632 
8633 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8634 	if (adj)
8635 		adj->ignore = val;
8636 }
8637 
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8638 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8639 					struct net_device *lower_dev)
8640 {
8641 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8642 }
8643 
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8644 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8645 				       struct net_device *lower_dev)
8646 {
8647 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8648 }
8649 
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8650 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8651 				   struct net_device *new_dev,
8652 				   struct net_device *dev,
8653 				   struct netlink_ext_ack *extack)
8654 {
8655 	struct netdev_nested_priv priv = {
8656 		.flags = 0,
8657 		.data = NULL,
8658 	};
8659 	int err;
8660 
8661 	if (!new_dev)
8662 		return 0;
8663 
8664 	if (old_dev && new_dev != old_dev)
8665 		netdev_adjacent_dev_disable(dev, old_dev);
8666 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8667 				      extack);
8668 	if (err) {
8669 		if (old_dev && new_dev != old_dev)
8670 			netdev_adjacent_dev_enable(dev, old_dev);
8671 		return err;
8672 	}
8673 
8674 	return 0;
8675 }
8676 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8677 
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8678 void netdev_adjacent_change_commit(struct net_device *old_dev,
8679 				   struct net_device *new_dev,
8680 				   struct net_device *dev)
8681 {
8682 	struct netdev_nested_priv priv = {
8683 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8684 		.data = NULL,
8685 	};
8686 
8687 	if (!new_dev || !old_dev)
8688 		return;
8689 
8690 	if (new_dev == old_dev)
8691 		return;
8692 
8693 	netdev_adjacent_dev_enable(dev, old_dev);
8694 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8695 }
8696 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8697 
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8698 void netdev_adjacent_change_abort(struct net_device *old_dev,
8699 				  struct net_device *new_dev,
8700 				  struct net_device *dev)
8701 {
8702 	struct netdev_nested_priv priv = {
8703 		.flags = 0,
8704 		.data = NULL,
8705 	};
8706 
8707 	if (!new_dev)
8708 		return;
8709 
8710 	if (old_dev && new_dev != old_dev)
8711 		netdev_adjacent_dev_enable(dev, old_dev);
8712 
8713 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8714 }
8715 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8716 
8717 /**
8718  * netdev_bonding_info_change - Dispatch event about slave change
8719  * @dev: device
8720  * @bonding_info: info to dispatch
8721  *
8722  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8723  * The caller must hold the RTNL lock.
8724  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8725 void netdev_bonding_info_change(struct net_device *dev,
8726 				struct netdev_bonding_info *bonding_info)
8727 {
8728 	struct netdev_notifier_bonding_info info = {
8729 		.info.dev = dev,
8730 	};
8731 
8732 	memcpy(&info.bonding_info, bonding_info,
8733 	       sizeof(struct netdev_bonding_info));
8734 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8735 				      &info.info);
8736 }
8737 EXPORT_SYMBOL(netdev_bonding_info_change);
8738 
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)8739 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8740 					   struct netlink_ext_ack *extack)
8741 {
8742 	struct netdev_notifier_offload_xstats_info info = {
8743 		.info.dev = dev,
8744 		.info.extack = extack,
8745 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8746 	};
8747 	int err;
8748 	int rc;
8749 
8750 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8751 					 GFP_KERNEL);
8752 	if (!dev->offload_xstats_l3)
8753 		return -ENOMEM;
8754 
8755 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8756 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8757 						  &info.info);
8758 	err = notifier_to_errno(rc);
8759 	if (err)
8760 		goto free_stats;
8761 
8762 	return 0;
8763 
8764 free_stats:
8765 	kfree(dev->offload_xstats_l3);
8766 	dev->offload_xstats_l3 = NULL;
8767 	return err;
8768 }
8769 
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8770 int netdev_offload_xstats_enable(struct net_device *dev,
8771 				 enum netdev_offload_xstats_type type,
8772 				 struct netlink_ext_ack *extack)
8773 {
8774 	ASSERT_RTNL();
8775 
8776 	if (netdev_offload_xstats_enabled(dev, type))
8777 		return -EALREADY;
8778 
8779 	switch (type) {
8780 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8781 		return netdev_offload_xstats_enable_l3(dev, extack);
8782 	}
8783 
8784 	WARN_ON(1);
8785 	return -EINVAL;
8786 }
8787 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8788 
netdev_offload_xstats_disable_l3(struct net_device * dev)8789 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8790 {
8791 	struct netdev_notifier_offload_xstats_info info = {
8792 		.info.dev = dev,
8793 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8794 	};
8795 
8796 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8797 				      &info.info);
8798 	kfree(dev->offload_xstats_l3);
8799 	dev->offload_xstats_l3 = NULL;
8800 }
8801 
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8802 int netdev_offload_xstats_disable(struct net_device *dev,
8803 				  enum netdev_offload_xstats_type type)
8804 {
8805 	ASSERT_RTNL();
8806 
8807 	if (!netdev_offload_xstats_enabled(dev, type))
8808 		return -EALREADY;
8809 
8810 	switch (type) {
8811 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8812 		netdev_offload_xstats_disable_l3(dev);
8813 		return 0;
8814 	}
8815 
8816 	WARN_ON(1);
8817 	return -EINVAL;
8818 }
8819 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8820 
netdev_offload_xstats_disable_all(struct net_device * dev)8821 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8822 {
8823 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8824 }
8825 
8826 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)8827 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8828 			      enum netdev_offload_xstats_type type)
8829 {
8830 	switch (type) {
8831 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8832 		return dev->offload_xstats_l3;
8833 	}
8834 
8835 	WARN_ON(1);
8836 	return NULL;
8837 }
8838 
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)8839 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8840 				   enum netdev_offload_xstats_type type)
8841 {
8842 	ASSERT_RTNL();
8843 
8844 	return netdev_offload_xstats_get_ptr(dev, type);
8845 }
8846 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8847 
8848 struct netdev_notifier_offload_xstats_ru {
8849 	bool used;
8850 };
8851 
8852 struct netdev_notifier_offload_xstats_rd {
8853 	struct rtnl_hw_stats64 stats;
8854 	bool used;
8855 };
8856 
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)8857 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8858 				  const struct rtnl_hw_stats64 *src)
8859 {
8860 	dest->rx_packets	  += src->rx_packets;
8861 	dest->tx_packets	  += src->tx_packets;
8862 	dest->rx_bytes		  += src->rx_bytes;
8863 	dest->tx_bytes		  += src->tx_bytes;
8864 	dest->rx_errors		  += src->rx_errors;
8865 	dest->tx_errors		  += src->tx_errors;
8866 	dest->rx_dropped	  += src->rx_dropped;
8867 	dest->tx_dropped	  += src->tx_dropped;
8868 	dest->multicast		  += src->multicast;
8869 }
8870 
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)8871 static int netdev_offload_xstats_get_used(struct net_device *dev,
8872 					  enum netdev_offload_xstats_type type,
8873 					  bool *p_used,
8874 					  struct netlink_ext_ack *extack)
8875 {
8876 	struct netdev_notifier_offload_xstats_ru report_used = {};
8877 	struct netdev_notifier_offload_xstats_info info = {
8878 		.info.dev = dev,
8879 		.info.extack = extack,
8880 		.type = type,
8881 		.report_used = &report_used,
8882 	};
8883 	int rc;
8884 
8885 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8886 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8887 					   &info.info);
8888 	*p_used = report_used.used;
8889 	return notifier_to_errno(rc);
8890 }
8891 
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8892 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8893 					   enum netdev_offload_xstats_type type,
8894 					   struct rtnl_hw_stats64 *p_stats,
8895 					   bool *p_used,
8896 					   struct netlink_ext_ack *extack)
8897 {
8898 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8899 	struct netdev_notifier_offload_xstats_info info = {
8900 		.info.dev = dev,
8901 		.info.extack = extack,
8902 		.type = type,
8903 		.report_delta = &report_delta,
8904 	};
8905 	struct rtnl_hw_stats64 *stats;
8906 	int rc;
8907 
8908 	stats = netdev_offload_xstats_get_ptr(dev, type);
8909 	if (WARN_ON(!stats))
8910 		return -EINVAL;
8911 
8912 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8913 					   &info.info);
8914 
8915 	/* Cache whatever we got, even if there was an error, otherwise the
8916 	 * successful stats retrievals would get lost.
8917 	 */
8918 	netdev_hw_stats64_add(stats, &report_delta.stats);
8919 
8920 	if (p_stats)
8921 		*p_stats = *stats;
8922 	*p_used = report_delta.used;
8923 
8924 	return notifier_to_errno(rc);
8925 }
8926 
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8927 int netdev_offload_xstats_get(struct net_device *dev,
8928 			      enum netdev_offload_xstats_type type,
8929 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8930 			      struct netlink_ext_ack *extack)
8931 {
8932 	ASSERT_RTNL();
8933 
8934 	if (p_stats)
8935 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8936 						       p_used, extack);
8937 	else
8938 		return netdev_offload_xstats_get_used(dev, type, p_used,
8939 						      extack);
8940 }
8941 EXPORT_SYMBOL(netdev_offload_xstats_get);
8942 
8943 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)8944 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8945 				   const struct rtnl_hw_stats64 *stats)
8946 {
8947 	report_delta->used = true;
8948 	netdev_hw_stats64_add(&report_delta->stats, stats);
8949 }
8950 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8951 
8952 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)8953 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8954 {
8955 	report_used->used = true;
8956 }
8957 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8958 
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)8959 void netdev_offload_xstats_push_delta(struct net_device *dev,
8960 				      enum netdev_offload_xstats_type type,
8961 				      const struct rtnl_hw_stats64 *p_stats)
8962 {
8963 	struct rtnl_hw_stats64 *stats;
8964 
8965 	ASSERT_RTNL();
8966 
8967 	stats = netdev_offload_xstats_get_ptr(dev, type);
8968 	if (WARN_ON(!stats))
8969 		return;
8970 
8971 	netdev_hw_stats64_add(stats, p_stats);
8972 }
8973 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8974 
8975 /**
8976  * netdev_get_xmit_slave - Get the xmit slave of master device
8977  * @dev: device
8978  * @skb: The packet
8979  * @all_slaves: assume all the slaves are active
8980  *
8981  * The reference counters are not incremented so the caller must be
8982  * careful with locks. The caller must hold RCU lock.
8983  * %NULL is returned if no slave is found.
8984  */
8985 
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8986 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8987 					 struct sk_buff *skb,
8988 					 bool all_slaves)
8989 {
8990 	const struct net_device_ops *ops = dev->netdev_ops;
8991 
8992 	if (!ops->ndo_get_xmit_slave)
8993 		return NULL;
8994 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8995 }
8996 EXPORT_SYMBOL(netdev_get_xmit_slave);
8997 
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)8998 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8999 						  struct sock *sk)
9000 {
9001 	const struct net_device_ops *ops = dev->netdev_ops;
9002 
9003 	if (!ops->ndo_sk_get_lower_dev)
9004 		return NULL;
9005 	return ops->ndo_sk_get_lower_dev(dev, sk);
9006 }
9007 
9008 /**
9009  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9010  * @dev: device
9011  * @sk: the socket
9012  *
9013  * %NULL is returned if no lower device is found.
9014  */
9015 
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)9016 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9017 					    struct sock *sk)
9018 {
9019 	struct net_device *lower;
9020 
9021 	lower = netdev_sk_get_lower_dev(dev, sk);
9022 	while (lower) {
9023 		dev = lower;
9024 		lower = netdev_sk_get_lower_dev(dev, sk);
9025 	}
9026 
9027 	return dev;
9028 }
9029 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9030 
netdev_adjacent_add_links(struct net_device * dev)9031 static void netdev_adjacent_add_links(struct net_device *dev)
9032 {
9033 	struct netdev_adjacent *iter;
9034 
9035 	struct net *net = dev_net(dev);
9036 
9037 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9038 		if (!net_eq(net, dev_net(iter->dev)))
9039 			continue;
9040 		netdev_adjacent_sysfs_add(iter->dev, dev,
9041 					  &iter->dev->adj_list.lower);
9042 		netdev_adjacent_sysfs_add(dev, iter->dev,
9043 					  &dev->adj_list.upper);
9044 	}
9045 
9046 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9047 		if (!net_eq(net, dev_net(iter->dev)))
9048 			continue;
9049 		netdev_adjacent_sysfs_add(iter->dev, dev,
9050 					  &iter->dev->adj_list.upper);
9051 		netdev_adjacent_sysfs_add(dev, iter->dev,
9052 					  &dev->adj_list.lower);
9053 	}
9054 }
9055 
netdev_adjacent_del_links(struct net_device * dev)9056 static void netdev_adjacent_del_links(struct net_device *dev)
9057 {
9058 	struct netdev_adjacent *iter;
9059 
9060 	struct net *net = dev_net(dev);
9061 
9062 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9063 		if (!net_eq(net, dev_net(iter->dev)))
9064 			continue;
9065 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9066 					  &iter->dev->adj_list.lower);
9067 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9068 					  &dev->adj_list.upper);
9069 	}
9070 
9071 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9072 		if (!net_eq(net, dev_net(iter->dev)))
9073 			continue;
9074 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9075 					  &iter->dev->adj_list.upper);
9076 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9077 					  &dev->adj_list.lower);
9078 	}
9079 }
9080 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)9081 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9082 {
9083 	struct netdev_adjacent *iter;
9084 
9085 	struct net *net = dev_net(dev);
9086 
9087 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9088 		if (!net_eq(net, dev_net(iter->dev)))
9089 			continue;
9090 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9091 					  &iter->dev->adj_list.lower);
9092 		netdev_adjacent_sysfs_add(iter->dev, dev,
9093 					  &iter->dev->adj_list.lower);
9094 	}
9095 
9096 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9097 		if (!net_eq(net, dev_net(iter->dev)))
9098 			continue;
9099 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9100 					  &iter->dev->adj_list.upper);
9101 		netdev_adjacent_sysfs_add(iter->dev, dev,
9102 					  &iter->dev->adj_list.upper);
9103 	}
9104 }
9105 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)9106 void *netdev_lower_dev_get_private(struct net_device *dev,
9107 				   struct net_device *lower_dev)
9108 {
9109 	struct netdev_adjacent *lower;
9110 
9111 	if (!lower_dev)
9112 		return NULL;
9113 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9114 	if (!lower)
9115 		return NULL;
9116 
9117 	return lower->private;
9118 }
9119 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9120 
9121 
9122 /**
9123  * netdev_lower_state_changed - Dispatch event about lower device state change
9124  * @lower_dev: device
9125  * @lower_state_info: state to dispatch
9126  *
9127  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9128  * The caller must hold the RTNL lock.
9129  */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)9130 void netdev_lower_state_changed(struct net_device *lower_dev,
9131 				void *lower_state_info)
9132 {
9133 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9134 		.info.dev = lower_dev,
9135 	};
9136 
9137 	ASSERT_RTNL();
9138 	changelowerstate_info.lower_state_info = lower_state_info;
9139 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9140 				      &changelowerstate_info.info);
9141 }
9142 EXPORT_SYMBOL(netdev_lower_state_changed);
9143 
dev_change_rx_flags(struct net_device * dev,int flags)9144 static void dev_change_rx_flags(struct net_device *dev, int flags)
9145 {
9146 	const struct net_device_ops *ops = dev->netdev_ops;
9147 
9148 	if (ops->ndo_change_rx_flags)
9149 		ops->ndo_change_rx_flags(dev, flags);
9150 }
9151 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)9152 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9153 {
9154 	unsigned int old_flags = dev->flags;
9155 	unsigned int promiscuity, flags;
9156 	kuid_t uid;
9157 	kgid_t gid;
9158 
9159 	ASSERT_RTNL();
9160 
9161 	promiscuity = dev->promiscuity + inc;
9162 	if (promiscuity == 0) {
9163 		/*
9164 		 * Avoid overflow.
9165 		 * If inc causes overflow, untouch promisc and return error.
9166 		 */
9167 		if (unlikely(inc > 0)) {
9168 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9169 			return -EOVERFLOW;
9170 		}
9171 		flags = old_flags & ~IFF_PROMISC;
9172 	} else {
9173 		flags = old_flags | IFF_PROMISC;
9174 	}
9175 	WRITE_ONCE(dev->promiscuity, promiscuity);
9176 	if (flags != old_flags) {
9177 		WRITE_ONCE(dev->flags, flags);
9178 		netdev_info(dev, "%s promiscuous mode\n",
9179 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9180 		if (audit_enabled) {
9181 			current_uid_gid(&uid, &gid);
9182 			audit_log(audit_context(), GFP_ATOMIC,
9183 				  AUDIT_ANOM_PROMISCUOUS,
9184 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9185 				  dev->name, (dev->flags & IFF_PROMISC),
9186 				  (old_flags & IFF_PROMISC),
9187 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9188 				  from_kuid(&init_user_ns, uid),
9189 				  from_kgid(&init_user_ns, gid),
9190 				  audit_get_sessionid(current));
9191 		}
9192 
9193 		dev_change_rx_flags(dev, IFF_PROMISC);
9194 	}
9195 	if (notify)
9196 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9197 	return 0;
9198 }
9199 
9200 /**
9201  *	dev_set_promiscuity	- update promiscuity count on a device
9202  *	@dev: device
9203  *	@inc: modifier
9204  *
9205  *	Add or remove promiscuity from a device. While the count in the device
9206  *	remains above zero the interface remains promiscuous. Once it hits zero
9207  *	the device reverts back to normal filtering operation. A negative inc
9208  *	value is used to drop promiscuity on the device.
9209  *	Return 0 if successful or a negative errno code on error.
9210  */
dev_set_promiscuity(struct net_device * dev,int inc)9211 int dev_set_promiscuity(struct net_device *dev, int inc)
9212 {
9213 	unsigned int old_flags = dev->flags;
9214 	int err;
9215 
9216 	err = __dev_set_promiscuity(dev, inc, true);
9217 	if (err < 0)
9218 		return err;
9219 	if (dev->flags != old_flags)
9220 		dev_set_rx_mode(dev);
9221 	return err;
9222 }
9223 EXPORT_SYMBOL(dev_set_promiscuity);
9224 
netif_set_allmulti(struct net_device * dev,int inc,bool notify)9225 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9226 {
9227 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9228 	unsigned int allmulti, flags;
9229 
9230 	ASSERT_RTNL();
9231 
9232 	allmulti = dev->allmulti + inc;
9233 	if (allmulti == 0) {
9234 		/*
9235 		 * Avoid overflow.
9236 		 * If inc causes overflow, untouch allmulti and return error.
9237 		 */
9238 		if (unlikely(inc > 0)) {
9239 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9240 			return -EOVERFLOW;
9241 		}
9242 		flags = old_flags & ~IFF_ALLMULTI;
9243 	} else {
9244 		flags = old_flags | IFF_ALLMULTI;
9245 	}
9246 	WRITE_ONCE(dev->allmulti, allmulti);
9247 	if (flags != old_flags) {
9248 		WRITE_ONCE(dev->flags, flags);
9249 		netdev_info(dev, "%s allmulticast mode\n",
9250 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9251 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9252 		dev_set_rx_mode(dev);
9253 		if (notify)
9254 			__dev_notify_flags(dev, old_flags,
9255 					   dev->gflags ^ old_gflags, 0, NULL);
9256 	}
9257 	return 0;
9258 }
9259 
9260 /*
9261  *	Upload unicast and multicast address lists to device and
9262  *	configure RX filtering. When the device doesn't support unicast
9263  *	filtering it is put in promiscuous mode while unicast addresses
9264  *	are present.
9265  */
__dev_set_rx_mode(struct net_device * dev)9266 void __dev_set_rx_mode(struct net_device *dev)
9267 {
9268 	const struct net_device_ops *ops = dev->netdev_ops;
9269 
9270 	/* dev_open will call this function so the list will stay sane. */
9271 	if (!(dev->flags&IFF_UP))
9272 		return;
9273 
9274 	if (!netif_device_present(dev))
9275 		return;
9276 
9277 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9278 		/* Unicast addresses changes may only happen under the rtnl,
9279 		 * therefore calling __dev_set_promiscuity here is safe.
9280 		 */
9281 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9282 			__dev_set_promiscuity(dev, 1, false);
9283 			dev->uc_promisc = true;
9284 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9285 			__dev_set_promiscuity(dev, -1, false);
9286 			dev->uc_promisc = false;
9287 		}
9288 	}
9289 
9290 	if (ops->ndo_set_rx_mode)
9291 		ops->ndo_set_rx_mode(dev);
9292 }
9293 
dev_set_rx_mode(struct net_device * dev)9294 void dev_set_rx_mode(struct net_device *dev)
9295 {
9296 	netif_addr_lock_bh(dev);
9297 	__dev_set_rx_mode(dev);
9298 	netif_addr_unlock_bh(dev);
9299 }
9300 
9301 /**
9302  *	dev_get_flags - get flags reported to userspace
9303  *	@dev: device
9304  *
9305  *	Get the combination of flag bits exported through APIs to userspace.
9306  */
dev_get_flags(const struct net_device * dev)9307 unsigned int dev_get_flags(const struct net_device *dev)
9308 {
9309 	unsigned int flags;
9310 
9311 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9312 				IFF_ALLMULTI |
9313 				IFF_RUNNING |
9314 				IFF_LOWER_UP |
9315 				IFF_DORMANT)) |
9316 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9317 				IFF_ALLMULTI));
9318 
9319 	if (netif_running(dev)) {
9320 		if (netif_oper_up(dev))
9321 			flags |= IFF_RUNNING;
9322 		if (netif_carrier_ok(dev))
9323 			flags |= IFF_LOWER_UP;
9324 		if (netif_dormant(dev))
9325 			flags |= IFF_DORMANT;
9326 	}
9327 
9328 	return flags;
9329 }
9330 EXPORT_SYMBOL(dev_get_flags);
9331 
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9332 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9333 		       struct netlink_ext_ack *extack)
9334 {
9335 	unsigned int old_flags = dev->flags;
9336 	int ret;
9337 
9338 	ASSERT_RTNL();
9339 
9340 	/*
9341 	 *	Set the flags on our device.
9342 	 */
9343 
9344 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9345 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9346 			       IFF_AUTOMEDIA)) |
9347 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9348 				    IFF_ALLMULTI));
9349 
9350 	/*
9351 	 *	Load in the correct multicast list now the flags have changed.
9352 	 */
9353 
9354 	if ((old_flags ^ flags) & IFF_MULTICAST)
9355 		dev_change_rx_flags(dev, IFF_MULTICAST);
9356 
9357 	dev_set_rx_mode(dev);
9358 
9359 	/*
9360 	 *	Have we downed the interface. We handle IFF_UP ourselves
9361 	 *	according to user attempts to set it, rather than blindly
9362 	 *	setting it.
9363 	 */
9364 
9365 	ret = 0;
9366 	if ((old_flags ^ flags) & IFF_UP) {
9367 		if (old_flags & IFF_UP)
9368 			__dev_close(dev);
9369 		else
9370 			ret = __dev_open(dev, extack);
9371 	}
9372 
9373 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9374 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9375 		old_flags = dev->flags;
9376 
9377 		dev->gflags ^= IFF_PROMISC;
9378 
9379 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9380 			if (dev->flags != old_flags)
9381 				dev_set_rx_mode(dev);
9382 	}
9383 
9384 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9385 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9386 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9387 	 */
9388 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9389 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9390 
9391 		dev->gflags ^= IFF_ALLMULTI;
9392 		netif_set_allmulti(dev, inc, false);
9393 	}
9394 
9395 	return ret;
9396 }
9397 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)9398 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9399 			unsigned int gchanges, u32 portid,
9400 			const struct nlmsghdr *nlh)
9401 {
9402 	unsigned int changes = dev->flags ^ old_flags;
9403 
9404 	if (gchanges)
9405 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9406 
9407 	if (changes & IFF_UP) {
9408 		if (dev->flags & IFF_UP)
9409 			call_netdevice_notifiers(NETDEV_UP, dev);
9410 		else
9411 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9412 	}
9413 
9414 	if (dev->flags & IFF_UP &&
9415 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9416 		struct netdev_notifier_change_info change_info = {
9417 			.info = {
9418 				.dev = dev,
9419 			},
9420 			.flags_changed = changes,
9421 		};
9422 
9423 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9424 	}
9425 }
9426 
netif_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9427 int netif_change_flags(struct net_device *dev, unsigned int flags,
9428 		       struct netlink_ext_ack *extack)
9429 {
9430 	int ret;
9431 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9432 
9433 	ret = __dev_change_flags(dev, flags, extack);
9434 	if (ret < 0)
9435 		return ret;
9436 
9437 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9438 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9439 	return ret;
9440 }
9441 
__dev_set_mtu(struct net_device * dev,int new_mtu)9442 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9443 {
9444 	const struct net_device_ops *ops = dev->netdev_ops;
9445 
9446 	if (ops->ndo_change_mtu)
9447 		return ops->ndo_change_mtu(dev, new_mtu);
9448 
9449 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9450 	WRITE_ONCE(dev->mtu, new_mtu);
9451 	return 0;
9452 }
9453 EXPORT_SYMBOL(__dev_set_mtu);
9454 
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9455 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9456 		     struct netlink_ext_ack *extack)
9457 {
9458 	/* MTU must be positive, and in range */
9459 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9460 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9461 		return -EINVAL;
9462 	}
9463 
9464 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9465 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9466 		return -EINVAL;
9467 	}
9468 	return 0;
9469 }
9470 
9471 /**
9472  *	netif_set_mtu_ext - Change maximum transfer unit
9473  *	@dev: device
9474  *	@new_mtu: new transfer unit
9475  *	@extack: netlink extended ack
9476  *
9477  *	Change the maximum transfer size of the network device.
9478  */
netif_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9479 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9480 		      struct netlink_ext_ack *extack)
9481 {
9482 	int err, orig_mtu;
9483 
9484 	if (new_mtu == dev->mtu)
9485 		return 0;
9486 
9487 	err = dev_validate_mtu(dev, new_mtu, extack);
9488 	if (err)
9489 		return err;
9490 
9491 	if (!netif_device_present(dev))
9492 		return -ENODEV;
9493 
9494 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9495 	err = notifier_to_errno(err);
9496 	if (err)
9497 		return err;
9498 
9499 	orig_mtu = dev->mtu;
9500 	err = __dev_set_mtu(dev, new_mtu);
9501 
9502 	if (!err) {
9503 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9504 						   orig_mtu);
9505 		err = notifier_to_errno(err);
9506 		if (err) {
9507 			/* setting mtu back and notifying everyone again,
9508 			 * so that they have a chance to revert changes.
9509 			 */
9510 			__dev_set_mtu(dev, orig_mtu);
9511 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9512 						     new_mtu);
9513 		}
9514 	}
9515 	return err;
9516 }
9517 
netif_set_mtu(struct net_device * dev,int new_mtu)9518 int netif_set_mtu(struct net_device *dev, int new_mtu)
9519 {
9520 	struct netlink_ext_ack extack;
9521 	int err;
9522 
9523 	memset(&extack, 0, sizeof(extack));
9524 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9525 	if (err && extack._msg)
9526 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9527 	return err;
9528 }
9529 EXPORT_SYMBOL(netif_set_mtu);
9530 
netif_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9531 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9532 {
9533 	unsigned int orig_len = dev->tx_queue_len;
9534 	int res;
9535 
9536 	if (new_len != (unsigned int)new_len)
9537 		return -ERANGE;
9538 
9539 	if (new_len != orig_len) {
9540 		WRITE_ONCE(dev->tx_queue_len, new_len);
9541 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9542 		res = notifier_to_errno(res);
9543 		if (res)
9544 			goto err_rollback;
9545 		res = dev_qdisc_change_tx_queue_len(dev);
9546 		if (res)
9547 			goto err_rollback;
9548 	}
9549 
9550 	return 0;
9551 
9552 err_rollback:
9553 	netdev_err(dev, "refused to change device tx_queue_len\n");
9554 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9555 	return res;
9556 }
9557 
netif_set_group(struct net_device * dev,int new_group)9558 void netif_set_group(struct net_device *dev, int new_group)
9559 {
9560 	dev->group = new_group;
9561 }
9562 
9563 /**
9564  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9565  *	@dev: device
9566  *	@addr: new address
9567  *	@extack: netlink extended ack
9568  */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9569 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9570 			      struct netlink_ext_ack *extack)
9571 {
9572 	struct netdev_notifier_pre_changeaddr_info info = {
9573 		.info.dev = dev,
9574 		.info.extack = extack,
9575 		.dev_addr = addr,
9576 	};
9577 	int rc;
9578 
9579 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9580 	return notifier_to_errno(rc);
9581 }
9582 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9583 
netif_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)9584 int netif_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9585 			  struct netlink_ext_ack *extack)
9586 {
9587 	const struct net_device_ops *ops = dev->netdev_ops;
9588 	int err;
9589 
9590 	if (!ops->ndo_set_mac_address)
9591 		return -EOPNOTSUPP;
9592 	if (sa->sa_family != dev->type)
9593 		return -EINVAL;
9594 	if (!netif_device_present(dev))
9595 		return -ENODEV;
9596 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9597 	if (err)
9598 		return err;
9599 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9600 		err = ops->ndo_set_mac_address(dev, sa);
9601 		if (err)
9602 			return err;
9603 	}
9604 	dev->addr_assign_type = NET_ADDR_SET;
9605 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9606 	add_device_randomness(dev->dev_addr, dev->addr_len);
9607 	return 0;
9608 }
9609 
9610 DECLARE_RWSEM(dev_addr_sem);
9611 
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9612 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9613 {
9614 	size_t size = sizeof(sa->sa_data_min);
9615 	struct net_device *dev;
9616 	int ret = 0;
9617 
9618 	down_read(&dev_addr_sem);
9619 	rcu_read_lock();
9620 
9621 	dev = dev_get_by_name_rcu(net, dev_name);
9622 	if (!dev) {
9623 		ret = -ENODEV;
9624 		goto unlock;
9625 	}
9626 	if (!dev->addr_len)
9627 		memset(sa->sa_data, 0, size);
9628 	else
9629 		memcpy(sa->sa_data, dev->dev_addr,
9630 		       min_t(size_t, size, dev->addr_len));
9631 	sa->sa_family = dev->type;
9632 
9633 unlock:
9634 	rcu_read_unlock();
9635 	up_read(&dev_addr_sem);
9636 	return ret;
9637 }
9638 EXPORT_SYMBOL(dev_get_mac_address);
9639 
netif_change_carrier(struct net_device * dev,bool new_carrier)9640 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9641 {
9642 	const struct net_device_ops *ops = dev->netdev_ops;
9643 
9644 	if (!ops->ndo_change_carrier)
9645 		return -EOPNOTSUPP;
9646 	if (!netif_device_present(dev))
9647 		return -ENODEV;
9648 	return ops->ndo_change_carrier(dev, new_carrier);
9649 }
9650 
9651 /**
9652  *	dev_get_phys_port_id - Get device physical port ID
9653  *	@dev: device
9654  *	@ppid: port ID
9655  *
9656  *	Get device physical port ID
9657  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9658 int dev_get_phys_port_id(struct net_device *dev,
9659 			 struct netdev_phys_item_id *ppid)
9660 {
9661 	const struct net_device_ops *ops = dev->netdev_ops;
9662 
9663 	if (!ops->ndo_get_phys_port_id)
9664 		return -EOPNOTSUPP;
9665 	return ops->ndo_get_phys_port_id(dev, ppid);
9666 }
9667 
9668 /**
9669  *	dev_get_phys_port_name - Get device physical port name
9670  *	@dev: device
9671  *	@name: port name
9672  *	@len: limit of bytes to copy to name
9673  *
9674  *	Get device physical port name
9675  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9676 int dev_get_phys_port_name(struct net_device *dev,
9677 			   char *name, size_t len)
9678 {
9679 	const struct net_device_ops *ops = dev->netdev_ops;
9680 	int err;
9681 
9682 	if (ops->ndo_get_phys_port_name) {
9683 		err = ops->ndo_get_phys_port_name(dev, name, len);
9684 		if (err != -EOPNOTSUPP)
9685 			return err;
9686 	}
9687 	return devlink_compat_phys_port_name_get(dev, name, len);
9688 }
9689 
9690 /**
9691  *	dev_get_port_parent_id - Get the device's port parent identifier
9692  *	@dev: network device
9693  *	@ppid: pointer to a storage for the port's parent identifier
9694  *	@recurse: allow/disallow recursion to lower devices
9695  *
9696  *	Get the devices's port parent identifier
9697  */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9698 int dev_get_port_parent_id(struct net_device *dev,
9699 			   struct netdev_phys_item_id *ppid,
9700 			   bool recurse)
9701 {
9702 	const struct net_device_ops *ops = dev->netdev_ops;
9703 	struct netdev_phys_item_id first = { };
9704 	struct net_device *lower_dev;
9705 	struct list_head *iter;
9706 	int err;
9707 
9708 	if (ops->ndo_get_port_parent_id) {
9709 		err = ops->ndo_get_port_parent_id(dev, ppid);
9710 		if (err != -EOPNOTSUPP)
9711 			return err;
9712 	}
9713 
9714 	err = devlink_compat_switch_id_get(dev, ppid);
9715 	if (!recurse || err != -EOPNOTSUPP)
9716 		return err;
9717 
9718 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9719 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9720 		if (err)
9721 			break;
9722 		if (!first.id_len)
9723 			first = *ppid;
9724 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9725 			return -EOPNOTSUPP;
9726 	}
9727 
9728 	return err;
9729 }
9730 EXPORT_SYMBOL(dev_get_port_parent_id);
9731 
9732 /**
9733  *	netdev_port_same_parent_id - Indicate if two network devices have
9734  *	the same port parent identifier
9735  *	@a: first network device
9736  *	@b: second network device
9737  */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9738 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9739 {
9740 	struct netdev_phys_item_id a_id = { };
9741 	struct netdev_phys_item_id b_id = { };
9742 
9743 	if (dev_get_port_parent_id(a, &a_id, true) ||
9744 	    dev_get_port_parent_id(b, &b_id, true))
9745 		return false;
9746 
9747 	return netdev_phys_item_id_same(&a_id, &b_id);
9748 }
9749 EXPORT_SYMBOL(netdev_port_same_parent_id);
9750 
netif_change_proto_down(struct net_device * dev,bool proto_down)9751 int netif_change_proto_down(struct net_device *dev, bool proto_down)
9752 {
9753 	if (!dev->change_proto_down)
9754 		return -EOPNOTSUPP;
9755 	if (!netif_device_present(dev))
9756 		return -ENODEV;
9757 	if (proto_down)
9758 		netif_carrier_off(dev);
9759 	else
9760 		netif_carrier_on(dev);
9761 	WRITE_ONCE(dev->proto_down, proto_down);
9762 	return 0;
9763 }
9764 
9765 /**
9766  *	netdev_change_proto_down_reason_locked - proto down reason
9767  *
9768  *	@dev: device
9769  *	@mask: proto down mask
9770  *	@value: proto down value
9771  */
netdev_change_proto_down_reason_locked(struct net_device * dev,unsigned long mask,u32 value)9772 void netdev_change_proto_down_reason_locked(struct net_device *dev,
9773 					    unsigned long mask, u32 value)
9774 {
9775 	u32 proto_down_reason;
9776 	int b;
9777 
9778 	if (!mask) {
9779 		proto_down_reason = value;
9780 	} else {
9781 		proto_down_reason = dev->proto_down_reason;
9782 		for_each_set_bit(b, &mask, 32) {
9783 			if (value & (1 << b))
9784 				proto_down_reason |= BIT(b);
9785 			else
9786 				proto_down_reason &= ~BIT(b);
9787 		}
9788 	}
9789 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9790 }
9791 
9792 struct bpf_xdp_link {
9793 	struct bpf_link link;
9794 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9795 	int flags;
9796 };
9797 
dev_xdp_mode(struct net_device * dev,u32 flags)9798 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9799 {
9800 	if (flags & XDP_FLAGS_HW_MODE)
9801 		return XDP_MODE_HW;
9802 	if (flags & XDP_FLAGS_DRV_MODE)
9803 		return XDP_MODE_DRV;
9804 	if (flags & XDP_FLAGS_SKB_MODE)
9805 		return XDP_MODE_SKB;
9806 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9807 }
9808 
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9809 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9810 {
9811 	switch (mode) {
9812 	case XDP_MODE_SKB:
9813 		return generic_xdp_install;
9814 	case XDP_MODE_DRV:
9815 	case XDP_MODE_HW:
9816 		return dev->netdev_ops->ndo_bpf;
9817 	default:
9818 		return NULL;
9819 	}
9820 }
9821 
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9822 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9823 					 enum bpf_xdp_mode mode)
9824 {
9825 	return dev->xdp_state[mode].link;
9826 }
9827 
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9828 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9829 				     enum bpf_xdp_mode mode)
9830 {
9831 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9832 
9833 	if (link)
9834 		return link->link.prog;
9835 	return dev->xdp_state[mode].prog;
9836 }
9837 
dev_xdp_prog_count(struct net_device * dev)9838 u8 dev_xdp_prog_count(struct net_device *dev)
9839 {
9840 	u8 count = 0;
9841 	int i;
9842 
9843 	for (i = 0; i < __MAX_XDP_MODE; i++)
9844 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9845 			count++;
9846 	return count;
9847 }
9848 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9849 
dev_xdp_sb_prog_count(struct net_device * dev)9850 u8 dev_xdp_sb_prog_count(struct net_device *dev)
9851 {
9852 	u8 count = 0;
9853 	int i;
9854 
9855 	for (i = 0; i < __MAX_XDP_MODE; i++)
9856 		if (dev->xdp_state[i].prog &&
9857 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
9858 			count++;
9859 	return count;
9860 }
9861 
netif_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)9862 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9863 {
9864 	if (!dev->netdev_ops->ndo_bpf)
9865 		return -EOPNOTSUPP;
9866 
9867 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9868 	    bpf->command == XDP_SETUP_PROG &&
9869 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9870 		NL_SET_ERR_MSG(bpf->extack,
9871 			       "unable to propagate XDP to device using tcp-data-split");
9872 		return -EBUSY;
9873 	}
9874 
9875 	if (dev_get_min_mp_channel_count(dev)) {
9876 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9877 		return -EBUSY;
9878 	}
9879 
9880 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9881 }
9882 
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9883 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9884 {
9885 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9886 
9887 	return prog ? prog->aux->id : 0;
9888 }
9889 
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9890 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9891 			     struct bpf_xdp_link *link)
9892 {
9893 	dev->xdp_state[mode].link = link;
9894 	dev->xdp_state[mode].prog = NULL;
9895 }
9896 
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9897 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9898 			     struct bpf_prog *prog)
9899 {
9900 	dev->xdp_state[mode].link = NULL;
9901 	dev->xdp_state[mode].prog = prog;
9902 }
9903 
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9904 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9905 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9906 			   u32 flags, struct bpf_prog *prog)
9907 {
9908 	struct netdev_bpf xdp;
9909 	int err;
9910 
9911 	netdev_ops_assert_locked(dev);
9912 
9913 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9914 	    prog && !prog->aux->xdp_has_frags) {
9915 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
9916 		return -EBUSY;
9917 	}
9918 
9919 	if (dev_get_min_mp_channel_count(dev)) {
9920 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9921 		return -EBUSY;
9922 	}
9923 
9924 	memset(&xdp, 0, sizeof(xdp));
9925 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9926 	xdp.extack = extack;
9927 	xdp.flags = flags;
9928 	xdp.prog = prog;
9929 
9930 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9931 	 * "moved" into driver), so they don't increment it on their own, but
9932 	 * they do decrement refcnt when program is detached or replaced.
9933 	 * Given net_device also owns link/prog, we need to bump refcnt here
9934 	 * to prevent drivers from underflowing it.
9935 	 */
9936 	if (prog)
9937 		bpf_prog_inc(prog);
9938 	err = bpf_op(dev, &xdp);
9939 	if (err) {
9940 		if (prog)
9941 			bpf_prog_put(prog);
9942 		return err;
9943 	}
9944 
9945 	if (mode != XDP_MODE_HW)
9946 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9947 
9948 	return 0;
9949 }
9950 
dev_xdp_uninstall(struct net_device * dev)9951 static void dev_xdp_uninstall(struct net_device *dev)
9952 {
9953 	struct bpf_xdp_link *link;
9954 	struct bpf_prog *prog;
9955 	enum bpf_xdp_mode mode;
9956 	bpf_op_t bpf_op;
9957 
9958 	ASSERT_RTNL();
9959 
9960 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9961 		prog = dev_xdp_prog(dev, mode);
9962 		if (!prog)
9963 			continue;
9964 
9965 		bpf_op = dev_xdp_bpf_op(dev, mode);
9966 		if (!bpf_op)
9967 			continue;
9968 
9969 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9970 
9971 		/* auto-detach link from net device */
9972 		link = dev_xdp_link(dev, mode);
9973 		if (link)
9974 			link->dev = NULL;
9975 		else
9976 			bpf_prog_put(prog);
9977 
9978 		dev_xdp_set_link(dev, mode, NULL);
9979 	}
9980 }
9981 
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9982 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9983 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9984 			  struct bpf_prog *old_prog, u32 flags)
9985 {
9986 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9987 	struct bpf_prog *cur_prog;
9988 	struct net_device *upper;
9989 	struct list_head *iter;
9990 	enum bpf_xdp_mode mode;
9991 	bpf_op_t bpf_op;
9992 	int err;
9993 
9994 	ASSERT_RTNL();
9995 
9996 	/* either link or prog attachment, never both */
9997 	if (link && (new_prog || old_prog))
9998 		return -EINVAL;
9999 	/* link supports only XDP mode flags */
10000 	if (link && (flags & ~XDP_FLAGS_MODES)) {
10001 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10002 		return -EINVAL;
10003 	}
10004 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10005 	if (num_modes > 1) {
10006 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10007 		return -EINVAL;
10008 	}
10009 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10010 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10011 		NL_SET_ERR_MSG(extack,
10012 			       "More than one program loaded, unset mode is ambiguous");
10013 		return -EINVAL;
10014 	}
10015 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10016 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10017 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10018 		return -EINVAL;
10019 	}
10020 
10021 	mode = dev_xdp_mode(dev, flags);
10022 	/* can't replace attached link */
10023 	if (dev_xdp_link(dev, mode)) {
10024 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10025 		return -EBUSY;
10026 	}
10027 
10028 	/* don't allow if an upper device already has a program */
10029 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10030 		if (dev_xdp_prog_count(upper) > 0) {
10031 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10032 			return -EEXIST;
10033 		}
10034 	}
10035 
10036 	cur_prog = dev_xdp_prog(dev, mode);
10037 	/* can't replace attached prog with link */
10038 	if (link && cur_prog) {
10039 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10040 		return -EBUSY;
10041 	}
10042 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10043 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10044 		return -EEXIST;
10045 	}
10046 
10047 	/* put effective new program into new_prog */
10048 	if (link)
10049 		new_prog = link->link.prog;
10050 
10051 	if (new_prog) {
10052 		bool offload = mode == XDP_MODE_HW;
10053 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10054 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10055 
10056 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10057 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10058 			return -EBUSY;
10059 		}
10060 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10061 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10062 			return -EEXIST;
10063 		}
10064 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10065 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10066 			return -EINVAL;
10067 		}
10068 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10069 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10070 			return -EINVAL;
10071 		}
10072 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10073 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10074 			return -EINVAL;
10075 		}
10076 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10077 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10078 			return -EINVAL;
10079 		}
10080 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10081 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10082 			return -EINVAL;
10083 		}
10084 	}
10085 
10086 	/* don't call drivers if the effective program didn't change */
10087 	if (new_prog != cur_prog) {
10088 		bpf_op = dev_xdp_bpf_op(dev, mode);
10089 		if (!bpf_op) {
10090 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10091 			return -EOPNOTSUPP;
10092 		}
10093 
10094 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10095 		if (err)
10096 			return err;
10097 	}
10098 
10099 	if (link)
10100 		dev_xdp_set_link(dev, mode, link);
10101 	else
10102 		dev_xdp_set_prog(dev, mode, new_prog);
10103 	if (cur_prog)
10104 		bpf_prog_put(cur_prog);
10105 
10106 	return 0;
10107 }
10108 
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10109 static int dev_xdp_attach_link(struct net_device *dev,
10110 			       struct netlink_ext_ack *extack,
10111 			       struct bpf_xdp_link *link)
10112 {
10113 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10114 }
10115 
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10116 static int dev_xdp_detach_link(struct net_device *dev,
10117 			       struct netlink_ext_ack *extack,
10118 			       struct bpf_xdp_link *link)
10119 {
10120 	enum bpf_xdp_mode mode;
10121 	bpf_op_t bpf_op;
10122 
10123 	ASSERT_RTNL();
10124 
10125 	mode = dev_xdp_mode(dev, link->flags);
10126 	if (dev_xdp_link(dev, mode) != link)
10127 		return -EINVAL;
10128 
10129 	bpf_op = dev_xdp_bpf_op(dev, mode);
10130 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10131 	dev_xdp_set_link(dev, mode, NULL);
10132 	return 0;
10133 }
10134 
bpf_xdp_link_release(struct bpf_link * link)10135 static void bpf_xdp_link_release(struct bpf_link *link)
10136 {
10137 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10138 
10139 	rtnl_lock();
10140 
10141 	/* if racing with net_device's tear down, xdp_link->dev might be
10142 	 * already NULL, in which case link was already auto-detached
10143 	 */
10144 	if (xdp_link->dev) {
10145 		netdev_lock_ops(xdp_link->dev);
10146 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10147 		netdev_unlock_ops(xdp_link->dev);
10148 		xdp_link->dev = NULL;
10149 	}
10150 
10151 	rtnl_unlock();
10152 }
10153 
bpf_xdp_link_detach(struct bpf_link * link)10154 static int bpf_xdp_link_detach(struct bpf_link *link)
10155 {
10156 	bpf_xdp_link_release(link);
10157 	return 0;
10158 }
10159 
bpf_xdp_link_dealloc(struct bpf_link * link)10160 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10161 {
10162 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10163 
10164 	kfree(xdp_link);
10165 }
10166 
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)10167 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10168 				     struct seq_file *seq)
10169 {
10170 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10171 	u32 ifindex = 0;
10172 
10173 	rtnl_lock();
10174 	if (xdp_link->dev)
10175 		ifindex = xdp_link->dev->ifindex;
10176 	rtnl_unlock();
10177 
10178 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10179 }
10180 
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)10181 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10182 				       struct bpf_link_info *info)
10183 {
10184 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10185 	u32 ifindex = 0;
10186 
10187 	rtnl_lock();
10188 	if (xdp_link->dev)
10189 		ifindex = xdp_link->dev->ifindex;
10190 	rtnl_unlock();
10191 
10192 	info->xdp.ifindex = ifindex;
10193 	return 0;
10194 }
10195 
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)10196 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10197 			       struct bpf_prog *old_prog)
10198 {
10199 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10200 	enum bpf_xdp_mode mode;
10201 	bpf_op_t bpf_op;
10202 	int err = 0;
10203 
10204 	rtnl_lock();
10205 
10206 	/* link might have been auto-released already, so fail */
10207 	if (!xdp_link->dev) {
10208 		err = -ENOLINK;
10209 		goto out_unlock;
10210 	}
10211 
10212 	if (old_prog && link->prog != old_prog) {
10213 		err = -EPERM;
10214 		goto out_unlock;
10215 	}
10216 	old_prog = link->prog;
10217 	if (old_prog->type != new_prog->type ||
10218 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10219 		err = -EINVAL;
10220 		goto out_unlock;
10221 	}
10222 
10223 	if (old_prog == new_prog) {
10224 		/* no-op, don't disturb drivers */
10225 		bpf_prog_put(new_prog);
10226 		goto out_unlock;
10227 	}
10228 
10229 	netdev_lock_ops(xdp_link->dev);
10230 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10231 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10232 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10233 			      xdp_link->flags, new_prog);
10234 	netdev_unlock_ops(xdp_link->dev);
10235 	if (err)
10236 		goto out_unlock;
10237 
10238 	old_prog = xchg(&link->prog, new_prog);
10239 	bpf_prog_put(old_prog);
10240 
10241 out_unlock:
10242 	rtnl_unlock();
10243 	return err;
10244 }
10245 
10246 static const struct bpf_link_ops bpf_xdp_link_lops = {
10247 	.release = bpf_xdp_link_release,
10248 	.dealloc = bpf_xdp_link_dealloc,
10249 	.detach = bpf_xdp_link_detach,
10250 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10251 	.fill_link_info = bpf_xdp_link_fill_link_info,
10252 	.update_prog = bpf_xdp_link_update,
10253 };
10254 
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)10255 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10256 {
10257 	struct net *net = current->nsproxy->net_ns;
10258 	struct bpf_link_primer link_primer;
10259 	struct netlink_ext_ack extack = {};
10260 	struct bpf_xdp_link *link;
10261 	struct net_device *dev;
10262 	int err, fd;
10263 
10264 	rtnl_lock();
10265 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10266 	if (!dev) {
10267 		rtnl_unlock();
10268 		return -EINVAL;
10269 	}
10270 
10271 	link = kzalloc(sizeof(*link), GFP_USER);
10272 	if (!link) {
10273 		err = -ENOMEM;
10274 		goto unlock;
10275 	}
10276 
10277 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10278 	link->dev = dev;
10279 	link->flags = attr->link_create.flags;
10280 
10281 	err = bpf_link_prime(&link->link, &link_primer);
10282 	if (err) {
10283 		kfree(link);
10284 		goto unlock;
10285 	}
10286 
10287 	err = dev_xdp_attach_link(dev, &extack, link);
10288 	rtnl_unlock();
10289 
10290 	if (err) {
10291 		link->dev = NULL;
10292 		bpf_link_cleanup(&link_primer);
10293 		trace_bpf_xdp_link_attach_failed(extack._msg);
10294 		goto out_put_dev;
10295 	}
10296 
10297 	fd = bpf_link_settle(&link_primer);
10298 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10299 	dev_put(dev);
10300 	return fd;
10301 
10302 unlock:
10303 	rtnl_unlock();
10304 
10305 out_put_dev:
10306 	dev_put(dev);
10307 	return err;
10308 }
10309 
10310 /**
10311  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10312  *	@dev: device
10313  *	@extack: netlink extended ack
10314  *	@fd: new program fd or negative value to clear
10315  *	@expected_fd: old program fd that userspace expects to replace or clear
10316  *	@flags: xdp-related flags
10317  *
10318  *	Set or clear a bpf program for a device
10319  */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)10320 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10321 		      int fd, int expected_fd, u32 flags)
10322 {
10323 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10324 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10325 	int err;
10326 
10327 	ASSERT_RTNL();
10328 
10329 	if (fd >= 0) {
10330 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10331 						 mode != XDP_MODE_SKB);
10332 		if (IS_ERR(new_prog))
10333 			return PTR_ERR(new_prog);
10334 	}
10335 
10336 	if (expected_fd >= 0) {
10337 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10338 						 mode != XDP_MODE_SKB);
10339 		if (IS_ERR(old_prog)) {
10340 			err = PTR_ERR(old_prog);
10341 			old_prog = NULL;
10342 			goto err_out;
10343 		}
10344 	}
10345 
10346 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10347 
10348 err_out:
10349 	if (err && new_prog)
10350 		bpf_prog_put(new_prog);
10351 	if (old_prog)
10352 		bpf_prog_put(old_prog);
10353 	return err;
10354 }
10355 
dev_get_min_mp_channel_count(const struct net_device * dev)10356 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10357 {
10358 	int i;
10359 
10360 	netdev_ops_assert_locked(dev);
10361 
10362 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10363 		if (dev->_rx[i].mp_params.mp_priv)
10364 			/* The channel count is the idx plus 1. */
10365 			return i + 1;
10366 
10367 	return 0;
10368 }
10369 
10370 /**
10371  * dev_index_reserve() - allocate an ifindex in a namespace
10372  * @net: the applicable net namespace
10373  * @ifindex: requested ifindex, pass %0 to get one allocated
10374  *
10375  * Allocate a ifindex for a new device. Caller must either use the ifindex
10376  * to store the device (via list_netdevice()) or call dev_index_release()
10377  * to give the index up.
10378  *
10379  * Return: a suitable unique value for a new device interface number or -errno.
10380  */
dev_index_reserve(struct net * net,u32 ifindex)10381 static int dev_index_reserve(struct net *net, u32 ifindex)
10382 {
10383 	int err;
10384 
10385 	if (ifindex > INT_MAX) {
10386 		DEBUG_NET_WARN_ON_ONCE(1);
10387 		return -EINVAL;
10388 	}
10389 
10390 	if (!ifindex)
10391 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10392 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10393 	else
10394 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10395 	if (err < 0)
10396 		return err;
10397 
10398 	return ifindex;
10399 }
10400 
dev_index_release(struct net * net,int ifindex)10401 static void dev_index_release(struct net *net, int ifindex)
10402 {
10403 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10404 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10405 }
10406 
from_cleanup_net(void)10407 static bool from_cleanup_net(void)
10408 {
10409 #ifdef CONFIG_NET_NS
10410 	return current == cleanup_net_task;
10411 #else
10412 	return false;
10413 #endif
10414 }
10415 
10416 /* Delayed registration/unregisteration */
10417 LIST_HEAD(net_todo_list);
10418 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10419 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10420 
net_set_todo(struct net_device * dev)10421 static void net_set_todo(struct net_device *dev)
10422 {
10423 	list_add_tail(&dev->todo_list, &net_todo_list);
10424 }
10425 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10426 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10427 	struct net_device *upper, netdev_features_t features)
10428 {
10429 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10430 	netdev_features_t feature;
10431 	int feature_bit;
10432 
10433 	for_each_netdev_feature(upper_disables, feature_bit) {
10434 		feature = __NETIF_F_BIT(feature_bit);
10435 		if (!(upper->wanted_features & feature)
10436 		    && (features & feature)) {
10437 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10438 				   &feature, upper->name);
10439 			features &= ~feature;
10440 		}
10441 	}
10442 
10443 	return features;
10444 }
10445 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10446 static void netdev_sync_lower_features(struct net_device *upper,
10447 	struct net_device *lower, netdev_features_t features)
10448 {
10449 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10450 	netdev_features_t feature;
10451 	int feature_bit;
10452 
10453 	for_each_netdev_feature(upper_disables, feature_bit) {
10454 		feature = __NETIF_F_BIT(feature_bit);
10455 		if (!(features & feature) && (lower->features & feature)) {
10456 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10457 				   &feature, lower->name);
10458 			lower->wanted_features &= ~feature;
10459 			__netdev_update_features(lower);
10460 
10461 			if (unlikely(lower->features & feature))
10462 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10463 					    &feature, lower->name);
10464 			else
10465 				netdev_features_change(lower);
10466 		}
10467 	}
10468 }
10469 
netdev_has_ip_or_hw_csum(netdev_features_t features)10470 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10471 {
10472 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10473 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10474 	bool hw_csum = features & NETIF_F_HW_CSUM;
10475 
10476 	return ip_csum || hw_csum;
10477 }
10478 
netdev_fix_features(struct net_device * dev,netdev_features_t features)10479 static netdev_features_t netdev_fix_features(struct net_device *dev,
10480 	netdev_features_t features)
10481 {
10482 	/* Fix illegal checksum combinations */
10483 	if ((features & NETIF_F_HW_CSUM) &&
10484 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10485 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10486 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10487 	}
10488 
10489 	/* TSO requires that SG is present as well. */
10490 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10491 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10492 		features &= ~NETIF_F_ALL_TSO;
10493 	}
10494 
10495 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10496 					!(features & NETIF_F_IP_CSUM)) {
10497 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10498 		features &= ~NETIF_F_TSO;
10499 		features &= ~NETIF_F_TSO_ECN;
10500 	}
10501 
10502 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10503 					 !(features & NETIF_F_IPV6_CSUM)) {
10504 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10505 		features &= ~NETIF_F_TSO6;
10506 	}
10507 
10508 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10509 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10510 		features &= ~NETIF_F_TSO_MANGLEID;
10511 
10512 	/* TSO ECN requires that TSO is present as well. */
10513 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10514 		features &= ~NETIF_F_TSO_ECN;
10515 
10516 	/* Software GSO depends on SG. */
10517 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10518 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10519 		features &= ~NETIF_F_GSO;
10520 	}
10521 
10522 	/* GSO partial features require GSO partial be set */
10523 	if ((features & dev->gso_partial_features) &&
10524 	    !(features & NETIF_F_GSO_PARTIAL)) {
10525 		netdev_dbg(dev,
10526 			   "Dropping partially supported GSO features since no GSO partial.\n");
10527 		features &= ~dev->gso_partial_features;
10528 	}
10529 
10530 	if (!(features & NETIF_F_RXCSUM)) {
10531 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10532 		 * successfully merged by hardware must also have the
10533 		 * checksum verified by hardware.  If the user does not
10534 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10535 		 */
10536 		if (features & NETIF_F_GRO_HW) {
10537 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10538 			features &= ~NETIF_F_GRO_HW;
10539 		}
10540 	}
10541 
10542 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10543 	if (features & NETIF_F_RXFCS) {
10544 		if (features & NETIF_F_LRO) {
10545 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10546 			features &= ~NETIF_F_LRO;
10547 		}
10548 
10549 		if (features & NETIF_F_GRO_HW) {
10550 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10551 			features &= ~NETIF_F_GRO_HW;
10552 		}
10553 	}
10554 
10555 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10556 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10557 		features &= ~NETIF_F_LRO;
10558 	}
10559 
10560 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10561 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10562 		features &= ~NETIF_F_HW_TLS_TX;
10563 	}
10564 
10565 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10566 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10567 		features &= ~NETIF_F_HW_TLS_RX;
10568 	}
10569 
10570 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10571 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10572 		features &= ~NETIF_F_GSO_UDP_L4;
10573 	}
10574 
10575 	return features;
10576 }
10577 
__netdev_update_features(struct net_device * dev)10578 int __netdev_update_features(struct net_device *dev)
10579 {
10580 	struct net_device *upper, *lower;
10581 	netdev_features_t features;
10582 	struct list_head *iter;
10583 	int err = -1;
10584 
10585 	ASSERT_RTNL();
10586 	netdev_ops_assert_locked(dev);
10587 
10588 	features = netdev_get_wanted_features(dev);
10589 
10590 	if (dev->netdev_ops->ndo_fix_features)
10591 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10592 
10593 	/* driver might be less strict about feature dependencies */
10594 	features = netdev_fix_features(dev, features);
10595 
10596 	/* some features can't be enabled if they're off on an upper device */
10597 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10598 		features = netdev_sync_upper_features(dev, upper, features);
10599 
10600 	if (dev->features == features)
10601 		goto sync_lower;
10602 
10603 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10604 		&dev->features, &features);
10605 
10606 	if (dev->netdev_ops->ndo_set_features)
10607 		err = dev->netdev_ops->ndo_set_features(dev, features);
10608 	else
10609 		err = 0;
10610 
10611 	if (unlikely(err < 0)) {
10612 		netdev_err(dev,
10613 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10614 			err, &features, &dev->features);
10615 		/* return non-0 since some features might have changed and
10616 		 * it's better to fire a spurious notification than miss it
10617 		 */
10618 		return -1;
10619 	}
10620 
10621 sync_lower:
10622 	/* some features must be disabled on lower devices when disabled
10623 	 * on an upper device (think: bonding master or bridge)
10624 	 */
10625 	netdev_for_each_lower_dev(dev, lower, iter)
10626 		netdev_sync_lower_features(dev, lower, features);
10627 
10628 	if (!err) {
10629 		netdev_features_t diff = features ^ dev->features;
10630 
10631 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10632 			/* udp_tunnel_{get,drop}_rx_info both need
10633 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10634 			 * device, or they won't do anything.
10635 			 * Thus we need to update dev->features
10636 			 * *before* calling udp_tunnel_get_rx_info,
10637 			 * but *after* calling udp_tunnel_drop_rx_info.
10638 			 */
10639 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10640 				dev->features = features;
10641 				udp_tunnel_get_rx_info(dev);
10642 			} else {
10643 				udp_tunnel_drop_rx_info(dev);
10644 			}
10645 		}
10646 
10647 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10648 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10649 				dev->features = features;
10650 				err |= vlan_get_rx_ctag_filter_info(dev);
10651 			} else {
10652 				vlan_drop_rx_ctag_filter_info(dev);
10653 			}
10654 		}
10655 
10656 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10657 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10658 				dev->features = features;
10659 				err |= vlan_get_rx_stag_filter_info(dev);
10660 			} else {
10661 				vlan_drop_rx_stag_filter_info(dev);
10662 			}
10663 		}
10664 
10665 		dev->features = features;
10666 	}
10667 
10668 	return err < 0 ? 0 : 1;
10669 }
10670 
10671 /**
10672  *	netdev_update_features - recalculate device features
10673  *	@dev: the device to check
10674  *
10675  *	Recalculate dev->features set and send notifications if it
10676  *	has changed. Should be called after driver or hardware dependent
10677  *	conditions might have changed that influence the features.
10678  */
netdev_update_features(struct net_device * dev)10679 void netdev_update_features(struct net_device *dev)
10680 {
10681 	if (__netdev_update_features(dev))
10682 		netdev_features_change(dev);
10683 }
10684 EXPORT_SYMBOL(netdev_update_features);
10685 
10686 /**
10687  *	netdev_change_features - recalculate device features
10688  *	@dev: the device to check
10689  *
10690  *	Recalculate dev->features set and send notifications even
10691  *	if they have not changed. Should be called instead of
10692  *	netdev_update_features() if also dev->vlan_features might
10693  *	have changed to allow the changes to be propagated to stacked
10694  *	VLAN devices.
10695  */
netdev_change_features(struct net_device * dev)10696 void netdev_change_features(struct net_device *dev)
10697 {
10698 	__netdev_update_features(dev);
10699 	netdev_features_change(dev);
10700 }
10701 EXPORT_SYMBOL(netdev_change_features);
10702 
10703 /**
10704  *	netif_stacked_transfer_operstate -	transfer operstate
10705  *	@rootdev: the root or lower level device to transfer state from
10706  *	@dev: the device to transfer operstate to
10707  *
10708  *	Transfer operational state from root to device. This is normally
10709  *	called when a stacking relationship exists between the root
10710  *	device and the device(a leaf device).
10711  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)10712 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10713 					struct net_device *dev)
10714 {
10715 	if (rootdev->operstate == IF_OPER_DORMANT)
10716 		netif_dormant_on(dev);
10717 	else
10718 		netif_dormant_off(dev);
10719 
10720 	if (rootdev->operstate == IF_OPER_TESTING)
10721 		netif_testing_on(dev);
10722 	else
10723 		netif_testing_off(dev);
10724 
10725 	if (netif_carrier_ok(rootdev))
10726 		netif_carrier_on(dev);
10727 	else
10728 		netif_carrier_off(dev);
10729 }
10730 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10731 
netif_alloc_rx_queues(struct net_device * dev)10732 static int netif_alloc_rx_queues(struct net_device *dev)
10733 {
10734 	unsigned int i, count = dev->num_rx_queues;
10735 	struct netdev_rx_queue *rx;
10736 	size_t sz = count * sizeof(*rx);
10737 	int err = 0;
10738 
10739 	BUG_ON(count < 1);
10740 
10741 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10742 	if (!rx)
10743 		return -ENOMEM;
10744 
10745 	dev->_rx = rx;
10746 
10747 	for (i = 0; i < count; i++) {
10748 		rx[i].dev = dev;
10749 
10750 		/* XDP RX-queue setup */
10751 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10752 		if (err < 0)
10753 			goto err_rxq_info;
10754 	}
10755 	return 0;
10756 
10757 err_rxq_info:
10758 	/* Rollback successful reg's and free other resources */
10759 	while (i--)
10760 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10761 	kvfree(dev->_rx);
10762 	dev->_rx = NULL;
10763 	return err;
10764 }
10765 
netif_free_rx_queues(struct net_device * dev)10766 static void netif_free_rx_queues(struct net_device *dev)
10767 {
10768 	unsigned int i, count = dev->num_rx_queues;
10769 
10770 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10771 	if (!dev->_rx)
10772 		return;
10773 
10774 	for (i = 0; i < count; i++)
10775 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10776 
10777 	kvfree(dev->_rx);
10778 }
10779 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10780 static void netdev_init_one_queue(struct net_device *dev,
10781 				  struct netdev_queue *queue, void *_unused)
10782 {
10783 	/* Initialize queue lock */
10784 	spin_lock_init(&queue->_xmit_lock);
10785 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10786 	queue->xmit_lock_owner = -1;
10787 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10788 	queue->dev = dev;
10789 #ifdef CONFIG_BQL
10790 	dql_init(&queue->dql, HZ);
10791 #endif
10792 }
10793 
netif_free_tx_queues(struct net_device * dev)10794 static void netif_free_tx_queues(struct net_device *dev)
10795 {
10796 	kvfree(dev->_tx);
10797 }
10798 
netif_alloc_netdev_queues(struct net_device * dev)10799 static int netif_alloc_netdev_queues(struct net_device *dev)
10800 {
10801 	unsigned int count = dev->num_tx_queues;
10802 	struct netdev_queue *tx;
10803 	size_t sz = count * sizeof(*tx);
10804 
10805 	if (count < 1 || count > 0xffff)
10806 		return -EINVAL;
10807 
10808 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10809 	if (!tx)
10810 		return -ENOMEM;
10811 
10812 	dev->_tx = tx;
10813 
10814 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10815 	spin_lock_init(&dev->tx_global_lock);
10816 
10817 	return 0;
10818 }
10819 
netif_tx_stop_all_queues(struct net_device * dev)10820 void netif_tx_stop_all_queues(struct net_device *dev)
10821 {
10822 	unsigned int i;
10823 
10824 	for (i = 0; i < dev->num_tx_queues; i++) {
10825 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10826 
10827 		netif_tx_stop_queue(txq);
10828 	}
10829 }
10830 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10831 
netdev_do_alloc_pcpu_stats(struct net_device * dev)10832 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10833 {
10834 	void __percpu *v;
10835 
10836 	/* Drivers implementing ndo_get_peer_dev must support tstat
10837 	 * accounting, so that skb_do_redirect() can bump the dev's
10838 	 * RX stats upon network namespace switch.
10839 	 */
10840 	if (dev->netdev_ops->ndo_get_peer_dev &&
10841 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10842 		return -EOPNOTSUPP;
10843 
10844 	switch (dev->pcpu_stat_type) {
10845 	case NETDEV_PCPU_STAT_NONE:
10846 		return 0;
10847 	case NETDEV_PCPU_STAT_LSTATS:
10848 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10849 		break;
10850 	case NETDEV_PCPU_STAT_TSTATS:
10851 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10852 		break;
10853 	case NETDEV_PCPU_STAT_DSTATS:
10854 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10855 		break;
10856 	default:
10857 		return -EINVAL;
10858 	}
10859 
10860 	return v ? 0 : -ENOMEM;
10861 }
10862 
netdev_do_free_pcpu_stats(struct net_device * dev)10863 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10864 {
10865 	switch (dev->pcpu_stat_type) {
10866 	case NETDEV_PCPU_STAT_NONE:
10867 		return;
10868 	case NETDEV_PCPU_STAT_LSTATS:
10869 		free_percpu(dev->lstats);
10870 		break;
10871 	case NETDEV_PCPU_STAT_TSTATS:
10872 		free_percpu(dev->tstats);
10873 		break;
10874 	case NETDEV_PCPU_STAT_DSTATS:
10875 		free_percpu(dev->dstats);
10876 		break;
10877 	}
10878 }
10879 
netdev_free_phy_link_topology(struct net_device * dev)10880 static void netdev_free_phy_link_topology(struct net_device *dev)
10881 {
10882 	struct phy_link_topology *topo = dev->link_topo;
10883 
10884 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10885 		xa_destroy(&topo->phys);
10886 		kfree(topo);
10887 		dev->link_topo = NULL;
10888 	}
10889 }
10890 
10891 /**
10892  * register_netdevice() - register a network device
10893  * @dev: device to register
10894  *
10895  * Take a prepared network device structure and make it externally accessible.
10896  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10897  * Callers must hold the rtnl lock - you may want register_netdev()
10898  * instead of this.
10899  */
register_netdevice(struct net_device * dev)10900 int register_netdevice(struct net_device *dev)
10901 {
10902 	int ret;
10903 	struct net *net = dev_net(dev);
10904 
10905 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10906 		     NETDEV_FEATURE_COUNT);
10907 	BUG_ON(dev_boot_phase);
10908 	ASSERT_RTNL();
10909 
10910 	might_sleep();
10911 
10912 	/* When net_device's are persistent, this will be fatal. */
10913 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10914 	BUG_ON(!net);
10915 
10916 	ret = ethtool_check_ops(dev->ethtool_ops);
10917 	if (ret)
10918 		return ret;
10919 
10920 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10921 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10922 	mutex_init(&dev->ethtool->rss_lock);
10923 
10924 	spin_lock_init(&dev->addr_list_lock);
10925 	netdev_set_addr_lockdep_class(dev);
10926 
10927 	ret = dev_get_valid_name(net, dev, dev->name);
10928 	if (ret < 0)
10929 		goto out;
10930 
10931 	ret = -ENOMEM;
10932 	dev->name_node = netdev_name_node_head_alloc(dev);
10933 	if (!dev->name_node)
10934 		goto out;
10935 
10936 	/* Init, if this function is available */
10937 	if (dev->netdev_ops->ndo_init) {
10938 		ret = dev->netdev_ops->ndo_init(dev);
10939 		if (ret) {
10940 			if (ret > 0)
10941 				ret = -EIO;
10942 			goto err_free_name;
10943 		}
10944 	}
10945 
10946 	if (((dev->hw_features | dev->features) &
10947 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10948 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10949 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10950 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10951 		ret = -EINVAL;
10952 		goto err_uninit;
10953 	}
10954 
10955 	ret = netdev_do_alloc_pcpu_stats(dev);
10956 	if (ret)
10957 		goto err_uninit;
10958 
10959 	ret = dev_index_reserve(net, dev->ifindex);
10960 	if (ret < 0)
10961 		goto err_free_pcpu;
10962 	dev->ifindex = ret;
10963 
10964 	/* Transfer changeable features to wanted_features and enable
10965 	 * software offloads (GSO and GRO).
10966 	 */
10967 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10968 	dev->features |= NETIF_F_SOFT_FEATURES;
10969 
10970 	if (dev->udp_tunnel_nic_info) {
10971 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10972 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10973 	}
10974 
10975 	dev->wanted_features = dev->features & dev->hw_features;
10976 
10977 	if (!(dev->flags & IFF_LOOPBACK))
10978 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10979 
10980 	/* If IPv4 TCP segmentation offload is supported we should also
10981 	 * allow the device to enable segmenting the frame with the option
10982 	 * of ignoring a static IP ID value.  This doesn't enable the
10983 	 * feature itself but allows the user to enable it later.
10984 	 */
10985 	if (dev->hw_features & NETIF_F_TSO)
10986 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10987 	if (dev->vlan_features & NETIF_F_TSO)
10988 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10989 	if (dev->mpls_features & NETIF_F_TSO)
10990 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10991 	if (dev->hw_enc_features & NETIF_F_TSO)
10992 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10993 
10994 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10995 	 */
10996 	dev->vlan_features |= NETIF_F_HIGHDMA;
10997 
10998 	/* Make NETIF_F_SG inheritable to tunnel devices.
10999 	 */
11000 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11001 
11002 	/* Make NETIF_F_SG inheritable to MPLS.
11003 	 */
11004 	dev->mpls_features |= NETIF_F_SG;
11005 
11006 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11007 	ret = notifier_to_errno(ret);
11008 	if (ret)
11009 		goto err_ifindex_release;
11010 
11011 	ret = netdev_register_kobject(dev);
11012 
11013 	netdev_lock(dev);
11014 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11015 	netdev_unlock(dev);
11016 
11017 	if (ret)
11018 		goto err_uninit_notify;
11019 
11020 	netdev_lock_ops(dev);
11021 	__netdev_update_features(dev);
11022 	netdev_unlock_ops(dev);
11023 
11024 	/*
11025 	 *	Default initial state at registry is that the
11026 	 *	device is present.
11027 	 */
11028 
11029 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11030 
11031 	linkwatch_init_dev(dev);
11032 
11033 	dev_init_scheduler(dev);
11034 
11035 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11036 	list_netdevice(dev);
11037 
11038 	add_device_randomness(dev->dev_addr, dev->addr_len);
11039 
11040 	/* If the device has permanent device address, driver should
11041 	 * set dev_addr and also addr_assign_type should be set to
11042 	 * NET_ADDR_PERM (default value).
11043 	 */
11044 	if (dev->addr_assign_type == NET_ADDR_PERM)
11045 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11046 
11047 	/* Notify protocols, that a new device appeared. */
11048 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11049 	ret = notifier_to_errno(ret);
11050 	if (ret) {
11051 		/* Expect explicit free_netdev() on failure */
11052 		dev->needs_free_netdev = false;
11053 		unregister_netdevice_queue(dev, NULL);
11054 		goto out;
11055 	}
11056 	/*
11057 	 *	Prevent userspace races by waiting until the network
11058 	 *	device is fully setup before sending notifications.
11059 	 */
11060 	if (!dev->rtnl_link_ops ||
11061 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11062 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11063 
11064 out:
11065 	return ret;
11066 
11067 err_uninit_notify:
11068 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11069 err_ifindex_release:
11070 	dev_index_release(net, dev->ifindex);
11071 err_free_pcpu:
11072 	netdev_do_free_pcpu_stats(dev);
11073 err_uninit:
11074 	if (dev->netdev_ops->ndo_uninit)
11075 		dev->netdev_ops->ndo_uninit(dev);
11076 	if (dev->priv_destructor)
11077 		dev->priv_destructor(dev);
11078 err_free_name:
11079 	netdev_name_node_free(dev->name_node);
11080 	goto out;
11081 }
11082 EXPORT_SYMBOL(register_netdevice);
11083 
11084 /* Initialize the core of a dummy net device.
11085  * The setup steps dummy netdevs need which normal netdevs get by going
11086  * through register_netdevice().
11087  */
init_dummy_netdev(struct net_device * dev)11088 static void init_dummy_netdev(struct net_device *dev)
11089 {
11090 	/* make sure we BUG if trying to hit standard
11091 	 * register/unregister code path
11092 	 */
11093 	dev->reg_state = NETREG_DUMMY;
11094 
11095 	/* a dummy interface is started by default */
11096 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11097 	set_bit(__LINK_STATE_START, &dev->state);
11098 
11099 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11100 	 * because users of this 'device' dont need to change
11101 	 * its refcount.
11102 	 */
11103 }
11104 
11105 /**
11106  *	register_netdev	- register a network device
11107  *	@dev: device to register
11108  *
11109  *	Take a completed network device structure and add it to the kernel
11110  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11111  *	chain. 0 is returned on success. A negative errno code is returned
11112  *	on a failure to set up the device, or if the name is a duplicate.
11113  *
11114  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11115  *	and expands the device name if you passed a format string to
11116  *	alloc_netdev.
11117  */
register_netdev(struct net_device * dev)11118 int register_netdev(struct net_device *dev)
11119 {
11120 	struct net *net = dev_net(dev);
11121 	int err;
11122 
11123 	if (rtnl_net_lock_killable(net))
11124 		return -EINTR;
11125 
11126 	err = register_netdevice(dev);
11127 
11128 	rtnl_net_unlock(net);
11129 
11130 	return err;
11131 }
11132 EXPORT_SYMBOL(register_netdev);
11133 
netdev_refcnt_read(const struct net_device * dev)11134 int netdev_refcnt_read(const struct net_device *dev)
11135 {
11136 #ifdef CONFIG_PCPU_DEV_REFCNT
11137 	int i, refcnt = 0;
11138 
11139 	for_each_possible_cpu(i)
11140 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11141 	return refcnt;
11142 #else
11143 	return refcount_read(&dev->dev_refcnt);
11144 #endif
11145 }
11146 EXPORT_SYMBOL(netdev_refcnt_read);
11147 
11148 int netdev_unregister_timeout_secs __read_mostly = 10;
11149 
11150 #define WAIT_REFS_MIN_MSECS 1
11151 #define WAIT_REFS_MAX_MSECS 250
11152 /**
11153  * netdev_wait_allrefs_any - wait until all references are gone.
11154  * @list: list of net_devices to wait on
11155  *
11156  * This is called when unregistering network devices.
11157  *
11158  * Any protocol or device that holds a reference should register
11159  * for netdevice notification, and cleanup and put back the
11160  * reference if they receive an UNREGISTER event.
11161  * We can get stuck here if buggy protocols don't correctly
11162  * call dev_put.
11163  */
netdev_wait_allrefs_any(struct list_head * list)11164 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11165 {
11166 	unsigned long rebroadcast_time, warning_time;
11167 	struct net_device *dev;
11168 	int wait = 0;
11169 
11170 	rebroadcast_time = warning_time = jiffies;
11171 
11172 	list_for_each_entry(dev, list, todo_list)
11173 		if (netdev_refcnt_read(dev) == 1)
11174 			return dev;
11175 
11176 	while (true) {
11177 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11178 			rtnl_lock();
11179 
11180 			/* Rebroadcast unregister notification */
11181 			list_for_each_entry(dev, list, todo_list)
11182 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11183 
11184 			__rtnl_unlock();
11185 			rcu_barrier();
11186 			rtnl_lock();
11187 
11188 			list_for_each_entry(dev, list, todo_list)
11189 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11190 					     &dev->state)) {
11191 					/* We must not have linkwatch events
11192 					 * pending on unregister. If this
11193 					 * happens, we simply run the queue
11194 					 * unscheduled, resulting in a noop
11195 					 * for this device.
11196 					 */
11197 					linkwatch_run_queue();
11198 					break;
11199 				}
11200 
11201 			__rtnl_unlock();
11202 
11203 			rebroadcast_time = jiffies;
11204 		}
11205 
11206 		rcu_barrier();
11207 
11208 		if (!wait) {
11209 			wait = WAIT_REFS_MIN_MSECS;
11210 		} else {
11211 			msleep(wait);
11212 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11213 		}
11214 
11215 		list_for_each_entry(dev, list, todo_list)
11216 			if (netdev_refcnt_read(dev) == 1)
11217 				return dev;
11218 
11219 		if (time_after(jiffies, warning_time +
11220 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11221 			list_for_each_entry(dev, list, todo_list) {
11222 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11223 					 dev->name, netdev_refcnt_read(dev));
11224 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11225 			}
11226 
11227 			warning_time = jiffies;
11228 		}
11229 	}
11230 }
11231 
11232 /* The sequence is:
11233  *
11234  *	rtnl_lock();
11235  *	...
11236  *	register_netdevice(x1);
11237  *	register_netdevice(x2);
11238  *	...
11239  *	unregister_netdevice(y1);
11240  *	unregister_netdevice(y2);
11241  *      ...
11242  *	rtnl_unlock();
11243  *	free_netdev(y1);
11244  *	free_netdev(y2);
11245  *
11246  * We are invoked by rtnl_unlock().
11247  * This allows us to deal with problems:
11248  * 1) We can delete sysfs objects which invoke hotplug
11249  *    without deadlocking with linkwatch via keventd.
11250  * 2) Since we run with the RTNL semaphore not held, we can sleep
11251  *    safely in order to wait for the netdev refcnt to drop to zero.
11252  *
11253  * We must not return until all unregister events added during
11254  * the interval the lock was held have been completed.
11255  */
netdev_run_todo(void)11256 void netdev_run_todo(void)
11257 {
11258 	struct net_device *dev, *tmp;
11259 	struct list_head list;
11260 	int cnt;
11261 #ifdef CONFIG_LOCKDEP
11262 	struct list_head unlink_list;
11263 
11264 	list_replace_init(&net_unlink_list, &unlink_list);
11265 
11266 	while (!list_empty(&unlink_list)) {
11267 		dev = list_first_entry(&unlink_list, struct net_device,
11268 				       unlink_list);
11269 		list_del_init(&dev->unlink_list);
11270 		dev->nested_level = dev->lower_level - 1;
11271 	}
11272 #endif
11273 
11274 	/* Snapshot list, allow later requests */
11275 	list_replace_init(&net_todo_list, &list);
11276 
11277 	__rtnl_unlock();
11278 
11279 	/* Wait for rcu callbacks to finish before next phase */
11280 	if (!list_empty(&list))
11281 		rcu_barrier();
11282 
11283 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11284 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11285 			netdev_WARN(dev, "run_todo but not unregistering\n");
11286 			list_del(&dev->todo_list);
11287 			continue;
11288 		}
11289 
11290 		netdev_lock(dev);
11291 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11292 		netdev_unlock(dev);
11293 		linkwatch_sync_dev(dev);
11294 	}
11295 
11296 	cnt = 0;
11297 	while (!list_empty(&list)) {
11298 		dev = netdev_wait_allrefs_any(&list);
11299 		list_del(&dev->todo_list);
11300 
11301 		/* paranoia */
11302 		BUG_ON(netdev_refcnt_read(dev) != 1);
11303 		BUG_ON(!list_empty(&dev->ptype_all));
11304 		BUG_ON(!list_empty(&dev->ptype_specific));
11305 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11306 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11307 
11308 		netdev_do_free_pcpu_stats(dev);
11309 		if (dev->priv_destructor)
11310 			dev->priv_destructor(dev);
11311 		if (dev->needs_free_netdev)
11312 			free_netdev(dev);
11313 
11314 		cnt++;
11315 
11316 		/* Free network device */
11317 		kobject_put(&dev->dev.kobj);
11318 	}
11319 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11320 		wake_up(&netdev_unregistering_wq);
11321 }
11322 
11323 /* Collate per-cpu network dstats statistics
11324  *
11325  * Read per-cpu network statistics from dev->dstats and populate the related
11326  * fields in @s.
11327  */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)11328 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11329 			     const struct pcpu_dstats __percpu *dstats)
11330 {
11331 	int cpu;
11332 
11333 	for_each_possible_cpu(cpu) {
11334 		u64 rx_packets, rx_bytes, rx_drops;
11335 		u64 tx_packets, tx_bytes, tx_drops;
11336 		const struct pcpu_dstats *stats;
11337 		unsigned int start;
11338 
11339 		stats = per_cpu_ptr(dstats, cpu);
11340 		do {
11341 			start = u64_stats_fetch_begin(&stats->syncp);
11342 			rx_packets = u64_stats_read(&stats->rx_packets);
11343 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11344 			rx_drops   = u64_stats_read(&stats->rx_drops);
11345 			tx_packets = u64_stats_read(&stats->tx_packets);
11346 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11347 			tx_drops   = u64_stats_read(&stats->tx_drops);
11348 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11349 
11350 		s->rx_packets += rx_packets;
11351 		s->rx_bytes   += rx_bytes;
11352 		s->rx_dropped += rx_drops;
11353 		s->tx_packets += tx_packets;
11354 		s->tx_bytes   += tx_bytes;
11355 		s->tx_dropped += tx_drops;
11356 	}
11357 }
11358 
11359 /* ndo_get_stats64 implementation for dtstats-based accounting.
11360  *
11361  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11362  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11363  */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)11364 static void dev_get_dstats64(const struct net_device *dev,
11365 			     struct rtnl_link_stats64 *s)
11366 {
11367 	netdev_stats_to_stats64(s, &dev->stats);
11368 	dev_fetch_dstats(s, dev->dstats);
11369 }
11370 
11371 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11372  * all the same fields in the same order as net_device_stats, with only
11373  * the type differing, but rtnl_link_stats64 may have additional fields
11374  * at the end for newer counters.
11375  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)11376 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11377 			     const struct net_device_stats *netdev_stats)
11378 {
11379 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11380 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11381 	u64 *dst = (u64 *)stats64;
11382 
11383 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11384 	for (i = 0; i < n; i++)
11385 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11386 	/* zero out counters that only exist in rtnl_link_stats64 */
11387 	memset((char *)stats64 + n * sizeof(u64), 0,
11388 	       sizeof(*stats64) - n * sizeof(u64));
11389 }
11390 EXPORT_SYMBOL(netdev_stats_to_stats64);
11391 
netdev_core_stats_alloc(struct net_device * dev)11392 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11393 		struct net_device *dev)
11394 {
11395 	struct net_device_core_stats __percpu *p;
11396 
11397 	p = alloc_percpu_gfp(struct net_device_core_stats,
11398 			     GFP_ATOMIC | __GFP_NOWARN);
11399 
11400 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11401 		free_percpu(p);
11402 
11403 	/* This READ_ONCE() pairs with the cmpxchg() above */
11404 	return READ_ONCE(dev->core_stats);
11405 }
11406 
netdev_core_stats_inc(struct net_device * dev,u32 offset)11407 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11408 {
11409 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11410 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11411 	unsigned long __percpu *field;
11412 
11413 	if (unlikely(!p)) {
11414 		p = netdev_core_stats_alloc(dev);
11415 		if (!p)
11416 			return;
11417 	}
11418 
11419 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11420 	this_cpu_inc(*field);
11421 }
11422 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11423 
11424 /**
11425  *	dev_get_stats	- get network device statistics
11426  *	@dev: device to get statistics from
11427  *	@storage: place to store stats
11428  *
11429  *	Get network statistics from device. Return @storage.
11430  *	The device driver may provide its own method by setting
11431  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11432  *	otherwise the internal statistics structure is used.
11433  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11434 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11435 					struct rtnl_link_stats64 *storage)
11436 {
11437 	const struct net_device_ops *ops = dev->netdev_ops;
11438 	const struct net_device_core_stats __percpu *p;
11439 
11440 	/*
11441 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11442 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11443 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11444 	 */
11445 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11446 		     offsetof(struct pcpu_dstats, rx_bytes));
11447 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11448 		     offsetof(struct pcpu_dstats, rx_packets));
11449 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11450 		     offsetof(struct pcpu_dstats, tx_bytes));
11451 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11452 		     offsetof(struct pcpu_dstats, tx_packets));
11453 
11454 	if (ops->ndo_get_stats64) {
11455 		memset(storage, 0, sizeof(*storage));
11456 		ops->ndo_get_stats64(dev, storage);
11457 	} else if (ops->ndo_get_stats) {
11458 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11459 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11460 		dev_get_tstats64(dev, storage);
11461 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11462 		dev_get_dstats64(dev, storage);
11463 	} else {
11464 		netdev_stats_to_stats64(storage, &dev->stats);
11465 	}
11466 
11467 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11468 	p = READ_ONCE(dev->core_stats);
11469 	if (p) {
11470 		const struct net_device_core_stats *core_stats;
11471 		int i;
11472 
11473 		for_each_possible_cpu(i) {
11474 			core_stats = per_cpu_ptr(p, i);
11475 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11476 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11477 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11478 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11479 		}
11480 	}
11481 	return storage;
11482 }
11483 EXPORT_SYMBOL(dev_get_stats);
11484 
11485 /**
11486  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11487  *	@s: place to store stats
11488  *	@netstats: per-cpu network stats to read from
11489  *
11490  *	Read per-cpu network statistics and populate the related fields in @s.
11491  */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11492 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11493 			   const struct pcpu_sw_netstats __percpu *netstats)
11494 {
11495 	int cpu;
11496 
11497 	for_each_possible_cpu(cpu) {
11498 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11499 		const struct pcpu_sw_netstats *stats;
11500 		unsigned int start;
11501 
11502 		stats = per_cpu_ptr(netstats, cpu);
11503 		do {
11504 			start = u64_stats_fetch_begin(&stats->syncp);
11505 			rx_packets = u64_stats_read(&stats->rx_packets);
11506 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11507 			tx_packets = u64_stats_read(&stats->tx_packets);
11508 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11509 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11510 
11511 		s->rx_packets += rx_packets;
11512 		s->rx_bytes   += rx_bytes;
11513 		s->tx_packets += tx_packets;
11514 		s->tx_bytes   += tx_bytes;
11515 	}
11516 }
11517 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11518 
11519 /**
11520  *	dev_get_tstats64 - ndo_get_stats64 implementation
11521  *	@dev: device to get statistics from
11522  *	@s: place to store stats
11523  *
11524  *	Populate @s from dev->stats and dev->tstats. Can be used as
11525  *	ndo_get_stats64() callback.
11526  */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11527 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11528 {
11529 	netdev_stats_to_stats64(s, &dev->stats);
11530 	dev_fetch_sw_netstats(s, dev->tstats);
11531 }
11532 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11533 
dev_ingress_queue_create(struct net_device * dev)11534 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11535 {
11536 	struct netdev_queue *queue = dev_ingress_queue(dev);
11537 
11538 #ifdef CONFIG_NET_CLS_ACT
11539 	if (queue)
11540 		return queue;
11541 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11542 	if (!queue)
11543 		return NULL;
11544 	netdev_init_one_queue(dev, queue, NULL);
11545 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11546 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11547 	rcu_assign_pointer(dev->ingress_queue, queue);
11548 #endif
11549 	return queue;
11550 }
11551 
11552 static const struct ethtool_ops default_ethtool_ops;
11553 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11554 void netdev_set_default_ethtool_ops(struct net_device *dev,
11555 				    const struct ethtool_ops *ops)
11556 {
11557 	if (dev->ethtool_ops == &default_ethtool_ops)
11558 		dev->ethtool_ops = ops;
11559 }
11560 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11561 
11562 /**
11563  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11564  * @dev: netdev to enable the IRQ coalescing on
11565  *
11566  * Sets a conservative default for SW IRQ coalescing. Users can use
11567  * sysfs attributes to override the default values.
11568  */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11569 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11570 {
11571 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11572 
11573 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11574 		netdev_set_gro_flush_timeout(dev, 20000);
11575 		netdev_set_defer_hard_irqs(dev, 1);
11576 	}
11577 }
11578 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11579 
11580 /**
11581  * alloc_netdev_mqs - allocate network device
11582  * @sizeof_priv: size of private data to allocate space for
11583  * @name: device name format string
11584  * @name_assign_type: origin of device name
11585  * @setup: callback to initialize device
11586  * @txqs: the number of TX subqueues to allocate
11587  * @rxqs: the number of RX subqueues to allocate
11588  *
11589  * Allocates a struct net_device with private data area for driver use
11590  * and performs basic initialization.  Also allocates subqueue structs
11591  * for each queue on the device.
11592  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11593 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11594 		unsigned char name_assign_type,
11595 		void (*setup)(struct net_device *),
11596 		unsigned int txqs, unsigned int rxqs)
11597 {
11598 	struct net_device *dev;
11599 	size_t napi_config_sz;
11600 	unsigned int maxqs;
11601 
11602 	BUG_ON(strlen(name) >= sizeof(dev->name));
11603 
11604 	if (txqs < 1) {
11605 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11606 		return NULL;
11607 	}
11608 
11609 	if (rxqs < 1) {
11610 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11611 		return NULL;
11612 	}
11613 
11614 	maxqs = max(txqs, rxqs);
11615 
11616 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11617 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11618 	if (!dev)
11619 		return NULL;
11620 
11621 	dev->priv_len = sizeof_priv;
11622 
11623 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11624 #ifdef CONFIG_PCPU_DEV_REFCNT
11625 	dev->pcpu_refcnt = alloc_percpu(int);
11626 	if (!dev->pcpu_refcnt)
11627 		goto free_dev;
11628 	__dev_hold(dev);
11629 #else
11630 	refcount_set(&dev->dev_refcnt, 1);
11631 #endif
11632 
11633 	if (dev_addr_init(dev))
11634 		goto free_pcpu;
11635 
11636 	dev_mc_init(dev);
11637 	dev_uc_init(dev);
11638 
11639 	dev_net_set(dev, &init_net);
11640 
11641 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11642 	dev->xdp_zc_max_segs = 1;
11643 	dev->gso_max_segs = GSO_MAX_SEGS;
11644 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11645 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11646 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11647 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11648 	dev->tso_max_segs = TSO_MAX_SEGS;
11649 	dev->upper_level = 1;
11650 	dev->lower_level = 1;
11651 #ifdef CONFIG_LOCKDEP
11652 	dev->nested_level = 0;
11653 	INIT_LIST_HEAD(&dev->unlink_list);
11654 #endif
11655 
11656 	INIT_LIST_HEAD(&dev->napi_list);
11657 	INIT_LIST_HEAD(&dev->unreg_list);
11658 	INIT_LIST_HEAD(&dev->close_list);
11659 	INIT_LIST_HEAD(&dev->link_watch_list);
11660 	INIT_LIST_HEAD(&dev->adj_list.upper);
11661 	INIT_LIST_HEAD(&dev->adj_list.lower);
11662 	INIT_LIST_HEAD(&dev->ptype_all);
11663 	INIT_LIST_HEAD(&dev->ptype_specific);
11664 	INIT_LIST_HEAD(&dev->net_notifier_list);
11665 #ifdef CONFIG_NET_SCHED
11666 	hash_init(dev->qdisc_hash);
11667 #endif
11668 
11669 	mutex_init(&dev->lock);
11670 
11671 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11672 	setup(dev);
11673 
11674 	if (!dev->tx_queue_len) {
11675 		dev->priv_flags |= IFF_NO_QUEUE;
11676 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11677 	}
11678 
11679 	dev->num_tx_queues = txqs;
11680 	dev->real_num_tx_queues = txqs;
11681 	if (netif_alloc_netdev_queues(dev))
11682 		goto free_all;
11683 
11684 	dev->num_rx_queues = rxqs;
11685 	dev->real_num_rx_queues = rxqs;
11686 	if (netif_alloc_rx_queues(dev))
11687 		goto free_all;
11688 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11689 	if (!dev->ethtool)
11690 		goto free_all;
11691 
11692 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11693 	if (!dev->cfg)
11694 		goto free_all;
11695 	dev->cfg_pending = dev->cfg;
11696 
11697 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11698 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11699 	if (!dev->napi_config)
11700 		goto free_all;
11701 
11702 	strscpy(dev->name, name);
11703 	dev->name_assign_type = name_assign_type;
11704 	dev->group = INIT_NETDEV_GROUP;
11705 	if (!dev->ethtool_ops)
11706 		dev->ethtool_ops = &default_ethtool_ops;
11707 
11708 	nf_hook_netdev_init(dev);
11709 
11710 	return dev;
11711 
11712 free_all:
11713 	free_netdev(dev);
11714 	return NULL;
11715 
11716 free_pcpu:
11717 #ifdef CONFIG_PCPU_DEV_REFCNT
11718 	free_percpu(dev->pcpu_refcnt);
11719 free_dev:
11720 #endif
11721 	kvfree(dev);
11722 	return NULL;
11723 }
11724 EXPORT_SYMBOL(alloc_netdev_mqs);
11725 
netdev_napi_exit(struct net_device * dev)11726 static void netdev_napi_exit(struct net_device *dev)
11727 {
11728 	if (!list_empty(&dev->napi_list)) {
11729 		struct napi_struct *p, *n;
11730 
11731 		netdev_lock(dev);
11732 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11733 			__netif_napi_del_locked(p);
11734 		netdev_unlock(dev);
11735 
11736 		synchronize_net();
11737 	}
11738 
11739 	kvfree(dev->napi_config);
11740 }
11741 
11742 /**
11743  * free_netdev - free network device
11744  * @dev: device
11745  *
11746  * This function does the last stage of destroying an allocated device
11747  * interface. The reference to the device object is released. If this
11748  * is the last reference then it will be freed.Must be called in process
11749  * context.
11750  */
free_netdev(struct net_device * dev)11751 void free_netdev(struct net_device *dev)
11752 {
11753 	might_sleep();
11754 
11755 	/* When called immediately after register_netdevice() failed the unwind
11756 	 * handling may still be dismantling the device. Handle that case by
11757 	 * deferring the free.
11758 	 */
11759 	if (dev->reg_state == NETREG_UNREGISTERING) {
11760 		ASSERT_RTNL();
11761 		dev->needs_free_netdev = true;
11762 		return;
11763 	}
11764 
11765 	WARN_ON(dev->cfg != dev->cfg_pending);
11766 	kfree(dev->cfg);
11767 	kfree(dev->ethtool);
11768 	netif_free_tx_queues(dev);
11769 	netif_free_rx_queues(dev);
11770 
11771 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11772 
11773 	/* Flush device addresses */
11774 	dev_addr_flush(dev);
11775 
11776 	netdev_napi_exit(dev);
11777 
11778 	netif_del_cpu_rmap(dev);
11779 
11780 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11781 #ifdef CONFIG_PCPU_DEV_REFCNT
11782 	free_percpu(dev->pcpu_refcnt);
11783 	dev->pcpu_refcnt = NULL;
11784 #endif
11785 	free_percpu(dev->core_stats);
11786 	dev->core_stats = NULL;
11787 	free_percpu(dev->xdp_bulkq);
11788 	dev->xdp_bulkq = NULL;
11789 
11790 	netdev_free_phy_link_topology(dev);
11791 
11792 	mutex_destroy(&dev->lock);
11793 
11794 	/*  Compatibility with error handling in drivers */
11795 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11796 	    dev->reg_state == NETREG_DUMMY) {
11797 		kvfree(dev);
11798 		return;
11799 	}
11800 
11801 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11802 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11803 
11804 	/* will free via device release */
11805 	put_device(&dev->dev);
11806 }
11807 EXPORT_SYMBOL(free_netdev);
11808 
11809 /**
11810  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11811  * @sizeof_priv: size of private data to allocate space for
11812  *
11813  * Return: the allocated net_device on success, NULL otherwise
11814  */
alloc_netdev_dummy(int sizeof_priv)11815 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11816 {
11817 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11818 			    init_dummy_netdev);
11819 }
11820 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11821 
11822 /**
11823  *	synchronize_net -  Synchronize with packet receive processing
11824  *
11825  *	Wait for packets currently being received to be done.
11826  *	Does not block later packets from starting.
11827  */
synchronize_net(void)11828 void synchronize_net(void)
11829 {
11830 	might_sleep();
11831 	if (from_cleanup_net() || rtnl_is_locked())
11832 		synchronize_rcu_expedited();
11833 	else
11834 		synchronize_rcu();
11835 }
11836 EXPORT_SYMBOL(synchronize_net);
11837 
netdev_rss_contexts_free(struct net_device * dev)11838 static void netdev_rss_contexts_free(struct net_device *dev)
11839 {
11840 	struct ethtool_rxfh_context *ctx;
11841 	unsigned long context;
11842 
11843 	mutex_lock(&dev->ethtool->rss_lock);
11844 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11845 		struct ethtool_rxfh_param rxfh;
11846 
11847 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11848 		rxfh.key = ethtool_rxfh_context_key(ctx);
11849 		rxfh.hfunc = ctx->hfunc;
11850 		rxfh.input_xfrm = ctx->input_xfrm;
11851 		rxfh.rss_context = context;
11852 		rxfh.rss_delete = true;
11853 
11854 		xa_erase(&dev->ethtool->rss_ctx, context);
11855 		if (dev->ethtool_ops->create_rxfh_context)
11856 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11857 							      context, NULL);
11858 		else
11859 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11860 		kfree(ctx);
11861 	}
11862 	xa_destroy(&dev->ethtool->rss_ctx);
11863 	mutex_unlock(&dev->ethtool->rss_lock);
11864 }
11865 
11866 /**
11867  *	unregister_netdevice_queue - remove device from the kernel
11868  *	@dev: device
11869  *	@head: list
11870  *
11871  *	This function shuts down a device interface and removes it
11872  *	from the kernel tables.
11873  *	If head not NULL, device is queued to be unregistered later.
11874  *
11875  *	Callers must hold the rtnl semaphore.  You may want
11876  *	unregister_netdev() instead of this.
11877  */
11878 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)11879 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11880 {
11881 	ASSERT_RTNL();
11882 
11883 	if (head) {
11884 		list_move_tail(&dev->unreg_list, head);
11885 	} else {
11886 		LIST_HEAD(single);
11887 
11888 		list_add(&dev->unreg_list, &single);
11889 		unregister_netdevice_many(&single);
11890 	}
11891 }
11892 EXPORT_SYMBOL(unregister_netdevice_queue);
11893 
dev_memory_provider_uninstall(struct net_device * dev)11894 static void dev_memory_provider_uninstall(struct net_device *dev)
11895 {
11896 	unsigned int i;
11897 
11898 	for (i = 0; i < dev->real_num_rx_queues; i++) {
11899 		struct netdev_rx_queue *rxq = &dev->_rx[i];
11900 		struct pp_memory_provider_params *p = &rxq->mp_params;
11901 
11902 		if (p->mp_ops && p->mp_ops->uninstall)
11903 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
11904 	}
11905 }
11906 
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)11907 void unregister_netdevice_many_notify(struct list_head *head,
11908 				      u32 portid, const struct nlmsghdr *nlh)
11909 {
11910 	struct net_device *dev, *tmp;
11911 	LIST_HEAD(close_head);
11912 	int cnt = 0;
11913 
11914 	BUG_ON(dev_boot_phase);
11915 	ASSERT_RTNL();
11916 
11917 	if (list_empty(head))
11918 		return;
11919 
11920 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11921 		/* Some devices call without registering
11922 		 * for initialization unwind. Remove those
11923 		 * devices and proceed with the remaining.
11924 		 */
11925 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11926 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11927 				 dev->name, dev);
11928 
11929 			WARN_ON(1);
11930 			list_del(&dev->unreg_list);
11931 			continue;
11932 		}
11933 		dev->dismantle = true;
11934 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11935 	}
11936 
11937 	/* If device is running, close it first. */
11938 	list_for_each_entry(dev, head, unreg_list) {
11939 		list_add_tail(&dev->close_list, &close_head);
11940 		netdev_lock_ops(dev);
11941 	}
11942 	dev_close_many(&close_head, true);
11943 
11944 	list_for_each_entry(dev, head, unreg_list) {
11945 		netdev_unlock_ops(dev);
11946 		/* And unlink it from device chain. */
11947 		unlist_netdevice(dev);
11948 		netdev_lock(dev);
11949 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11950 		netdev_unlock(dev);
11951 	}
11952 	flush_all_backlogs();
11953 
11954 	synchronize_net();
11955 
11956 	list_for_each_entry(dev, head, unreg_list) {
11957 		struct sk_buff *skb = NULL;
11958 
11959 		/* Shutdown queueing discipline. */
11960 		dev_shutdown(dev);
11961 		dev_tcx_uninstall(dev);
11962 		netdev_lock_ops(dev);
11963 		dev_xdp_uninstall(dev);
11964 		dev_memory_provider_uninstall(dev);
11965 		netdev_unlock_ops(dev);
11966 		bpf_dev_bound_netdev_unregister(dev);
11967 
11968 		netdev_offload_xstats_disable_all(dev);
11969 
11970 		/* Notify protocols, that we are about to destroy
11971 		 * this device. They should clean all the things.
11972 		 */
11973 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11974 
11975 		if (!dev->rtnl_link_ops ||
11976 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11977 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11978 						     GFP_KERNEL, NULL, 0,
11979 						     portid, nlh);
11980 
11981 		/*
11982 		 *	Flush the unicast and multicast chains
11983 		 */
11984 		dev_uc_flush(dev);
11985 		dev_mc_flush(dev);
11986 
11987 		netdev_name_node_alt_flush(dev);
11988 		netdev_name_node_free(dev->name_node);
11989 
11990 		netdev_rss_contexts_free(dev);
11991 
11992 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11993 
11994 		if (dev->netdev_ops->ndo_uninit)
11995 			dev->netdev_ops->ndo_uninit(dev);
11996 
11997 		mutex_destroy(&dev->ethtool->rss_lock);
11998 
11999 		net_shaper_flush_netdev(dev);
12000 
12001 		if (skb)
12002 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12003 
12004 		/* Notifier chain MUST detach us all upper devices. */
12005 		WARN_ON(netdev_has_any_upper_dev(dev));
12006 		WARN_ON(netdev_has_any_lower_dev(dev));
12007 
12008 		/* Remove entries from kobject tree */
12009 		netdev_unregister_kobject(dev);
12010 #ifdef CONFIG_XPS
12011 		/* Remove XPS queueing entries */
12012 		netif_reset_xps_queues_gt(dev, 0);
12013 #endif
12014 	}
12015 
12016 	synchronize_net();
12017 
12018 	list_for_each_entry(dev, head, unreg_list) {
12019 		netdev_put(dev, &dev->dev_registered_tracker);
12020 		net_set_todo(dev);
12021 		cnt++;
12022 	}
12023 	atomic_add(cnt, &dev_unreg_count);
12024 
12025 	list_del(head);
12026 }
12027 
12028 /**
12029  *	unregister_netdevice_many - unregister many devices
12030  *	@head: list of devices
12031  *
12032  *  Note: As most callers use a stack allocated list_head,
12033  *  we force a list_del() to make sure stack won't be corrupted later.
12034  */
unregister_netdevice_many(struct list_head * head)12035 void unregister_netdevice_many(struct list_head *head)
12036 {
12037 	unregister_netdevice_many_notify(head, 0, NULL);
12038 }
12039 EXPORT_SYMBOL(unregister_netdevice_many);
12040 
12041 /**
12042  *	unregister_netdev - remove device from the kernel
12043  *	@dev: device
12044  *
12045  *	This function shuts down a device interface and removes it
12046  *	from the kernel tables.
12047  *
12048  *	This is just a wrapper for unregister_netdevice that takes
12049  *	the rtnl semaphore.  In general you want to use this and not
12050  *	unregister_netdevice.
12051  */
unregister_netdev(struct net_device * dev)12052 void unregister_netdev(struct net_device *dev)
12053 {
12054 	rtnl_net_dev_lock(dev);
12055 	unregister_netdevice(dev);
12056 	rtnl_net_dev_unlock(dev);
12057 }
12058 EXPORT_SYMBOL(unregister_netdev);
12059 
netif_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex,struct netlink_ext_ack * extack)12060 int netif_change_net_namespace(struct net_device *dev, struct net *net,
12061 			       const char *pat, int new_ifindex,
12062 			       struct netlink_ext_ack *extack)
12063 {
12064 	struct netdev_name_node *name_node;
12065 	struct net *net_old = dev_net(dev);
12066 	char new_name[IFNAMSIZ] = {};
12067 	int err, new_nsid;
12068 
12069 	ASSERT_RTNL();
12070 
12071 	/* Don't allow namespace local devices to be moved. */
12072 	err = -EINVAL;
12073 	if (dev->netns_immutable) {
12074 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12075 		goto out;
12076 	}
12077 
12078 	/* Ensure the device has been registered */
12079 	if (dev->reg_state != NETREG_REGISTERED) {
12080 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12081 		goto out;
12082 	}
12083 
12084 	/* Get out if there is nothing todo */
12085 	err = 0;
12086 	if (net_eq(net_old, net))
12087 		goto out;
12088 
12089 	/* Pick the destination device name, and ensure
12090 	 * we can use it in the destination network namespace.
12091 	 */
12092 	err = -EEXIST;
12093 	if (netdev_name_in_use(net, dev->name)) {
12094 		/* We get here if we can't use the current device name */
12095 		if (!pat) {
12096 			NL_SET_ERR_MSG(extack,
12097 				       "An interface with the same name exists in the target netns");
12098 			goto out;
12099 		}
12100 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12101 		if (err < 0) {
12102 			NL_SET_ERR_MSG_FMT(extack,
12103 					   "Unable to use '%s' for the new interface name in the target netns",
12104 					   pat);
12105 			goto out;
12106 		}
12107 	}
12108 	/* Check that none of the altnames conflicts. */
12109 	err = -EEXIST;
12110 	netdev_for_each_altname(dev, name_node) {
12111 		if (netdev_name_in_use(net, name_node->name)) {
12112 			NL_SET_ERR_MSG_FMT(extack,
12113 					   "An interface with the altname %s exists in the target netns",
12114 					   name_node->name);
12115 			goto out;
12116 		}
12117 	}
12118 
12119 	/* Check that new_ifindex isn't used yet. */
12120 	if (new_ifindex) {
12121 		err = dev_index_reserve(net, new_ifindex);
12122 		if (err < 0) {
12123 			NL_SET_ERR_MSG_FMT(extack,
12124 					   "The ifindex %d is not available in the target netns",
12125 					   new_ifindex);
12126 			goto out;
12127 		}
12128 	} else {
12129 		/* If there is an ifindex conflict assign a new one */
12130 		err = dev_index_reserve(net, dev->ifindex);
12131 		if (err == -EBUSY)
12132 			err = dev_index_reserve(net, 0);
12133 		if (err < 0) {
12134 			NL_SET_ERR_MSG(extack,
12135 				       "Unable to allocate a new ifindex in the target netns");
12136 			goto out;
12137 		}
12138 		new_ifindex = err;
12139 	}
12140 
12141 	/*
12142 	 * And now a mini version of register_netdevice unregister_netdevice.
12143 	 */
12144 
12145 	/* If device is running close it first. */
12146 	netif_close(dev);
12147 
12148 	/* And unlink it from device chain */
12149 	unlist_netdevice(dev);
12150 
12151 	synchronize_net();
12152 
12153 	/* Shutdown queueing discipline. */
12154 	dev_shutdown(dev);
12155 
12156 	/* Notify protocols, that we are about to destroy
12157 	 * this device. They should clean all the things.
12158 	 *
12159 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12160 	 * This is wanted because this way 8021q and macvlan know
12161 	 * the device is just moving and can keep their slaves up.
12162 	 */
12163 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12164 	rcu_barrier();
12165 
12166 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12167 
12168 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12169 			    new_ifindex);
12170 
12171 	/*
12172 	 *	Flush the unicast and multicast chains
12173 	 */
12174 	dev_uc_flush(dev);
12175 	dev_mc_flush(dev);
12176 
12177 	/* Send a netdev-removed uevent to the old namespace */
12178 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12179 	netdev_adjacent_del_links(dev);
12180 
12181 	/* Move per-net netdevice notifiers that are following the netdevice */
12182 	move_netdevice_notifiers_dev_net(dev, net);
12183 
12184 	/* Actually switch the network namespace */
12185 	dev_net_set(dev, net);
12186 	dev->ifindex = new_ifindex;
12187 
12188 	if (new_name[0]) {
12189 		/* Rename the netdev to prepared name */
12190 		write_seqlock_bh(&netdev_rename_lock);
12191 		strscpy(dev->name, new_name, IFNAMSIZ);
12192 		write_sequnlock_bh(&netdev_rename_lock);
12193 	}
12194 
12195 	/* Fixup kobjects */
12196 	dev_set_uevent_suppress(&dev->dev, 1);
12197 	err = device_rename(&dev->dev, dev->name);
12198 	dev_set_uevent_suppress(&dev->dev, 0);
12199 	WARN_ON(err);
12200 
12201 	/* Send a netdev-add uevent to the new namespace */
12202 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12203 	netdev_adjacent_add_links(dev);
12204 
12205 	/* Adapt owner in case owning user namespace of target network
12206 	 * namespace is different from the original one.
12207 	 */
12208 	err = netdev_change_owner(dev, net_old, net);
12209 	WARN_ON(err);
12210 
12211 	/* Add the device back in the hashes */
12212 	list_netdevice(dev);
12213 
12214 	/* Notify protocols, that a new device appeared. */
12215 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12216 
12217 	/*
12218 	 *	Prevent userspace races by waiting until the network
12219 	 *	device is fully setup before sending notifications.
12220 	 */
12221 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12222 
12223 	synchronize_net();
12224 	err = 0;
12225 out:
12226 	return err;
12227 }
12228 
dev_cpu_dead(unsigned int oldcpu)12229 static int dev_cpu_dead(unsigned int oldcpu)
12230 {
12231 	struct sk_buff **list_skb;
12232 	struct sk_buff *skb;
12233 	unsigned int cpu;
12234 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12235 
12236 	local_irq_disable();
12237 	cpu = smp_processor_id();
12238 	sd = &per_cpu(softnet_data, cpu);
12239 	oldsd = &per_cpu(softnet_data, oldcpu);
12240 
12241 	/* Find end of our completion_queue. */
12242 	list_skb = &sd->completion_queue;
12243 	while (*list_skb)
12244 		list_skb = &(*list_skb)->next;
12245 	/* Append completion queue from offline CPU. */
12246 	*list_skb = oldsd->completion_queue;
12247 	oldsd->completion_queue = NULL;
12248 
12249 	/* Append output queue from offline CPU. */
12250 	if (oldsd->output_queue) {
12251 		*sd->output_queue_tailp = oldsd->output_queue;
12252 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12253 		oldsd->output_queue = NULL;
12254 		oldsd->output_queue_tailp = &oldsd->output_queue;
12255 	}
12256 	/* Append NAPI poll list from offline CPU, with one exception :
12257 	 * process_backlog() must be called by cpu owning percpu backlog.
12258 	 * We properly handle process_queue & input_pkt_queue later.
12259 	 */
12260 	while (!list_empty(&oldsd->poll_list)) {
12261 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12262 							    struct napi_struct,
12263 							    poll_list);
12264 
12265 		list_del_init(&napi->poll_list);
12266 		if (napi->poll == process_backlog)
12267 			napi->state &= NAPIF_STATE_THREADED;
12268 		else
12269 			____napi_schedule(sd, napi);
12270 	}
12271 
12272 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12273 	local_irq_enable();
12274 
12275 	if (!use_backlog_threads()) {
12276 #ifdef CONFIG_RPS
12277 		remsd = oldsd->rps_ipi_list;
12278 		oldsd->rps_ipi_list = NULL;
12279 #endif
12280 		/* send out pending IPI's on offline CPU */
12281 		net_rps_send_ipi(remsd);
12282 	}
12283 
12284 	/* Process offline CPU's input_pkt_queue */
12285 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12286 		netif_rx(skb);
12287 		rps_input_queue_head_incr(oldsd);
12288 	}
12289 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12290 		netif_rx(skb);
12291 		rps_input_queue_head_incr(oldsd);
12292 	}
12293 
12294 	return 0;
12295 }
12296 
12297 /**
12298  *	netdev_increment_features - increment feature set by one
12299  *	@all: current feature set
12300  *	@one: new feature set
12301  *	@mask: mask feature set
12302  *
12303  *	Computes a new feature set after adding a device with feature set
12304  *	@one to the master device with current feature set @all.  Will not
12305  *	enable anything that is off in @mask. Returns the new feature set.
12306  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)12307 netdev_features_t netdev_increment_features(netdev_features_t all,
12308 	netdev_features_t one, netdev_features_t mask)
12309 {
12310 	if (mask & NETIF_F_HW_CSUM)
12311 		mask |= NETIF_F_CSUM_MASK;
12312 	mask |= NETIF_F_VLAN_CHALLENGED;
12313 
12314 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12315 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12316 
12317 	/* If one device supports hw checksumming, set for all. */
12318 	if (all & NETIF_F_HW_CSUM)
12319 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12320 
12321 	return all;
12322 }
12323 EXPORT_SYMBOL(netdev_increment_features);
12324 
netdev_create_hash(void)12325 static struct hlist_head * __net_init netdev_create_hash(void)
12326 {
12327 	int i;
12328 	struct hlist_head *hash;
12329 
12330 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12331 	if (hash != NULL)
12332 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12333 			INIT_HLIST_HEAD(&hash[i]);
12334 
12335 	return hash;
12336 }
12337 
12338 /* Initialize per network namespace state */
netdev_init(struct net * net)12339 static int __net_init netdev_init(struct net *net)
12340 {
12341 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12342 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12343 
12344 	INIT_LIST_HEAD(&net->dev_base_head);
12345 
12346 	net->dev_name_head = netdev_create_hash();
12347 	if (net->dev_name_head == NULL)
12348 		goto err_name;
12349 
12350 	net->dev_index_head = netdev_create_hash();
12351 	if (net->dev_index_head == NULL)
12352 		goto err_idx;
12353 
12354 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12355 
12356 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12357 
12358 	return 0;
12359 
12360 err_idx:
12361 	kfree(net->dev_name_head);
12362 err_name:
12363 	return -ENOMEM;
12364 }
12365 
12366 /**
12367  *	netdev_drivername - network driver for the device
12368  *	@dev: network device
12369  *
12370  *	Determine network driver for device.
12371  */
netdev_drivername(const struct net_device * dev)12372 const char *netdev_drivername(const struct net_device *dev)
12373 {
12374 	const struct device_driver *driver;
12375 	const struct device *parent;
12376 	const char *empty = "";
12377 
12378 	parent = dev->dev.parent;
12379 	if (!parent)
12380 		return empty;
12381 
12382 	driver = parent->driver;
12383 	if (driver && driver->name)
12384 		return driver->name;
12385 	return empty;
12386 }
12387 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)12388 static void __netdev_printk(const char *level, const struct net_device *dev,
12389 			    struct va_format *vaf)
12390 {
12391 	if (dev && dev->dev.parent) {
12392 		dev_printk_emit(level[1] - '0',
12393 				dev->dev.parent,
12394 				"%s %s %s%s: %pV",
12395 				dev_driver_string(dev->dev.parent),
12396 				dev_name(dev->dev.parent),
12397 				netdev_name(dev), netdev_reg_state(dev),
12398 				vaf);
12399 	} else if (dev) {
12400 		printk("%s%s%s: %pV",
12401 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12402 	} else {
12403 		printk("%s(NULL net_device): %pV", level, vaf);
12404 	}
12405 }
12406 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)12407 void netdev_printk(const char *level, const struct net_device *dev,
12408 		   const char *format, ...)
12409 {
12410 	struct va_format vaf;
12411 	va_list args;
12412 
12413 	va_start(args, format);
12414 
12415 	vaf.fmt = format;
12416 	vaf.va = &args;
12417 
12418 	__netdev_printk(level, dev, &vaf);
12419 
12420 	va_end(args);
12421 }
12422 EXPORT_SYMBOL(netdev_printk);
12423 
12424 #define define_netdev_printk_level(func, level)			\
12425 void func(const struct net_device *dev, const char *fmt, ...)	\
12426 {								\
12427 	struct va_format vaf;					\
12428 	va_list args;						\
12429 								\
12430 	va_start(args, fmt);					\
12431 								\
12432 	vaf.fmt = fmt;						\
12433 	vaf.va = &args;						\
12434 								\
12435 	__netdev_printk(level, dev, &vaf);			\
12436 								\
12437 	va_end(args);						\
12438 }								\
12439 EXPORT_SYMBOL(func);
12440 
12441 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12442 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12443 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12444 define_netdev_printk_level(netdev_err, KERN_ERR);
12445 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12446 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12447 define_netdev_printk_level(netdev_info, KERN_INFO);
12448 
netdev_exit(struct net * net)12449 static void __net_exit netdev_exit(struct net *net)
12450 {
12451 	kfree(net->dev_name_head);
12452 	kfree(net->dev_index_head);
12453 	xa_destroy(&net->dev_by_index);
12454 	if (net != &init_net)
12455 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12456 }
12457 
12458 static struct pernet_operations __net_initdata netdev_net_ops = {
12459 	.init = netdev_init,
12460 	.exit = netdev_exit,
12461 };
12462 
default_device_exit_net(struct net * net)12463 static void __net_exit default_device_exit_net(struct net *net)
12464 {
12465 	struct netdev_name_node *name_node, *tmp;
12466 	struct net_device *dev, *aux;
12467 	/*
12468 	 * Push all migratable network devices back to the
12469 	 * initial network namespace
12470 	 */
12471 	ASSERT_RTNL();
12472 	for_each_netdev_safe(net, dev, aux) {
12473 		int err;
12474 		char fb_name[IFNAMSIZ];
12475 
12476 		/* Ignore unmoveable devices (i.e. loopback) */
12477 		if (dev->netns_immutable)
12478 			continue;
12479 
12480 		/* Leave virtual devices for the generic cleanup */
12481 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12482 			continue;
12483 
12484 		/* Push remaining network devices to init_net */
12485 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12486 		if (netdev_name_in_use(&init_net, fb_name))
12487 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12488 
12489 		netdev_for_each_altname_safe(dev, name_node, tmp)
12490 			if (netdev_name_in_use(&init_net, name_node->name))
12491 				__netdev_name_node_alt_destroy(name_node);
12492 
12493 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12494 		if (err) {
12495 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12496 				 __func__, dev->name, err);
12497 			BUG();
12498 		}
12499 	}
12500 }
12501 
default_device_exit_batch(struct list_head * net_list)12502 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12503 {
12504 	/* At exit all network devices most be removed from a network
12505 	 * namespace.  Do this in the reverse order of registration.
12506 	 * Do this across as many network namespaces as possible to
12507 	 * improve batching efficiency.
12508 	 */
12509 	struct net_device *dev;
12510 	struct net *net;
12511 	LIST_HEAD(dev_kill_list);
12512 
12513 	rtnl_lock();
12514 	list_for_each_entry(net, net_list, exit_list) {
12515 		default_device_exit_net(net);
12516 		cond_resched();
12517 	}
12518 
12519 	list_for_each_entry(net, net_list, exit_list) {
12520 		for_each_netdev_reverse(net, dev) {
12521 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12522 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12523 			else
12524 				unregister_netdevice_queue(dev, &dev_kill_list);
12525 		}
12526 	}
12527 	unregister_netdevice_many(&dev_kill_list);
12528 	rtnl_unlock();
12529 }
12530 
12531 static struct pernet_operations __net_initdata default_device_ops = {
12532 	.exit_batch = default_device_exit_batch,
12533 };
12534 
net_dev_struct_check(void)12535 static void __init net_dev_struct_check(void)
12536 {
12537 	/* TX read-mostly hotpath */
12538 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12539 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12540 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12541 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12542 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12543 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12544 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12545 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12546 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12547 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12548 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12549 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12550 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12551 #ifdef CONFIG_XPS
12552 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12553 #endif
12554 #ifdef CONFIG_NETFILTER_EGRESS
12555 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12556 #endif
12557 #ifdef CONFIG_NET_XGRESS
12558 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12559 #endif
12560 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12561 
12562 	/* TXRX read-mostly hotpath */
12563 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12564 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12565 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12566 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12567 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12568 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12569 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12570 
12571 	/* RX read-mostly hotpath */
12572 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12573 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12574 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12575 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12576 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12577 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12578 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12579 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12580 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12581 #ifdef CONFIG_NETPOLL
12582 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12583 #endif
12584 #ifdef CONFIG_NET_XGRESS
12585 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12586 #endif
12587 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12588 }
12589 
12590 /*
12591  *	Initialize the DEV module. At boot time this walks the device list and
12592  *	unhooks any devices that fail to initialise (normally hardware not
12593  *	present) and leaves us with a valid list of present and active devices.
12594  *
12595  */
12596 
12597 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12598 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12599 
net_page_pool_create(int cpuid)12600 static int net_page_pool_create(int cpuid)
12601 {
12602 #if IS_ENABLED(CONFIG_PAGE_POOL)
12603 	struct page_pool_params page_pool_params = {
12604 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12605 		.flags = PP_FLAG_SYSTEM_POOL,
12606 		.nid = cpu_to_mem(cpuid),
12607 	};
12608 	struct page_pool *pp_ptr;
12609 	int err;
12610 
12611 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12612 	if (IS_ERR(pp_ptr))
12613 		return -ENOMEM;
12614 
12615 	err = xdp_reg_page_pool(pp_ptr);
12616 	if (err) {
12617 		page_pool_destroy(pp_ptr);
12618 		return err;
12619 	}
12620 
12621 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12622 #endif
12623 	return 0;
12624 }
12625 
backlog_napi_should_run(unsigned int cpu)12626 static int backlog_napi_should_run(unsigned int cpu)
12627 {
12628 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12629 	struct napi_struct *napi = &sd->backlog;
12630 
12631 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12632 }
12633 
run_backlog_napi(unsigned int cpu)12634 static void run_backlog_napi(unsigned int cpu)
12635 {
12636 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12637 
12638 	napi_threaded_poll_loop(&sd->backlog);
12639 }
12640 
backlog_napi_setup(unsigned int cpu)12641 static void backlog_napi_setup(unsigned int cpu)
12642 {
12643 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12644 	struct napi_struct *napi = &sd->backlog;
12645 
12646 	napi->thread = this_cpu_read(backlog_napi);
12647 	set_bit(NAPI_STATE_THREADED, &napi->state);
12648 }
12649 
12650 static struct smp_hotplug_thread backlog_threads = {
12651 	.store			= &backlog_napi,
12652 	.thread_should_run	= backlog_napi_should_run,
12653 	.thread_fn		= run_backlog_napi,
12654 	.thread_comm		= "backlog_napi/%u",
12655 	.setup			= backlog_napi_setup,
12656 };
12657 
12658 /*
12659  *       This is called single threaded during boot, so no need
12660  *       to take the rtnl semaphore.
12661  */
net_dev_init(void)12662 static int __init net_dev_init(void)
12663 {
12664 	int i, rc = -ENOMEM;
12665 
12666 	BUG_ON(!dev_boot_phase);
12667 
12668 	net_dev_struct_check();
12669 
12670 	if (dev_proc_init())
12671 		goto out;
12672 
12673 	if (netdev_kobject_init())
12674 		goto out;
12675 
12676 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12677 		INIT_LIST_HEAD(&ptype_base[i]);
12678 
12679 	if (register_pernet_subsys(&netdev_net_ops))
12680 		goto out;
12681 
12682 	/*
12683 	 *	Initialise the packet receive queues.
12684 	 */
12685 
12686 	flush_backlogs_fallback = flush_backlogs_alloc();
12687 	if (!flush_backlogs_fallback)
12688 		goto out;
12689 
12690 	for_each_possible_cpu(i) {
12691 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12692 
12693 		skb_queue_head_init(&sd->input_pkt_queue);
12694 		skb_queue_head_init(&sd->process_queue);
12695 #ifdef CONFIG_XFRM_OFFLOAD
12696 		skb_queue_head_init(&sd->xfrm_backlog);
12697 #endif
12698 		INIT_LIST_HEAD(&sd->poll_list);
12699 		sd->output_queue_tailp = &sd->output_queue;
12700 #ifdef CONFIG_RPS
12701 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12702 		sd->cpu = i;
12703 #endif
12704 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12705 		spin_lock_init(&sd->defer_lock);
12706 
12707 		gro_init(&sd->backlog.gro);
12708 		sd->backlog.poll = process_backlog;
12709 		sd->backlog.weight = weight_p;
12710 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12711 
12712 		if (net_page_pool_create(i))
12713 			goto out;
12714 	}
12715 	if (use_backlog_threads())
12716 		smpboot_register_percpu_thread(&backlog_threads);
12717 
12718 	dev_boot_phase = 0;
12719 
12720 	/* The loopback device is special if any other network devices
12721 	 * is present in a network namespace the loopback device must
12722 	 * be present. Since we now dynamically allocate and free the
12723 	 * loopback device ensure this invariant is maintained by
12724 	 * keeping the loopback device as the first device on the
12725 	 * list of network devices.  Ensuring the loopback devices
12726 	 * is the first device that appears and the last network device
12727 	 * that disappears.
12728 	 */
12729 	if (register_pernet_device(&loopback_net_ops))
12730 		goto out;
12731 
12732 	if (register_pernet_device(&default_device_ops))
12733 		goto out;
12734 
12735 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12736 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12737 
12738 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12739 				       NULL, dev_cpu_dead);
12740 	WARN_ON(rc < 0);
12741 	rc = 0;
12742 
12743 	/* avoid static key IPIs to isolated CPUs */
12744 	if (housekeeping_enabled(HK_TYPE_MISC))
12745 		net_enable_timestamp();
12746 out:
12747 	if (rc < 0) {
12748 		for_each_possible_cpu(i) {
12749 			struct page_pool *pp_ptr;
12750 
12751 			pp_ptr = per_cpu(system_page_pool, i);
12752 			if (!pp_ptr)
12753 				continue;
12754 
12755 			xdp_unreg_page_pool(pp_ptr);
12756 			page_pool_destroy(pp_ptr);
12757 			per_cpu(system_page_pool, i) = NULL;
12758 		}
12759 	}
12760 
12761 	return rc;
12762 }
12763 
12764 subsys_initcall(net_dev_init);
12765