xref: /linux/net/core/dev.c (revision 61f96e684edd28ca40555ec49ea1555df31ba619)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166 
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170 
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 					   struct net_device *dev,
177 					   struct netlink_ext_ack *extack);
178 
179 static DEFINE_MUTEX(ifalias_mutex);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186 
dev_base_seq_inc(struct net * net)187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 	unsigned int val = net->dev_base_seq + 1;
190 
191 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193 
dev_name_hash(struct net * net,const char * name)194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
dev_index_hash(struct net * net,int ifindex)201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 #ifndef CONFIG_PREEMPT_RT
207 
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209 
setup_backlog_napi_threads(char * arg)210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 	static_branch_enable(&use_backlog_threads_key);
213 	return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216 
use_backlog_threads(void)217 static bool use_backlog_threads(void)
218 {
219 	return static_branch_unlikely(&use_backlog_threads_key);
220 }
221 
222 #else
223 
use_backlog_threads(void)224 static bool use_backlog_threads(void)
225 {
226 	return true;
227 }
228 
229 #endif
230 
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 					 unsigned long *flags)
233 {
234 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 	else
237 		local_irq_save(*flags);
238 }
239 
backlog_lock_irq_disable(struct softnet_data * sd)240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 		spin_lock_irq(&sd->input_pkt_queue.lock);
244 	else
245 		local_irq_disable();
246 }
247 
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 					      unsigned long *flags)
250 {
251 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 	else
254 		local_irq_restore(*flags);
255 }
256 
backlog_unlock_irq_enable(struct softnet_data * sd)257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 		spin_unlock_irq(&sd->input_pkt_queue.lock);
261 	else
262 		local_irq_enable();
263 }
264 
netdev_name_node_alloc(struct net_device * dev,const char * name)265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 						       const char *name)
267 {
268 	struct netdev_name_node *name_node;
269 
270 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 	if (!name_node)
272 		return NULL;
273 	INIT_HLIST_NODE(&name_node->hlist);
274 	name_node->dev = dev;
275 	name_node->name = name;
276 	return name_node;
277 }
278 
279 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 	struct netdev_name_node *name_node;
283 
284 	name_node = netdev_name_node_alloc(dev, dev->name);
285 	if (!name_node)
286 		return NULL;
287 	INIT_LIST_HEAD(&name_node->list);
288 	return name_node;
289 }
290 
netdev_name_node_free(struct netdev_name_node * name_node)291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 	kfree(name_node);
294 }
295 
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)296 static void netdev_name_node_add(struct net *net,
297 				 struct netdev_name_node *name_node)
298 {
299 	hlist_add_head_rcu(&name_node->hlist,
300 			   dev_name_hash(net, name_node->name));
301 }
302 
netdev_name_node_del(struct netdev_name_node * name_node)303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 	hlist_del_rcu(&name_node->hlist);
306 }
307 
netdev_name_node_lookup(struct net * net,const char * name)308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 							const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
netdev_name_node_lookup_rcu(struct net * net,const char * name)320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 							    const char *name)
322 {
323 	struct hlist_head *head = dev_name_hash(net, name);
324 	struct netdev_name_node *name_node;
325 
326 	hlist_for_each_entry_rcu(name_node, head, hlist)
327 		if (!strcmp(name_node->name, name))
328 			return name_node;
329 	return NULL;
330 }
331 
netdev_name_in_use(struct net * net,const char * name)332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 	return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337 
netdev_name_node_alt_create(struct net_device * dev,const char * name)338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 	struct netdev_name_node *name_node;
341 	struct net *net = dev_net(dev);
342 
343 	name_node = netdev_name_node_lookup(net, name);
344 	if (name_node)
345 		return -EEXIST;
346 	name_node = netdev_name_node_alloc(dev, name);
347 	if (!name_node)
348 		return -ENOMEM;
349 	netdev_name_node_add(net, name_node);
350 	/* The node that holds dev->name acts as a head of per-device list. */
351 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352 
353 	return 0;
354 }
355 
netdev_name_node_alt_free(struct rcu_head * head)356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 	struct netdev_name_node *name_node =
359 		container_of(head, struct netdev_name_node, rcu);
360 
361 	kfree(name_node->name);
362 	netdev_name_node_free(name_node);
363 }
364 
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 	netdev_name_node_del(name_node);
368 	list_del(&name_node->list);
369 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371 
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 	struct netdev_name_node *name_node;
375 	struct net *net = dev_net(dev);
376 
377 	name_node = netdev_name_node_lookup(net, name);
378 	if (!name_node)
379 		return -ENOENT;
380 	/* lookup might have found our primary name or a name belonging
381 	 * to another device.
382 	 */
383 	if (name_node == dev->name_node || name_node->dev != dev)
384 		return -EINVAL;
385 
386 	__netdev_name_node_alt_destroy(name_node);
387 	return 0;
388 }
389 
netdev_name_node_alt_flush(struct net_device * dev)390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 	struct netdev_name_node *name_node, *tmp;
393 
394 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 		list_del(&name_node->list);
396 		netdev_name_node_alt_free(&name_node->rcu);
397 	}
398 }
399 
400 /* Device list insertion */
list_netdevice(struct net_device * dev)401 static void list_netdevice(struct net_device *dev)
402 {
403 	struct netdev_name_node *name_node;
404 	struct net *net = dev_net(dev);
405 
406 	ASSERT_RTNL();
407 
408 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 	netdev_name_node_add(net, dev->name_node);
410 	hlist_add_head_rcu(&dev->index_hlist,
411 			   dev_index_hash(net, dev->ifindex));
412 
413 	netdev_for_each_altname(dev, name_node)
414 		netdev_name_node_add(net, name_node);
415 
416 	/* We reserved the ifindex, this can't fail */
417 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418 
419 	dev_base_seq_inc(net);
420 }
421 
422 /* Device list removal
423  * caller must respect a RCU grace period before freeing/reusing dev
424  */
unlist_netdevice(struct net_device * dev)425 static void unlist_netdevice(struct net_device *dev)
426 {
427 	struct netdev_name_node *name_node;
428 	struct net *net = dev_net(dev);
429 
430 	ASSERT_RTNL();
431 
432 	xa_erase(&net->dev_by_index, dev->ifindex);
433 
434 	netdev_for_each_altname(dev, name_node)
435 		netdev_name_node_del(name_node);
436 
437 	/* Unlink dev from the device chain */
438 	list_del_rcu(&dev->dev_list);
439 	netdev_name_node_del(dev->name_node);
440 	hlist_del_rcu(&dev->index_hlist);
441 
442 	dev_base_seq_inc(dev_net(dev));
443 }
444 
445 /*
446  *	Our notifier list
447  */
448 
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450 
451 /*
452  *	Device drivers call our routines to queue packets here. We empty the
453  *	queue in the local softnet handler.
454  */
455 
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460 
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462  * PP consumers must pay attention to run APIs in the appropriate context
463  * (e.g. NAPI context).
464  */
465 DEFINE_PER_CPU(struct page_pool *, system_page_pool);
466 
467 #ifdef CONFIG_LOCKDEP
468 /*
469  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
470  * according to dev->type
471  */
472 static const unsigned short netdev_lock_type[] = {
473 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
474 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
475 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
476 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
477 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
478 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
479 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
480 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
481 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
482 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
483 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
484 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
485 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
486 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
487 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
488 
489 static const char *const netdev_lock_name[] = {
490 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
491 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
492 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
493 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
494 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
495 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
496 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
497 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
498 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
499 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
500 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
501 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
502 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
503 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
504 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
505 
506 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
507 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
508 
netdev_lock_pos(unsigned short dev_type)509 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
510 {
511 	int i;
512 
513 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
514 		if (netdev_lock_type[i] == dev_type)
515 			return i;
516 	/* the last key is used by default */
517 	return ARRAY_SIZE(netdev_lock_type) - 1;
518 }
519 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)520 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
521 						 unsigned short dev_type)
522 {
523 	int i;
524 
525 	i = netdev_lock_pos(dev_type);
526 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
527 				   netdev_lock_name[i]);
528 }
529 
netdev_set_addr_lockdep_class(struct net_device * dev)530 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
531 {
532 	int i;
533 
534 	i = netdev_lock_pos(dev->type);
535 	lockdep_set_class_and_name(&dev->addr_list_lock,
536 				   &netdev_addr_lock_key[i],
537 				   netdev_lock_name[i]);
538 }
539 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)540 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
541 						 unsigned short dev_type)
542 {
543 }
544 
netdev_set_addr_lockdep_class(struct net_device * dev)545 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
546 {
547 }
548 #endif
549 
550 /*******************************************************************************
551  *
552  *		Protocol management and registration routines
553  *
554  *******************************************************************************/
555 
556 
557 /*
558  *	Add a protocol ID to the list. Now that the input handler is
559  *	smarter we can dispense with all the messy stuff that used to be
560  *	here.
561  *
562  *	BEWARE!!! Protocol handlers, mangling input packets,
563  *	MUST BE last in hash buckets and checking protocol handlers
564  *	MUST start from promiscuous ptype_all chain in net_bh.
565  *	It is true now, do not change it.
566  *	Explanation follows: if protocol handler, mangling packet, will
567  *	be the first on list, it is not able to sense, that packet
568  *	is cloned and should be copied-on-write, so that it will
569  *	change it and subsequent readers will get broken packet.
570  *							--ANK (980803)
571  */
572 
ptype_head(const struct packet_type * pt)573 static inline struct list_head *ptype_head(const struct packet_type *pt)
574 {
575 	if (pt->type == htons(ETH_P_ALL)) {
576 		if (!pt->af_packet_net && !pt->dev)
577 			return NULL;
578 
579 		return pt->dev ? &pt->dev->ptype_all :
580 				 &pt->af_packet_net->ptype_all;
581 	}
582 
583 	if (pt->dev)
584 		return &pt->dev->ptype_specific;
585 
586 	return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
587 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
588 }
589 
590 /**
591  *	dev_add_pack - add packet handler
592  *	@pt: packet type declaration
593  *
594  *	Add a protocol handler to the networking stack. The passed &packet_type
595  *	is linked into kernel lists and may not be freed until it has been
596  *	removed from the kernel lists.
597  *
598  *	This call does not sleep therefore it can not
599  *	guarantee all CPU's that are in middle of receiving packets
600  *	will see the new packet type (until the next received packet).
601  */
602 
dev_add_pack(struct packet_type * pt)603 void dev_add_pack(struct packet_type *pt)
604 {
605 	struct list_head *head = ptype_head(pt);
606 
607 	if (WARN_ON_ONCE(!head))
608 		return;
609 
610 	spin_lock(&ptype_lock);
611 	list_add_rcu(&pt->list, head);
612 	spin_unlock(&ptype_lock);
613 }
614 EXPORT_SYMBOL(dev_add_pack);
615 
616 /**
617  *	__dev_remove_pack	 - remove packet handler
618  *	@pt: packet type declaration
619  *
620  *	Remove a protocol handler that was previously added to the kernel
621  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
622  *	from the kernel lists and can be freed or reused once this function
623  *	returns.
624  *
625  *      The packet type might still be in use by receivers
626  *	and must not be freed until after all the CPU's have gone
627  *	through a quiescent state.
628  */
__dev_remove_pack(struct packet_type * pt)629 void __dev_remove_pack(struct packet_type *pt)
630 {
631 	struct list_head *head = ptype_head(pt);
632 	struct packet_type *pt1;
633 
634 	if (!head)
635 		return;
636 
637 	spin_lock(&ptype_lock);
638 
639 	list_for_each_entry(pt1, head, list) {
640 		if (pt == pt1) {
641 			list_del_rcu(&pt->list);
642 			goto out;
643 		}
644 	}
645 
646 	pr_warn("dev_remove_pack: %p not found\n", pt);
647 out:
648 	spin_unlock(&ptype_lock);
649 }
650 EXPORT_SYMBOL(__dev_remove_pack);
651 
652 /**
653  *	dev_remove_pack	 - remove packet handler
654  *	@pt: packet type declaration
655  *
656  *	Remove a protocol handler that was previously added to the kernel
657  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
658  *	from the kernel lists and can be freed or reused once this function
659  *	returns.
660  *
661  *	This call sleeps to guarantee that no CPU is looking at the packet
662  *	type after return.
663  */
dev_remove_pack(struct packet_type * pt)664 void dev_remove_pack(struct packet_type *pt)
665 {
666 	__dev_remove_pack(pt);
667 
668 	synchronize_net();
669 }
670 EXPORT_SYMBOL(dev_remove_pack);
671 
672 
673 /*******************************************************************************
674  *
675  *			    Device Interface Subroutines
676  *
677  *******************************************************************************/
678 
679 /**
680  *	dev_get_iflink	- get 'iflink' value of a interface
681  *	@dev: targeted interface
682  *
683  *	Indicates the ifindex the interface is linked to.
684  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686 
dev_get_iflink(const struct net_device * dev)687 int dev_get_iflink(const struct net_device *dev)
688 {
689 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 		return dev->netdev_ops->ndo_get_iflink(dev);
691 
692 	return READ_ONCE(dev->ifindex);
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695 
696 /**
697  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *	@dev: targeted interface
699  *	@skb: The packet.
700  *
701  *	For better visibility of tunnel traffic OVS needs to retrieve
702  *	egress tunnel information for a packet. Following API allows
703  *	user to get this info.
704  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 	struct ip_tunnel_info *info;
708 
709 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710 		return -EINVAL;
711 
712 	info = skb_tunnel_info_unclone(skb);
713 	if (!info)
714 		return -ENOMEM;
715 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 		return -EINVAL;
717 
718 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721 
dev_fwd_path(struct net_device_path_stack * stack)722 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
723 {
724 	int k = stack->num_paths++;
725 
726 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
727 		return NULL;
728 
729 	return &stack->path[k];
730 }
731 
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)732 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
733 			  struct net_device_path_stack *stack)
734 {
735 	const struct net_device *last_dev;
736 	struct net_device_path_ctx ctx = {
737 		.dev	= dev,
738 	};
739 	struct net_device_path *path;
740 	int ret = 0;
741 
742 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
743 	stack->num_paths = 0;
744 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
745 		last_dev = ctx.dev;
746 		path = dev_fwd_path(stack);
747 		if (!path)
748 			return -1;
749 
750 		memset(path, 0, sizeof(struct net_device_path));
751 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
752 		if (ret < 0)
753 			return -1;
754 
755 		if (WARN_ON_ONCE(last_dev == ctx.dev))
756 			return -1;
757 	}
758 
759 	if (!ctx.dev)
760 		return ret;
761 
762 	path = dev_fwd_path(stack);
763 	if (!path)
764 		return -1;
765 	path->type = DEV_PATH_ETHERNET;
766 	path->dev = ctx.dev;
767 
768 	return ret;
769 }
770 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
771 
772 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)773 static struct napi_struct *napi_by_id(unsigned int napi_id)
774 {
775 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
776 	struct napi_struct *napi;
777 
778 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
779 		if (napi->napi_id == napi_id)
780 			return napi;
781 
782 	return NULL;
783 }
784 
785 /* must be called under rcu_read_lock(), as we dont take a reference */
786 static struct napi_struct *
netdev_napi_by_id(struct net * net,unsigned int napi_id)787 netdev_napi_by_id(struct net *net, unsigned int napi_id)
788 {
789 	struct napi_struct *napi;
790 
791 	napi = napi_by_id(napi_id);
792 	if (!napi)
793 		return NULL;
794 
795 	if (WARN_ON_ONCE(!napi->dev))
796 		return NULL;
797 	if (!net_eq(net, dev_net(napi->dev)))
798 		return NULL;
799 
800 	return napi;
801 }
802 
803 /**
804  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
805  *	@net: the applicable net namespace
806  *	@napi_id: ID of a NAPI of a target device
807  *
808  *	Find a NAPI instance with @napi_id. Lock its device.
809  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
810  *	netdev_unlock() must be called to release it.
811  *
812  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
813  */
814 struct napi_struct *
netdev_napi_by_id_lock(struct net * net,unsigned int napi_id)815 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
816 {
817 	struct napi_struct *napi;
818 	struct net_device *dev;
819 
820 	rcu_read_lock();
821 	napi = netdev_napi_by_id(net, napi_id);
822 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
823 		rcu_read_unlock();
824 		return NULL;
825 	}
826 
827 	dev = napi->dev;
828 	dev_hold(dev);
829 	rcu_read_unlock();
830 
831 	dev = __netdev_put_lock(dev);
832 	if (!dev)
833 		return NULL;
834 
835 	rcu_read_lock();
836 	napi = netdev_napi_by_id(net, napi_id);
837 	if (napi && napi->dev != dev)
838 		napi = NULL;
839 	rcu_read_unlock();
840 
841 	if (!napi)
842 		netdev_unlock(dev);
843 	return napi;
844 }
845 
846 /**
847  *	__dev_get_by_name	- find a device by its name
848  *	@net: the applicable net namespace
849  *	@name: name to find
850  *
851  *	Find an interface by name. Must be called under RTNL semaphore.
852  *	If the name is found a pointer to the device is returned.
853  *	If the name is not found then %NULL is returned. The
854  *	reference counters are not incremented so the caller must be
855  *	careful with locks.
856  */
857 
__dev_get_by_name(struct net * net,const char * name)858 struct net_device *__dev_get_by_name(struct net *net, const char *name)
859 {
860 	struct netdev_name_node *node_name;
861 
862 	node_name = netdev_name_node_lookup(net, name);
863 	return node_name ? node_name->dev : NULL;
864 }
865 EXPORT_SYMBOL(__dev_get_by_name);
866 
867 /**
868  * dev_get_by_name_rcu	- find a device by its name
869  * @net: the applicable net namespace
870  * @name: name to find
871  *
872  * Find an interface by name.
873  * If the name is found a pointer to the device is returned.
874  * If the name is not found then %NULL is returned.
875  * The reference counters are not incremented so the caller must be
876  * careful with locks. The caller must hold RCU lock.
877  */
878 
dev_get_by_name_rcu(struct net * net,const char * name)879 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
880 {
881 	struct netdev_name_node *node_name;
882 
883 	node_name = netdev_name_node_lookup_rcu(net, name);
884 	return node_name ? node_name->dev : NULL;
885 }
886 EXPORT_SYMBOL(dev_get_by_name_rcu);
887 
888 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)889 struct net_device *dev_get_by_name(struct net *net, const char *name)
890 {
891 	struct net_device *dev;
892 
893 	rcu_read_lock();
894 	dev = dev_get_by_name_rcu(net, name);
895 	dev_hold(dev);
896 	rcu_read_unlock();
897 	return dev;
898 }
899 EXPORT_SYMBOL(dev_get_by_name);
900 
901 /**
902  *	netdev_get_by_name() - find a device by its name
903  *	@net: the applicable net namespace
904  *	@name: name to find
905  *	@tracker: tracking object for the acquired reference
906  *	@gfp: allocation flags for the tracker
907  *
908  *	Find an interface by name. This can be called from any
909  *	context and does its own locking. The returned handle has
910  *	the usage count incremented and the caller must use netdev_put() to
911  *	release it when it is no longer needed. %NULL is returned if no
912  *	matching device is found.
913  */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)914 struct net_device *netdev_get_by_name(struct net *net, const char *name,
915 				      netdevice_tracker *tracker, gfp_t gfp)
916 {
917 	struct net_device *dev;
918 
919 	dev = dev_get_by_name(net, name);
920 	if (dev)
921 		netdev_tracker_alloc(dev, tracker, gfp);
922 	return dev;
923 }
924 EXPORT_SYMBOL(netdev_get_by_name);
925 
926 /**
927  *	__dev_get_by_index - find a device by its ifindex
928  *	@net: the applicable net namespace
929  *	@ifindex: index of device
930  *
931  *	Search for an interface by index. Returns %NULL if the device
932  *	is not found or a pointer to the device. The device has not
933  *	had its reference counter increased so the caller must be careful
934  *	about locking. The caller must hold the RTNL semaphore.
935  */
936 
__dev_get_by_index(struct net * net,int ifindex)937 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
938 {
939 	struct net_device *dev;
940 	struct hlist_head *head = dev_index_hash(net, ifindex);
941 
942 	hlist_for_each_entry(dev, head, index_hlist)
943 		if (dev->ifindex == ifindex)
944 			return dev;
945 
946 	return NULL;
947 }
948 EXPORT_SYMBOL(__dev_get_by_index);
949 
950 /**
951  *	dev_get_by_index_rcu - find a device by its ifindex
952  *	@net: the applicable net namespace
953  *	@ifindex: index of device
954  *
955  *	Search for an interface by index. Returns %NULL if the device
956  *	is not found or a pointer to the device. The device has not
957  *	had its reference counter increased so the caller must be careful
958  *	about locking. The caller must hold RCU lock.
959  */
960 
dev_get_by_index_rcu(struct net * net,int ifindex)961 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
962 {
963 	struct net_device *dev;
964 	struct hlist_head *head = dev_index_hash(net, ifindex);
965 
966 	hlist_for_each_entry_rcu(dev, head, index_hlist)
967 		if (dev->ifindex == ifindex)
968 			return dev;
969 
970 	return NULL;
971 }
972 EXPORT_SYMBOL(dev_get_by_index_rcu);
973 
974 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)975 struct net_device *dev_get_by_index(struct net *net, int ifindex)
976 {
977 	struct net_device *dev;
978 
979 	rcu_read_lock();
980 	dev = dev_get_by_index_rcu(net, ifindex);
981 	dev_hold(dev);
982 	rcu_read_unlock();
983 	return dev;
984 }
985 EXPORT_SYMBOL(dev_get_by_index);
986 
987 /**
988  *	netdev_get_by_index() - find a device by its ifindex
989  *	@net: the applicable net namespace
990  *	@ifindex: index of device
991  *	@tracker: tracking object for the acquired reference
992  *	@gfp: allocation flags for the tracker
993  *
994  *	Search for an interface by index. Returns NULL if the device
995  *	is not found or a pointer to the device. The device returned has
996  *	had a reference added and the pointer is safe until the user calls
997  *	netdev_put() to indicate they have finished with it.
998  */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)999 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1000 				       netdevice_tracker *tracker, gfp_t gfp)
1001 {
1002 	struct net_device *dev;
1003 
1004 	dev = dev_get_by_index(net, ifindex);
1005 	if (dev)
1006 		netdev_tracker_alloc(dev, tracker, gfp);
1007 	return dev;
1008 }
1009 EXPORT_SYMBOL(netdev_get_by_index);
1010 
1011 /**
1012  *	dev_get_by_napi_id - find a device by napi_id
1013  *	@napi_id: ID of the NAPI struct
1014  *
1015  *	Search for an interface by NAPI ID. Returns %NULL if the device
1016  *	is not found or a pointer to the device. The device has not had
1017  *	its reference counter increased so the caller must be careful
1018  *	about locking. The caller must hold RCU lock.
1019  */
dev_get_by_napi_id(unsigned int napi_id)1020 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1021 {
1022 	struct napi_struct *napi;
1023 
1024 	WARN_ON_ONCE(!rcu_read_lock_held());
1025 
1026 	if (!napi_id_valid(napi_id))
1027 		return NULL;
1028 
1029 	napi = napi_by_id(napi_id);
1030 
1031 	return napi ? napi->dev : NULL;
1032 }
1033 
1034 /* Release the held reference on the net_device, and if the net_device
1035  * is still registered try to lock the instance lock. If device is being
1036  * unregistered NULL will be returned (but the reference has been released,
1037  * either way!)
1038  *
1039  * This helper is intended for locking net_device after it has been looked up
1040  * using a lockless lookup helper. Lock prevents the instance from going away.
1041  */
__netdev_put_lock(struct net_device * dev)1042 struct net_device *__netdev_put_lock(struct net_device *dev)
1043 {
1044 	netdev_lock(dev);
1045 	if (dev->reg_state > NETREG_REGISTERED) {
1046 		netdev_unlock(dev);
1047 		dev_put(dev);
1048 		return NULL;
1049 	}
1050 	dev_put(dev);
1051 	return dev;
1052 }
1053 
1054 /**
1055  *	netdev_get_by_index_lock() - find a device by its ifindex
1056  *	@net: the applicable net namespace
1057  *	@ifindex: index of device
1058  *
1059  *	Search for an interface by index. If a valid device
1060  *	with @ifindex is found it will be returned with netdev->lock held.
1061  *	netdev_unlock() must be called to release it.
1062  *
1063  *	Return: pointer to a device with lock held, NULL if not found.
1064  */
netdev_get_by_index_lock(struct net * net,int ifindex)1065 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1066 {
1067 	struct net_device *dev;
1068 
1069 	dev = dev_get_by_index(net, ifindex);
1070 	if (!dev)
1071 		return NULL;
1072 
1073 	return __netdev_put_lock(dev);
1074 }
1075 
1076 struct net_device *
netdev_xa_find_lock(struct net * net,struct net_device * dev,unsigned long * index)1077 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1078 		    unsigned long *index)
1079 {
1080 	if (dev)
1081 		netdev_unlock(dev);
1082 
1083 	do {
1084 		rcu_read_lock();
1085 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1086 		if (!dev) {
1087 			rcu_read_unlock();
1088 			return NULL;
1089 		}
1090 		dev_hold(dev);
1091 		rcu_read_unlock();
1092 
1093 		dev = __netdev_put_lock(dev);
1094 		if (dev)
1095 			return dev;
1096 
1097 		(*index)++;
1098 	} while (true);
1099 }
1100 
1101 static DEFINE_SEQLOCK(netdev_rename_lock);
1102 
netdev_copy_name(struct net_device * dev,char * name)1103 void netdev_copy_name(struct net_device *dev, char *name)
1104 {
1105 	unsigned int seq;
1106 
1107 	do {
1108 		seq = read_seqbegin(&netdev_rename_lock);
1109 		strscpy(name, dev->name, IFNAMSIZ);
1110 	} while (read_seqretry(&netdev_rename_lock, seq));
1111 }
1112 
1113 /**
1114  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1115  *	@net: network namespace
1116  *	@name: a pointer to the buffer where the name will be stored.
1117  *	@ifindex: the ifindex of the interface to get the name from.
1118  */
netdev_get_name(struct net * net,char * name,int ifindex)1119 int netdev_get_name(struct net *net, char *name, int ifindex)
1120 {
1121 	struct net_device *dev;
1122 	int ret;
1123 
1124 	rcu_read_lock();
1125 
1126 	dev = dev_get_by_index_rcu(net, ifindex);
1127 	if (!dev) {
1128 		ret = -ENODEV;
1129 		goto out;
1130 	}
1131 
1132 	netdev_copy_name(dev, name);
1133 
1134 	ret = 0;
1135 out:
1136 	rcu_read_unlock();
1137 	return ret;
1138 }
1139 
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1140 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1141 			 const char *ha)
1142 {
1143 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1144 }
1145 
1146 /**
1147  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1148  *	@net: the applicable net namespace
1149  *	@type: media type of device
1150  *	@ha: hardware address
1151  *
1152  *	Search for an interface by MAC address. Returns NULL if the device
1153  *	is not found or a pointer to the device.
1154  *	The caller must hold RCU.
1155  *	The returned device has not had its ref count increased
1156  *	and the caller must therefore be careful about locking
1157  *
1158  */
1159 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1160 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1161 				       const char *ha)
1162 {
1163 	struct net_device *dev;
1164 
1165 	for_each_netdev_rcu(net, dev)
1166 		if (dev_addr_cmp(dev, type, ha))
1167 			return dev;
1168 
1169 	return NULL;
1170 }
1171 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1172 
1173 /**
1174  * dev_getbyhwaddr() - find a device by its hardware address
1175  * @net: the applicable net namespace
1176  * @type: media type of device
1177  * @ha: hardware address
1178  *
1179  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1180  * rtnl_lock.
1181  *
1182  * Context: rtnl_lock() must be held.
1183  * Return: pointer to the net_device, or NULL if not found
1184  */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1185 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1186 				   const char *ha)
1187 {
1188 	struct net_device *dev;
1189 
1190 	ASSERT_RTNL();
1191 	for_each_netdev(net, dev)
1192 		if (dev_addr_cmp(dev, type, ha))
1193 			return dev;
1194 
1195 	return NULL;
1196 }
1197 EXPORT_SYMBOL(dev_getbyhwaddr);
1198 
dev_getfirstbyhwtype(struct net * net,unsigned short type)1199 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1200 {
1201 	struct net_device *dev, *ret = NULL;
1202 
1203 	rcu_read_lock();
1204 	for_each_netdev_rcu(net, dev)
1205 		if (dev->type == type) {
1206 			dev_hold(dev);
1207 			ret = dev;
1208 			break;
1209 		}
1210 	rcu_read_unlock();
1211 	return ret;
1212 }
1213 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1214 
1215 /**
1216  *	__dev_get_by_flags - find any device with given flags
1217  *	@net: the applicable net namespace
1218  *	@if_flags: IFF_* values
1219  *	@mask: bitmask of bits in if_flags to check
1220  *
1221  *	Search for any interface with the given flags. Returns NULL if a device
1222  *	is not found or a pointer to the device. Must be called inside
1223  *	rtnl_lock(), and result refcount is unchanged.
1224  */
1225 
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1226 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1227 				      unsigned short mask)
1228 {
1229 	struct net_device *dev, *ret;
1230 
1231 	ASSERT_RTNL();
1232 
1233 	ret = NULL;
1234 	for_each_netdev(net, dev) {
1235 		if (((dev->flags ^ if_flags) & mask) == 0) {
1236 			ret = dev;
1237 			break;
1238 		}
1239 	}
1240 	return ret;
1241 }
1242 EXPORT_SYMBOL(__dev_get_by_flags);
1243 
1244 /**
1245  *	dev_valid_name - check if name is okay for network device
1246  *	@name: name string
1247  *
1248  *	Network device names need to be valid file names to
1249  *	allow sysfs to work.  We also disallow any kind of
1250  *	whitespace.
1251  */
dev_valid_name(const char * name)1252 bool dev_valid_name(const char *name)
1253 {
1254 	if (*name == '\0')
1255 		return false;
1256 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1257 		return false;
1258 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1259 		return false;
1260 
1261 	while (*name) {
1262 		if (*name == '/' || *name == ':' || isspace(*name))
1263 			return false;
1264 		name++;
1265 	}
1266 	return true;
1267 }
1268 EXPORT_SYMBOL(dev_valid_name);
1269 
1270 /**
1271  *	__dev_alloc_name - allocate a name for a device
1272  *	@net: network namespace to allocate the device name in
1273  *	@name: name format string
1274  *	@res: result name string
1275  *
1276  *	Passed a format string - eg "lt%d" it will try and find a suitable
1277  *	id. It scans list of devices to build up a free map, then chooses
1278  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1279  *	while allocating the name and adding the device in order to avoid
1280  *	duplicates.
1281  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1282  *	Returns the number of the unit assigned or a negative errno code.
1283  */
1284 
__dev_alloc_name(struct net * net,const char * name,char * res)1285 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1286 {
1287 	int i = 0;
1288 	const char *p;
1289 	const int max_netdevices = 8*PAGE_SIZE;
1290 	unsigned long *inuse;
1291 	struct net_device *d;
1292 	char buf[IFNAMSIZ];
1293 
1294 	/* Verify the string as this thing may have come from the user.
1295 	 * There must be one "%d" and no other "%" characters.
1296 	 */
1297 	p = strchr(name, '%');
1298 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1299 		return -EINVAL;
1300 
1301 	/* Use one page as a bit array of possible slots */
1302 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1303 	if (!inuse)
1304 		return -ENOMEM;
1305 
1306 	for_each_netdev(net, d) {
1307 		struct netdev_name_node *name_node;
1308 
1309 		netdev_for_each_altname(d, name_node) {
1310 			if (!sscanf(name_node->name, name, &i))
1311 				continue;
1312 			if (i < 0 || i >= max_netdevices)
1313 				continue;
1314 
1315 			/* avoid cases where sscanf is not exact inverse of printf */
1316 			snprintf(buf, IFNAMSIZ, name, i);
1317 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1318 				__set_bit(i, inuse);
1319 		}
1320 		if (!sscanf(d->name, name, &i))
1321 			continue;
1322 		if (i < 0 || i >= max_netdevices)
1323 			continue;
1324 
1325 		/* avoid cases where sscanf is not exact inverse of printf */
1326 		snprintf(buf, IFNAMSIZ, name, i);
1327 		if (!strncmp(buf, d->name, IFNAMSIZ))
1328 			__set_bit(i, inuse);
1329 	}
1330 
1331 	i = find_first_zero_bit(inuse, max_netdevices);
1332 	bitmap_free(inuse);
1333 	if (i == max_netdevices)
1334 		return -ENFILE;
1335 
1336 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1337 	strscpy(buf, name, IFNAMSIZ);
1338 	snprintf(res, IFNAMSIZ, buf, i);
1339 	return i;
1340 }
1341 
1342 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1343 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1344 			       const char *want_name, char *out_name,
1345 			       int dup_errno)
1346 {
1347 	if (!dev_valid_name(want_name))
1348 		return -EINVAL;
1349 
1350 	if (strchr(want_name, '%'))
1351 		return __dev_alloc_name(net, want_name, out_name);
1352 
1353 	if (netdev_name_in_use(net, want_name))
1354 		return -dup_errno;
1355 	if (out_name != want_name)
1356 		strscpy(out_name, want_name, IFNAMSIZ);
1357 	return 0;
1358 }
1359 
1360 /**
1361  *	dev_alloc_name - allocate a name for a device
1362  *	@dev: device
1363  *	@name: name format string
1364  *
1365  *	Passed a format string - eg "lt%d" it will try and find a suitable
1366  *	id. It scans list of devices to build up a free map, then chooses
1367  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1368  *	while allocating the name and adding the device in order to avoid
1369  *	duplicates.
1370  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1371  *	Returns the number of the unit assigned or a negative errno code.
1372  */
1373 
dev_alloc_name(struct net_device * dev,const char * name)1374 int dev_alloc_name(struct net_device *dev, const char *name)
1375 {
1376 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1377 }
1378 EXPORT_SYMBOL(dev_alloc_name);
1379 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1380 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1381 			      const char *name)
1382 {
1383 	int ret;
1384 
1385 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1386 	return ret < 0 ? ret : 0;
1387 }
1388 
netif_change_name(struct net_device * dev,const char * newname)1389 int netif_change_name(struct net_device *dev, const char *newname)
1390 {
1391 	struct net *net = dev_net(dev);
1392 	unsigned char old_assign_type;
1393 	char oldname[IFNAMSIZ];
1394 	int err = 0;
1395 	int ret;
1396 
1397 	ASSERT_RTNL_NET(net);
1398 
1399 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1400 		return 0;
1401 
1402 	memcpy(oldname, dev->name, IFNAMSIZ);
1403 
1404 	write_seqlock_bh(&netdev_rename_lock);
1405 	err = dev_get_valid_name(net, dev, newname);
1406 	write_sequnlock_bh(&netdev_rename_lock);
1407 
1408 	if (err < 0)
1409 		return err;
1410 
1411 	if (oldname[0] && !strchr(oldname, '%'))
1412 		netdev_info(dev, "renamed from %s%s\n", oldname,
1413 			    dev->flags & IFF_UP ? " (while UP)" : "");
1414 
1415 	old_assign_type = dev->name_assign_type;
1416 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1417 
1418 rollback:
1419 	ret = device_rename(&dev->dev, dev->name);
1420 	if (ret) {
1421 		write_seqlock_bh(&netdev_rename_lock);
1422 		memcpy(dev->name, oldname, IFNAMSIZ);
1423 		write_sequnlock_bh(&netdev_rename_lock);
1424 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1425 		return ret;
1426 	}
1427 
1428 	netdev_adjacent_rename_links(dev, oldname);
1429 
1430 	netdev_name_node_del(dev->name_node);
1431 
1432 	synchronize_net();
1433 
1434 	netdev_name_node_add(net, dev->name_node);
1435 
1436 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1437 	ret = notifier_to_errno(ret);
1438 
1439 	if (ret) {
1440 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1441 		if (err >= 0) {
1442 			err = ret;
1443 			write_seqlock_bh(&netdev_rename_lock);
1444 			memcpy(dev->name, oldname, IFNAMSIZ);
1445 			write_sequnlock_bh(&netdev_rename_lock);
1446 			memcpy(oldname, newname, IFNAMSIZ);
1447 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1448 			old_assign_type = NET_NAME_RENAMED;
1449 			goto rollback;
1450 		} else {
1451 			netdev_err(dev, "name change rollback failed: %d\n",
1452 				   ret);
1453 		}
1454 	}
1455 
1456 	return err;
1457 }
1458 
netif_set_alias(struct net_device * dev,const char * alias,size_t len)1459 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1460 {
1461 	struct dev_ifalias *new_alias = NULL;
1462 
1463 	if (len >= IFALIASZ)
1464 		return -EINVAL;
1465 
1466 	if (len) {
1467 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1468 		if (!new_alias)
1469 			return -ENOMEM;
1470 
1471 		memcpy(new_alias->ifalias, alias, len);
1472 		new_alias->ifalias[len] = 0;
1473 	}
1474 
1475 	mutex_lock(&ifalias_mutex);
1476 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1477 					mutex_is_locked(&ifalias_mutex));
1478 	mutex_unlock(&ifalias_mutex);
1479 
1480 	if (new_alias)
1481 		kfree_rcu(new_alias, rcuhead);
1482 
1483 	return len;
1484 }
1485 
1486 /**
1487  *	dev_get_alias - get ifalias of a device
1488  *	@dev: device
1489  *	@name: buffer to store name of ifalias
1490  *	@len: size of buffer
1491  *
1492  *	get ifalias for a device.  Caller must make sure dev cannot go
1493  *	away,  e.g. rcu read lock or own a reference count to device.
1494  */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1495 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1496 {
1497 	const struct dev_ifalias *alias;
1498 	int ret = 0;
1499 
1500 	rcu_read_lock();
1501 	alias = rcu_dereference(dev->ifalias);
1502 	if (alias)
1503 		ret = snprintf(name, len, "%s", alias->ifalias);
1504 	rcu_read_unlock();
1505 
1506 	return ret;
1507 }
1508 
1509 /**
1510  *	netdev_features_change - device changes features
1511  *	@dev: device to cause notification
1512  *
1513  *	Called to indicate a device has changed features.
1514  */
netdev_features_change(struct net_device * dev)1515 void netdev_features_change(struct net_device *dev)
1516 {
1517 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1518 }
1519 EXPORT_SYMBOL(netdev_features_change);
1520 
1521 /**
1522  *	netdev_state_change - device changes state
1523  *	@dev: device to cause notification
1524  *
1525  *	Called to indicate a device has changed state. This function calls
1526  *	the notifier chains for netdev_chain and sends a NEWLINK message
1527  *	to the routing socket.
1528  */
netdev_state_change(struct net_device * dev)1529 void netdev_state_change(struct net_device *dev)
1530 {
1531 	if (dev->flags & IFF_UP) {
1532 		struct netdev_notifier_change_info change_info = {
1533 			.info.dev = dev,
1534 		};
1535 
1536 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1537 					      &change_info.info);
1538 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1539 	}
1540 }
1541 EXPORT_SYMBOL(netdev_state_change);
1542 
1543 /**
1544  * __netdev_notify_peers - notify network peers about existence of @dev,
1545  * to be called when rtnl lock is already held.
1546  * @dev: network device
1547  *
1548  * Generate traffic such that interested network peers are aware of
1549  * @dev, such as by generating a gratuitous ARP. This may be used when
1550  * a device wants to inform the rest of the network about some sort of
1551  * reconfiguration such as a failover event or virtual machine
1552  * migration.
1553  */
__netdev_notify_peers(struct net_device * dev)1554 void __netdev_notify_peers(struct net_device *dev)
1555 {
1556 	ASSERT_RTNL();
1557 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1558 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1559 }
1560 EXPORT_SYMBOL(__netdev_notify_peers);
1561 
1562 /**
1563  * netdev_notify_peers - notify network peers about existence of @dev
1564  * @dev: network device
1565  *
1566  * Generate traffic such that interested network peers are aware of
1567  * @dev, such as by generating a gratuitous ARP. This may be used when
1568  * a device wants to inform the rest of the network about some sort of
1569  * reconfiguration such as a failover event or virtual machine
1570  * migration.
1571  */
netdev_notify_peers(struct net_device * dev)1572 void netdev_notify_peers(struct net_device *dev)
1573 {
1574 	rtnl_lock();
1575 	__netdev_notify_peers(dev);
1576 	rtnl_unlock();
1577 }
1578 EXPORT_SYMBOL(netdev_notify_peers);
1579 
1580 static int napi_threaded_poll(void *data);
1581 
napi_kthread_create(struct napi_struct * n)1582 static int napi_kthread_create(struct napi_struct *n)
1583 {
1584 	int err = 0;
1585 
1586 	/* Create and wake up the kthread once to put it in
1587 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1588 	 * warning and work with loadavg.
1589 	 */
1590 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1591 				n->dev->name, n->napi_id);
1592 	if (IS_ERR(n->thread)) {
1593 		err = PTR_ERR(n->thread);
1594 		pr_err("kthread_run failed with err %d\n", err);
1595 		n->thread = NULL;
1596 	}
1597 
1598 	return err;
1599 }
1600 
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1601 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1602 {
1603 	const struct net_device_ops *ops = dev->netdev_ops;
1604 	int ret;
1605 
1606 	ASSERT_RTNL();
1607 	dev_addr_check(dev);
1608 
1609 	if (!netif_device_present(dev)) {
1610 		/* may be detached because parent is runtime-suspended */
1611 		if (dev->dev.parent)
1612 			pm_runtime_resume(dev->dev.parent);
1613 		if (!netif_device_present(dev))
1614 			return -ENODEV;
1615 	}
1616 
1617 	/* Block netpoll from trying to do any rx path servicing.
1618 	 * If we don't do this there is a chance ndo_poll_controller
1619 	 * or ndo_poll may be running while we open the device
1620 	 */
1621 	netpoll_poll_disable(dev);
1622 
1623 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1624 	ret = notifier_to_errno(ret);
1625 	if (ret)
1626 		return ret;
1627 
1628 	set_bit(__LINK_STATE_START, &dev->state);
1629 
1630 	netdev_ops_assert_locked(dev);
1631 
1632 	if (ops->ndo_validate_addr)
1633 		ret = ops->ndo_validate_addr(dev);
1634 
1635 	if (!ret && ops->ndo_open)
1636 		ret = ops->ndo_open(dev);
1637 
1638 	netpoll_poll_enable(dev);
1639 
1640 	if (ret)
1641 		clear_bit(__LINK_STATE_START, &dev->state);
1642 	else {
1643 		netif_set_up(dev, true);
1644 		dev_set_rx_mode(dev);
1645 		dev_activate(dev);
1646 		add_device_randomness(dev->dev_addr, dev->addr_len);
1647 	}
1648 
1649 	return ret;
1650 }
1651 
netif_open(struct net_device * dev,struct netlink_ext_ack * extack)1652 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1653 {
1654 	int ret;
1655 
1656 	if (dev->flags & IFF_UP)
1657 		return 0;
1658 
1659 	ret = __dev_open(dev, extack);
1660 	if (ret < 0)
1661 		return ret;
1662 
1663 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1664 	call_netdevice_notifiers(NETDEV_UP, dev);
1665 
1666 	return ret;
1667 }
1668 
__dev_close_many(struct list_head * head)1669 static void __dev_close_many(struct list_head *head)
1670 {
1671 	struct net_device *dev;
1672 
1673 	ASSERT_RTNL();
1674 	might_sleep();
1675 
1676 	list_for_each_entry(dev, head, close_list) {
1677 		/* Temporarily disable netpoll until the interface is down */
1678 		netpoll_poll_disable(dev);
1679 
1680 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1681 
1682 		clear_bit(__LINK_STATE_START, &dev->state);
1683 
1684 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1685 		 * can be even on different cpu. So just clear netif_running().
1686 		 *
1687 		 * dev->stop() will invoke napi_disable() on all of it's
1688 		 * napi_struct instances on this device.
1689 		 */
1690 		smp_mb__after_atomic(); /* Commit netif_running(). */
1691 	}
1692 
1693 	dev_deactivate_many(head);
1694 
1695 	list_for_each_entry(dev, head, close_list) {
1696 		const struct net_device_ops *ops = dev->netdev_ops;
1697 
1698 		/*
1699 		 *	Call the device specific close. This cannot fail.
1700 		 *	Only if device is UP
1701 		 *
1702 		 *	We allow it to be called even after a DETACH hot-plug
1703 		 *	event.
1704 		 */
1705 
1706 		netdev_ops_assert_locked(dev);
1707 
1708 		if (ops->ndo_stop)
1709 			ops->ndo_stop(dev);
1710 
1711 		netif_set_up(dev, false);
1712 		netpoll_poll_enable(dev);
1713 	}
1714 }
1715 
__dev_close(struct net_device * dev)1716 static void __dev_close(struct net_device *dev)
1717 {
1718 	LIST_HEAD(single);
1719 
1720 	list_add(&dev->close_list, &single);
1721 	__dev_close_many(&single);
1722 	list_del(&single);
1723 }
1724 
dev_close_many(struct list_head * head,bool unlink)1725 void dev_close_many(struct list_head *head, bool unlink)
1726 {
1727 	struct net_device *dev, *tmp;
1728 
1729 	/* Remove the devices that don't need to be closed */
1730 	list_for_each_entry_safe(dev, tmp, head, close_list)
1731 		if (!(dev->flags & IFF_UP))
1732 			list_del_init(&dev->close_list);
1733 
1734 	__dev_close_many(head);
1735 
1736 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1737 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1738 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1739 		if (unlink)
1740 			list_del_init(&dev->close_list);
1741 	}
1742 }
1743 EXPORT_SYMBOL(dev_close_many);
1744 
netif_close(struct net_device * dev)1745 void netif_close(struct net_device *dev)
1746 {
1747 	if (dev->flags & IFF_UP) {
1748 		LIST_HEAD(single);
1749 
1750 		list_add(&dev->close_list, &single);
1751 		dev_close_many(&single, true);
1752 		list_del(&single);
1753 	}
1754 }
1755 EXPORT_SYMBOL(netif_close);
1756 
netif_disable_lro(struct net_device * dev)1757 void netif_disable_lro(struct net_device *dev)
1758 {
1759 	struct net_device *lower_dev;
1760 	struct list_head *iter;
1761 
1762 	dev->wanted_features &= ~NETIF_F_LRO;
1763 	netdev_update_features(dev);
1764 
1765 	if (unlikely(dev->features & NETIF_F_LRO))
1766 		netdev_WARN(dev, "failed to disable LRO!\n");
1767 
1768 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1769 		netdev_lock_ops(lower_dev);
1770 		netif_disable_lro(lower_dev);
1771 		netdev_unlock_ops(lower_dev);
1772 	}
1773 }
1774 EXPORT_IPV6_MOD(netif_disable_lro);
1775 
1776 /**
1777  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1778  *	@dev: device
1779  *
1780  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1781  *	called under RTNL.  This is needed if Generic XDP is installed on
1782  *	the device.
1783  */
dev_disable_gro_hw(struct net_device * dev)1784 static void dev_disable_gro_hw(struct net_device *dev)
1785 {
1786 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1787 	netdev_update_features(dev);
1788 
1789 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1790 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1791 }
1792 
netdev_cmd_to_name(enum netdev_cmd cmd)1793 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1794 {
1795 #define N(val) 						\
1796 	case NETDEV_##val:				\
1797 		return "NETDEV_" __stringify(val);
1798 	switch (cmd) {
1799 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1800 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1801 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1802 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1803 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1804 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1805 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1806 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1807 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1808 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1809 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1810 	N(XDP_FEAT_CHANGE)
1811 	}
1812 #undef N
1813 	return "UNKNOWN_NETDEV_EVENT";
1814 }
1815 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1816 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1817 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1818 				   struct net_device *dev)
1819 {
1820 	struct netdev_notifier_info info = {
1821 		.dev = dev,
1822 	};
1823 
1824 	return nb->notifier_call(nb, val, &info);
1825 }
1826 
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1827 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1828 					     struct net_device *dev)
1829 {
1830 	int err;
1831 
1832 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1833 	err = notifier_to_errno(err);
1834 	if (err)
1835 		return err;
1836 
1837 	if (!(dev->flags & IFF_UP))
1838 		return 0;
1839 
1840 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1841 	return 0;
1842 }
1843 
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1844 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1845 						struct net_device *dev)
1846 {
1847 	if (dev->flags & IFF_UP) {
1848 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1849 					dev);
1850 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1851 	}
1852 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1853 }
1854 
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1855 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1856 						 struct net *net)
1857 {
1858 	struct net_device *dev;
1859 	int err;
1860 
1861 	for_each_netdev(net, dev) {
1862 		netdev_lock_ops(dev);
1863 		err = call_netdevice_register_notifiers(nb, dev);
1864 		netdev_unlock_ops(dev);
1865 		if (err)
1866 			goto rollback;
1867 	}
1868 	return 0;
1869 
1870 rollback:
1871 	for_each_netdev_continue_reverse(net, dev)
1872 		call_netdevice_unregister_notifiers(nb, dev);
1873 	return err;
1874 }
1875 
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1876 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1877 						    struct net *net)
1878 {
1879 	struct net_device *dev;
1880 
1881 	for_each_netdev(net, dev)
1882 		call_netdevice_unregister_notifiers(nb, dev);
1883 }
1884 
1885 static int dev_boot_phase = 1;
1886 
1887 /**
1888  * register_netdevice_notifier - register a network notifier block
1889  * @nb: notifier
1890  *
1891  * Register a notifier to be called when network device events occur.
1892  * The notifier passed is linked into the kernel structures and must
1893  * not be reused until it has been unregistered. A negative errno code
1894  * is returned on a failure.
1895  *
1896  * When registered all registration and up events are replayed
1897  * to the new notifier to allow device to have a race free
1898  * view of the network device list.
1899  */
1900 
register_netdevice_notifier(struct notifier_block * nb)1901 int register_netdevice_notifier(struct notifier_block *nb)
1902 {
1903 	struct net *net;
1904 	int err;
1905 
1906 	/* Close race with setup_net() and cleanup_net() */
1907 	down_write(&pernet_ops_rwsem);
1908 
1909 	/* When RTNL is removed, we need protection for netdev_chain. */
1910 	rtnl_lock();
1911 
1912 	err = raw_notifier_chain_register(&netdev_chain, nb);
1913 	if (err)
1914 		goto unlock;
1915 	if (dev_boot_phase)
1916 		goto unlock;
1917 	for_each_net(net) {
1918 		__rtnl_net_lock(net);
1919 		err = call_netdevice_register_net_notifiers(nb, net);
1920 		__rtnl_net_unlock(net);
1921 		if (err)
1922 			goto rollback;
1923 	}
1924 
1925 unlock:
1926 	rtnl_unlock();
1927 	up_write(&pernet_ops_rwsem);
1928 	return err;
1929 
1930 rollback:
1931 	for_each_net_continue_reverse(net) {
1932 		__rtnl_net_lock(net);
1933 		call_netdevice_unregister_net_notifiers(nb, net);
1934 		__rtnl_net_unlock(net);
1935 	}
1936 
1937 	raw_notifier_chain_unregister(&netdev_chain, nb);
1938 	goto unlock;
1939 }
1940 EXPORT_SYMBOL(register_netdevice_notifier);
1941 
1942 /**
1943  * unregister_netdevice_notifier - unregister a network notifier block
1944  * @nb: notifier
1945  *
1946  * Unregister a notifier previously registered by
1947  * register_netdevice_notifier(). The notifier is unlinked into the
1948  * kernel structures and may then be reused. A negative errno code
1949  * is returned on a failure.
1950  *
1951  * After unregistering unregister and down device events are synthesized
1952  * for all devices on the device list to the removed notifier to remove
1953  * the need for special case cleanup code.
1954  */
1955 
unregister_netdevice_notifier(struct notifier_block * nb)1956 int unregister_netdevice_notifier(struct notifier_block *nb)
1957 {
1958 	struct net *net;
1959 	int err;
1960 
1961 	/* Close race with setup_net() and cleanup_net() */
1962 	down_write(&pernet_ops_rwsem);
1963 	rtnl_lock();
1964 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1965 	if (err)
1966 		goto unlock;
1967 
1968 	for_each_net(net) {
1969 		__rtnl_net_lock(net);
1970 		call_netdevice_unregister_net_notifiers(nb, net);
1971 		__rtnl_net_unlock(net);
1972 	}
1973 
1974 unlock:
1975 	rtnl_unlock();
1976 	up_write(&pernet_ops_rwsem);
1977 	return err;
1978 }
1979 EXPORT_SYMBOL(unregister_netdevice_notifier);
1980 
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1981 static int __register_netdevice_notifier_net(struct net *net,
1982 					     struct notifier_block *nb,
1983 					     bool ignore_call_fail)
1984 {
1985 	int err;
1986 
1987 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1988 	if (err)
1989 		return err;
1990 	if (dev_boot_phase)
1991 		return 0;
1992 
1993 	err = call_netdevice_register_net_notifiers(nb, net);
1994 	if (err && !ignore_call_fail)
1995 		goto chain_unregister;
1996 
1997 	return 0;
1998 
1999 chain_unregister:
2000 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
2001 	return err;
2002 }
2003 
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2004 static int __unregister_netdevice_notifier_net(struct net *net,
2005 					       struct notifier_block *nb)
2006 {
2007 	int err;
2008 
2009 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2010 	if (err)
2011 		return err;
2012 
2013 	call_netdevice_unregister_net_notifiers(nb, net);
2014 	return 0;
2015 }
2016 
2017 /**
2018  * register_netdevice_notifier_net - register a per-netns network notifier block
2019  * @net: network namespace
2020  * @nb: notifier
2021  *
2022  * Register a notifier to be called when network device events occur.
2023  * The notifier passed is linked into the kernel structures and must
2024  * not be reused until it has been unregistered. A negative errno code
2025  * is returned on a failure.
2026  *
2027  * When registered all registration and up events are replayed
2028  * to the new notifier to allow device to have a race free
2029  * view of the network device list.
2030  */
2031 
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2032 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2033 {
2034 	int err;
2035 
2036 	rtnl_net_lock(net);
2037 	err = __register_netdevice_notifier_net(net, nb, false);
2038 	rtnl_net_unlock(net);
2039 
2040 	return err;
2041 }
2042 EXPORT_SYMBOL(register_netdevice_notifier_net);
2043 
2044 /**
2045  * unregister_netdevice_notifier_net - unregister a per-netns
2046  *                                     network notifier block
2047  * @net: network namespace
2048  * @nb: notifier
2049  *
2050  * Unregister a notifier previously registered by
2051  * register_netdevice_notifier_net(). The notifier is unlinked from the
2052  * kernel structures and may then be reused. A negative errno code
2053  * is returned on a failure.
2054  *
2055  * After unregistering unregister and down device events are synthesized
2056  * for all devices on the device list to the removed notifier to remove
2057  * the need for special case cleanup code.
2058  */
2059 
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2060 int unregister_netdevice_notifier_net(struct net *net,
2061 				      struct notifier_block *nb)
2062 {
2063 	int err;
2064 
2065 	rtnl_net_lock(net);
2066 	err = __unregister_netdevice_notifier_net(net, nb);
2067 	rtnl_net_unlock(net);
2068 
2069 	return err;
2070 }
2071 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2072 
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)2073 static void __move_netdevice_notifier_net(struct net *src_net,
2074 					  struct net *dst_net,
2075 					  struct notifier_block *nb)
2076 {
2077 	__unregister_netdevice_notifier_net(src_net, nb);
2078 	__register_netdevice_notifier_net(dst_net, nb, true);
2079 }
2080 
rtnl_net_dev_lock(struct net_device * dev)2081 static void rtnl_net_dev_lock(struct net_device *dev)
2082 {
2083 	bool again;
2084 
2085 	do {
2086 		struct net *net;
2087 
2088 		again = false;
2089 
2090 		/* netns might be being dismantled. */
2091 		rcu_read_lock();
2092 		net = dev_net_rcu(dev);
2093 		net_passive_inc(net);
2094 		rcu_read_unlock();
2095 
2096 		rtnl_net_lock(net);
2097 
2098 #ifdef CONFIG_NET_NS
2099 		/* dev might have been moved to another netns. */
2100 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2101 			rtnl_net_unlock(net);
2102 			net_passive_dec(net);
2103 			again = true;
2104 		}
2105 #endif
2106 	} while (again);
2107 }
2108 
rtnl_net_dev_unlock(struct net_device * dev)2109 static void rtnl_net_dev_unlock(struct net_device *dev)
2110 {
2111 	struct net *net = dev_net(dev);
2112 
2113 	rtnl_net_unlock(net);
2114 	net_passive_dec(net);
2115 }
2116 
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2117 int register_netdevice_notifier_dev_net(struct net_device *dev,
2118 					struct notifier_block *nb,
2119 					struct netdev_net_notifier *nn)
2120 {
2121 	int err;
2122 
2123 	rtnl_net_dev_lock(dev);
2124 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2125 	if (!err) {
2126 		nn->nb = nb;
2127 		list_add(&nn->list, &dev->net_notifier_list);
2128 	}
2129 	rtnl_net_dev_unlock(dev);
2130 
2131 	return err;
2132 }
2133 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2134 
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2135 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2136 					  struct notifier_block *nb,
2137 					  struct netdev_net_notifier *nn)
2138 {
2139 	int err;
2140 
2141 	rtnl_net_dev_lock(dev);
2142 	list_del(&nn->list);
2143 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2144 	rtnl_net_dev_unlock(dev);
2145 
2146 	return err;
2147 }
2148 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2149 
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2150 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2151 					     struct net *net)
2152 {
2153 	struct netdev_net_notifier *nn;
2154 
2155 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2156 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2157 }
2158 
2159 /**
2160  *	call_netdevice_notifiers_info - call all network notifier blocks
2161  *	@val: value passed unmodified to notifier function
2162  *	@info: notifier information data
2163  *
2164  *	Call all network notifier blocks.  Parameters and return value
2165  *	are as for raw_notifier_call_chain().
2166  */
2167 
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2168 int call_netdevice_notifiers_info(unsigned long val,
2169 				  struct netdev_notifier_info *info)
2170 {
2171 	struct net *net = dev_net(info->dev);
2172 	int ret;
2173 
2174 	ASSERT_RTNL();
2175 
2176 	/* Run per-netns notifier block chain first, then run the global one.
2177 	 * Hopefully, one day, the global one is going to be removed after
2178 	 * all notifier block registrators get converted to be per-netns.
2179 	 */
2180 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2181 	if (ret & NOTIFY_STOP_MASK)
2182 		return ret;
2183 	return raw_notifier_call_chain(&netdev_chain, val, info);
2184 }
2185 
2186 /**
2187  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2188  *	                                       for and rollback on error
2189  *	@val_up: value passed unmodified to notifier function
2190  *	@val_down: value passed unmodified to the notifier function when
2191  *	           recovering from an error on @val_up
2192  *	@info: notifier information data
2193  *
2194  *	Call all per-netns network notifier blocks, but not notifier blocks on
2195  *	the global notifier chain. Parameters and return value are as for
2196  *	raw_notifier_call_chain_robust().
2197  */
2198 
2199 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2200 call_netdevice_notifiers_info_robust(unsigned long val_up,
2201 				     unsigned long val_down,
2202 				     struct netdev_notifier_info *info)
2203 {
2204 	struct net *net = dev_net(info->dev);
2205 
2206 	ASSERT_RTNL();
2207 
2208 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2209 					      val_up, val_down, info);
2210 }
2211 
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2212 static int call_netdevice_notifiers_extack(unsigned long val,
2213 					   struct net_device *dev,
2214 					   struct netlink_ext_ack *extack)
2215 {
2216 	struct netdev_notifier_info info = {
2217 		.dev = dev,
2218 		.extack = extack,
2219 	};
2220 
2221 	return call_netdevice_notifiers_info(val, &info);
2222 }
2223 
2224 /**
2225  *	call_netdevice_notifiers - call all network notifier blocks
2226  *      @val: value passed unmodified to notifier function
2227  *      @dev: net_device pointer passed unmodified to notifier function
2228  *
2229  *	Call all network notifier blocks.  Parameters and return value
2230  *	are as for raw_notifier_call_chain().
2231  */
2232 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2233 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2234 {
2235 	return call_netdevice_notifiers_extack(val, dev, NULL);
2236 }
2237 EXPORT_SYMBOL(call_netdevice_notifiers);
2238 
2239 /**
2240  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2241  *	@val: value passed unmodified to notifier function
2242  *	@dev: net_device pointer passed unmodified to notifier function
2243  *	@arg: additional u32 argument passed to the notifier function
2244  *
2245  *	Call all network notifier blocks.  Parameters and return value
2246  *	are as for raw_notifier_call_chain().
2247  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2248 static int call_netdevice_notifiers_mtu(unsigned long val,
2249 					struct net_device *dev, u32 arg)
2250 {
2251 	struct netdev_notifier_info_ext info = {
2252 		.info.dev = dev,
2253 		.ext.mtu = arg,
2254 	};
2255 
2256 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2257 
2258 	return call_netdevice_notifiers_info(val, &info.info);
2259 }
2260 
2261 #ifdef CONFIG_NET_INGRESS
2262 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2263 
net_inc_ingress_queue(void)2264 void net_inc_ingress_queue(void)
2265 {
2266 	static_branch_inc(&ingress_needed_key);
2267 }
2268 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2269 
net_dec_ingress_queue(void)2270 void net_dec_ingress_queue(void)
2271 {
2272 	static_branch_dec(&ingress_needed_key);
2273 }
2274 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2275 #endif
2276 
2277 #ifdef CONFIG_NET_EGRESS
2278 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2279 
net_inc_egress_queue(void)2280 void net_inc_egress_queue(void)
2281 {
2282 	static_branch_inc(&egress_needed_key);
2283 }
2284 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2285 
net_dec_egress_queue(void)2286 void net_dec_egress_queue(void)
2287 {
2288 	static_branch_dec(&egress_needed_key);
2289 }
2290 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2291 #endif
2292 
2293 #ifdef CONFIG_NET_CLS_ACT
2294 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2295 EXPORT_SYMBOL(tcf_sw_enabled_key);
2296 #endif
2297 
2298 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2299 EXPORT_SYMBOL(netstamp_needed_key);
2300 #ifdef CONFIG_JUMP_LABEL
2301 static atomic_t netstamp_needed_deferred;
2302 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2303 static void netstamp_clear(struct work_struct *work)
2304 {
2305 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2306 	int wanted;
2307 
2308 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2309 	if (wanted > 0)
2310 		static_branch_enable(&netstamp_needed_key);
2311 	else
2312 		static_branch_disable(&netstamp_needed_key);
2313 }
2314 static DECLARE_WORK(netstamp_work, netstamp_clear);
2315 #endif
2316 
net_enable_timestamp(void)2317 void net_enable_timestamp(void)
2318 {
2319 #ifdef CONFIG_JUMP_LABEL
2320 	int wanted = atomic_read(&netstamp_wanted);
2321 
2322 	while (wanted > 0) {
2323 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2324 			return;
2325 	}
2326 	atomic_inc(&netstamp_needed_deferred);
2327 	schedule_work(&netstamp_work);
2328 #else
2329 	static_branch_inc(&netstamp_needed_key);
2330 #endif
2331 }
2332 EXPORT_SYMBOL(net_enable_timestamp);
2333 
net_disable_timestamp(void)2334 void net_disable_timestamp(void)
2335 {
2336 #ifdef CONFIG_JUMP_LABEL
2337 	int wanted = atomic_read(&netstamp_wanted);
2338 
2339 	while (wanted > 1) {
2340 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2341 			return;
2342 	}
2343 	atomic_dec(&netstamp_needed_deferred);
2344 	schedule_work(&netstamp_work);
2345 #else
2346 	static_branch_dec(&netstamp_needed_key);
2347 #endif
2348 }
2349 EXPORT_SYMBOL(net_disable_timestamp);
2350 
net_timestamp_set(struct sk_buff * skb)2351 static inline void net_timestamp_set(struct sk_buff *skb)
2352 {
2353 	skb->tstamp = 0;
2354 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2355 	if (static_branch_unlikely(&netstamp_needed_key))
2356 		skb->tstamp = ktime_get_real();
2357 }
2358 
2359 #define net_timestamp_check(COND, SKB)				\
2360 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2361 		if ((COND) && !(SKB)->tstamp)			\
2362 			(SKB)->tstamp = ktime_get_real();	\
2363 	}							\
2364 
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2365 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2366 {
2367 	return __is_skb_forwardable(dev, skb, true);
2368 }
2369 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2370 
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2371 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2372 			      bool check_mtu)
2373 {
2374 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2375 
2376 	if (likely(!ret)) {
2377 		skb->protocol = eth_type_trans(skb, dev);
2378 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2379 	}
2380 
2381 	return ret;
2382 }
2383 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2384 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2385 {
2386 	return __dev_forward_skb2(dev, skb, true);
2387 }
2388 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2389 
2390 /**
2391  * dev_forward_skb - loopback an skb to another netif
2392  *
2393  * @dev: destination network device
2394  * @skb: buffer to forward
2395  *
2396  * return values:
2397  *	NET_RX_SUCCESS	(no congestion)
2398  *	NET_RX_DROP     (packet was dropped, but freed)
2399  *
2400  * dev_forward_skb can be used for injecting an skb from the
2401  * start_xmit function of one device into the receive queue
2402  * of another device.
2403  *
2404  * The receiving device may be in another namespace, so
2405  * we have to clear all information in the skb that could
2406  * impact namespace isolation.
2407  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2408 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2409 {
2410 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2411 }
2412 EXPORT_SYMBOL_GPL(dev_forward_skb);
2413 
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2414 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2415 {
2416 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2417 }
2418 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2419 static inline int deliver_skb(struct sk_buff *skb,
2420 			      struct packet_type *pt_prev,
2421 			      struct net_device *orig_dev)
2422 {
2423 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2424 		return -ENOMEM;
2425 	refcount_inc(&skb->users);
2426 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2427 }
2428 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2429 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2430 					  struct packet_type **pt,
2431 					  struct net_device *orig_dev,
2432 					  __be16 type,
2433 					  struct list_head *ptype_list)
2434 {
2435 	struct packet_type *ptype, *pt_prev = *pt;
2436 
2437 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2438 		if (ptype->type != type)
2439 			continue;
2440 		if (pt_prev)
2441 			deliver_skb(skb, pt_prev, orig_dev);
2442 		pt_prev = ptype;
2443 	}
2444 	*pt = pt_prev;
2445 }
2446 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2447 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2448 {
2449 	if (!ptype->af_packet_priv || !skb->sk)
2450 		return false;
2451 
2452 	if (ptype->id_match)
2453 		return ptype->id_match(ptype, skb->sk);
2454 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2455 		return true;
2456 
2457 	return false;
2458 }
2459 
2460 /**
2461  * dev_nit_active_rcu - return true if any network interface taps are in use
2462  *
2463  * The caller must hold the RCU lock
2464  *
2465  * @dev: network device to check for the presence of taps
2466  */
dev_nit_active_rcu(const struct net_device * dev)2467 bool dev_nit_active_rcu(const struct net_device *dev)
2468 {
2469 	/* Callers may hold either RCU or RCU BH lock */
2470 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2471 
2472 	return !list_empty(&dev_net(dev)->ptype_all) ||
2473 	       !list_empty(&dev->ptype_all);
2474 }
2475 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2476 
2477 /*
2478  *	Support routine. Sends outgoing frames to any network
2479  *	taps currently in use.
2480  */
2481 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2482 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2483 {
2484 	struct packet_type *ptype, *pt_prev = NULL;
2485 	struct list_head *ptype_list;
2486 	struct sk_buff *skb2 = NULL;
2487 
2488 	rcu_read_lock();
2489 	ptype_list = &dev_net_rcu(dev)->ptype_all;
2490 again:
2491 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2492 		if (READ_ONCE(ptype->ignore_outgoing))
2493 			continue;
2494 
2495 		/* Never send packets back to the socket
2496 		 * they originated from - MvS (miquels@drinkel.ow.org)
2497 		 */
2498 		if (skb_loop_sk(ptype, skb))
2499 			continue;
2500 
2501 		if (pt_prev) {
2502 			deliver_skb(skb2, pt_prev, skb->dev);
2503 			pt_prev = ptype;
2504 			continue;
2505 		}
2506 
2507 		/* need to clone skb, done only once */
2508 		skb2 = skb_clone(skb, GFP_ATOMIC);
2509 		if (!skb2)
2510 			goto out_unlock;
2511 
2512 		net_timestamp_set(skb2);
2513 
2514 		/* skb->nh should be correctly
2515 		 * set by sender, so that the second statement is
2516 		 * just protection against buggy protocols.
2517 		 */
2518 		skb_reset_mac_header(skb2);
2519 
2520 		if (skb_network_header(skb2) < skb2->data ||
2521 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2522 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2523 					     ntohs(skb2->protocol),
2524 					     dev->name);
2525 			skb_reset_network_header(skb2);
2526 		}
2527 
2528 		skb2->transport_header = skb2->network_header;
2529 		skb2->pkt_type = PACKET_OUTGOING;
2530 		pt_prev = ptype;
2531 	}
2532 
2533 	if (ptype_list != &dev->ptype_all) {
2534 		ptype_list = &dev->ptype_all;
2535 		goto again;
2536 	}
2537 out_unlock:
2538 	if (pt_prev) {
2539 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2540 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2541 		else
2542 			kfree_skb(skb2);
2543 	}
2544 	rcu_read_unlock();
2545 }
2546 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2547 
2548 /**
2549  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2550  * @dev: Network device
2551  * @txq: number of queues available
2552  *
2553  * If real_num_tx_queues is changed the tc mappings may no longer be
2554  * valid. To resolve this verify the tc mapping remains valid and if
2555  * not NULL the mapping. With no priorities mapping to this
2556  * offset/count pair it will no longer be used. In the worst case TC0
2557  * is invalid nothing can be done so disable priority mappings. If is
2558  * expected that drivers will fix this mapping if they can before
2559  * calling netif_set_real_num_tx_queues.
2560  */
netif_setup_tc(struct net_device * dev,unsigned int txq)2561 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2562 {
2563 	int i;
2564 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2565 
2566 	/* If TC0 is invalidated disable TC mapping */
2567 	if (tc->offset + tc->count > txq) {
2568 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2569 		dev->num_tc = 0;
2570 		return;
2571 	}
2572 
2573 	/* Invalidated prio to tc mappings set to TC0 */
2574 	for (i = 1; i < TC_BITMASK + 1; i++) {
2575 		int q = netdev_get_prio_tc_map(dev, i);
2576 
2577 		tc = &dev->tc_to_txq[q];
2578 		if (tc->offset + tc->count > txq) {
2579 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2580 				    i, q);
2581 			netdev_set_prio_tc_map(dev, i, 0);
2582 		}
2583 	}
2584 }
2585 
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2586 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2587 {
2588 	if (dev->num_tc) {
2589 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2590 		int i;
2591 
2592 		/* walk through the TCs and see if it falls into any of them */
2593 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2594 			if ((txq - tc->offset) < tc->count)
2595 				return i;
2596 		}
2597 
2598 		/* didn't find it, just return -1 to indicate no match */
2599 		return -1;
2600 	}
2601 
2602 	return 0;
2603 }
2604 EXPORT_SYMBOL(netdev_txq_to_tc);
2605 
2606 #ifdef CONFIG_XPS
2607 static struct static_key xps_needed __read_mostly;
2608 static struct static_key xps_rxqs_needed __read_mostly;
2609 static DEFINE_MUTEX(xps_map_mutex);
2610 #define xmap_dereference(P)		\
2611 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2612 
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2613 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2614 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2615 {
2616 	struct xps_map *map = NULL;
2617 	int pos;
2618 
2619 	map = xmap_dereference(dev_maps->attr_map[tci]);
2620 	if (!map)
2621 		return false;
2622 
2623 	for (pos = map->len; pos--;) {
2624 		if (map->queues[pos] != index)
2625 			continue;
2626 
2627 		if (map->len > 1) {
2628 			map->queues[pos] = map->queues[--map->len];
2629 			break;
2630 		}
2631 
2632 		if (old_maps)
2633 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2634 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2635 		kfree_rcu(map, rcu);
2636 		return false;
2637 	}
2638 
2639 	return true;
2640 }
2641 
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2642 static bool remove_xps_queue_cpu(struct net_device *dev,
2643 				 struct xps_dev_maps *dev_maps,
2644 				 int cpu, u16 offset, u16 count)
2645 {
2646 	int num_tc = dev_maps->num_tc;
2647 	bool active = false;
2648 	int tci;
2649 
2650 	for (tci = cpu * num_tc; num_tc--; tci++) {
2651 		int i, j;
2652 
2653 		for (i = count, j = offset; i--; j++) {
2654 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2655 				break;
2656 		}
2657 
2658 		active |= i < 0;
2659 	}
2660 
2661 	return active;
2662 }
2663 
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2664 static void reset_xps_maps(struct net_device *dev,
2665 			   struct xps_dev_maps *dev_maps,
2666 			   enum xps_map_type type)
2667 {
2668 	static_key_slow_dec_cpuslocked(&xps_needed);
2669 	if (type == XPS_RXQS)
2670 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2671 
2672 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2673 
2674 	kfree_rcu(dev_maps, rcu);
2675 }
2676 
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2677 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2678 			   u16 offset, u16 count)
2679 {
2680 	struct xps_dev_maps *dev_maps;
2681 	bool active = false;
2682 	int i, j;
2683 
2684 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2685 	if (!dev_maps)
2686 		return;
2687 
2688 	for (j = 0; j < dev_maps->nr_ids; j++)
2689 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2690 	if (!active)
2691 		reset_xps_maps(dev, dev_maps, type);
2692 
2693 	if (type == XPS_CPUS) {
2694 		for (i = offset + (count - 1); count--; i--)
2695 			netdev_queue_numa_node_write(
2696 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2697 	}
2698 }
2699 
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2700 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2701 				   u16 count)
2702 {
2703 	if (!static_key_false(&xps_needed))
2704 		return;
2705 
2706 	cpus_read_lock();
2707 	mutex_lock(&xps_map_mutex);
2708 
2709 	if (static_key_false(&xps_rxqs_needed))
2710 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2711 
2712 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2713 
2714 	mutex_unlock(&xps_map_mutex);
2715 	cpus_read_unlock();
2716 }
2717 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2718 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2719 {
2720 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2721 }
2722 
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2723 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2724 				      u16 index, bool is_rxqs_map)
2725 {
2726 	struct xps_map *new_map;
2727 	int alloc_len = XPS_MIN_MAP_ALLOC;
2728 	int i, pos;
2729 
2730 	for (pos = 0; map && pos < map->len; pos++) {
2731 		if (map->queues[pos] != index)
2732 			continue;
2733 		return map;
2734 	}
2735 
2736 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2737 	if (map) {
2738 		if (pos < map->alloc_len)
2739 			return map;
2740 
2741 		alloc_len = map->alloc_len * 2;
2742 	}
2743 
2744 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2745 	 *  map
2746 	 */
2747 	if (is_rxqs_map)
2748 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2749 	else
2750 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2751 				       cpu_to_node(attr_index));
2752 	if (!new_map)
2753 		return NULL;
2754 
2755 	for (i = 0; i < pos; i++)
2756 		new_map->queues[i] = map->queues[i];
2757 	new_map->alloc_len = alloc_len;
2758 	new_map->len = pos;
2759 
2760 	return new_map;
2761 }
2762 
2763 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2764 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2765 			      struct xps_dev_maps *new_dev_maps, int index,
2766 			      int tc, bool skip_tc)
2767 {
2768 	int i, tci = index * dev_maps->num_tc;
2769 	struct xps_map *map;
2770 
2771 	/* copy maps belonging to foreign traffic classes */
2772 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2773 		if (i == tc && skip_tc)
2774 			continue;
2775 
2776 		/* fill in the new device map from the old device map */
2777 		map = xmap_dereference(dev_maps->attr_map[tci]);
2778 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2779 	}
2780 }
2781 
2782 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2783 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2784 			  u16 index, enum xps_map_type type)
2785 {
2786 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2787 	const unsigned long *online_mask = NULL;
2788 	bool active = false, copy = false;
2789 	int i, j, tci, numa_node_id = -2;
2790 	int maps_sz, num_tc = 1, tc = 0;
2791 	struct xps_map *map, *new_map;
2792 	unsigned int nr_ids;
2793 
2794 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2795 
2796 	if (dev->num_tc) {
2797 		/* Do not allow XPS on subordinate device directly */
2798 		num_tc = dev->num_tc;
2799 		if (num_tc < 0)
2800 			return -EINVAL;
2801 
2802 		/* If queue belongs to subordinate dev use its map */
2803 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2804 
2805 		tc = netdev_txq_to_tc(dev, index);
2806 		if (tc < 0)
2807 			return -EINVAL;
2808 	}
2809 
2810 	mutex_lock(&xps_map_mutex);
2811 
2812 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2813 	if (type == XPS_RXQS) {
2814 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2815 		nr_ids = dev->num_rx_queues;
2816 	} else {
2817 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2818 		if (num_possible_cpus() > 1)
2819 			online_mask = cpumask_bits(cpu_online_mask);
2820 		nr_ids = nr_cpu_ids;
2821 	}
2822 
2823 	if (maps_sz < L1_CACHE_BYTES)
2824 		maps_sz = L1_CACHE_BYTES;
2825 
2826 	/* The old dev_maps could be larger or smaller than the one we're
2827 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2828 	 * between. We could try to be smart, but let's be safe instead and only
2829 	 * copy foreign traffic classes if the two map sizes match.
2830 	 */
2831 	if (dev_maps &&
2832 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2833 		copy = true;
2834 
2835 	/* allocate memory for queue storage */
2836 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2837 	     j < nr_ids;) {
2838 		if (!new_dev_maps) {
2839 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2840 			if (!new_dev_maps) {
2841 				mutex_unlock(&xps_map_mutex);
2842 				return -ENOMEM;
2843 			}
2844 
2845 			new_dev_maps->nr_ids = nr_ids;
2846 			new_dev_maps->num_tc = num_tc;
2847 		}
2848 
2849 		tci = j * num_tc + tc;
2850 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2851 
2852 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2853 		if (!map)
2854 			goto error;
2855 
2856 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2857 	}
2858 
2859 	if (!new_dev_maps)
2860 		goto out_no_new_maps;
2861 
2862 	if (!dev_maps) {
2863 		/* Increment static keys at most once per type */
2864 		static_key_slow_inc_cpuslocked(&xps_needed);
2865 		if (type == XPS_RXQS)
2866 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2867 	}
2868 
2869 	for (j = 0; j < nr_ids; j++) {
2870 		bool skip_tc = false;
2871 
2872 		tci = j * num_tc + tc;
2873 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2874 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2875 			/* add tx-queue to CPU/rx-queue maps */
2876 			int pos = 0;
2877 
2878 			skip_tc = true;
2879 
2880 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2881 			while ((pos < map->len) && (map->queues[pos] != index))
2882 				pos++;
2883 
2884 			if (pos == map->len)
2885 				map->queues[map->len++] = index;
2886 #ifdef CONFIG_NUMA
2887 			if (type == XPS_CPUS) {
2888 				if (numa_node_id == -2)
2889 					numa_node_id = cpu_to_node(j);
2890 				else if (numa_node_id != cpu_to_node(j))
2891 					numa_node_id = -1;
2892 			}
2893 #endif
2894 		}
2895 
2896 		if (copy)
2897 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2898 					  skip_tc);
2899 	}
2900 
2901 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2902 
2903 	/* Cleanup old maps */
2904 	if (!dev_maps)
2905 		goto out_no_old_maps;
2906 
2907 	for (j = 0; j < dev_maps->nr_ids; j++) {
2908 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2909 			map = xmap_dereference(dev_maps->attr_map[tci]);
2910 			if (!map)
2911 				continue;
2912 
2913 			if (copy) {
2914 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2915 				if (map == new_map)
2916 					continue;
2917 			}
2918 
2919 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2920 			kfree_rcu(map, rcu);
2921 		}
2922 	}
2923 
2924 	old_dev_maps = dev_maps;
2925 
2926 out_no_old_maps:
2927 	dev_maps = new_dev_maps;
2928 	active = true;
2929 
2930 out_no_new_maps:
2931 	if (type == XPS_CPUS)
2932 		/* update Tx queue numa node */
2933 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2934 					     (numa_node_id >= 0) ?
2935 					     numa_node_id : NUMA_NO_NODE);
2936 
2937 	if (!dev_maps)
2938 		goto out_no_maps;
2939 
2940 	/* removes tx-queue from unused CPUs/rx-queues */
2941 	for (j = 0; j < dev_maps->nr_ids; j++) {
2942 		tci = j * dev_maps->num_tc;
2943 
2944 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2945 			if (i == tc &&
2946 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2947 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2948 				continue;
2949 
2950 			active |= remove_xps_queue(dev_maps,
2951 						   copy ? old_dev_maps : NULL,
2952 						   tci, index);
2953 		}
2954 	}
2955 
2956 	if (old_dev_maps)
2957 		kfree_rcu(old_dev_maps, rcu);
2958 
2959 	/* free map if not active */
2960 	if (!active)
2961 		reset_xps_maps(dev, dev_maps, type);
2962 
2963 out_no_maps:
2964 	mutex_unlock(&xps_map_mutex);
2965 
2966 	return 0;
2967 error:
2968 	/* remove any maps that we added */
2969 	for (j = 0; j < nr_ids; j++) {
2970 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2971 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2972 			map = copy ?
2973 			      xmap_dereference(dev_maps->attr_map[tci]) :
2974 			      NULL;
2975 			if (new_map && new_map != map)
2976 				kfree(new_map);
2977 		}
2978 	}
2979 
2980 	mutex_unlock(&xps_map_mutex);
2981 
2982 	kfree(new_dev_maps);
2983 	return -ENOMEM;
2984 }
2985 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2986 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2987 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2988 			u16 index)
2989 {
2990 	int ret;
2991 
2992 	cpus_read_lock();
2993 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2994 	cpus_read_unlock();
2995 
2996 	return ret;
2997 }
2998 EXPORT_SYMBOL(netif_set_xps_queue);
2999 
3000 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)3001 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3002 {
3003 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3004 
3005 	/* Unbind any subordinate channels */
3006 	while (txq-- != &dev->_tx[0]) {
3007 		if (txq->sb_dev)
3008 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3009 	}
3010 }
3011 
netdev_reset_tc(struct net_device * dev)3012 void netdev_reset_tc(struct net_device *dev)
3013 {
3014 #ifdef CONFIG_XPS
3015 	netif_reset_xps_queues_gt(dev, 0);
3016 #endif
3017 	netdev_unbind_all_sb_channels(dev);
3018 
3019 	/* Reset TC configuration of device */
3020 	dev->num_tc = 0;
3021 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3022 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3023 }
3024 EXPORT_SYMBOL(netdev_reset_tc);
3025 
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)3026 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3027 {
3028 	if (tc >= dev->num_tc)
3029 		return -EINVAL;
3030 
3031 #ifdef CONFIG_XPS
3032 	netif_reset_xps_queues(dev, offset, count);
3033 #endif
3034 	dev->tc_to_txq[tc].count = count;
3035 	dev->tc_to_txq[tc].offset = offset;
3036 	return 0;
3037 }
3038 EXPORT_SYMBOL(netdev_set_tc_queue);
3039 
netdev_set_num_tc(struct net_device * dev,u8 num_tc)3040 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3041 {
3042 	if (num_tc > TC_MAX_QUEUE)
3043 		return -EINVAL;
3044 
3045 #ifdef CONFIG_XPS
3046 	netif_reset_xps_queues_gt(dev, 0);
3047 #endif
3048 	netdev_unbind_all_sb_channels(dev);
3049 
3050 	dev->num_tc = num_tc;
3051 	return 0;
3052 }
3053 EXPORT_SYMBOL(netdev_set_num_tc);
3054 
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)3055 void netdev_unbind_sb_channel(struct net_device *dev,
3056 			      struct net_device *sb_dev)
3057 {
3058 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3059 
3060 #ifdef CONFIG_XPS
3061 	netif_reset_xps_queues_gt(sb_dev, 0);
3062 #endif
3063 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3064 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3065 
3066 	while (txq-- != &dev->_tx[0]) {
3067 		if (txq->sb_dev == sb_dev)
3068 			txq->sb_dev = NULL;
3069 	}
3070 }
3071 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3072 
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)3073 int netdev_bind_sb_channel_queue(struct net_device *dev,
3074 				 struct net_device *sb_dev,
3075 				 u8 tc, u16 count, u16 offset)
3076 {
3077 	/* Make certain the sb_dev and dev are already configured */
3078 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3079 		return -EINVAL;
3080 
3081 	/* We cannot hand out queues we don't have */
3082 	if ((offset + count) > dev->real_num_tx_queues)
3083 		return -EINVAL;
3084 
3085 	/* Record the mapping */
3086 	sb_dev->tc_to_txq[tc].count = count;
3087 	sb_dev->tc_to_txq[tc].offset = offset;
3088 
3089 	/* Provide a way for Tx queue to find the tc_to_txq map or
3090 	 * XPS map for itself.
3091 	 */
3092 	while (count--)
3093 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3094 
3095 	return 0;
3096 }
3097 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3098 
netdev_set_sb_channel(struct net_device * dev,u16 channel)3099 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3100 {
3101 	/* Do not use a multiqueue device to represent a subordinate channel */
3102 	if (netif_is_multiqueue(dev))
3103 		return -ENODEV;
3104 
3105 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3106 	 * Channel 0 is meant to be "native" mode and used only to represent
3107 	 * the main root device. We allow writing 0 to reset the device back
3108 	 * to normal mode after being used as a subordinate channel.
3109 	 */
3110 	if (channel > S16_MAX)
3111 		return -EINVAL;
3112 
3113 	dev->num_tc = -channel;
3114 
3115 	return 0;
3116 }
3117 EXPORT_SYMBOL(netdev_set_sb_channel);
3118 
3119 /*
3120  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3121  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3122  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3123 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3124 {
3125 	bool disabling;
3126 	int rc;
3127 
3128 	disabling = txq < dev->real_num_tx_queues;
3129 
3130 	if (txq < 1 || txq > dev->num_tx_queues)
3131 		return -EINVAL;
3132 
3133 	if (dev->reg_state == NETREG_REGISTERED ||
3134 	    dev->reg_state == NETREG_UNREGISTERING) {
3135 		ASSERT_RTNL();
3136 		netdev_ops_assert_locked(dev);
3137 
3138 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3139 						  txq);
3140 		if (rc)
3141 			return rc;
3142 
3143 		if (dev->num_tc)
3144 			netif_setup_tc(dev, txq);
3145 
3146 		net_shaper_set_real_num_tx_queues(dev, txq);
3147 
3148 		dev_qdisc_change_real_num_tx(dev, txq);
3149 
3150 		dev->real_num_tx_queues = txq;
3151 
3152 		if (disabling) {
3153 			synchronize_net();
3154 			qdisc_reset_all_tx_gt(dev, txq);
3155 #ifdef CONFIG_XPS
3156 			netif_reset_xps_queues_gt(dev, txq);
3157 #endif
3158 		}
3159 	} else {
3160 		dev->real_num_tx_queues = txq;
3161 	}
3162 
3163 	return 0;
3164 }
3165 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3166 
3167 /**
3168  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3169  *	@dev: Network device
3170  *	@rxq: Actual number of RX queues
3171  *
3172  *	This must be called either with the rtnl_lock held or before
3173  *	registration of the net device.  Returns 0 on success, or a
3174  *	negative error code.  If called before registration, it always
3175  *	succeeds.
3176  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3177 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3178 {
3179 	int rc;
3180 
3181 	if (rxq < 1 || rxq > dev->num_rx_queues)
3182 		return -EINVAL;
3183 
3184 	if (dev->reg_state == NETREG_REGISTERED) {
3185 		ASSERT_RTNL();
3186 		netdev_ops_assert_locked(dev);
3187 
3188 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3189 						  rxq);
3190 		if (rc)
3191 			return rc;
3192 	}
3193 
3194 	dev->real_num_rx_queues = rxq;
3195 	return 0;
3196 }
3197 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3198 
3199 /**
3200  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3201  *	@dev: Network device
3202  *	@txq: Actual number of TX queues
3203  *	@rxq: Actual number of RX queues
3204  *
3205  *	Set the real number of both TX and RX queues.
3206  *	Does nothing if the number of queues is already correct.
3207  */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3208 int netif_set_real_num_queues(struct net_device *dev,
3209 			      unsigned int txq, unsigned int rxq)
3210 {
3211 	unsigned int old_rxq = dev->real_num_rx_queues;
3212 	int err;
3213 
3214 	if (txq < 1 || txq > dev->num_tx_queues ||
3215 	    rxq < 1 || rxq > dev->num_rx_queues)
3216 		return -EINVAL;
3217 
3218 	/* Start from increases, so the error path only does decreases -
3219 	 * decreases can't fail.
3220 	 */
3221 	if (rxq > dev->real_num_rx_queues) {
3222 		err = netif_set_real_num_rx_queues(dev, rxq);
3223 		if (err)
3224 			return err;
3225 	}
3226 	if (txq > dev->real_num_tx_queues) {
3227 		err = netif_set_real_num_tx_queues(dev, txq);
3228 		if (err)
3229 			goto undo_rx;
3230 	}
3231 	if (rxq < dev->real_num_rx_queues)
3232 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3233 	if (txq < dev->real_num_tx_queues)
3234 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3235 
3236 	return 0;
3237 undo_rx:
3238 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3239 	return err;
3240 }
3241 EXPORT_SYMBOL(netif_set_real_num_queues);
3242 
3243 /**
3244  * netif_set_tso_max_size() - set the max size of TSO frames supported
3245  * @dev:	netdev to update
3246  * @size:	max skb->len of a TSO frame
3247  *
3248  * Set the limit on the size of TSO super-frames the device can handle.
3249  * Unless explicitly set the stack will assume the value of
3250  * %GSO_LEGACY_MAX_SIZE.
3251  */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3252 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3253 {
3254 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3255 	if (size < READ_ONCE(dev->gso_max_size))
3256 		netif_set_gso_max_size(dev, size);
3257 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3258 		netif_set_gso_ipv4_max_size(dev, size);
3259 }
3260 EXPORT_SYMBOL(netif_set_tso_max_size);
3261 
3262 /**
3263  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3264  * @dev:	netdev to update
3265  * @segs:	max number of TCP segments
3266  *
3267  * Set the limit on the number of TCP segments the device can generate from
3268  * a single TSO super-frame.
3269  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3270  */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3271 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3272 {
3273 	dev->tso_max_segs = segs;
3274 	if (segs < READ_ONCE(dev->gso_max_segs))
3275 		netif_set_gso_max_segs(dev, segs);
3276 }
3277 EXPORT_SYMBOL(netif_set_tso_max_segs);
3278 
3279 /**
3280  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3281  * @to:		netdev to update
3282  * @from:	netdev from which to copy the limits
3283  */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3284 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3285 {
3286 	netif_set_tso_max_size(to, from->tso_max_size);
3287 	netif_set_tso_max_segs(to, from->tso_max_segs);
3288 }
3289 EXPORT_SYMBOL(netif_inherit_tso_max);
3290 
3291 /**
3292  * netif_get_num_default_rss_queues - default number of RSS queues
3293  *
3294  * Default value is the number of physical cores if there are only 1 or 2, or
3295  * divided by 2 if there are more.
3296  */
netif_get_num_default_rss_queues(void)3297 int netif_get_num_default_rss_queues(void)
3298 {
3299 	cpumask_var_t cpus;
3300 	int cpu, count = 0;
3301 
3302 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3303 		return 1;
3304 
3305 	cpumask_copy(cpus, cpu_online_mask);
3306 	for_each_cpu(cpu, cpus) {
3307 		++count;
3308 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3309 	}
3310 	free_cpumask_var(cpus);
3311 
3312 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3313 }
3314 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3315 
__netif_reschedule(struct Qdisc * q)3316 static void __netif_reschedule(struct Qdisc *q)
3317 {
3318 	struct softnet_data *sd;
3319 	unsigned long flags;
3320 
3321 	local_irq_save(flags);
3322 	sd = this_cpu_ptr(&softnet_data);
3323 	q->next_sched = NULL;
3324 	*sd->output_queue_tailp = q;
3325 	sd->output_queue_tailp = &q->next_sched;
3326 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3327 	local_irq_restore(flags);
3328 }
3329 
__netif_schedule(struct Qdisc * q)3330 void __netif_schedule(struct Qdisc *q)
3331 {
3332 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3333 		__netif_reschedule(q);
3334 }
3335 EXPORT_SYMBOL(__netif_schedule);
3336 
3337 struct dev_kfree_skb_cb {
3338 	enum skb_drop_reason reason;
3339 };
3340 
get_kfree_skb_cb(const struct sk_buff * skb)3341 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3342 {
3343 	return (struct dev_kfree_skb_cb *)skb->cb;
3344 }
3345 
netif_schedule_queue(struct netdev_queue * txq)3346 void netif_schedule_queue(struct netdev_queue *txq)
3347 {
3348 	rcu_read_lock();
3349 	if (!netif_xmit_stopped(txq)) {
3350 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3351 
3352 		__netif_schedule(q);
3353 	}
3354 	rcu_read_unlock();
3355 }
3356 EXPORT_SYMBOL(netif_schedule_queue);
3357 
netif_tx_wake_queue(struct netdev_queue * dev_queue)3358 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3359 {
3360 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3361 		struct Qdisc *q;
3362 
3363 		rcu_read_lock();
3364 		q = rcu_dereference(dev_queue->qdisc);
3365 		__netif_schedule(q);
3366 		rcu_read_unlock();
3367 	}
3368 }
3369 EXPORT_SYMBOL(netif_tx_wake_queue);
3370 
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3371 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3372 {
3373 	unsigned long flags;
3374 
3375 	if (unlikely(!skb))
3376 		return;
3377 
3378 	if (likely(refcount_read(&skb->users) == 1)) {
3379 		smp_rmb();
3380 		refcount_set(&skb->users, 0);
3381 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3382 		return;
3383 	}
3384 	get_kfree_skb_cb(skb)->reason = reason;
3385 	local_irq_save(flags);
3386 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3387 	__this_cpu_write(softnet_data.completion_queue, skb);
3388 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3389 	local_irq_restore(flags);
3390 }
3391 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3392 
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3393 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3394 {
3395 	if (in_hardirq() || irqs_disabled())
3396 		dev_kfree_skb_irq_reason(skb, reason);
3397 	else
3398 		kfree_skb_reason(skb, reason);
3399 }
3400 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3401 
3402 
3403 /**
3404  * netif_device_detach - mark device as removed
3405  * @dev: network device
3406  *
3407  * Mark device as removed from system and therefore no longer available.
3408  */
netif_device_detach(struct net_device * dev)3409 void netif_device_detach(struct net_device *dev)
3410 {
3411 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3412 	    netif_running(dev)) {
3413 		netif_tx_stop_all_queues(dev);
3414 	}
3415 }
3416 EXPORT_SYMBOL(netif_device_detach);
3417 
3418 /**
3419  * netif_device_attach - mark device as attached
3420  * @dev: network device
3421  *
3422  * Mark device as attached from system and restart if needed.
3423  */
netif_device_attach(struct net_device * dev)3424 void netif_device_attach(struct net_device *dev)
3425 {
3426 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3427 	    netif_running(dev)) {
3428 		netif_tx_wake_all_queues(dev);
3429 		netdev_watchdog_up(dev);
3430 	}
3431 }
3432 EXPORT_SYMBOL(netif_device_attach);
3433 
3434 /*
3435  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3436  * to be used as a distribution range.
3437  */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3438 static u16 skb_tx_hash(const struct net_device *dev,
3439 		       const struct net_device *sb_dev,
3440 		       struct sk_buff *skb)
3441 {
3442 	u32 hash;
3443 	u16 qoffset = 0;
3444 	u16 qcount = dev->real_num_tx_queues;
3445 
3446 	if (dev->num_tc) {
3447 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3448 
3449 		qoffset = sb_dev->tc_to_txq[tc].offset;
3450 		qcount = sb_dev->tc_to_txq[tc].count;
3451 		if (unlikely(!qcount)) {
3452 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3453 					     sb_dev->name, qoffset, tc);
3454 			qoffset = 0;
3455 			qcount = dev->real_num_tx_queues;
3456 		}
3457 	}
3458 
3459 	if (skb_rx_queue_recorded(skb)) {
3460 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3461 		hash = skb_get_rx_queue(skb);
3462 		if (hash >= qoffset)
3463 			hash -= qoffset;
3464 		while (unlikely(hash >= qcount))
3465 			hash -= qcount;
3466 		return hash + qoffset;
3467 	}
3468 
3469 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3470 }
3471 
skb_warn_bad_offload(const struct sk_buff * skb)3472 void skb_warn_bad_offload(const struct sk_buff *skb)
3473 {
3474 	static const netdev_features_t null_features;
3475 	struct net_device *dev = skb->dev;
3476 	const char *name = "";
3477 
3478 	if (!net_ratelimit())
3479 		return;
3480 
3481 	if (dev) {
3482 		if (dev->dev.parent)
3483 			name = dev_driver_string(dev->dev.parent);
3484 		else
3485 			name = netdev_name(dev);
3486 	}
3487 	skb_dump(KERN_WARNING, skb, false);
3488 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3489 	     name, dev ? &dev->features : &null_features,
3490 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3491 }
3492 
3493 /*
3494  * Invalidate hardware checksum when packet is to be mangled, and
3495  * complete checksum manually on outgoing path.
3496  */
skb_checksum_help(struct sk_buff * skb)3497 int skb_checksum_help(struct sk_buff *skb)
3498 {
3499 	__wsum csum;
3500 	int ret = 0, offset;
3501 
3502 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3503 		goto out_set_summed;
3504 
3505 	if (unlikely(skb_is_gso(skb))) {
3506 		skb_warn_bad_offload(skb);
3507 		return -EINVAL;
3508 	}
3509 
3510 	if (!skb_frags_readable(skb)) {
3511 		return -EFAULT;
3512 	}
3513 
3514 	/* Before computing a checksum, we should make sure no frag could
3515 	 * be modified by an external entity : checksum could be wrong.
3516 	 */
3517 	if (skb_has_shared_frag(skb)) {
3518 		ret = __skb_linearize(skb);
3519 		if (ret)
3520 			goto out;
3521 	}
3522 
3523 	offset = skb_checksum_start_offset(skb);
3524 	ret = -EINVAL;
3525 	if (unlikely(offset >= skb_headlen(skb))) {
3526 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3527 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3528 			  offset, skb_headlen(skb));
3529 		goto out;
3530 	}
3531 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3532 
3533 	offset += skb->csum_offset;
3534 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3535 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3536 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3537 			  offset + sizeof(__sum16), skb_headlen(skb));
3538 		goto out;
3539 	}
3540 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3541 	if (ret)
3542 		goto out;
3543 
3544 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3545 out_set_summed:
3546 	skb->ip_summed = CHECKSUM_NONE;
3547 out:
3548 	return ret;
3549 }
3550 EXPORT_SYMBOL(skb_checksum_help);
3551 
skb_crc32c_csum_help(struct sk_buff * skb)3552 int skb_crc32c_csum_help(struct sk_buff *skb)
3553 {
3554 	__le32 crc32c_csum;
3555 	int ret = 0, offset, start;
3556 
3557 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3558 		goto out;
3559 
3560 	if (unlikely(skb_is_gso(skb)))
3561 		goto out;
3562 
3563 	/* Before computing a checksum, we should make sure no frag could
3564 	 * be modified by an external entity : checksum could be wrong.
3565 	 */
3566 	if (unlikely(skb_has_shared_frag(skb))) {
3567 		ret = __skb_linearize(skb);
3568 		if (ret)
3569 			goto out;
3570 	}
3571 	start = skb_checksum_start_offset(skb);
3572 	offset = start + offsetof(struct sctphdr, checksum);
3573 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3574 		ret = -EINVAL;
3575 		goto out;
3576 	}
3577 
3578 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3579 	if (ret)
3580 		goto out;
3581 
3582 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3583 						  skb->len - start, ~(__u32)0,
3584 						  crc32c_csum_stub));
3585 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3586 	skb_reset_csum_not_inet(skb);
3587 out:
3588 	return ret;
3589 }
3590 EXPORT_SYMBOL(skb_crc32c_csum_help);
3591 
skb_network_protocol(struct sk_buff * skb,int * depth)3592 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3593 {
3594 	__be16 type = skb->protocol;
3595 
3596 	/* Tunnel gso handlers can set protocol to ethernet. */
3597 	if (type == htons(ETH_P_TEB)) {
3598 		struct ethhdr *eth;
3599 
3600 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3601 			return 0;
3602 
3603 		eth = (struct ethhdr *)skb->data;
3604 		type = eth->h_proto;
3605 	}
3606 
3607 	return vlan_get_protocol_and_depth(skb, type, depth);
3608 }
3609 
3610 
3611 /* Take action when hardware reception checksum errors are detected. */
3612 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3613 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3614 {
3615 	netdev_err(dev, "hw csum failure\n");
3616 	skb_dump(KERN_ERR, skb, true);
3617 	dump_stack();
3618 }
3619 
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3620 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3621 {
3622 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3623 }
3624 EXPORT_SYMBOL(netdev_rx_csum_fault);
3625 #endif
3626 
3627 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3628 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3629 {
3630 #ifdef CONFIG_HIGHMEM
3631 	int i;
3632 
3633 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3634 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3635 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3636 			struct page *page = skb_frag_page(frag);
3637 
3638 			if (page && PageHighMem(page))
3639 				return 1;
3640 		}
3641 	}
3642 #endif
3643 	return 0;
3644 }
3645 
3646 /* If MPLS offload request, verify we are testing hardware MPLS features
3647  * instead of standard features for the netdev.
3648  */
3649 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3650 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3651 					   netdev_features_t features,
3652 					   __be16 type)
3653 {
3654 	if (eth_p_mpls(type))
3655 		features &= skb->dev->mpls_features;
3656 
3657 	return features;
3658 }
3659 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3660 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3661 					   netdev_features_t features,
3662 					   __be16 type)
3663 {
3664 	return features;
3665 }
3666 #endif
3667 
harmonize_features(struct sk_buff * skb,netdev_features_t features)3668 static netdev_features_t harmonize_features(struct sk_buff *skb,
3669 	netdev_features_t features)
3670 {
3671 	__be16 type;
3672 
3673 	type = skb_network_protocol(skb, NULL);
3674 	features = net_mpls_features(skb, features, type);
3675 
3676 	if (skb->ip_summed != CHECKSUM_NONE &&
3677 	    !can_checksum_protocol(features, type)) {
3678 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3679 	}
3680 	if (illegal_highdma(skb->dev, skb))
3681 		features &= ~NETIF_F_SG;
3682 
3683 	return features;
3684 }
3685 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3686 netdev_features_t passthru_features_check(struct sk_buff *skb,
3687 					  struct net_device *dev,
3688 					  netdev_features_t features)
3689 {
3690 	return features;
3691 }
3692 EXPORT_SYMBOL(passthru_features_check);
3693 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3694 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3695 					     struct net_device *dev,
3696 					     netdev_features_t features)
3697 {
3698 	return vlan_features_check(skb, features);
3699 }
3700 
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3701 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3702 					    struct net_device *dev,
3703 					    netdev_features_t features)
3704 {
3705 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3706 
3707 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3708 		return features & ~NETIF_F_GSO_MASK;
3709 
3710 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3711 		return features & ~NETIF_F_GSO_MASK;
3712 
3713 	if (!skb_shinfo(skb)->gso_type) {
3714 		skb_warn_bad_offload(skb);
3715 		return features & ~NETIF_F_GSO_MASK;
3716 	}
3717 
3718 	/* Support for GSO partial features requires software
3719 	 * intervention before we can actually process the packets
3720 	 * so we need to strip support for any partial features now
3721 	 * and we can pull them back in after we have partially
3722 	 * segmented the frame.
3723 	 */
3724 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3725 		features &= ~dev->gso_partial_features;
3726 
3727 	/* Make sure to clear the IPv4 ID mangling feature if the
3728 	 * IPv4 header has the potential to be fragmented.
3729 	 */
3730 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3731 		struct iphdr *iph = skb->encapsulation ?
3732 				    inner_ip_hdr(skb) : ip_hdr(skb);
3733 
3734 		if (!(iph->frag_off & htons(IP_DF)))
3735 			features &= ~NETIF_F_TSO_MANGLEID;
3736 	}
3737 
3738 	return features;
3739 }
3740 
netif_skb_features(struct sk_buff * skb)3741 netdev_features_t netif_skb_features(struct sk_buff *skb)
3742 {
3743 	struct net_device *dev = skb->dev;
3744 	netdev_features_t features = dev->features;
3745 
3746 	if (skb_is_gso(skb))
3747 		features = gso_features_check(skb, dev, features);
3748 
3749 	/* If encapsulation offload request, verify we are testing
3750 	 * hardware encapsulation features instead of standard
3751 	 * features for the netdev
3752 	 */
3753 	if (skb->encapsulation)
3754 		features &= dev->hw_enc_features;
3755 
3756 	if (skb_vlan_tagged(skb))
3757 		features = netdev_intersect_features(features,
3758 						     dev->vlan_features |
3759 						     NETIF_F_HW_VLAN_CTAG_TX |
3760 						     NETIF_F_HW_VLAN_STAG_TX);
3761 
3762 	if (dev->netdev_ops->ndo_features_check)
3763 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3764 								features);
3765 	else
3766 		features &= dflt_features_check(skb, dev, features);
3767 
3768 	return harmonize_features(skb, features);
3769 }
3770 EXPORT_SYMBOL(netif_skb_features);
3771 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3772 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3773 		    struct netdev_queue *txq, bool more)
3774 {
3775 	unsigned int len;
3776 	int rc;
3777 
3778 	if (dev_nit_active_rcu(dev))
3779 		dev_queue_xmit_nit(skb, dev);
3780 
3781 	len = skb->len;
3782 	trace_net_dev_start_xmit(skb, dev);
3783 	rc = netdev_start_xmit(skb, dev, txq, more);
3784 	trace_net_dev_xmit(skb, rc, dev, len);
3785 
3786 	return rc;
3787 }
3788 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3789 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3790 				    struct netdev_queue *txq, int *ret)
3791 {
3792 	struct sk_buff *skb = first;
3793 	int rc = NETDEV_TX_OK;
3794 
3795 	while (skb) {
3796 		struct sk_buff *next = skb->next;
3797 
3798 		skb_mark_not_on_list(skb);
3799 		rc = xmit_one(skb, dev, txq, next != NULL);
3800 		if (unlikely(!dev_xmit_complete(rc))) {
3801 			skb->next = next;
3802 			goto out;
3803 		}
3804 
3805 		skb = next;
3806 		if (netif_tx_queue_stopped(txq) && skb) {
3807 			rc = NETDEV_TX_BUSY;
3808 			break;
3809 		}
3810 	}
3811 
3812 out:
3813 	*ret = rc;
3814 	return skb;
3815 }
3816 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3817 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3818 					  netdev_features_t features)
3819 {
3820 	if (skb_vlan_tag_present(skb) &&
3821 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3822 		skb = __vlan_hwaccel_push_inside(skb);
3823 	return skb;
3824 }
3825 
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3826 int skb_csum_hwoffload_help(struct sk_buff *skb,
3827 			    const netdev_features_t features)
3828 {
3829 	if (unlikely(skb_csum_is_sctp(skb)))
3830 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3831 			skb_crc32c_csum_help(skb);
3832 
3833 	if (features & NETIF_F_HW_CSUM)
3834 		return 0;
3835 
3836 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3837 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3838 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3839 		    !ipv6_has_hopopt_jumbo(skb))
3840 			goto sw_checksum;
3841 
3842 		switch (skb->csum_offset) {
3843 		case offsetof(struct tcphdr, check):
3844 		case offsetof(struct udphdr, check):
3845 			return 0;
3846 		}
3847 	}
3848 
3849 sw_checksum:
3850 	return skb_checksum_help(skb);
3851 }
3852 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3853 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3854 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3855 {
3856 	netdev_features_t features;
3857 
3858 	if (!skb_frags_readable(skb))
3859 		goto out_kfree_skb;
3860 
3861 	features = netif_skb_features(skb);
3862 	skb = validate_xmit_vlan(skb, features);
3863 	if (unlikely(!skb))
3864 		goto out_null;
3865 
3866 	skb = sk_validate_xmit_skb(skb, dev);
3867 	if (unlikely(!skb))
3868 		goto out_null;
3869 
3870 	if (netif_needs_gso(skb, features)) {
3871 		struct sk_buff *segs;
3872 
3873 		segs = skb_gso_segment(skb, features);
3874 		if (IS_ERR(segs)) {
3875 			goto out_kfree_skb;
3876 		} else if (segs) {
3877 			consume_skb(skb);
3878 			skb = segs;
3879 		}
3880 	} else {
3881 		if (skb_needs_linearize(skb, features) &&
3882 		    __skb_linearize(skb))
3883 			goto out_kfree_skb;
3884 
3885 		/* If packet is not checksummed and device does not
3886 		 * support checksumming for this protocol, complete
3887 		 * checksumming here.
3888 		 */
3889 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3890 			if (skb->encapsulation)
3891 				skb_set_inner_transport_header(skb,
3892 							       skb_checksum_start_offset(skb));
3893 			else
3894 				skb_set_transport_header(skb,
3895 							 skb_checksum_start_offset(skb));
3896 			if (skb_csum_hwoffload_help(skb, features))
3897 				goto out_kfree_skb;
3898 		}
3899 	}
3900 
3901 	skb = validate_xmit_xfrm(skb, features, again);
3902 
3903 	return skb;
3904 
3905 out_kfree_skb:
3906 	kfree_skb(skb);
3907 out_null:
3908 	dev_core_stats_tx_dropped_inc(dev);
3909 	return NULL;
3910 }
3911 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3912 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3913 {
3914 	struct sk_buff *next, *head = NULL, *tail;
3915 
3916 	for (; skb != NULL; skb = next) {
3917 		next = skb->next;
3918 		skb_mark_not_on_list(skb);
3919 
3920 		/* in case skb won't be segmented, point to itself */
3921 		skb->prev = skb;
3922 
3923 		skb = validate_xmit_skb(skb, dev, again);
3924 		if (!skb)
3925 			continue;
3926 
3927 		if (!head)
3928 			head = skb;
3929 		else
3930 			tail->next = skb;
3931 		/* If skb was segmented, skb->prev points to
3932 		 * the last segment. If not, it still contains skb.
3933 		 */
3934 		tail = skb->prev;
3935 	}
3936 	return head;
3937 }
3938 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3939 
qdisc_pkt_len_init(struct sk_buff * skb)3940 static void qdisc_pkt_len_init(struct sk_buff *skb)
3941 {
3942 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3943 
3944 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3945 
3946 	/* To get more precise estimation of bytes sent on wire,
3947 	 * we add to pkt_len the headers size of all segments
3948 	 */
3949 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3950 		u16 gso_segs = shinfo->gso_segs;
3951 		unsigned int hdr_len;
3952 
3953 		/* mac layer + network layer */
3954 		hdr_len = skb_transport_offset(skb);
3955 
3956 		/* + transport layer */
3957 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3958 			const struct tcphdr *th;
3959 			struct tcphdr _tcphdr;
3960 
3961 			th = skb_header_pointer(skb, hdr_len,
3962 						sizeof(_tcphdr), &_tcphdr);
3963 			if (likely(th))
3964 				hdr_len += __tcp_hdrlen(th);
3965 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3966 			struct udphdr _udphdr;
3967 
3968 			if (skb_header_pointer(skb, hdr_len,
3969 					       sizeof(_udphdr), &_udphdr))
3970 				hdr_len += sizeof(struct udphdr);
3971 		}
3972 
3973 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3974 			int payload = skb->len - hdr_len;
3975 
3976 			/* Malicious packet. */
3977 			if (payload <= 0)
3978 				return;
3979 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3980 		}
3981 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3982 	}
3983 }
3984 
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)3985 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3986 			     struct sk_buff **to_free,
3987 			     struct netdev_queue *txq)
3988 {
3989 	int rc;
3990 
3991 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3992 	if (rc == NET_XMIT_SUCCESS)
3993 		trace_qdisc_enqueue(q, txq, skb);
3994 	return rc;
3995 }
3996 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3997 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3998 				 struct net_device *dev,
3999 				 struct netdev_queue *txq)
4000 {
4001 	spinlock_t *root_lock = qdisc_lock(q);
4002 	struct sk_buff *to_free = NULL;
4003 	bool contended;
4004 	int rc;
4005 
4006 	qdisc_calculate_pkt_len(skb, q);
4007 
4008 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4009 
4010 	if (q->flags & TCQ_F_NOLOCK) {
4011 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4012 		    qdisc_run_begin(q)) {
4013 			/* Retest nolock_qdisc_is_empty() within the protection
4014 			 * of q->seqlock to protect from racing with requeuing.
4015 			 */
4016 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4017 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4018 				__qdisc_run(q);
4019 				qdisc_run_end(q);
4020 
4021 				goto no_lock_out;
4022 			}
4023 
4024 			qdisc_bstats_cpu_update(q, skb);
4025 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4026 			    !nolock_qdisc_is_empty(q))
4027 				__qdisc_run(q);
4028 
4029 			qdisc_run_end(q);
4030 			return NET_XMIT_SUCCESS;
4031 		}
4032 
4033 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4034 		qdisc_run(q);
4035 
4036 no_lock_out:
4037 		if (unlikely(to_free))
4038 			kfree_skb_list_reason(to_free,
4039 					      tcf_get_drop_reason(to_free));
4040 		return rc;
4041 	}
4042 
4043 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4044 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4045 		return NET_XMIT_DROP;
4046 	}
4047 	/*
4048 	 * Heuristic to force contended enqueues to serialize on a
4049 	 * separate lock before trying to get qdisc main lock.
4050 	 * This permits qdisc->running owner to get the lock more
4051 	 * often and dequeue packets faster.
4052 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4053 	 * and then other tasks will only enqueue packets. The packets will be
4054 	 * sent after the qdisc owner is scheduled again. To prevent this
4055 	 * scenario the task always serialize on the lock.
4056 	 */
4057 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4058 	if (unlikely(contended))
4059 		spin_lock(&q->busylock);
4060 
4061 	spin_lock(root_lock);
4062 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4063 		__qdisc_drop(skb, &to_free);
4064 		rc = NET_XMIT_DROP;
4065 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4066 		   qdisc_run_begin(q)) {
4067 		/*
4068 		 * This is a work-conserving queue; there are no old skbs
4069 		 * waiting to be sent out; and the qdisc is not running -
4070 		 * xmit the skb directly.
4071 		 */
4072 
4073 		qdisc_bstats_update(q, skb);
4074 
4075 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4076 			if (unlikely(contended)) {
4077 				spin_unlock(&q->busylock);
4078 				contended = false;
4079 			}
4080 			__qdisc_run(q);
4081 		}
4082 
4083 		qdisc_run_end(q);
4084 		rc = NET_XMIT_SUCCESS;
4085 	} else {
4086 		WRITE_ONCE(q->owner, smp_processor_id());
4087 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4088 		WRITE_ONCE(q->owner, -1);
4089 		if (qdisc_run_begin(q)) {
4090 			if (unlikely(contended)) {
4091 				spin_unlock(&q->busylock);
4092 				contended = false;
4093 			}
4094 			__qdisc_run(q);
4095 			qdisc_run_end(q);
4096 		}
4097 	}
4098 	spin_unlock(root_lock);
4099 	if (unlikely(to_free))
4100 		kfree_skb_list_reason(to_free,
4101 				      tcf_get_drop_reason(to_free));
4102 	if (unlikely(contended))
4103 		spin_unlock(&q->busylock);
4104 	return rc;
4105 }
4106 
4107 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)4108 static void skb_update_prio(struct sk_buff *skb)
4109 {
4110 	const struct netprio_map *map;
4111 	const struct sock *sk;
4112 	unsigned int prioidx;
4113 
4114 	if (skb->priority)
4115 		return;
4116 	map = rcu_dereference_bh(skb->dev->priomap);
4117 	if (!map)
4118 		return;
4119 	sk = skb_to_full_sk(skb);
4120 	if (!sk)
4121 		return;
4122 
4123 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4124 
4125 	if (prioidx < map->priomap_len)
4126 		skb->priority = map->priomap[prioidx];
4127 }
4128 #else
4129 #define skb_update_prio(skb)
4130 #endif
4131 
4132 /**
4133  *	dev_loopback_xmit - loop back @skb
4134  *	@net: network namespace this loopback is happening in
4135  *	@sk:  sk needed to be a netfilter okfn
4136  *	@skb: buffer to transmit
4137  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4138 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4139 {
4140 	skb_reset_mac_header(skb);
4141 	__skb_pull(skb, skb_network_offset(skb));
4142 	skb->pkt_type = PACKET_LOOPBACK;
4143 	if (skb->ip_summed == CHECKSUM_NONE)
4144 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4145 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4146 	skb_dst_force(skb);
4147 	netif_rx(skb);
4148 	return 0;
4149 }
4150 EXPORT_SYMBOL(dev_loopback_xmit);
4151 
4152 #ifdef CONFIG_NET_EGRESS
4153 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4154 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4155 {
4156 	int qm = skb_get_queue_mapping(skb);
4157 
4158 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4159 }
4160 
4161 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4162 static bool netdev_xmit_txqueue_skipped(void)
4163 {
4164 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4165 }
4166 
netdev_xmit_skip_txqueue(bool skip)4167 void netdev_xmit_skip_txqueue(bool skip)
4168 {
4169 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4170 }
4171 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4172 
4173 #else
netdev_xmit_txqueue_skipped(void)4174 static bool netdev_xmit_txqueue_skipped(void)
4175 {
4176 	return current->net_xmit.skip_txqueue;
4177 }
4178 
netdev_xmit_skip_txqueue(bool skip)4179 void netdev_xmit_skip_txqueue(bool skip)
4180 {
4181 	current->net_xmit.skip_txqueue = skip;
4182 }
4183 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4184 #endif
4185 #endif /* CONFIG_NET_EGRESS */
4186 
4187 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4188 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4189 		  enum skb_drop_reason *drop_reason)
4190 {
4191 	int ret = TC_ACT_UNSPEC;
4192 #ifdef CONFIG_NET_CLS_ACT
4193 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4194 	struct tcf_result res;
4195 
4196 	if (!miniq)
4197 		return ret;
4198 
4199 	/* Global bypass */
4200 	if (!static_branch_likely(&tcf_sw_enabled_key))
4201 		return ret;
4202 
4203 	/* Block-wise bypass */
4204 	if (tcf_block_bypass_sw(miniq->block))
4205 		return ret;
4206 
4207 	tc_skb_cb(skb)->mru = 0;
4208 	tc_skb_cb(skb)->post_ct = false;
4209 	tcf_set_drop_reason(skb, *drop_reason);
4210 
4211 	mini_qdisc_bstats_cpu_update(miniq, skb);
4212 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4213 	/* Only tcf related quirks below. */
4214 	switch (ret) {
4215 	case TC_ACT_SHOT:
4216 		*drop_reason = tcf_get_drop_reason(skb);
4217 		mini_qdisc_qstats_cpu_drop(miniq);
4218 		break;
4219 	case TC_ACT_OK:
4220 	case TC_ACT_RECLASSIFY:
4221 		skb->tc_index = TC_H_MIN(res.classid);
4222 		break;
4223 	}
4224 #endif /* CONFIG_NET_CLS_ACT */
4225 	return ret;
4226 }
4227 
4228 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4229 
tcx_inc(void)4230 void tcx_inc(void)
4231 {
4232 	static_branch_inc(&tcx_needed_key);
4233 }
4234 
tcx_dec(void)4235 void tcx_dec(void)
4236 {
4237 	static_branch_dec(&tcx_needed_key);
4238 }
4239 
4240 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4241 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4242 	const bool needs_mac)
4243 {
4244 	const struct bpf_mprog_fp *fp;
4245 	const struct bpf_prog *prog;
4246 	int ret = TCX_NEXT;
4247 
4248 	if (needs_mac)
4249 		__skb_push(skb, skb->mac_len);
4250 	bpf_mprog_foreach_prog(entry, fp, prog) {
4251 		bpf_compute_data_pointers(skb);
4252 		ret = bpf_prog_run(prog, skb);
4253 		if (ret != TCX_NEXT)
4254 			break;
4255 	}
4256 	if (needs_mac)
4257 		__skb_pull(skb, skb->mac_len);
4258 	return tcx_action_code(skb, ret);
4259 }
4260 
4261 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4262 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4263 		   struct net_device *orig_dev, bool *another)
4264 {
4265 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4266 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4267 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4268 	int sch_ret;
4269 
4270 	if (!entry)
4271 		return skb;
4272 
4273 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4274 	if (*pt_prev) {
4275 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4276 		*pt_prev = NULL;
4277 	}
4278 
4279 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4280 	tcx_set_ingress(skb, true);
4281 
4282 	if (static_branch_unlikely(&tcx_needed_key)) {
4283 		sch_ret = tcx_run(entry, skb, true);
4284 		if (sch_ret != TC_ACT_UNSPEC)
4285 			goto ingress_verdict;
4286 	}
4287 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4288 ingress_verdict:
4289 	switch (sch_ret) {
4290 	case TC_ACT_REDIRECT:
4291 		/* skb_mac_header check was done by BPF, so we can safely
4292 		 * push the L2 header back before redirecting to another
4293 		 * netdev.
4294 		 */
4295 		__skb_push(skb, skb->mac_len);
4296 		if (skb_do_redirect(skb) == -EAGAIN) {
4297 			__skb_pull(skb, skb->mac_len);
4298 			*another = true;
4299 			break;
4300 		}
4301 		*ret = NET_RX_SUCCESS;
4302 		bpf_net_ctx_clear(bpf_net_ctx);
4303 		return NULL;
4304 	case TC_ACT_SHOT:
4305 		kfree_skb_reason(skb, drop_reason);
4306 		*ret = NET_RX_DROP;
4307 		bpf_net_ctx_clear(bpf_net_ctx);
4308 		return NULL;
4309 	/* used by tc_run */
4310 	case TC_ACT_STOLEN:
4311 	case TC_ACT_QUEUED:
4312 	case TC_ACT_TRAP:
4313 		consume_skb(skb);
4314 		fallthrough;
4315 	case TC_ACT_CONSUMED:
4316 		*ret = NET_RX_SUCCESS;
4317 		bpf_net_ctx_clear(bpf_net_ctx);
4318 		return NULL;
4319 	}
4320 	bpf_net_ctx_clear(bpf_net_ctx);
4321 
4322 	return skb;
4323 }
4324 
4325 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4326 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4327 {
4328 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4329 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4330 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4331 	int sch_ret;
4332 
4333 	if (!entry)
4334 		return skb;
4335 
4336 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4337 
4338 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4339 	 * already set by the caller.
4340 	 */
4341 	if (static_branch_unlikely(&tcx_needed_key)) {
4342 		sch_ret = tcx_run(entry, skb, false);
4343 		if (sch_ret != TC_ACT_UNSPEC)
4344 			goto egress_verdict;
4345 	}
4346 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4347 egress_verdict:
4348 	switch (sch_ret) {
4349 	case TC_ACT_REDIRECT:
4350 		/* No need to push/pop skb's mac_header here on egress! */
4351 		skb_do_redirect(skb);
4352 		*ret = NET_XMIT_SUCCESS;
4353 		bpf_net_ctx_clear(bpf_net_ctx);
4354 		return NULL;
4355 	case TC_ACT_SHOT:
4356 		kfree_skb_reason(skb, drop_reason);
4357 		*ret = NET_XMIT_DROP;
4358 		bpf_net_ctx_clear(bpf_net_ctx);
4359 		return NULL;
4360 	/* used by tc_run */
4361 	case TC_ACT_STOLEN:
4362 	case TC_ACT_QUEUED:
4363 	case TC_ACT_TRAP:
4364 		consume_skb(skb);
4365 		fallthrough;
4366 	case TC_ACT_CONSUMED:
4367 		*ret = NET_XMIT_SUCCESS;
4368 		bpf_net_ctx_clear(bpf_net_ctx);
4369 		return NULL;
4370 	}
4371 	bpf_net_ctx_clear(bpf_net_ctx);
4372 
4373 	return skb;
4374 }
4375 #else
4376 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4377 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4378 		   struct net_device *orig_dev, bool *another)
4379 {
4380 	return skb;
4381 }
4382 
4383 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4384 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4385 {
4386 	return skb;
4387 }
4388 #endif /* CONFIG_NET_XGRESS */
4389 
4390 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4391 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4392 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4393 {
4394 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4395 	struct xps_map *map;
4396 	int queue_index = -1;
4397 
4398 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4399 		return queue_index;
4400 
4401 	tci *= dev_maps->num_tc;
4402 	tci += tc;
4403 
4404 	map = rcu_dereference(dev_maps->attr_map[tci]);
4405 	if (map) {
4406 		if (map->len == 1)
4407 			queue_index = map->queues[0];
4408 		else
4409 			queue_index = map->queues[reciprocal_scale(
4410 						skb_get_hash(skb), map->len)];
4411 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4412 			queue_index = -1;
4413 	}
4414 	return queue_index;
4415 }
4416 #endif
4417 
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4418 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4419 			 struct sk_buff *skb)
4420 {
4421 #ifdef CONFIG_XPS
4422 	struct xps_dev_maps *dev_maps;
4423 	struct sock *sk = skb->sk;
4424 	int queue_index = -1;
4425 
4426 	if (!static_key_false(&xps_needed))
4427 		return -1;
4428 
4429 	rcu_read_lock();
4430 	if (!static_key_false(&xps_rxqs_needed))
4431 		goto get_cpus_map;
4432 
4433 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4434 	if (dev_maps) {
4435 		int tci = sk_rx_queue_get(sk);
4436 
4437 		if (tci >= 0)
4438 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4439 							  tci);
4440 	}
4441 
4442 get_cpus_map:
4443 	if (queue_index < 0) {
4444 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4445 		if (dev_maps) {
4446 			unsigned int tci = skb->sender_cpu - 1;
4447 
4448 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4449 							  tci);
4450 		}
4451 	}
4452 	rcu_read_unlock();
4453 
4454 	return queue_index;
4455 #else
4456 	return -1;
4457 #endif
4458 }
4459 
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4460 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4461 		     struct net_device *sb_dev)
4462 {
4463 	return 0;
4464 }
4465 EXPORT_SYMBOL(dev_pick_tx_zero);
4466 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4467 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4468 		     struct net_device *sb_dev)
4469 {
4470 	struct sock *sk = skb->sk;
4471 	int queue_index = sk_tx_queue_get(sk);
4472 
4473 	sb_dev = sb_dev ? : dev;
4474 
4475 	if (queue_index < 0 || skb->ooo_okay ||
4476 	    queue_index >= dev->real_num_tx_queues) {
4477 		int new_index = get_xps_queue(dev, sb_dev, skb);
4478 
4479 		if (new_index < 0)
4480 			new_index = skb_tx_hash(dev, sb_dev, skb);
4481 
4482 		if (queue_index != new_index && sk &&
4483 		    sk_fullsock(sk) &&
4484 		    rcu_access_pointer(sk->sk_dst_cache))
4485 			sk_tx_queue_set(sk, new_index);
4486 
4487 		queue_index = new_index;
4488 	}
4489 
4490 	return queue_index;
4491 }
4492 EXPORT_SYMBOL(netdev_pick_tx);
4493 
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4494 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4495 					 struct sk_buff *skb,
4496 					 struct net_device *sb_dev)
4497 {
4498 	int queue_index = 0;
4499 
4500 #ifdef CONFIG_XPS
4501 	u32 sender_cpu = skb->sender_cpu - 1;
4502 
4503 	if (sender_cpu >= (u32)NR_CPUS)
4504 		skb->sender_cpu = raw_smp_processor_id() + 1;
4505 #endif
4506 
4507 	if (dev->real_num_tx_queues != 1) {
4508 		const struct net_device_ops *ops = dev->netdev_ops;
4509 
4510 		if (ops->ndo_select_queue)
4511 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4512 		else
4513 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4514 
4515 		queue_index = netdev_cap_txqueue(dev, queue_index);
4516 	}
4517 
4518 	skb_set_queue_mapping(skb, queue_index);
4519 	return netdev_get_tx_queue(dev, queue_index);
4520 }
4521 
4522 /**
4523  * __dev_queue_xmit() - transmit a buffer
4524  * @skb:	buffer to transmit
4525  * @sb_dev:	suboordinate device used for L2 forwarding offload
4526  *
4527  * Queue a buffer for transmission to a network device. The caller must
4528  * have set the device and priority and built the buffer before calling
4529  * this function. The function can be called from an interrupt.
4530  *
4531  * When calling this method, interrupts MUST be enabled. This is because
4532  * the BH enable code must have IRQs enabled so that it will not deadlock.
4533  *
4534  * Regardless of the return value, the skb is consumed, so it is currently
4535  * difficult to retry a send to this method. (You can bump the ref count
4536  * before sending to hold a reference for retry if you are careful.)
4537  *
4538  * Return:
4539  * * 0				- buffer successfully transmitted
4540  * * positive qdisc return code	- NET_XMIT_DROP etc.
4541  * * negative errno		- other errors
4542  */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4543 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4544 {
4545 	struct net_device *dev = skb->dev;
4546 	struct netdev_queue *txq = NULL;
4547 	struct Qdisc *q;
4548 	int rc = -ENOMEM;
4549 	bool again = false;
4550 
4551 	skb_reset_mac_header(skb);
4552 	skb_assert_len(skb);
4553 
4554 	if (unlikely(skb_shinfo(skb)->tx_flags &
4555 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4556 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4557 
4558 	/* Disable soft irqs for various locks below. Also
4559 	 * stops preemption for RCU.
4560 	 */
4561 	rcu_read_lock_bh();
4562 
4563 	skb_update_prio(skb);
4564 
4565 	qdisc_pkt_len_init(skb);
4566 	tcx_set_ingress(skb, false);
4567 #ifdef CONFIG_NET_EGRESS
4568 	if (static_branch_unlikely(&egress_needed_key)) {
4569 		if (nf_hook_egress_active()) {
4570 			skb = nf_hook_egress(skb, &rc, dev);
4571 			if (!skb)
4572 				goto out;
4573 		}
4574 
4575 		netdev_xmit_skip_txqueue(false);
4576 
4577 		nf_skip_egress(skb, true);
4578 		skb = sch_handle_egress(skb, &rc, dev);
4579 		if (!skb)
4580 			goto out;
4581 		nf_skip_egress(skb, false);
4582 
4583 		if (netdev_xmit_txqueue_skipped())
4584 			txq = netdev_tx_queue_mapping(dev, skb);
4585 	}
4586 #endif
4587 	/* If device/qdisc don't need skb->dst, release it right now while
4588 	 * its hot in this cpu cache.
4589 	 */
4590 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4591 		skb_dst_drop(skb);
4592 	else
4593 		skb_dst_force(skb);
4594 
4595 	if (!txq)
4596 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4597 
4598 	q = rcu_dereference_bh(txq->qdisc);
4599 
4600 	trace_net_dev_queue(skb);
4601 	if (q->enqueue) {
4602 		rc = __dev_xmit_skb(skb, q, dev, txq);
4603 		goto out;
4604 	}
4605 
4606 	/* The device has no queue. Common case for software devices:
4607 	 * loopback, all the sorts of tunnels...
4608 
4609 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4610 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4611 	 * counters.)
4612 	 * However, it is possible, that they rely on protection
4613 	 * made by us here.
4614 
4615 	 * Check this and shot the lock. It is not prone from deadlocks.
4616 	 *Either shot noqueue qdisc, it is even simpler 8)
4617 	 */
4618 	if (dev->flags & IFF_UP) {
4619 		int cpu = smp_processor_id(); /* ok because BHs are off */
4620 
4621 		/* Other cpus might concurrently change txq->xmit_lock_owner
4622 		 * to -1 or to their cpu id, but not to our id.
4623 		 */
4624 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4625 			if (dev_xmit_recursion())
4626 				goto recursion_alert;
4627 
4628 			skb = validate_xmit_skb(skb, dev, &again);
4629 			if (!skb)
4630 				goto out;
4631 
4632 			HARD_TX_LOCK(dev, txq, cpu);
4633 
4634 			if (!netif_xmit_stopped(txq)) {
4635 				dev_xmit_recursion_inc();
4636 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4637 				dev_xmit_recursion_dec();
4638 				if (dev_xmit_complete(rc)) {
4639 					HARD_TX_UNLOCK(dev, txq);
4640 					goto out;
4641 				}
4642 			}
4643 			HARD_TX_UNLOCK(dev, txq);
4644 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4645 					     dev->name);
4646 		} else {
4647 			/* Recursion is detected! It is possible,
4648 			 * unfortunately
4649 			 */
4650 recursion_alert:
4651 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4652 					     dev->name);
4653 		}
4654 	}
4655 
4656 	rc = -ENETDOWN;
4657 	rcu_read_unlock_bh();
4658 
4659 	dev_core_stats_tx_dropped_inc(dev);
4660 	kfree_skb_list(skb);
4661 	return rc;
4662 out:
4663 	rcu_read_unlock_bh();
4664 	return rc;
4665 }
4666 EXPORT_SYMBOL(__dev_queue_xmit);
4667 
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4668 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4669 {
4670 	struct net_device *dev = skb->dev;
4671 	struct sk_buff *orig_skb = skb;
4672 	struct netdev_queue *txq;
4673 	int ret = NETDEV_TX_BUSY;
4674 	bool again = false;
4675 
4676 	if (unlikely(!netif_running(dev) ||
4677 		     !netif_carrier_ok(dev)))
4678 		goto drop;
4679 
4680 	skb = validate_xmit_skb_list(skb, dev, &again);
4681 	if (skb != orig_skb)
4682 		goto drop;
4683 
4684 	skb_set_queue_mapping(skb, queue_id);
4685 	txq = skb_get_tx_queue(dev, skb);
4686 
4687 	local_bh_disable();
4688 
4689 	dev_xmit_recursion_inc();
4690 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4691 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4692 		ret = netdev_start_xmit(skb, dev, txq, false);
4693 	HARD_TX_UNLOCK(dev, txq);
4694 	dev_xmit_recursion_dec();
4695 
4696 	local_bh_enable();
4697 	return ret;
4698 drop:
4699 	dev_core_stats_tx_dropped_inc(dev);
4700 	kfree_skb_list(skb);
4701 	return NET_XMIT_DROP;
4702 }
4703 EXPORT_SYMBOL(__dev_direct_xmit);
4704 
4705 /*************************************************************************
4706  *			Receiver routines
4707  *************************************************************************/
4708 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4709 
4710 int weight_p __read_mostly = 64;           /* old backlog weight */
4711 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4712 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4713 
4714 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4715 static inline void ____napi_schedule(struct softnet_data *sd,
4716 				     struct napi_struct *napi)
4717 {
4718 	struct task_struct *thread;
4719 
4720 	lockdep_assert_irqs_disabled();
4721 
4722 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4723 		/* Paired with smp_mb__before_atomic() in
4724 		 * napi_enable()/dev_set_threaded().
4725 		 * Use READ_ONCE() to guarantee a complete
4726 		 * read on napi->thread. Only call
4727 		 * wake_up_process() when it's not NULL.
4728 		 */
4729 		thread = READ_ONCE(napi->thread);
4730 		if (thread) {
4731 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4732 				goto use_local_napi;
4733 
4734 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4735 			wake_up_process(thread);
4736 			return;
4737 		}
4738 	}
4739 
4740 use_local_napi:
4741 	list_add_tail(&napi->poll_list, &sd->poll_list);
4742 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4743 	/* If not called from net_rx_action()
4744 	 * we have to raise NET_RX_SOFTIRQ.
4745 	 */
4746 	if (!sd->in_net_rx_action)
4747 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4748 }
4749 
4750 #ifdef CONFIG_RPS
4751 
4752 struct static_key_false rps_needed __read_mostly;
4753 EXPORT_SYMBOL(rps_needed);
4754 struct static_key_false rfs_needed __read_mostly;
4755 EXPORT_SYMBOL(rfs_needed);
4756 
rfs_slot(u32 hash,const struct rps_dev_flow_table * flow_table)4757 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4758 {
4759 	return hash_32(hash, flow_table->log);
4760 }
4761 
4762 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4763 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4764 	    struct rps_dev_flow *rflow, u16 next_cpu)
4765 {
4766 	if (next_cpu < nr_cpu_ids) {
4767 		u32 head;
4768 #ifdef CONFIG_RFS_ACCEL
4769 		struct netdev_rx_queue *rxqueue;
4770 		struct rps_dev_flow_table *flow_table;
4771 		struct rps_dev_flow *old_rflow;
4772 		u16 rxq_index;
4773 		u32 flow_id;
4774 		int rc;
4775 
4776 		/* Should we steer this flow to a different hardware queue? */
4777 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4778 		    !(dev->features & NETIF_F_NTUPLE))
4779 			goto out;
4780 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4781 		if (rxq_index == skb_get_rx_queue(skb))
4782 			goto out;
4783 
4784 		rxqueue = dev->_rx + rxq_index;
4785 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4786 		if (!flow_table)
4787 			goto out;
4788 		flow_id = rfs_slot(skb_get_hash(skb), flow_table);
4789 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4790 							rxq_index, flow_id);
4791 		if (rc < 0)
4792 			goto out;
4793 		old_rflow = rflow;
4794 		rflow = &flow_table->flows[flow_id];
4795 		WRITE_ONCE(rflow->filter, rc);
4796 		if (old_rflow->filter == rc)
4797 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4798 	out:
4799 #endif
4800 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4801 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4802 	}
4803 
4804 	WRITE_ONCE(rflow->cpu, next_cpu);
4805 	return rflow;
4806 }
4807 
4808 /*
4809  * get_rps_cpu is called from netif_receive_skb and returns the target
4810  * CPU from the RPS map of the receiving queue for a given skb.
4811  * rcu_read_lock must be held on entry.
4812  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4813 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4814 		       struct rps_dev_flow **rflowp)
4815 {
4816 	const struct rps_sock_flow_table *sock_flow_table;
4817 	struct netdev_rx_queue *rxqueue = dev->_rx;
4818 	struct rps_dev_flow_table *flow_table;
4819 	struct rps_map *map;
4820 	int cpu = -1;
4821 	u32 tcpu;
4822 	u32 hash;
4823 
4824 	if (skb_rx_queue_recorded(skb)) {
4825 		u16 index = skb_get_rx_queue(skb);
4826 
4827 		if (unlikely(index >= dev->real_num_rx_queues)) {
4828 			WARN_ONCE(dev->real_num_rx_queues > 1,
4829 				  "%s received packet on queue %u, but number "
4830 				  "of RX queues is %u\n",
4831 				  dev->name, index, dev->real_num_rx_queues);
4832 			goto done;
4833 		}
4834 		rxqueue += index;
4835 	}
4836 
4837 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4838 
4839 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4840 	map = rcu_dereference(rxqueue->rps_map);
4841 	if (!flow_table && !map)
4842 		goto done;
4843 
4844 	skb_reset_network_header(skb);
4845 	hash = skb_get_hash(skb);
4846 	if (!hash)
4847 		goto done;
4848 
4849 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4850 	if (flow_table && sock_flow_table) {
4851 		struct rps_dev_flow *rflow;
4852 		u32 next_cpu;
4853 		u32 ident;
4854 
4855 		/* First check into global flow table if there is a match.
4856 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4857 		 */
4858 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4859 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4860 			goto try_rps;
4861 
4862 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4863 
4864 		/* OK, now we know there is a match,
4865 		 * we can look at the local (per receive queue) flow table
4866 		 */
4867 		rflow = &flow_table->flows[rfs_slot(hash, flow_table)];
4868 		tcpu = rflow->cpu;
4869 
4870 		/*
4871 		 * If the desired CPU (where last recvmsg was done) is
4872 		 * different from current CPU (one in the rx-queue flow
4873 		 * table entry), switch if one of the following holds:
4874 		 *   - Current CPU is unset (>= nr_cpu_ids).
4875 		 *   - Current CPU is offline.
4876 		 *   - The current CPU's queue tail has advanced beyond the
4877 		 *     last packet that was enqueued using this table entry.
4878 		 *     This guarantees that all previous packets for the flow
4879 		 *     have been dequeued, thus preserving in order delivery.
4880 		 */
4881 		if (unlikely(tcpu != next_cpu) &&
4882 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4883 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4884 		      rflow->last_qtail)) >= 0)) {
4885 			tcpu = next_cpu;
4886 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4887 		}
4888 
4889 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4890 			*rflowp = rflow;
4891 			cpu = tcpu;
4892 			goto done;
4893 		}
4894 	}
4895 
4896 try_rps:
4897 
4898 	if (map) {
4899 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4900 		if (cpu_online(tcpu)) {
4901 			cpu = tcpu;
4902 			goto done;
4903 		}
4904 	}
4905 
4906 done:
4907 	return cpu;
4908 }
4909 
4910 #ifdef CONFIG_RFS_ACCEL
4911 
4912 /**
4913  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4914  * @dev: Device on which the filter was set
4915  * @rxq_index: RX queue index
4916  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4917  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4918  *
4919  * Drivers that implement ndo_rx_flow_steer() should periodically call
4920  * this function for each installed filter and remove the filters for
4921  * which it returns %true.
4922  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4923 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4924 			 u32 flow_id, u16 filter_id)
4925 {
4926 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4927 	struct rps_dev_flow_table *flow_table;
4928 	struct rps_dev_flow *rflow;
4929 	bool expire = true;
4930 	unsigned int cpu;
4931 
4932 	rcu_read_lock();
4933 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4934 	if (flow_table && flow_id < (1UL << flow_table->log)) {
4935 		rflow = &flow_table->flows[flow_id];
4936 		cpu = READ_ONCE(rflow->cpu);
4937 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4938 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4939 			   READ_ONCE(rflow->last_qtail)) <
4940 		     (int)(10 << flow_table->log)))
4941 			expire = false;
4942 	}
4943 	rcu_read_unlock();
4944 	return expire;
4945 }
4946 EXPORT_SYMBOL(rps_may_expire_flow);
4947 
4948 #endif /* CONFIG_RFS_ACCEL */
4949 
4950 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4951 static void rps_trigger_softirq(void *data)
4952 {
4953 	struct softnet_data *sd = data;
4954 
4955 	____napi_schedule(sd, &sd->backlog);
4956 	sd->received_rps++;
4957 }
4958 
4959 #endif /* CONFIG_RPS */
4960 
4961 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)4962 static void trigger_rx_softirq(void *data)
4963 {
4964 	struct softnet_data *sd = data;
4965 
4966 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4967 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4968 }
4969 
4970 /*
4971  * After we queued a packet into sd->input_pkt_queue,
4972  * we need to make sure this queue is serviced soon.
4973  *
4974  * - If this is another cpu queue, link it to our rps_ipi_list,
4975  *   and make sure we will process rps_ipi_list from net_rx_action().
4976  *
4977  * - If this is our own queue, NAPI schedule our backlog.
4978  *   Note that this also raises NET_RX_SOFTIRQ.
4979  */
napi_schedule_rps(struct softnet_data * sd)4980 static void napi_schedule_rps(struct softnet_data *sd)
4981 {
4982 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4983 
4984 #ifdef CONFIG_RPS
4985 	if (sd != mysd) {
4986 		if (use_backlog_threads()) {
4987 			__napi_schedule_irqoff(&sd->backlog);
4988 			return;
4989 		}
4990 
4991 		sd->rps_ipi_next = mysd->rps_ipi_list;
4992 		mysd->rps_ipi_list = sd;
4993 
4994 		/* If not called from net_rx_action() or napi_threaded_poll()
4995 		 * we have to raise NET_RX_SOFTIRQ.
4996 		 */
4997 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4998 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4999 		return;
5000 	}
5001 #endif /* CONFIG_RPS */
5002 	__napi_schedule_irqoff(&mysd->backlog);
5003 }
5004 
kick_defer_list_purge(struct softnet_data * sd,unsigned int cpu)5005 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5006 {
5007 	unsigned long flags;
5008 
5009 	if (use_backlog_threads()) {
5010 		backlog_lock_irq_save(sd, &flags);
5011 
5012 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5013 			__napi_schedule_irqoff(&sd->backlog);
5014 
5015 		backlog_unlock_irq_restore(sd, &flags);
5016 
5017 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5018 		smp_call_function_single_async(cpu, &sd->defer_csd);
5019 	}
5020 }
5021 
5022 #ifdef CONFIG_NET_FLOW_LIMIT
5023 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5024 #endif
5025 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)5026 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5027 {
5028 #ifdef CONFIG_NET_FLOW_LIMIT
5029 	struct sd_flow_limit *fl;
5030 	struct softnet_data *sd;
5031 	unsigned int old_flow, new_flow;
5032 
5033 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5034 		return false;
5035 
5036 	sd = this_cpu_ptr(&softnet_data);
5037 
5038 	rcu_read_lock();
5039 	fl = rcu_dereference(sd->flow_limit);
5040 	if (fl) {
5041 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
5042 		old_flow = fl->history[fl->history_head];
5043 		fl->history[fl->history_head] = new_flow;
5044 
5045 		fl->history_head++;
5046 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5047 
5048 		if (likely(fl->buckets[old_flow]))
5049 			fl->buckets[old_flow]--;
5050 
5051 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5052 			fl->count++;
5053 			rcu_read_unlock();
5054 			return true;
5055 		}
5056 	}
5057 	rcu_read_unlock();
5058 #endif
5059 	return false;
5060 }
5061 
5062 /*
5063  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5064  * queue (may be a remote CPU queue).
5065  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)5066 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5067 			      unsigned int *qtail)
5068 {
5069 	enum skb_drop_reason reason;
5070 	struct softnet_data *sd;
5071 	unsigned long flags;
5072 	unsigned int qlen;
5073 	int max_backlog;
5074 	u32 tail;
5075 
5076 	reason = SKB_DROP_REASON_DEV_READY;
5077 	if (!netif_running(skb->dev))
5078 		goto bad_dev;
5079 
5080 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5081 	sd = &per_cpu(softnet_data, cpu);
5082 
5083 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5084 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5085 	if (unlikely(qlen > max_backlog))
5086 		goto cpu_backlog_drop;
5087 	backlog_lock_irq_save(sd, &flags);
5088 	qlen = skb_queue_len(&sd->input_pkt_queue);
5089 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5090 		if (!qlen) {
5091 			/* Schedule NAPI for backlog device. We can use
5092 			 * non atomic operation as we own the queue lock.
5093 			 */
5094 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5095 						&sd->backlog.state))
5096 				napi_schedule_rps(sd);
5097 		}
5098 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5099 		tail = rps_input_queue_tail_incr(sd);
5100 		backlog_unlock_irq_restore(sd, &flags);
5101 
5102 		/* save the tail outside of the critical section */
5103 		rps_input_queue_tail_save(qtail, tail);
5104 		return NET_RX_SUCCESS;
5105 	}
5106 
5107 	backlog_unlock_irq_restore(sd, &flags);
5108 
5109 cpu_backlog_drop:
5110 	atomic_inc(&sd->dropped);
5111 bad_dev:
5112 	dev_core_stats_rx_dropped_inc(skb->dev);
5113 	kfree_skb_reason(skb, reason);
5114 	return NET_RX_DROP;
5115 }
5116 
netif_get_rxqueue(struct sk_buff * skb)5117 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5118 {
5119 	struct net_device *dev = skb->dev;
5120 	struct netdev_rx_queue *rxqueue;
5121 
5122 	rxqueue = dev->_rx;
5123 
5124 	if (skb_rx_queue_recorded(skb)) {
5125 		u16 index = skb_get_rx_queue(skb);
5126 
5127 		if (unlikely(index >= dev->real_num_rx_queues)) {
5128 			WARN_ONCE(dev->real_num_rx_queues > 1,
5129 				  "%s received packet on queue %u, but number "
5130 				  "of RX queues is %u\n",
5131 				  dev->name, index, dev->real_num_rx_queues);
5132 
5133 			return rxqueue; /* Return first rxqueue */
5134 		}
5135 		rxqueue += index;
5136 	}
5137 	return rxqueue;
5138 }
5139 
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5140 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5141 			     const struct bpf_prog *xdp_prog)
5142 {
5143 	void *orig_data, *orig_data_end, *hard_start;
5144 	struct netdev_rx_queue *rxqueue;
5145 	bool orig_bcast, orig_host;
5146 	u32 mac_len, frame_sz;
5147 	__be16 orig_eth_type;
5148 	struct ethhdr *eth;
5149 	u32 metalen, act;
5150 	int off;
5151 
5152 	/* The XDP program wants to see the packet starting at the MAC
5153 	 * header.
5154 	 */
5155 	mac_len = skb->data - skb_mac_header(skb);
5156 	hard_start = skb->data - skb_headroom(skb);
5157 
5158 	/* SKB "head" area always have tailroom for skb_shared_info */
5159 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5160 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5161 
5162 	rxqueue = netif_get_rxqueue(skb);
5163 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5164 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5165 			 skb_headlen(skb) + mac_len, true);
5166 	if (skb_is_nonlinear(skb)) {
5167 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5168 		xdp_buff_set_frags_flag(xdp);
5169 	} else {
5170 		xdp_buff_clear_frags_flag(xdp);
5171 	}
5172 
5173 	orig_data_end = xdp->data_end;
5174 	orig_data = xdp->data;
5175 	eth = (struct ethhdr *)xdp->data;
5176 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5177 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5178 	orig_eth_type = eth->h_proto;
5179 
5180 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5181 
5182 	/* check if bpf_xdp_adjust_head was used */
5183 	off = xdp->data - orig_data;
5184 	if (off) {
5185 		if (off > 0)
5186 			__skb_pull(skb, off);
5187 		else if (off < 0)
5188 			__skb_push(skb, -off);
5189 
5190 		skb->mac_header += off;
5191 		skb_reset_network_header(skb);
5192 	}
5193 
5194 	/* check if bpf_xdp_adjust_tail was used */
5195 	off = xdp->data_end - orig_data_end;
5196 	if (off != 0) {
5197 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5198 		skb->len += off; /* positive on grow, negative on shrink */
5199 	}
5200 
5201 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5202 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5203 	 */
5204 	if (xdp_buff_has_frags(xdp))
5205 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5206 	else
5207 		skb->data_len = 0;
5208 
5209 	/* check if XDP changed eth hdr such SKB needs update */
5210 	eth = (struct ethhdr *)xdp->data;
5211 	if ((orig_eth_type != eth->h_proto) ||
5212 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5213 						  skb->dev->dev_addr)) ||
5214 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5215 		__skb_push(skb, ETH_HLEN);
5216 		skb->pkt_type = PACKET_HOST;
5217 		skb->protocol = eth_type_trans(skb, skb->dev);
5218 	}
5219 
5220 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5221 	 * before calling us again on redirect path. We do not call do_redirect
5222 	 * as we leave that up to the caller.
5223 	 *
5224 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5225 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5226 	 */
5227 	switch (act) {
5228 	case XDP_REDIRECT:
5229 	case XDP_TX:
5230 		__skb_push(skb, mac_len);
5231 		break;
5232 	case XDP_PASS:
5233 		metalen = xdp->data - xdp->data_meta;
5234 		if (metalen)
5235 			skb_metadata_set(skb, metalen);
5236 		break;
5237 	}
5238 
5239 	return act;
5240 }
5241 
5242 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,const struct bpf_prog * prog)5243 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5244 {
5245 	struct sk_buff *skb = *pskb;
5246 	int err, hroom, troom;
5247 
5248 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5249 		return 0;
5250 
5251 	/* In case we have to go down the path and also linearize,
5252 	 * then lets do the pskb_expand_head() work just once here.
5253 	 */
5254 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5255 	troom = skb->tail + skb->data_len - skb->end;
5256 	err = pskb_expand_head(skb,
5257 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5258 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5259 	if (err)
5260 		return err;
5261 
5262 	return skb_linearize(skb);
5263 }
5264 
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5265 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5266 				     struct xdp_buff *xdp,
5267 				     const struct bpf_prog *xdp_prog)
5268 {
5269 	struct sk_buff *skb = *pskb;
5270 	u32 mac_len, act = XDP_DROP;
5271 
5272 	/* Reinjected packets coming from act_mirred or similar should
5273 	 * not get XDP generic processing.
5274 	 */
5275 	if (skb_is_redirected(skb))
5276 		return XDP_PASS;
5277 
5278 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5279 	 * bytes. This is the guarantee that also native XDP provides,
5280 	 * thus we need to do it here as well.
5281 	 */
5282 	mac_len = skb->data - skb_mac_header(skb);
5283 	__skb_push(skb, mac_len);
5284 
5285 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5286 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5287 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5288 			goto do_drop;
5289 	}
5290 
5291 	__skb_pull(*pskb, mac_len);
5292 
5293 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5294 	switch (act) {
5295 	case XDP_REDIRECT:
5296 	case XDP_TX:
5297 	case XDP_PASS:
5298 		break;
5299 	default:
5300 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5301 		fallthrough;
5302 	case XDP_ABORTED:
5303 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5304 		fallthrough;
5305 	case XDP_DROP:
5306 	do_drop:
5307 		kfree_skb(*pskb);
5308 		break;
5309 	}
5310 
5311 	return act;
5312 }
5313 
5314 /* When doing generic XDP we have to bypass the qdisc layer and the
5315  * network taps in order to match in-driver-XDP behavior. This also means
5316  * that XDP packets are able to starve other packets going through a qdisc,
5317  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5318  * queues, so they do not have this starvation issue.
5319  */
generic_xdp_tx(struct sk_buff * skb,const struct bpf_prog * xdp_prog)5320 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5321 {
5322 	struct net_device *dev = skb->dev;
5323 	struct netdev_queue *txq;
5324 	bool free_skb = true;
5325 	int cpu, rc;
5326 
5327 	txq = netdev_core_pick_tx(dev, skb, NULL);
5328 	cpu = smp_processor_id();
5329 	HARD_TX_LOCK(dev, txq, cpu);
5330 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5331 		rc = netdev_start_xmit(skb, dev, txq, 0);
5332 		if (dev_xmit_complete(rc))
5333 			free_skb = false;
5334 	}
5335 	HARD_TX_UNLOCK(dev, txq);
5336 	if (free_skb) {
5337 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5338 		dev_core_stats_tx_dropped_inc(dev);
5339 		kfree_skb(skb);
5340 	}
5341 }
5342 
5343 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5344 
do_xdp_generic(const struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5345 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5346 {
5347 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5348 
5349 	if (xdp_prog) {
5350 		struct xdp_buff xdp;
5351 		u32 act;
5352 		int err;
5353 
5354 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5355 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5356 		if (act != XDP_PASS) {
5357 			switch (act) {
5358 			case XDP_REDIRECT:
5359 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5360 							      &xdp, xdp_prog);
5361 				if (err)
5362 					goto out_redir;
5363 				break;
5364 			case XDP_TX:
5365 				generic_xdp_tx(*pskb, xdp_prog);
5366 				break;
5367 			}
5368 			bpf_net_ctx_clear(bpf_net_ctx);
5369 			return XDP_DROP;
5370 		}
5371 		bpf_net_ctx_clear(bpf_net_ctx);
5372 	}
5373 	return XDP_PASS;
5374 out_redir:
5375 	bpf_net_ctx_clear(bpf_net_ctx);
5376 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5377 	return XDP_DROP;
5378 }
5379 EXPORT_SYMBOL_GPL(do_xdp_generic);
5380 
netif_rx_internal(struct sk_buff * skb)5381 static int netif_rx_internal(struct sk_buff *skb)
5382 {
5383 	int ret;
5384 
5385 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5386 
5387 	trace_netif_rx(skb);
5388 
5389 #ifdef CONFIG_RPS
5390 	if (static_branch_unlikely(&rps_needed)) {
5391 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5392 		int cpu;
5393 
5394 		rcu_read_lock();
5395 
5396 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5397 		if (cpu < 0)
5398 			cpu = smp_processor_id();
5399 
5400 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5401 
5402 		rcu_read_unlock();
5403 	} else
5404 #endif
5405 	{
5406 		unsigned int qtail;
5407 
5408 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5409 	}
5410 	return ret;
5411 }
5412 
5413 /**
5414  *	__netif_rx	-	Slightly optimized version of netif_rx
5415  *	@skb: buffer to post
5416  *
5417  *	This behaves as netif_rx except that it does not disable bottom halves.
5418  *	As a result this function may only be invoked from the interrupt context
5419  *	(either hard or soft interrupt).
5420  */
__netif_rx(struct sk_buff * skb)5421 int __netif_rx(struct sk_buff *skb)
5422 {
5423 	int ret;
5424 
5425 	lockdep_assert_once(hardirq_count() | softirq_count());
5426 
5427 	trace_netif_rx_entry(skb);
5428 	ret = netif_rx_internal(skb);
5429 	trace_netif_rx_exit(ret);
5430 	return ret;
5431 }
5432 EXPORT_SYMBOL(__netif_rx);
5433 
5434 /**
5435  *	netif_rx	-	post buffer to the network code
5436  *	@skb: buffer to post
5437  *
5438  *	This function receives a packet from a device driver and queues it for
5439  *	the upper (protocol) levels to process via the backlog NAPI device. It
5440  *	always succeeds. The buffer may be dropped during processing for
5441  *	congestion control or by the protocol layers.
5442  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5443  *	driver should use NAPI and GRO.
5444  *	This function can used from interrupt and from process context. The
5445  *	caller from process context must not disable interrupts before invoking
5446  *	this function.
5447  *
5448  *	return values:
5449  *	NET_RX_SUCCESS	(no congestion)
5450  *	NET_RX_DROP     (packet was dropped)
5451  *
5452  */
netif_rx(struct sk_buff * skb)5453 int netif_rx(struct sk_buff *skb)
5454 {
5455 	bool need_bh_off = !(hardirq_count() | softirq_count());
5456 	int ret;
5457 
5458 	if (need_bh_off)
5459 		local_bh_disable();
5460 	trace_netif_rx_entry(skb);
5461 	ret = netif_rx_internal(skb);
5462 	trace_netif_rx_exit(ret);
5463 	if (need_bh_off)
5464 		local_bh_enable();
5465 	return ret;
5466 }
5467 EXPORT_SYMBOL(netif_rx);
5468 
net_tx_action(void)5469 static __latent_entropy void net_tx_action(void)
5470 {
5471 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5472 
5473 	if (sd->completion_queue) {
5474 		struct sk_buff *clist;
5475 
5476 		local_irq_disable();
5477 		clist = sd->completion_queue;
5478 		sd->completion_queue = NULL;
5479 		local_irq_enable();
5480 
5481 		while (clist) {
5482 			struct sk_buff *skb = clist;
5483 
5484 			clist = clist->next;
5485 
5486 			WARN_ON(refcount_read(&skb->users));
5487 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5488 				trace_consume_skb(skb, net_tx_action);
5489 			else
5490 				trace_kfree_skb(skb, net_tx_action,
5491 						get_kfree_skb_cb(skb)->reason, NULL);
5492 
5493 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5494 				__kfree_skb(skb);
5495 			else
5496 				__napi_kfree_skb(skb,
5497 						 get_kfree_skb_cb(skb)->reason);
5498 		}
5499 	}
5500 
5501 	if (sd->output_queue) {
5502 		struct Qdisc *head;
5503 
5504 		local_irq_disable();
5505 		head = sd->output_queue;
5506 		sd->output_queue = NULL;
5507 		sd->output_queue_tailp = &sd->output_queue;
5508 		local_irq_enable();
5509 
5510 		rcu_read_lock();
5511 
5512 		while (head) {
5513 			struct Qdisc *q = head;
5514 			spinlock_t *root_lock = NULL;
5515 
5516 			head = head->next_sched;
5517 
5518 			/* We need to make sure head->next_sched is read
5519 			 * before clearing __QDISC_STATE_SCHED
5520 			 */
5521 			smp_mb__before_atomic();
5522 
5523 			if (!(q->flags & TCQ_F_NOLOCK)) {
5524 				root_lock = qdisc_lock(q);
5525 				spin_lock(root_lock);
5526 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5527 						     &q->state))) {
5528 				/* There is a synchronize_net() between
5529 				 * STATE_DEACTIVATED flag being set and
5530 				 * qdisc_reset()/some_qdisc_is_busy() in
5531 				 * dev_deactivate(), so we can safely bail out
5532 				 * early here to avoid data race between
5533 				 * qdisc_deactivate() and some_qdisc_is_busy()
5534 				 * for lockless qdisc.
5535 				 */
5536 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5537 				continue;
5538 			}
5539 
5540 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5541 			qdisc_run(q);
5542 			if (root_lock)
5543 				spin_unlock(root_lock);
5544 		}
5545 
5546 		rcu_read_unlock();
5547 	}
5548 
5549 	xfrm_dev_backlog(sd);
5550 }
5551 
5552 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5553 /* This hook is defined here for ATM LANE */
5554 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5555 			     unsigned char *addr) __read_mostly;
5556 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5557 #endif
5558 
5559 /**
5560  *	netdev_is_rx_handler_busy - check if receive handler is registered
5561  *	@dev: device to check
5562  *
5563  *	Check if a receive handler is already registered for a given device.
5564  *	Return true if there one.
5565  *
5566  *	The caller must hold the rtnl_mutex.
5567  */
netdev_is_rx_handler_busy(struct net_device * dev)5568 bool netdev_is_rx_handler_busy(struct net_device *dev)
5569 {
5570 	ASSERT_RTNL();
5571 	return dev && rtnl_dereference(dev->rx_handler);
5572 }
5573 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5574 
5575 /**
5576  *	netdev_rx_handler_register - register receive handler
5577  *	@dev: device to register a handler for
5578  *	@rx_handler: receive handler to register
5579  *	@rx_handler_data: data pointer that is used by rx handler
5580  *
5581  *	Register a receive handler for a device. This handler will then be
5582  *	called from __netif_receive_skb. A negative errno code is returned
5583  *	on a failure.
5584  *
5585  *	The caller must hold the rtnl_mutex.
5586  *
5587  *	For a general description of rx_handler, see enum rx_handler_result.
5588  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5589 int netdev_rx_handler_register(struct net_device *dev,
5590 			       rx_handler_func_t *rx_handler,
5591 			       void *rx_handler_data)
5592 {
5593 	if (netdev_is_rx_handler_busy(dev))
5594 		return -EBUSY;
5595 
5596 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5597 		return -EINVAL;
5598 
5599 	/* Note: rx_handler_data must be set before rx_handler */
5600 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5601 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5602 
5603 	return 0;
5604 }
5605 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5606 
5607 /**
5608  *	netdev_rx_handler_unregister - unregister receive handler
5609  *	@dev: device to unregister a handler from
5610  *
5611  *	Unregister a receive handler from a device.
5612  *
5613  *	The caller must hold the rtnl_mutex.
5614  */
netdev_rx_handler_unregister(struct net_device * dev)5615 void netdev_rx_handler_unregister(struct net_device *dev)
5616 {
5617 
5618 	ASSERT_RTNL();
5619 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5620 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5621 	 * section has a guarantee to see a non NULL rx_handler_data
5622 	 * as well.
5623 	 */
5624 	synchronize_net();
5625 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5626 }
5627 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5628 
5629 /*
5630  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5631  * the special handling of PFMEMALLOC skbs.
5632  */
skb_pfmemalloc_protocol(struct sk_buff * skb)5633 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5634 {
5635 	switch (skb->protocol) {
5636 	case htons(ETH_P_ARP):
5637 	case htons(ETH_P_IP):
5638 	case htons(ETH_P_IPV6):
5639 	case htons(ETH_P_8021Q):
5640 	case htons(ETH_P_8021AD):
5641 		return true;
5642 	default:
5643 		return false;
5644 	}
5645 }
5646 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5647 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5648 			     int *ret, struct net_device *orig_dev)
5649 {
5650 	if (nf_hook_ingress_active(skb)) {
5651 		int ingress_retval;
5652 
5653 		if (*pt_prev) {
5654 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5655 			*pt_prev = NULL;
5656 		}
5657 
5658 		rcu_read_lock();
5659 		ingress_retval = nf_hook_ingress(skb);
5660 		rcu_read_unlock();
5661 		return ingress_retval;
5662 	}
5663 	return 0;
5664 }
5665 
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5666 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5667 				    struct packet_type **ppt_prev)
5668 {
5669 	struct packet_type *ptype, *pt_prev;
5670 	rx_handler_func_t *rx_handler;
5671 	struct sk_buff *skb = *pskb;
5672 	struct net_device *orig_dev;
5673 	bool deliver_exact = false;
5674 	int ret = NET_RX_DROP;
5675 	__be16 type;
5676 
5677 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5678 
5679 	trace_netif_receive_skb(skb);
5680 
5681 	orig_dev = skb->dev;
5682 
5683 	skb_reset_network_header(skb);
5684 #if !defined(CONFIG_DEBUG_NET)
5685 	/* We plan to no longer reset the transport header here.
5686 	 * Give some time to fuzzers and dev build to catch bugs
5687 	 * in network stacks.
5688 	 */
5689 	if (!skb_transport_header_was_set(skb))
5690 		skb_reset_transport_header(skb);
5691 #endif
5692 	skb_reset_mac_len(skb);
5693 
5694 	pt_prev = NULL;
5695 
5696 another_round:
5697 	skb->skb_iif = skb->dev->ifindex;
5698 
5699 	__this_cpu_inc(softnet_data.processed);
5700 
5701 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5702 		int ret2;
5703 
5704 		migrate_disable();
5705 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5706 				      &skb);
5707 		migrate_enable();
5708 
5709 		if (ret2 != XDP_PASS) {
5710 			ret = NET_RX_DROP;
5711 			goto out;
5712 		}
5713 	}
5714 
5715 	if (eth_type_vlan(skb->protocol)) {
5716 		skb = skb_vlan_untag(skb);
5717 		if (unlikely(!skb))
5718 			goto out;
5719 	}
5720 
5721 	if (skb_skip_tc_classify(skb))
5722 		goto skip_classify;
5723 
5724 	if (pfmemalloc)
5725 		goto skip_taps;
5726 
5727 	list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5728 				list) {
5729 		if (pt_prev)
5730 			ret = deliver_skb(skb, pt_prev, orig_dev);
5731 		pt_prev = ptype;
5732 	}
5733 
5734 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5735 		if (pt_prev)
5736 			ret = deliver_skb(skb, pt_prev, orig_dev);
5737 		pt_prev = ptype;
5738 	}
5739 
5740 skip_taps:
5741 #ifdef CONFIG_NET_INGRESS
5742 	if (static_branch_unlikely(&ingress_needed_key)) {
5743 		bool another = false;
5744 
5745 		nf_skip_egress(skb, true);
5746 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5747 					 &another);
5748 		if (another)
5749 			goto another_round;
5750 		if (!skb)
5751 			goto out;
5752 
5753 		nf_skip_egress(skb, false);
5754 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5755 			goto out;
5756 	}
5757 #endif
5758 	skb_reset_redirect(skb);
5759 skip_classify:
5760 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5761 		goto drop;
5762 
5763 	if (skb_vlan_tag_present(skb)) {
5764 		if (pt_prev) {
5765 			ret = deliver_skb(skb, pt_prev, orig_dev);
5766 			pt_prev = NULL;
5767 		}
5768 		if (vlan_do_receive(&skb))
5769 			goto another_round;
5770 		else if (unlikely(!skb))
5771 			goto out;
5772 	}
5773 
5774 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5775 	if (rx_handler) {
5776 		if (pt_prev) {
5777 			ret = deliver_skb(skb, pt_prev, orig_dev);
5778 			pt_prev = NULL;
5779 		}
5780 		switch (rx_handler(&skb)) {
5781 		case RX_HANDLER_CONSUMED:
5782 			ret = NET_RX_SUCCESS;
5783 			goto out;
5784 		case RX_HANDLER_ANOTHER:
5785 			goto another_round;
5786 		case RX_HANDLER_EXACT:
5787 			deliver_exact = true;
5788 			break;
5789 		case RX_HANDLER_PASS:
5790 			break;
5791 		default:
5792 			BUG();
5793 		}
5794 	}
5795 
5796 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5797 check_vlan_id:
5798 		if (skb_vlan_tag_get_id(skb)) {
5799 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5800 			 * find vlan device.
5801 			 */
5802 			skb->pkt_type = PACKET_OTHERHOST;
5803 		} else if (eth_type_vlan(skb->protocol)) {
5804 			/* Outer header is 802.1P with vlan 0, inner header is
5805 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5806 			 * not find vlan dev for vlan id 0.
5807 			 */
5808 			__vlan_hwaccel_clear_tag(skb);
5809 			skb = skb_vlan_untag(skb);
5810 			if (unlikely(!skb))
5811 				goto out;
5812 			if (vlan_do_receive(&skb))
5813 				/* After stripping off 802.1P header with vlan 0
5814 				 * vlan dev is found for inner header.
5815 				 */
5816 				goto another_round;
5817 			else if (unlikely(!skb))
5818 				goto out;
5819 			else
5820 				/* We have stripped outer 802.1P vlan 0 header.
5821 				 * But could not find vlan dev.
5822 				 * check again for vlan id to set OTHERHOST.
5823 				 */
5824 				goto check_vlan_id;
5825 		}
5826 		/* Note: we might in the future use prio bits
5827 		 * and set skb->priority like in vlan_do_receive()
5828 		 * For the time being, just ignore Priority Code Point
5829 		 */
5830 		__vlan_hwaccel_clear_tag(skb);
5831 	}
5832 
5833 	type = skb->protocol;
5834 
5835 	/* deliver only exact match when indicated */
5836 	if (likely(!deliver_exact)) {
5837 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5838 				       &ptype_base[ntohs(type) &
5839 						   PTYPE_HASH_MASK]);
5840 
5841 		/* orig_dev and skb->dev could belong to different netns;
5842 		 * Even in such case we need to traverse only the list
5843 		 * coming from skb->dev, as the ptype owner (packet socket)
5844 		 * will use dev_net(skb->dev) to do namespace filtering.
5845 		 */
5846 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5847 				       &dev_net_rcu(skb->dev)->ptype_specific);
5848 	}
5849 
5850 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5851 			       &orig_dev->ptype_specific);
5852 
5853 	if (unlikely(skb->dev != orig_dev)) {
5854 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5855 				       &skb->dev->ptype_specific);
5856 	}
5857 
5858 	if (pt_prev) {
5859 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5860 			goto drop;
5861 		*ppt_prev = pt_prev;
5862 	} else {
5863 drop:
5864 		if (!deliver_exact)
5865 			dev_core_stats_rx_dropped_inc(skb->dev);
5866 		else
5867 			dev_core_stats_rx_nohandler_inc(skb->dev);
5868 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5869 		/* Jamal, now you will not able to escape explaining
5870 		 * me how you were going to use this. :-)
5871 		 */
5872 		ret = NET_RX_DROP;
5873 	}
5874 
5875 out:
5876 	/* The invariant here is that if *ppt_prev is not NULL
5877 	 * then skb should also be non-NULL.
5878 	 *
5879 	 * Apparently *ppt_prev assignment above holds this invariant due to
5880 	 * skb dereferencing near it.
5881 	 */
5882 	*pskb = skb;
5883 	return ret;
5884 }
5885 
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5886 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5887 {
5888 	struct net_device *orig_dev = skb->dev;
5889 	struct packet_type *pt_prev = NULL;
5890 	int ret;
5891 
5892 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5893 	if (pt_prev)
5894 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5895 					 skb->dev, pt_prev, orig_dev);
5896 	return ret;
5897 }
5898 
5899 /**
5900  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5901  *	@skb: buffer to process
5902  *
5903  *	More direct receive version of netif_receive_skb().  It should
5904  *	only be used by callers that have a need to skip RPS and Generic XDP.
5905  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5906  *
5907  *	This function may only be called from softirq context and interrupts
5908  *	should be enabled.
5909  *
5910  *	Return values (usually ignored):
5911  *	NET_RX_SUCCESS: no congestion
5912  *	NET_RX_DROP: packet was dropped
5913  */
netif_receive_skb_core(struct sk_buff * skb)5914 int netif_receive_skb_core(struct sk_buff *skb)
5915 {
5916 	int ret;
5917 
5918 	rcu_read_lock();
5919 	ret = __netif_receive_skb_one_core(skb, false);
5920 	rcu_read_unlock();
5921 
5922 	return ret;
5923 }
5924 EXPORT_SYMBOL(netif_receive_skb_core);
5925 
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5926 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5927 						  struct packet_type *pt_prev,
5928 						  struct net_device *orig_dev)
5929 {
5930 	struct sk_buff *skb, *next;
5931 
5932 	if (!pt_prev)
5933 		return;
5934 	if (list_empty(head))
5935 		return;
5936 	if (pt_prev->list_func != NULL)
5937 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5938 				   ip_list_rcv, head, pt_prev, orig_dev);
5939 	else
5940 		list_for_each_entry_safe(skb, next, head, list) {
5941 			skb_list_del_init(skb);
5942 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5943 		}
5944 }
5945 
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5946 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5947 {
5948 	/* Fast-path assumptions:
5949 	 * - There is no RX handler.
5950 	 * - Only one packet_type matches.
5951 	 * If either of these fails, we will end up doing some per-packet
5952 	 * processing in-line, then handling the 'last ptype' for the whole
5953 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5954 	 * because the 'last ptype' must be constant across the sublist, and all
5955 	 * other ptypes are handled per-packet.
5956 	 */
5957 	/* Current (common) ptype of sublist */
5958 	struct packet_type *pt_curr = NULL;
5959 	/* Current (common) orig_dev of sublist */
5960 	struct net_device *od_curr = NULL;
5961 	struct sk_buff *skb, *next;
5962 	LIST_HEAD(sublist);
5963 
5964 	list_for_each_entry_safe(skb, next, head, list) {
5965 		struct net_device *orig_dev = skb->dev;
5966 		struct packet_type *pt_prev = NULL;
5967 
5968 		skb_list_del_init(skb);
5969 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5970 		if (!pt_prev)
5971 			continue;
5972 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5973 			/* dispatch old sublist */
5974 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5975 			/* start new sublist */
5976 			INIT_LIST_HEAD(&sublist);
5977 			pt_curr = pt_prev;
5978 			od_curr = orig_dev;
5979 		}
5980 		list_add_tail(&skb->list, &sublist);
5981 	}
5982 
5983 	/* dispatch final sublist */
5984 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5985 }
5986 
__netif_receive_skb(struct sk_buff * skb)5987 static int __netif_receive_skb(struct sk_buff *skb)
5988 {
5989 	int ret;
5990 
5991 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5992 		unsigned int noreclaim_flag;
5993 
5994 		/*
5995 		 * PFMEMALLOC skbs are special, they should
5996 		 * - be delivered to SOCK_MEMALLOC sockets only
5997 		 * - stay away from userspace
5998 		 * - have bounded memory usage
5999 		 *
6000 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
6001 		 * context down to all allocation sites.
6002 		 */
6003 		noreclaim_flag = memalloc_noreclaim_save();
6004 		ret = __netif_receive_skb_one_core(skb, true);
6005 		memalloc_noreclaim_restore(noreclaim_flag);
6006 	} else
6007 		ret = __netif_receive_skb_one_core(skb, false);
6008 
6009 	return ret;
6010 }
6011 
__netif_receive_skb_list(struct list_head * head)6012 static void __netif_receive_skb_list(struct list_head *head)
6013 {
6014 	unsigned long noreclaim_flag = 0;
6015 	struct sk_buff *skb, *next;
6016 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6017 
6018 	list_for_each_entry_safe(skb, next, head, list) {
6019 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6020 			struct list_head sublist;
6021 
6022 			/* Handle the previous sublist */
6023 			list_cut_before(&sublist, head, &skb->list);
6024 			if (!list_empty(&sublist))
6025 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6026 			pfmemalloc = !pfmemalloc;
6027 			/* See comments in __netif_receive_skb */
6028 			if (pfmemalloc)
6029 				noreclaim_flag = memalloc_noreclaim_save();
6030 			else
6031 				memalloc_noreclaim_restore(noreclaim_flag);
6032 		}
6033 	}
6034 	/* Handle the remaining sublist */
6035 	if (!list_empty(head))
6036 		__netif_receive_skb_list_core(head, pfmemalloc);
6037 	/* Restore pflags */
6038 	if (pfmemalloc)
6039 		memalloc_noreclaim_restore(noreclaim_flag);
6040 }
6041 
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)6042 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6043 {
6044 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6045 	struct bpf_prog *new = xdp->prog;
6046 	int ret = 0;
6047 
6048 	switch (xdp->command) {
6049 	case XDP_SETUP_PROG:
6050 		rcu_assign_pointer(dev->xdp_prog, new);
6051 		if (old)
6052 			bpf_prog_put(old);
6053 
6054 		if (old && !new) {
6055 			static_branch_dec(&generic_xdp_needed_key);
6056 		} else if (new && !old) {
6057 			static_branch_inc(&generic_xdp_needed_key);
6058 			netif_disable_lro(dev);
6059 			dev_disable_gro_hw(dev);
6060 		}
6061 		break;
6062 
6063 	default:
6064 		ret = -EINVAL;
6065 		break;
6066 	}
6067 
6068 	return ret;
6069 }
6070 
netif_receive_skb_internal(struct sk_buff * skb)6071 static int netif_receive_skb_internal(struct sk_buff *skb)
6072 {
6073 	int ret;
6074 
6075 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6076 
6077 	if (skb_defer_rx_timestamp(skb))
6078 		return NET_RX_SUCCESS;
6079 
6080 	rcu_read_lock();
6081 #ifdef CONFIG_RPS
6082 	if (static_branch_unlikely(&rps_needed)) {
6083 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6084 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6085 
6086 		if (cpu >= 0) {
6087 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6088 			rcu_read_unlock();
6089 			return ret;
6090 		}
6091 	}
6092 #endif
6093 	ret = __netif_receive_skb(skb);
6094 	rcu_read_unlock();
6095 	return ret;
6096 }
6097 
netif_receive_skb_list_internal(struct list_head * head)6098 void netif_receive_skb_list_internal(struct list_head *head)
6099 {
6100 	struct sk_buff *skb, *next;
6101 	LIST_HEAD(sublist);
6102 
6103 	list_for_each_entry_safe(skb, next, head, list) {
6104 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6105 				    skb);
6106 		skb_list_del_init(skb);
6107 		if (!skb_defer_rx_timestamp(skb))
6108 			list_add_tail(&skb->list, &sublist);
6109 	}
6110 	list_splice_init(&sublist, head);
6111 
6112 	rcu_read_lock();
6113 #ifdef CONFIG_RPS
6114 	if (static_branch_unlikely(&rps_needed)) {
6115 		list_for_each_entry_safe(skb, next, head, list) {
6116 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6117 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6118 
6119 			if (cpu >= 0) {
6120 				/* Will be handled, remove from list */
6121 				skb_list_del_init(skb);
6122 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6123 			}
6124 		}
6125 	}
6126 #endif
6127 	__netif_receive_skb_list(head);
6128 	rcu_read_unlock();
6129 }
6130 
6131 /**
6132  *	netif_receive_skb - process receive buffer from network
6133  *	@skb: buffer to process
6134  *
6135  *	netif_receive_skb() is the main receive data processing function.
6136  *	It always succeeds. The buffer may be dropped during processing
6137  *	for congestion control or by the protocol layers.
6138  *
6139  *	This function may only be called from softirq context and interrupts
6140  *	should be enabled.
6141  *
6142  *	Return values (usually ignored):
6143  *	NET_RX_SUCCESS: no congestion
6144  *	NET_RX_DROP: packet was dropped
6145  */
netif_receive_skb(struct sk_buff * skb)6146 int netif_receive_skb(struct sk_buff *skb)
6147 {
6148 	int ret;
6149 
6150 	trace_netif_receive_skb_entry(skb);
6151 
6152 	ret = netif_receive_skb_internal(skb);
6153 	trace_netif_receive_skb_exit(ret);
6154 
6155 	return ret;
6156 }
6157 EXPORT_SYMBOL(netif_receive_skb);
6158 
6159 /**
6160  *	netif_receive_skb_list - process many receive buffers from network
6161  *	@head: list of skbs to process.
6162  *
6163  *	Since return value of netif_receive_skb() is normally ignored, and
6164  *	wouldn't be meaningful for a list, this function returns void.
6165  *
6166  *	This function may only be called from softirq context and interrupts
6167  *	should be enabled.
6168  */
netif_receive_skb_list(struct list_head * head)6169 void netif_receive_skb_list(struct list_head *head)
6170 {
6171 	struct sk_buff *skb;
6172 
6173 	if (list_empty(head))
6174 		return;
6175 	if (trace_netif_receive_skb_list_entry_enabled()) {
6176 		list_for_each_entry(skb, head, list)
6177 			trace_netif_receive_skb_list_entry(skb);
6178 	}
6179 	netif_receive_skb_list_internal(head);
6180 	trace_netif_receive_skb_list_exit(0);
6181 }
6182 EXPORT_SYMBOL(netif_receive_skb_list);
6183 
6184 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6185 static void flush_backlog(struct work_struct *work)
6186 {
6187 	struct sk_buff *skb, *tmp;
6188 	struct sk_buff_head list;
6189 	struct softnet_data *sd;
6190 
6191 	__skb_queue_head_init(&list);
6192 	local_bh_disable();
6193 	sd = this_cpu_ptr(&softnet_data);
6194 
6195 	backlog_lock_irq_disable(sd);
6196 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6197 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6198 			__skb_unlink(skb, &sd->input_pkt_queue);
6199 			__skb_queue_tail(&list, skb);
6200 			rps_input_queue_head_incr(sd);
6201 		}
6202 	}
6203 	backlog_unlock_irq_enable(sd);
6204 
6205 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6206 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6207 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6208 			__skb_unlink(skb, &sd->process_queue);
6209 			__skb_queue_tail(&list, skb);
6210 			rps_input_queue_head_incr(sd);
6211 		}
6212 	}
6213 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6214 	local_bh_enable();
6215 
6216 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6217 }
6218 
flush_required(int cpu)6219 static bool flush_required(int cpu)
6220 {
6221 #if IS_ENABLED(CONFIG_RPS)
6222 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6223 	bool do_flush;
6224 
6225 	backlog_lock_irq_disable(sd);
6226 
6227 	/* as insertion into process_queue happens with the rps lock held,
6228 	 * process_queue access may race only with dequeue
6229 	 */
6230 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6231 		   !skb_queue_empty_lockless(&sd->process_queue);
6232 	backlog_unlock_irq_enable(sd);
6233 
6234 	return do_flush;
6235 #endif
6236 	/* without RPS we can't safely check input_pkt_queue: during a
6237 	 * concurrent remote skb_queue_splice() we can detect as empty both
6238 	 * input_pkt_queue and process_queue even if the latter could end-up
6239 	 * containing a lot of packets.
6240 	 */
6241 	return true;
6242 }
6243 
6244 struct flush_backlogs {
6245 	cpumask_t		flush_cpus;
6246 	struct work_struct	w[];
6247 };
6248 
flush_backlogs_alloc(void)6249 static struct flush_backlogs *flush_backlogs_alloc(void)
6250 {
6251 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6252 		       GFP_KERNEL);
6253 }
6254 
6255 static struct flush_backlogs *flush_backlogs_fallback;
6256 static DEFINE_MUTEX(flush_backlogs_mutex);
6257 
flush_all_backlogs(void)6258 static void flush_all_backlogs(void)
6259 {
6260 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6261 	unsigned int cpu;
6262 
6263 	if (!ptr) {
6264 		mutex_lock(&flush_backlogs_mutex);
6265 		ptr = flush_backlogs_fallback;
6266 	}
6267 	cpumask_clear(&ptr->flush_cpus);
6268 
6269 	cpus_read_lock();
6270 
6271 	for_each_online_cpu(cpu) {
6272 		if (flush_required(cpu)) {
6273 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6274 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6275 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6276 		}
6277 	}
6278 
6279 	/* we can have in flight packet[s] on the cpus we are not flushing,
6280 	 * synchronize_net() in unregister_netdevice_many() will take care of
6281 	 * them.
6282 	 */
6283 	for_each_cpu(cpu, &ptr->flush_cpus)
6284 		flush_work(&ptr->w[cpu]);
6285 
6286 	cpus_read_unlock();
6287 
6288 	if (ptr != flush_backlogs_fallback)
6289 		kfree(ptr);
6290 	else
6291 		mutex_unlock(&flush_backlogs_mutex);
6292 }
6293 
net_rps_send_ipi(struct softnet_data * remsd)6294 static void net_rps_send_ipi(struct softnet_data *remsd)
6295 {
6296 #ifdef CONFIG_RPS
6297 	while (remsd) {
6298 		struct softnet_data *next = remsd->rps_ipi_next;
6299 
6300 		if (cpu_online(remsd->cpu))
6301 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6302 		remsd = next;
6303 	}
6304 #endif
6305 }
6306 
6307 /*
6308  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6309  * Note: called with local irq disabled, but exits with local irq enabled.
6310  */
net_rps_action_and_irq_enable(struct softnet_data * sd)6311 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6312 {
6313 #ifdef CONFIG_RPS
6314 	struct softnet_data *remsd = sd->rps_ipi_list;
6315 
6316 	if (!use_backlog_threads() && remsd) {
6317 		sd->rps_ipi_list = NULL;
6318 
6319 		local_irq_enable();
6320 
6321 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6322 		net_rps_send_ipi(remsd);
6323 	} else
6324 #endif
6325 		local_irq_enable();
6326 }
6327 
sd_has_rps_ipi_waiting(struct softnet_data * sd)6328 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6329 {
6330 #ifdef CONFIG_RPS
6331 	return !use_backlog_threads() && sd->rps_ipi_list;
6332 #else
6333 	return false;
6334 #endif
6335 }
6336 
process_backlog(struct napi_struct * napi,int quota)6337 static int process_backlog(struct napi_struct *napi, int quota)
6338 {
6339 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6340 	bool again = true;
6341 	int work = 0;
6342 
6343 	/* Check if we have pending ipi, its better to send them now,
6344 	 * not waiting net_rx_action() end.
6345 	 */
6346 	if (sd_has_rps_ipi_waiting(sd)) {
6347 		local_irq_disable();
6348 		net_rps_action_and_irq_enable(sd);
6349 	}
6350 
6351 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6352 	while (again) {
6353 		struct sk_buff *skb;
6354 
6355 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6356 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6357 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6358 			rcu_read_lock();
6359 			__netif_receive_skb(skb);
6360 			rcu_read_unlock();
6361 			if (++work >= quota) {
6362 				rps_input_queue_head_add(sd, work);
6363 				return work;
6364 			}
6365 
6366 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6367 		}
6368 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6369 
6370 		backlog_lock_irq_disable(sd);
6371 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6372 			/*
6373 			 * Inline a custom version of __napi_complete().
6374 			 * only current cpu owns and manipulates this napi,
6375 			 * and NAPI_STATE_SCHED is the only possible flag set
6376 			 * on backlog.
6377 			 * We can use a plain write instead of clear_bit(),
6378 			 * and we dont need an smp_mb() memory barrier.
6379 			 */
6380 			napi->state &= NAPIF_STATE_THREADED;
6381 			again = false;
6382 		} else {
6383 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6384 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6385 						   &sd->process_queue);
6386 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6387 		}
6388 		backlog_unlock_irq_enable(sd);
6389 	}
6390 
6391 	if (work)
6392 		rps_input_queue_head_add(sd, work);
6393 	return work;
6394 }
6395 
6396 /**
6397  * __napi_schedule - schedule for receive
6398  * @n: entry to schedule
6399  *
6400  * The entry's receive function will be scheduled to run.
6401  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6402  */
__napi_schedule(struct napi_struct * n)6403 void __napi_schedule(struct napi_struct *n)
6404 {
6405 	unsigned long flags;
6406 
6407 	local_irq_save(flags);
6408 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6409 	local_irq_restore(flags);
6410 }
6411 EXPORT_SYMBOL(__napi_schedule);
6412 
6413 /**
6414  *	napi_schedule_prep - check if napi can be scheduled
6415  *	@n: napi context
6416  *
6417  * Test if NAPI routine is already running, and if not mark
6418  * it as running.  This is used as a condition variable to
6419  * insure only one NAPI poll instance runs.  We also make
6420  * sure there is no pending NAPI disable.
6421  */
napi_schedule_prep(struct napi_struct * n)6422 bool napi_schedule_prep(struct napi_struct *n)
6423 {
6424 	unsigned long new, val = READ_ONCE(n->state);
6425 
6426 	do {
6427 		if (unlikely(val & NAPIF_STATE_DISABLE))
6428 			return false;
6429 		new = val | NAPIF_STATE_SCHED;
6430 
6431 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6432 		 * This was suggested by Alexander Duyck, as compiler
6433 		 * emits better code than :
6434 		 * if (val & NAPIF_STATE_SCHED)
6435 		 *     new |= NAPIF_STATE_MISSED;
6436 		 */
6437 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6438 						   NAPIF_STATE_MISSED;
6439 	} while (!try_cmpxchg(&n->state, &val, new));
6440 
6441 	return !(val & NAPIF_STATE_SCHED);
6442 }
6443 EXPORT_SYMBOL(napi_schedule_prep);
6444 
6445 /**
6446  * __napi_schedule_irqoff - schedule for receive
6447  * @n: entry to schedule
6448  *
6449  * Variant of __napi_schedule() assuming hard irqs are masked.
6450  *
6451  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6452  * because the interrupt disabled assumption might not be true
6453  * due to force-threaded interrupts and spinlock substitution.
6454  */
__napi_schedule_irqoff(struct napi_struct * n)6455 void __napi_schedule_irqoff(struct napi_struct *n)
6456 {
6457 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6458 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6459 	else
6460 		__napi_schedule(n);
6461 }
6462 EXPORT_SYMBOL(__napi_schedule_irqoff);
6463 
napi_complete_done(struct napi_struct * n,int work_done)6464 bool napi_complete_done(struct napi_struct *n, int work_done)
6465 {
6466 	unsigned long flags, val, new, timeout = 0;
6467 	bool ret = true;
6468 
6469 	/*
6470 	 * 1) Don't let napi dequeue from the cpu poll list
6471 	 *    just in case its running on a different cpu.
6472 	 * 2) If we are busy polling, do nothing here, we have
6473 	 *    the guarantee we will be called later.
6474 	 */
6475 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6476 				 NAPIF_STATE_IN_BUSY_POLL)))
6477 		return false;
6478 
6479 	if (work_done) {
6480 		if (n->gro.bitmask)
6481 			timeout = napi_get_gro_flush_timeout(n);
6482 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6483 	}
6484 	if (n->defer_hard_irqs_count > 0) {
6485 		n->defer_hard_irqs_count--;
6486 		timeout = napi_get_gro_flush_timeout(n);
6487 		if (timeout)
6488 			ret = false;
6489 	}
6490 
6491 	/*
6492 	 * When the NAPI instance uses a timeout and keeps postponing
6493 	 * it, we need to bound somehow the time packets are kept in
6494 	 * the GRO layer.
6495 	 */
6496 	gro_flush(&n->gro, !!timeout);
6497 	gro_normal_list(&n->gro);
6498 
6499 	if (unlikely(!list_empty(&n->poll_list))) {
6500 		/* If n->poll_list is not empty, we need to mask irqs */
6501 		local_irq_save(flags);
6502 		list_del_init(&n->poll_list);
6503 		local_irq_restore(flags);
6504 	}
6505 	WRITE_ONCE(n->list_owner, -1);
6506 
6507 	val = READ_ONCE(n->state);
6508 	do {
6509 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6510 
6511 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6512 			      NAPIF_STATE_SCHED_THREADED |
6513 			      NAPIF_STATE_PREFER_BUSY_POLL);
6514 
6515 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6516 		 * because we will call napi->poll() one more time.
6517 		 * This C code was suggested by Alexander Duyck to help gcc.
6518 		 */
6519 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6520 						    NAPIF_STATE_SCHED;
6521 	} while (!try_cmpxchg(&n->state, &val, new));
6522 
6523 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6524 		__napi_schedule(n);
6525 		return false;
6526 	}
6527 
6528 	if (timeout)
6529 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6530 			      HRTIMER_MODE_REL_PINNED);
6531 	return ret;
6532 }
6533 EXPORT_SYMBOL(napi_complete_done);
6534 
skb_defer_free_flush(struct softnet_data * sd)6535 static void skb_defer_free_flush(struct softnet_data *sd)
6536 {
6537 	struct sk_buff *skb, *next;
6538 
6539 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6540 	if (!READ_ONCE(sd->defer_list))
6541 		return;
6542 
6543 	spin_lock(&sd->defer_lock);
6544 	skb = sd->defer_list;
6545 	sd->defer_list = NULL;
6546 	sd->defer_count = 0;
6547 	spin_unlock(&sd->defer_lock);
6548 
6549 	while (skb != NULL) {
6550 		next = skb->next;
6551 		napi_consume_skb(skb, 1);
6552 		skb = next;
6553 	}
6554 }
6555 
6556 #if defined(CONFIG_NET_RX_BUSY_POLL)
6557 
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6558 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6559 {
6560 	if (!skip_schedule) {
6561 		gro_normal_list(&napi->gro);
6562 		__napi_schedule(napi);
6563 		return;
6564 	}
6565 
6566 	/* Flush too old packets. If HZ < 1000, flush all packets */
6567 	gro_flush(&napi->gro, HZ >= 1000);
6568 	gro_normal_list(&napi->gro);
6569 
6570 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6571 }
6572 
6573 enum {
6574 	NAPI_F_PREFER_BUSY_POLL	= 1,
6575 	NAPI_F_END_ON_RESCHED	= 2,
6576 };
6577 
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6578 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6579 			   unsigned flags, u16 budget)
6580 {
6581 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6582 	bool skip_schedule = false;
6583 	unsigned long timeout;
6584 	int rc;
6585 
6586 	/* Busy polling means there is a high chance device driver hard irq
6587 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6588 	 * set in napi_schedule_prep().
6589 	 * Since we are about to call napi->poll() once more, we can safely
6590 	 * clear NAPI_STATE_MISSED.
6591 	 *
6592 	 * Note: x86 could use a single "lock and ..." instruction
6593 	 * to perform these two clear_bit()
6594 	 */
6595 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6596 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6597 
6598 	local_bh_disable();
6599 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6600 
6601 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6602 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6603 		timeout = napi_get_gro_flush_timeout(napi);
6604 		if (napi->defer_hard_irqs_count && timeout) {
6605 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6606 			skip_schedule = true;
6607 		}
6608 	}
6609 
6610 	/* All we really want here is to re-enable device interrupts.
6611 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6612 	 */
6613 	rc = napi->poll(napi, budget);
6614 	/* We can't gro_normal_list() here, because napi->poll() might have
6615 	 * rearmed the napi (napi_complete_done()) in which case it could
6616 	 * already be running on another CPU.
6617 	 */
6618 	trace_napi_poll(napi, rc, budget);
6619 	netpoll_poll_unlock(have_poll_lock);
6620 	if (rc == budget)
6621 		__busy_poll_stop(napi, skip_schedule);
6622 	bpf_net_ctx_clear(bpf_net_ctx);
6623 	local_bh_enable();
6624 }
6625 
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6626 static void __napi_busy_loop(unsigned int napi_id,
6627 		      bool (*loop_end)(void *, unsigned long),
6628 		      void *loop_end_arg, unsigned flags, u16 budget)
6629 {
6630 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6631 	int (*napi_poll)(struct napi_struct *napi, int budget);
6632 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6633 	void *have_poll_lock = NULL;
6634 	struct napi_struct *napi;
6635 
6636 	WARN_ON_ONCE(!rcu_read_lock_held());
6637 
6638 restart:
6639 	napi_poll = NULL;
6640 
6641 	napi = napi_by_id(napi_id);
6642 	if (!napi)
6643 		return;
6644 
6645 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6646 		preempt_disable();
6647 	for (;;) {
6648 		int work = 0;
6649 
6650 		local_bh_disable();
6651 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6652 		if (!napi_poll) {
6653 			unsigned long val = READ_ONCE(napi->state);
6654 
6655 			/* If multiple threads are competing for this napi,
6656 			 * we avoid dirtying napi->state as much as we can.
6657 			 */
6658 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6659 				   NAPIF_STATE_IN_BUSY_POLL)) {
6660 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6661 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6662 				goto count;
6663 			}
6664 			if (cmpxchg(&napi->state, val,
6665 				    val | NAPIF_STATE_IN_BUSY_POLL |
6666 					  NAPIF_STATE_SCHED) != val) {
6667 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6668 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6669 				goto count;
6670 			}
6671 			have_poll_lock = netpoll_poll_lock(napi);
6672 			napi_poll = napi->poll;
6673 		}
6674 		work = napi_poll(napi, budget);
6675 		trace_napi_poll(napi, work, budget);
6676 		gro_normal_list(&napi->gro);
6677 count:
6678 		if (work > 0)
6679 			__NET_ADD_STATS(dev_net(napi->dev),
6680 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6681 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6682 		bpf_net_ctx_clear(bpf_net_ctx);
6683 		local_bh_enable();
6684 
6685 		if (!loop_end || loop_end(loop_end_arg, start_time))
6686 			break;
6687 
6688 		if (unlikely(need_resched())) {
6689 			if (flags & NAPI_F_END_ON_RESCHED)
6690 				break;
6691 			if (napi_poll)
6692 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6693 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6694 				preempt_enable();
6695 			rcu_read_unlock();
6696 			cond_resched();
6697 			rcu_read_lock();
6698 			if (loop_end(loop_end_arg, start_time))
6699 				return;
6700 			goto restart;
6701 		}
6702 		cpu_relax();
6703 	}
6704 	if (napi_poll)
6705 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6706 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6707 		preempt_enable();
6708 }
6709 
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6710 void napi_busy_loop_rcu(unsigned int napi_id,
6711 			bool (*loop_end)(void *, unsigned long),
6712 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6713 {
6714 	unsigned flags = NAPI_F_END_ON_RESCHED;
6715 
6716 	if (prefer_busy_poll)
6717 		flags |= NAPI_F_PREFER_BUSY_POLL;
6718 
6719 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6720 }
6721 
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6722 void napi_busy_loop(unsigned int napi_id,
6723 		    bool (*loop_end)(void *, unsigned long),
6724 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6725 {
6726 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6727 
6728 	rcu_read_lock();
6729 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6730 	rcu_read_unlock();
6731 }
6732 EXPORT_SYMBOL(napi_busy_loop);
6733 
napi_suspend_irqs(unsigned int napi_id)6734 void napi_suspend_irqs(unsigned int napi_id)
6735 {
6736 	struct napi_struct *napi;
6737 
6738 	rcu_read_lock();
6739 	napi = napi_by_id(napi_id);
6740 	if (napi) {
6741 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6742 
6743 		if (timeout)
6744 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6745 				      HRTIMER_MODE_REL_PINNED);
6746 	}
6747 	rcu_read_unlock();
6748 }
6749 
napi_resume_irqs(unsigned int napi_id)6750 void napi_resume_irqs(unsigned int napi_id)
6751 {
6752 	struct napi_struct *napi;
6753 
6754 	rcu_read_lock();
6755 	napi = napi_by_id(napi_id);
6756 	if (napi) {
6757 		/* If irq_suspend_timeout is set to 0 between the call to
6758 		 * napi_suspend_irqs and now, the original value still
6759 		 * determines the safety timeout as intended and napi_watchdog
6760 		 * will resume irq processing.
6761 		 */
6762 		if (napi_get_irq_suspend_timeout(napi)) {
6763 			local_bh_disable();
6764 			napi_schedule(napi);
6765 			local_bh_enable();
6766 		}
6767 	}
6768 	rcu_read_unlock();
6769 }
6770 
6771 #endif /* CONFIG_NET_RX_BUSY_POLL */
6772 
__napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6773 static void __napi_hash_add_with_id(struct napi_struct *napi,
6774 				    unsigned int napi_id)
6775 {
6776 	napi->gro.cached_napi_id = napi_id;
6777 
6778 	WRITE_ONCE(napi->napi_id, napi_id);
6779 	hlist_add_head_rcu(&napi->napi_hash_node,
6780 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6781 }
6782 
napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6783 static void napi_hash_add_with_id(struct napi_struct *napi,
6784 				  unsigned int napi_id)
6785 {
6786 	unsigned long flags;
6787 
6788 	spin_lock_irqsave(&napi_hash_lock, flags);
6789 	WARN_ON_ONCE(napi_by_id(napi_id));
6790 	__napi_hash_add_with_id(napi, napi_id);
6791 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6792 }
6793 
napi_hash_add(struct napi_struct * napi)6794 static void napi_hash_add(struct napi_struct *napi)
6795 {
6796 	unsigned long flags;
6797 
6798 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6799 		return;
6800 
6801 	spin_lock_irqsave(&napi_hash_lock, flags);
6802 
6803 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6804 	do {
6805 		if (unlikely(!napi_id_valid(++napi_gen_id)))
6806 			napi_gen_id = MIN_NAPI_ID;
6807 	} while (napi_by_id(napi_gen_id));
6808 
6809 	__napi_hash_add_with_id(napi, napi_gen_id);
6810 
6811 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6812 }
6813 
6814 /* Warning : caller is responsible to make sure rcu grace period
6815  * is respected before freeing memory containing @napi
6816  */
napi_hash_del(struct napi_struct * napi)6817 static void napi_hash_del(struct napi_struct *napi)
6818 {
6819 	unsigned long flags;
6820 
6821 	spin_lock_irqsave(&napi_hash_lock, flags);
6822 
6823 	hlist_del_init_rcu(&napi->napi_hash_node);
6824 
6825 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6826 }
6827 
napi_watchdog(struct hrtimer * timer)6828 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6829 {
6830 	struct napi_struct *napi;
6831 
6832 	napi = container_of(timer, struct napi_struct, timer);
6833 
6834 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6835 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6836 	 */
6837 	if (!napi_disable_pending(napi) &&
6838 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6839 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6840 		__napi_schedule_irqoff(napi);
6841 	}
6842 
6843 	return HRTIMER_NORESTART;
6844 }
6845 
dev_set_threaded(struct net_device * dev,bool threaded)6846 int dev_set_threaded(struct net_device *dev, bool threaded)
6847 {
6848 	struct napi_struct *napi;
6849 	int err = 0;
6850 
6851 	netdev_assert_locked_or_invisible(dev);
6852 
6853 	if (dev->threaded == threaded)
6854 		return 0;
6855 
6856 	if (threaded) {
6857 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6858 			if (!napi->thread) {
6859 				err = napi_kthread_create(napi);
6860 				if (err) {
6861 					threaded = false;
6862 					break;
6863 				}
6864 			}
6865 		}
6866 	}
6867 
6868 	WRITE_ONCE(dev->threaded, threaded);
6869 
6870 	/* Make sure kthread is created before THREADED bit
6871 	 * is set.
6872 	 */
6873 	smp_mb__before_atomic();
6874 
6875 	/* Setting/unsetting threaded mode on a napi might not immediately
6876 	 * take effect, if the current napi instance is actively being
6877 	 * polled. In this case, the switch between threaded mode and
6878 	 * softirq mode will happen in the next round of napi_schedule().
6879 	 * This should not cause hiccups/stalls to the live traffic.
6880 	 */
6881 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6882 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6883 
6884 	return err;
6885 }
6886 EXPORT_SYMBOL(dev_set_threaded);
6887 
6888 /**
6889  * netif_queue_set_napi - Associate queue with the napi
6890  * @dev: device to which NAPI and queue belong
6891  * @queue_index: Index of queue
6892  * @type: queue type as RX or TX
6893  * @napi: NAPI context, pass NULL to clear previously set NAPI
6894  *
6895  * Set queue with its corresponding napi context. This should be done after
6896  * registering the NAPI handler for the queue-vector and the queues have been
6897  * mapped to the corresponding interrupt vector.
6898  */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)6899 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6900 			  enum netdev_queue_type type, struct napi_struct *napi)
6901 {
6902 	struct netdev_rx_queue *rxq;
6903 	struct netdev_queue *txq;
6904 
6905 	if (WARN_ON_ONCE(napi && !napi->dev))
6906 		return;
6907 	netdev_ops_assert_locked_or_invisible(dev);
6908 
6909 	switch (type) {
6910 	case NETDEV_QUEUE_TYPE_RX:
6911 		rxq = __netif_get_rx_queue(dev, queue_index);
6912 		rxq->napi = napi;
6913 		return;
6914 	case NETDEV_QUEUE_TYPE_TX:
6915 		txq = netdev_get_tx_queue(dev, queue_index);
6916 		txq->napi = napi;
6917 		return;
6918 	default:
6919 		return;
6920 	}
6921 }
6922 EXPORT_SYMBOL(netif_queue_set_napi);
6923 
6924 static void
netif_napi_irq_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)6925 netif_napi_irq_notify(struct irq_affinity_notify *notify,
6926 		      const cpumask_t *mask)
6927 {
6928 	struct napi_struct *napi =
6929 		container_of(notify, struct napi_struct, notify);
6930 #ifdef CONFIG_RFS_ACCEL
6931 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6932 	int err;
6933 #endif
6934 
6935 	if (napi->config && napi->dev->irq_affinity_auto)
6936 		cpumask_copy(&napi->config->affinity_mask, mask);
6937 
6938 #ifdef CONFIG_RFS_ACCEL
6939 	if (napi->dev->rx_cpu_rmap_auto) {
6940 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
6941 		if (err)
6942 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
6943 				    err);
6944 	}
6945 #endif
6946 }
6947 
6948 #ifdef CONFIG_RFS_ACCEL
netif_napi_affinity_release(struct kref * ref)6949 static void netif_napi_affinity_release(struct kref *ref)
6950 {
6951 	struct napi_struct *napi =
6952 		container_of(ref, struct napi_struct, notify.kref);
6953 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6954 
6955 	netdev_assert_locked(napi->dev);
6956 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
6957 				   &napi->state));
6958 
6959 	if (!napi->dev->rx_cpu_rmap_auto)
6960 		return;
6961 	rmap->obj[napi->napi_rmap_idx] = NULL;
6962 	napi->napi_rmap_idx = -1;
6963 	cpu_rmap_put(rmap);
6964 }
6965 
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)6966 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6967 {
6968 	if (dev->rx_cpu_rmap_auto)
6969 		return 0;
6970 
6971 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
6972 	if (!dev->rx_cpu_rmap)
6973 		return -ENOMEM;
6974 
6975 	dev->rx_cpu_rmap_auto = true;
6976 	return 0;
6977 }
6978 EXPORT_SYMBOL(netif_enable_cpu_rmap);
6979 
netif_del_cpu_rmap(struct net_device * dev)6980 static void netif_del_cpu_rmap(struct net_device *dev)
6981 {
6982 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
6983 
6984 	if (!dev->rx_cpu_rmap_auto)
6985 		return;
6986 
6987 	/* Free the rmap */
6988 	cpu_rmap_put(rmap);
6989 	dev->rx_cpu_rmap = NULL;
6990 	dev->rx_cpu_rmap_auto = false;
6991 }
6992 
6993 #else
netif_napi_affinity_release(struct kref * ref)6994 static void netif_napi_affinity_release(struct kref *ref)
6995 {
6996 }
6997 
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)6998 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6999 {
7000 	return 0;
7001 }
7002 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7003 
netif_del_cpu_rmap(struct net_device * dev)7004 static void netif_del_cpu_rmap(struct net_device *dev)
7005 {
7006 }
7007 #endif
7008 
netif_set_affinity_auto(struct net_device * dev)7009 void netif_set_affinity_auto(struct net_device *dev)
7010 {
7011 	unsigned int i, maxqs, numa;
7012 
7013 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7014 	numa = dev_to_node(&dev->dev);
7015 
7016 	for (i = 0; i < maxqs; i++)
7017 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7018 				&dev->napi_config[i].affinity_mask);
7019 
7020 	dev->irq_affinity_auto = true;
7021 }
7022 EXPORT_SYMBOL(netif_set_affinity_auto);
7023 
netif_napi_set_irq_locked(struct napi_struct * napi,int irq)7024 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7025 {
7026 	int rc;
7027 
7028 	netdev_assert_locked_or_invisible(napi->dev);
7029 
7030 	if (napi->irq == irq)
7031 		return;
7032 
7033 	/* Remove existing resources */
7034 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7035 		irq_set_affinity_notifier(napi->irq, NULL);
7036 
7037 	napi->irq = irq;
7038 	if (irq < 0 ||
7039 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7040 		return;
7041 
7042 	/* Abort for buggy drivers */
7043 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7044 		return;
7045 
7046 #ifdef CONFIG_RFS_ACCEL
7047 	if (napi->dev->rx_cpu_rmap_auto) {
7048 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7049 		if (rc < 0)
7050 			return;
7051 
7052 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7053 		napi->napi_rmap_idx = rc;
7054 	}
7055 #endif
7056 
7057 	/* Use core IRQ notifier */
7058 	napi->notify.notify = netif_napi_irq_notify;
7059 	napi->notify.release = netif_napi_affinity_release;
7060 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7061 	if (rc) {
7062 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7063 			    rc);
7064 		goto put_rmap;
7065 	}
7066 
7067 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7068 	return;
7069 
7070 put_rmap:
7071 #ifdef CONFIG_RFS_ACCEL
7072 	if (napi->dev->rx_cpu_rmap_auto) {
7073 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7074 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7075 		napi->napi_rmap_idx = -1;
7076 	}
7077 #endif
7078 	napi->notify.notify = NULL;
7079 	napi->notify.release = NULL;
7080 }
7081 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7082 
napi_restore_config(struct napi_struct * n)7083 static void napi_restore_config(struct napi_struct *n)
7084 {
7085 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7086 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7087 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7088 
7089 	if (n->dev->irq_affinity_auto &&
7090 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7091 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7092 
7093 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7094 	 * napi_hash_add to generate one for us.
7095 	 */
7096 	if (n->config->napi_id) {
7097 		napi_hash_add_with_id(n, n->config->napi_id);
7098 	} else {
7099 		napi_hash_add(n);
7100 		n->config->napi_id = n->napi_id;
7101 	}
7102 }
7103 
napi_save_config(struct napi_struct * n)7104 static void napi_save_config(struct napi_struct *n)
7105 {
7106 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7107 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7108 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7109 	napi_hash_del(n);
7110 }
7111 
7112 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7113  * inherit an existing ID try to insert it at the right position.
7114  */
7115 static void
netif_napi_dev_list_add(struct net_device * dev,struct napi_struct * napi)7116 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7117 {
7118 	unsigned int new_id, pos_id;
7119 	struct list_head *higher;
7120 	struct napi_struct *pos;
7121 
7122 	new_id = UINT_MAX;
7123 	if (napi->config && napi->config->napi_id)
7124 		new_id = napi->config->napi_id;
7125 
7126 	higher = &dev->napi_list;
7127 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7128 		if (napi_id_valid(pos->napi_id))
7129 			pos_id = pos->napi_id;
7130 		else if (pos->config)
7131 			pos_id = pos->config->napi_id;
7132 		else
7133 			pos_id = UINT_MAX;
7134 
7135 		if (pos_id <= new_id)
7136 			break;
7137 		higher = &pos->dev_list;
7138 	}
7139 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7140 }
7141 
7142 /* Double check that napi_get_frags() allocates skbs with
7143  * skb->head being backed by slab, not a page fragment.
7144  * This is to make sure bug fixed in 3226b158e67c
7145  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7146  * does not accidentally come back.
7147  */
napi_get_frags_check(struct napi_struct * napi)7148 static void napi_get_frags_check(struct napi_struct *napi)
7149 {
7150 	struct sk_buff *skb;
7151 
7152 	local_bh_disable();
7153 	skb = napi_get_frags(napi);
7154 	WARN_ON_ONCE(skb && skb->head_frag);
7155 	napi_free_frags(napi);
7156 	local_bh_enable();
7157 }
7158 
netif_napi_add_weight_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)7159 void netif_napi_add_weight_locked(struct net_device *dev,
7160 				  struct napi_struct *napi,
7161 				  int (*poll)(struct napi_struct *, int),
7162 				  int weight)
7163 {
7164 	netdev_assert_locked(dev);
7165 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7166 		return;
7167 
7168 	INIT_LIST_HEAD(&napi->poll_list);
7169 	INIT_HLIST_NODE(&napi->napi_hash_node);
7170 	hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7171 	gro_init(&napi->gro);
7172 	napi->skb = NULL;
7173 	napi->poll = poll;
7174 	if (weight > NAPI_POLL_WEIGHT)
7175 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7176 				weight);
7177 	napi->weight = weight;
7178 	napi->dev = dev;
7179 #ifdef CONFIG_NETPOLL
7180 	napi->poll_owner = -1;
7181 #endif
7182 	napi->list_owner = -1;
7183 	set_bit(NAPI_STATE_SCHED, &napi->state);
7184 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7185 	netif_napi_dev_list_add(dev, napi);
7186 
7187 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7188 	 * configuration will be loaded in napi_enable
7189 	 */
7190 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7191 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7192 
7193 	napi_get_frags_check(napi);
7194 	/* Create kthread for this napi if dev->threaded is set.
7195 	 * Clear dev->threaded if kthread creation failed so that
7196 	 * threaded mode will not be enabled in napi_enable().
7197 	 */
7198 	if (dev->threaded && napi_kthread_create(napi))
7199 		dev->threaded = false;
7200 	netif_napi_set_irq_locked(napi, -1);
7201 }
7202 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7203 
napi_disable_locked(struct napi_struct * n)7204 void napi_disable_locked(struct napi_struct *n)
7205 {
7206 	unsigned long val, new;
7207 
7208 	might_sleep();
7209 	netdev_assert_locked(n->dev);
7210 
7211 	set_bit(NAPI_STATE_DISABLE, &n->state);
7212 
7213 	val = READ_ONCE(n->state);
7214 	do {
7215 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7216 			usleep_range(20, 200);
7217 			val = READ_ONCE(n->state);
7218 		}
7219 
7220 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7221 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7222 	} while (!try_cmpxchg(&n->state, &val, new));
7223 
7224 	hrtimer_cancel(&n->timer);
7225 
7226 	if (n->config)
7227 		napi_save_config(n);
7228 	else
7229 		napi_hash_del(n);
7230 
7231 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7232 }
7233 EXPORT_SYMBOL(napi_disable_locked);
7234 
7235 /**
7236  * napi_disable() - prevent NAPI from scheduling
7237  * @n: NAPI context
7238  *
7239  * Stop NAPI from being scheduled on this context.
7240  * Waits till any outstanding processing completes.
7241  * Takes netdev_lock() for associated net_device.
7242  */
napi_disable(struct napi_struct * n)7243 void napi_disable(struct napi_struct *n)
7244 {
7245 	netdev_lock(n->dev);
7246 	napi_disable_locked(n);
7247 	netdev_unlock(n->dev);
7248 }
7249 EXPORT_SYMBOL(napi_disable);
7250 
napi_enable_locked(struct napi_struct * n)7251 void napi_enable_locked(struct napi_struct *n)
7252 {
7253 	unsigned long new, val = READ_ONCE(n->state);
7254 
7255 	if (n->config)
7256 		napi_restore_config(n);
7257 	else
7258 		napi_hash_add(n);
7259 
7260 	do {
7261 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7262 
7263 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7264 		if (n->dev->threaded && n->thread)
7265 			new |= NAPIF_STATE_THREADED;
7266 	} while (!try_cmpxchg(&n->state, &val, new));
7267 }
7268 EXPORT_SYMBOL(napi_enable_locked);
7269 
7270 /**
7271  * napi_enable() - enable NAPI scheduling
7272  * @n: NAPI context
7273  *
7274  * Enable scheduling of a NAPI instance.
7275  * Must be paired with napi_disable().
7276  * Takes netdev_lock() for associated net_device.
7277  */
napi_enable(struct napi_struct * n)7278 void napi_enable(struct napi_struct *n)
7279 {
7280 	netdev_lock(n->dev);
7281 	napi_enable_locked(n);
7282 	netdev_unlock(n->dev);
7283 }
7284 EXPORT_SYMBOL(napi_enable);
7285 
7286 /* Must be called in process context */
__netif_napi_del_locked(struct napi_struct * napi)7287 void __netif_napi_del_locked(struct napi_struct *napi)
7288 {
7289 	netdev_assert_locked(napi->dev);
7290 
7291 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7292 		return;
7293 
7294 	/* Make sure NAPI is disabled (or was never enabled). */
7295 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7296 
7297 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7298 		irq_set_affinity_notifier(napi->irq, NULL);
7299 
7300 	if (napi->config) {
7301 		napi->index = -1;
7302 		napi->config = NULL;
7303 	}
7304 
7305 	list_del_rcu(&napi->dev_list);
7306 	napi_free_frags(napi);
7307 
7308 	gro_cleanup(&napi->gro);
7309 
7310 	if (napi->thread) {
7311 		kthread_stop(napi->thread);
7312 		napi->thread = NULL;
7313 	}
7314 }
7315 EXPORT_SYMBOL(__netif_napi_del_locked);
7316 
__napi_poll(struct napi_struct * n,bool * repoll)7317 static int __napi_poll(struct napi_struct *n, bool *repoll)
7318 {
7319 	int work, weight;
7320 
7321 	weight = n->weight;
7322 
7323 	/* This NAPI_STATE_SCHED test is for avoiding a race
7324 	 * with netpoll's poll_napi().  Only the entity which
7325 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7326 	 * actually make the ->poll() call.  Therefore we avoid
7327 	 * accidentally calling ->poll() when NAPI is not scheduled.
7328 	 */
7329 	work = 0;
7330 	if (napi_is_scheduled(n)) {
7331 		work = n->poll(n, weight);
7332 		trace_napi_poll(n, work, weight);
7333 
7334 		xdp_do_check_flushed(n);
7335 	}
7336 
7337 	if (unlikely(work > weight))
7338 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7339 				n->poll, work, weight);
7340 
7341 	if (likely(work < weight))
7342 		return work;
7343 
7344 	/* Drivers must not modify the NAPI state if they
7345 	 * consume the entire weight.  In such cases this code
7346 	 * still "owns" the NAPI instance and therefore can
7347 	 * move the instance around on the list at-will.
7348 	 */
7349 	if (unlikely(napi_disable_pending(n))) {
7350 		napi_complete(n);
7351 		return work;
7352 	}
7353 
7354 	/* The NAPI context has more processing work, but busy-polling
7355 	 * is preferred. Exit early.
7356 	 */
7357 	if (napi_prefer_busy_poll(n)) {
7358 		if (napi_complete_done(n, work)) {
7359 			/* If timeout is not set, we need to make sure
7360 			 * that the NAPI is re-scheduled.
7361 			 */
7362 			napi_schedule(n);
7363 		}
7364 		return work;
7365 	}
7366 
7367 	/* Flush too old packets. If HZ < 1000, flush all packets */
7368 	gro_flush(&n->gro, HZ >= 1000);
7369 	gro_normal_list(&n->gro);
7370 
7371 	/* Some drivers may have called napi_schedule
7372 	 * prior to exhausting their budget.
7373 	 */
7374 	if (unlikely(!list_empty(&n->poll_list))) {
7375 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7376 			     n->dev ? n->dev->name : "backlog");
7377 		return work;
7378 	}
7379 
7380 	*repoll = true;
7381 
7382 	return work;
7383 }
7384 
napi_poll(struct napi_struct * n,struct list_head * repoll)7385 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7386 {
7387 	bool do_repoll = false;
7388 	void *have;
7389 	int work;
7390 
7391 	list_del_init(&n->poll_list);
7392 
7393 	have = netpoll_poll_lock(n);
7394 
7395 	work = __napi_poll(n, &do_repoll);
7396 
7397 	if (do_repoll)
7398 		list_add_tail(&n->poll_list, repoll);
7399 
7400 	netpoll_poll_unlock(have);
7401 
7402 	return work;
7403 }
7404 
napi_thread_wait(struct napi_struct * napi)7405 static int napi_thread_wait(struct napi_struct *napi)
7406 {
7407 	set_current_state(TASK_INTERRUPTIBLE);
7408 
7409 	while (!kthread_should_stop()) {
7410 		/* Testing SCHED_THREADED bit here to make sure the current
7411 		 * kthread owns this napi and could poll on this napi.
7412 		 * Testing SCHED bit is not enough because SCHED bit might be
7413 		 * set by some other busy poll thread or by napi_disable().
7414 		 */
7415 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7416 			WARN_ON(!list_empty(&napi->poll_list));
7417 			__set_current_state(TASK_RUNNING);
7418 			return 0;
7419 		}
7420 
7421 		schedule();
7422 		set_current_state(TASK_INTERRUPTIBLE);
7423 	}
7424 	__set_current_state(TASK_RUNNING);
7425 
7426 	return -1;
7427 }
7428 
napi_threaded_poll_loop(struct napi_struct * napi)7429 static void napi_threaded_poll_loop(struct napi_struct *napi)
7430 {
7431 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7432 	struct softnet_data *sd;
7433 	unsigned long last_qs = jiffies;
7434 
7435 	for (;;) {
7436 		bool repoll = false;
7437 		void *have;
7438 
7439 		local_bh_disable();
7440 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7441 
7442 		sd = this_cpu_ptr(&softnet_data);
7443 		sd->in_napi_threaded_poll = true;
7444 
7445 		have = netpoll_poll_lock(napi);
7446 		__napi_poll(napi, &repoll);
7447 		netpoll_poll_unlock(have);
7448 
7449 		sd->in_napi_threaded_poll = false;
7450 		barrier();
7451 
7452 		if (sd_has_rps_ipi_waiting(sd)) {
7453 			local_irq_disable();
7454 			net_rps_action_and_irq_enable(sd);
7455 		}
7456 		skb_defer_free_flush(sd);
7457 		bpf_net_ctx_clear(bpf_net_ctx);
7458 		local_bh_enable();
7459 
7460 		if (!repoll)
7461 			break;
7462 
7463 		rcu_softirq_qs_periodic(last_qs);
7464 		cond_resched();
7465 	}
7466 }
7467 
napi_threaded_poll(void * data)7468 static int napi_threaded_poll(void *data)
7469 {
7470 	struct napi_struct *napi = data;
7471 
7472 	while (!napi_thread_wait(napi))
7473 		napi_threaded_poll_loop(napi);
7474 
7475 	return 0;
7476 }
7477 
net_rx_action(void)7478 static __latent_entropy void net_rx_action(void)
7479 {
7480 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7481 	unsigned long time_limit = jiffies +
7482 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7483 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7484 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7485 	LIST_HEAD(list);
7486 	LIST_HEAD(repoll);
7487 
7488 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7489 start:
7490 	sd->in_net_rx_action = true;
7491 	local_irq_disable();
7492 	list_splice_init(&sd->poll_list, &list);
7493 	local_irq_enable();
7494 
7495 	for (;;) {
7496 		struct napi_struct *n;
7497 
7498 		skb_defer_free_flush(sd);
7499 
7500 		if (list_empty(&list)) {
7501 			if (list_empty(&repoll)) {
7502 				sd->in_net_rx_action = false;
7503 				barrier();
7504 				/* We need to check if ____napi_schedule()
7505 				 * had refilled poll_list while
7506 				 * sd->in_net_rx_action was true.
7507 				 */
7508 				if (!list_empty(&sd->poll_list))
7509 					goto start;
7510 				if (!sd_has_rps_ipi_waiting(sd))
7511 					goto end;
7512 			}
7513 			break;
7514 		}
7515 
7516 		n = list_first_entry(&list, struct napi_struct, poll_list);
7517 		budget -= napi_poll(n, &repoll);
7518 
7519 		/* If softirq window is exhausted then punt.
7520 		 * Allow this to run for 2 jiffies since which will allow
7521 		 * an average latency of 1.5/HZ.
7522 		 */
7523 		if (unlikely(budget <= 0 ||
7524 			     time_after_eq(jiffies, time_limit))) {
7525 			sd->time_squeeze++;
7526 			break;
7527 		}
7528 	}
7529 
7530 	local_irq_disable();
7531 
7532 	list_splice_tail_init(&sd->poll_list, &list);
7533 	list_splice_tail(&repoll, &list);
7534 	list_splice(&list, &sd->poll_list);
7535 	if (!list_empty(&sd->poll_list))
7536 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7537 	else
7538 		sd->in_net_rx_action = false;
7539 
7540 	net_rps_action_and_irq_enable(sd);
7541 end:
7542 	bpf_net_ctx_clear(bpf_net_ctx);
7543 }
7544 
7545 struct netdev_adjacent {
7546 	struct net_device *dev;
7547 	netdevice_tracker dev_tracker;
7548 
7549 	/* upper master flag, there can only be one master device per list */
7550 	bool master;
7551 
7552 	/* lookup ignore flag */
7553 	bool ignore;
7554 
7555 	/* counter for the number of times this device was added to us */
7556 	u16 ref_nr;
7557 
7558 	/* private field for the users */
7559 	void *private;
7560 
7561 	struct list_head list;
7562 	struct rcu_head rcu;
7563 };
7564 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7565 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7566 						 struct list_head *adj_list)
7567 {
7568 	struct netdev_adjacent *adj;
7569 
7570 	list_for_each_entry(adj, adj_list, list) {
7571 		if (adj->dev == adj_dev)
7572 			return adj;
7573 	}
7574 	return NULL;
7575 }
7576 
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7577 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7578 				    struct netdev_nested_priv *priv)
7579 {
7580 	struct net_device *dev = (struct net_device *)priv->data;
7581 
7582 	return upper_dev == dev;
7583 }
7584 
7585 /**
7586  * netdev_has_upper_dev - Check if device is linked to an upper device
7587  * @dev: device
7588  * @upper_dev: upper device to check
7589  *
7590  * Find out if a device is linked to specified upper device and return true
7591  * in case it is. Note that this checks only immediate upper device,
7592  * not through a complete stack of devices. The caller must hold the RTNL lock.
7593  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7594 bool netdev_has_upper_dev(struct net_device *dev,
7595 			  struct net_device *upper_dev)
7596 {
7597 	struct netdev_nested_priv priv = {
7598 		.data = (void *)upper_dev,
7599 	};
7600 
7601 	ASSERT_RTNL();
7602 
7603 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7604 					     &priv);
7605 }
7606 EXPORT_SYMBOL(netdev_has_upper_dev);
7607 
7608 /**
7609  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7610  * @dev: device
7611  * @upper_dev: upper device to check
7612  *
7613  * Find out if a device is linked to specified upper device and return true
7614  * in case it is. Note that this checks the entire upper device chain.
7615  * The caller must hold rcu lock.
7616  */
7617 
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7618 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7619 				  struct net_device *upper_dev)
7620 {
7621 	struct netdev_nested_priv priv = {
7622 		.data = (void *)upper_dev,
7623 	};
7624 
7625 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7626 					       &priv);
7627 }
7628 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7629 
7630 /**
7631  * netdev_has_any_upper_dev - Check if device is linked to some device
7632  * @dev: device
7633  *
7634  * Find out if a device is linked to an upper device and return true in case
7635  * it is. The caller must hold the RTNL lock.
7636  */
netdev_has_any_upper_dev(struct net_device * dev)7637 bool netdev_has_any_upper_dev(struct net_device *dev)
7638 {
7639 	ASSERT_RTNL();
7640 
7641 	return !list_empty(&dev->adj_list.upper);
7642 }
7643 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7644 
7645 /**
7646  * netdev_master_upper_dev_get - Get master upper device
7647  * @dev: device
7648  *
7649  * Find a master upper device and return pointer to it or NULL in case
7650  * it's not there. The caller must hold the RTNL lock.
7651  */
netdev_master_upper_dev_get(struct net_device * dev)7652 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7653 {
7654 	struct netdev_adjacent *upper;
7655 
7656 	ASSERT_RTNL();
7657 
7658 	if (list_empty(&dev->adj_list.upper))
7659 		return NULL;
7660 
7661 	upper = list_first_entry(&dev->adj_list.upper,
7662 				 struct netdev_adjacent, list);
7663 	if (likely(upper->master))
7664 		return upper->dev;
7665 	return NULL;
7666 }
7667 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7668 
__netdev_master_upper_dev_get(struct net_device * dev)7669 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7670 {
7671 	struct netdev_adjacent *upper;
7672 
7673 	ASSERT_RTNL();
7674 
7675 	if (list_empty(&dev->adj_list.upper))
7676 		return NULL;
7677 
7678 	upper = list_first_entry(&dev->adj_list.upper,
7679 				 struct netdev_adjacent, list);
7680 	if (likely(upper->master) && !upper->ignore)
7681 		return upper->dev;
7682 	return NULL;
7683 }
7684 
7685 /**
7686  * netdev_has_any_lower_dev - Check if device is linked to some device
7687  * @dev: device
7688  *
7689  * Find out if a device is linked to a lower device and return true in case
7690  * it is. The caller must hold the RTNL lock.
7691  */
netdev_has_any_lower_dev(struct net_device * dev)7692 static bool netdev_has_any_lower_dev(struct net_device *dev)
7693 {
7694 	ASSERT_RTNL();
7695 
7696 	return !list_empty(&dev->adj_list.lower);
7697 }
7698 
netdev_adjacent_get_private(struct list_head * adj_list)7699 void *netdev_adjacent_get_private(struct list_head *adj_list)
7700 {
7701 	struct netdev_adjacent *adj;
7702 
7703 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7704 
7705 	return adj->private;
7706 }
7707 EXPORT_SYMBOL(netdev_adjacent_get_private);
7708 
7709 /**
7710  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7711  * @dev: device
7712  * @iter: list_head ** of the current position
7713  *
7714  * Gets the next device from the dev's upper list, starting from iter
7715  * position. The caller must hold RCU read lock.
7716  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7717 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7718 						 struct list_head **iter)
7719 {
7720 	struct netdev_adjacent *upper;
7721 
7722 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7723 
7724 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7725 
7726 	if (&upper->list == &dev->adj_list.upper)
7727 		return NULL;
7728 
7729 	*iter = &upper->list;
7730 
7731 	return upper->dev;
7732 }
7733 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7734 
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7735 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7736 						  struct list_head **iter,
7737 						  bool *ignore)
7738 {
7739 	struct netdev_adjacent *upper;
7740 
7741 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7742 
7743 	if (&upper->list == &dev->adj_list.upper)
7744 		return NULL;
7745 
7746 	*iter = &upper->list;
7747 	*ignore = upper->ignore;
7748 
7749 	return upper->dev;
7750 }
7751 
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7752 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7753 						    struct list_head **iter)
7754 {
7755 	struct netdev_adjacent *upper;
7756 
7757 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7758 
7759 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7760 
7761 	if (&upper->list == &dev->adj_list.upper)
7762 		return NULL;
7763 
7764 	*iter = &upper->list;
7765 
7766 	return upper->dev;
7767 }
7768 
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7769 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7770 				       int (*fn)(struct net_device *dev,
7771 					 struct netdev_nested_priv *priv),
7772 				       struct netdev_nested_priv *priv)
7773 {
7774 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7775 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7776 	int ret, cur = 0;
7777 	bool ignore;
7778 
7779 	now = dev;
7780 	iter = &dev->adj_list.upper;
7781 
7782 	while (1) {
7783 		if (now != dev) {
7784 			ret = fn(now, priv);
7785 			if (ret)
7786 				return ret;
7787 		}
7788 
7789 		next = NULL;
7790 		while (1) {
7791 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7792 			if (!udev)
7793 				break;
7794 			if (ignore)
7795 				continue;
7796 
7797 			next = udev;
7798 			niter = &udev->adj_list.upper;
7799 			dev_stack[cur] = now;
7800 			iter_stack[cur++] = iter;
7801 			break;
7802 		}
7803 
7804 		if (!next) {
7805 			if (!cur)
7806 				return 0;
7807 			next = dev_stack[--cur];
7808 			niter = iter_stack[cur];
7809 		}
7810 
7811 		now = next;
7812 		iter = niter;
7813 	}
7814 
7815 	return 0;
7816 }
7817 
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7818 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7819 				  int (*fn)(struct net_device *dev,
7820 					    struct netdev_nested_priv *priv),
7821 				  struct netdev_nested_priv *priv)
7822 {
7823 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7824 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7825 	int ret, cur = 0;
7826 
7827 	now = dev;
7828 	iter = &dev->adj_list.upper;
7829 
7830 	while (1) {
7831 		if (now != dev) {
7832 			ret = fn(now, priv);
7833 			if (ret)
7834 				return ret;
7835 		}
7836 
7837 		next = NULL;
7838 		while (1) {
7839 			udev = netdev_next_upper_dev_rcu(now, &iter);
7840 			if (!udev)
7841 				break;
7842 
7843 			next = udev;
7844 			niter = &udev->adj_list.upper;
7845 			dev_stack[cur] = now;
7846 			iter_stack[cur++] = iter;
7847 			break;
7848 		}
7849 
7850 		if (!next) {
7851 			if (!cur)
7852 				return 0;
7853 			next = dev_stack[--cur];
7854 			niter = iter_stack[cur];
7855 		}
7856 
7857 		now = next;
7858 		iter = niter;
7859 	}
7860 
7861 	return 0;
7862 }
7863 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7864 
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7865 static bool __netdev_has_upper_dev(struct net_device *dev,
7866 				   struct net_device *upper_dev)
7867 {
7868 	struct netdev_nested_priv priv = {
7869 		.flags = 0,
7870 		.data = (void *)upper_dev,
7871 	};
7872 
7873 	ASSERT_RTNL();
7874 
7875 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7876 					   &priv);
7877 }
7878 
7879 /**
7880  * netdev_lower_get_next_private - Get the next ->private from the
7881  *				   lower neighbour list
7882  * @dev: device
7883  * @iter: list_head ** of the current position
7884  *
7885  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7886  * list, starting from iter position. The caller must hold either hold the
7887  * RTNL lock or its own locking that guarantees that the neighbour lower
7888  * list will remain unchanged.
7889  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7890 void *netdev_lower_get_next_private(struct net_device *dev,
7891 				    struct list_head **iter)
7892 {
7893 	struct netdev_adjacent *lower;
7894 
7895 	lower = list_entry(*iter, struct netdev_adjacent, list);
7896 
7897 	if (&lower->list == &dev->adj_list.lower)
7898 		return NULL;
7899 
7900 	*iter = lower->list.next;
7901 
7902 	return lower->private;
7903 }
7904 EXPORT_SYMBOL(netdev_lower_get_next_private);
7905 
7906 /**
7907  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7908  *				       lower neighbour list, RCU
7909  *				       variant
7910  * @dev: device
7911  * @iter: list_head ** of the current position
7912  *
7913  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7914  * list, starting from iter position. The caller must hold RCU read lock.
7915  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7916 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7917 					struct list_head **iter)
7918 {
7919 	struct netdev_adjacent *lower;
7920 
7921 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7922 
7923 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7924 
7925 	if (&lower->list == &dev->adj_list.lower)
7926 		return NULL;
7927 
7928 	*iter = &lower->list;
7929 
7930 	return lower->private;
7931 }
7932 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7933 
7934 /**
7935  * netdev_lower_get_next - Get the next device from the lower neighbour
7936  *                         list
7937  * @dev: device
7938  * @iter: list_head ** of the current position
7939  *
7940  * Gets the next netdev_adjacent from the dev's lower neighbour
7941  * list, starting from iter position. The caller must hold RTNL lock or
7942  * its own locking that guarantees that the neighbour lower
7943  * list will remain unchanged.
7944  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7945 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7946 {
7947 	struct netdev_adjacent *lower;
7948 
7949 	lower = list_entry(*iter, struct netdev_adjacent, list);
7950 
7951 	if (&lower->list == &dev->adj_list.lower)
7952 		return NULL;
7953 
7954 	*iter = lower->list.next;
7955 
7956 	return lower->dev;
7957 }
7958 EXPORT_SYMBOL(netdev_lower_get_next);
7959 
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7960 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7961 						struct list_head **iter)
7962 {
7963 	struct netdev_adjacent *lower;
7964 
7965 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7966 
7967 	if (&lower->list == &dev->adj_list.lower)
7968 		return NULL;
7969 
7970 	*iter = &lower->list;
7971 
7972 	return lower->dev;
7973 }
7974 
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7975 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7976 						  struct list_head **iter,
7977 						  bool *ignore)
7978 {
7979 	struct netdev_adjacent *lower;
7980 
7981 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7982 
7983 	if (&lower->list == &dev->adj_list.lower)
7984 		return NULL;
7985 
7986 	*iter = &lower->list;
7987 	*ignore = lower->ignore;
7988 
7989 	return lower->dev;
7990 }
7991 
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7992 int netdev_walk_all_lower_dev(struct net_device *dev,
7993 			      int (*fn)(struct net_device *dev,
7994 					struct netdev_nested_priv *priv),
7995 			      struct netdev_nested_priv *priv)
7996 {
7997 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7998 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7999 	int ret, cur = 0;
8000 
8001 	now = dev;
8002 	iter = &dev->adj_list.lower;
8003 
8004 	while (1) {
8005 		if (now != dev) {
8006 			ret = fn(now, priv);
8007 			if (ret)
8008 				return ret;
8009 		}
8010 
8011 		next = NULL;
8012 		while (1) {
8013 			ldev = netdev_next_lower_dev(now, &iter);
8014 			if (!ldev)
8015 				break;
8016 
8017 			next = ldev;
8018 			niter = &ldev->adj_list.lower;
8019 			dev_stack[cur] = now;
8020 			iter_stack[cur++] = iter;
8021 			break;
8022 		}
8023 
8024 		if (!next) {
8025 			if (!cur)
8026 				return 0;
8027 			next = dev_stack[--cur];
8028 			niter = iter_stack[cur];
8029 		}
8030 
8031 		now = next;
8032 		iter = niter;
8033 	}
8034 
8035 	return 0;
8036 }
8037 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8038 
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8039 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8040 				       int (*fn)(struct net_device *dev,
8041 					 struct netdev_nested_priv *priv),
8042 				       struct netdev_nested_priv *priv)
8043 {
8044 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8045 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8046 	int ret, cur = 0;
8047 	bool ignore;
8048 
8049 	now = dev;
8050 	iter = &dev->adj_list.lower;
8051 
8052 	while (1) {
8053 		if (now != dev) {
8054 			ret = fn(now, priv);
8055 			if (ret)
8056 				return ret;
8057 		}
8058 
8059 		next = NULL;
8060 		while (1) {
8061 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8062 			if (!ldev)
8063 				break;
8064 			if (ignore)
8065 				continue;
8066 
8067 			next = ldev;
8068 			niter = &ldev->adj_list.lower;
8069 			dev_stack[cur] = now;
8070 			iter_stack[cur++] = iter;
8071 			break;
8072 		}
8073 
8074 		if (!next) {
8075 			if (!cur)
8076 				return 0;
8077 			next = dev_stack[--cur];
8078 			niter = iter_stack[cur];
8079 		}
8080 
8081 		now = next;
8082 		iter = niter;
8083 	}
8084 
8085 	return 0;
8086 }
8087 
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)8088 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8089 					     struct list_head **iter)
8090 {
8091 	struct netdev_adjacent *lower;
8092 
8093 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8094 	if (&lower->list == &dev->adj_list.lower)
8095 		return NULL;
8096 
8097 	*iter = &lower->list;
8098 
8099 	return lower->dev;
8100 }
8101 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8102 
__netdev_upper_depth(struct net_device * dev)8103 static u8 __netdev_upper_depth(struct net_device *dev)
8104 {
8105 	struct net_device *udev;
8106 	struct list_head *iter;
8107 	u8 max_depth = 0;
8108 	bool ignore;
8109 
8110 	for (iter = &dev->adj_list.upper,
8111 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8112 	     udev;
8113 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8114 		if (ignore)
8115 			continue;
8116 		if (max_depth < udev->upper_level)
8117 			max_depth = udev->upper_level;
8118 	}
8119 
8120 	return max_depth;
8121 }
8122 
__netdev_lower_depth(struct net_device * dev)8123 static u8 __netdev_lower_depth(struct net_device *dev)
8124 {
8125 	struct net_device *ldev;
8126 	struct list_head *iter;
8127 	u8 max_depth = 0;
8128 	bool ignore;
8129 
8130 	for (iter = &dev->adj_list.lower,
8131 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8132 	     ldev;
8133 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8134 		if (ignore)
8135 			continue;
8136 		if (max_depth < ldev->lower_level)
8137 			max_depth = ldev->lower_level;
8138 	}
8139 
8140 	return max_depth;
8141 }
8142 
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)8143 static int __netdev_update_upper_level(struct net_device *dev,
8144 				       struct netdev_nested_priv *__unused)
8145 {
8146 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8147 	return 0;
8148 }
8149 
8150 #ifdef CONFIG_LOCKDEP
8151 static LIST_HEAD(net_unlink_list);
8152 
net_unlink_todo(struct net_device * dev)8153 static void net_unlink_todo(struct net_device *dev)
8154 {
8155 	if (list_empty(&dev->unlink_list))
8156 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8157 }
8158 #endif
8159 
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)8160 static int __netdev_update_lower_level(struct net_device *dev,
8161 				       struct netdev_nested_priv *priv)
8162 {
8163 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8164 
8165 #ifdef CONFIG_LOCKDEP
8166 	if (!priv)
8167 		return 0;
8168 
8169 	if (priv->flags & NESTED_SYNC_IMM)
8170 		dev->nested_level = dev->lower_level - 1;
8171 	if (priv->flags & NESTED_SYNC_TODO)
8172 		net_unlink_todo(dev);
8173 #endif
8174 	return 0;
8175 }
8176 
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8177 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8178 				  int (*fn)(struct net_device *dev,
8179 					    struct netdev_nested_priv *priv),
8180 				  struct netdev_nested_priv *priv)
8181 {
8182 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8183 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8184 	int ret, cur = 0;
8185 
8186 	now = dev;
8187 	iter = &dev->adj_list.lower;
8188 
8189 	while (1) {
8190 		if (now != dev) {
8191 			ret = fn(now, priv);
8192 			if (ret)
8193 				return ret;
8194 		}
8195 
8196 		next = NULL;
8197 		while (1) {
8198 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8199 			if (!ldev)
8200 				break;
8201 
8202 			next = ldev;
8203 			niter = &ldev->adj_list.lower;
8204 			dev_stack[cur] = now;
8205 			iter_stack[cur++] = iter;
8206 			break;
8207 		}
8208 
8209 		if (!next) {
8210 			if (!cur)
8211 				return 0;
8212 			next = dev_stack[--cur];
8213 			niter = iter_stack[cur];
8214 		}
8215 
8216 		now = next;
8217 		iter = niter;
8218 	}
8219 
8220 	return 0;
8221 }
8222 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8223 
8224 /**
8225  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8226  *				       lower neighbour list, RCU
8227  *				       variant
8228  * @dev: device
8229  *
8230  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8231  * list. The caller must hold RCU read lock.
8232  */
netdev_lower_get_first_private_rcu(struct net_device * dev)8233 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8234 {
8235 	struct netdev_adjacent *lower;
8236 
8237 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8238 			struct netdev_adjacent, list);
8239 	if (lower)
8240 		return lower->private;
8241 	return NULL;
8242 }
8243 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8244 
8245 /**
8246  * netdev_master_upper_dev_get_rcu - Get master upper device
8247  * @dev: device
8248  *
8249  * Find a master upper device and return pointer to it or NULL in case
8250  * it's not there. The caller must hold the RCU read lock.
8251  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)8252 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8253 {
8254 	struct netdev_adjacent *upper;
8255 
8256 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8257 				       struct netdev_adjacent, list);
8258 	if (upper && likely(upper->master))
8259 		return upper->dev;
8260 	return NULL;
8261 }
8262 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8263 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8264 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8265 			      struct net_device *adj_dev,
8266 			      struct list_head *dev_list)
8267 {
8268 	char linkname[IFNAMSIZ+7];
8269 
8270 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8271 		"upper_%s" : "lower_%s", adj_dev->name);
8272 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8273 				 linkname);
8274 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)8275 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8276 			       char *name,
8277 			       struct list_head *dev_list)
8278 {
8279 	char linkname[IFNAMSIZ+7];
8280 
8281 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8282 		"upper_%s" : "lower_%s", name);
8283 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8284 }
8285 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8286 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8287 						 struct net_device *adj_dev,
8288 						 struct list_head *dev_list)
8289 {
8290 	return (dev_list == &dev->adj_list.upper ||
8291 		dev_list == &dev->adj_list.lower) &&
8292 		net_eq(dev_net(dev), dev_net(adj_dev));
8293 }
8294 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)8295 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8296 					struct net_device *adj_dev,
8297 					struct list_head *dev_list,
8298 					void *private, bool master)
8299 {
8300 	struct netdev_adjacent *adj;
8301 	int ret;
8302 
8303 	adj = __netdev_find_adj(adj_dev, dev_list);
8304 
8305 	if (adj) {
8306 		adj->ref_nr += 1;
8307 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8308 			 dev->name, adj_dev->name, adj->ref_nr);
8309 
8310 		return 0;
8311 	}
8312 
8313 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8314 	if (!adj)
8315 		return -ENOMEM;
8316 
8317 	adj->dev = adj_dev;
8318 	adj->master = master;
8319 	adj->ref_nr = 1;
8320 	adj->private = private;
8321 	adj->ignore = false;
8322 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8323 
8324 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8325 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8326 
8327 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8328 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8329 		if (ret)
8330 			goto free_adj;
8331 	}
8332 
8333 	/* Ensure that master link is always the first item in list. */
8334 	if (master) {
8335 		ret = sysfs_create_link(&(dev->dev.kobj),
8336 					&(adj_dev->dev.kobj), "master");
8337 		if (ret)
8338 			goto remove_symlinks;
8339 
8340 		list_add_rcu(&adj->list, dev_list);
8341 	} else {
8342 		list_add_tail_rcu(&adj->list, dev_list);
8343 	}
8344 
8345 	return 0;
8346 
8347 remove_symlinks:
8348 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8349 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8350 free_adj:
8351 	netdev_put(adj_dev, &adj->dev_tracker);
8352 	kfree(adj);
8353 
8354 	return ret;
8355 }
8356 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8357 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8358 					 struct net_device *adj_dev,
8359 					 u16 ref_nr,
8360 					 struct list_head *dev_list)
8361 {
8362 	struct netdev_adjacent *adj;
8363 
8364 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8365 		 dev->name, adj_dev->name, ref_nr);
8366 
8367 	adj = __netdev_find_adj(adj_dev, dev_list);
8368 
8369 	if (!adj) {
8370 		pr_err("Adjacency does not exist for device %s from %s\n",
8371 		       dev->name, adj_dev->name);
8372 		WARN_ON(1);
8373 		return;
8374 	}
8375 
8376 	if (adj->ref_nr > ref_nr) {
8377 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8378 			 dev->name, adj_dev->name, ref_nr,
8379 			 adj->ref_nr - ref_nr);
8380 		adj->ref_nr -= ref_nr;
8381 		return;
8382 	}
8383 
8384 	if (adj->master)
8385 		sysfs_remove_link(&(dev->dev.kobj), "master");
8386 
8387 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8388 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8389 
8390 	list_del_rcu(&adj->list);
8391 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8392 		 adj_dev->name, dev->name, adj_dev->name);
8393 	netdev_put(adj_dev, &adj->dev_tracker);
8394 	kfree_rcu(adj, rcu);
8395 }
8396 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8397 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8398 					    struct net_device *upper_dev,
8399 					    struct list_head *up_list,
8400 					    struct list_head *down_list,
8401 					    void *private, bool master)
8402 {
8403 	int ret;
8404 
8405 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8406 					   private, master);
8407 	if (ret)
8408 		return ret;
8409 
8410 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8411 					   private, false);
8412 	if (ret) {
8413 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8414 		return ret;
8415 	}
8416 
8417 	return 0;
8418 }
8419 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8420 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8421 					       struct net_device *upper_dev,
8422 					       u16 ref_nr,
8423 					       struct list_head *up_list,
8424 					       struct list_head *down_list)
8425 {
8426 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8427 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8428 }
8429 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8430 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8431 						struct net_device *upper_dev,
8432 						void *private, bool master)
8433 {
8434 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8435 						&dev->adj_list.upper,
8436 						&upper_dev->adj_list.lower,
8437 						private, master);
8438 }
8439 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8440 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8441 						   struct net_device *upper_dev)
8442 {
8443 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8444 					   &dev->adj_list.upper,
8445 					   &upper_dev->adj_list.lower);
8446 }
8447 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8448 static int __netdev_upper_dev_link(struct net_device *dev,
8449 				   struct net_device *upper_dev, bool master,
8450 				   void *upper_priv, void *upper_info,
8451 				   struct netdev_nested_priv *priv,
8452 				   struct netlink_ext_ack *extack)
8453 {
8454 	struct netdev_notifier_changeupper_info changeupper_info = {
8455 		.info = {
8456 			.dev = dev,
8457 			.extack = extack,
8458 		},
8459 		.upper_dev = upper_dev,
8460 		.master = master,
8461 		.linking = true,
8462 		.upper_info = upper_info,
8463 	};
8464 	struct net_device *master_dev;
8465 	int ret = 0;
8466 
8467 	ASSERT_RTNL();
8468 
8469 	if (dev == upper_dev)
8470 		return -EBUSY;
8471 
8472 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8473 	if (__netdev_has_upper_dev(upper_dev, dev))
8474 		return -EBUSY;
8475 
8476 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8477 		return -EMLINK;
8478 
8479 	if (!master) {
8480 		if (__netdev_has_upper_dev(dev, upper_dev))
8481 			return -EEXIST;
8482 	} else {
8483 		master_dev = __netdev_master_upper_dev_get(dev);
8484 		if (master_dev)
8485 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8486 	}
8487 
8488 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8489 					    &changeupper_info.info);
8490 	ret = notifier_to_errno(ret);
8491 	if (ret)
8492 		return ret;
8493 
8494 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8495 						   master);
8496 	if (ret)
8497 		return ret;
8498 
8499 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8500 					    &changeupper_info.info);
8501 	ret = notifier_to_errno(ret);
8502 	if (ret)
8503 		goto rollback;
8504 
8505 	__netdev_update_upper_level(dev, NULL);
8506 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8507 
8508 	__netdev_update_lower_level(upper_dev, priv);
8509 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8510 				    priv);
8511 
8512 	return 0;
8513 
8514 rollback:
8515 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8516 
8517 	return ret;
8518 }
8519 
8520 /**
8521  * netdev_upper_dev_link - Add a link to the upper device
8522  * @dev: device
8523  * @upper_dev: new upper device
8524  * @extack: netlink extended ack
8525  *
8526  * Adds a link to device which is upper to this one. The caller must hold
8527  * the RTNL lock. On a failure a negative errno code is returned.
8528  * On success the reference counts are adjusted and the function
8529  * returns zero.
8530  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8531 int netdev_upper_dev_link(struct net_device *dev,
8532 			  struct net_device *upper_dev,
8533 			  struct netlink_ext_ack *extack)
8534 {
8535 	struct netdev_nested_priv priv = {
8536 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8537 		.data = NULL,
8538 	};
8539 
8540 	return __netdev_upper_dev_link(dev, upper_dev, false,
8541 				       NULL, NULL, &priv, extack);
8542 }
8543 EXPORT_SYMBOL(netdev_upper_dev_link);
8544 
8545 /**
8546  * netdev_master_upper_dev_link - Add a master link to the upper device
8547  * @dev: device
8548  * @upper_dev: new upper device
8549  * @upper_priv: upper device private
8550  * @upper_info: upper info to be passed down via notifier
8551  * @extack: netlink extended ack
8552  *
8553  * Adds a link to device which is upper to this one. In this case, only
8554  * one master upper device can be linked, although other non-master devices
8555  * might be linked as well. The caller must hold the RTNL lock.
8556  * On a failure a negative errno code is returned. On success the reference
8557  * counts are adjusted and the function returns zero.
8558  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8559 int netdev_master_upper_dev_link(struct net_device *dev,
8560 				 struct net_device *upper_dev,
8561 				 void *upper_priv, void *upper_info,
8562 				 struct netlink_ext_ack *extack)
8563 {
8564 	struct netdev_nested_priv priv = {
8565 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8566 		.data = NULL,
8567 	};
8568 
8569 	return __netdev_upper_dev_link(dev, upper_dev, true,
8570 				       upper_priv, upper_info, &priv, extack);
8571 }
8572 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8573 
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8574 static void __netdev_upper_dev_unlink(struct net_device *dev,
8575 				      struct net_device *upper_dev,
8576 				      struct netdev_nested_priv *priv)
8577 {
8578 	struct netdev_notifier_changeupper_info changeupper_info = {
8579 		.info = {
8580 			.dev = dev,
8581 		},
8582 		.upper_dev = upper_dev,
8583 		.linking = false,
8584 	};
8585 
8586 	ASSERT_RTNL();
8587 
8588 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8589 
8590 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8591 				      &changeupper_info.info);
8592 
8593 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8594 
8595 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8596 				      &changeupper_info.info);
8597 
8598 	__netdev_update_upper_level(dev, NULL);
8599 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8600 
8601 	__netdev_update_lower_level(upper_dev, priv);
8602 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8603 				    priv);
8604 }
8605 
8606 /**
8607  * netdev_upper_dev_unlink - Removes a link to upper device
8608  * @dev: device
8609  * @upper_dev: new upper device
8610  *
8611  * Removes a link to device which is upper to this one. The caller must hold
8612  * the RTNL lock.
8613  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8614 void netdev_upper_dev_unlink(struct net_device *dev,
8615 			     struct net_device *upper_dev)
8616 {
8617 	struct netdev_nested_priv priv = {
8618 		.flags = NESTED_SYNC_TODO,
8619 		.data = NULL,
8620 	};
8621 
8622 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8623 }
8624 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8625 
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8626 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8627 				      struct net_device *lower_dev,
8628 				      bool val)
8629 {
8630 	struct netdev_adjacent *adj;
8631 
8632 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8633 	if (adj)
8634 		adj->ignore = val;
8635 
8636 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8637 	if (adj)
8638 		adj->ignore = val;
8639 }
8640 
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8641 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8642 					struct net_device *lower_dev)
8643 {
8644 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8645 }
8646 
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8647 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8648 				       struct net_device *lower_dev)
8649 {
8650 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8651 }
8652 
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8653 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8654 				   struct net_device *new_dev,
8655 				   struct net_device *dev,
8656 				   struct netlink_ext_ack *extack)
8657 {
8658 	struct netdev_nested_priv priv = {
8659 		.flags = 0,
8660 		.data = NULL,
8661 	};
8662 	int err;
8663 
8664 	if (!new_dev)
8665 		return 0;
8666 
8667 	if (old_dev && new_dev != old_dev)
8668 		netdev_adjacent_dev_disable(dev, old_dev);
8669 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8670 				      extack);
8671 	if (err) {
8672 		if (old_dev && new_dev != old_dev)
8673 			netdev_adjacent_dev_enable(dev, old_dev);
8674 		return err;
8675 	}
8676 
8677 	return 0;
8678 }
8679 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8680 
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8681 void netdev_adjacent_change_commit(struct net_device *old_dev,
8682 				   struct net_device *new_dev,
8683 				   struct net_device *dev)
8684 {
8685 	struct netdev_nested_priv priv = {
8686 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8687 		.data = NULL,
8688 	};
8689 
8690 	if (!new_dev || !old_dev)
8691 		return;
8692 
8693 	if (new_dev == old_dev)
8694 		return;
8695 
8696 	netdev_adjacent_dev_enable(dev, old_dev);
8697 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8698 }
8699 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8700 
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8701 void netdev_adjacent_change_abort(struct net_device *old_dev,
8702 				  struct net_device *new_dev,
8703 				  struct net_device *dev)
8704 {
8705 	struct netdev_nested_priv priv = {
8706 		.flags = 0,
8707 		.data = NULL,
8708 	};
8709 
8710 	if (!new_dev)
8711 		return;
8712 
8713 	if (old_dev && new_dev != old_dev)
8714 		netdev_adjacent_dev_enable(dev, old_dev);
8715 
8716 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8717 }
8718 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8719 
8720 /**
8721  * netdev_bonding_info_change - Dispatch event about slave change
8722  * @dev: device
8723  * @bonding_info: info to dispatch
8724  *
8725  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8726  * The caller must hold the RTNL lock.
8727  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8728 void netdev_bonding_info_change(struct net_device *dev,
8729 				struct netdev_bonding_info *bonding_info)
8730 {
8731 	struct netdev_notifier_bonding_info info = {
8732 		.info.dev = dev,
8733 	};
8734 
8735 	memcpy(&info.bonding_info, bonding_info,
8736 	       sizeof(struct netdev_bonding_info));
8737 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8738 				      &info.info);
8739 }
8740 EXPORT_SYMBOL(netdev_bonding_info_change);
8741 
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)8742 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8743 					   struct netlink_ext_ack *extack)
8744 {
8745 	struct netdev_notifier_offload_xstats_info info = {
8746 		.info.dev = dev,
8747 		.info.extack = extack,
8748 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8749 	};
8750 	int err;
8751 	int rc;
8752 
8753 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8754 					 GFP_KERNEL);
8755 	if (!dev->offload_xstats_l3)
8756 		return -ENOMEM;
8757 
8758 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8759 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8760 						  &info.info);
8761 	err = notifier_to_errno(rc);
8762 	if (err)
8763 		goto free_stats;
8764 
8765 	return 0;
8766 
8767 free_stats:
8768 	kfree(dev->offload_xstats_l3);
8769 	dev->offload_xstats_l3 = NULL;
8770 	return err;
8771 }
8772 
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8773 int netdev_offload_xstats_enable(struct net_device *dev,
8774 				 enum netdev_offload_xstats_type type,
8775 				 struct netlink_ext_ack *extack)
8776 {
8777 	ASSERT_RTNL();
8778 
8779 	if (netdev_offload_xstats_enabled(dev, type))
8780 		return -EALREADY;
8781 
8782 	switch (type) {
8783 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8784 		return netdev_offload_xstats_enable_l3(dev, extack);
8785 	}
8786 
8787 	WARN_ON(1);
8788 	return -EINVAL;
8789 }
8790 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8791 
netdev_offload_xstats_disable_l3(struct net_device * dev)8792 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8793 {
8794 	struct netdev_notifier_offload_xstats_info info = {
8795 		.info.dev = dev,
8796 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8797 	};
8798 
8799 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8800 				      &info.info);
8801 	kfree(dev->offload_xstats_l3);
8802 	dev->offload_xstats_l3 = NULL;
8803 }
8804 
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8805 int netdev_offload_xstats_disable(struct net_device *dev,
8806 				  enum netdev_offload_xstats_type type)
8807 {
8808 	ASSERT_RTNL();
8809 
8810 	if (!netdev_offload_xstats_enabled(dev, type))
8811 		return -EALREADY;
8812 
8813 	switch (type) {
8814 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8815 		netdev_offload_xstats_disable_l3(dev);
8816 		return 0;
8817 	}
8818 
8819 	WARN_ON(1);
8820 	return -EINVAL;
8821 }
8822 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8823 
netdev_offload_xstats_disable_all(struct net_device * dev)8824 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8825 {
8826 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8827 }
8828 
8829 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)8830 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8831 			      enum netdev_offload_xstats_type type)
8832 {
8833 	switch (type) {
8834 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8835 		return dev->offload_xstats_l3;
8836 	}
8837 
8838 	WARN_ON(1);
8839 	return NULL;
8840 }
8841 
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)8842 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8843 				   enum netdev_offload_xstats_type type)
8844 {
8845 	ASSERT_RTNL();
8846 
8847 	return netdev_offload_xstats_get_ptr(dev, type);
8848 }
8849 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8850 
8851 struct netdev_notifier_offload_xstats_ru {
8852 	bool used;
8853 };
8854 
8855 struct netdev_notifier_offload_xstats_rd {
8856 	struct rtnl_hw_stats64 stats;
8857 	bool used;
8858 };
8859 
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)8860 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8861 				  const struct rtnl_hw_stats64 *src)
8862 {
8863 	dest->rx_packets	  += src->rx_packets;
8864 	dest->tx_packets	  += src->tx_packets;
8865 	dest->rx_bytes		  += src->rx_bytes;
8866 	dest->tx_bytes		  += src->tx_bytes;
8867 	dest->rx_errors		  += src->rx_errors;
8868 	dest->tx_errors		  += src->tx_errors;
8869 	dest->rx_dropped	  += src->rx_dropped;
8870 	dest->tx_dropped	  += src->tx_dropped;
8871 	dest->multicast		  += src->multicast;
8872 }
8873 
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)8874 static int netdev_offload_xstats_get_used(struct net_device *dev,
8875 					  enum netdev_offload_xstats_type type,
8876 					  bool *p_used,
8877 					  struct netlink_ext_ack *extack)
8878 {
8879 	struct netdev_notifier_offload_xstats_ru report_used = {};
8880 	struct netdev_notifier_offload_xstats_info info = {
8881 		.info.dev = dev,
8882 		.info.extack = extack,
8883 		.type = type,
8884 		.report_used = &report_used,
8885 	};
8886 	int rc;
8887 
8888 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8889 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8890 					   &info.info);
8891 	*p_used = report_used.used;
8892 	return notifier_to_errno(rc);
8893 }
8894 
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8895 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8896 					   enum netdev_offload_xstats_type type,
8897 					   struct rtnl_hw_stats64 *p_stats,
8898 					   bool *p_used,
8899 					   struct netlink_ext_ack *extack)
8900 {
8901 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8902 	struct netdev_notifier_offload_xstats_info info = {
8903 		.info.dev = dev,
8904 		.info.extack = extack,
8905 		.type = type,
8906 		.report_delta = &report_delta,
8907 	};
8908 	struct rtnl_hw_stats64 *stats;
8909 	int rc;
8910 
8911 	stats = netdev_offload_xstats_get_ptr(dev, type);
8912 	if (WARN_ON(!stats))
8913 		return -EINVAL;
8914 
8915 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8916 					   &info.info);
8917 
8918 	/* Cache whatever we got, even if there was an error, otherwise the
8919 	 * successful stats retrievals would get lost.
8920 	 */
8921 	netdev_hw_stats64_add(stats, &report_delta.stats);
8922 
8923 	if (p_stats)
8924 		*p_stats = *stats;
8925 	*p_used = report_delta.used;
8926 
8927 	return notifier_to_errno(rc);
8928 }
8929 
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8930 int netdev_offload_xstats_get(struct net_device *dev,
8931 			      enum netdev_offload_xstats_type type,
8932 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8933 			      struct netlink_ext_ack *extack)
8934 {
8935 	ASSERT_RTNL();
8936 
8937 	if (p_stats)
8938 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8939 						       p_used, extack);
8940 	else
8941 		return netdev_offload_xstats_get_used(dev, type, p_used,
8942 						      extack);
8943 }
8944 EXPORT_SYMBOL(netdev_offload_xstats_get);
8945 
8946 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)8947 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8948 				   const struct rtnl_hw_stats64 *stats)
8949 {
8950 	report_delta->used = true;
8951 	netdev_hw_stats64_add(&report_delta->stats, stats);
8952 }
8953 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8954 
8955 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)8956 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8957 {
8958 	report_used->used = true;
8959 }
8960 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8961 
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)8962 void netdev_offload_xstats_push_delta(struct net_device *dev,
8963 				      enum netdev_offload_xstats_type type,
8964 				      const struct rtnl_hw_stats64 *p_stats)
8965 {
8966 	struct rtnl_hw_stats64 *stats;
8967 
8968 	ASSERT_RTNL();
8969 
8970 	stats = netdev_offload_xstats_get_ptr(dev, type);
8971 	if (WARN_ON(!stats))
8972 		return;
8973 
8974 	netdev_hw_stats64_add(stats, p_stats);
8975 }
8976 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8977 
8978 /**
8979  * netdev_get_xmit_slave - Get the xmit slave of master device
8980  * @dev: device
8981  * @skb: The packet
8982  * @all_slaves: assume all the slaves are active
8983  *
8984  * The reference counters are not incremented so the caller must be
8985  * careful with locks. The caller must hold RCU lock.
8986  * %NULL is returned if no slave is found.
8987  */
8988 
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8989 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8990 					 struct sk_buff *skb,
8991 					 bool all_slaves)
8992 {
8993 	const struct net_device_ops *ops = dev->netdev_ops;
8994 
8995 	if (!ops->ndo_get_xmit_slave)
8996 		return NULL;
8997 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8998 }
8999 EXPORT_SYMBOL(netdev_get_xmit_slave);
9000 
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)9001 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9002 						  struct sock *sk)
9003 {
9004 	const struct net_device_ops *ops = dev->netdev_ops;
9005 
9006 	if (!ops->ndo_sk_get_lower_dev)
9007 		return NULL;
9008 	return ops->ndo_sk_get_lower_dev(dev, sk);
9009 }
9010 
9011 /**
9012  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9013  * @dev: device
9014  * @sk: the socket
9015  *
9016  * %NULL is returned if no lower device is found.
9017  */
9018 
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)9019 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9020 					    struct sock *sk)
9021 {
9022 	struct net_device *lower;
9023 
9024 	lower = netdev_sk_get_lower_dev(dev, sk);
9025 	while (lower) {
9026 		dev = lower;
9027 		lower = netdev_sk_get_lower_dev(dev, sk);
9028 	}
9029 
9030 	return dev;
9031 }
9032 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9033 
netdev_adjacent_add_links(struct net_device * dev)9034 static void netdev_adjacent_add_links(struct net_device *dev)
9035 {
9036 	struct netdev_adjacent *iter;
9037 
9038 	struct net *net = dev_net(dev);
9039 
9040 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9041 		if (!net_eq(net, dev_net(iter->dev)))
9042 			continue;
9043 		netdev_adjacent_sysfs_add(iter->dev, dev,
9044 					  &iter->dev->adj_list.lower);
9045 		netdev_adjacent_sysfs_add(dev, iter->dev,
9046 					  &dev->adj_list.upper);
9047 	}
9048 
9049 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9050 		if (!net_eq(net, dev_net(iter->dev)))
9051 			continue;
9052 		netdev_adjacent_sysfs_add(iter->dev, dev,
9053 					  &iter->dev->adj_list.upper);
9054 		netdev_adjacent_sysfs_add(dev, iter->dev,
9055 					  &dev->adj_list.lower);
9056 	}
9057 }
9058 
netdev_adjacent_del_links(struct net_device * dev)9059 static void netdev_adjacent_del_links(struct net_device *dev)
9060 {
9061 	struct netdev_adjacent *iter;
9062 
9063 	struct net *net = dev_net(dev);
9064 
9065 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9066 		if (!net_eq(net, dev_net(iter->dev)))
9067 			continue;
9068 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9069 					  &iter->dev->adj_list.lower);
9070 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9071 					  &dev->adj_list.upper);
9072 	}
9073 
9074 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9075 		if (!net_eq(net, dev_net(iter->dev)))
9076 			continue;
9077 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9078 					  &iter->dev->adj_list.upper);
9079 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9080 					  &dev->adj_list.lower);
9081 	}
9082 }
9083 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)9084 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9085 {
9086 	struct netdev_adjacent *iter;
9087 
9088 	struct net *net = dev_net(dev);
9089 
9090 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9091 		if (!net_eq(net, dev_net(iter->dev)))
9092 			continue;
9093 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9094 					  &iter->dev->adj_list.lower);
9095 		netdev_adjacent_sysfs_add(iter->dev, dev,
9096 					  &iter->dev->adj_list.lower);
9097 	}
9098 
9099 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9100 		if (!net_eq(net, dev_net(iter->dev)))
9101 			continue;
9102 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9103 					  &iter->dev->adj_list.upper);
9104 		netdev_adjacent_sysfs_add(iter->dev, dev,
9105 					  &iter->dev->adj_list.upper);
9106 	}
9107 }
9108 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)9109 void *netdev_lower_dev_get_private(struct net_device *dev,
9110 				   struct net_device *lower_dev)
9111 {
9112 	struct netdev_adjacent *lower;
9113 
9114 	if (!lower_dev)
9115 		return NULL;
9116 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9117 	if (!lower)
9118 		return NULL;
9119 
9120 	return lower->private;
9121 }
9122 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9123 
9124 
9125 /**
9126  * netdev_lower_state_changed - Dispatch event about lower device state change
9127  * @lower_dev: device
9128  * @lower_state_info: state to dispatch
9129  *
9130  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9131  * The caller must hold the RTNL lock.
9132  */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)9133 void netdev_lower_state_changed(struct net_device *lower_dev,
9134 				void *lower_state_info)
9135 {
9136 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9137 		.info.dev = lower_dev,
9138 	};
9139 
9140 	ASSERT_RTNL();
9141 	changelowerstate_info.lower_state_info = lower_state_info;
9142 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9143 				      &changelowerstate_info.info);
9144 }
9145 EXPORT_SYMBOL(netdev_lower_state_changed);
9146 
dev_change_rx_flags(struct net_device * dev,int flags)9147 static void dev_change_rx_flags(struct net_device *dev, int flags)
9148 {
9149 	const struct net_device_ops *ops = dev->netdev_ops;
9150 
9151 	if (ops->ndo_change_rx_flags)
9152 		ops->ndo_change_rx_flags(dev, flags);
9153 }
9154 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)9155 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9156 {
9157 	unsigned int old_flags = dev->flags;
9158 	unsigned int promiscuity, flags;
9159 	kuid_t uid;
9160 	kgid_t gid;
9161 
9162 	ASSERT_RTNL();
9163 
9164 	promiscuity = dev->promiscuity + inc;
9165 	if (promiscuity == 0) {
9166 		/*
9167 		 * Avoid overflow.
9168 		 * If inc causes overflow, untouch promisc and return error.
9169 		 */
9170 		if (unlikely(inc > 0)) {
9171 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9172 			return -EOVERFLOW;
9173 		}
9174 		flags = old_flags & ~IFF_PROMISC;
9175 	} else {
9176 		flags = old_flags | IFF_PROMISC;
9177 	}
9178 	WRITE_ONCE(dev->promiscuity, promiscuity);
9179 	if (flags != old_flags) {
9180 		WRITE_ONCE(dev->flags, flags);
9181 		netdev_info(dev, "%s promiscuous mode\n",
9182 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9183 		if (audit_enabled) {
9184 			current_uid_gid(&uid, &gid);
9185 			audit_log(audit_context(), GFP_ATOMIC,
9186 				  AUDIT_ANOM_PROMISCUOUS,
9187 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9188 				  dev->name, (dev->flags & IFF_PROMISC),
9189 				  (old_flags & IFF_PROMISC),
9190 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9191 				  from_kuid(&init_user_ns, uid),
9192 				  from_kgid(&init_user_ns, gid),
9193 				  audit_get_sessionid(current));
9194 		}
9195 
9196 		dev_change_rx_flags(dev, IFF_PROMISC);
9197 	}
9198 	if (notify)
9199 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9200 	return 0;
9201 }
9202 
9203 /**
9204  *	dev_set_promiscuity	- update promiscuity count on a device
9205  *	@dev: device
9206  *	@inc: modifier
9207  *
9208  *	Add or remove promiscuity from a device. While the count in the device
9209  *	remains above zero the interface remains promiscuous. Once it hits zero
9210  *	the device reverts back to normal filtering operation. A negative inc
9211  *	value is used to drop promiscuity on the device.
9212  *	Return 0 if successful or a negative errno code on error.
9213  */
dev_set_promiscuity(struct net_device * dev,int inc)9214 int dev_set_promiscuity(struct net_device *dev, int inc)
9215 {
9216 	unsigned int old_flags = dev->flags;
9217 	int err;
9218 
9219 	err = __dev_set_promiscuity(dev, inc, true);
9220 	if (err < 0)
9221 		return err;
9222 	if (dev->flags != old_flags)
9223 		dev_set_rx_mode(dev);
9224 	return err;
9225 }
9226 EXPORT_SYMBOL(dev_set_promiscuity);
9227 
netif_set_allmulti(struct net_device * dev,int inc,bool notify)9228 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9229 {
9230 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9231 	unsigned int allmulti, flags;
9232 
9233 	ASSERT_RTNL();
9234 
9235 	allmulti = dev->allmulti + inc;
9236 	if (allmulti == 0) {
9237 		/*
9238 		 * Avoid overflow.
9239 		 * If inc causes overflow, untouch allmulti and return error.
9240 		 */
9241 		if (unlikely(inc > 0)) {
9242 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9243 			return -EOVERFLOW;
9244 		}
9245 		flags = old_flags & ~IFF_ALLMULTI;
9246 	} else {
9247 		flags = old_flags | IFF_ALLMULTI;
9248 	}
9249 	WRITE_ONCE(dev->allmulti, allmulti);
9250 	if (flags != old_flags) {
9251 		WRITE_ONCE(dev->flags, flags);
9252 		netdev_info(dev, "%s allmulticast mode\n",
9253 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9254 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9255 		dev_set_rx_mode(dev);
9256 		if (notify)
9257 			__dev_notify_flags(dev, old_flags,
9258 					   dev->gflags ^ old_gflags, 0, NULL);
9259 	}
9260 	return 0;
9261 }
9262 
9263 /*
9264  *	Upload unicast and multicast address lists to device and
9265  *	configure RX filtering. When the device doesn't support unicast
9266  *	filtering it is put in promiscuous mode while unicast addresses
9267  *	are present.
9268  */
__dev_set_rx_mode(struct net_device * dev)9269 void __dev_set_rx_mode(struct net_device *dev)
9270 {
9271 	const struct net_device_ops *ops = dev->netdev_ops;
9272 
9273 	/* dev_open will call this function so the list will stay sane. */
9274 	if (!(dev->flags&IFF_UP))
9275 		return;
9276 
9277 	if (!netif_device_present(dev))
9278 		return;
9279 
9280 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9281 		/* Unicast addresses changes may only happen under the rtnl,
9282 		 * therefore calling __dev_set_promiscuity here is safe.
9283 		 */
9284 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9285 			__dev_set_promiscuity(dev, 1, false);
9286 			dev->uc_promisc = true;
9287 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9288 			__dev_set_promiscuity(dev, -1, false);
9289 			dev->uc_promisc = false;
9290 		}
9291 	}
9292 
9293 	if (ops->ndo_set_rx_mode)
9294 		ops->ndo_set_rx_mode(dev);
9295 }
9296 
dev_set_rx_mode(struct net_device * dev)9297 void dev_set_rx_mode(struct net_device *dev)
9298 {
9299 	netif_addr_lock_bh(dev);
9300 	__dev_set_rx_mode(dev);
9301 	netif_addr_unlock_bh(dev);
9302 }
9303 
9304 /**
9305  *	dev_get_flags - get flags reported to userspace
9306  *	@dev: device
9307  *
9308  *	Get the combination of flag bits exported through APIs to userspace.
9309  */
dev_get_flags(const struct net_device * dev)9310 unsigned int dev_get_flags(const struct net_device *dev)
9311 {
9312 	unsigned int flags;
9313 
9314 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9315 				IFF_ALLMULTI |
9316 				IFF_RUNNING |
9317 				IFF_LOWER_UP |
9318 				IFF_DORMANT)) |
9319 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9320 				IFF_ALLMULTI));
9321 
9322 	if (netif_running(dev)) {
9323 		if (netif_oper_up(dev))
9324 			flags |= IFF_RUNNING;
9325 		if (netif_carrier_ok(dev))
9326 			flags |= IFF_LOWER_UP;
9327 		if (netif_dormant(dev))
9328 			flags |= IFF_DORMANT;
9329 	}
9330 
9331 	return flags;
9332 }
9333 EXPORT_SYMBOL(dev_get_flags);
9334 
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9335 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9336 		       struct netlink_ext_ack *extack)
9337 {
9338 	unsigned int old_flags = dev->flags;
9339 	int ret;
9340 
9341 	ASSERT_RTNL();
9342 
9343 	/*
9344 	 *	Set the flags on our device.
9345 	 */
9346 
9347 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9348 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9349 			       IFF_AUTOMEDIA)) |
9350 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9351 				    IFF_ALLMULTI));
9352 
9353 	/*
9354 	 *	Load in the correct multicast list now the flags have changed.
9355 	 */
9356 
9357 	if ((old_flags ^ flags) & IFF_MULTICAST)
9358 		dev_change_rx_flags(dev, IFF_MULTICAST);
9359 
9360 	dev_set_rx_mode(dev);
9361 
9362 	/*
9363 	 *	Have we downed the interface. We handle IFF_UP ourselves
9364 	 *	according to user attempts to set it, rather than blindly
9365 	 *	setting it.
9366 	 */
9367 
9368 	ret = 0;
9369 	if ((old_flags ^ flags) & IFF_UP) {
9370 		if (old_flags & IFF_UP)
9371 			__dev_close(dev);
9372 		else
9373 			ret = __dev_open(dev, extack);
9374 	}
9375 
9376 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9377 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9378 		old_flags = dev->flags;
9379 
9380 		dev->gflags ^= IFF_PROMISC;
9381 
9382 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9383 			if (dev->flags != old_flags)
9384 				dev_set_rx_mode(dev);
9385 	}
9386 
9387 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9388 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9389 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9390 	 */
9391 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9392 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9393 
9394 		dev->gflags ^= IFF_ALLMULTI;
9395 		netif_set_allmulti(dev, inc, false);
9396 	}
9397 
9398 	return ret;
9399 }
9400 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)9401 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9402 			unsigned int gchanges, u32 portid,
9403 			const struct nlmsghdr *nlh)
9404 {
9405 	unsigned int changes = dev->flags ^ old_flags;
9406 
9407 	if (gchanges)
9408 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9409 
9410 	if (changes & IFF_UP) {
9411 		if (dev->flags & IFF_UP)
9412 			call_netdevice_notifiers(NETDEV_UP, dev);
9413 		else
9414 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9415 	}
9416 
9417 	if (dev->flags & IFF_UP &&
9418 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9419 		struct netdev_notifier_change_info change_info = {
9420 			.info = {
9421 				.dev = dev,
9422 			},
9423 			.flags_changed = changes,
9424 		};
9425 
9426 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9427 	}
9428 }
9429 
netif_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9430 int netif_change_flags(struct net_device *dev, unsigned int flags,
9431 		       struct netlink_ext_ack *extack)
9432 {
9433 	int ret;
9434 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9435 
9436 	ret = __dev_change_flags(dev, flags, extack);
9437 	if (ret < 0)
9438 		return ret;
9439 
9440 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9441 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9442 	return ret;
9443 }
9444 
__dev_set_mtu(struct net_device * dev,int new_mtu)9445 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9446 {
9447 	const struct net_device_ops *ops = dev->netdev_ops;
9448 
9449 	if (ops->ndo_change_mtu)
9450 		return ops->ndo_change_mtu(dev, new_mtu);
9451 
9452 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9453 	WRITE_ONCE(dev->mtu, new_mtu);
9454 	return 0;
9455 }
9456 EXPORT_SYMBOL(__dev_set_mtu);
9457 
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9458 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9459 		     struct netlink_ext_ack *extack)
9460 {
9461 	/* MTU must be positive, and in range */
9462 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9463 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9464 		return -EINVAL;
9465 	}
9466 
9467 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9468 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9469 		return -EINVAL;
9470 	}
9471 	return 0;
9472 }
9473 
9474 /**
9475  *	netif_set_mtu_ext - Change maximum transfer unit
9476  *	@dev: device
9477  *	@new_mtu: new transfer unit
9478  *	@extack: netlink extended ack
9479  *
9480  *	Change the maximum transfer size of the network device.
9481  */
netif_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9482 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9483 		      struct netlink_ext_ack *extack)
9484 {
9485 	int err, orig_mtu;
9486 
9487 	if (new_mtu == dev->mtu)
9488 		return 0;
9489 
9490 	err = dev_validate_mtu(dev, new_mtu, extack);
9491 	if (err)
9492 		return err;
9493 
9494 	if (!netif_device_present(dev))
9495 		return -ENODEV;
9496 
9497 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9498 	err = notifier_to_errno(err);
9499 	if (err)
9500 		return err;
9501 
9502 	orig_mtu = dev->mtu;
9503 	err = __dev_set_mtu(dev, new_mtu);
9504 
9505 	if (!err) {
9506 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9507 						   orig_mtu);
9508 		err = notifier_to_errno(err);
9509 		if (err) {
9510 			/* setting mtu back and notifying everyone again,
9511 			 * so that they have a chance to revert changes.
9512 			 */
9513 			__dev_set_mtu(dev, orig_mtu);
9514 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9515 						     new_mtu);
9516 		}
9517 	}
9518 	return err;
9519 }
9520 
netif_set_mtu(struct net_device * dev,int new_mtu)9521 int netif_set_mtu(struct net_device *dev, int new_mtu)
9522 {
9523 	struct netlink_ext_ack extack;
9524 	int err;
9525 
9526 	memset(&extack, 0, sizeof(extack));
9527 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9528 	if (err && extack._msg)
9529 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9530 	return err;
9531 }
9532 EXPORT_SYMBOL(netif_set_mtu);
9533 
netif_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9534 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9535 {
9536 	unsigned int orig_len = dev->tx_queue_len;
9537 	int res;
9538 
9539 	if (new_len != (unsigned int)new_len)
9540 		return -ERANGE;
9541 
9542 	if (new_len != orig_len) {
9543 		WRITE_ONCE(dev->tx_queue_len, new_len);
9544 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9545 		res = notifier_to_errno(res);
9546 		if (res)
9547 			goto err_rollback;
9548 		res = dev_qdisc_change_tx_queue_len(dev);
9549 		if (res)
9550 			goto err_rollback;
9551 	}
9552 
9553 	return 0;
9554 
9555 err_rollback:
9556 	netdev_err(dev, "refused to change device tx_queue_len\n");
9557 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9558 	return res;
9559 }
9560 
netif_set_group(struct net_device * dev,int new_group)9561 void netif_set_group(struct net_device *dev, int new_group)
9562 {
9563 	dev->group = new_group;
9564 }
9565 
9566 /**
9567  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9568  *	@dev: device
9569  *	@addr: new address
9570  *	@extack: netlink extended ack
9571  */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9572 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9573 			      struct netlink_ext_ack *extack)
9574 {
9575 	struct netdev_notifier_pre_changeaddr_info info = {
9576 		.info.dev = dev,
9577 		.info.extack = extack,
9578 		.dev_addr = addr,
9579 	};
9580 	int rc;
9581 
9582 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9583 	return notifier_to_errno(rc);
9584 }
9585 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9586 
netif_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)9587 int netif_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9588 			  struct netlink_ext_ack *extack)
9589 {
9590 	const struct net_device_ops *ops = dev->netdev_ops;
9591 	int err;
9592 
9593 	if (!ops->ndo_set_mac_address)
9594 		return -EOPNOTSUPP;
9595 	if (sa->sa_family != dev->type)
9596 		return -EINVAL;
9597 	if (!netif_device_present(dev))
9598 		return -ENODEV;
9599 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9600 	if (err)
9601 		return err;
9602 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9603 		err = ops->ndo_set_mac_address(dev, sa);
9604 		if (err)
9605 			return err;
9606 	}
9607 	dev->addr_assign_type = NET_ADDR_SET;
9608 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9609 	add_device_randomness(dev->dev_addr, dev->addr_len);
9610 	return 0;
9611 }
9612 
9613 DECLARE_RWSEM(dev_addr_sem);
9614 
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9615 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9616 {
9617 	size_t size = sizeof(sa->sa_data_min);
9618 	struct net_device *dev;
9619 	int ret = 0;
9620 
9621 	down_read(&dev_addr_sem);
9622 	rcu_read_lock();
9623 
9624 	dev = dev_get_by_name_rcu(net, dev_name);
9625 	if (!dev) {
9626 		ret = -ENODEV;
9627 		goto unlock;
9628 	}
9629 	if (!dev->addr_len)
9630 		memset(sa->sa_data, 0, size);
9631 	else
9632 		memcpy(sa->sa_data, dev->dev_addr,
9633 		       min_t(size_t, size, dev->addr_len));
9634 	sa->sa_family = dev->type;
9635 
9636 unlock:
9637 	rcu_read_unlock();
9638 	up_read(&dev_addr_sem);
9639 	return ret;
9640 }
9641 EXPORT_SYMBOL(dev_get_mac_address);
9642 
netif_change_carrier(struct net_device * dev,bool new_carrier)9643 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9644 {
9645 	const struct net_device_ops *ops = dev->netdev_ops;
9646 
9647 	if (!ops->ndo_change_carrier)
9648 		return -EOPNOTSUPP;
9649 	if (!netif_device_present(dev))
9650 		return -ENODEV;
9651 	return ops->ndo_change_carrier(dev, new_carrier);
9652 }
9653 
9654 /**
9655  *	dev_get_phys_port_id - Get device physical port ID
9656  *	@dev: device
9657  *	@ppid: port ID
9658  *
9659  *	Get device physical port ID
9660  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9661 int dev_get_phys_port_id(struct net_device *dev,
9662 			 struct netdev_phys_item_id *ppid)
9663 {
9664 	const struct net_device_ops *ops = dev->netdev_ops;
9665 
9666 	if (!ops->ndo_get_phys_port_id)
9667 		return -EOPNOTSUPP;
9668 	return ops->ndo_get_phys_port_id(dev, ppid);
9669 }
9670 
9671 /**
9672  *	dev_get_phys_port_name - Get device physical port name
9673  *	@dev: device
9674  *	@name: port name
9675  *	@len: limit of bytes to copy to name
9676  *
9677  *	Get device physical port name
9678  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9679 int dev_get_phys_port_name(struct net_device *dev,
9680 			   char *name, size_t len)
9681 {
9682 	const struct net_device_ops *ops = dev->netdev_ops;
9683 	int err;
9684 
9685 	if (ops->ndo_get_phys_port_name) {
9686 		err = ops->ndo_get_phys_port_name(dev, name, len);
9687 		if (err != -EOPNOTSUPP)
9688 			return err;
9689 	}
9690 	return devlink_compat_phys_port_name_get(dev, name, len);
9691 }
9692 
9693 /**
9694  *	dev_get_port_parent_id - Get the device's port parent identifier
9695  *	@dev: network device
9696  *	@ppid: pointer to a storage for the port's parent identifier
9697  *	@recurse: allow/disallow recursion to lower devices
9698  *
9699  *	Get the devices's port parent identifier
9700  */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9701 int dev_get_port_parent_id(struct net_device *dev,
9702 			   struct netdev_phys_item_id *ppid,
9703 			   bool recurse)
9704 {
9705 	const struct net_device_ops *ops = dev->netdev_ops;
9706 	struct netdev_phys_item_id first = { };
9707 	struct net_device *lower_dev;
9708 	struct list_head *iter;
9709 	int err;
9710 
9711 	if (ops->ndo_get_port_parent_id) {
9712 		err = ops->ndo_get_port_parent_id(dev, ppid);
9713 		if (err != -EOPNOTSUPP)
9714 			return err;
9715 	}
9716 
9717 	err = devlink_compat_switch_id_get(dev, ppid);
9718 	if (!recurse || err != -EOPNOTSUPP)
9719 		return err;
9720 
9721 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9722 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9723 		if (err)
9724 			break;
9725 		if (!first.id_len)
9726 			first = *ppid;
9727 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9728 			return -EOPNOTSUPP;
9729 	}
9730 
9731 	return err;
9732 }
9733 EXPORT_SYMBOL(dev_get_port_parent_id);
9734 
9735 /**
9736  *	netdev_port_same_parent_id - Indicate if two network devices have
9737  *	the same port parent identifier
9738  *	@a: first network device
9739  *	@b: second network device
9740  */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9741 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9742 {
9743 	struct netdev_phys_item_id a_id = { };
9744 	struct netdev_phys_item_id b_id = { };
9745 
9746 	if (dev_get_port_parent_id(a, &a_id, true) ||
9747 	    dev_get_port_parent_id(b, &b_id, true))
9748 		return false;
9749 
9750 	return netdev_phys_item_id_same(&a_id, &b_id);
9751 }
9752 EXPORT_SYMBOL(netdev_port_same_parent_id);
9753 
netif_change_proto_down(struct net_device * dev,bool proto_down)9754 int netif_change_proto_down(struct net_device *dev, bool proto_down)
9755 {
9756 	if (!dev->change_proto_down)
9757 		return -EOPNOTSUPP;
9758 	if (!netif_device_present(dev))
9759 		return -ENODEV;
9760 	if (proto_down)
9761 		netif_carrier_off(dev);
9762 	else
9763 		netif_carrier_on(dev);
9764 	WRITE_ONCE(dev->proto_down, proto_down);
9765 	return 0;
9766 }
9767 
9768 /**
9769  *	netdev_change_proto_down_reason_locked - proto down reason
9770  *
9771  *	@dev: device
9772  *	@mask: proto down mask
9773  *	@value: proto down value
9774  */
netdev_change_proto_down_reason_locked(struct net_device * dev,unsigned long mask,u32 value)9775 void netdev_change_proto_down_reason_locked(struct net_device *dev,
9776 					    unsigned long mask, u32 value)
9777 {
9778 	u32 proto_down_reason;
9779 	int b;
9780 
9781 	if (!mask) {
9782 		proto_down_reason = value;
9783 	} else {
9784 		proto_down_reason = dev->proto_down_reason;
9785 		for_each_set_bit(b, &mask, 32) {
9786 			if (value & (1 << b))
9787 				proto_down_reason |= BIT(b);
9788 			else
9789 				proto_down_reason &= ~BIT(b);
9790 		}
9791 	}
9792 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9793 }
9794 
9795 struct bpf_xdp_link {
9796 	struct bpf_link link;
9797 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9798 	int flags;
9799 };
9800 
dev_xdp_mode(struct net_device * dev,u32 flags)9801 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9802 {
9803 	if (flags & XDP_FLAGS_HW_MODE)
9804 		return XDP_MODE_HW;
9805 	if (flags & XDP_FLAGS_DRV_MODE)
9806 		return XDP_MODE_DRV;
9807 	if (flags & XDP_FLAGS_SKB_MODE)
9808 		return XDP_MODE_SKB;
9809 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9810 }
9811 
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9812 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9813 {
9814 	switch (mode) {
9815 	case XDP_MODE_SKB:
9816 		return generic_xdp_install;
9817 	case XDP_MODE_DRV:
9818 	case XDP_MODE_HW:
9819 		return dev->netdev_ops->ndo_bpf;
9820 	default:
9821 		return NULL;
9822 	}
9823 }
9824 
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9825 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9826 					 enum bpf_xdp_mode mode)
9827 {
9828 	return dev->xdp_state[mode].link;
9829 }
9830 
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9831 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9832 				     enum bpf_xdp_mode mode)
9833 {
9834 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9835 
9836 	if (link)
9837 		return link->link.prog;
9838 	return dev->xdp_state[mode].prog;
9839 }
9840 
dev_xdp_prog_count(struct net_device * dev)9841 u8 dev_xdp_prog_count(struct net_device *dev)
9842 {
9843 	u8 count = 0;
9844 	int i;
9845 
9846 	for (i = 0; i < __MAX_XDP_MODE; i++)
9847 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9848 			count++;
9849 	return count;
9850 }
9851 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9852 
dev_xdp_sb_prog_count(struct net_device * dev)9853 u8 dev_xdp_sb_prog_count(struct net_device *dev)
9854 {
9855 	u8 count = 0;
9856 	int i;
9857 
9858 	for (i = 0; i < __MAX_XDP_MODE; i++)
9859 		if (dev->xdp_state[i].prog &&
9860 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
9861 			count++;
9862 	return count;
9863 }
9864 
netif_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)9865 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9866 {
9867 	if (!dev->netdev_ops->ndo_bpf)
9868 		return -EOPNOTSUPP;
9869 
9870 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9871 	    bpf->command == XDP_SETUP_PROG &&
9872 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9873 		NL_SET_ERR_MSG(bpf->extack,
9874 			       "unable to propagate XDP to device using tcp-data-split");
9875 		return -EBUSY;
9876 	}
9877 
9878 	if (dev_get_min_mp_channel_count(dev)) {
9879 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9880 		return -EBUSY;
9881 	}
9882 
9883 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9884 }
9885 
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9886 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9887 {
9888 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9889 
9890 	return prog ? prog->aux->id : 0;
9891 }
9892 
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9893 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9894 			     struct bpf_xdp_link *link)
9895 {
9896 	dev->xdp_state[mode].link = link;
9897 	dev->xdp_state[mode].prog = NULL;
9898 }
9899 
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9900 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9901 			     struct bpf_prog *prog)
9902 {
9903 	dev->xdp_state[mode].link = NULL;
9904 	dev->xdp_state[mode].prog = prog;
9905 }
9906 
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9907 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9908 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9909 			   u32 flags, struct bpf_prog *prog)
9910 {
9911 	struct netdev_bpf xdp;
9912 	int err;
9913 
9914 	netdev_ops_assert_locked(dev);
9915 
9916 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9917 	    prog && !prog->aux->xdp_has_frags) {
9918 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
9919 		return -EBUSY;
9920 	}
9921 
9922 	if (dev_get_min_mp_channel_count(dev)) {
9923 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9924 		return -EBUSY;
9925 	}
9926 
9927 	memset(&xdp, 0, sizeof(xdp));
9928 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9929 	xdp.extack = extack;
9930 	xdp.flags = flags;
9931 	xdp.prog = prog;
9932 
9933 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9934 	 * "moved" into driver), so they don't increment it on their own, but
9935 	 * they do decrement refcnt when program is detached or replaced.
9936 	 * Given net_device also owns link/prog, we need to bump refcnt here
9937 	 * to prevent drivers from underflowing it.
9938 	 */
9939 	if (prog)
9940 		bpf_prog_inc(prog);
9941 	err = bpf_op(dev, &xdp);
9942 	if (err) {
9943 		if (prog)
9944 			bpf_prog_put(prog);
9945 		return err;
9946 	}
9947 
9948 	if (mode != XDP_MODE_HW)
9949 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9950 
9951 	return 0;
9952 }
9953 
dev_xdp_uninstall(struct net_device * dev)9954 static void dev_xdp_uninstall(struct net_device *dev)
9955 {
9956 	struct bpf_xdp_link *link;
9957 	struct bpf_prog *prog;
9958 	enum bpf_xdp_mode mode;
9959 	bpf_op_t bpf_op;
9960 
9961 	ASSERT_RTNL();
9962 
9963 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9964 		prog = dev_xdp_prog(dev, mode);
9965 		if (!prog)
9966 			continue;
9967 
9968 		bpf_op = dev_xdp_bpf_op(dev, mode);
9969 		if (!bpf_op)
9970 			continue;
9971 
9972 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9973 
9974 		/* auto-detach link from net device */
9975 		link = dev_xdp_link(dev, mode);
9976 		if (link)
9977 			link->dev = NULL;
9978 		else
9979 			bpf_prog_put(prog);
9980 
9981 		dev_xdp_set_link(dev, mode, NULL);
9982 	}
9983 }
9984 
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9985 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9986 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9987 			  struct bpf_prog *old_prog, u32 flags)
9988 {
9989 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9990 	struct bpf_prog *cur_prog;
9991 	struct net_device *upper;
9992 	struct list_head *iter;
9993 	enum bpf_xdp_mode mode;
9994 	bpf_op_t bpf_op;
9995 	int err;
9996 
9997 	ASSERT_RTNL();
9998 
9999 	/* either link or prog attachment, never both */
10000 	if (link && (new_prog || old_prog))
10001 		return -EINVAL;
10002 	/* link supports only XDP mode flags */
10003 	if (link && (flags & ~XDP_FLAGS_MODES)) {
10004 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10005 		return -EINVAL;
10006 	}
10007 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10008 	if (num_modes > 1) {
10009 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10010 		return -EINVAL;
10011 	}
10012 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10013 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10014 		NL_SET_ERR_MSG(extack,
10015 			       "More than one program loaded, unset mode is ambiguous");
10016 		return -EINVAL;
10017 	}
10018 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10019 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10020 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10021 		return -EINVAL;
10022 	}
10023 
10024 	mode = dev_xdp_mode(dev, flags);
10025 	/* can't replace attached link */
10026 	if (dev_xdp_link(dev, mode)) {
10027 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10028 		return -EBUSY;
10029 	}
10030 
10031 	/* don't allow if an upper device already has a program */
10032 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10033 		if (dev_xdp_prog_count(upper) > 0) {
10034 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10035 			return -EEXIST;
10036 		}
10037 	}
10038 
10039 	cur_prog = dev_xdp_prog(dev, mode);
10040 	/* can't replace attached prog with link */
10041 	if (link && cur_prog) {
10042 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10043 		return -EBUSY;
10044 	}
10045 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10046 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10047 		return -EEXIST;
10048 	}
10049 
10050 	/* put effective new program into new_prog */
10051 	if (link)
10052 		new_prog = link->link.prog;
10053 
10054 	if (new_prog) {
10055 		bool offload = mode == XDP_MODE_HW;
10056 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10057 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10058 
10059 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10060 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10061 			return -EBUSY;
10062 		}
10063 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10064 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10065 			return -EEXIST;
10066 		}
10067 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10068 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10069 			return -EINVAL;
10070 		}
10071 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10072 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10073 			return -EINVAL;
10074 		}
10075 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10076 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10077 			return -EINVAL;
10078 		}
10079 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10080 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10081 			return -EINVAL;
10082 		}
10083 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10084 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10085 			return -EINVAL;
10086 		}
10087 	}
10088 
10089 	/* don't call drivers if the effective program didn't change */
10090 	if (new_prog != cur_prog) {
10091 		bpf_op = dev_xdp_bpf_op(dev, mode);
10092 		if (!bpf_op) {
10093 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10094 			return -EOPNOTSUPP;
10095 		}
10096 
10097 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10098 		if (err)
10099 			return err;
10100 	}
10101 
10102 	if (link)
10103 		dev_xdp_set_link(dev, mode, link);
10104 	else
10105 		dev_xdp_set_prog(dev, mode, new_prog);
10106 	if (cur_prog)
10107 		bpf_prog_put(cur_prog);
10108 
10109 	return 0;
10110 }
10111 
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10112 static int dev_xdp_attach_link(struct net_device *dev,
10113 			       struct netlink_ext_ack *extack,
10114 			       struct bpf_xdp_link *link)
10115 {
10116 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10117 }
10118 
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10119 static int dev_xdp_detach_link(struct net_device *dev,
10120 			       struct netlink_ext_ack *extack,
10121 			       struct bpf_xdp_link *link)
10122 {
10123 	enum bpf_xdp_mode mode;
10124 	bpf_op_t bpf_op;
10125 
10126 	ASSERT_RTNL();
10127 
10128 	mode = dev_xdp_mode(dev, link->flags);
10129 	if (dev_xdp_link(dev, mode) != link)
10130 		return -EINVAL;
10131 
10132 	bpf_op = dev_xdp_bpf_op(dev, mode);
10133 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10134 	dev_xdp_set_link(dev, mode, NULL);
10135 	return 0;
10136 }
10137 
bpf_xdp_link_release(struct bpf_link * link)10138 static void bpf_xdp_link_release(struct bpf_link *link)
10139 {
10140 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10141 
10142 	rtnl_lock();
10143 
10144 	/* if racing with net_device's tear down, xdp_link->dev might be
10145 	 * already NULL, in which case link was already auto-detached
10146 	 */
10147 	if (xdp_link->dev) {
10148 		netdev_lock_ops(xdp_link->dev);
10149 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10150 		netdev_unlock_ops(xdp_link->dev);
10151 		xdp_link->dev = NULL;
10152 	}
10153 
10154 	rtnl_unlock();
10155 }
10156 
bpf_xdp_link_detach(struct bpf_link * link)10157 static int bpf_xdp_link_detach(struct bpf_link *link)
10158 {
10159 	bpf_xdp_link_release(link);
10160 	return 0;
10161 }
10162 
bpf_xdp_link_dealloc(struct bpf_link * link)10163 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10164 {
10165 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10166 
10167 	kfree(xdp_link);
10168 }
10169 
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)10170 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10171 				     struct seq_file *seq)
10172 {
10173 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10174 	u32 ifindex = 0;
10175 
10176 	rtnl_lock();
10177 	if (xdp_link->dev)
10178 		ifindex = xdp_link->dev->ifindex;
10179 	rtnl_unlock();
10180 
10181 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10182 }
10183 
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)10184 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10185 				       struct bpf_link_info *info)
10186 {
10187 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10188 	u32 ifindex = 0;
10189 
10190 	rtnl_lock();
10191 	if (xdp_link->dev)
10192 		ifindex = xdp_link->dev->ifindex;
10193 	rtnl_unlock();
10194 
10195 	info->xdp.ifindex = ifindex;
10196 	return 0;
10197 }
10198 
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)10199 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10200 			       struct bpf_prog *old_prog)
10201 {
10202 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10203 	enum bpf_xdp_mode mode;
10204 	bpf_op_t bpf_op;
10205 	int err = 0;
10206 
10207 	rtnl_lock();
10208 
10209 	/* link might have been auto-released already, so fail */
10210 	if (!xdp_link->dev) {
10211 		err = -ENOLINK;
10212 		goto out_unlock;
10213 	}
10214 
10215 	if (old_prog && link->prog != old_prog) {
10216 		err = -EPERM;
10217 		goto out_unlock;
10218 	}
10219 	old_prog = link->prog;
10220 	if (old_prog->type != new_prog->type ||
10221 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10222 		err = -EINVAL;
10223 		goto out_unlock;
10224 	}
10225 
10226 	if (old_prog == new_prog) {
10227 		/* no-op, don't disturb drivers */
10228 		bpf_prog_put(new_prog);
10229 		goto out_unlock;
10230 	}
10231 
10232 	netdev_lock_ops(xdp_link->dev);
10233 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10234 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10235 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10236 			      xdp_link->flags, new_prog);
10237 	netdev_unlock_ops(xdp_link->dev);
10238 	if (err)
10239 		goto out_unlock;
10240 
10241 	old_prog = xchg(&link->prog, new_prog);
10242 	bpf_prog_put(old_prog);
10243 
10244 out_unlock:
10245 	rtnl_unlock();
10246 	return err;
10247 }
10248 
10249 static const struct bpf_link_ops bpf_xdp_link_lops = {
10250 	.release = bpf_xdp_link_release,
10251 	.dealloc = bpf_xdp_link_dealloc,
10252 	.detach = bpf_xdp_link_detach,
10253 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10254 	.fill_link_info = bpf_xdp_link_fill_link_info,
10255 	.update_prog = bpf_xdp_link_update,
10256 };
10257 
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)10258 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10259 {
10260 	struct net *net = current->nsproxy->net_ns;
10261 	struct bpf_link_primer link_primer;
10262 	struct netlink_ext_ack extack = {};
10263 	struct bpf_xdp_link *link;
10264 	struct net_device *dev;
10265 	int err, fd;
10266 
10267 	rtnl_lock();
10268 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10269 	if (!dev) {
10270 		rtnl_unlock();
10271 		return -EINVAL;
10272 	}
10273 
10274 	link = kzalloc(sizeof(*link), GFP_USER);
10275 	if (!link) {
10276 		err = -ENOMEM;
10277 		goto unlock;
10278 	}
10279 
10280 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10281 	link->dev = dev;
10282 	link->flags = attr->link_create.flags;
10283 
10284 	err = bpf_link_prime(&link->link, &link_primer);
10285 	if (err) {
10286 		kfree(link);
10287 		goto unlock;
10288 	}
10289 
10290 	netdev_lock_ops(dev);
10291 	err = dev_xdp_attach_link(dev, &extack, link);
10292 	netdev_unlock_ops(dev);
10293 	rtnl_unlock();
10294 
10295 	if (err) {
10296 		link->dev = NULL;
10297 		bpf_link_cleanup(&link_primer);
10298 		trace_bpf_xdp_link_attach_failed(extack._msg);
10299 		goto out_put_dev;
10300 	}
10301 
10302 	fd = bpf_link_settle(&link_primer);
10303 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10304 	dev_put(dev);
10305 	return fd;
10306 
10307 unlock:
10308 	rtnl_unlock();
10309 
10310 out_put_dev:
10311 	dev_put(dev);
10312 	return err;
10313 }
10314 
10315 /**
10316  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10317  *	@dev: device
10318  *	@extack: netlink extended ack
10319  *	@fd: new program fd or negative value to clear
10320  *	@expected_fd: old program fd that userspace expects to replace or clear
10321  *	@flags: xdp-related flags
10322  *
10323  *	Set or clear a bpf program for a device
10324  */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)10325 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10326 		      int fd, int expected_fd, u32 flags)
10327 {
10328 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10329 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10330 	int err;
10331 
10332 	ASSERT_RTNL();
10333 
10334 	if (fd >= 0) {
10335 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10336 						 mode != XDP_MODE_SKB);
10337 		if (IS_ERR(new_prog))
10338 			return PTR_ERR(new_prog);
10339 	}
10340 
10341 	if (expected_fd >= 0) {
10342 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10343 						 mode != XDP_MODE_SKB);
10344 		if (IS_ERR(old_prog)) {
10345 			err = PTR_ERR(old_prog);
10346 			old_prog = NULL;
10347 			goto err_out;
10348 		}
10349 	}
10350 
10351 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10352 
10353 err_out:
10354 	if (err && new_prog)
10355 		bpf_prog_put(new_prog);
10356 	if (old_prog)
10357 		bpf_prog_put(old_prog);
10358 	return err;
10359 }
10360 
dev_get_min_mp_channel_count(const struct net_device * dev)10361 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10362 {
10363 	int i;
10364 
10365 	netdev_ops_assert_locked(dev);
10366 
10367 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10368 		if (dev->_rx[i].mp_params.mp_priv)
10369 			/* The channel count is the idx plus 1. */
10370 			return i + 1;
10371 
10372 	return 0;
10373 }
10374 
10375 /**
10376  * dev_index_reserve() - allocate an ifindex in a namespace
10377  * @net: the applicable net namespace
10378  * @ifindex: requested ifindex, pass %0 to get one allocated
10379  *
10380  * Allocate a ifindex for a new device. Caller must either use the ifindex
10381  * to store the device (via list_netdevice()) or call dev_index_release()
10382  * to give the index up.
10383  *
10384  * Return: a suitable unique value for a new device interface number or -errno.
10385  */
dev_index_reserve(struct net * net,u32 ifindex)10386 static int dev_index_reserve(struct net *net, u32 ifindex)
10387 {
10388 	int err;
10389 
10390 	if (ifindex > INT_MAX) {
10391 		DEBUG_NET_WARN_ON_ONCE(1);
10392 		return -EINVAL;
10393 	}
10394 
10395 	if (!ifindex)
10396 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10397 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10398 	else
10399 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10400 	if (err < 0)
10401 		return err;
10402 
10403 	return ifindex;
10404 }
10405 
dev_index_release(struct net * net,int ifindex)10406 static void dev_index_release(struct net *net, int ifindex)
10407 {
10408 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10409 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10410 }
10411 
from_cleanup_net(void)10412 static bool from_cleanup_net(void)
10413 {
10414 #ifdef CONFIG_NET_NS
10415 	return current == cleanup_net_task;
10416 #else
10417 	return false;
10418 #endif
10419 }
10420 
10421 /* Delayed registration/unregisteration */
10422 LIST_HEAD(net_todo_list);
10423 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10424 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10425 
net_set_todo(struct net_device * dev)10426 static void net_set_todo(struct net_device *dev)
10427 {
10428 	list_add_tail(&dev->todo_list, &net_todo_list);
10429 }
10430 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10431 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10432 	struct net_device *upper, netdev_features_t features)
10433 {
10434 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10435 	netdev_features_t feature;
10436 	int feature_bit;
10437 
10438 	for_each_netdev_feature(upper_disables, feature_bit) {
10439 		feature = __NETIF_F_BIT(feature_bit);
10440 		if (!(upper->wanted_features & feature)
10441 		    && (features & feature)) {
10442 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10443 				   &feature, upper->name);
10444 			features &= ~feature;
10445 		}
10446 	}
10447 
10448 	return features;
10449 }
10450 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10451 static void netdev_sync_lower_features(struct net_device *upper,
10452 	struct net_device *lower, netdev_features_t features)
10453 {
10454 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10455 	netdev_features_t feature;
10456 	int feature_bit;
10457 
10458 	for_each_netdev_feature(upper_disables, feature_bit) {
10459 		feature = __NETIF_F_BIT(feature_bit);
10460 		if (!(features & feature) && (lower->features & feature)) {
10461 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10462 				   &feature, lower->name);
10463 			lower->wanted_features &= ~feature;
10464 			__netdev_update_features(lower);
10465 
10466 			if (unlikely(lower->features & feature))
10467 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10468 					    &feature, lower->name);
10469 			else
10470 				netdev_features_change(lower);
10471 		}
10472 	}
10473 }
10474 
netdev_has_ip_or_hw_csum(netdev_features_t features)10475 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10476 {
10477 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10478 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10479 	bool hw_csum = features & NETIF_F_HW_CSUM;
10480 
10481 	return ip_csum || hw_csum;
10482 }
10483 
netdev_fix_features(struct net_device * dev,netdev_features_t features)10484 static netdev_features_t netdev_fix_features(struct net_device *dev,
10485 	netdev_features_t features)
10486 {
10487 	/* Fix illegal checksum combinations */
10488 	if ((features & NETIF_F_HW_CSUM) &&
10489 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10490 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10491 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10492 	}
10493 
10494 	/* TSO requires that SG is present as well. */
10495 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10496 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10497 		features &= ~NETIF_F_ALL_TSO;
10498 	}
10499 
10500 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10501 					!(features & NETIF_F_IP_CSUM)) {
10502 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10503 		features &= ~NETIF_F_TSO;
10504 		features &= ~NETIF_F_TSO_ECN;
10505 	}
10506 
10507 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10508 					 !(features & NETIF_F_IPV6_CSUM)) {
10509 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10510 		features &= ~NETIF_F_TSO6;
10511 	}
10512 
10513 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10514 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10515 		features &= ~NETIF_F_TSO_MANGLEID;
10516 
10517 	/* TSO ECN requires that TSO is present as well. */
10518 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10519 		features &= ~NETIF_F_TSO_ECN;
10520 
10521 	/* Software GSO depends on SG. */
10522 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10523 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10524 		features &= ~NETIF_F_GSO;
10525 	}
10526 
10527 	/* GSO partial features require GSO partial be set */
10528 	if ((features & dev->gso_partial_features) &&
10529 	    !(features & NETIF_F_GSO_PARTIAL)) {
10530 		netdev_dbg(dev,
10531 			   "Dropping partially supported GSO features since no GSO partial.\n");
10532 		features &= ~dev->gso_partial_features;
10533 	}
10534 
10535 	if (!(features & NETIF_F_RXCSUM)) {
10536 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10537 		 * successfully merged by hardware must also have the
10538 		 * checksum verified by hardware.  If the user does not
10539 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10540 		 */
10541 		if (features & NETIF_F_GRO_HW) {
10542 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10543 			features &= ~NETIF_F_GRO_HW;
10544 		}
10545 	}
10546 
10547 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10548 	if (features & NETIF_F_RXFCS) {
10549 		if (features & NETIF_F_LRO) {
10550 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10551 			features &= ~NETIF_F_LRO;
10552 		}
10553 
10554 		if (features & NETIF_F_GRO_HW) {
10555 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10556 			features &= ~NETIF_F_GRO_HW;
10557 		}
10558 	}
10559 
10560 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10561 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10562 		features &= ~NETIF_F_LRO;
10563 	}
10564 
10565 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10566 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10567 		features &= ~NETIF_F_HW_TLS_TX;
10568 	}
10569 
10570 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10571 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10572 		features &= ~NETIF_F_HW_TLS_RX;
10573 	}
10574 
10575 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10576 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10577 		features &= ~NETIF_F_GSO_UDP_L4;
10578 	}
10579 
10580 	return features;
10581 }
10582 
__netdev_update_features(struct net_device * dev)10583 int __netdev_update_features(struct net_device *dev)
10584 {
10585 	struct net_device *upper, *lower;
10586 	netdev_features_t features;
10587 	struct list_head *iter;
10588 	int err = -1;
10589 
10590 	ASSERT_RTNL();
10591 	netdev_ops_assert_locked(dev);
10592 
10593 	features = netdev_get_wanted_features(dev);
10594 
10595 	if (dev->netdev_ops->ndo_fix_features)
10596 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10597 
10598 	/* driver might be less strict about feature dependencies */
10599 	features = netdev_fix_features(dev, features);
10600 
10601 	/* some features can't be enabled if they're off on an upper device */
10602 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10603 		features = netdev_sync_upper_features(dev, upper, features);
10604 
10605 	if (dev->features == features)
10606 		goto sync_lower;
10607 
10608 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10609 		&dev->features, &features);
10610 
10611 	if (dev->netdev_ops->ndo_set_features)
10612 		err = dev->netdev_ops->ndo_set_features(dev, features);
10613 	else
10614 		err = 0;
10615 
10616 	if (unlikely(err < 0)) {
10617 		netdev_err(dev,
10618 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10619 			err, &features, &dev->features);
10620 		/* return non-0 since some features might have changed and
10621 		 * it's better to fire a spurious notification than miss it
10622 		 */
10623 		return -1;
10624 	}
10625 
10626 sync_lower:
10627 	/* some features must be disabled on lower devices when disabled
10628 	 * on an upper device (think: bonding master or bridge)
10629 	 */
10630 	netdev_for_each_lower_dev(dev, lower, iter)
10631 		netdev_sync_lower_features(dev, lower, features);
10632 
10633 	if (!err) {
10634 		netdev_features_t diff = features ^ dev->features;
10635 
10636 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10637 			/* udp_tunnel_{get,drop}_rx_info both need
10638 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10639 			 * device, or they won't do anything.
10640 			 * Thus we need to update dev->features
10641 			 * *before* calling udp_tunnel_get_rx_info,
10642 			 * but *after* calling udp_tunnel_drop_rx_info.
10643 			 */
10644 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10645 				dev->features = features;
10646 				udp_tunnel_get_rx_info(dev);
10647 			} else {
10648 				udp_tunnel_drop_rx_info(dev);
10649 			}
10650 		}
10651 
10652 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10653 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10654 				dev->features = features;
10655 				err |= vlan_get_rx_ctag_filter_info(dev);
10656 			} else {
10657 				vlan_drop_rx_ctag_filter_info(dev);
10658 			}
10659 		}
10660 
10661 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10662 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10663 				dev->features = features;
10664 				err |= vlan_get_rx_stag_filter_info(dev);
10665 			} else {
10666 				vlan_drop_rx_stag_filter_info(dev);
10667 			}
10668 		}
10669 
10670 		dev->features = features;
10671 	}
10672 
10673 	return err < 0 ? 0 : 1;
10674 }
10675 
10676 /**
10677  *	netdev_update_features - recalculate device features
10678  *	@dev: the device to check
10679  *
10680  *	Recalculate dev->features set and send notifications if it
10681  *	has changed. Should be called after driver or hardware dependent
10682  *	conditions might have changed that influence the features.
10683  */
netdev_update_features(struct net_device * dev)10684 void netdev_update_features(struct net_device *dev)
10685 {
10686 	if (__netdev_update_features(dev))
10687 		netdev_features_change(dev);
10688 }
10689 EXPORT_SYMBOL(netdev_update_features);
10690 
10691 /**
10692  *	netdev_change_features - recalculate device features
10693  *	@dev: the device to check
10694  *
10695  *	Recalculate dev->features set and send notifications even
10696  *	if they have not changed. Should be called instead of
10697  *	netdev_update_features() if also dev->vlan_features might
10698  *	have changed to allow the changes to be propagated to stacked
10699  *	VLAN devices.
10700  */
netdev_change_features(struct net_device * dev)10701 void netdev_change_features(struct net_device *dev)
10702 {
10703 	__netdev_update_features(dev);
10704 	netdev_features_change(dev);
10705 }
10706 EXPORT_SYMBOL(netdev_change_features);
10707 
10708 /**
10709  *	netif_stacked_transfer_operstate -	transfer operstate
10710  *	@rootdev: the root or lower level device to transfer state from
10711  *	@dev: the device to transfer operstate to
10712  *
10713  *	Transfer operational state from root to device. This is normally
10714  *	called when a stacking relationship exists between the root
10715  *	device and the device(a leaf device).
10716  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)10717 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10718 					struct net_device *dev)
10719 {
10720 	if (rootdev->operstate == IF_OPER_DORMANT)
10721 		netif_dormant_on(dev);
10722 	else
10723 		netif_dormant_off(dev);
10724 
10725 	if (rootdev->operstate == IF_OPER_TESTING)
10726 		netif_testing_on(dev);
10727 	else
10728 		netif_testing_off(dev);
10729 
10730 	if (netif_carrier_ok(rootdev))
10731 		netif_carrier_on(dev);
10732 	else
10733 		netif_carrier_off(dev);
10734 }
10735 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10736 
netif_alloc_rx_queues(struct net_device * dev)10737 static int netif_alloc_rx_queues(struct net_device *dev)
10738 {
10739 	unsigned int i, count = dev->num_rx_queues;
10740 	struct netdev_rx_queue *rx;
10741 	size_t sz = count * sizeof(*rx);
10742 	int err = 0;
10743 
10744 	BUG_ON(count < 1);
10745 
10746 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10747 	if (!rx)
10748 		return -ENOMEM;
10749 
10750 	dev->_rx = rx;
10751 
10752 	for (i = 0; i < count; i++) {
10753 		rx[i].dev = dev;
10754 
10755 		/* XDP RX-queue setup */
10756 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10757 		if (err < 0)
10758 			goto err_rxq_info;
10759 	}
10760 	return 0;
10761 
10762 err_rxq_info:
10763 	/* Rollback successful reg's and free other resources */
10764 	while (i--)
10765 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10766 	kvfree(dev->_rx);
10767 	dev->_rx = NULL;
10768 	return err;
10769 }
10770 
netif_free_rx_queues(struct net_device * dev)10771 static void netif_free_rx_queues(struct net_device *dev)
10772 {
10773 	unsigned int i, count = dev->num_rx_queues;
10774 
10775 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10776 	if (!dev->_rx)
10777 		return;
10778 
10779 	for (i = 0; i < count; i++)
10780 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10781 
10782 	kvfree(dev->_rx);
10783 }
10784 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10785 static void netdev_init_one_queue(struct net_device *dev,
10786 				  struct netdev_queue *queue, void *_unused)
10787 {
10788 	/* Initialize queue lock */
10789 	spin_lock_init(&queue->_xmit_lock);
10790 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10791 	queue->xmit_lock_owner = -1;
10792 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10793 	queue->dev = dev;
10794 #ifdef CONFIG_BQL
10795 	dql_init(&queue->dql, HZ);
10796 #endif
10797 }
10798 
netif_free_tx_queues(struct net_device * dev)10799 static void netif_free_tx_queues(struct net_device *dev)
10800 {
10801 	kvfree(dev->_tx);
10802 }
10803 
netif_alloc_netdev_queues(struct net_device * dev)10804 static int netif_alloc_netdev_queues(struct net_device *dev)
10805 {
10806 	unsigned int count = dev->num_tx_queues;
10807 	struct netdev_queue *tx;
10808 	size_t sz = count * sizeof(*tx);
10809 
10810 	if (count < 1 || count > 0xffff)
10811 		return -EINVAL;
10812 
10813 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10814 	if (!tx)
10815 		return -ENOMEM;
10816 
10817 	dev->_tx = tx;
10818 
10819 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10820 	spin_lock_init(&dev->tx_global_lock);
10821 
10822 	return 0;
10823 }
10824 
netif_tx_stop_all_queues(struct net_device * dev)10825 void netif_tx_stop_all_queues(struct net_device *dev)
10826 {
10827 	unsigned int i;
10828 
10829 	for (i = 0; i < dev->num_tx_queues; i++) {
10830 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10831 
10832 		netif_tx_stop_queue(txq);
10833 	}
10834 }
10835 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10836 
netdev_do_alloc_pcpu_stats(struct net_device * dev)10837 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10838 {
10839 	void __percpu *v;
10840 
10841 	/* Drivers implementing ndo_get_peer_dev must support tstat
10842 	 * accounting, so that skb_do_redirect() can bump the dev's
10843 	 * RX stats upon network namespace switch.
10844 	 */
10845 	if (dev->netdev_ops->ndo_get_peer_dev &&
10846 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10847 		return -EOPNOTSUPP;
10848 
10849 	switch (dev->pcpu_stat_type) {
10850 	case NETDEV_PCPU_STAT_NONE:
10851 		return 0;
10852 	case NETDEV_PCPU_STAT_LSTATS:
10853 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10854 		break;
10855 	case NETDEV_PCPU_STAT_TSTATS:
10856 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10857 		break;
10858 	case NETDEV_PCPU_STAT_DSTATS:
10859 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10860 		break;
10861 	default:
10862 		return -EINVAL;
10863 	}
10864 
10865 	return v ? 0 : -ENOMEM;
10866 }
10867 
netdev_do_free_pcpu_stats(struct net_device * dev)10868 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10869 {
10870 	switch (dev->pcpu_stat_type) {
10871 	case NETDEV_PCPU_STAT_NONE:
10872 		return;
10873 	case NETDEV_PCPU_STAT_LSTATS:
10874 		free_percpu(dev->lstats);
10875 		break;
10876 	case NETDEV_PCPU_STAT_TSTATS:
10877 		free_percpu(dev->tstats);
10878 		break;
10879 	case NETDEV_PCPU_STAT_DSTATS:
10880 		free_percpu(dev->dstats);
10881 		break;
10882 	}
10883 }
10884 
netdev_free_phy_link_topology(struct net_device * dev)10885 static void netdev_free_phy_link_topology(struct net_device *dev)
10886 {
10887 	struct phy_link_topology *topo = dev->link_topo;
10888 
10889 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10890 		xa_destroy(&topo->phys);
10891 		kfree(topo);
10892 		dev->link_topo = NULL;
10893 	}
10894 }
10895 
10896 /**
10897  * register_netdevice() - register a network device
10898  * @dev: device to register
10899  *
10900  * Take a prepared network device structure and make it externally accessible.
10901  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10902  * Callers must hold the rtnl lock - you may want register_netdev()
10903  * instead of this.
10904  */
register_netdevice(struct net_device * dev)10905 int register_netdevice(struct net_device *dev)
10906 {
10907 	int ret;
10908 	struct net *net = dev_net(dev);
10909 
10910 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10911 		     NETDEV_FEATURE_COUNT);
10912 	BUG_ON(dev_boot_phase);
10913 	ASSERT_RTNL();
10914 
10915 	might_sleep();
10916 
10917 	/* When net_device's are persistent, this will be fatal. */
10918 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10919 	BUG_ON(!net);
10920 
10921 	ret = ethtool_check_ops(dev->ethtool_ops);
10922 	if (ret)
10923 		return ret;
10924 
10925 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10926 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10927 	mutex_init(&dev->ethtool->rss_lock);
10928 
10929 	spin_lock_init(&dev->addr_list_lock);
10930 	netdev_set_addr_lockdep_class(dev);
10931 
10932 	ret = dev_get_valid_name(net, dev, dev->name);
10933 	if (ret < 0)
10934 		goto out;
10935 
10936 	ret = -ENOMEM;
10937 	dev->name_node = netdev_name_node_head_alloc(dev);
10938 	if (!dev->name_node)
10939 		goto out;
10940 
10941 	/* Init, if this function is available */
10942 	if (dev->netdev_ops->ndo_init) {
10943 		ret = dev->netdev_ops->ndo_init(dev);
10944 		if (ret) {
10945 			if (ret > 0)
10946 				ret = -EIO;
10947 			goto err_free_name;
10948 		}
10949 	}
10950 
10951 	if (((dev->hw_features | dev->features) &
10952 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10953 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10954 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10955 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10956 		ret = -EINVAL;
10957 		goto err_uninit;
10958 	}
10959 
10960 	ret = netdev_do_alloc_pcpu_stats(dev);
10961 	if (ret)
10962 		goto err_uninit;
10963 
10964 	ret = dev_index_reserve(net, dev->ifindex);
10965 	if (ret < 0)
10966 		goto err_free_pcpu;
10967 	dev->ifindex = ret;
10968 
10969 	/* Transfer changeable features to wanted_features and enable
10970 	 * software offloads (GSO and GRO).
10971 	 */
10972 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10973 	dev->features |= NETIF_F_SOFT_FEATURES;
10974 
10975 	if (dev->udp_tunnel_nic_info) {
10976 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10977 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10978 	}
10979 
10980 	dev->wanted_features = dev->features & dev->hw_features;
10981 
10982 	if (!(dev->flags & IFF_LOOPBACK))
10983 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10984 
10985 	/* If IPv4 TCP segmentation offload is supported we should also
10986 	 * allow the device to enable segmenting the frame with the option
10987 	 * of ignoring a static IP ID value.  This doesn't enable the
10988 	 * feature itself but allows the user to enable it later.
10989 	 */
10990 	if (dev->hw_features & NETIF_F_TSO)
10991 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10992 	if (dev->vlan_features & NETIF_F_TSO)
10993 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10994 	if (dev->mpls_features & NETIF_F_TSO)
10995 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10996 	if (dev->hw_enc_features & NETIF_F_TSO)
10997 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10998 
10999 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11000 	 */
11001 	dev->vlan_features |= NETIF_F_HIGHDMA;
11002 
11003 	/* Make NETIF_F_SG inheritable to tunnel devices.
11004 	 */
11005 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11006 
11007 	/* Make NETIF_F_SG inheritable to MPLS.
11008 	 */
11009 	dev->mpls_features |= NETIF_F_SG;
11010 
11011 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11012 	ret = notifier_to_errno(ret);
11013 	if (ret)
11014 		goto err_ifindex_release;
11015 
11016 	ret = netdev_register_kobject(dev);
11017 
11018 	netdev_lock(dev);
11019 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11020 	netdev_unlock(dev);
11021 
11022 	if (ret)
11023 		goto err_uninit_notify;
11024 
11025 	netdev_lock_ops(dev);
11026 	__netdev_update_features(dev);
11027 	netdev_unlock_ops(dev);
11028 
11029 	/*
11030 	 *	Default initial state at registry is that the
11031 	 *	device is present.
11032 	 */
11033 
11034 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11035 
11036 	linkwatch_init_dev(dev);
11037 
11038 	dev_init_scheduler(dev);
11039 
11040 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11041 	list_netdevice(dev);
11042 
11043 	add_device_randomness(dev->dev_addr, dev->addr_len);
11044 
11045 	/* If the device has permanent device address, driver should
11046 	 * set dev_addr and also addr_assign_type should be set to
11047 	 * NET_ADDR_PERM (default value).
11048 	 */
11049 	if (dev->addr_assign_type == NET_ADDR_PERM)
11050 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11051 
11052 	/* Notify protocols, that a new device appeared. */
11053 	netdev_lock_ops(dev);
11054 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11055 	netdev_unlock_ops(dev);
11056 	ret = notifier_to_errno(ret);
11057 	if (ret) {
11058 		/* Expect explicit free_netdev() on failure */
11059 		dev->needs_free_netdev = false;
11060 		unregister_netdevice_queue(dev, NULL);
11061 		goto out;
11062 	}
11063 	/*
11064 	 *	Prevent userspace races by waiting until the network
11065 	 *	device is fully setup before sending notifications.
11066 	 */
11067 	if (!dev->rtnl_link_ops ||
11068 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11069 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11070 
11071 out:
11072 	return ret;
11073 
11074 err_uninit_notify:
11075 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11076 err_ifindex_release:
11077 	dev_index_release(net, dev->ifindex);
11078 err_free_pcpu:
11079 	netdev_do_free_pcpu_stats(dev);
11080 err_uninit:
11081 	if (dev->netdev_ops->ndo_uninit)
11082 		dev->netdev_ops->ndo_uninit(dev);
11083 	if (dev->priv_destructor)
11084 		dev->priv_destructor(dev);
11085 err_free_name:
11086 	netdev_name_node_free(dev->name_node);
11087 	goto out;
11088 }
11089 EXPORT_SYMBOL(register_netdevice);
11090 
11091 /* Initialize the core of a dummy net device.
11092  * The setup steps dummy netdevs need which normal netdevs get by going
11093  * through register_netdevice().
11094  */
init_dummy_netdev(struct net_device * dev)11095 static void init_dummy_netdev(struct net_device *dev)
11096 {
11097 	/* make sure we BUG if trying to hit standard
11098 	 * register/unregister code path
11099 	 */
11100 	dev->reg_state = NETREG_DUMMY;
11101 
11102 	/* a dummy interface is started by default */
11103 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11104 	set_bit(__LINK_STATE_START, &dev->state);
11105 
11106 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11107 	 * because users of this 'device' dont need to change
11108 	 * its refcount.
11109 	 */
11110 }
11111 
11112 /**
11113  *	register_netdev	- register a network device
11114  *	@dev: device to register
11115  *
11116  *	Take a completed network device structure and add it to the kernel
11117  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11118  *	chain. 0 is returned on success. A negative errno code is returned
11119  *	on a failure to set up the device, or if the name is a duplicate.
11120  *
11121  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11122  *	and expands the device name if you passed a format string to
11123  *	alloc_netdev.
11124  */
register_netdev(struct net_device * dev)11125 int register_netdev(struct net_device *dev)
11126 {
11127 	struct net *net = dev_net(dev);
11128 	int err;
11129 
11130 	if (rtnl_net_lock_killable(net))
11131 		return -EINTR;
11132 
11133 	err = register_netdevice(dev);
11134 
11135 	rtnl_net_unlock(net);
11136 
11137 	return err;
11138 }
11139 EXPORT_SYMBOL(register_netdev);
11140 
netdev_refcnt_read(const struct net_device * dev)11141 int netdev_refcnt_read(const struct net_device *dev)
11142 {
11143 #ifdef CONFIG_PCPU_DEV_REFCNT
11144 	int i, refcnt = 0;
11145 
11146 	for_each_possible_cpu(i)
11147 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11148 	return refcnt;
11149 #else
11150 	return refcount_read(&dev->dev_refcnt);
11151 #endif
11152 }
11153 EXPORT_SYMBOL(netdev_refcnt_read);
11154 
11155 int netdev_unregister_timeout_secs __read_mostly = 10;
11156 
11157 #define WAIT_REFS_MIN_MSECS 1
11158 #define WAIT_REFS_MAX_MSECS 250
11159 /**
11160  * netdev_wait_allrefs_any - wait until all references are gone.
11161  * @list: list of net_devices to wait on
11162  *
11163  * This is called when unregistering network devices.
11164  *
11165  * Any protocol or device that holds a reference should register
11166  * for netdevice notification, and cleanup and put back the
11167  * reference if they receive an UNREGISTER event.
11168  * We can get stuck here if buggy protocols don't correctly
11169  * call dev_put.
11170  */
netdev_wait_allrefs_any(struct list_head * list)11171 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11172 {
11173 	unsigned long rebroadcast_time, warning_time;
11174 	struct net_device *dev;
11175 	int wait = 0;
11176 
11177 	rebroadcast_time = warning_time = jiffies;
11178 
11179 	list_for_each_entry(dev, list, todo_list)
11180 		if (netdev_refcnt_read(dev) == 1)
11181 			return dev;
11182 
11183 	while (true) {
11184 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11185 			rtnl_lock();
11186 
11187 			/* Rebroadcast unregister notification */
11188 			list_for_each_entry(dev, list, todo_list)
11189 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11190 
11191 			__rtnl_unlock();
11192 			rcu_barrier();
11193 			rtnl_lock();
11194 
11195 			list_for_each_entry(dev, list, todo_list)
11196 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11197 					     &dev->state)) {
11198 					/* We must not have linkwatch events
11199 					 * pending on unregister. If this
11200 					 * happens, we simply run the queue
11201 					 * unscheduled, resulting in a noop
11202 					 * for this device.
11203 					 */
11204 					linkwatch_run_queue();
11205 					break;
11206 				}
11207 
11208 			__rtnl_unlock();
11209 
11210 			rebroadcast_time = jiffies;
11211 		}
11212 
11213 		rcu_barrier();
11214 
11215 		if (!wait) {
11216 			wait = WAIT_REFS_MIN_MSECS;
11217 		} else {
11218 			msleep(wait);
11219 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11220 		}
11221 
11222 		list_for_each_entry(dev, list, todo_list)
11223 			if (netdev_refcnt_read(dev) == 1)
11224 				return dev;
11225 
11226 		if (time_after(jiffies, warning_time +
11227 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11228 			list_for_each_entry(dev, list, todo_list) {
11229 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11230 					 dev->name, netdev_refcnt_read(dev));
11231 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11232 			}
11233 
11234 			warning_time = jiffies;
11235 		}
11236 	}
11237 }
11238 
11239 /* The sequence is:
11240  *
11241  *	rtnl_lock();
11242  *	...
11243  *	register_netdevice(x1);
11244  *	register_netdevice(x2);
11245  *	...
11246  *	unregister_netdevice(y1);
11247  *	unregister_netdevice(y2);
11248  *      ...
11249  *	rtnl_unlock();
11250  *	free_netdev(y1);
11251  *	free_netdev(y2);
11252  *
11253  * We are invoked by rtnl_unlock().
11254  * This allows us to deal with problems:
11255  * 1) We can delete sysfs objects which invoke hotplug
11256  *    without deadlocking with linkwatch via keventd.
11257  * 2) Since we run with the RTNL semaphore not held, we can sleep
11258  *    safely in order to wait for the netdev refcnt to drop to zero.
11259  *
11260  * We must not return until all unregister events added during
11261  * the interval the lock was held have been completed.
11262  */
netdev_run_todo(void)11263 void netdev_run_todo(void)
11264 {
11265 	struct net_device *dev, *tmp;
11266 	struct list_head list;
11267 	int cnt;
11268 #ifdef CONFIG_LOCKDEP
11269 	struct list_head unlink_list;
11270 
11271 	list_replace_init(&net_unlink_list, &unlink_list);
11272 
11273 	while (!list_empty(&unlink_list)) {
11274 		dev = list_first_entry(&unlink_list, struct net_device,
11275 				       unlink_list);
11276 		list_del_init(&dev->unlink_list);
11277 		dev->nested_level = dev->lower_level - 1;
11278 	}
11279 #endif
11280 
11281 	/* Snapshot list, allow later requests */
11282 	list_replace_init(&net_todo_list, &list);
11283 
11284 	__rtnl_unlock();
11285 
11286 	/* Wait for rcu callbacks to finish before next phase */
11287 	if (!list_empty(&list))
11288 		rcu_barrier();
11289 
11290 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11291 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11292 			netdev_WARN(dev, "run_todo but not unregistering\n");
11293 			list_del(&dev->todo_list);
11294 			continue;
11295 		}
11296 
11297 		netdev_lock(dev);
11298 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11299 		netdev_unlock(dev);
11300 		linkwatch_sync_dev(dev);
11301 	}
11302 
11303 	cnt = 0;
11304 	while (!list_empty(&list)) {
11305 		dev = netdev_wait_allrefs_any(&list);
11306 		list_del(&dev->todo_list);
11307 
11308 		/* paranoia */
11309 		BUG_ON(netdev_refcnt_read(dev) != 1);
11310 		BUG_ON(!list_empty(&dev->ptype_all));
11311 		BUG_ON(!list_empty(&dev->ptype_specific));
11312 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11313 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11314 
11315 		netdev_do_free_pcpu_stats(dev);
11316 		if (dev->priv_destructor)
11317 			dev->priv_destructor(dev);
11318 		if (dev->needs_free_netdev)
11319 			free_netdev(dev);
11320 
11321 		cnt++;
11322 
11323 		/* Free network device */
11324 		kobject_put(&dev->dev.kobj);
11325 	}
11326 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11327 		wake_up(&netdev_unregistering_wq);
11328 }
11329 
11330 /* Collate per-cpu network dstats statistics
11331  *
11332  * Read per-cpu network statistics from dev->dstats and populate the related
11333  * fields in @s.
11334  */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)11335 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11336 			     const struct pcpu_dstats __percpu *dstats)
11337 {
11338 	int cpu;
11339 
11340 	for_each_possible_cpu(cpu) {
11341 		u64 rx_packets, rx_bytes, rx_drops;
11342 		u64 tx_packets, tx_bytes, tx_drops;
11343 		const struct pcpu_dstats *stats;
11344 		unsigned int start;
11345 
11346 		stats = per_cpu_ptr(dstats, cpu);
11347 		do {
11348 			start = u64_stats_fetch_begin(&stats->syncp);
11349 			rx_packets = u64_stats_read(&stats->rx_packets);
11350 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11351 			rx_drops   = u64_stats_read(&stats->rx_drops);
11352 			tx_packets = u64_stats_read(&stats->tx_packets);
11353 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11354 			tx_drops   = u64_stats_read(&stats->tx_drops);
11355 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11356 
11357 		s->rx_packets += rx_packets;
11358 		s->rx_bytes   += rx_bytes;
11359 		s->rx_dropped += rx_drops;
11360 		s->tx_packets += tx_packets;
11361 		s->tx_bytes   += tx_bytes;
11362 		s->tx_dropped += tx_drops;
11363 	}
11364 }
11365 
11366 /* ndo_get_stats64 implementation for dtstats-based accounting.
11367  *
11368  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11369  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11370  */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)11371 static void dev_get_dstats64(const struct net_device *dev,
11372 			     struct rtnl_link_stats64 *s)
11373 {
11374 	netdev_stats_to_stats64(s, &dev->stats);
11375 	dev_fetch_dstats(s, dev->dstats);
11376 }
11377 
11378 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11379  * all the same fields in the same order as net_device_stats, with only
11380  * the type differing, but rtnl_link_stats64 may have additional fields
11381  * at the end for newer counters.
11382  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)11383 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11384 			     const struct net_device_stats *netdev_stats)
11385 {
11386 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11387 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11388 	u64 *dst = (u64 *)stats64;
11389 
11390 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11391 	for (i = 0; i < n; i++)
11392 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11393 	/* zero out counters that only exist in rtnl_link_stats64 */
11394 	memset((char *)stats64 + n * sizeof(u64), 0,
11395 	       sizeof(*stats64) - n * sizeof(u64));
11396 }
11397 EXPORT_SYMBOL(netdev_stats_to_stats64);
11398 
netdev_core_stats_alloc(struct net_device * dev)11399 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11400 		struct net_device *dev)
11401 {
11402 	struct net_device_core_stats __percpu *p;
11403 
11404 	p = alloc_percpu_gfp(struct net_device_core_stats,
11405 			     GFP_ATOMIC | __GFP_NOWARN);
11406 
11407 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11408 		free_percpu(p);
11409 
11410 	/* This READ_ONCE() pairs with the cmpxchg() above */
11411 	return READ_ONCE(dev->core_stats);
11412 }
11413 
netdev_core_stats_inc(struct net_device * dev,u32 offset)11414 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11415 {
11416 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11417 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11418 	unsigned long __percpu *field;
11419 
11420 	if (unlikely(!p)) {
11421 		p = netdev_core_stats_alloc(dev);
11422 		if (!p)
11423 			return;
11424 	}
11425 
11426 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11427 	this_cpu_inc(*field);
11428 }
11429 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11430 
11431 /**
11432  *	dev_get_stats	- get network device statistics
11433  *	@dev: device to get statistics from
11434  *	@storage: place to store stats
11435  *
11436  *	Get network statistics from device. Return @storage.
11437  *	The device driver may provide its own method by setting
11438  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11439  *	otherwise the internal statistics structure is used.
11440  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11441 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11442 					struct rtnl_link_stats64 *storage)
11443 {
11444 	const struct net_device_ops *ops = dev->netdev_ops;
11445 	const struct net_device_core_stats __percpu *p;
11446 
11447 	/*
11448 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11449 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11450 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11451 	 */
11452 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11453 		     offsetof(struct pcpu_dstats, rx_bytes));
11454 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11455 		     offsetof(struct pcpu_dstats, rx_packets));
11456 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11457 		     offsetof(struct pcpu_dstats, tx_bytes));
11458 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11459 		     offsetof(struct pcpu_dstats, tx_packets));
11460 
11461 	if (ops->ndo_get_stats64) {
11462 		memset(storage, 0, sizeof(*storage));
11463 		ops->ndo_get_stats64(dev, storage);
11464 	} else if (ops->ndo_get_stats) {
11465 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11466 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11467 		dev_get_tstats64(dev, storage);
11468 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11469 		dev_get_dstats64(dev, storage);
11470 	} else {
11471 		netdev_stats_to_stats64(storage, &dev->stats);
11472 	}
11473 
11474 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11475 	p = READ_ONCE(dev->core_stats);
11476 	if (p) {
11477 		const struct net_device_core_stats *core_stats;
11478 		int i;
11479 
11480 		for_each_possible_cpu(i) {
11481 			core_stats = per_cpu_ptr(p, i);
11482 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11483 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11484 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11485 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11486 		}
11487 	}
11488 	return storage;
11489 }
11490 EXPORT_SYMBOL(dev_get_stats);
11491 
11492 /**
11493  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11494  *	@s: place to store stats
11495  *	@netstats: per-cpu network stats to read from
11496  *
11497  *	Read per-cpu network statistics and populate the related fields in @s.
11498  */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11499 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11500 			   const struct pcpu_sw_netstats __percpu *netstats)
11501 {
11502 	int cpu;
11503 
11504 	for_each_possible_cpu(cpu) {
11505 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11506 		const struct pcpu_sw_netstats *stats;
11507 		unsigned int start;
11508 
11509 		stats = per_cpu_ptr(netstats, cpu);
11510 		do {
11511 			start = u64_stats_fetch_begin(&stats->syncp);
11512 			rx_packets = u64_stats_read(&stats->rx_packets);
11513 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11514 			tx_packets = u64_stats_read(&stats->tx_packets);
11515 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11516 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11517 
11518 		s->rx_packets += rx_packets;
11519 		s->rx_bytes   += rx_bytes;
11520 		s->tx_packets += tx_packets;
11521 		s->tx_bytes   += tx_bytes;
11522 	}
11523 }
11524 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11525 
11526 /**
11527  *	dev_get_tstats64 - ndo_get_stats64 implementation
11528  *	@dev: device to get statistics from
11529  *	@s: place to store stats
11530  *
11531  *	Populate @s from dev->stats and dev->tstats. Can be used as
11532  *	ndo_get_stats64() callback.
11533  */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11534 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11535 {
11536 	netdev_stats_to_stats64(s, &dev->stats);
11537 	dev_fetch_sw_netstats(s, dev->tstats);
11538 }
11539 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11540 
dev_ingress_queue_create(struct net_device * dev)11541 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11542 {
11543 	struct netdev_queue *queue = dev_ingress_queue(dev);
11544 
11545 #ifdef CONFIG_NET_CLS_ACT
11546 	if (queue)
11547 		return queue;
11548 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11549 	if (!queue)
11550 		return NULL;
11551 	netdev_init_one_queue(dev, queue, NULL);
11552 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11553 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11554 	rcu_assign_pointer(dev->ingress_queue, queue);
11555 #endif
11556 	return queue;
11557 }
11558 
11559 static const struct ethtool_ops default_ethtool_ops;
11560 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11561 void netdev_set_default_ethtool_ops(struct net_device *dev,
11562 				    const struct ethtool_ops *ops)
11563 {
11564 	if (dev->ethtool_ops == &default_ethtool_ops)
11565 		dev->ethtool_ops = ops;
11566 }
11567 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11568 
11569 /**
11570  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11571  * @dev: netdev to enable the IRQ coalescing on
11572  *
11573  * Sets a conservative default for SW IRQ coalescing. Users can use
11574  * sysfs attributes to override the default values.
11575  */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11576 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11577 {
11578 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11579 
11580 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11581 		netdev_set_gro_flush_timeout(dev, 20000);
11582 		netdev_set_defer_hard_irqs(dev, 1);
11583 	}
11584 }
11585 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11586 
11587 /**
11588  * alloc_netdev_mqs - allocate network device
11589  * @sizeof_priv: size of private data to allocate space for
11590  * @name: device name format string
11591  * @name_assign_type: origin of device name
11592  * @setup: callback to initialize device
11593  * @txqs: the number of TX subqueues to allocate
11594  * @rxqs: the number of RX subqueues to allocate
11595  *
11596  * Allocates a struct net_device with private data area for driver use
11597  * and performs basic initialization.  Also allocates subqueue structs
11598  * for each queue on the device.
11599  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11600 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11601 		unsigned char name_assign_type,
11602 		void (*setup)(struct net_device *),
11603 		unsigned int txqs, unsigned int rxqs)
11604 {
11605 	struct net_device *dev;
11606 	size_t napi_config_sz;
11607 	unsigned int maxqs;
11608 
11609 	BUG_ON(strlen(name) >= sizeof(dev->name));
11610 
11611 	if (txqs < 1) {
11612 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11613 		return NULL;
11614 	}
11615 
11616 	if (rxqs < 1) {
11617 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11618 		return NULL;
11619 	}
11620 
11621 	maxqs = max(txqs, rxqs);
11622 
11623 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11624 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11625 	if (!dev)
11626 		return NULL;
11627 
11628 	dev->priv_len = sizeof_priv;
11629 
11630 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11631 #ifdef CONFIG_PCPU_DEV_REFCNT
11632 	dev->pcpu_refcnt = alloc_percpu(int);
11633 	if (!dev->pcpu_refcnt)
11634 		goto free_dev;
11635 	__dev_hold(dev);
11636 #else
11637 	refcount_set(&dev->dev_refcnt, 1);
11638 #endif
11639 
11640 	if (dev_addr_init(dev))
11641 		goto free_pcpu;
11642 
11643 	dev_mc_init(dev);
11644 	dev_uc_init(dev);
11645 
11646 	dev_net_set(dev, &init_net);
11647 
11648 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11649 	dev->xdp_zc_max_segs = 1;
11650 	dev->gso_max_segs = GSO_MAX_SEGS;
11651 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11652 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11653 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11654 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11655 	dev->tso_max_segs = TSO_MAX_SEGS;
11656 	dev->upper_level = 1;
11657 	dev->lower_level = 1;
11658 #ifdef CONFIG_LOCKDEP
11659 	dev->nested_level = 0;
11660 	INIT_LIST_HEAD(&dev->unlink_list);
11661 #endif
11662 
11663 	INIT_LIST_HEAD(&dev->napi_list);
11664 	INIT_LIST_HEAD(&dev->unreg_list);
11665 	INIT_LIST_HEAD(&dev->close_list);
11666 	INIT_LIST_HEAD(&dev->link_watch_list);
11667 	INIT_LIST_HEAD(&dev->adj_list.upper);
11668 	INIT_LIST_HEAD(&dev->adj_list.lower);
11669 	INIT_LIST_HEAD(&dev->ptype_all);
11670 	INIT_LIST_HEAD(&dev->ptype_specific);
11671 	INIT_LIST_HEAD(&dev->net_notifier_list);
11672 #ifdef CONFIG_NET_SCHED
11673 	hash_init(dev->qdisc_hash);
11674 #endif
11675 
11676 	mutex_init(&dev->lock);
11677 
11678 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11679 	setup(dev);
11680 
11681 	if (!dev->tx_queue_len) {
11682 		dev->priv_flags |= IFF_NO_QUEUE;
11683 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11684 	}
11685 
11686 	dev->num_tx_queues = txqs;
11687 	dev->real_num_tx_queues = txqs;
11688 	if (netif_alloc_netdev_queues(dev))
11689 		goto free_all;
11690 
11691 	dev->num_rx_queues = rxqs;
11692 	dev->real_num_rx_queues = rxqs;
11693 	if (netif_alloc_rx_queues(dev))
11694 		goto free_all;
11695 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11696 	if (!dev->ethtool)
11697 		goto free_all;
11698 
11699 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11700 	if (!dev->cfg)
11701 		goto free_all;
11702 	dev->cfg_pending = dev->cfg;
11703 
11704 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11705 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11706 	if (!dev->napi_config)
11707 		goto free_all;
11708 
11709 	strscpy(dev->name, name);
11710 	dev->name_assign_type = name_assign_type;
11711 	dev->group = INIT_NETDEV_GROUP;
11712 	if (!dev->ethtool_ops)
11713 		dev->ethtool_ops = &default_ethtool_ops;
11714 
11715 	nf_hook_netdev_init(dev);
11716 
11717 	return dev;
11718 
11719 free_all:
11720 	free_netdev(dev);
11721 	return NULL;
11722 
11723 free_pcpu:
11724 #ifdef CONFIG_PCPU_DEV_REFCNT
11725 	free_percpu(dev->pcpu_refcnt);
11726 free_dev:
11727 #endif
11728 	kvfree(dev);
11729 	return NULL;
11730 }
11731 EXPORT_SYMBOL(alloc_netdev_mqs);
11732 
netdev_napi_exit(struct net_device * dev)11733 static void netdev_napi_exit(struct net_device *dev)
11734 {
11735 	if (!list_empty(&dev->napi_list)) {
11736 		struct napi_struct *p, *n;
11737 
11738 		netdev_lock(dev);
11739 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11740 			__netif_napi_del_locked(p);
11741 		netdev_unlock(dev);
11742 
11743 		synchronize_net();
11744 	}
11745 
11746 	kvfree(dev->napi_config);
11747 }
11748 
11749 /**
11750  * free_netdev - free network device
11751  * @dev: device
11752  *
11753  * This function does the last stage of destroying an allocated device
11754  * interface. The reference to the device object is released. If this
11755  * is the last reference then it will be freed.Must be called in process
11756  * context.
11757  */
free_netdev(struct net_device * dev)11758 void free_netdev(struct net_device *dev)
11759 {
11760 	might_sleep();
11761 
11762 	/* When called immediately after register_netdevice() failed the unwind
11763 	 * handling may still be dismantling the device. Handle that case by
11764 	 * deferring the free.
11765 	 */
11766 	if (dev->reg_state == NETREG_UNREGISTERING) {
11767 		ASSERT_RTNL();
11768 		dev->needs_free_netdev = true;
11769 		return;
11770 	}
11771 
11772 	WARN_ON(dev->cfg != dev->cfg_pending);
11773 	kfree(dev->cfg);
11774 	kfree(dev->ethtool);
11775 	netif_free_tx_queues(dev);
11776 	netif_free_rx_queues(dev);
11777 
11778 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11779 
11780 	/* Flush device addresses */
11781 	dev_addr_flush(dev);
11782 
11783 	netdev_napi_exit(dev);
11784 
11785 	netif_del_cpu_rmap(dev);
11786 
11787 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11788 #ifdef CONFIG_PCPU_DEV_REFCNT
11789 	free_percpu(dev->pcpu_refcnt);
11790 	dev->pcpu_refcnt = NULL;
11791 #endif
11792 	free_percpu(dev->core_stats);
11793 	dev->core_stats = NULL;
11794 	free_percpu(dev->xdp_bulkq);
11795 	dev->xdp_bulkq = NULL;
11796 
11797 	netdev_free_phy_link_topology(dev);
11798 
11799 	mutex_destroy(&dev->lock);
11800 
11801 	/*  Compatibility with error handling in drivers */
11802 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11803 	    dev->reg_state == NETREG_DUMMY) {
11804 		kvfree(dev);
11805 		return;
11806 	}
11807 
11808 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11809 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11810 
11811 	/* will free via device release */
11812 	put_device(&dev->dev);
11813 }
11814 EXPORT_SYMBOL(free_netdev);
11815 
11816 /**
11817  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11818  * @sizeof_priv: size of private data to allocate space for
11819  *
11820  * Return: the allocated net_device on success, NULL otherwise
11821  */
alloc_netdev_dummy(int sizeof_priv)11822 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11823 {
11824 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11825 			    init_dummy_netdev);
11826 }
11827 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11828 
11829 /**
11830  *	synchronize_net -  Synchronize with packet receive processing
11831  *
11832  *	Wait for packets currently being received to be done.
11833  *	Does not block later packets from starting.
11834  */
synchronize_net(void)11835 void synchronize_net(void)
11836 {
11837 	might_sleep();
11838 	if (from_cleanup_net() || rtnl_is_locked())
11839 		synchronize_rcu_expedited();
11840 	else
11841 		synchronize_rcu();
11842 }
11843 EXPORT_SYMBOL(synchronize_net);
11844 
netdev_rss_contexts_free(struct net_device * dev)11845 static void netdev_rss_contexts_free(struct net_device *dev)
11846 {
11847 	struct ethtool_rxfh_context *ctx;
11848 	unsigned long context;
11849 
11850 	mutex_lock(&dev->ethtool->rss_lock);
11851 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11852 		struct ethtool_rxfh_param rxfh;
11853 
11854 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11855 		rxfh.key = ethtool_rxfh_context_key(ctx);
11856 		rxfh.hfunc = ctx->hfunc;
11857 		rxfh.input_xfrm = ctx->input_xfrm;
11858 		rxfh.rss_context = context;
11859 		rxfh.rss_delete = true;
11860 
11861 		xa_erase(&dev->ethtool->rss_ctx, context);
11862 		if (dev->ethtool_ops->create_rxfh_context)
11863 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11864 							      context, NULL);
11865 		else
11866 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11867 		kfree(ctx);
11868 	}
11869 	xa_destroy(&dev->ethtool->rss_ctx);
11870 	mutex_unlock(&dev->ethtool->rss_lock);
11871 }
11872 
11873 /**
11874  *	unregister_netdevice_queue - remove device from the kernel
11875  *	@dev: device
11876  *	@head: list
11877  *
11878  *	This function shuts down a device interface and removes it
11879  *	from the kernel tables.
11880  *	If head not NULL, device is queued to be unregistered later.
11881  *
11882  *	Callers must hold the rtnl semaphore.  You may want
11883  *	unregister_netdev() instead of this.
11884  */
11885 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)11886 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11887 {
11888 	ASSERT_RTNL();
11889 
11890 	if (head) {
11891 		list_move_tail(&dev->unreg_list, head);
11892 	} else {
11893 		LIST_HEAD(single);
11894 
11895 		list_add(&dev->unreg_list, &single);
11896 		unregister_netdevice_many(&single);
11897 	}
11898 }
11899 EXPORT_SYMBOL(unregister_netdevice_queue);
11900 
dev_memory_provider_uninstall(struct net_device * dev)11901 static void dev_memory_provider_uninstall(struct net_device *dev)
11902 {
11903 	unsigned int i;
11904 
11905 	for (i = 0; i < dev->real_num_rx_queues; i++) {
11906 		struct netdev_rx_queue *rxq = &dev->_rx[i];
11907 		struct pp_memory_provider_params *p = &rxq->mp_params;
11908 
11909 		if (p->mp_ops && p->mp_ops->uninstall)
11910 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
11911 	}
11912 }
11913 
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)11914 void unregister_netdevice_many_notify(struct list_head *head,
11915 				      u32 portid, const struct nlmsghdr *nlh)
11916 {
11917 	struct net_device *dev, *tmp;
11918 	LIST_HEAD(close_head);
11919 	int cnt = 0;
11920 
11921 	BUG_ON(dev_boot_phase);
11922 	ASSERT_RTNL();
11923 
11924 	if (list_empty(head))
11925 		return;
11926 
11927 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11928 		/* Some devices call without registering
11929 		 * for initialization unwind. Remove those
11930 		 * devices and proceed with the remaining.
11931 		 */
11932 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11933 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11934 				 dev->name, dev);
11935 
11936 			WARN_ON(1);
11937 			list_del(&dev->unreg_list);
11938 			continue;
11939 		}
11940 		dev->dismantle = true;
11941 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11942 	}
11943 
11944 	/* If device is running, close it first. */
11945 	list_for_each_entry(dev, head, unreg_list) {
11946 		list_add_tail(&dev->close_list, &close_head);
11947 		netdev_lock_ops(dev);
11948 	}
11949 	dev_close_many(&close_head, true);
11950 
11951 	list_for_each_entry(dev, head, unreg_list) {
11952 		netdev_unlock_ops(dev);
11953 		/* And unlink it from device chain. */
11954 		unlist_netdevice(dev);
11955 		netdev_lock(dev);
11956 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11957 		netdev_unlock(dev);
11958 	}
11959 	flush_all_backlogs();
11960 
11961 	synchronize_net();
11962 
11963 	list_for_each_entry(dev, head, unreg_list) {
11964 		struct sk_buff *skb = NULL;
11965 
11966 		/* Shutdown queueing discipline. */
11967 		dev_shutdown(dev);
11968 		dev_tcx_uninstall(dev);
11969 		netdev_lock_ops(dev);
11970 		dev_xdp_uninstall(dev);
11971 		dev_memory_provider_uninstall(dev);
11972 		netdev_unlock_ops(dev);
11973 		bpf_dev_bound_netdev_unregister(dev);
11974 
11975 		netdev_offload_xstats_disable_all(dev);
11976 
11977 		/* Notify protocols, that we are about to destroy
11978 		 * this device. They should clean all the things.
11979 		 */
11980 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11981 
11982 		if (!dev->rtnl_link_ops ||
11983 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11984 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11985 						     GFP_KERNEL, NULL, 0,
11986 						     portid, nlh);
11987 
11988 		/*
11989 		 *	Flush the unicast and multicast chains
11990 		 */
11991 		dev_uc_flush(dev);
11992 		dev_mc_flush(dev);
11993 
11994 		netdev_name_node_alt_flush(dev);
11995 		netdev_name_node_free(dev->name_node);
11996 
11997 		netdev_rss_contexts_free(dev);
11998 
11999 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12000 
12001 		if (dev->netdev_ops->ndo_uninit)
12002 			dev->netdev_ops->ndo_uninit(dev);
12003 
12004 		mutex_destroy(&dev->ethtool->rss_lock);
12005 
12006 		net_shaper_flush_netdev(dev);
12007 
12008 		if (skb)
12009 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12010 
12011 		/* Notifier chain MUST detach us all upper devices. */
12012 		WARN_ON(netdev_has_any_upper_dev(dev));
12013 		WARN_ON(netdev_has_any_lower_dev(dev));
12014 
12015 		/* Remove entries from kobject tree */
12016 		netdev_unregister_kobject(dev);
12017 #ifdef CONFIG_XPS
12018 		/* Remove XPS queueing entries */
12019 		netif_reset_xps_queues_gt(dev, 0);
12020 #endif
12021 	}
12022 
12023 	synchronize_net();
12024 
12025 	list_for_each_entry(dev, head, unreg_list) {
12026 		netdev_put(dev, &dev->dev_registered_tracker);
12027 		net_set_todo(dev);
12028 		cnt++;
12029 	}
12030 	atomic_add(cnt, &dev_unreg_count);
12031 
12032 	list_del(head);
12033 }
12034 
12035 /**
12036  *	unregister_netdevice_many - unregister many devices
12037  *	@head: list of devices
12038  *
12039  *  Note: As most callers use a stack allocated list_head,
12040  *  we force a list_del() to make sure stack won't be corrupted later.
12041  */
unregister_netdevice_many(struct list_head * head)12042 void unregister_netdevice_many(struct list_head *head)
12043 {
12044 	unregister_netdevice_many_notify(head, 0, NULL);
12045 }
12046 EXPORT_SYMBOL(unregister_netdevice_many);
12047 
12048 /**
12049  *	unregister_netdev - remove device from the kernel
12050  *	@dev: device
12051  *
12052  *	This function shuts down a device interface and removes it
12053  *	from the kernel tables.
12054  *
12055  *	This is just a wrapper for unregister_netdevice that takes
12056  *	the rtnl semaphore.  In general you want to use this and not
12057  *	unregister_netdevice.
12058  */
unregister_netdev(struct net_device * dev)12059 void unregister_netdev(struct net_device *dev)
12060 {
12061 	rtnl_net_dev_lock(dev);
12062 	unregister_netdevice(dev);
12063 	rtnl_net_dev_unlock(dev);
12064 }
12065 EXPORT_SYMBOL(unregister_netdev);
12066 
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex,struct netlink_ext_ack * extack)12067 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12068 			       const char *pat, int new_ifindex,
12069 			       struct netlink_ext_ack *extack)
12070 {
12071 	struct netdev_name_node *name_node;
12072 	struct net *net_old = dev_net(dev);
12073 	char new_name[IFNAMSIZ] = {};
12074 	int err, new_nsid;
12075 
12076 	ASSERT_RTNL();
12077 
12078 	/* Don't allow namespace local devices to be moved. */
12079 	err = -EINVAL;
12080 	if (dev->netns_immutable) {
12081 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12082 		goto out;
12083 	}
12084 
12085 	/* Ensure the device has been registered */
12086 	if (dev->reg_state != NETREG_REGISTERED) {
12087 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12088 		goto out;
12089 	}
12090 
12091 	/* Get out if there is nothing todo */
12092 	err = 0;
12093 	if (net_eq(net_old, net))
12094 		goto out;
12095 
12096 	/* Pick the destination device name, and ensure
12097 	 * we can use it in the destination network namespace.
12098 	 */
12099 	err = -EEXIST;
12100 	if (netdev_name_in_use(net, dev->name)) {
12101 		/* We get here if we can't use the current device name */
12102 		if (!pat) {
12103 			NL_SET_ERR_MSG(extack,
12104 				       "An interface with the same name exists in the target netns");
12105 			goto out;
12106 		}
12107 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12108 		if (err < 0) {
12109 			NL_SET_ERR_MSG_FMT(extack,
12110 					   "Unable to use '%s' for the new interface name in the target netns",
12111 					   pat);
12112 			goto out;
12113 		}
12114 	}
12115 	/* Check that none of the altnames conflicts. */
12116 	err = -EEXIST;
12117 	netdev_for_each_altname(dev, name_node) {
12118 		if (netdev_name_in_use(net, name_node->name)) {
12119 			NL_SET_ERR_MSG_FMT(extack,
12120 					   "An interface with the altname %s exists in the target netns",
12121 					   name_node->name);
12122 			goto out;
12123 		}
12124 	}
12125 
12126 	/* Check that new_ifindex isn't used yet. */
12127 	if (new_ifindex) {
12128 		err = dev_index_reserve(net, new_ifindex);
12129 		if (err < 0) {
12130 			NL_SET_ERR_MSG_FMT(extack,
12131 					   "The ifindex %d is not available in the target netns",
12132 					   new_ifindex);
12133 			goto out;
12134 		}
12135 	} else {
12136 		/* If there is an ifindex conflict assign a new one */
12137 		err = dev_index_reserve(net, dev->ifindex);
12138 		if (err == -EBUSY)
12139 			err = dev_index_reserve(net, 0);
12140 		if (err < 0) {
12141 			NL_SET_ERR_MSG(extack,
12142 				       "Unable to allocate a new ifindex in the target netns");
12143 			goto out;
12144 		}
12145 		new_ifindex = err;
12146 	}
12147 
12148 	/*
12149 	 * And now a mini version of register_netdevice unregister_netdevice.
12150 	 */
12151 
12152 	netdev_lock_ops(dev);
12153 	/* If device is running close it first. */
12154 	netif_close(dev);
12155 	/* And unlink it from device chain */
12156 	unlist_netdevice(dev);
12157 	netdev_unlock_ops(dev);
12158 
12159 	synchronize_net();
12160 
12161 	/* Shutdown queueing discipline. */
12162 	dev_shutdown(dev);
12163 
12164 	/* Notify protocols, that we are about to destroy
12165 	 * this device. They should clean all the things.
12166 	 *
12167 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12168 	 * This is wanted because this way 8021q and macvlan know
12169 	 * the device is just moving and can keep their slaves up.
12170 	 */
12171 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12172 	rcu_barrier();
12173 
12174 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12175 
12176 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12177 			    new_ifindex);
12178 
12179 	/*
12180 	 *	Flush the unicast and multicast chains
12181 	 */
12182 	dev_uc_flush(dev);
12183 	dev_mc_flush(dev);
12184 
12185 	/* Send a netdev-removed uevent to the old namespace */
12186 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12187 	netdev_adjacent_del_links(dev);
12188 
12189 	/* Move per-net netdevice notifiers that are following the netdevice */
12190 	move_netdevice_notifiers_dev_net(dev, net);
12191 
12192 	/* Actually switch the network namespace */
12193 	dev_net_set(dev, net);
12194 	dev->ifindex = new_ifindex;
12195 
12196 	if (new_name[0]) {
12197 		/* Rename the netdev to prepared name */
12198 		write_seqlock_bh(&netdev_rename_lock);
12199 		strscpy(dev->name, new_name, IFNAMSIZ);
12200 		write_sequnlock_bh(&netdev_rename_lock);
12201 	}
12202 
12203 	/* Fixup kobjects */
12204 	dev_set_uevent_suppress(&dev->dev, 1);
12205 	err = device_rename(&dev->dev, dev->name);
12206 	dev_set_uevent_suppress(&dev->dev, 0);
12207 	WARN_ON(err);
12208 
12209 	/* Send a netdev-add uevent to the new namespace */
12210 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12211 	netdev_adjacent_add_links(dev);
12212 
12213 	/* Adapt owner in case owning user namespace of target network
12214 	 * namespace is different from the original one.
12215 	 */
12216 	err = netdev_change_owner(dev, net_old, net);
12217 	WARN_ON(err);
12218 
12219 	netdev_lock_ops(dev);
12220 	/* Add the device back in the hashes */
12221 	list_netdevice(dev);
12222 	/* Notify protocols, that a new device appeared. */
12223 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12224 	netdev_unlock_ops(dev);
12225 
12226 	/*
12227 	 *	Prevent userspace races by waiting until the network
12228 	 *	device is fully setup before sending notifications.
12229 	 */
12230 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12231 
12232 	synchronize_net();
12233 	err = 0;
12234 out:
12235 	return err;
12236 }
12237 
dev_cpu_dead(unsigned int oldcpu)12238 static int dev_cpu_dead(unsigned int oldcpu)
12239 {
12240 	struct sk_buff **list_skb;
12241 	struct sk_buff *skb;
12242 	unsigned int cpu;
12243 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12244 
12245 	local_irq_disable();
12246 	cpu = smp_processor_id();
12247 	sd = &per_cpu(softnet_data, cpu);
12248 	oldsd = &per_cpu(softnet_data, oldcpu);
12249 
12250 	/* Find end of our completion_queue. */
12251 	list_skb = &sd->completion_queue;
12252 	while (*list_skb)
12253 		list_skb = &(*list_skb)->next;
12254 	/* Append completion queue from offline CPU. */
12255 	*list_skb = oldsd->completion_queue;
12256 	oldsd->completion_queue = NULL;
12257 
12258 	/* Append output queue from offline CPU. */
12259 	if (oldsd->output_queue) {
12260 		*sd->output_queue_tailp = oldsd->output_queue;
12261 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12262 		oldsd->output_queue = NULL;
12263 		oldsd->output_queue_tailp = &oldsd->output_queue;
12264 	}
12265 	/* Append NAPI poll list from offline CPU, with one exception :
12266 	 * process_backlog() must be called by cpu owning percpu backlog.
12267 	 * We properly handle process_queue & input_pkt_queue later.
12268 	 */
12269 	while (!list_empty(&oldsd->poll_list)) {
12270 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12271 							    struct napi_struct,
12272 							    poll_list);
12273 
12274 		list_del_init(&napi->poll_list);
12275 		if (napi->poll == process_backlog)
12276 			napi->state &= NAPIF_STATE_THREADED;
12277 		else
12278 			____napi_schedule(sd, napi);
12279 	}
12280 
12281 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12282 	local_irq_enable();
12283 
12284 	if (!use_backlog_threads()) {
12285 #ifdef CONFIG_RPS
12286 		remsd = oldsd->rps_ipi_list;
12287 		oldsd->rps_ipi_list = NULL;
12288 #endif
12289 		/* send out pending IPI's on offline CPU */
12290 		net_rps_send_ipi(remsd);
12291 	}
12292 
12293 	/* Process offline CPU's input_pkt_queue */
12294 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12295 		netif_rx(skb);
12296 		rps_input_queue_head_incr(oldsd);
12297 	}
12298 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12299 		netif_rx(skb);
12300 		rps_input_queue_head_incr(oldsd);
12301 	}
12302 
12303 	return 0;
12304 }
12305 
12306 /**
12307  *	netdev_increment_features - increment feature set by one
12308  *	@all: current feature set
12309  *	@one: new feature set
12310  *	@mask: mask feature set
12311  *
12312  *	Computes a new feature set after adding a device with feature set
12313  *	@one to the master device with current feature set @all.  Will not
12314  *	enable anything that is off in @mask. Returns the new feature set.
12315  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)12316 netdev_features_t netdev_increment_features(netdev_features_t all,
12317 	netdev_features_t one, netdev_features_t mask)
12318 {
12319 	if (mask & NETIF_F_HW_CSUM)
12320 		mask |= NETIF_F_CSUM_MASK;
12321 	mask |= NETIF_F_VLAN_CHALLENGED;
12322 
12323 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12324 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12325 
12326 	/* If one device supports hw checksumming, set for all. */
12327 	if (all & NETIF_F_HW_CSUM)
12328 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12329 
12330 	return all;
12331 }
12332 EXPORT_SYMBOL(netdev_increment_features);
12333 
netdev_create_hash(void)12334 static struct hlist_head * __net_init netdev_create_hash(void)
12335 {
12336 	int i;
12337 	struct hlist_head *hash;
12338 
12339 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12340 	if (hash != NULL)
12341 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12342 			INIT_HLIST_HEAD(&hash[i]);
12343 
12344 	return hash;
12345 }
12346 
12347 /* Initialize per network namespace state */
netdev_init(struct net * net)12348 static int __net_init netdev_init(struct net *net)
12349 {
12350 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12351 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12352 
12353 	INIT_LIST_HEAD(&net->dev_base_head);
12354 
12355 	net->dev_name_head = netdev_create_hash();
12356 	if (net->dev_name_head == NULL)
12357 		goto err_name;
12358 
12359 	net->dev_index_head = netdev_create_hash();
12360 	if (net->dev_index_head == NULL)
12361 		goto err_idx;
12362 
12363 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12364 
12365 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12366 
12367 	return 0;
12368 
12369 err_idx:
12370 	kfree(net->dev_name_head);
12371 err_name:
12372 	return -ENOMEM;
12373 }
12374 
12375 /**
12376  *	netdev_drivername - network driver for the device
12377  *	@dev: network device
12378  *
12379  *	Determine network driver for device.
12380  */
netdev_drivername(const struct net_device * dev)12381 const char *netdev_drivername(const struct net_device *dev)
12382 {
12383 	const struct device_driver *driver;
12384 	const struct device *parent;
12385 	const char *empty = "";
12386 
12387 	parent = dev->dev.parent;
12388 	if (!parent)
12389 		return empty;
12390 
12391 	driver = parent->driver;
12392 	if (driver && driver->name)
12393 		return driver->name;
12394 	return empty;
12395 }
12396 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)12397 static void __netdev_printk(const char *level, const struct net_device *dev,
12398 			    struct va_format *vaf)
12399 {
12400 	if (dev && dev->dev.parent) {
12401 		dev_printk_emit(level[1] - '0',
12402 				dev->dev.parent,
12403 				"%s %s %s%s: %pV",
12404 				dev_driver_string(dev->dev.parent),
12405 				dev_name(dev->dev.parent),
12406 				netdev_name(dev), netdev_reg_state(dev),
12407 				vaf);
12408 	} else if (dev) {
12409 		printk("%s%s%s: %pV",
12410 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12411 	} else {
12412 		printk("%s(NULL net_device): %pV", level, vaf);
12413 	}
12414 }
12415 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)12416 void netdev_printk(const char *level, const struct net_device *dev,
12417 		   const char *format, ...)
12418 {
12419 	struct va_format vaf;
12420 	va_list args;
12421 
12422 	va_start(args, format);
12423 
12424 	vaf.fmt = format;
12425 	vaf.va = &args;
12426 
12427 	__netdev_printk(level, dev, &vaf);
12428 
12429 	va_end(args);
12430 }
12431 EXPORT_SYMBOL(netdev_printk);
12432 
12433 #define define_netdev_printk_level(func, level)			\
12434 void func(const struct net_device *dev, const char *fmt, ...)	\
12435 {								\
12436 	struct va_format vaf;					\
12437 	va_list args;						\
12438 								\
12439 	va_start(args, fmt);					\
12440 								\
12441 	vaf.fmt = fmt;						\
12442 	vaf.va = &args;						\
12443 								\
12444 	__netdev_printk(level, dev, &vaf);			\
12445 								\
12446 	va_end(args);						\
12447 }								\
12448 EXPORT_SYMBOL(func);
12449 
12450 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12451 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12452 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12453 define_netdev_printk_level(netdev_err, KERN_ERR);
12454 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12455 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12456 define_netdev_printk_level(netdev_info, KERN_INFO);
12457 
netdev_exit(struct net * net)12458 static void __net_exit netdev_exit(struct net *net)
12459 {
12460 	kfree(net->dev_name_head);
12461 	kfree(net->dev_index_head);
12462 	xa_destroy(&net->dev_by_index);
12463 	if (net != &init_net)
12464 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12465 }
12466 
12467 static struct pernet_operations __net_initdata netdev_net_ops = {
12468 	.init = netdev_init,
12469 	.exit = netdev_exit,
12470 };
12471 
default_device_exit_net(struct net * net)12472 static void __net_exit default_device_exit_net(struct net *net)
12473 {
12474 	struct netdev_name_node *name_node, *tmp;
12475 	struct net_device *dev, *aux;
12476 	/*
12477 	 * Push all migratable network devices back to the
12478 	 * initial network namespace
12479 	 */
12480 	ASSERT_RTNL();
12481 	for_each_netdev_safe(net, dev, aux) {
12482 		int err;
12483 		char fb_name[IFNAMSIZ];
12484 
12485 		/* Ignore unmoveable devices (i.e. loopback) */
12486 		if (dev->netns_immutable)
12487 			continue;
12488 
12489 		/* Leave virtual devices for the generic cleanup */
12490 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12491 			continue;
12492 
12493 		/* Push remaining network devices to init_net */
12494 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12495 		if (netdev_name_in_use(&init_net, fb_name))
12496 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12497 
12498 		netdev_for_each_altname_safe(dev, name_node, tmp)
12499 			if (netdev_name_in_use(&init_net, name_node->name))
12500 				__netdev_name_node_alt_destroy(name_node);
12501 
12502 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12503 		if (err) {
12504 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12505 				 __func__, dev->name, err);
12506 			BUG();
12507 		}
12508 	}
12509 }
12510 
default_device_exit_batch(struct list_head * net_list)12511 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12512 {
12513 	/* At exit all network devices most be removed from a network
12514 	 * namespace.  Do this in the reverse order of registration.
12515 	 * Do this across as many network namespaces as possible to
12516 	 * improve batching efficiency.
12517 	 */
12518 	struct net_device *dev;
12519 	struct net *net;
12520 	LIST_HEAD(dev_kill_list);
12521 
12522 	rtnl_lock();
12523 	list_for_each_entry(net, net_list, exit_list) {
12524 		default_device_exit_net(net);
12525 		cond_resched();
12526 	}
12527 
12528 	list_for_each_entry(net, net_list, exit_list) {
12529 		for_each_netdev_reverse(net, dev) {
12530 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12531 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12532 			else
12533 				unregister_netdevice_queue(dev, &dev_kill_list);
12534 		}
12535 	}
12536 	unregister_netdevice_many(&dev_kill_list);
12537 	rtnl_unlock();
12538 }
12539 
12540 static struct pernet_operations __net_initdata default_device_ops = {
12541 	.exit_batch = default_device_exit_batch,
12542 };
12543 
net_dev_struct_check(void)12544 static void __init net_dev_struct_check(void)
12545 {
12546 	/* TX read-mostly hotpath */
12547 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12548 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12549 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12550 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12551 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12552 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12553 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12554 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12555 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12556 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12557 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12558 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12559 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12560 #ifdef CONFIG_XPS
12561 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12562 #endif
12563 #ifdef CONFIG_NETFILTER_EGRESS
12564 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12565 #endif
12566 #ifdef CONFIG_NET_XGRESS
12567 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12568 #endif
12569 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12570 
12571 	/* TXRX read-mostly hotpath */
12572 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12573 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12574 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12575 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12576 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12577 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12578 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12579 
12580 	/* RX read-mostly hotpath */
12581 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12582 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12583 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12584 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12585 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12586 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12587 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12588 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12589 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12590 #ifdef CONFIG_NETPOLL
12591 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12592 #endif
12593 #ifdef CONFIG_NET_XGRESS
12594 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12595 #endif
12596 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12597 }
12598 
12599 /*
12600  *	Initialize the DEV module. At boot time this walks the device list and
12601  *	unhooks any devices that fail to initialise (normally hardware not
12602  *	present) and leaves us with a valid list of present and active devices.
12603  *
12604  */
12605 
12606 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12607 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12608 
net_page_pool_create(int cpuid)12609 static int net_page_pool_create(int cpuid)
12610 {
12611 #if IS_ENABLED(CONFIG_PAGE_POOL)
12612 	struct page_pool_params page_pool_params = {
12613 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12614 		.flags = PP_FLAG_SYSTEM_POOL,
12615 		.nid = cpu_to_mem(cpuid),
12616 	};
12617 	struct page_pool *pp_ptr;
12618 	int err;
12619 
12620 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12621 	if (IS_ERR(pp_ptr))
12622 		return -ENOMEM;
12623 
12624 	err = xdp_reg_page_pool(pp_ptr);
12625 	if (err) {
12626 		page_pool_destroy(pp_ptr);
12627 		return err;
12628 	}
12629 
12630 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12631 #endif
12632 	return 0;
12633 }
12634 
backlog_napi_should_run(unsigned int cpu)12635 static int backlog_napi_should_run(unsigned int cpu)
12636 {
12637 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12638 	struct napi_struct *napi = &sd->backlog;
12639 
12640 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12641 }
12642 
run_backlog_napi(unsigned int cpu)12643 static void run_backlog_napi(unsigned int cpu)
12644 {
12645 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12646 
12647 	napi_threaded_poll_loop(&sd->backlog);
12648 }
12649 
backlog_napi_setup(unsigned int cpu)12650 static void backlog_napi_setup(unsigned int cpu)
12651 {
12652 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12653 	struct napi_struct *napi = &sd->backlog;
12654 
12655 	napi->thread = this_cpu_read(backlog_napi);
12656 	set_bit(NAPI_STATE_THREADED, &napi->state);
12657 }
12658 
12659 static struct smp_hotplug_thread backlog_threads = {
12660 	.store			= &backlog_napi,
12661 	.thread_should_run	= backlog_napi_should_run,
12662 	.thread_fn		= run_backlog_napi,
12663 	.thread_comm		= "backlog_napi/%u",
12664 	.setup			= backlog_napi_setup,
12665 };
12666 
12667 /*
12668  *       This is called single threaded during boot, so no need
12669  *       to take the rtnl semaphore.
12670  */
net_dev_init(void)12671 static int __init net_dev_init(void)
12672 {
12673 	int i, rc = -ENOMEM;
12674 
12675 	BUG_ON(!dev_boot_phase);
12676 
12677 	net_dev_struct_check();
12678 
12679 	if (dev_proc_init())
12680 		goto out;
12681 
12682 	if (netdev_kobject_init())
12683 		goto out;
12684 
12685 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12686 		INIT_LIST_HEAD(&ptype_base[i]);
12687 
12688 	if (register_pernet_subsys(&netdev_net_ops))
12689 		goto out;
12690 
12691 	/*
12692 	 *	Initialise the packet receive queues.
12693 	 */
12694 
12695 	flush_backlogs_fallback = flush_backlogs_alloc();
12696 	if (!flush_backlogs_fallback)
12697 		goto out;
12698 
12699 	for_each_possible_cpu(i) {
12700 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12701 
12702 		skb_queue_head_init(&sd->input_pkt_queue);
12703 		skb_queue_head_init(&sd->process_queue);
12704 #ifdef CONFIG_XFRM_OFFLOAD
12705 		skb_queue_head_init(&sd->xfrm_backlog);
12706 #endif
12707 		INIT_LIST_HEAD(&sd->poll_list);
12708 		sd->output_queue_tailp = &sd->output_queue;
12709 #ifdef CONFIG_RPS
12710 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12711 		sd->cpu = i;
12712 #endif
12713 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12714 		spin_lock_init(&sd->defer_lock);
12715 
12716 		gro_init(&sd->backlog.gro);
12717 		sd->backlog.poll = process_backlog;
12718 		sd->backlog.weight = weight_p;
12719 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12720 
12721 		if (net_page_pool_create(i))
12722 			goto out;
12723 	}
12724 	if (use_backlog_threads())
12725 		smpboot_register_percpu_thread(&backlog_threads);
12726 
12727 	dev_boot_phase = 0;
12728 
12729 	/* The loopback device is special if any other network devices
12730 	 * is present in a network namespace the loopback device must
12731 	 * be present. Since we now dynamically allocate and free the
12732 	 * loopback device ensure this invariant is maintained by
12733 	 * keeping the loopback device as the first device on the
12734 	 * list of network devices.  Ensuring the loopback devices
12735 	 * is the first device that appears and the last network device
12736 	 * that disappears.
12737 	 */
12738 	if (register_pernet_device(&loopback_net_ops))
12739 		goto out;
12740 
12741 	if (register_pernet_device(&default_device_ops))
12742 		goto out;
12743 
12744 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12745 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12746 
12747 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12748 				       NULL, dev_cpu_dead);
12749 	WARN_ON(rc < 0);
12750 	rc = 0;
12751 
12752 	/* avoid static key IPIs to isolated CPUs */
12753 	if (housekeeping_enabled(HK_TYPE_MISC))
12754 		net_enable_timestamp();
12755 out:
12756 	if (rc < 0) {
12757 		for_each_possible_cpu(i) {
12758 			struct page_pool *pp_ptr;
12759 
12760 			pp_ptr = per_cpu(system_page_pool, i);
12761 			if (!pp_ptr)
12762 				continue;
12763 
12764 			xdp_unreg_page_pool(pp_ptr);
12765 			page_pool_destroy(pp_ptr);
12766 			per_cpu(system_page_pool, i) = NULL;
12767 		}
12768 	}
12769 
12770 	return rc;
12771 }
12772 
12773 subsys_initcall(net_dev_init);
12774