1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 struct net_device *dev,
177 struct netlink_ext_ack *extack);
178
179 static DEFINE_MUTEX(ifalias_mutex);
180
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186
dev_base_seq_inc(struct net * net)187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 unsigned int val = net->dev_base_seq + 1;
190
191 WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193
dev_name_hash(struct net * net,const char * name)194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197
198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200
dev_index_hash(struct net * net,int ifindex)201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205
206 #ifndef CONFIG_PREEMPT_RT
207
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209
setup_backlog_napi_threads(char * arg)210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 static_branch_enable(&use_backlog_threads_key);
213 return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216
use_backlog_threads(void)217 static bool use_backlog_threads(void)
218 {
219 return static_branch_unlikely(&use_backlog_threads_key);
220 }
221
222 #else
223
use_backlog_threads(void)224 static bool use_backlog_threads(void)
225 {
226 return true;
227 }
228
229 #endif
230
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 unsigned long *flags)
233 {
234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 else
237 local_irq_save(*flags);
238 }
239
backlog_lock_irq_disable(struct softnet_data * sd)240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 spin_lock_irq(&sd->input_pkt_queue.lock);
244 else
245 local_irq_disable();
246 }
247
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 unsigned long *flags)
250 {
251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 else
254 local_irq_restore(*flags);
255 }
256
backlog_unlock_irq_enable(struct softnet_data * sd)257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 spin_unlock_irq(&sd->input_pkt_queue.lock);
261 else
262 local_irq_enable();
263 }
264
netdev_name_node_alloc(struct net_device * dev,const char * name)265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 const char *name)
267 {
268 struct netdev_name_node *name_node;
269
270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 if (!name_node)
272 return NULL;
273 INIT_HLIST_NODE(&name_node->hlist);
274 name_node->dev = dev;
275 name_node->name = name;
276 return name_node;
277 }
278
279 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 struct netdev_name_node *name_node;
283
284 name_node = netdev_name_node_alloc(dev, dev->name);
285 if (!name_node)
286 return NULL;
287 INIT_LIST_HEAD(&name_node->list);
288 return name_node;
289 }
290
netdev_name_node_free(struct netdev_name_node * name_node)291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 kfree(name_node);
294 }
295
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)296 static void netdev_name_node_add(struct net *net,
297 struct netdev_name_node *name_node)
298 {
299 hlist_add_head_rcu(&name_node->hlist,
300 dev_name_hash(net, name_node->name));
301 }
302
netdev_name_node_del(struct netdev_name_node * name_node)303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 hlist_del_rcu(&name_node->hlist);
306 }
307
netdev_name_node_lookup(struct net * net,const char * name)308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 const char *name)
310 {
311 struct hlist_head *head = dev_name_hash(net, name);
312 struct netdev_name_node *name_node;
313
314 hlist_for_each_entry(name_node, head, hlist)
315 if (!strcmp(name_node->name, name))
316 return name_node;
317 return NULL;
318 }
319
netdev_name_node_lookup_rcu(struct net * net,const char * name)320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 const char *name)
322 {
323 struct hlist_head *head = dev_name_hash(net, name);
324 struct netdev_name_node *name_node;
325
326 hlist_for_each_entry_rcu(name_node, head, hlist)
327 if (!strcmp(name_node->name, name))
328 return name_node;
329 return NULL;
330 }
331
netdev_name_in_use(struct net * net,const char * name)332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337
netdev_name_node_alt_create(struct net_device * dev,const char * name)338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 struct netdev_name_node *name_node;
341 struct net *net = dev_net(dev);
342
343 name_node = netdev_name_node_lookup(net, name);
344 if (name_node)
345 return -EEXIST;
346 name_node = netdev_name_node_alloc(dev, name);
347 if (!name_node)
348 return -ENOMEM;
349 netdev_name_node_add(net, name_node);
350 /* The node that holds dev->name acts as a head of per-device list. */
351 list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352
353 return 0;
354 }
355
netdev_name_node_alt_free(struct rcu_head * head)356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 struct netdev_name_node *name_node =
359 container_of(head, struct netdev_name_node, rcu);
360
361 kfree(name_node->name);
362 netdev_name_node_free(name_node);
363 }
364
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 netdev_name_node_del(name_node);
368 list_del(&name_node->list);
369 call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 struct netdev_name_node *name_node;
375 struct net *net = dev_net(dev);
376
377 name_node = netdev_name_node_lookup(net, name);
378 if (!name_node)
379 return -ENOENT;
380 /* lookup might have found our primary name or a name belonging
381 * to another device.
382 */
383 if (name_node == dev->name_node || name_node->dev != dev)
384 return -EINVAL;
385
386 __netdev_name_node_alt_destroy(name_node);
387 return 0;
388 }
389
netdev_name_node_alt_flush(struct net_device * dev)390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 struct netdev_name_node *name_node, *tmp;
393
394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 list_del(&name_node->list);
396 netdev_name_node_alt_free(&name_node->rcu);
397 }
398 }
399
400 /* Device list insertion */
list_netdevice(struct net_device * dev)401 static void list_netdevice(struct net_device *dev)
402 {
403 struct netdev_name_node *name_node;
404 struct net *net = dev_net(dev);
405
406 ASSERT_RTNL();
407
408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 netdev_name_node_add(net, dev->name_node);
410 hlist_add_head_rcu(&dev->index_hlist,
411 dev_index_hash(net, dev->ifindex));
412
413 netdev_for_each_altname(dev, name_node)
414 netdev_name_node_add(net, name_node);
415
416 /* We reserved the ifindex, this can't fail */
417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418
419 dev_base_seq_inc(net);
420 }
421
422 /* Device list removal
423 * caller must respect a RCU grace period before freeing/reusing dev
424 */
unlist_netdevice(struct net_device * dev)425 static void unlist_netdevice(struct net_device *dev)
426 {
427 struct netdev_name_node *name_node;
428 struct net *net = dev_net(dev);
429
430 ASSERT_RTNL();
431
432 xa_erase(&net->dev_by_index, dev->ifindex);
433
434 netdev_for_each_altname(dev, name_node)
435 netdev_name_node_del(name_node);
436
437 /* Unlink dev from the device chain */
438 list_del_rcu(&dev->dev_list);
439 netdev_name_node_del(dev->name_node);
440 hlist_del_rcu(&dev->index_hlist);
441
442 dev_base_seq_inc(dev_net(dev));
443 }
444
445 /*
446 * Our notifier list
447 */
448
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450
451 /*
452 * Device drivers call our routines to queue packets here. We empty the
453 * queue in the local softnet handler.
454 */
455
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462 * PP consumers must pay attention to run APIs in the appropriate context
463 * (e.g. NAPI context).
464 */
465 DEFINE_PER_CPU(struct page_pool *, system_page_pool);
466
467 #ifdef CONFIG_LOCKDEP
468 /*
469 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
470 * according to dev->type
471 */
472 static const unsigned short netdev_lock_type[] = {
473 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
474 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
475 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
476 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
477 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
478 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
479 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
480 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
481 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
482 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
483 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
484 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
485 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
486 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
487 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
488
489 static const char *const netdev_lock_name[] = {
490 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
491 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
492 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
493 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
494 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
495 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
496 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
497 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
498 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
499 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
500 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
501 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
502 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
503 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
504 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
505
506 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
507 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
508
netdev_lock_pos(unsigned short dev_type)509 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
510 {
511 int i;
512
513 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
514 if (netdev_lock_type[i] == dev_type)
515 return i;
516 /* the last key is used by default */
517 return ARRAY_SIZE(netdev_lock_type) - 1;
518 }
519
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)520 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
521 unsigned short dev_type)
522 {
523 int i;
524
525 i = netdev_lock_pos(dev_type);
526 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
527 netdev_lock_name[i]);
528 }
529
netdev_set_addr_lockdep_class(struct net_device * dev)530 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
531 {
532 int i;
533
534 i = netdev_lock_pos(dev->type);
535 lockdep_set_class_and_name(&dev->addr_list_lock,
536 &netdev_addr_lock_key[i],
537 netdev_lock_name[i]);
538 }
539 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)540 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
541 unsigned short dev_type)
542 {
543 }
544
netdev_set_addr_lockdep_class(struct net_device * dev)545 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
546 {
547 }
548 #endif
549
550 /*******************************************************************************
551 *
552 * Protocol management and registration routines
553 *
554 *******************************************************************************/
555
556
557 /*
558 * Add a protocol ID to the list. Now that the input handler is
559 * smarter we can dispense with all the messy stuff that used to be
560 * here.
561 *
562 * BEWARE!!! Protocol handlers, mangling input packets,
563 * MUST BE last in hash buckets and checking protocol handlers
564 * MUST start from promiscuous ptype_all chain in net_bh.
565 * It is true now, do not change it.
566 * Explanation follows: if protocol handler, mangling packet, will
567 * be the first on list, it is not able to sense, that packet
568 * is cloned and should be copied-on-write, so that it will
569 * change it and subsequent readers will get broken packet.
570 * --ANK (980803)
571 */
572
ptype_head(const struct packet_type * pt)573 static inline struct list_head *ptype_head(const struct packet_type *pt)
574 {
575 if (pt->type == htons(ETH_P_ALL)) {
576 if (!pt->af_packet_net && !pt->dev)
577 return NULL;
578
579 return pt->dev ? &pt->dev->ptype_all :
580 &pt->af_packet_net->ptype_all;
581 }
582
583 if (pt->dev)
584 return &pt->dev->ptype_specific;
585
586 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
587 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
588 }
589
590 /**
591 * dev_add_pack - add packet handler
592 * @pt: packet type declaration
593 *
594 * Add a protocol handler to the networking stack. The passed &packet_type
595 * is linked into kernel lists and may not be freed until it has been
596 * removed from the kernel lists.
597 *
598 * This call does not sleep therefore it can not
599 * guarantee all CPU's that are in middle of receiving packets
600 * will see the new packet type (until the next received packet).
601 */
602
dev_add_pack(struct packet_type * pt)603 void dev_add_pack(struct packet_type *pt)
604 {
605 struct list_head *head = ptype_head(pt);
606
607 if (WARN_ON_ONCE(!head))
608 return;
609
610 spin_lock(&ptype_lock);
611 list_add_rcu(&pt->list, head);
612 spin_unlock(&ptype_lock);
613 }
614 EXPORT_SYMBOL(dev_add_pack);
615
616 /**
617 * __dev_remove_pack - remove packet handler
618 * @pt: packet type declaration
619 *
620 * Remove a protocol handler that was previously added to the kernel
621 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
622 * from the kernel lists and can be freed or reused once this function
623 * returns.
624 *
625 * The packet type might still be in use by receivers
626 * and must not be freed until after all the CPU's have gone
627 * through a quiescent state.
628 */
__dev_remove_pack(struct packet_type * pt)629 void __dev_remove_pack(struct packet_type *pt)
630 {
631 struct list_head *head = ptype_head(pt);
632 struct packet_type *pt1;
633
634 if (!head)
635 return;
636
637 spin_lock(&ptype_lock);
638
639 list_for_each_entry(pt1, head, list) {
640 if (pt == pt1) {
641 list_del_rcu(&pt->list);
642 goto out;
643 }
644 }
645
646 pr_warn("dev_remove_pack: %p not found\n", pt);
647 out:
648 spin_unlock(&ptype_lock);
649 }
650 EXPORT_SYMBOL(__dev_remove_pack);
651
652 /**
653 * dev_remove_pack - remove packet handler
654 * @pt: packet type declaration
655 *
656 * Remove a protocol handler that was previously added to the kernel
657 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
658 * from the kernel lists and can be freed or reused once this function
659 * returns.
660 *
661 * This call sleeps to guarantee that no CPU is looking at the packet
662 * type after return.
663 */
dev_remove_pack(struct packet_type * pt)664 void dev_remove_pack(struct packet_type *pt)
665 {
666 __dev_remove_pack(pt);
667
668 synchronize_net();
669 }
670 EXPORT_SYMBOL(dev_remove_pack);
671
672
673 /*******************************************************************************
674 *
675 * Device Interface Subroutines
676 *
677 *******************************************************************************/
678
679 /**
680 * dev_get_iflink - get 'iflink' value of a interface
681 * @dev: targeted interface
682 *
683 * Indicates the ifindex the interface is linked to.
684 * Physical interfaces have the same 'ifindex' and 'iflink' values.
685 */
686
dev_get_iflink(const struct net_device * dev)687 int dev_get_iflink(const struct net_device *dev)
688 {
689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 return dev->netdev_ops->ndo_get_iflink(dev);
691
692 return READ_ONCE(dev->ifindex);
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695
696 /**
697 * dev_fill_metadata_dst - Retrieve tunnel egress information.
698 * @dev: targeted interface
699 * @skb: The packet.
700 *
701 * For better visibility of tunnel traffic OVS needs to retrieve
702 * egress tunnel information for a packet. Following API allows
703 * user to get this info.
704 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 struct ip_tunnel_info *info;
708
709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
710 return -EINVAL;
711
712 info = skb_tunnel_info_unclone(skb);
713 if (!info)
714 return -ENOMEM;
715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 return -EINVAL;
717
718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
dev_fwd_path(struct net_device_path_stack * stack)722 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
723 {
724 int k = stack->num_paths++;
725
726 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
727 return NULL;
728
729 return &stack->path[k];
730 }
731
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)732 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
733 struct net_device_path_stack *stack)
734 {
735 const struct net_device *last_dev;
736 struct net_device_path_ctx ctx = {
737 .dev = dev,
738 };
739 struct net_device_path *path;
740 int ret = 0;
741
742 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
743 stack->num_paths = 0;
744 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
745 last_dev = ctx.dev;
746 path = dev_fwd_path(stack);
747 if (!path)
748 return -1;
749
750 memset(path, 0, sizeof(struct net_device_path));
751 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
752 if (ret < 0)
753 return -1;
754
755 if (WARN_ON_ONCE(last_dev == ctx.dev))
756 return -1;
757 }
758
759 if (!ctx.dev)
760 return ret;
761
762 path = dev_fwd_path(stack);
763 if (!path)
764 return -1;
765 path->type = DEV_PATH_ETHERNET;
766 path->dev = ctx.dev;
767
768 return ret;
769 }
770 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
771
772 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)773 static struct napi_struct *napi_by_id(unsigned int napi_id)
774 {
775 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
776 struct napi_struct *napi;
777
778 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
779 if (napi->napi_id == napi_id)
780 return napi;
781
782 return NULL;
783 }
784
785 /* must be called under rcu_read_lock(), as we dont take a reference */
786 static struct napi_struct *
netdev_napi_by_id(struct net * net,unsigned int napi_id)787 netdev_napi_by_id(struct net *net, unsigned int napi_id)
788 {
789 struct napi_struct *napi;
790
791 napi = napi_by_id(napi_id);
792 if (!napi)
793 return NULL;
794
795 if (WARN_ON_ONCE(!napi->dev))
796 return NULL;
797 if (!net_eq(net, dev_net(napi->dev)))
798 return NULL;
799
800 return napi;
801 }
802
803 /**
804 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
805 * @net: the applicable net namespace
806 * @napi_id: ID of a NAPI of a target device
807 *
808 * Find a NAPI instance with @napi_id. Lock its device.
809 * The device must be in %NETREG_REGISTERED state for lookup to succeed.
810 * netdev_unlock() must be called to release it.
811 *
812 * Return: pointer to NAPI, its device with lock held, NULL if not found.
813 */
814 struct napi_struct *
netdev_napi_by_id_lock(struct net * net,unsigned int napi_id)815 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
816 {
817 struct napi_struct *napi;
818 struct net_device *dev;
819
820 rcu_read_lock();
821 napi = netdev_napi_by_id(net, napi_id);
822 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
823 rcu_read_unlock();
824 return NULL;
825 }
826
827 dev = napi->dev;
828 dev_hold(dev);
829 rcu_read_unlock();
830
831 dev = __netdev_put_lock(dev);
832 if (!dev)
833 return NULL;
834
835 rcu_read_lock();
836 napi = netdev_napi_by_id(net, napi_id);
837 if (napi && napi->dev != dev)
838 napi = NULL;
839 rcu_read_unlock();
840
841 if (!napi)
842 netdev_unlock(dev);
843 return napi;
844 }
845
846 /**
847 * __dev_get_by_name - find a device by its name
848 * @net: the applicable net namespace
849 * @name: name to find
850 *
851 * Find an interface by name. Must be called under RTNL semaphore.
852 * If the name is found a pointer to the device is returned.
853 * If the name is not found then %NULL is returned. The
854 * reference counters are not incremented so the caller must be
855 * careful with locks.
856 */
857
__dev_get_by_name(struct net * net,const char * name)858 struct net_device *__dev_get_by_name(struct net *net, const char *name)
859 {
860 struct netdev_name_node *node_name;
861
862 node_name = netdev_name_node_lookup(net, name);
863 return node_name ? node_name->dev : NULL;
864 }
865 EXPORT_SYMBOL(__dev_get_by_name);
866
867 /**
868 * dev_get_by_name_rcu - find a device by its name
869 * @net: the applicable net namespace
870 * @name: name to find
871 *
872 * Find an interface by name.
873 * If the name is found a pointer to the device is returned.
874 * If the name is not found then %NULL is returned.
875 * The reference counters are not incremented so the caller must be
876 * careful with locks. The caller must hold RCU lock.
877 */
878
dev_get_by_name_rcu(struct net * net,const char * name)879 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
880 {
881 struct netdev_name_node *node_name;
882
883 node_name = netdev_name_node_lookup_rcu(net, name);
884 return node_name ? node_name->dev : NULL;
885 }
886 EXPORT_SYMBOL(dev_get_by_name_rcu);
887
888 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)889 struct net_device *dev_get_by_name(struct net *net, const char *name)
890 {
891 struct net_device *dev;
892
893 rcu_read_lock();
894 dev = dev_get_by_name_rcu(net, name);
895 dev_hold(dev);
896 rcu_read_unlock();
897 return dev;
898 }
899 EXPORT_SYMBOL(dev_get_by_name);
900
901 /**
902 * netdev_get_by_name() - find a device by its name
903 * @net: the applicable net namespace
904 * @name: name to find
905 * @tracker: tracking object for the acquired reference
906 * @gfp: allocation flags for the tracker
907 *
908 * Find an interface by name. This can be called from any
909 * context and does its own locking. The returned handle has
910 * the usage count incremented and the caller must use netdev_put() to
911 * release it when it is no longer needed. %NULL is returned if no
912 * matching device is found.
913 */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)914 struct net_device *netdev_get_by_name(struct net *net, const char *name,
915 netdevice_tracker *tracker, gfp_t gfp)
916 {
917 struct net_device *dev;
918
919 dev = dev_get_by_name(net, name);
920 if (dev)
921 netdev_tracker_alloc(dev, tracker, gfp);
922 return dev;
923 }
924 EXPORT_SYMBOL(netdev_get_by_name);
925
926 /**
927 * __dev_get_by_index - find a device by its ifindex
928 * @net: the applicable net namespace
929 * @ifindex: index of device
930 *
931 * Search for an interface by index. Returns %NULL if the device
932 * is not found or a pointer to the device. The device has not
933 * had its reference counter increased so the caller must be careful
934 * about locking. The caller must hold the RTNL semaphore.
935 */
936
__dev_get_by_index(struct net * net,int ifindex)937 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
938 {
939 struct net_device *dev;
940 struct hlist_head *head = dev_index_hash(net, ifindex);
941
942 hlist_for_each_entry(dev, head, index_hlist)
943 if (dev->ifindex == ifindex)
944 return dev;
945
946 return NULL;
947 }
948 EXPORT_SYMBOL(__dev_get_by_index);
949
950 /**
951 * dev_get_by_index_rcu - find a device by its ifindex
952 * @net: the applicable net namespace
953 * @ifindex: index of device
954 *
955 * Search for an interface by index. Returns %NULL if the device
956 * is not found or a pointer to the device. The device has not
957 * had its reference counter increased so the caller must be careful
958 * about locking. The caller must hold RCU lock.
959 */
960
dev_get_by_index_rcu(struct net * net,int ifindex)961 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
962 {
963 struct net_device *dev;
964 struct hlist_head *head = dev_index_hash(net, ifindex);
965
966 hlist_for_each_entry_rcu(dev, head, index_hlist)
967 if (dev->ifindex == ifindex)
968 return dev;
969
970 return NULL;
971 }
972 EXPORT_SYMBOL(dev_get_by_index_rcu);
973
974 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)975 struct net_device *dev_get_by_index(struct net *net, int ifindex)
976 {
977 struct net_device *dev;
978
979 rcu_read_lock();
980 dev = dev_get_by_index_rcu(net, ifindex);
981 dev_hold(dev);
982 rcu_read_unlock();
983 return dev;
984 }
985 EXPORT_SYMBOL(dev_get_by_index);
986
987 /**
988 * netdev_get_by_index() - find a device by its ifindex
989 * @net: the applicable net namespace
990 * @ifindex: index of device
991 * @tracker: tracking object for the acquired reference
992 * @gfp: allocation flags for the tracker
993 *
994 * Search for an interface by index. Returns NULL if the device
995 * is not found or a pointer to the device. The device returned has
996 * had a reference added and the pointer is safe until the user calls
997 * netdev_put() to indicate they have finished with it.
998 */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)999 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1000 netdevice_tracker *tracker, gfp_t gfp)
1001 {
1002 struct net_device *dev;
1003
1004 dev = dev_get_by_index(net, ifindex);
1005 if (dev)
1006 netdev_tracker_alloc(dev, tracker, gfp);
1007 return dev;
1008 }
1009 EXPORT_SYMBOL(netdev_get_by_index);
1010
1011 /**
1012 * dev_get_by_napi_id - find a device by napi_id
1013 * @napi_id: ID of the NAPI struct
1014 *
1015 * Search for an interface by NAPI ID. Returns %NULL if the device
1016 * is not found or a pointer to the device. The device has not had
1017 * its reference counter increased so the caller must be careful
1018 * about locking. The caller must hold RCU lock.
1019 */
dev_get_by_napi_id(unsigned int napi_id)1020 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1021 {
1022 struct napi_struct *napi;
1023
1024 WARN_ON_ONCE(!rcu_read_lock_held());
1025
1026 if (!napi_id_valid(napi_id))
1027 return NULL;
1028
1029 napi = napi_by_id(napi_id);
1030
1031 return napi ? napi->dev : NULL;
1032 }
1033
1034 /* Release the held reference on the net_device, and if the net_device
1035 * is still registered try to lock the instance lock. If device is being
1036 * unregistered NULL will be returned (but the reference has been released,
1037 * either way!)
1038 *
1039 * This helper is intended for locking net_device after it has been looked up
1040 * using a lockless lookup helper. Lock prevents the instance from going away.
1041 */
__netdev_put_lock(struct net_device * dev)1042 struct net_device *__netdev_put_lock(struct net_device *dev)
1043 {
1044 netdev_lock(dev);
1045 if (dev->reg_state > NETREG_REGISTERED) {
1046 netdev_unlock(dev);
1047 dev_put(dev);
1048 return NULL;
1049 }
1050 dev_put(dev);
1051 return dev;
1052 }
1053
1054 /**
1055 * netdev_get_by_index_lock() - find a device by its ifindex
1056 * @net: the applicable net namespace
1057 * @ifindex: index of device
1058 *
1059 * Search for an interface by index. If a valid device
1060 * with @ifindex is found it will be returned with netdev->lock held.
1061 * netdev_unlock() must be called to release it.
1062 *
1063 * Return: pointer to a device with lock held, NULL if not found.
1064 */
netdev_get_by_index_lock(struct net * net,int ifindex)1065 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1066 {
1067 struct net_device *dev;
1068
1069 dev = dev_get_by_index(net, ifindex);
1070 if (!dev)
1071 return NULL;
1072
1073 return __netdev_put_lock(dev);
1074 }
1075
1076 struct net_device *
netdev_xa_find_lock(struct net * net,struct net_device * dev,unsigned long * index)1077 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1078 unsigned long *index)
1079 {
1080 if (dev)
1081 netdev_unlock(dev);
1082
1083 do {
1084 rcu_read_lock();
1085 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1086 if (!dev) {
1087 rcu_read_unlock();
1088 return NULL;
1089 }
1090 dev_hold(dev);
1091 rcu_read_unlock();
1092
1093 dev = __netdev_put_lock(dev);
1094 if (dev)
1095 return dev;
1096
1097 (*index)++;
1098 } while (true);
1099 }
1100
1101 static DEFINE_SEQLOCK(netdev_rename_lock);
1102
netdev_copy_name(struct net_device * dev,char * name)1103 void netdev_copy_name(struct net_device *dev, char *name)
1104 {
1105 unsigned int seq;
1106
1107 do {
1108 seq = read_seqbegin(&netdev_rename_lock);
1109 strscpy(name, dev->name, IFNAMSIZ);
1110 } while (read_seqretry(&netdev_rename_lock, seq));
1111 }
1112
1113 /**
1114 * netdev_get_name - get a netdevice name, knowing its ifindex.
1115 * @net: network namespace
1116 * @name: a pointer to the buffer where the name will be stored.
1117 * @ifindex: the ifindex of the interface to get the name from.
1118 */
netdev_get_name(struct net * net,char * name,int ifindex)1119 int netdev_get_name(struct net *net, char *name, int ifindex)
1120 {
1121 struct net_device *dev;
1122 int ret;
1123
1124 rcu_read_lock();
1125
1126 dev = dev_get_by_index_rcu(net, ifindex);
1127 if (!dev) {
1128 ret = -ENODEV;
1129 goto out;
1130 }
1131
1132 netdev_copy_name(dev, name);
1133
1134 ret = 0;
1135 out:
1136 rcu_read_unlock();
1137 return ret;
1138 }
1139
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1140 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1141 const char *ha)
1142 {
1143 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1144 }
1145
1146 /**
1147 * dev_getbyhwaddr_rcu - find a device by its hardware address
1148 * @net: the applicable net namespace
1149 * @type: media type of device
1150 * @ha: hardware address
1151 *
1152 * Search for an interface by MAC address. Returns NULL if the device
1153 * is not found or a pointer to the device.
1154 * The caller must hold RCU.
1155 * The returned device has not had its ref count increased
1156 * and the caller must therefore be careful about locking
1157 *
1158 */
1159
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1160 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1161 const char *ha)
1162 {
1163 struct net_device *dev;
1164
1165 for_each_netdev_rcu(net, dev)
1166 if (dev_addr_cmp(dev, type, ha))
1167 return dev;
1168
1169 return NULL;
1170 }
1171 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1172
1173 /**
1174 * dev_getbyhwaddr() - find a device by its hardware address
1175 * @net: the applicable net namespace
1176 * @type: media type of device
1177 * @ha: hardware address
1178 *
1179 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1180 * rtnl_lock.
1181 *
1182 * Context: rtnl_lock() must be held.
1183 * Return: pointer to the net_device, or NULL if not found
1184 */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1185 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1186 const char *ha)
1187 {
1188 struct net_device *dev;
1189
1190 ASSERT_RTNL();
1191 for_each_netdev(net, dev)
1192 if (dev_addr_cmp(dev, type, ha))
1193 return dev;
1194
1195 return NULL;
1196 }
1197 EXPORT_SYMBOL(dev_getbyhwaddr);
1198
dev_getfirstbyhwtype(struct net * net,unsigned short type)1199 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1200 {
1201 struct net_device *dev, *ret = NULL;
1202
1203 rcu_read_lock();
1204 for_each_netdev_rcu(net, dev)
1205 if (dev->type == type) {
1206 dev_hold(dev);
1207 ret = dev;
1208 break;
1209 }
1210 rcu_read_unlock();
1211 return ret;
1212 }
1213 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1214
1215 /**
1216 * __dev_get_by_flags - find any device with given flags
1217 * @net: the applicable net namespace
1218 * @if_flags: IFF_* values
1219 * @mask: bitmask of bits in if_flags to check
1220 *
1221 * Search for any interface with the given flags. Returns NULL if a device
1222 * is not found or a pointer to the device. Must be called inside
1223 * rtnl_lock(), and result refcount is unchanged.
1224 */
1225
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1226 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1227 unsigned short mask)
1228 {
1229 struct net_device *dev, *ret;
1230
1231 ASSERT_RTNL();
1232
1233 ret = NULL;
1234 for_each_netdev(net, dev) {
1235 if (((dev->flags ^ if_flags) & mask) == 0) {
1236 ret = dev;
1237 break;
1238 }
1239 }
1240 return ret;
1241 }
1242 EXPORT_SYMBOL(__dev_get_by_flags);
1243
1244 /**
1245 * dev_valid_name - check if name is okay for network device
1246 * @name: name string
1247 *
1248 * Network device names need to be valid file names to
1249 * allow sysfs to work. We also disallow any kind of
1250 * whitespace.
1251 */
dev_valid_name(const char * name)1252 bool dev_valid_name(const char *name)
1253 {
1254 if (*name == '\0')
1255 return false;
1256 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1257 return false;
1258 if (!strcmp(name, ".") || !strcmp(name, ".."))
1259 return false;
1260
1261 while (*name) {
1262 if (*name == '/' || *name == ':' || isspace(*name))
1263 return false;
1264 name++;
1265 }
1266 return true;
1267 }
1268 EXPORT_SYMBOL(dev_valid_name);
1269
1270 /**
1271 * __dev_alloc_name - allocate a name for a device
1272 * @net: network namespace to allocate the device name in
1273 * @name: name format string
1274 * @res: result name string
1275 *
1276 * Passed a format string - eg "lt%d" it will try and find a suitable
1277 * id. It scans list of devices to build up a free map, then chooses
1278 * the first empty slot. The caller must hold the dev_base or rtnl lock
1279 * while allocating the name and adding the device in order to avoid
1280 * duplicates.
1281 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1282 * Returns the number of the unit assigned or a negative errno code.
1283 */
1284
__dev_alloc_name(struct net * net,const char * name,char * res)1285 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1286 {
1287 int i = 0;
1288 const char *p;
1289 const int max_netdevices = 8*PAGE_SIZE;
1290 unsigned long *inuse;
1291 struct net_device *d;
1292 char buf[IFNAMSIZ];
1293
1294 /* Verify the string as this thing may have come from the user.
1295 * There must be one "%d" and no other "%" characters.
1296 */
1297 p = strchr(name, '%');
1298 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1299 return -EINVAL;
1300
1301 /* Use one page as a bit array of possible slots */
1302 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1303 if (!inuse)
1304 return -ENOMEM;
1305
1306 for_each_netdev(net, d) {
1307 struct netdev_name_node *name_node;
1308
1309 netdev_for_each_altname(d, name_node) {
1310 if (!sscanf(name_node->name, name, &i))
1311 continue;
1312 if (i < 0 || i >= max_netdevices)
1313 continue;
1314
1315 /* avoid cases where sscanf is not exact inverse of printf */
1316 snprintf(buf, IFNAMSIZ, name, i);
1317 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1318 __set_bit(i, inuse);
1319 }
1320 if (!sscanf(d->name, name, &i))
1321 continue;
1322 if (i < 0 || i >= max_netdevices)
1323 continue;
1324
1325 /* avoid cases where sscanf is not exact inverse of printf */
1326 snprintf(buf, IFNAMSIZ, name, i);
1327 if (!strncmp(buf, d->name, IFNAMSIZ))
1328 __set_bit(i, inuse);
1329 }
1330
1331 i = find_first_zero_bit(inuse, max_netdevices);
1332 bitmap_free(inuse);
1333 if (i == max_netdevices)
1334 return -ENFILE;
1335
1336 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1337 strscpy(buf, name, IFNAMSIZ);
1338 snprintf(res, IFNAMSIZ, buf, i);
1339 return i;
1340 }
1341
1342 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1343 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1344 const char *want_name, char *out_name,
1345 int dup_errno)
1346 {
1347 if (!dev_valid_name(want_name))
1348 return -EINVAL;
1349
1350 if (strchr(want_name, '%'))
1351 return __dev_alloc_name(net, want_name, out_name);
1352
1353 if (netdev_name_in_use(net, want_name))
1354 return -dup_errno;
1355 if (out_name != want_name)
1356 strscpy(out_name, want_name, IFNAMSIZ);
1357 return 0;
1358 }
1359
1360 /**
1361 * dev_alloc_name - allocate a name for a device
1362 * @dev: device
1363 * @name: name format string
1364 *
1365 * Passed a format string - eg "lt%d" it will try and find a suitable
1366 * id. It scans list of devices to build up a free map, then chooses
1367 * the first empty slot. The caller must hold the dev_base or rtnl lock
1368 * while allocating the name and adding the device in order to avoid
1369 * duplicates.
1370 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1371 * Returns the number of the unit assigned or a negative errno code.
1372 */
1373
dev_alloc_name(struct net_device * dev,const char * name)1374 int dev_alloc_name(struct net_device *dev, const char *name)
1375 {
1376 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1377 }
1378 EXPORT_SYMBOL(dev_alloc_name);
1379
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1380 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1381 const char *name)
1382 {
1383 int ret;
1384
1385 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1386 return ret < 0 ? ret : 0;
1387 }
1388
netif_change_name(struct net_device * dev,const char * newname)1389 int netif_change_name(struct net_device *dev, const char *newname)
1390 {
1391 struct net *net = dev_net(dev);
1392 unsigned char old_assign_type;
1393 char oldname[IFNAMSIZ];
1394 int err = 0;
1395 int ret;
1396
1397 ASSERT_RTNL_NET(net);
1398
1399 if (!strncmp(newname, dev->name, IFNAMSIZ))
1400 return 0;
1401
1402 memcpy(oldname, dev->name, IFNAMSIZ);
1403
1404 write_seqlock_bh(&netdev_rename_lock);
1405 err = dev_get_valid_name(net, dev, newname);
1406 write_sequnlock_bh(&netdev_rename_lock);
1407
1408 if (err < 0)
1409 return err;
1410
1411 if (oldname[0] && !strchr(oldname, '%'))
1412 netdev_info(dev, "renamed from %s%s\n", oldname,
1413 dev->flags & IFF_UP ? " (while UP)" : "");
1414
1415 old_assign_type = dev->name_assign_type;
1416 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1417
1418 rollback:
1419 ret = device_rename(&dev->dev, dev->name);
1420 if (ret) {
1421 write_seqlock_bh(&netdev_rename_lock);
1422 memcpy(dev->name, oldname, IFNAMSIZ);
1423 write_sequnlock_bh(&netdev_rename_lock);
1424 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1425 return ret;
1426 }
1427
1428 netdev_adjacent_rename_links(dev, oldname);
1429
1430 netdev_name_node_del(dev->name_node);
1431
1432 synchronize_net();
1433
1434 netdev_name_node_add(net, dev->name_node);
1435
1436 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1437 ret = notifier_to_errno(ret);
1438
1439 if (ret) {
1440 /* err >= 0 after dev_alloc_name() or stores the first errno */
1441 if (err >= 0) {
1442 err = ret;
1443 write_seqlock_bh(&netdev_rename_lock);
1444 memcpy(dev->name, oldname, IFNAMSIZ);
1445 write_sequnlock_bh(&netdev_rename_lock);
1446 memcpy(oldname, newname, IFNAMSIZ);
1447 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1448 old_assign_type = NET_NAME_RENAMED;
1449 goto rollback;
1450 } else {
1451 netdev_err(dev, "name change rollback failed: %d\n",
1452 ret);
1453 }
1454 }
1455
1456 return err;
1457 }
1458
netif_set_alias(struct net_device * dev,const char * alias,size_t len)1459 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1460 {
1461 struct dev_ifalias *new_alias = NULL;
1462
1463 if (len >= IFALIASZ)
1464 return -EINVAL;
1465
1466 if (len) {
1467 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1468 if (!new_alias)
1469 return -ENOMEM;
1470
1471 memcpy(new_alias->ifalias, alias, len);
1472 new_alias->ifalias[len] = 0;
1473 }
1474
1475 mutex_lock(&ifalias_mutex);
1476 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1477 mutex_is_locked(&ifalias_mutex));
1478 mutex_unlock(&ifalias_mutex);
1479
1480 if (new_alias)
1481 kfree_rcu(new_alias, rcuhead);
1482
1483 return len;
1484 }
1485
1486 /**
1487 * dev_get_alias - get ifalias of a device
1488 * @dev: device
1489 * @name: buffer to store name of ifalias
1490 * @len: size of buffer
1491 *
1492 * get ifalias for a device. Caller must make sure dev cannot go
1493 * away, e.g. rcu read lock or own a reference count to device.
1494 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1495 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1496 {
1497 const struct dev_ifalias *alias;
1498 int ret = 0;
1499
1500 rcu_read_lock();
1501 alias = rcu_dereference(dev->ifalias);
1502 if (alias)
1503 ret = snprintf(name, len, "%s", alias->ifalias);
1504 rcu_read_unlock();
1505
1506 return ret;
1507 }
1508
1509 /**
1510 * netdev_features_change - device changes features
1511 * @dev: device to cause notification
1512 *
1513 * Called to indicate a device has changed features.
1514 */
netdev_features_change(struct net_device * dev)1515 void netdev_features_change(struct net_device *dev)
1516 {
1517 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1518 }
1519 EXPORT_SYMBOL(netdev_features_change);
1520
1521 /**
1522 * netdev_state_change - device changes state
1523 * @dev: device to cause notification
1524 *
1525 * Called to indicate a device has changed state. This function calls
1526 * the notifier chains for netdev_chain and sends a NEWLINK message
1527 * to the routing socket.
1528 */
netdev_state_change(struct net_device * dev)1529 void netdev_state_change(struct net_device *dev)
1530 {
1531 if (dev->flags & IFF_UP) {
1532 struct netdev_notifier_change_info change_info = {
1533 .info.dev = dev,
1534 };
1535
1536 call_netdevice_notifiers_info(NETDEV_CHANGE,
1537 &change_info.info);
1538 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1539 }
1540 }
1541 EXPORT_SYMBOL(netdev_state_change);
1542
1543 /**
1544 * __netdev_notify_peers - notify network peers about existence of @dev,
1545 * to be called when rtnl lock is already held.
1546 * @dev: network device
1547 *
1548 * Generate traffic such that interested network peers are aware of
1549 * @dev, such as by generating a gratuitous ARP. This may be used when
1550 * a device wants to inform the rest of the network about some sort of
1551 * reconfiguration such as a failover event or virtual machine
1552 * migration.
1553 */
__netdev_notify_peers(struct net_device * dev)1554 void __netdev_notify_peers(struct net_device *dev)
1555 {
1556 ASSERT_RTNL();
1557 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1558 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1559 }
1560 EXPORT_SYMBOL(__netdev_notify_peers);
1561
1562 /**
1563 * netdev_notify_peers - notify network peers about existence of @dev
1564 * @dev: network device
1565 *
1566 * Generate traffic such that interested network peers are aware of
1567 * @dev, such as by generating a gratuitous ARP. This may be used when
1568 * a device wants to inform the rest of the network about some sort of
1569 * reconfiguration such as a failover event or virtual machine
1570 * migration.
1571 */
netdev_notify_peers(struct net_device * dev)1572 void netdev_notify_peers(struct net_device *dev)
1573 {
1574 rtnl_lock();
1575 __netdev_notify_peers(dev);
1576 rtnl_unlock();
1577 }
1578 EXPORT_SYMBOL(netdev_notify_peers);
1579
1580 static int napi_threaded_poll(void *data);
1581
napi_kthread_create(struct napi_struct * n)1582 static int napi_kthread_create(struct napi_struct *n)
1583 {
1584 int err = 0;
1585
1586 /* Create and wake up the kthread once to put it in
1587 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1588 * warning and work with loadavg.
1589 */
1590 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1591 n->dev->name, n->napi_id);
1592 if (IS_ERR(n->thread)) {
1593 err = PTR_ERR(n->thread);
1594 pr_err("kthread_run failed with err %d\n", err);
1595 n->thread = NULL;
1596 }
1597
1598 return err;
1599 }
1600
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1601 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1602 {
1603 const struct net_device_ops *ops = dev->netdev_ops;
1604 int ret;
1605
1606 ASSERT_RTNL();
1607 dev_addr_check(dev);
1608
1609 if (!netif_device_present(dev)) {
1610 /* may be detached because parent is runtime-suspended */
1611 if (dev->dev.parent)
1612 pm_runtime_resume(dev->dev.parent);
1613 if (!netif_device_present(dev))
1614 return -ENODEV;
1615 }
1616
1617 /* Block netpoll from trying to do any rx path servicing.
1618 * If we don't do this there is a chance ndo_poll_controller
1619 * or ndo_poll may be running while we open the device
1620 */
1621 netpoll_poll_disable(dev);
1622
1623 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1624 ret = notifier_to_errno(ret);
1625 if (ret)
1626 return ret;
1627
1628 set_bit(__LINK_STATE_START, &dev->state);
1629
1630 netdev_ops_assert_locked(dev);
1631
1632 if (ops->ndo_validate_addr)
1633 ret = ops->ndo_validate_addr(dev);
1634
1635 if (!ret && ops->ndo_open)
1636 ret = ops->ndo_open(dev);
1637
1638 netpoll_poll_enable(dev);
1639
1640 if (ret)
1641 clear_bit(__LINK_STATE_START, &dev->state);
1642 else {
1643 netif_set_up(dev, true);
1644 dev_set_rx_mode(dev);
1645 dev_activate(dev);
1646 add_device_randomness(dev->dev_addr, dev->addr_len);
1647 }
1648
1649 return ret;
1650 }
1651
netif_open(struct net_device * dev,struct netlink_ext_ack * extack)1652 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1653 {
1654 int ret;
1655
1656 if (dev->flags & IFF_UP)
1657 return 0;
1658
1659 ret = __dev_open(dev, extack);
1660 if (ret < 0)
1661 return ret;
1662
1663 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1664 call_netdevice_notifiers(NETDEV_UP, dev);
1665
1666 return ret;
1667 }
1668
__dev_close_many(struct list_head * head)1669 static void __dev_close_many(struct list_head *head)
1670 {
1671 struct net_device *dev;
1672
1673 ASSERT_RTNL();
1674 might_sleep();
1675
1676 list_for_each_entry(dev, head, close_list) {
1677 /* Temporarily disable netpoll until the interface is down */
1678 netpoll_poll_disable(dev);
1679
1680 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1681
1682 clear_bit(__LINK_STATE_START, &dev->state);
1683
1684 /* Synchronize to scheduled poll. We cannot touch poll list, it
1685 * can be even on different cpu. So just clear netif_running().
1686 *
1687 * dev->stop() will invoke napi_disable() on all of it's
1688 * napi_struct instances on this device.
1689 */
1690 smp_mb__after_atomic(); /* Commit netif_running(). */
1691 }
1692
1693 dev_deactivate_many(head);
1694
1695 list_for_each_entry(dev, head, close_list) {
1696 const struct net_device_ops *ops = dev->netdev_ops;
1697
1698 /*
1699 * Call the device specific close. This cannot fail.
1700 * Only if device is UP
1701 *
1702 * We allow it to be called even after a DETACH hot-plug
1703 * event.
1704 */
1705
1706 netdev_ops_assert_locked(dev);
1707
1708 if (ops->ndo_stop)
1709 ops->ndo_stop(dev);
1710
1711 netif_set_up(dev, false);
1712 netpoll_poll_enable(dev);
1713 }
1714 }
1715
__dev_close(struct net_device * dev)1716 static void __dev_close(struct net_device *dev)
1717 {
1718 LIST_HEAD(single);
1719
1720 list_add(&dev->close_list, &single);
1721 __dev_close_many(&single);
1722 list_del(&single);
1723 }
1724
dev_close_many(struct list_head * head,bool unlink)1725 void dev_close_many(struct list_head *head, bool unlink)
1726 {
1727 struct net_device *dev, *tmp;
1728
1729 /* Remove the devices that don't need to be closed */
1730 list_for_each_entry_safe(dev, tmp, head, close_list)
1731 if (!(dev->flags & IFF_UP))
1732 list_del_init(&dev->close_list);
1733
1734 __dev_close_many(head);
1735
1736 list_for_each_entry_safe(dev, tmp, head, close_list) {
1737 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1738 call_netdevice_notifiers(NETDEV_DOWN, dev);
1739 if (unlink)
1740 list_del_init(&dev->close_list);
1741 }
1742 }
1743 EXPORT_SYMBOL(dev_close_many);
1744
netif_close(struct net_device * dev)1745 void netif_close(struct net_device *dev)
1746 {
1747 if (dev->flags & IFF_UP) {
1748 LIST_HEAD(single);
1749
1750 list_add(&dev->close_list, &single);
1751 dev_close_many(&single, true);
1752 list_del(&single);
1753 }
1754 }
1755 EXPORT_SYMBOL(netif_close);
1756
netif_disable_lro(struct net_device * dev)1757 void netif_disable_lro(struct net_device *dev)
1758 {
1759 struct net_device *lower_dev;
1760 struct list_head *iter;
1761
1762 dev->wanted_features &= ~NETIF_F_LRO;
1763 netdev_update_features(dev);
1764
1765 if (unlikely(dev->features & NETIF_F_LRO))
1766 netdev_WARN(dev, "failed to disable LRO!\n");
1767
1768 netdev_for_each_lower_dev(dev, lower_dev, iter) {
1769 netdev_lock_ops(lower_dev);
1770 netif_disable_lro(lower_dev);
1771 netdev_unlock_ops(lower_dev);
1772 }
1773 }
1774 EXPORT_IPV6_MOD(netif_disable_lro);
1775
1776 /**
1777 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1778 * @dev: device
1779 *
1780 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1781 * called under RTNL. This is needed if Generic XDP is installed on
1782 * the device.
1783 */
dev_disable_gro_hw(struct net_device * dev)1784 static void dev_disable_gro_hw(struct net_device *dev)
1785 {
1786 dev->wanted_features &= ~NETIF_F_GRO_HW;
1787 netdev_update_features(dev);
1788
1789 if (unlikely(dev->features & NETIF_F_GRO_HW))
1790 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1791 }
1792
netdev_cmd_to_name(enum netdev_cmd cmd)1793 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1794 {
1795 #define N(val) \
1796 case NETDEV_##val: \
1797 return "NETDEV_" __stringify(val);
1798 switch (cmd) {
1799 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1800 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1801 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1802 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1803 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1804 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1805 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1806 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1807 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1808 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1809 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1810 N(XDP_FEAT_CHANGE)
1811 }
1812 #undef N
1813 return "UNKNOWN_NETDEV_EVENT";
1814 }
1815 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1816
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1817 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1818 struct net_device *dev)
1819 {
1820 struct netdev_notifier_info info = {
1821 .dev = dev,
1822 };
1823
1824 return nb->notifier_call(nb, val, &info);
1825 }
1826
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1827 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1828 struct net_device *dev)
1829 {
1830 int err;
1831
1832 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1833 err = notifier_to_errno(err);
1834 if (err)
1835 return err;
1836
1837 if (!(dev->flags & IFF_UP))
1838 return 0;
1839
1840 call_netdevice_notifier(nb, NETDEV_UP, dev);
1841 return 0;
1842 }
1843
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1844 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1845 struct net_device *dev)
1846 {
1847 if (dev->flags & IFF_UP) {
1848 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1849 dev);
1850 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1851 }
1852 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1853 }
1854
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1855 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1856 struct net *net)
1857 {
1858 struct net_device *dev;
1859 int err;
1860
1861 for_each_netdev(net, dev) {
1862 netdev_lock_ops(dev);
1863 err = call_netdevice_register_notifiers(nb, dev);
1864 netdev_unlock_ops(dev);
1865 if (err)
1866 goto rollback;
1867 }
1868 return 0;
1869
1870 rollback:
1871 for_each_netdev_continue_reverse(net, dev)
1872 call_netdevice_unregister_notifiers(nb, dev);
1873 return err;
1874 }
1875
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1876 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1877 struct net *net)
1878 {
1879 struct net_device *dev;
1880
1881 for_each_netdev(net, dev)
1882 call_netdevice_unregister_notifiers(nb, dev);
1883 }
1884
1885 static int dev_boot_phase = 1;
1886
1887 /**
1888 * register_netdevice_notifier - register a network notifier block
1889 * @nb: notifier
1890 *
1891 * Register a notifier to be called when network device events occur.
1892 * The notifier passed is linked into the kernel structures and must
1893 * not be reused until it has been unregistered. A negative errno code
1894 * is returned on a failure.
1895 *
1896 * When registered all registration and up events are replayed
1897 * to the new notifier to allow device to have a race free
1898 * view of the network device list.
1899 */
1900
register_netdevice_notifier(struct notifier_block * nb)1901 int register_netdevice_notifier(struct notifier_block *nb)
1902 {
1903 struct net *net;
1904 int err;
1905
1906 /* Close race with setup_net() and cleanup_net() */
1907 down_write(&pernet_ops_rwsem);
1908
1909 /* When RTNL is removed, we need protection for netdev_chain. */
1910 rtnl_lock();
1911
1912 err = raw_notifier_chain_register(&netdev_chain, nb);
1913 if (err)
1914 goto unlock;
1915 if (dev_boot_phase)
1916 goto unlock;
1917 for_each_net(net) {
1918 __rtnl_net_lock(net);
1919 err = call_netdevice_register_net_notifiers(nb, net);
1920 __rtnl_net_unlock(net);
1921 if (err)
1922 goto rollback;
1923 }
1924
1925 unlock:
1926 rtnl_unlock();
1927 up_write(&pernet_ops_rwsem);
1928 return err;
1929
1930 rollback:
1931 for_each_net_continue_reverse(net) {
1932 __rtnl_net_lock(net);
1933 call_netdevice_unregister_net_notifiers(nb, net);
1934 __rtnl_net_unlock(net);
1935 }
1936
1937 raw_notifier_chain_unregister(&netdev_chain, nb);
1938 goto unlock;
1939 }
1940 EXPORT_SYMBOL(register_netdevice_notifier);
1941
1942 /**
1943 * unregister_netdevice_notifier - unregister a network notifier block
1944 * @nb: notifier
1945 *
1946 * Unregister a notifier previously registered by
1947 * register_netdevice_notifier(). The notifier is unlinked into the
1948 * kernel structures and may then be reused. A negative errno code
1949 * is returned on a failure.
1950 *
1951 * After unregistering unregister and down device events are synthesized
1952 * for all devices on the device list to the removed notifier to remove
1953 * the need for special case cleanup code.
1954 */
1955
unregister_netdevice_notifier(struct notifier_block * nb)1956 int unregister_netdevice_notifier(struct notifier_block *nb)
1957 {
1958 struct net *net;
1959 int err;
1960
1961 /* Close race with setup_net() and cleanup_net() */
1962 down_write(&pernet_ops_rwsem);
1963 rtnl_lock();
1964 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1965 if (err)
1966 goto unlock;
1967
1968 for_each_net(net) {
1969 __rtnl_net_lock(net);
1970 call_netdevice_unregister_net_notifiers(nb, net);
1971 __rtnl_net_unlock(net);
1972 }
1973
1974 unlock:
1975 rtnl_unlock();
1976 up_write(&pernet_ops_rwsem);
1977 return err;
1978 }
1979 EXPORT_SYMBOL(unregister_netdevice_notifier);
1980
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1981 static int __register_netdevice_notifier_net(struct net *net,
1982 struct notifier_block *nb,
1983 bool ignore_call_fail)
1984 {
1985 int err;
1986
1987 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1988 if (err)
1989 return err;
1990 if (dev_boot_phase)
1991 return 0;
1992
1993 err = call_netdevice_register_net_notifiers(nb, net);
1994 if (err && !ignore_call_fail)
1995 goto chain_unregister;
1996
1997 return 0;
1998
1999 chain_unregister:
2000 raw_notifier_chain_unregister(&net->netdev_chain, nb);
2001 return err;
2002 }
2003
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2004 static int __unregister_netdevice_notifier_net(struct net *net,
2005 struct notifier_block *nb)
2006 {
2007 int err;
2008
2009 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2010 if (err)
2011 return err;
2012
2013 call_netdevice_unregister_net_notifiers(nb, net);
2014 return 0;
2015 }
2016
2017 /**
2018 * register_netdevice_notifier_net - register a per-netns network notifier block
2019 * @net: network namespace
2020 * @nb: notifier
2021 *
2022 * Register a notifier to be called when network device events occur.
2023 * The notifier passed is linked into the kernel structures and must
2024 * not be reused until it has been unregistered. A negative errno code
2025 * is returned on a failure.
2026 *
2027 * When registered all registration and up events are replayed
2028 * to the new notifier to allow device to have a race free
2029 * view of the network device list.
2030 */
2031
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2032 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2033 {
2034 int err;
2035
2036 rtnl_net_lock(net);
2037 err = __register_netdevice_notifier_net(net, nb, false);
2038 rtnl_net_unlock(net);
2039
2040 return err;
2041 }
2042 EXPORT_SYMBOL(register_netdevice_notifier_net);
2043
2044 /**
2045 * unregister_netdevice_notifier_net - unregister a per-netns
2046 * network notifier block
2047 * @net: network namespace
2048 * @nb: notifier
2049 *
2050 * Unregister a notifier previously registered by
2051 * register_netdevice_notifier_net(). The notifier is unlinked from the
2052 * kernel structures and may then be reused. A negative errno code
2053 * is returned on a failure.
2054 *
2055 * After unregistering unregister and down device events are synthesized
2056 * for all devices on the device list to the removed notifier to remove
2057 * the need for special case cleanup code.
2058 */
2059
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2060 int unregister_netdevice_notifier_net(struct net *net,
2061 struct notifier_block *nb)
2062 {
2063 int err;
2064
2065 rtnl_net_lock(net);
2066 err = __unregister_netdevice_notifier_net(net, nb);
2067 rtnl_net_unlock(net);
2068
2069 return err;
2070 }
2071 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2072
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)2073 static void __move_netdevice_notifier_net(struct net *src_net,
2074 struct net *dst_net,
2075 struct notifier_block *nb)
2076 {
2077 __unregister_netdevice_notifier_net(src_net, nb);
2078 __register_netdevice_notifier_net(dst_net, nb, true);
2079 }
2080
rtnl_net_dev_lock(struct net_device * dev)2081 static void rtnl_net_dev_lock(struct net_device *dev)
2082 {
2083 bool again;
2084
2085 do {
2086 struct net *net;
2087
2088 again = false;
2089
2090 /* netns might be being dismantled. */
2091 rcu_read_lock();
2092 net = dev_net_rcu(dev);
2093 net_passive_inc(net);
2094 rcu_read_unlock();
2095
2096 rtnl_net_lock(net);
2097
2098 #ifdef CONFIG_NET_NS
2099 /* dev might have been moved to another netns. */
2100 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2101 rtnl_net_unlock(net);
2102 net_passive_dec(net);
2103 again = true;
2104 }
2105 #endif
2106 } while (again);
2107 }
2108
rtnl_net_dev_unlock(struct net_device * dev)2109 static void rtnl_net_dev_unlock(struct net_device *dev)
2110 {
2111 struct net *net = dev_net(dev);
2112
2113 rtnl_net_unlock(net);
2114 net_passive_dec(net);
2115 }
2116
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2117 int register_netdevice_notifier_dev_net(struct net_device *dev,
2118 struct notifier_block *nb,
2119 struct netdev_net_notifier *nn)
2120 {
2121 int err;
2122
2123 rtnl_net_dev_lock(dev);
2124 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2125 if (!err) {
2126 nn->nb = nb;
2127 list_add(&nn->list, &dev->net_notifier_list);
2128 }
2129 rtnl_net_dev_unlock(dev);
2130
2131 return err;
2132 }
2133 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2134
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2135 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2136 struct notifier_block *nb,
2137 struct netdev_net_notifier *nn)
2138 {
2139 int err;
2140
2141 rtnl_net_dev_lock(dev);
2142 list_del(&nn->list);
2143 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2144 rtnl_net_dev_unlock(dev);
2145
2146 return err;
2147 }
2148 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2149
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2150 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2151 struct net *net)
2152 {
2153 struct netdev_net_notifier *nn;
2154
2155 list_for_each_entry(nn, &dev->net_notifier_list, list)
2156 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2157 }
2158
2159 /**
2160 * call_netdevice_notifiers_info - call all network notifier blocks
2161 * @val: value passed unmodified to notifier function
2162 * @info: notifier information data
2163 *
2164 * Call all network notifier blocks. Parameters and return value
2165 * are as for raw_notifier_call_chain().
2166 */
2167
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2168 int call_netdevice_notifiers_info(unsigned long val,
2169 struct netdev_notifier_info *info)
2170 {
2171 struct net *net = dev_net(info->dev);
2172 int ret;
2173
2174 ASSERT_RTNL();
2175
2176 /* Run per-netns notifier block chain first, then run the global one.
2177 * Hopefully, one day, the global one is going to be removed after
2178 * all notifier block registrators get converted to be per-netns.
2179 */
2180 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2181 if (ret & NOTIFY_STOP_MASK)
2182 return ret;
2183 return raw_notifier_call_chain(&netdev_chain, val, info);
2184 }
2185
2186 /**
2187 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2188 * for and rollback on error
2189 * @val_up: value passed unmodified to notifier function
2190 * @val_down: value passed unmodified to the notifier function when
2191 * recovering from an error on @val_up
2192 * @info: notifier information data
2193 *
2194 * Call all per-netns network notifier blocks, but not notifier blocks on
2195 * the global notifier chain. Parameters and return value are as for
2196 * raw_notifier_call_chain_robust().
2197 */
2198
2199 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2200 call_netdevice_notifiers_info_robust(unsigned long val_up,
2201 unsigned long val_down,
2202 struct netdev_notifier_info *info)
2203 {
2204 struct net *net = dev_net(info->dev);
2205
2206 ASSERT_RTNL();
2207
2208 return raw_notifier_call_chain_robust(&net->netdev_chain,
2209 val_up, val_down, info);
2210 }
2211
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2212 static int call_netdevice_notifiers_extack(unsigned long val,
2213 struct net_device *dev,
2214 struct netlink_ext_ack *extack)
2215 {
2216 struct netdev_notifier_info info = {
2217 .dev = dev,
2218 .extack = extack,
2219 };
2220
2221 return call_netdevice_notifiers_info(val, &info);
2222 }
2223
2224 /**
2225 * call_netdevice_notifiers - call all network notifier blocks
2226 * @val: value passed unmodified to notifier function
2227 * @dev: net_device pointer passed unmodified to notifier function
2228 *
2229 * Call all network notifier blocks. Parameters and return value
2230 * are as for raw_notifier_call_chain().
2231 */
2232
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2233 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2234 {
2235 return call_netdevice_notifiers_extack(val, dev, NULL);
2236 }
2237 EXPORT_SYMBOL(call_netdevice_notifiers);
2238
2239 /**
2240 * call_netdevice_notifiers_mtu - call all network notifier blocks
2241 * @val: value passed unmodified to notifier function
2242 * @dev: net_device pointer passed unmodified to notifier function
2243 * @arg: additional u32 argument passed to the notifier function
2244 *
2245 * Call all network notifier blocks. Parameters and return value
2246 * are as for raw_notifier_call_chain().
2247 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2248 static int call_netdevice_notifiers_mtu(unsigned long val,
2249 struct net_device *dev, u32 arg)
2250 {
2251 struct netdev_notifier_info_ext info = {
2252 .info.dev = dev,
2253 .ext.mtu = arg,
2254 };
2255
2256 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2257
2258 return call_netdevice_notifiers_info(val, &info.info);
2259 }
2260
2261 #ifdef CONFIG_NET_INGRESS
2262 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2263
net_inc_ingress_queue(void)2264 void net_inc_ingress_queue(void)
2265 {
2266 static_branch_inc(&ingress_needed_key);
2267 }
2268 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2269
net_dec_ingress_queue(void)2270 void net_dec_ingress_queue(void)
2271 {
2272 static_branch_dec(&ingress_needed_key);
2273 }
2274 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2275 #endif
2276
2277 #ifdef CONFIG_NET_EGRESS
2278 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2279
net_inc_egress_queue(void)2280 void net_inc_egress_queue(void)
2281 {
2282 static_branch_inc(&egress_needed_key);
2283 }
2284 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2285
net_dec_egress_queue(void)2286 void net_dec_egress_queue(void)
2287 {
2288 static_branch_dec(&egress_needed_key);
2289 }
2290 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2291 #endif
2292
2293 #ifdef CONFIG_NET_CLS_ACT
2294 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2295 EXPORT_SYMBOL(tcf_sw_enabled_key);
2296 #endif
2297
2298 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2299 EXPORT_SYMBOL(netstamp_needed_key);
2300 #ifdef CONFIG_JUMP_LABEL
2301 static atomic_t netstamp_needed_deferred;
2302 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2303 static void netstamp_clear(struct work_struct *work)
2304 {
2305 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2306 int wanted;
2307
2308 wanted = atomic_add_return(deferred, &netstamp_wanted);
2309 if (wanted > 0)
2310 static_branch_enable(&netstamp_needed_key);
2311 else
2312 static_branch_disable(&netstamp_needed_key);
2313 }
2314 static DECLARE_WORK(netstamp_work, netstamp_clear);
2315 #endif
2316
net_enable_timestamp(void)2317 void net_enable_timestamp(void)
2318 {
2319 #ifdef CONFIG_JUMP_LABEL
2320 int wanted = atomic_read(&netstamp_wanted);
2321
2322 while (wanted > 0) {
2323 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2324 return;
2325 }
2326 atomic_inc(&netstamp_needed_deferred);
2327 schedule_work(&netstamp_work);
2328 #else
2329 static_branch_inc(&netstamp_needed_key);
2330 #endif
2331 }
2332 EXPORT_SYMBOL(net_enable_timestamp);
2333
net_disable_timestamp(void)2334 void net_disable_timestamp(void)
2335 {
2336 #ifdef CONFIG_JUMP_LABEL
2337 int wanted = atomic_read(&netstamp_wanted);
2338
2339 while (wanted > 1) {
2340 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2341 return;
2342 }
2343 atomic_dec(&netstamp_needed_deferred);
2344 schedule_work(&netstamp_work);
2345 #else
2346 static_branch_dec(&netstamp_needed_key);
2347 #endif
2348 }
2349 EXPORT_SYMBOL(net_disable_timestamp);
2350
net_timestamp_set(struct sk_buff * skb)2351 static inline void net_timestamp_set(struct sk_buff *skb)
2352 {
2353 skb->tstamp = 0;
2354 skb->tstamp_type = SKB_CLOCK_REALTIME;
2355 if (static_branch_unlikely(&netstamp_needed_key))
2356 skb->tstamp = ktime_get_real();
2357 }
2358
2359 #define net_timestamp_check(COND, SKB) \
2360 if (static_branch_unlikely(&netstamp_needed_key)) { \
2361 if ((COND) && !(SKB)->tstamp) \
2362 (SKB)->tstamp = ktime_get_real(); \
2363 } \
2364
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2365 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2366 {
2367 return __is_skb_forwardable(dev, skb, true);
2368 }
2369 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2370
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2371 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2372 bool check_mtu)
2373 {
2374 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2375
2376 if (likely(!ret)) {
2377 skb->protocol = eth_type_trans(skb, dev);
2378 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2379 }
2380
2381 return ret;
2382 }
2383
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2384 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2385 {
2386 return __dev_forward_skb2(dev, skb, true);
2387 }
2388 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2389
2390 /**
2391 * dev_forward_skb - loopback an skb to another netif
2392 *
2393 * @dev: destination network device
2394 * @skb: buffer to forward
2395 *
2396 * return values:
2397 * NET_RX_SUCCESS (no congestion)
2398 * NET_RX_DROP (packet was dropped, but freed)
2399 *
2400 * dev_forward_skb can be used for injecting an skb from the
2401 * start_xmit function of one device into the receive queue
2402 * of another device.
2403 *
2404 * The receiving device may be in another namespace, so
2405 * we have to clear all information in the skb that could
2406 * impact namespace isolation.
2407 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2408 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2409 {
2410 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2411 }
2412 EXPORT_SYMBOL_GPL(dev_forward_skb);
2413
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2414 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2415 {
2416 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2417 }
2418
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2419 static inline int deliver_skb(struct sk_buff *skb,
2420 struct packet_type *pt_prev,
2421 struct net_device *orig_dev)
2422 {
2423 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2424 return -ENOMEM;
2425 refcount_inc(&skb->users);
2426 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2427 }
2428
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2429 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2430 struct packet_type **pt,
2431 struct net_device *orig_dev,
2432 __be16 type,
2433 struct list_head *ptype_list)
2434 {
2435 struct packet_type *ptype, *pt_prev = *pt;
2436
2437 list_for_each_entry_rcu(ptype, ptype_list, list) {
2438 if (ptype->type != type)
2439 continue;
2440 if (pt_prev)
2441 deliver_skb(skb, pt_prev, orig_dev);
2442 pt_prev = ptype;
2443 }
2444 *pt = pt_prev;
2445 }
2446
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2447 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2448 {
2449 if (!ptype->af_packet_priv || !skb->sk)
2450 return false;
2451
2452 if (ptype->id_match)
2453 return ptype->id_match(ptype, skb->sk);
2454 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2455 return true;
2456
2457 return false;
2458 }
2459
2460 /**
2461 * dev_nit_active_rcu - return true if any network interface taps are in use
2462 *
2463 * The caller must hold the RCU lock
2464 *
2465 * @dev: network device to check for the presence of taps
2466 */
dev_nit_active_rcu(const struct net_device * dev)2467 bool dev_nit_active_rcu(const struct net_device *dev)
2468 {
2469 /* Callers may hold either RCU or RCU BH lock */
2470 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2471
2472 return !list_empty(&dev_net(dev)->ptype_all) ||
2473 !list_empty(&dev->ptype_all);
2474 }
2475 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2476
2477 /*
2478 * Support routine. Sends outgoing frames to any network
2479 * taps currently in use.
2480 */
2481
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2482 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2483 {
2484 struct packet_type *ptype, *pt_prev = NULL;
2485 struct list_head *ptype_list;
2486 struct sk_buff *skb2 = NULL;
2487
2488 rcu_read_lock();
2489 ptype_list = &dev_net_rcu(dev)->ptype_all;
2490 again:
2491 list_for_each_entry_rcu(ptype, ptype_list, list) {
2492 if (READ_ONCE(ptype->ignore_outgoing))
2493 continue;
2494
2495 /* Never send packets back to the socket
2496 * they originated from - MvS (miquels@drinkel.ow.org)
2497 */
2498 if (skb_loop_sk(ptype, skb))
2499 continue;
2500
2501 if (pt_prev) {
2502 deliver_skb(skb2, pt_prev, skb->dev);
2503 pt_prev = ptype;
2504 continue;
2505 }
2506
2507 /* need to clone skb, done only once */
2508 skb2 = skb_clone(skb, GFP_ATOMIC);
2509 if (!skb2)
2510 goto out_unlock;
2511
2512 net_timestamp_set(skb2);
2513
2514 /* skb->nh should be correctly
2515 * set by sender, so that the second statement is
2516 * just protection against buggy protocols.
2517 */
2518 skb_reset_mac_header(skb2);
2519
2520 if (skb_network_header(skb2) < skb2->data ||
2521 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2522 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2523 ntohs(skb2->protocol),
2524 dev->name);
2525 skb_reset_network_header(skb2);
2526 }
2527
2528 skb2->transport_header = skb2->network_header;
2529 skb2->pkt_type = PACKET_OUTGOING;
2530 pt_prev = ptype;
2531 }
2532
2533 if (ptype_list != &dev->ptype_all) {
2534 ptype_list = &dev->ptype_all;
2535 goto again;
2536 }
2537 out_unlock:
2538 if (pt_prev) {
2539 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2540 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2541 else
2542 kfree_skb(skb2);
2543 }
2544 rcu_read_unlock();
2545 }
2546 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2547
2548 /**
2549 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2550 * @dev: Network device
2551 * @txq: number of queues available
2552 *
2553 * If real_num_tx_queues is changed the tc mappings may no longer be
2554 * valid. To resolve this verify the tc mapping remains valid and if
2555 * not NULL the mapping. With no priorities mapping to this
2556 * offset/count pair it will no longer be used. In the worst case TC0
2557 * is invalid nothing can be done so disable priority mappings. If is
2558 * expected that drivers will fix this mapping if they can before
2559 * calling netif_set_real_num_tx_queues.
2560 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2561 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2562 {
2563 int i;
2564 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2565
2566 /* If TC0 is invalidated disable TC mapping */
2567 if (tc->offset + tc->count > txq) {
2568 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2569 dev->num_tc = 0;
2570 return;
2571 }
2572
2573 /* Invalidated prio to tc mappings set to TC0 */
2574 for (i = 1; i < TC_BITMASK + 1; i++) {
2575 int q = netdev_get_prio_tc_map(dev, i);
2576
2577 tc = &dev->tc_to_txq[q];
2578 if (tc->offset + tc->count > txq) {
2579 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2580 i, q);
2581 netdev_set_prio_tc_map(dev, i, 0);
2582 }
2583 }
2584 }
2585
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2586 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2587 {
2588 if (dev->num_tc) {
2589 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2590 int i;
2591
2592 /* walk through the TCs and see if it falls into any of them */
2593 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2594 if ((txq - tc->offset) < tc->count)
2595 return i;
2596 }
2597
2598 /* didn't find it, just return -1 to indicate no match */
2599 return -1;
2600 }
2601
2602 return 0;
2603 }
2604 EXPORT_SYMBOL(netdev_txq_to_tc);
2605
2606 #ifdef CONFIG_XPS
2607 static struct static_key xps_needed __read_mostly;
2608 static struct static_key xps_rxqs_needed __read_mostly;
2609 static DEFINE_MUTEX(xps_map_mutex);
2610 #define xmap_dereference(P) \
2611 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2612
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2613 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2614 struct xps_dev_maps *old_maps, int tci, u16 index)
2615 {
2616 struct xps_map *map = NULL;
2617 int pos;
2618
2619 map = xmap_dereference(dev_maps->attr_map[tci]);
2620 if (!map)
2621 return false;
2622
2623 for (pos = map->len; pos--;) {
2624 if (map->queues[pos] != index)
2625 continue;
2626
2627 if (map->len > 1) {
2628 map->queues[pos] = map->queues[--map->len];
2629 break;
2630 }
2631
2632 if (old_maps)
2633 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2634 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2635 kfree_rcu(map, rcu);
2636 return false;
2637 }
2638
2639 return true;
2640 }
2641
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2642 static bool remove_xps_queue_cpu(struct net_device *dev,
2643 struct xps_dev_maps *dev_maps,
2644 int cpu, u16 offset, u16 count)
2645 {
2646 int num_tc = dev_maps->num_tc;
2647 bool active = false;
2648 int tci;
2649
2650 for (tci = cpu * num_tc; num_tc--; tci++) {
2651 int i, j;
2652
2653 for (i = count, j = offset; i--; j++) {
2654 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2655 break;
2656 }
2657
2658 active |= i < 0;
2659 }
2660
2661 return active;
2662 }
2663
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2664 static void reset_xps_maps(struct net_device *dev,
2665 struct xps_dev_maps *dev_maps,
2666 enum xps_map_type type)
2667 {
2668 static_key_slow_dec_cpuslocked(&xps_needed);
2669 if (type == XPS_RXQS)
2670 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2671
2672 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2673
2674 kfree_rcu(dev_maps, rcu);
2675 }
2676
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2677 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2678 u16 offset, u16 count)
2679 {
2680 struct xps_dev_maps *dev_maps;
2681 bool active = false;
2682 int i, j;
2683
2684 dev_maps = xmap_dereference(dev->xps_maps[type]);
2685 if (!dev_maps)
2686 return;
2687
2688 for (j = 0; j < dev_maps->nr_ids; j++)
2689 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2690 if (!active)
2691 reset_xps_maps(dev, dev_maps, type);
2692
2693 if (type == XPS_CPUS) {
2694 for (i = offset + (count - 1); count--; i--)
2695 netdev_queue_numa_node_write(
2696 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2697 }
2698 }
2699
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2700 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2701 u16 count)
2702 {
2703 if (!static_key_false(&xps_needed))
2704 return;
2705
2706 cpus_read_lock();
2707 mutex_lock(&xps_map_mutex);
2708
2709 if (static_key_false(&xps_rxqs_needed))
2710 clean_xps_maps(dev, XPS_RXQS, offset, count);
2711
2712 clean_xps_maps(dev, XPS_CPUS, offset, count);
2713
2714 mutex_unlock(&xps_map_mutex);
2715 cpus_read_unlock();
2716 }
2717
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2718 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2719 {
2720 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2721 }
2722
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2723 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2724 u16 index, bool is_rxqs_map)
2725 {
2726 struct xps_map *new_map;
2727 int alloc_len = XPS_MIN_MAP_ALLOC;
2728 int i, pos;
2729
2730 for (pos = 0; map && pos < map->len; pos++) {
2731 if (map->queues[pos] != index)
2732 continue;
2733 return map;
2734 }
2735
2736 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2737 if (map) {
2738 if (pos < map->alloc_len)
2739 return map;
2740
2741 alloc_len = map->alloc_len * 2;
2742 }
2743
2744 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2745 * map
2746 */
2747 if (is_rxqs_map)
2748 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2749 else
2750 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2751 cpu_to_node(attr_index));
2752 if (!new_map)
2753 return NULL;
2754
2755 for (i = 0; i < pos; i++)
2756 new_map->queues[i] = map->queues[i];
2757 new_map->alloc_len = alloc_len;
2758 new_map->len = pos;
2759
2760 return new_map;
2761 }
2762
2763 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2764 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2765 struct xps_dev_maps *new_dev_maps, int index,
2766 int tc, bool skip_tc)
2767 {
2768 int i, tci = index * dev_maps->num_tc;
2769 struct xps_map *map;
2770
2771 /* copy maps belonging to foreign traffic classes */
2772 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2773 if (i == tc && skip_tc)
2774 continue;
2775
2776 /* fill in the new device map from the old device map */
2777 map = xmap_dereference(dev_maps->attr_map[tci]);
2778 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2779 }
2780 }
2781
2782 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2783 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2784 u16 index, enum xps_map_type type)
2785 {
2786 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2787 const unsigned long *online_mask = NULL;
2788 bool active = false, copy = false;
2789 int i, j, tci, numa_node_id = -2;
2790 int maps_sz, num_tc = 1, tc = 0;
2791 struct xps_map *map, *new_map;
2792 unsigned int nr_ids;
2793
2794 WARN_ON_ONCE(index >= dev->num_tx_queues);
2795
2796 if (dev->num_tc) {
2797 /* Do not allow XPS on subordinate device directly */
2798 num_tc = dev->num_tc;
2799 if (num_tc < 0)
2800 return -EINVAL;
2801
2802 /* If queue belongs to subordinate dev use its map */
2803 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2804
2805 tc = netdev_txq_to_tc(dev, index);
2806 if (tc < 0)
2807 return -EINVAL;
2808 }
2809
2810 mutex_lock(&xps_map_mutex);
2811
2812 dev_maps = xmap_dereference(dev->xps_maps[type]);
2813 if (type == XPS_RXQS) {
2814 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2815 nr_ids = dev->num_rx_queues;
2816 } else {
2817 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2818 if (num_possible_cpus() > 1)
2819 online_mask = cpumask_bits(cpu_online_mask);
2820 nr_ids = nr_cpu_ids;
2821 }
2822
2823 if (maps_sz < L1_CACHE_BYTES)
2824 maps_sz = L1_CACHE_BYTES;
2825
2826 /* The old dev_maps could be larger or smaller than the one we're
2827 * setting up now, as dev->num_tc or nr_ids could have been updated in
2828 * between. We could try to be smart, but let's be safe instead and only
2829 * copy foreign traffic classes if the two map sizes match.
2830 */
2831 if (dev_maps &&
2832 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2833 copy = true;
2834
2835 /* allocate memory for queue storage */
2836 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2837 j < nr_ids;) {
2838 if (!new_dev_maps) {
2839 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2840 if (!new_dev_maps) {
2841 mutex_unlock(&xps_map_mutex);
2842 return -ENOMEM;
2843 }
2844
2845 new_dev_maps->nr_ids = nr_ids;
2846 new_dev_maps->num_tc = num_tc;
2847 }
2848
2849 tci = j * num_tc + tc;
2850 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2851
2852 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2853 if (!map)
2854 goto error;
2855
2856 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2857 }
2858
2859 if (!new_dev_maps)
2860 goto out_no_new_maps;
2861
2862 if (!dev_maps) {
2863 /* Increment static keys at most once per type */
2864 static_key_slow_inc_cpuslocked(&xps_needed);
2865 if (type == XPS_RXQS)
2866 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2867 }
2868
2869 for (j = 0; j < nr_ids; j++) {
2870 bool skip_tc = false;
2871
2872 tci = j * num_tc + tc;
2873 if (netif_attr_test_mask(j, mask, nr_ids) &&
2874 netif_attr_test_online(j, online_mask, nr_ids)) {
2875 /* add tx-queue to CPU/rx-queue maps */
2876 int pos = 0;
2877
2878 skip_tc = true;
2879
2880 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2881 while ((pos < map->len) && (map->queues[pos] != index))
2882 pos++;
2883
2884 if (pos == map->len)
2885 map->queues[map->len++] = index;
2886 #ifdef CONFIG_NUMA
2887 if (type == XPS_CPUS) {
2888 if (numa_node_id == -2)
2889 numa_node_id = cpu_to_node(j);
2890 else if (numa_node_id != cpu_to_node(j))
2891 numa_node_id = -1;
2892 }
2893 #endif
2894 }
2895
2896 if (copy)
2897 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2898 skip_tc);
2899 }
2900
2901 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2902
2903 /* Cleanup old maps */
2904 if (!dev_maps)
2905 goto out_no_old_maps;
2906
2907 for (j = 0; j < dev_maps->nr_ids; j++) {
2908 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2909 map = xmap_dereference(dev_maps->attr_map[tci]);
2910 if (!map)
2911 continue;
2912
2913 if (copy) {
2914 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2915 if (map == new_map)
2916 continue;
2917 }
2918
2919 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2920 kfree_rcu(map, rcu);
2921 }
2922 }
2923
2924 old_dev_maps = dev_maps;
2925
2926 out_no_old_maps:
2927 dev_maps = new_dev_maps;
2928 active = true;
2929
2930 out_no_new_maps:
2931 if (type == XPS_CPUS)
2932 /* update Tx queue numa node */
2933 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2934 (numa_node_id >= 0) ?
2935 numa_node_id : NUMA_NO_NODE);
2936
2937 if (!dev_maps)
2938 goto out_no_maps;
2939
2940 /* removes tx-queue from unused CPUs/rx-queues */
2941 for (j = 0; j < dev_maps->nr_ids; j++) {
2942 tci = j * dev_maps->num_tc;
2943
2944 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2945 if (i == tc &&
2946 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2947 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2948 continue;
2949
2950 active |= remove_xps_queue(dev_maps,
2951 copy ? old_dev_maps : NULL,
2952 tci, index);
2953 }
2954 }
2955
2956 if (old_dev_maps)
2957 kfree_rcu(old_dev_maps, rcu);
2958
2959 /* free map if not active */
2960 if (!active)
2961 reset_xps_maps(dev, dev_maps, type);
2962
2963 out_no_maps:
2964 mutex_unlock(&xps_map_mutex);
2965
2966 return 0;
2967 error:
2968 /* remove any maps that we added */
2969 for (j = 0; j < nr_ids; j++) {
2970 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2971 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2972 map = copy ?
2973 xmap_dereference(dev_maps->attr_map[tci]) :
2974 NULL;
2975 if (new_map && new_map != map)
2976 kfree(new_map);
2977 }
2978 }
2979
2980 mutex_unlock(&xps_map_mutex);
2981
2982 kfree(new_dev_maps);
2983 return -ENOMEM;
2984 }
2985 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2986
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2987 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2988 u16 index)
2989 {
2990 int ret;
2991
2992 cpus_read_lock();
2993 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2994 cpus_read_unlock();
2995
2996 return ret;
2997 }
2998 EXPORT_SYMBOL(netif_set_xps_queue);
2999
3000 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)3001 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3002 {
3003 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3004
3005 /* Unbind any subordinate channels */
3006 while (txq-- != &dev->_tx[0]) {
3007 if (txq->sb_dev)
3008 netdev_unbind_sb_channel(dev, txq->sb_dev);
3009 }
3010 }
3011
netdev_reset_tc(struct net_device * dev)3012 void netdev_reset_tc(struct net_device *dev)
3013 {
3014 #ifdef CONFIG_XPS
3015 netif_reset_xps_queues_gt(dev, 0);
3016 #endif
3017 netdev_unbind_all_sb_channels(dev);
3018
3019 /* Reset TC configuration of device */
3020 dev->num_tc = 0;
3021 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3022 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3023 }
3024 EXPORT_SYMBOL(netdev_reset_tc);
3025
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)3026 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3027 {
3028 if (tc >= dev->num_tc)
3029 return -EINVAL;
3030
3031 #ifdef CONFIG_XPS
3032 netif_reset_xps_queues(dev, offset, count);
3033 #endif
3034 dev->tc_to_txq[tc].count = count;
3035 dev->tc_to_txq[tc].offset = offset;
3036 return 0;
3037 }
3038 EXPORT_SYMBOL(netdev_set_tc_queue);
3039
netdev_set_num_tc(struct net_device * dev,u8 num_tc)3040 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3041 {
3042 if (num_tc > TC_MAX_QUEUE)
3043 return -EINVAL;
3044
3045 #ifdef CONFIG_XPS
3046 netif_reset_xps_queues_gt(dev, 0);
3047 #endif
3048 netdev_unbind_all_sb_channels(dev);
3049
3050 dev->num_tc = num_tc;
3051 return 0;
3052 }
3053 EXPORT_SYMBOL(netdev_set_num_tc);
3054
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)3055 void netdev_unbind_sb_channel(struct net_device *dev,
3056 struct net_device *sb_dev)
3057 {
3058 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3059
3060 #ifdef CONFIG_XPS
3061 netif_reset_xps_queues_gt(sb_dev, 0);
3062 #endif
3063 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3064 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3065
3066 while (txq-- != &dev->_tx[0]) {
3067 if (txq->sb_dev == sb_dev)
3068 txq->sb_dev = NULL;
3069 }
3070 }
3071 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3072
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)3073 int netdev_bind_sb_channel_queue(struct net_device *dev,
3074 struct net_device *sb_dev,
3075 u8 tc, u16 count, u16 offset)
3076 {
3077 /* Make certain the sb_dev and dev are already configured */
3078 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3079 return -EINVAL;
3080
3081 /* We cannot hand out queues we don't have */
3082 if ((offset + count) > dev->real_num_tx_queues)
3083 return -EINVAL;
3084
3085 /* Record the mapping */
3086 sb_dev->tc_to_txq[tc].count = count;
3087 sb_dev->tc_to_txq[tc].offset = offset;
3088
3089 /* Provide a way for Tx queue to find the tc_to_txq map or
3090 * XPS map for itself.
3091 */
3092 while (count--)
3093 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3094
3095 return 0;
3096 }
3097 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3098
netdev_set_sb_channel(struct net_device * dev,u16 channel)3099 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3100 {
3101 /* Do not use a multiqueue device to represent a subordinate channel */
3102 if (netif_is_multiqueue(dev))
3103 return -ENODEV;
3104
3105 /* We allow channels 1 - 32767 to be used for subordinate channels.
3106 * Channel 0 is meant to be "native" mode and used only to represent
3107 * the main root device. We allow writing 0 to reset the device back
3108 * to normal mode after being used as a subordinate channel.
3109 */
3110 if (channel > S16_MAX)
3111 return -EINVAL;
3112
3113 dev->num_tc = -channel;
3114
3115 return 0;
3116 }
3117 EXPORT_SYMBOL(netdev_set_sb_channel);
3118
3119 /*
3120 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3121 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3122 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3123 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3124 {
3125 bool disabling;
3126 int rc;
3127
3128 disabling = txq < dev->real_num_tx_queues;
3129
3130 if (txq < 1 || txq > dev->num_tx_queues)
3131 return -EINVAL;
3132
3133 if (dev->reg_state == NETREG_REGISTERED ||
3134 dev->reg_state == NETREG_UNREGISTERING) {
3135 ASSERT_RTNL();
3136 netdev_ops_assert_locked(dev);
3137
3138 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3139 txq);
3140 if (rc)
3141 return rc;
3142
3143 if (dev->num_tc)
3144 netif_setup_tc(dev, txq);
3145
3146 net_shaper_set_real_num_tx_queues(dev, txq);
3147
3148 dev_qdisc_change_real_num_tx(dev, txq);
3149
3150 dev->real_num_tx_queues = txq;
3151
3152 if (disabling) {
3153 synchronize_net();
3154 qdisc_reset_all_tx_gt(dev, txq);
3155 #ifdef CONFIG_XPS
3156 netif_reset_xps_queues_gt(dev, txq);
3157 #endif
3158 }
3159 } else {
3160 dev->real_num_tx_queues = txq;
3161 }
3162
3163 return 0;
3164 }
3165 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3166
3167 /**
3168 * netif_set_real_num_rx_queues - set actual number of RX queues used
3169 * @dev: Network device
3170 * @rxq: Actual number of RX queues
3171 *
3172 * This must be called either with the rtnl_lock held or before
3173 * registration of the net device. Returns 0 on success, or a
3174 * negative error code. If called before registration, it always
3175 * succeeds.
3176 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3177 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3178 {
3179 int rc;
3180
3181 if (rxq < 1 || rxq > dev->num_rx_queues)
3182 return -EINVAL;
3183
3184 if (dev->reg_state == NETREG_REGISTERED) {
3185 ASSERT_RTNL();
3186 netdev_ops_assert_locked(dev);
3187
3188 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3189 rxq);
3190 if (rc)
3191 return rc;
3192 }
3193
3194 dev->real_num_rx_queues = rxq;
3195 return 0;
3196 }
3197 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3198
3199 /**
3200 * netif_set_real_num_queues - set actual number of RX and TX queues used
3201 * @dev: Network device
3202 * @txq: Actual number of TX queues
3203 * @rxq: Actual number of RX queues
3204 *
3205 * Set the real number of both TX and RX queues.
3206 * Does nothing if the number of queues is already correct.
3207 */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3208 int netif_set_real_num_queues(struct net_device *dev,
3209 unsigned int txq, unsigned int rxq)
3210 {
3211 unsigned int old_rxq = dev->real_num_rx_queues;
3212 int err;
3213
3214 if (txq < 1 || txq > dev->num_tx_queues ||
3215 rxq < 1 || rxq > dev->num_rx_queues)
3216 return -EINVAL;
3217
3218 /* Start from increases, so the error path only does decreases -
3219 * decreases can't fail.
3220 */
3221 if (rxq > dev->real_num_rx_queues) {
3222 err = netif_set_real_num_rx_queues(dev, rxq);
3223 if (err)
3224 return err;
3225 }
3226 if (txq > dev->real_num_tx_queues) {
3227 err = netif_set_real_num_tx_queues(dev, txq);
3228 if (err)
3229 goto undo_rx;
3230 }
3231 if (rxq < dev->real_num_rx_queues)
3232 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3233 if (txq < dev->real_num_tx_queues)
3234 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3235
3236 return 0;
3237 undo_rx:
3238 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3239 return err;
3240 }
3241 EXPORT_SYMBOL(netif_set_real_num_queues);
3242
3243 /**
3244 * netif_set_tso_max_size() - set the max size of TSO frames supported
3245 * @dev: netdev to update
3246 * @size: max skb->len of a TSO frame
3247 *
3248 * Set the limit on the size of TSO super-frames the device can handle.
3249 * Unless explicitly set the stack will assume the value of
3250 * %GSO_LEGACY_MAX_SIZE.
3251 */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3252 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3253 {
3254 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3255 if (size < READ_ONCE(dev->gso_max_size))
3256 netif_set_gso_max_size(dev, size);
3257 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3258 netif_set_gso_ipv4_max_size(dev, size);
3259 }
3260 EXPORT_SYMBOL(netif_set_tso_max_size);
3261
3262 /**
3263 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3264 * @dev: netdev to update
3265 * @segs: max number of TCP segments
3266 *
3267 * Set the limit on the number of TCP segments the device can generate from
3268 * a single TSO super-frame.
3269 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3270 */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3271 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3272 {
3273 dev->tso_max_segs = segs;
3274 if (segs < READ_ONCE(dev->gso_max_segs))
3275 netif_set_gso_max_segs(dev, segs);
3276 }
3277 EXPORT_SYMBOL(netif_set_tso_max_segs);
3278
3279 /**
3280 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3281 * @to: netdev to update
3282 * @from: netdev from which to copy the limits
3283 */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3284 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3285 {
3286 netif_set_tso_max_size(to, from->tso_max_size);
3287 netif_set_tso_max_segs(to, from->tso_max_segs);
3288 }
3289 EXPORT_SYMBOL(netif_inherit_tso_max);
3290
3291 /**
3292 * netif_get_num_default_rss_queues - default number of RSS queues
3293 *
3294 * Default value is the number of physical cores if there are only 1 or 2, or
3295 * divided by 2 if there are more.
3296 */
netif_get_num_default_rss_queues(void)3297 int netif_get_num_default_rss_queues(void)
3298 {
3299 cpumask_var_t cpus;
3300 int cpu, count = 0;
3301
3302 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3303 return 1;
3304
3305 cpumask_copy(cpus, cpu_online_mask);
3306 for_each_cpu(cpu, cpus) {
3307 ++count;
3308 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3309 }
3310 free_cpumask_var(cpus);
3311
3312 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3313 }
3314 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3315
__netif_reschedule(struct Qdisc * q)3316 static void __netif_reschedule(struct Qdisc *q)
3317 {
3318 struct softnet_data *sd;
3319 unsigned long flags;
3320
3321 local_irq_save(flags);
3322 sd = this_cpu_ptr(&softnet_data);
3323 q->next_sched = NULL;
3324 *sd->output_queue_tailp = q;
3325 sd->output_queue_tailp = &q->next_sched;
3326 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3327 local_irq_restore(flags);
3328 }
3329
__netif_schedule(struct Qdisc * q)3330 void __netif_schedule(struct Qdisc *q)
3331 {
3332 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3333 __netif_reschedule(q);
3334 }
3335 EXPORT_SYMBOL(__netif_schedule);
3336
3337 struct dev_kfree_skb_cb {
3338 enum skb_drop_reason reason;
3339 };
3340
get_kfree_skb_cb(const struct sk_buff * skb)3341 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3342 {
3343 return (struct dev_kfree_skb_cb *)skb->cb;
3344 }
3345
netif_schedule_queue(struct netdev_queue * txq)3346 void netif_schedule_queue(struct netdev_queue *txq)
3347 {
3348 rcu_read_lock();
3349 if (!netif_xmit_stopped(txq)) {
3350 struct Qdisc *q = rcu_dereference(txq->qdisc);
3351
3352 __netif_schedule(q);
3353 }
3354 rcu_read_unlock();
3355 }
3356 EXPORT_SYMBOL(netif_schedule_queue);
3357
netif_tx_wake_queue(struct netdev_queue * dev_queue)3358 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3359 {
3360 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3361 struct Qdisc *q;
3362
3363 rcu_read_lock();
3364 q = rcu_dereference(dev_queue->qdisc);
3365 __netif_schedule(q);
3366 rcu_read_unlock();
3367 }
3368 }
3369 EXPORT_SYMBOL(netif_tx_wake_queue);
3370
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3371 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3372 {
3373 unsigned long flags;
3374
3375 if (unlikely(!skb))
3376 return;
3377
3378 if (likely(refcount_read(&skb->users) == 1)) {
3379 smp_rmb();
3380 refcount_set(&skb->users, 0);
3381 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3382 return;
3383 }
3384 get_kfree_skb_cb(skb)->reason = reason;
3385 local_irq_save(flags);
3386 skb->next = __this_cpu_read(softnet_data.completion_queue);
3387 __this_cpu_write(softnet_data.completion_queue, skb);
3388 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3389 local_irq_restore(flags);
3390 }
3391 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3392
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3393 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3394 {
3395 if (in_hardirq() || irqs_disabled())
3396 dev_kfree_skb_irq_reason(skb, reason);
3397 else
3398 kfree_skb_reason(skb, reason);
3399 }
3400 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3401
3402
3403 /**
3404 * netif_device_detach - mark device as removed
3405 * @dev: network device
3406 *
3407 * Mark device as removed from system and therefore no longer available.
3408 */
netif_device_detach(struct net_device * dev)3409 void netif_device_detach(struct net_device *dev)
3410 {
3411 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3412 netif_running(dev)) {
3413 netif_tx_stop_all_queues(dev);
3414 }
3415 }
3416 EXPORT_SYMBOL(netif_device_detach);
3417
3418 /**
3419 * netif_device_attach - mark device as attached
3420 * @dev: network device
3421 *
3422 * Mark device as attached from system and restart if needed.
3423 */
netif_device_attach(struct net_device * dev)3424 void netif_device_attach(struct net_device *dev)
3425 {
3426 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3427 netif_running(dev)) {
3428 netif_tx_wake_all_queues(dev);
3429 netdev_watchdog_up(dev);
3430 }
3431 }
3432 EXPORT_SYMBOL(netif_device_attach);
3433
3434 /*
3435 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3436 * to be used as a distribution range.
3437 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3438 static u16 skb_tx_hash(const struct net_device *dev,
3439 const struct net_device *sb_dev,
3440 struct sk_buff *skb)
3441 {
3442 u32 hash;
3443 u16 qoffset = 0;
3444 u16 qcount = dev->real_num_tx_queues;
3445
3446 if (dev->num_tc) {
3447 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3448
3449 qoffset = sb_dev->tc_to_txq[tc].offset;
3450 qcount = sb_dev->tc_to_txq[tc].count;
3451 if (unlikely(!qcount)) {
3452 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3453 sb_dev->name, qoffset, tc);
3454 qoffset = 0;
3455 qcount = dev->real_num_tx_queues;
3456 }
3457 }
3458
3459 if (skb_rx_queue_recorded(skb)) {
3460 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3461 hash = skb_get_rx_queue(skb);
3462 if (hash >= qoffset)
3463 hash -= qoffset;
3464 while (unlikely(hash >= qcount))
3465 hash -= qcount;
3466 return hash + qoffset;
3467 }
3468
3469 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3470 }
3471
skb_warn_bad_offload(const struct sk_buff * skb)3472 void skb_warn_bad_offload(const struct sk_buff *skb)
3473 {
3474 static const netdev_features_t null_features;
3475 struct net_device *dev = skb->dev;
3476 const char *name = "";
3477
3478 if (!net_ratelimit())
3479 return;
3480
3481 if (dev) {
3482 if (dev->dev.parent)
3483 name = dev_driver_string(dev->dev.parent);
3484 else
3485 name = netdev_name(dev);
3486 }
3487 skb_dump(KERN_WARNING, skb, false);
3488 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3489 name, dev ? &dev->features : &null_features,
3490 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3491 }
3492
3493 /*
3494 * Invalidate hardware checksum when packet is to be mangled, and
3495 * complete checksum manually on outgoing path.
3496 */
skb_checksum_help(struct sk_buff * skb)3497 int skb_checksum_help(struct sk_buff *skb)
3498 {
3499 __wsum csum;
3500 int ret = 0, offset;
3501
3502 if (skb->ip_summed == CHECKSUM_COMPLETE)
3503 goto out_set_summed;
3504
3505 if (unlikely(skb_is_gso(skb))) {
3506 skb_warn_bad_offload(skb);
3507 return -EINVAL;
3508 }
3509
3510 if (!skb_frags_readable(skb)) {
3511 return -EFAULT;
3512 }
3513
3514 /* Before computing a checksum, we should make sure no frag could
3515 * be modified by an external entity : checksum could be wrong.
3516 */
3517 if (skb_has_shared_frag(skb)) {
3518 ret = __skb_linearize(skb);
3519 if (ret)
3520 goto out;
3521 }
3522
3523 offset = skb_checksum_start_offset(skb);
3524 ret = -EINVAL;
3525 if (unlikely(offset >= skb_headlen(skb))) {
3526 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3527 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3528 offset, skb_headlen(skb));
3529 goto out;
3530 }
3531 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3532
3533 offset += skb->csum_offset;
3534 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3535 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3536 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3537 offset + sizeof(__sum16), skb_headlen(skb));
3538 goto out;
3539 }
3540 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3541 if (ret)
3542 goto out;
3543
3544 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3545 out_set_summed:
3546 skb->ip_summed = CHECKSUM_NONE;
3547 out:
3548 return ret;
3549 }
3550 EXPORT_SYMBOL(skb_checksum_help);
3551
skb_crc32c_csum_help(struct sk_buff * skb)3552 int skb_crc32c_csum_help(struct sk_buff *skb)
3553 {
3554 __le32 crc32c_csum;
3555 int ret = 0, offset, start;
3556
3557 if (skb->ip_summed != CHECKSUM_PARTIAL)
3558 goto out;
3559
3560 if (unlikely(skb_is_gso(skb)))
3561 goto out;
3562
3563 /* Before computing a checksum, we should make sure no frag could
3564 * be modified by an external entity : checksum could be wrong.
3565 */
3566 if (unlikely(skb_has_shared_frag(skb))) {
3567 ret = __skb_linearize(skb);
3568 if (ret)
3569 goto out;
3570 }
3571 start = skb_checksum_start_offset(skb);
3572 offset = start + offsetof(struct sctphdr, checksum);
3573 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3574 ret = -EINVAL;
3575 goto out;
3576 }
3577
3578 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3579 if (ret)
3580 goto out;
3581
3582 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3583 skb->len - start, ~(__u32)0,
3584 crc32c_csum_stub));
3585 *(__le32 *)(skb->data + offset) = crc32c_csum;
3586 skb_reset_csum_not_inet(skb);
3587 out:
3588 return ret;
3589 }
3590 EXPORT_SYMBOL(skb_crc32c_csum_help);
3591
skb_network_protocol(struct sk_buff * skb,int * depth)3592 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3593 {
3594 __be16 type = skb->protocol;
3595
3596 /* Tunnel gso handlers can set protocol to ethernet. */
3597 if (type == htons(ETH_P_TEB)) {
3598 struct ethhdr *eth;
3599
3600 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3601 return 0;
3602
3603 eth = (struct ethhdr *)skb->data;
3604 type = eth->h_proto;
3605 }
3606
3607 return vlan_get_protocol_and_depth(skb, type, depth);
3608 }
3609
3610
3611 /* Take action when hardware reception checksum errors are detected. */
3612 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3613 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3614 {
3615 netdev_err(dev, "hw csum failure\n");
3616 skb_dump(KERN_ERR, skb, true);
3617 dump_stack();
3618 }
3619
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3620 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3621 {
3622 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3623 }
3624 EXPORT_SYMBOL(netdev_rx_csum_fault);
3625 #endif
3626
3627 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3628 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3629 {
3630 #ifdef CONFIG_HIGHMEM
3631 int i;
3632
3633 if (!(dev->features & NETIF_F_HIGHDMA)) {
3634 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3635 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3636 struct page *page = skb_frag_page(frag);
3637
3638 if (page && PageHighMem(page))
3639 return 1;
3640 }
3641 }
3642 #endif
3643 return 0;
3644 }
3645
3646 /* If MPLS offload request, verify we are testing hardware MPLS features
3647 * instead of standard features for the netdev.
3648 */
3649 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3650 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3651 netdev_features_t features,
3652 __be16 type)
3653 {
3654 if (eth_p_mpls(type))
3655 features &= skb->dev->mpls_features;
3656
3657 return features;
3658 }
3659 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3660 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3661 netdev_features_t features,
3662 __be16 type)
3663 {
3664 return features;
3665 }
3666 #endif
3667
harmonize_features(struct sk_buff * skb,netdev_features_t features)3668 static netdev_features_t harmonize_features(struct sk_buff *skb,
3669 netdev_features_t features)
3670 {
3671 __be16 type;
3672
3673 type = skb_network_protocol(skb, NULL);
3674 features = net_mpls_features(skb, features, type);
3675
3676 if (skb->ip_summed != CHECKSUM_NONE &&
3677 !can_checksum_protocol(features, type)) {
3678 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3679 }
3680 if (illegal_highdma(skb->dev, skb))
3681 features &= ~NETIF_F_SG;
3682
3683 return features;
3684 }
3685
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3686 netdev_features_t passthru_features_check(struct sk_buff *skb,
3687 struct net_device *dev,
3688 netdev_features_t features)
3689 {
3690 return features;
3691 }
3692 EXPORT_SYMBOL(passthru_features_check);
3693
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3694 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3695 struct net_device *dev,
3696 netdev_features_t features)
3697 {
3698 return vlan_features_check(skb, features);
3699 }
3700
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3701 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3702 struct net_device *dev,
3703 netdev_features_t features)
3704 {
3705 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3706
3707 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3708 return features & ~NETIF_F_GSO_MASK;
3709
3710 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3711 return features & ~NETIF_F_GSO_MASK;
3712
3713 if (!skb_shinfo(skb)->gso_type) {
3714 skb_warn_bad_offload(skb);
3715 return features & ~NETIF_F_GSO_MASK;
3716 }
3717
3718 /* Support for GSO partial features requires software
3719 * intervention before we can actually process the packets
3720 * so we need to strip support for any partial features now
3721 * and we can pull them back in after we have partially
3722 * segmented the frame.
3723 */
3724 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3725 features &= ~dev->gso_partial_features;
3726
3727 /* Make sure to clear the IPv4 ID mangling feature if the
3728 * IPv4 header has the potential to be fragmented.
3729 */
3730 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3731 struct iphdr *iph = skb->encapsulation ?
3732 inner_ip_hdr(skb) : ip_hdr(skb);
3733
3734 if (!(iph->frag_off & htons(IP_DF)))
3735 features &= ~NETIF_F_TSO_MANGLEID;
3736 }
3737
3738 return features;
3739 }
3740
netif_skb_features(struct sk_buff * skb)3741 netdev_features_t netif_skb_features(struct sk_buff *skb)
3742 {
3743 struct net_device *dev = skb->dev;
3744 netdev_features_t features = dev->features;
3745
3746 if (skb_is_gso(skb))
3747 features = gso_features_check(skb, dev, features);
3748
3749 /* If encapsulation offload request, verify we are testing
3750 * hardware encapsulation features instead of standard
3751 * features for the netdev
3752 */
3753 if (skb->encapsulation)
3754 features &= dev->hw_enc_features;
3755
3756 if (skb_vlan_tagged(skb))
3757 features = netdev_intersect_features(features,
3758 dev->vlan_features |
3759 NETIF_F_HW_VLAN_CTAG_TX |
3760 NETIF_F_HW_VLAN_STAG_TX);
3761
3762 if (dev->netdev_ops->ndo_features_check)
3763 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3764 features);
3765 else
3766 features &= dflt_features_check(skb, dev, features);
3767
3768 return harmonize_features(skb, features);
3769 }
3770 EXPORT_SYMBOL(netif_skb_features);
3771
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3772 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3773 struct netdev_queue *txq, bool more)
3774 {
3775 unsigned int len;
3776 int rc;
3777
3778 if (dev_nit_active_rcu(dev))
3779 dev_queue_xmit_nit(skb, dev);
3780
3781 len = skb->len;
3782 trace_net_dev_start_xmit(skb, dev);
3783 rc = netdev_start_xmit(skb, dev, txq, more);
3784 trace_net_dev_xmit(skb, rc, dev, len);
3785
3786 return rc;
3787 }
3788
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3789 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3790 struct netdev_queue *txq, int *ret)
3791 {
3792 struct sk_buff *skb = first;
3793 int rc = NETDEV_TX_OK;
3794
3795 while (skb) {
3796 struct sk_buff *next = skb->next;
3797
3798 skb_mark_not_on_list(skb);
3799 rc = xmit_one(skb, dev, txq, next != NULL);
3800 if (unlikely(!dev_xmit_complete(rc))) {
3801 skb->next = next;
3802 goto out;
3803 }
3804
3805 skb = next;
3806 if (netif_tx_queue_stopped(txq) && skb) {
3807 rc = NETDEV_TX_BUSY;
3808 break;
3809 }
3810 }
3811
3812 out:
3813 *ret = rc;
3814 return skb;
3815 }
3816
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3817 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3818 netdev_features_t features)
3819 {
3820 if (skb_vlan_tag_present(skb) &&
3821 !vlan_hw_offload_capable(features, skb->vlan_proto))
3822 skb = __vlan_hwaccel_push_inside(skb);
3823 return skb;
3824 }
3825
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3826 int skb_csum_hwoffload_help(struct sk_buff *skb,
3827 const netdev_features_t features)
3828 {
3829 if (unlikely(skb_csum_is_sctp(skb)))
3830 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3831 skb_crc32c_csum_help(skb);
3832
3833 if (features & NETIF_F_HW_CSUM)
3834 return 0;
3835
3836 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3837 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3838 skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3839 !ipv6_has_hopopt_jumbo(skb))
3840 goto sw_checksum;
3841
3842 switch (skb->csum_offset) {
3843 case offsetof(struct tcphdr, check):
3844 case offsetof(struct udphdr, check):
3845 return 0;
3846 }
3847 }
3848
3849 sw_checksum:
3850 return skb_checksum_help(skb);
3851 }
3852 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3853
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3854 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3855 {
3856 netdev_features_t features;
3857
3858 if (!skb_frags_readable(skb))
3859 goto out_kfree_skb;
3860
3861 features = netif_skb_features(skb);
3862 skb = validate_xmit_vlan(skb, features);
3863 if (unlikely(!skb))
3864 goto out_null;
3865
3866 skb = sk_validate_xmit_skb(skb, dev);
3867 if (unlikely(!skb))
3868 goto out_null;
3869
3870 if (netif_needs_gso(skb, features)) {
3871 struct sk_buff *segs;
3872
3873 segs = skb_gso_segment(skb, features);
3874 if (IS_ERR(segs)) {
3875 goto out_kfree_skb;
3876 } else if (segs) {
3877 consume_skb(skb);
3878 skb = segs;
3879 }
3880 } else {
3881 if (skb_needs_linearize(skb, features) &&
3882 __skb_linearize(skb))
3883 goto out_kfree_skb;
3884
3885 /* If packet is not checksummed and device does not
3886 * support checksumming for this protocol, complete
3887 * checksumming here.
3888 */
3889 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3890 if (skb->encapsulation)
3891 skb_set_inner_transport_header(skb,
3892 skb_checksum_start_offset(skb));
3893 else
3894 skb_set_transport_header(skb,
3895 skb_checksum_start_offset(skb));
3896 if (skb_csum_hwoffload_help(skb, features))
3897 goto out_kfree_skb;
3898 }
3899 }
3900
3901 skb = validate_xmit_xfrm(skb, features, again);
3902
3903 return skb;
3904
3905 out_kfree_skb:
3906 kfree_skb(skb);
3907 out_null:
3908 dev_core_stats_tx_dropped_inc(dev);
3909 return NULL;
3910 }
3911
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3912 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3913 {
3914 struct sk_buff *next, *head = NULL, *tail;
3915
3916 for (; skb != NULL; skb = next) {
3917 next = skb->next;
3918 skb_mark_not_on_list(skb);
3919
3920 /* in case skb won't be segmented, point to itself */
3921 skb->prev = skb;
3922
3923 skb = validate_xmit_skb(skb, dev, again);
3924 if (!skb)
3925 continue;
3926
3927 if (!head)
3928 head = skb;
3929 else
3930 tail->next = skb;
3931 /* If skb was segmented, skb->prev points to
3932 * the last segment. If not, it still contains skb.
3933 */
3934 tail = skb->prev;
3935 }
3936 return head;
3937 }
3938 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3939
qdisc_pkt_len_init(struct sk_buff * skb)3940 static void qdisc_pkt_len_init(struct sk_buff *skb)
3941 {
3942 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3943
3944 qdisc_skb_cb(skb)->pkt_len = skb->len;
3945
3946 /* To get more precise estimation of bytes sent on wire,
3947 * we add to pkt_len the headers size of all segments
3948 */
3949 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3950 u16 gso_segs = shinfo->gso_segs;
3951 unsigned int hdr_len;
3952
3953 /* mac layer + network layer */
3954 hdr_len = skb_transport_offset(skb);
3955
3956 /* + transport layer */
3957 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3958 const struct tcphdr *th;
3959 struct tcphdr _tcphdr;
3960
3961 th = skb_header_pointer(skb, hdr_len,
3962 sizeof(_tcphdr), &_tcphdr);
3963 if (likely(th))
3964 hdr_len += __tcp_hdrlen(th);
3965 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3966 struct udphdr _udphdr;
3967
3968 if (skb_header_pointer(skb, hdr_len,
3969 sizeof(_udphdr), &_udphdr))
3970 hdr_len += sizeof(struct udphdr);
3971 }
3972
3973 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3974 int payload = skb->len - hdr_len;
3975
3976 /* Malicious packet. */
3977 if (payload <= 0)
3978 return;
3979 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3980 }
3981 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3982 }
3983 }
3984
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)3985 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3986 struct sk_buff **to_free,
3987 struct netdev_queue *txq)
3988 {
3989 int rc;
3990
3991 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3992 if (rc == NET_XMIT_SUCCESS)
3993 trace_qdisc_enqueue(q, txq, skb);
3994 return rc;
3995 }
3996
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3997 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3998 struct net_device *dev,
3999 struct netdev_queue *txq)
4000 {
4001 spinlock_t *root_lock = qdisc_lock(q);
4002 struct sk_buff *to_free = NULL;
4003 bool contended;
4004 int rc;
4005
4006 qdisc_calculate_pkt_len(skb, q);
4007
4008 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4009
4010 if (q->flags & TCQ_F_NOLOCK) {
4011 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4012 qdisc_run_begin(q)) {
4013 /* Retest nolock_qdisc_is_empty() within the protection
4014 * of q->seqlock to protect from racing with requeuing.
4015 */
4016 if (unlikely(!nolock_qdisc_is_empty(q))) {
4017 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4018 __qdisc_run(q);
4019 qdisc_run_end(q);
4020
4021 goto no_lock_out;
4022 }
4023
4024 qdisc_bstats_cpu_update(q, skb);
4025 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4026 !nolock_qdisc_is_empty(q))
4027 __qdisc_run(q);
4028
4029 qdisc_run_end(q);
4030 return NET_XMIT_SUCCESS;
4031 }
4032
4033 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4034 qdisc_run(q);
4035
4036 no_lock_out:
4037 if (unlikely(to_free))
4038 kfree_skb_list_reason(to_free,
4039 tcf_get_drop_reason(to_free));
4040 return rc;
4041 }
4042
4043 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4044 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4045 return NET_XMIT_DROP;
4046 }
4047 /*
4048 * Heuristic to force contended enqueues to serialize on a
4049 * separate lock before trying to get qdisc main lock.
4050 * This permits qdisc->running owner to get the lock more
4051 * often and dequeue packets faster.
4052 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4053 * and then other tasks will only enqueue packets. The packets will be
4054 * sent after the qdisc owner is scheduled again. To prevent this
4055 * scenario the task always serialize on the lock.
4056 */
4057 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4058 if (unlikely(contended))
4059 spin_lock(&q->busylock);
4060
4061 spin_lock(root_lock);
4062 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4063 __qdisc_drop(skb, &to_free);
4064 rc = NET_XMIT_DROP;
4065 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4066 qdisc_run_begin(q)) {
4067 /*
4068 * This is a work-conserving queue; there are no old skbs
4069 * waiting to be sent out; and the qdisc is not running -
4070 * xmit the skb directly.
4071 */
4072
4073 qdisc_bstats_update(q, skb);
4074
4075 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4076 if (unlikely(contended)) {
4077 spin_unlock(&q->busylock);
4078 contended = false;
4079 }
4080 __qdisc_run(q);
4081 }
4082
4083 qdisc_run_end(q);
4084 rc = NET_XMIT_SUCCESS;
4085 } else {
4086 WRITE_ONCE(q->owner, smp_processor_id());
4087 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4088 WRITE_ONCE(q->owner, -1);
4089 if (qdisc_run_begin(q)) {
4090 if (unlikely(contended)) {
4091 spin_unlock(&q->busylock);
4092 contended = false;
4093 }
4094 __qdisc_run(q);
4095 qdisc_run_end(q);
4096 }
4097 }
4098 spin_unlock(root_lock);
4099 if (unlikely(to_free))
4100 kfree_skb_list_reason(to_free,
4101 tcf_get_drop_reason(to_free));
4102 if (unlikely(contended))
4103 spin_unlock(&q->busylock);
4104 return rc;
4105 }
4106
4107 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)4108 static void skb_update_prio(struct sk_buff *skb)
4109 {
4110 const struct netprio_map *map;
4111 const struct sock *sk;
4112 unsigned int prioidx;
4113
4114 if (skb->priority)
4115 return;
4116 map = rcu_dereference_bh(skb->dev->priomap);
4117 if (!map)
4118 return;
4119 sk = skb_to_full_sk(skb);
4120 if (!sk)
4121 return;
4122
4123 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4124
4125 if (prioidx < map->priomap_len)
4126 skb->priority = map->priomap[prioidx];
4127 }
4128 #else
4129 #define skb_update_prio(skb)
4130 #endif
4131
4132 /**
4133 * dev_loopback_xmit - loop back @skb
4134 * @net: network namespace this loopback is happening in
4135 * @sk: sk needed to be a netfilter okfn
4136 * @skb: buffer to transmit
4137 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4138 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4139 {
4140 skb_reset_mac_header(skb);
4141 __skb_pull(skb, skb_network_offset(skb));
4142 skb->pkt_type = PACKET_LOOPBACK;
4143 if (skb->ip_summed == CHECKSUM_NONE)
4144 skb->ip_summed = CHECKSUM_UNNECESSARY;
4145 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4146 skb_dst_force(skb);
4147 netif_rx(skb);
4148 return 0;
4149 }
4150 EXPORT_SYMBOL(dev_loopback_xmit);
4151
4152 #ifdef CONFIG_NET_EGRESS
4153 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4154 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4155 {
4156 int qm = skb_get_queue_mapping(skb);
4157
4158 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4159 }
4160
4161 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4162 static bool netdev_xmit_txqueue_skipped(void)
4163 {
4164 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4165 }
4166
netdev_xmit_skip_txqueue(bool skip)4167 void netdev_xmit_skip_txqueue(bool skip)
4168 {
4169 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4170 }
4171 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4172
4173 #else
netdev_xmit_txqueue_skipped(void)4174 static bool netdev_xmit_txqueue_skipped(void)
4175 {
4176 return current->net_xmit.skip_txqueue;
4177 }
4178
netdev_xmit_skip_txqueue(bool skip)4179 void netdev_xmit_skip_txqueue(bool skip)
4180 {
4181 current->net_xmit.skip_txqueue = skip;
4182 }
4183 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4184 #endif
4185 #endif /* CONFIG_NET_EGRESS */
4186
4187 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4188 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4189 enum skb_drop_reason *drop_reason)
4190 {
4191 int ret = TC_ACT_UNSPEC;
4192 #ifdef CONFIG_NET_CLS_ACT
4193 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4194 struct tcf_result res;
4195
4196 if (!miniq)
4197 return ret;
4198
4199 /* Global bypass */
4200 if (!static_branch_likely(&tcf_sw_enabled_key))
4201 return ret;
4202
4203 /* Block-wise bypass */
4204 if (tcf_block_bypass_sw(miniq->block))
4205 return ret;
4206
4207 tc_skb_cb(skb)->mru = 0;
4208 tc_skb_cb(skb)->post_ct = false;
4209 tcf_set_drop_reason(skb, *drop_reason);
4210
4211 mini_qdisc_bstats_cpu_update(miniq, skb);
4212 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4213 /* Only tcf related quirks below. */
4214 switch (ret) {
4215 case TC_ACT_SHOT:
4216 *drop_reason = tcf_get_drop_reason(skb);
4217 mini_qdisc_qstats_cpu_drop(miniq);
4218 break;
4219 case TC_ACT_OK:
4220 case TC_ACT_RECLASSIFY:
4221 skb->tc_index = TC_H_MIN(res.classid);
4222 break;
4223 }
4224 #endif /* CONFIG_NET_CLS_ACT */
4225 return ret;
4226 }
4227
4228 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4229
tcx_inc(void)4230 void tcx_inc(void)
4231 {
4232 static_branch_inc(&tcx_needed_key);
4233 }
4234
tcx_dec(void)4235 void tcx_dec(void)
4236 {
4237 static_branch_dec(&tcx_needed_key);
4238 }
4239
4240 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4241 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4242 const bool needs_mac)
4243 {
4244 const struct bpf_mprog_fp *fp;
4245 const struct bpf_prog *prog;
4246 int ret = TCX_NEXT;
4247
4248 if (needs_mac)
4249 __skb_push(skb, skb->mac_len);
4250 bpf_mprog_foreach_prog(entry, fp, prog) {
4251 bpf_compute_data_pointers(skb);
4252 ret = bpf_prog_run(prog, skb);
4253 if (ret != TCX_NEXT)
4254 break;
4255 }
4256 if (needs_mac)
4257 __skb_pull(skb, skb->mac_len);
4258 return tcx_action_code(skb, ret);
4259 }
4260
4261 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4262 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4263 struct net_device *orig_dev, bool *another)
4264 {
4265 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4266 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4267 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4268 int sch_ret;
4269
4270 if (!entry)
4271 return skb;
4272
4273 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4274 if (*pt_prev) {
4275 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4276 *pt_prev = NULL;
4277 }
4278
4279 qdisc_skb_cb(skb)->pkt_len = skb->len;
4280 tcx_set_ingress(skb, true);
4281
4282 if (static_branch_unlikely(&tcx_needed_key)) {
4283 sch_ret = tcx_run(entry, skb, true);
4284 if (sch_ret != TC_ACT_UNSPEC)
4285 goto ingress_verdict;
4286 }
4287 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4288 ingress_verdict:
4289 switch (sch_ret) {
4290 case TC_ACT_REDIRECT:
4291 /* skb_mac_header check was done by BPF, so we can safely
4292 * push the L2 header back before redirecting to another
4293 * netdev.
4294 */
4295 __skb_push(skb, skb->mac_len);
4296 if (skb_do_redirect(skb) == -EAGAIN) {
4297 __skb_pull(skb, skb->mac_len);
4298 *another = true;
4299 break;
4300 }
4301 *ret = NET_RX_SUCCESS;
4302 bpf_net_ctx_clear(bpf_net_ctx);
4303 return NULL;
4304 case TC_ACT_SHOT:
4305 kfree_skb_reason(skb, drop_reason);
4306 *ret = NET_RX_DROP;
4307 bpf_net_ctx_clear(bpf_net_ctx);
4308 return NULL;
4309 /* used by tc_run */
4310 case TC_ACT_STOLEN:
4311 case TC_ACT_QUEUED:
4312 case TC_ACT_TRAP:
4313 consume_skb(skb);
4314 fallthrough;
4315 case TC_ACT_CONSUMED:
4316 *ret = NET_RX_SUCCESS;
4317 bpf_net_ctx_clear(bpf_net_ctx);
4318 return NULL;
4319 }
4320 bpf_net_ctx_clear(bpf_net_ctx);
4321
4322 return skb;
4323 }
4324
4325 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4326 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4327 {
4328 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4329 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4330 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4331 int sch_ret;
4332
4333 if (!entry)
4334 return skb;
4335
4336 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4337
4338 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4339 * already set by the caller.
4340 */
4341 if (static_branch_unlikely(&tcx_needed_key)) {
4342 sch_ret = tcx_run(entry, skb, false);
4343 if (sch_ret != TC_ACT_UNSPEC)
4344 goto egress_verdict;
4345 }
4346 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4347 egress_verdict:
4348 switch (sch_ret) {
4349 case TC_ACT_REDIRECT:
4350 /* No need to push/pop skb's mac_header here on egress! */
4351 skb_do_redirect(skb);
4352 *ret = NET_XMIT_SUCCESS;
4353 bpf_net_ctx_clear(bpf_net_ctx);
4354 return NULL;
4355 case TC_ACT_SHOT:
4356 kfree_skb_reason(skb, drop_reason);
4357 *ret = NET_XMIT_DROP;
4358 bpf_net_ctx_clear(bpf_net_ctx);
4359 return NULL;
4360 /* used by tc_run */
4361 case TC_ACT_STOLEN:
4362 case TC_ACT_QUEUED:
4363 case TC_ACT_TRAP:
4364 consume_skb(skb);
4365 fallthrough;
4366 case TC_ACT_CONSUMED:
4367 *ret = NET_XMIT_SUCCESS;
4368 bpf_net_ctx_clear(bpf_net_ctx);
4369 return NULL;
4370 }
4371 bpf_net_ctx_clear(bpf_net_ctx);
4372
4373 return skb;
4374 }
4375 #else
4376 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4377 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4378 struct net_device *orig_dev, bool *another)
4379 {
4380 return skb;
4381 }
4382
4383 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4384 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4385 {
4386 return skb;
4387 }
4388 #endif /* CONFIG_NET_XGRESS */
4389
4390 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4391 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4392 struct xps_dev_maps *dev_maps, unsigned int tci)
4393 {
4394 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4395 struct xps_map *map;
4396 int queue_index = -1;
4397
4398 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4399 return queue_index;
4400
4401 tci *= dev_maps->num_tc;
4402 tci += tc;
4403
4404 map = rcu_dereference(dev_maps->attr_map[tci]);
4405 if (map) {
4406 if (map->len == 1)
4407 queue_index = map->queues[0];
4408 else
4409 queue_index = map->queues[reciprocal_scale(
4410 skb_get_hash(skb), map->len)];
4411 if (unlikely(queue_index >= dev->real_num_tx_queues))
4412 queue_index = -1;
4413 }
4414 return queue_index;
4415 }
4416 #endif
4417
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4418 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4419 struct sk_buff *skb)
4420 {
4421 #ifdef CONFIG_XPS
4422 struct xps_dev_maps *dev_maps;
4423 struct sock *sk = skb->sk;
4424 int queue_index = -1;
4425
4426 if (!static_key_false(&xps_needed))
4427 return -1;
4428
4429 rcu_read_lock();
4430 if (!static_key_false(&xps_rxqs_needed))
4431 goto get_cpus_map;
4432
4433 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4434 if (dev_maps) {
4435 int tci = sk_rx_queue_get(sk);
4436
4437 if (tci >= 0)
4438 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4439 tci);
4440 }
4441
4442 get_cpus_map:
4443 if (queue_index < 0) {
4444 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4445 if (dev_maps) {
4446 unsigned int tci = skb->sender_cpu - 1;
4447
4448 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4449 tci);
4450 }
4451 }
4452 rcu_read_unlock();
4453
4454 return queue_index;
4455 #else
4456 return -1;
4457 #endif
4458 }
4459
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4460 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4461 struct net_device *sb_dev)
4462 {
4463 return 0;
4464 }
4465 EXPORT_SYMBOL(dev_pick_tx_zero);
4466
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4467 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4468 struct net_device *sb_dev)
4469 {
4470 struct sock *sk = skb->sk;
4471 int queue_index = sk_tx_queue_get(sk);
4472
4473 sb_dev = sb_dev ? : dev;
4474
4475 if (queue_index < 0 || skb->ooo_okay ||
4476 queue_index >= dev->real_num_tx_queues) {
4477 int new_index = get_xps_queue(dev, sb_dev, skb);
4478
4479 if (new_index < 0)
4480 new_index = skb_tx_hash(dev, sb_dev, skb);
4481
4482 if (queue_index != new_index && sk &&
4483 sk_fullsock(sk) &&
4484 rcu_access_pointer(sk->sk_dst_cache))
4485 sk_tx_queue_set(sk, new_index);
4486
4487 queue_index = new_index;
4488 }
4489
4490 return queue_index;
4491 }
4492 EXPORT_SYMBOL(netdev_pick_tx);
4493
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4494 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4495 struct sk_buff *skb,
4496 struct net_device *sb_dev)
4497 {
4498 int queue_index = 0;
4499
4500 #ifdef CONFIG_XPS
4501 u32 sender_cpu = skb->sender_cpu - 1;
4502
4503 if (sender_cpu >= (u32)NR_CPUS)
4504 skb->sender_cpu = raw_smp_processor_id() + 1;
4505 #endif
4506
4507 if (dev->real_num_tx_queues != 1) {
4508 const struct net_device_ops *ops = dev->netdev_ops;
4509
4510 if (ops->ndo_select_queue)
4511 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4512 else
4513 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4514
4515 queue_index = netdev_cap_txqueue(dev, queue_index);
4516 }
4517
4518 skb_set_queue_mapping(skb, queue_index);
4519 return netdev_get_tx_queue(dev, queue_index);
4520 }
4521
4522 /**
4523 * __dev_queue_xmit() - transmit a buffer
4524 * @skb: buffer to transmit
4525 * @sb_dev: suboordinate device used for L2 forwarding offload
4526 *
4527 * Queue a buffer for transmission to a network device. The caller must
4528 * have set the device and priority and built the buffer before calling
4529 * this function. The function can be called from an interrupt.
4530 *
4531 * When calling this method, interrupts MUST be enabled. This is because
4532 * the BH enable code must have IRQs enabled so that it will not deadlock.
4533 *
4534 * Regardless of the return value, the skb is consumed, so it is currently
4535 * difficult to retry a send to this method. (You can bump the ref count
4536 * before sending to hold a reference for retry if you are careful.)
4537 *
4538 * Return:
4539 * * 0 - buffer successfully transmitted
4540 * * positive qdisc return code - NET_XMIT_DROP etc.
4541 * * negative errno - other errors
4542 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4543 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4544 {
4545 struct net_device *dev = skb->dev;
4546 struct netdev_queue *txq = NULL;
4547 struct Qdisc *q;
4548 int rc = -ENOMEM;
4549 bool again = false;
4550
4551 skb_reset_mac_header(skb);
4552 skb_assert_len(skb);
4553
4554 if (unlikely(skb_shinfo(skb)->tx_flags &
4555 (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4556 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4557
4558 /* Disable soft irqs for various locks below. Also
4559 * stops preemption for RCU.
4560 */
4561 rcu_read_lock_bh();
4562
4563 skb_update_prio(skb);
4564
4565 qdisc_pkt_len_init(skb);
4566 tcx_set_ingress(skb, false);
4567 #ifdef CONFIG_NET_EGRESS
4568 if (static_branch_unlikely(&egress_needed_key)) {
4569 if (nf_hook_egress_active()) {
4570 skb = nf_hook_egress(skb, &rc, dev);
4571 if (!skb)
4572 goto out;
4573 }
4574
4575 netdev_xmit_skip_txqueue(false);
4576
4577 nf_skip_egress(skb, true);
4578 skb = sch_handle_egress(skb, &rc, dev);
4579 if (!skb)
4580 goto out;
4581 nf_skip_egress(skb, false);
4582
4583 if (netdev_xmit_txqueue_skipped())
4584 txq = netdev_tx_queue_mapping(dev, skb);
4585 }
4586 #endif
4587 /* If device/qdisc don't need skb->dst, release it right now while
4588 * its hot in this cpu cache.
4589 */
4590 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4591 skb_dst_drop(skb);
4592 else
4593 skb_dst_force(skb);
4594
4595 if (!txq)
4596 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4597
4598 q = rcu_dereference_bh(txq->qdisc);
4599
4600 trace_net_dev_queue(skb);
4601 if (q->enqueue) {
4602 rc = __dev_xmit_skb(skb, q, dev, txq);
4603 goto out;
4604 }
4605
4606 /* The device has no queue. Common case for software devices:
4607 * loopback, all the sorts of tunnels...
4608
4609 * Really, it is unlikely that netif_tx_lock protection is necessary
4610 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4611 * counters.)
4612 * However, it is possible, that they rely on protection
4613 * made by us here.
4614
4615 * Check this and shot the lock. It is not prone from deadlocks.
4616 *Either shot noqueue qdisc, it is even simpler 8)
4617 */
4618 if (dev->flags & IFF_UP) {
4619 int cpu = smp_processor_id(); /* ok because BHs are off */
4620
4621 /* Other cpus might concurrently change txq->xmit_lock_owner
4622 * to -1 or to their cpu id, but not to our id.
4623 */
4624 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4625 if (dev_xmit_recursion())
4626 goto recursion_alert;
4627
4628 skb = validate_xmit_skb(skb, dev, &again);
4629 if (!skb)
4630 goto out;
4631
4632 HARD_TX_LOCK(dev, txq, cpu);
4633
4634 if (!netif_xmit_stopped(txq)) {
4635 dev_xmit_recursion_inc();
4636 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4637 dev_xmit_recursion_dec();
4638 if (dev_xmit_complete(rc)) {
4639 HARD_TX_UNLOCK(dev, txq);
4640 goto out;
4641 }
4642 }
4643 HARD_TX_UNLOCK(dev, txq);
4644 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4645 dev->name);
4646 } else {
4647 /* Recursion is detected! It is possible,
4648 * unfortunately
4649 */
4650 recursion_alert:
4651 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4652 dev->name);
4653 }
4654 }
4655
4656 rc = -ENETDOWN;
4657 rcu_read_unlock_bh();
4658
4659 dev_core_stats_tx_dropped_inc(dev);
4660 kfree_skb_list(skb);
4661 return rc;
4662 out:
4663 rcu_read_unlock_bh();
4664 return rc;
4665 }
4666 EXPORT_SYMBOL(__dev_queue_xmit);
4667
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4668 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4669 {
4670 struct net_device *dev = skb->dev;
4671 struct sk_buff *orig_skb = skb;
4672 struct netdev_queue *txq;
4673 int ret = NETDEV_TX_BUSY;
4674 bool again = false;
4675
4676 if (unlikely(!netif_running(dev) ||
4677 !netif_carrier_ok(dev)))
4678 goto drop;
4679
4680 skb = validate_xmit_skb_list(skb, dev, &again);
4681 if (skb != orig_skb)
4682 goto drop;
4683
4684 skb_set_queue_mapping(skb, queue_id);
4685 txq = skb_get_tx_queue(dev, skb);
4686
4687 local_bh_disable();
4688
4689 dev_xmit_recursion_inc();
4690 HARD_TX_LOCK(dev, txq, smp_processor_id());
4691 if (!netif_xmit_frozen_or_drv_stopped(txq))
4692 ret = netdev_start_xmit(skb, dev, txq, false);
4693 HARD_TX_UNLOCK(dev, txq);
4694 dev_xmit_recursion_dec();
4695
4696 local_bh_enable();
4697 return ret;
4698 drop:
4699 dev_core_stats_tx_dropped_inc(dev);
4700 kfree_skb_list(skb);
4701 return NET_XMIT_DROP;
4702 }
4703 EXPORT_SYMBOL(__dev_direct_xmit);
4704
4705 /*************************************************************************
4706 * Receiver routines
4707 *************************************************************************/
4708 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4709
4710 int weight_p __read_mostly = 64; /* old backlog weight */
4711 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4712 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4713
4714 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4715 static inline void ____napi_schedule(struct softnet_data *sd,
4716 struct napi_struct *napi)
4717 {
4718 struct task_struct *thread;
4719
4720 lockdep_assert_irqs_disabled();
4721
4722 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4723 /* Paired with smp_mb__before_atomic() in
4724 * napi_enable()/dev_set_threaded().
4725 * Use READ_ONCE() to guarantee a complete
4726 * read on napi->thread. Only call
4727 * wake_up_process() when it's not NULL.
4728 */
4729 thread = READ_ONCE(napi->thread);
4730 if (thread) {
4731 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4732 goto use_local_napi;
4733
4734 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4735 wake_up_process(thread);
4736 return;
4737 }
4738 }
4739
4740 use_local_napi:
4741 list_add_tail(&napi->poll_list, &sd->poll_list);
4742 WRITE_ONCE(napi->list_owner, smp_processor_id());
4743 /* If not called from net_rx_action()
4744 * we have to raise NET_RX_SOFTIRQ.
4745 */
4746 if (!sd->in_net_rx_action)
4747 raise_softirq_irqoff(NET_RX_SOFTIRQ);
4748 }
4749
4750 #ifdef CONFIG_RPS
4751
4752 struct static_key_false rps_needed __read_mostly;
4753 EXPORT_SYMBOL(rps_needed);
4754 struct static_key_false rfs_needed __read_mostly;
4755 EXPORT_SYMBOL(rfs_needed);
4756
rfs_slot(u32 hash,const struct rps_dev_flow_table * flow_table)4757 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4758 {
4759 return hash_32(hash, flow_table->log);
4760 }
4761
4762 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4763 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4764 struct rps_dev_flow *rflow, u16 next_cpu)
4765 {
4766 if (next_cpu < nr_cpu_ids) {
4767 u32 head;
4768 #ifdef CONFIG_RFS_ACCEL
4769 struct netdev_rx_queue *rxqueue;
4770 struct rps_dev_flow_table *flow_table;
4771 struct rps_dev_flow *old_rflow;
4772 u16 rxq_index;
4773 u32 flow_id;
4774 int rc;
4775
4776 /* Should we steer this flow to a different hardware queue? */
4777 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4778 !(dev->features & NETIF_F_NTUPLE))
4779 goto out;
4780 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4781 if (rxq_index == skb_get_rx_queue(skb))
4782 goto out;
4783
4784 rxqueue = dev->_rx + rxq_index;
4785 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4786 if (!flow_table)
4787 goto out;
4788 flow_id = rfs_slot(skb_get_hash(skb), flow_table);
4789 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4790 rxq_index, flow_id);
4791 if (rc < 0)
4792 goto out;
4793 old_rflow = rflow;
4794 rflow = &flow_table->flows[flow_id];
4795 WRITE_ONCE(rflow->filter, rc);
4796 if (old_rflow->filter == rc)
4797 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4798 out:
4799 #endif
4800 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4801 rps_input_queue_tail_save(&rflow->last_qtail, head);
4802 }
4803
4804 WRITE_ONCE(rflow->cpu, next_cpu);
4805 return rflow;
4806 }
4807
4808 /*
4809 * get_rps_cpu is called from netif_receive_skb and returns the target
4810 * CPU from the RPS map of the receiving queue for a given skb.
4811 * rcu_read_lock must be held on entry.
4812 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4813 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4814 struct rps_dev_flow **rflowp)
4815 {
4816 const struct rps_sock_flow_table *sock_flow_table;
4817 struct netdev_rx_queue *rxqueue = dev->_rx;
4818 struct rps_dev_flow_table *flow_table;
4819 struct rps_map *map;
4820 int cpu = -1;
4821 u32 tcpu;
4822 u32 hash;
4823
4824 if (skb_rx_queue_recorded(skb)) {
4825 u16 index = skb_get_rx_queue(skb);
4826
4827 if (unlikely(index >= dev->real_num_rx_queues)) {
4828 WARN_ONCE(dev->real_num_rx_queues > 1,
4829 "%s received packet on queue %u, but number "
4830 "of RX queues is %u\n",
4831 dev->name, index, dev->real_num_rx_queues);
4832 goto done;
4833 }
4834 rxqueue += index;
4835 }
4836
4837 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4838
4839 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4840 map = rcu_dereference(rxqueue->rps_map);
4841 if (!flow_table && !map)
4842 goto done;
4843
4844 skb_reset_network_header(skb);
4845 hash = skb_get_hash(skb);
4846 if (!hash)
4847 goto done;
4848
4849 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4850 if (flow_table && sock_flow_table) {
4851 struct rps_dev_flow *rflow;
4852 u32 next_cpu;
4853 u32 ident;
4854
4855 /* First check into global flow table if there is a match.
4856 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4857 */
4858 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4859 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4860 goto try_rps;
4861
4862 next_cpu = ident & net_hotdata.rps_cpu_mask;
4863
4864 /* OK, now we know there is a match,
4865 * we can look at the local (per receive queue) flow table
4866 */
4867 rflow = &flow_table->flows[rfs_slot(hash, flow_table)];
4868 tcpu = rflow->cpu;
4869
4870 /*
4871 * If the desired CPU (where last recvmsg was done) is
4872 * different from current CPU (one in the rx-queue flow
4873 * table entry), switch if one of the following holds:
4874 * - Current CPU is unset (>= nr_cpu_ids).
4875 * - Current CPU is offline.
4876 * - The current CPU's queue tail has advanced beyond the
4877 * last packet that was enqueued using this table entry.
4878 * This guarantees that all previous packets for the flow
4879 * have been dequeued, thus preserving in order delivery.
4880 */
4881 if (unlikely(tcpu != next_cpu) &&
4882 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4883 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4884 rflow->last_qtail)) >= 0)) {
4885 tcpu = next_cpu;
4886 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4887 }
4888
4889 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4890 *rflowp = rflow;
4891 cpu = tcpu;
4892 goto done;
4893 }
4894 }
4895
4896 try_rps:
4897
4898 if (map) {
4899 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4900 if (cpu_online(tcpu)) {
4901 cpu = tcpu;
4902 goto done;
4903 }
4904 }
4905
4906 done:
4907 return cpu;
4908 }
4909
4910 #ifdef CONFIG_RFS_ACCEL
4911
4912 /**
4913 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4914 * @dev: Device on which the filter was set
4915 * @rxq_index: RX queue index
4916 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4917 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4918 *
4919 * Drivers that implement ndo_rx_flow_steer() should periodically call
4920 * this function for each installed filter and remove the filters for
4921 * which it returns %true.
4922 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4923 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4924 u32 flow_id, u16 filter_id)
4925 {
4926 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4927 struct rps_dev_flow_table *flow_table;
4928 struct rps_dev_flow *rflow;
4929 bool expire = true;
4930 unsigned int cpu;
4931
4932 rcu_read_lock();
4933 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4934 if (flow_table && flow_id < (1UL << flow_table->log)) {
4935 rflow = &flow_table->flows[flow_id];
4936 cpu = READ_ONCE(rflow->cpu);
4937 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4938 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4939 READ_ONCE(rflow->last_qtail)) <
4940 (int)(10 << flow_table->log)))
4941 expire = false;
4942 }
4943 rcu_read_unlock();
4944 return expire;
4945 }
4946 EXPORT_SYMBOL(rps_may_expire_flow);
4947
4948 #endif /* CONFIG_RFS_ACCEL */
4949
4950 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4951 static void rps_trigger_softirq(void *data)
4952 {
4953 struct softnet_data *sd = data;
4954
4955 ____napi_schedule(sd, &sd->backlog);
4956 sd->received_rps++;
4957 }
4958
4959 #endif /* CONFIG_RPS */
4960
4961 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)4962 static void trigger_rx_softirq(void *data)
4963 {
4964 struct softnet_data *sd = data;
4965
4966 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4967 smp_store_release(&sd->defer_ipi_scheduled, 0);
4968 }
4969
4970 /*
4971 * After we queued a packet into sd->input_pkt_queue,
4972 * we need to make sure this queue is serviced soon.
4973 *
4974 * - If this is another cpu queue, link it to our rps_ipi_list,
4975 * and make sure we will process rps_ipi_list from net_rx_action().
4976 *
4977 * - If this is our own queue, NAPI schedule our backlog.
4978 * Note that this also raises NET_RX_SOFTIRQ.
4979 */
napi_schedule_rps(struct softnet_data * sd)4980 static void napi_schedule_rps(struct softnet_data *sd)
4981 {
4982 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4983
4984 #ifdef CONFIG_RPS
4985 if (sd != mysd) {
4986 if (use_backlog_threads()) {
4987 __napi_schedule_irqoff(&sd->backlog);
4988 return;
4989 }
4990
4991 sd->rps_ipi_next = mysd->rps_ipi_list;
4992 mysd->rps_ipi_list = sd;
4993
4994 /* If not called from net_rx_action() or napi_threaded_poll()
4995 * we have to raise NET_RX_SOFTIRQ.
4996 */
4997 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4998 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4999 return;
5000 }
5001 #endif /* CONFIG_RPS */
5002 __napi_schedule_irqoff(&mysd->backlog);
5003 }
5004
kick_defer_list_purge(struct softnet_data * sd,unsigned int cpu)5005 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5006 {
5007 unsigned long flags;
5008
5009 if (use_backlog_threads()) {
5010 backlog_lock_irq_save(sd, &flags);
5011
5012 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5013 __napi_schedule_irqoff(&sd->backlog);
5014
5015 backlog_unlock_irq_restore(sd, &flags);
5016
5017 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5018 smp_call_function_single_async(cpu, &sd->defer_csd);
5019 }
5020 }
5021
5022 #ifdef CONFIG_NET_FLOW_LIMIT
5023 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5024 #endif
5025
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)5026 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5027 {
5028 #ifdef CONFIG_NET_FLOW_LIMIT
5029 struct sd_flow_limit *fl;
5030 struct softnet_data *sd;
5031 unsigned int old_flow, new_flow;
5032
5033 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5034 return false;
5035
5036 sd = this_cpu_ptr(&softnet_data);
5037
5038 rcu_read_lock();
5039 fl = rcu_dereference(sd->flow_limit);
5040 if (fl) {
5041 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
5042 old_flow = fl->history[fl->history_head];
5043 fl->history[fl->history_head] = new_flow;
5044
5045 fl->history_head++;
5046 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5047
5048 if (likely(fl->buckets[old_flow]))
5049 fl->buckets[old_flow]--;
5050
5051 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5052 fl->count++;
5053 rcu_read_unlock();
5054 return true;
5055 }
5056 }
5057 rcu_read_unlock();
5058 #endif
5059 return false;
5060 }
5061
5062 /*
5063 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5064 * queue (may be a remote CPU queue).
5065 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)5066 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5067 unsigned int *qtail)
5068 {
5069 enum skb_drop_reason reason;
5070 struct softnet_data *sd;
5071 unsigned long flags;
5072 unsigned int qlen;
5073 int max_backlog;
5074 u32 tail;
5075
5076 reason = SKB_DROP_REASON_DEV_READY;
5077 if (!netif_running(skb->dev))
5078 goto bad_dev;
5079
5080 reason = SKB_DROP_REASON_CPU_BACKLOG;
5081 sd = &per_cpu(softnet_data, cpu);
5082
5083 qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5084 max_backlog = READ_ONCE(net_hotdata.max_backlog);
5085 if (unlikely(qlen > max_backlog))
5086 goto cpu_backlog_drop;
5087 backlog_lock_irq_save(sd, &flags);
5088 qlen = skb_queue_len(&sd->input_pkt_queue);
5089 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5090 if (!qlen) {
5091 /* Schedule NAPI for backlog device. We can use
5092 * non atomic operation as we own the queue lock.
5093 */
5094 if (!__test_and_set_bit(NAPI_STATE_SCHED,
5095 &sd->backlog.state))
5096 napi_schedule_rps(sd);
5097 }
5098 __skb_queue_tail(&sd->input_pkt_queue, skb);
5099 tail = rps_input_queue_tail_incr(sd);
5100 backlog_unlock_irq_restore(sd, &flags);
5101
5102 /* save the tail outside of the critical section */
5103 rps_input_queue_tail_save(qtail, tail);
5104 return NET_RX_SUCCESS;
5105 }
5106
5107 backlog_unlock_irq_restore(sd, &flags);
5108
5109 cpu_backlog_drop:
5110 atomic_inc(&sd->dropped);
5111 bad_dev:
5112 dev_core_stats_rx_dropped_inc(skb->dev);
5113 kfree_skb_reason(skb, reason);
5114 return NET_RX_DROP;
5115 }
5116
netif_get_rxqueue(struct sk_buff * skb)5117 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5118 {
5119 struct net_device *dev = skb->dev;
5120 struct netdev_rx_queue *rxqueue;
5121
5122 rxqueue = dev->_rx;
5123
5124 if (skb_rx_queue_recorded(skb)) {
5125 u16 index = skb_get_rx_queue(skb);
5126
5127 if (unlikely(index >= dev->real_num_rx_queues)) {
5128 WARN_ONCE(dev->real_num_rx_queues > 1,
5129 "%s received packet on queue %u, but number "
5130 "of RX queues is %u\n",
5131 dev->name, index, dev->real_num_rx_queues);
5132
5133 return rxqueue; /* Return first rxqueue */
5134 }
5135 rxqueue += index;
5136 }
5137 return rxqueue;
5138 }
5139
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5140 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5141 const struct bpf_prog *xdp_prog)
5142 {
5143 void *orig_data, *orig_data_end, *hard_start;
5144 struct netdev_rx_queue *rxqueue;
5145 bool orig_bcast, orig_host;
5146 u32 mac_len, frame_sz;
5147 __be16 orig_eth_type;
5148 struct ethhdr *eth;
5149 u32 metalen, act;
5150 int off;
5151
5152 /* The XDP program wants to see the packet starting at the MAC
5153 * header.
5154 */
5155 mac_len = skb->data - skb_mac_header(skb);
5156 hard_start = skb->data - skb_headroom(skb);
5157
5158 /* SKB "head" area always have tailroom for skb_shared_info */
5159 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5160 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5161
5162 rxqueue = netif_get_rxqueue(skb);
5163 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5164 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5165 skb_headlen(skb) + mac_len, true);
5166 if (skb_is_nonlinear(skb)) {
5167 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5168 xdp_buff_set_frags_flag(xdp);
5169 } else {
5170 xdp_buff_clear_frags_flag(xdp);
5171 }
5172
5173 orig_data_end = xdp->data_end;
5174 orig_data = xdp->data;
5175 eth = (struct ethhdr *)xdp->data;
5176 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5177 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5178 orig_eth_type = eth->h_proto;
5179
5180 act = bpf_prog_run_xdp(xdp_prog, xdp);
5181
5182 /* check if bpf_xdp_adjust_head was used */
5183 off = xdp->data - orig_data;
5184 if (off) {
5185 if (off > 0)
5186 __skb_pull(skb, off);
5187 else if (off < 0)
5188 __skb_push(skb, -off);
5189
5190 skb->mac_header += off;
5191 skb_reset_network_header(skb);
5192 }
5193
5194 /* check if bpf_xdp_adjust_tail was used */
5195 off = xdp->data_end - orig_data_end;
5196 if (off != 0) {
5197 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5198 skb->len += off; /* positive on grow, negative on shrink */
5199 }
5200
5201 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5202 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5203 */
5204 if (xdp_buff_has_frags(xdp))
5205 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5206 else
5207 skb->data_len = 0;
5208
5209 /* check if XDP changed eth hdr such SKB needs update */
5210 eth = (struct ethhdr *)xdp->data;
5211 if ((orig_eth_type != eth->h_proto) ||
5212 (orig_host != ether_addr_equal_64bits(eth->h_dest,
5213 skb->dev->dev_addr)) ||
5214 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5215 __skb_push(skb, ETH_HLEN);
5216 skb->pkt_type = PACKET_HOST;
5217 skb->protocol = eth_type_trans(skb, skb->dev);
5218 }
5219
5220 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5221 * before calling us again on redirect path. We do not call do_redirect
5222 * as we leave that up to the caller.
5223 *
5224 * Caller is responsible for managing lifetime of skb (i.e. calling
5225 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5226 */
5227 switch (act) {
5228 case XDP_REDIRECT:
5229 case XDP_TX:
5230 __skb_push(skb, mac_len);
5231 break;
5232 case XDP_PASS:
5233 metalen = xdp->data - xdp->data_meta;
5234 if (metalen)
5235 skb_metadata_set(skb, metalen);
5236 break;
5237 }
5238
5239 return act;
5240 }
5241
5242 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,const struct bpf_prog * prog)5243 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5244 {
5245 struct sk_buff *skb = *pskb;
5246 int err, hroom, troom;
5247
5248 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5249 return 0;
5250
5251 /* In case we have to go down the path and also linearize,
5252 * then lets do the pskb_expand_head() work just once here.
5253 */
5254 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5255 troom = skb->tail + skb->data_len - skb->end;
5256 err = pskb_expand_head(skb,
5257 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5258 troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5259 if (err)
5260 return err;
5261
5262 return skb_linearize(skb);
5263 }
5264
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5265 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5266 struct xdp_buff *xdp,
5267 const struct bpf_prog *xdp_prog)
5268 {
5269 struct sk_buff *skb = *pskb;
5270 u32 mac_len, act = XDP_DROP;
5271
5272 /* Reinjected packets coming from act_mirred or similar should
5273 * not get XDP generic processing.
5274 */
5275 if (skb_is_redirected(skb))
5276 return XDP_PASS;
5277
5278 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5279 * bytes. This is the guarantee that also native XDP provides,
5280 * thus we need to do it here as well.
5281 */
5282 mac_len = skb->data - skb_mac_header(skb);
5283 __skb_push(skb, mac_len);
5284
5285 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5286 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5287 if (netif_skb_check_for_xdp(pskb, xdp_prog))
5288 goto do_drop;
5289 }
5290
5291 __skb_pull(*pskb, mac_len);
5292
5293 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5294 switch (act) {
5295 case XDP_REDIRECT:
5296 case XDP_TX:
5297 case XDP_PASS:
5298 break;
5299 default:
5300 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5301 fallthrough;
5302 case XDP_ABORTED:
5303 trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5304 fallthrough;
5305 case XDP_DROP:
5306 do_drop:
5307 kfree_skb(*pskb);
5308 break;
5309 }
5310
5311 return act;
5312 }
5313
5314 /* When doing generic XDP we have to bypass the qdisc layer and the
5315 * network taps in order to match in-driver-XDP behavior. This also means
5316 * that XDP packets are able to starve other packets going through a qdisc,
5317 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5318 * queues, so they do not have this starvation issue.
5319 */
generic_xdp_tx(struct sk_buff * skb,const struct bpf_prog * xdp_prog)5320 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5321 {
5322 struct net_device *dev = skb->dev;
5323 struct netdev_queue *txq;
5324 bool free_skb = true;
5325 int cpu, rc;
5326
5327 txq = netdev_core_pick_tx(dev, skb, NULL);
5328 cpu = smp_processor_id();
5329 HARD_TX_LOCK(dev, txq, cpu);
5330 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5331 rc = netdev_start_xmit(skb, dev, txq, 0);
5332 if (dev_xmit_complete(rc))
5333 free_skb = false;
5334 }
5335 HARD_TX_UNLOCK(dev, txq);
5336 if (free_skb) {
5337 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5338 dev_core_stats_tx_dropped_inc(dev);
5339 kfree_skb(skb);
5340 }
5341 }
5342
5343 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5344
do_xdp_generic(const struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5345 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5346 {
5347 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5348
5349 if (xdp_prog) {
5350 struct xdp_buff xdp;
5351 u32 act;
5352 int err;
5353
5354 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5355 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5356 if (act != XDP_PASS) {
5357 switch (act) {
5358 case XDP_REDIRECT:
5359 err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5360 &xdp, xdp_prog);
5361 if (err)
5362 goto out_redir;
5363 break;
5364 case XDP_TX:
5365 generic_xdp_tx(*pskb, xdp_prog);
5366 break;
5367 }
5368 bpf_net_ctx_clear(bpf_net_ctx);
5369 return XDP_DROP;
5370 }
5371 bpf_net_ctx_clear(bpf_net_ctx);
5372 }
5373 return XDP_PASS;
5374 out_redir:
5375 bpf_net_ctx_clear(bpf_net_ctx);
5376 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5377 return XDP_DROP;
5378 }
5379 EXPORT_SYMBOL_GPL(do_xdp_generic);
5380
netif_rx_internal(struct sk_buff * skb)5381 static int netif_rx_internal(struct sk_buff *skb)
5382 {
5383 int ret;
5384
5385 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5386
5387 trace_netif_rx(skb);
5388
5389 #ifdef CONFIG_RPS
5390 if (static_branch_unlikely(&rps_needed)) {
5391 struct rps_dev_flow voidflow, *rflow = &voidflow;
5392 int cpu;
5393
5394 rcu_read_lock();
5395
5396 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5397 if (cpu < 0)
5398 cpu = smp_processor_id();
5399
5400 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5401
5402 rcu_read_unlock();
5403 } else
5404 #endif
5405 {
5406 unsigned int qtail;
5407
5408 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5409 }
5410 return ret;
5411 }
5412
5413 /**
5414 * __netif_rx - Slightly optimized version of netif_rx
5415 * @skb: buffer to post
5416 *
5417 * This behaves as netif_rx except that it does not disable bottom halves.
5418 * As a result this function may only be invoked from the interrupt context
5419 * (either hard or soft interrupt).
5420 */
__netif_rx(struct sk_buff * skb)5421 int __netif_rx(struct sk_buff *skb)
5422 {
5423 int ret;
5424
5425 lockdep_assert_once(hardirq_count() | softirq_count());
5426
5427 trace_netif_rx_entry(skb);
5428 ret = netif_rx_internal(skb);
5429 trace_netif_rx_exit(ret);
5430 return ret;
5431 }
5432 EXPORT_SYMBOL(__netif_rx);
5433
5434 /**
5435 * netif_rx - post buffer to the network code
5436 * @skb: buffer to post
5437 *
5438 * This function receives a packet from a device driver and queues it for
5439 * the upper (protocol) levels to process via the backlog NAPI device. It
5440 * always succeeds. The buffer may be dropped during processing for
5441 * congestion control or by the protocol layers.
5442 * The network buffer is passed via the backlog NAPI device. Modern NIC
5443 * driver should use NAPI and GRO.
5444 * This function can used from interrupt and from process context. The
5445 * caller from process context must not disable interrupts before invoking
5446 * this function.
5447 *
5448 * return values:
5449 * NET_RX_SUCCESS (no congestion)
5450 * NET_RX_DROP (packet was dropped)
5451 *
5452 */
netif_rx(struct sk_buff * skb)5453 int netif_rx(struct sk_buff *skb)
5454 {
5455 bool need_bh_off = !(hardirq_count() | softirq_count());
5456 int ret;
5457
5458 if (need_bh_off)
5459 local_bh_disable();
5460 trace_netif_rx_entry(skb);
5461 ret = netif_rx_internal(skb);
5462 trace_netif_rx_exit(ret);
5463 if (need_bh_off)
5464 local_bh_enable();
5465 return ret;
5466 }
5467 EXPORT_SYMBOL(netif_rx);
5468
net_tx_action(void)5469 static __latent_entropy void net_tx_action(void)
5470 {
5471 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5472
5473 if (sd->completion_queue) {
5474 struct sk_buff *clist;
5475
5476 local_irq_disable();
5477 clist = sd->completion_queue;
5478 sd->completion_queue = NULL;
5479 local_irq_enable();
5480
5481 while (clist) {
5482 struct sk_buff *skb = clist;
5483
5484 clist = clist->next;
5485
5486 WARN_ON(refcount_read(&skb->users));
5487 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5488 trace_consume_skb(skb, net_tx_action);
5489 else
5490 trace_kfree_skb(skb, net_tx_action,
5491 get_kfree_skb_cb(skb)->reason, NULL);
5492
5493 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5494 __kfree_skb(skb);
5495 else
5496 __napi_kfree_skb(skb,
5497 get_kfree_skb_cb(skb)->reason);
5498 }
5499 }
5500
5501 if (sd->output_queue) {
5502 struct Qdisc *head;
5503
5504 local_irq_disable();
5505 head = sd->output_queue;
5506 sd->output_queue = NULL;
5507 sd->output_queue_tailp = &sd->output_queue;
5508 local_irq_enable();
5509
5510 rcu_read_lock();
5511
5512 while (head) {
5513 struct Qdisc *q = head;
5514 spinlock_t *root_lock = NULL;
5515
5516 head = head->next_sched;
5517
5518 /* We need to make sure head->next_sched is read
5519 * before clearing __QDISC_STATE_SCHED
5520 */
5521 smp_mb__before_atomic();
5522
5523 if (!(q->flags & TCQ_F_NOLOCK)) {
5524 root_lock = qdisc_lock(q);
5525 spin_lock(root_lock);
5526 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5527 &q->state))) {
5528 /* There is a synchronize_net() between
5529 * STATE_DEACTIVATED flag being set and
5530 * qdisc_reset()/some_qdisc_is_busy() in
5531 * dev_deactivate(), so we can safely bail out
5532 * early here to avoid data race between
5533 * qdisc_deactivate() and some_qdisc_is_busy()
5534 * for lockless qdisc.
5535 */
5536 clear_bit(__QDISC_STATE_SCHED, &q->state);
5537 continue;
5538 }
5539
5540 clear_bit(__QDISC_STATE_SCHED, &q->state);
5541 qdisc_run(q);
5542 if (root_lock)
5543 spin_unlock(root_lock);
5544 }
5545
5546 rcu_read_unlock();
5547 }
5548
5549 xfrm_dev_backlog(sd);
5550 }
5551
5552 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5553 /* This hook is defined here for ATM LANE */
5554 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5555 unsigned char *addr) __read_mostly;
5556 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5557 #endif
5558
5559 /**
5560 * netdev_is_rx_handler_busy - check if receive handler is registered
5561 * @dev: device to check
5562 *
5563 * Check if a receive handler is already registered for a given device.
5564 * Return true if there one.
5565 *
5566 * The caller must hold the rtnl_mutex.
5567 */
netdev_is_rx_handler_busy(struct net_device * dev)5568 bool netdev_is_rx_handler_busy(struct net_device *dev)
5569 {
5570 ASSERT_RTNL();
5571 return dev && rtnl_dereference(dev->rx_handler);
5572 }
5573 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5574
5575 /**
5576 * netdev_rx_handler_register - register receive handler
5577 * @dev: device to register a handler for
5578 * @rx_handler: receive handler to register
5579 * @rx_handler_data: data pointer that is used by rx handler
5580 *
5581 * Register a receive handler for a device. This handler will then be
5582 * called from __netif_receive_skb. A negative errno code is returned
5583 * on a failure.
5584 *
5585 * The caller must hold the rtnl_mutex.
5586 *
5587 * For a general description of rx_handler, see enum rx_handler_result.
5588 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5589 int netdev_rx_handler_register(struct net_device *dev,
5590 rx_handler_func_t *rx_handler,
5591 void *rx_handler_data)
5592 {
5593 if (netdev_is_rx_handler_busy(dev))
5594 return -EBUSY;
5595
5596 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5597 return -EINVAL;
5598
5599 /* Note: rx_handler_data must be set before rx_handler */
5600 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5601 rcu_assign_pointer(dev->rx_handler, rx_handler);
5602
5603 return 0;
5604 }
5605 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5606
5607 /**
5608 * netdev_rx_handler_unregister - unregister receive handler
5609 * @dev: device to unregister a handler from
5610 *
5611 * Unregister a receive handler from a device.
5612 *
5613 * The caller must hold the rtnl_mutex.
5614 */
netdev_rx_handler_unregister(struct net_device * dev)5615 void netdev_rx_handler_unregister(struct net_device *dev)
5616 {
5617
5618 ASSERT_RTNL();
5619 RCU_INIT_POINTER(dev->rx_handler, NULL);
5620 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5621 * section has a guarantee to see a non NULL rx_handler_data
5622 * as well.
5623 */
5624 synchronize_net();
5625 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5626 }
5627 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5628
5629 /*
5630 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5631 * the special handling of PFMEMALLOC skbs.
5632 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5633 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5634 {
5635 switch (skb->protocol) {
5636 case htons(ETH_P_ARP):
5637 case htons(ETH_P_IP):
5638 case htons(ETH_P_IPV6):
5639 case htons(ETH_P_8021Q):
5640 case htons(ETH_P_8021AD):
5641 return true;
5642 default:
5643 return false;
5644 }
5645 }
5646
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5647 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5648 int *ret, struct net_device *orig_dev)
5649 {
5650 if (nf_hook_ingress_active(skb)) {
5651 int ingress_retval;
5652
5653 if (*pt_prev) {
5654 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5655 *pt_prev = NULL;
5656 }
5657
5658 rcu_read_lock();
5659 ingress_retval = nf_hook_ingress(skb);
5660 rcu_read_unlock();
5661 return ingress_retval;
5662 }
5663 return 0;
5664 }
5665
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5666 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5667 struct packet_type **ppt_prev)
5668 {
5669 struct packet_type *ptype, *pt_prev;
5670 rx_handler_func_t *rx_handler;
5671 struct sk_buff *skb = *pskb;
5672 struct net_device *orig_dev;
5673 bool deliver_exact = false;
5674 int ret = NET_RX_DROP;
5675 __be16 type;
5676
5677 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5678
5679 trace_netif_receive_skb(skb);
5680
5681 orig_dev = skb->dev;
5682
5683 skb_reset_network_header(skb);
5684 #if !defined(CONFIG_DEBUG_NET)
5685 /* We plan to no longer reset the transport header here.
5686 * Give some time to fuzzers and dev build to catch bugs
5687 * in network stacks.
5688 */
5689 if (!skb_transport_header_was_set(skb))
5690 skb_reset_transport_header(skb);
5691 #endif
5692 skb_reset_mac_len(skb);
5693
5694 pt_prev = NULL;
5695
5696 another_round:
5697 skb->skb_iif = skb->dev->ifindex;
5698
5699 __this_cpu_inc(softnet_data.processed);
5700
5701 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5702 int ret2;
5703
5704 migrate_disable();
5705 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5706 &skb);
5707 migrate_enable();
5708
5709 if (ret2 != XDP_PASS) {
5710 ret = NET_RX_DROP;
5711 goto out;
5712 }
5713 }
5714
5715 if (eth_type_vlan(skb->protocol)) {
5716 skb = skb_vlan_untag(skb);
5717 if (unlikely(!skb))
5718 goto out;
5719 }
5720
5721 if (skb_skip_tc_classify(skb))
5722 goto skip_classify;
5723
5724 if (pfmemalloc)
5725 goto skip_taps;
5726
5727 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5728 list) {
5729 if (pt_prev)
5730 ret = deliver_skb(skb, pt_prev, orig_dev);
5731 pt_prev = ptype;
5732 }
5733
5734 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5735 if (pt_prev)
5736 ret = deliver_skb(skb, pt_prev, orig_dev);
5737 pt_prev = ptype;
5738 }
5739
5740 skip_taps:
5741 #ifdef CONFIG_NET_INGRESS
5742 if (static_branch_unlikely(&ingress_needed_key)) {
5743 bool another = false;
5744
5745 nf_skip_egress(skb, true);
5746 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5747 &another);
5748 if (another)
5749 goto another_round;
5750 if (!skb)
5751 goto out;
5752
5753 nf_skip_egress(skb, false);
5754 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5755 goto out;
5756 }
5757 #endif
5758 skb_reset_redirect(skb);
5759 skip_classify:
5760 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5761 goto drop;
5762
5763 if (skb_vlan_tag_present(skb)) {
5764 if (pt_prev) {
5765 ret = deliver_skb(skb, pt_prev, orig_dev);
5766 pt_prev = NULL;
5767 }
5768 if (vlan_do_receive(&skb))
5769 goto another_round;
5770 else if (unlikely(!skb))
5771 goto out;
5772 }
5773
5774 rx_handler = rcu_dereference(skb->dev->rx_handler);
5775 if (rx_handler) {
5776 if (pt_prev) {
5777 ret = deliver_skb(skb, pt_prev, orig_dev);
5778 pt_prev = NULL;
5779 }
5780 switch (rx_handler(&skb)) {
5781 case RX_HANDLER_CONSUMED:
5782 ret = NET_RX_SUCCESS;
5783 goto out;
5784 case RX_HANDLER_ANOTHER:
5785 goto another_round;
5786 case RX_HANDLER_EXACT:
5787 deliver_exact = true;
5788 break;
5789 case RX_HANDLER_PASS:
5790 break;
5791 default:
5792 BUG();
5793 }
5794 }
5795
5796 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5797 check_vlan_id:
5798 if (skb_vlan_tag_get_id(skb)) {
5799 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5800 * find vlan device.
5801 */
5802 skb->pkt_type = PACKET_OTHERHOST;
5803 } else if (eth_type_vlan(skb->protocol)) {
5804 /* Outer header is 802.1P with vlan 0, inner header is
5805 * 802.1Q or 802.1AD and vlan_do_receive() above could
5806 * not find vlan dev for vlan id 0.
5807 */
5808 __vlan_hwaccel_clear_tag(skb);
5809 skb = skb_vlan_untag(skb);
5810 if (unlikely(!skb))
5811 goto out;
5812 if (vlan_do_receive(&skb))
5813 /* After stripping off 802.1P header with vlan 0
5814 * vlan dev is found for inner header.
5815 */
5816 goto another_round;
5817 else if (unlikely(!skb))
5818 goto out;
5819 else
5820 /* We have stripped outer 802.1P vlan 0 header.
5821 * But could not find vlan dev.
5822 * check again for vlan id to set OTHERHOST.
5823 */
5824 goto check_vlan_id;
5825 }
5826 /* Note: we might in the future use prio bits
5827 * and set skb->priority like in vlan_do_receive()
5828 * For the time being, just ignore Priority Code Point
5829 */
5830 __vlan_hwaccel_clear_tag(skb);
5831 }
5832
5833 type = skb->protocol;
5834
5835 /* deliver only exact match when indicated */
5836 if (likely(!deliver_exact)) {
5837 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5838 &ptype_base[ntohs(type) &
5839 PTYPE_HASH_MASK]);
5840
5841 /* orig_dev and skb->dev could belong to different netns;
5842 * Even in such case we need to traverse only the list
5843 * coming from skb->dev, as the ptype owner (packet socket)
5844 * will use dev_net(skb->dev) to do namespace filtering.
5845 */
5846 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5847 &dev_net_rcu(skb->dev)->ptype_specific);
5848 }
5849
5850 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5851 &orig_dev->ptype_specific);
5852
5853 if (unlikely(skb->dev != orig_dev)) {
5854 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5855 &skb->dev->ptype_specific);
5856 }
5857
5858 if (pt_prev) {
5859 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5860 goto drop;
5861 *ppt_prev = pt_prev;
5862 } else {
5863 drop:
5864 if (!deliver_exact)
5865 dev_core_stats_rx_dropped_inc(skb->dev);
5866 else
5867 dev_core_stats_rx_nohandler_inc(skb->dev);
5868 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5869 /* Jamal, now you will not able to escape explaining
5870 * me how you were going to use this. :-)
5871 */
5872 ret = NET_RX_DROP;
5873 }
5874
5875 out:
5876 /* The invariant here is that if *ppt_prev is not NULL
5877 * then skb should also be non-NULL.
5878 *
5879 * Apparently *ppt_prev assignment above holds this invariant due to
5880 * skb dereferencing near it.
5881 */
5882 *pskb = skb;
5883 return ret;
5884 }
5885
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5886 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5887 {
5888 struct net_device *orig_dev = skb->dev;
5889 struct packet_type *pt_prev = NULL;
5890 int ret;
5891
5892 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5893 if (pt_prev)
5894 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5895 skb->dev, pt_prev, orig_dev);
5896 return ret;
5897 }
5898
5899 /**
5900 * netif_receive_skb_core - special purpose version of netif_receive_skb
5901 * @skb: buffer to process
5902 *
5903 * More direct receive version of netif_receive_skb(). It should
5904 * only be used by callers that have a need to skip RPS and Generic XDP.
5905 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5906 *
5907 * This function may only be called from softirq context and interrupts
5908 * should be enabled.
5909 *
5910 * Return values (usually ignored):
5911 * NET_RX_SUCCESS: no congestion
5912 * NET_RX_DROP: packet was dropped
5913 */
netif_receive_skb_core(struct sk_buff * skb)5914 int netif_receive_skb_core(struct sk_buff *skb)
5915 {
5916 int ret;
5917
5918 rcu_read_lock();
5919 ret = __netif_receive_skb_one_core(skb, false);
5920 rcu_read_unlock();
5921
5922 return ret;
5923 }
5924 EXPORT_SYMBOL(netif_receive_skb_core);
5925
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5926 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5927 struct packet_type *pt_prev,
5928 struct net_device *orig_dev)
5929 {
5930 struct sk_buff *skb, *next;
5931
5932 if (!pt_prev)
5933 return;
5934 if (list_empty(head))
5935 return;
5936 if (pt_prev->list_func != NULL)
5937 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5938 ip_list_rcv, head, pt_prev, orig_dev);
5939 else
5940 list_for_each_entry_safe(skb, next, head, list) {
5941 skb_list_del_init(skb);
5942 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5943 }
5944 }
5945
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5946 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5947 {
5948 /* Fast-path assumptions:
5949 * - There is no RX handler.
5950 * - Only one packet_type matches.
5951 * If either of these fails, we will end up doing some per-packet
5952 * processing in-line, then handling the 'last ptype' for the whole
5953 * sublist. This can't cause out-of-order delivery to any single ptype,
5954 * because the 'last ptype' must be constant across the sublist, and all
5955 * other ptypes are handled per-packet.
5956 */
5957 /* Current (common) ptype of sublist */
5958 struct packet_type *pt_curr = NULL;
5959 /* Current (common) orig_dev of sublist */
5960 struct net_device *od_curr = NULL;
5961 struct sk_buff *skb, *next;
5962 LIST_HEAD(sublist);
5963
5964 list_for_each_entry_safe(skb, next, head, list) {
5965 struct net_device *orig_dev = skb->dev;
5966 struct packet_type *pt_prev = NULL;
5967
5968 skb_list_del_init(skb);
5969 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5970 if (!pt_prev)
5971 continue;
5972 if (pt_curr != pt_prev || od_curr != orig_dev) {
5973 /* dispatch old sublist */
5974 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5975 /* start new sublist */
5976 INIT_LIST_HEAD(&sublist);
5977 pt_curr = pt_prev;
5978 od_curr = orig_dev;
5979 }
5980 list_add_tail(&skb->list, &sublist);
5981 }
5982
5983 /* dispatch final sublist */
5984 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5985 }
5986
__netif_receive_skb(struct sk_buff * skb)5987 static int __netif_receive_skb(struct sk_buff *skb)
5988 {
5989 int ret;
5990
5991 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5992 unsigned int noreclaim_flag;
5993
5994 /*
5995 * PFMEMALLOC skbs are special, they should
5996 * - be delivered to SOCK_MEMALLOC sockets only
5997 * - stay away from userspace
5998 * - have bounded memory usage
5999 *
6000 * Use PF_MEMALLOC as this saves us from propagating the allocation
6001 * context down to all allocation sites.
6002 */
6003 noreclaim_flag = memalloc_noreclaim_save();
6004 ret = __netif_receive_skb_one_core(skb, true);
6005 memalloc_noreclaim_restore(noreclaim_flag);
6006 } else
6007 ret = __netif_receive_skb_one_core(skb, false);
6008
6009 return ret;
6010 }
6011
__netif_receive_skb_list(struct list_head * head)6012 static void __netif_receive_skb_list(struct list_head *head)
6013 {
6014 unsigned long noreclaim_flag = 0;
6015 struct sk_buff *skb, *next;
6016 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6017
6018 list_for_each_entry_safe(skb, next, head, list) {
6019 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6020 struct list_head sublist;
6021
6022 /* Handle the previous sublist */
6023 list_cut_before(&sublist, head, &skb->list);
6024 if (!list_empty(&sublist))
6025 __netif_receive_skb_list_core(&sublist, pfmemalloc);
6026 pfmemalloc = !pfmemalloc;
6027 /* See comments in __netif_receive_skb */
6028 if (pfmemalloc)
6029 noreclaim_flag = memalloc_noreclaim_save();
6030 else
6031 memalloc_noreclaim_restore(noreclaim_flag);
6032 }
6033 }
6034 /* Handle the remaining sublist */
6035 if (!list_empty(head))
6036 __netif_receive_skb_list_core(head, pfmemalloc);
6037 /* Restore pflags */
6038 if (pfmemalloc)
6039 memalloc_noreclaim_restore(noreclaim_flag);
6040 }
6041
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)6042 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6043 {
6044 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6045 struct bpf_prog *new = xdp->prog;
6046 int ret = 0;
6047
6048 switch (xdp->command) {
6049 case XDP_SETUP_PROG:
6050 rcu_assign_pointer(dev->xdp_prog, new);
6051 if (old)
6052 bpf_prog_put(old);
6053
6054 if (old && !new) {
6055 static_branch_dec(&generic_xdp_needed_key);
6056 } else if (new && !old) {
6057 static_branch_inc(&generic_xdp_needed_key);
6058 netif_disable_lro(dev);
6059 dev_disable_gro_hw(dev);
6060 }
6061 break;
6062
6063 default:
6064 ret = -EINVAL;
6065 break;
6066 }
6067
6068 return ret;
6069 }
6070
netif_receive_skb_internal(struct sk_buff * skb)6071 static int netif_receive_skb_internal(struct sk_buff *skb)
6072 {
6073 int ret;
6074
6075 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6076
6077 if (skb_defer_rx_timestamp(skb))
6078 return NET_RX_SUCCESS;
6079
6080 rcu_read_lock();
6081 #ifdef CONFIG_RPS
6082 if (static_branch_unlikely(&rps_needed)) {
6083 struct rps_dev_flow voidflow, *rflow = &voidflow;
6084 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6085
6086 if (cpu >= 0) {
6087 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6088 rcu_read_unlock();
6089 return ret;
6090 }
6091 }
6092 #endif
6093 ret = __netif_receive_skb(skb);
6094 rcu_read_unlock();
6095 return ret;
6096 }
6097
netif_receive_skb_list_internal(struct list_head * head)6098 void netif_receive_skb_list_internal(struct list_head *head)
6099 {
6100 struct sk_buff *skb, *next;
6101 LIST_HEAD(sublist);
6102
6103 list_for_each_entry_safe(skb, next, head, list) {
6104 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6105 skb);
6106 skb_list_del_init(skb);
6107 if (!skb_defer_rx_timestamp(skb))
6108 list_add_tail(&skb->list, &sublist);
6109 }
6110 list_splice_init(&sublist, head);
6111
6112 rcu_read_lock();
6113 #ifdef CONFIG_RPS
6114 if (static_branch_unlikely(&rps_needed)) {
6115 list_for_each_entry_safe(skb, next, head, list) {
6116 struct rps_dev_flow voidflow, *rflow = &voidflow;
6117 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6118
6119 if (cpu >= 0) {
6120 /* Will be handled, remove from list */
6121 skb_list_del_init(skb);
6122 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6123 }
6124 }
6125 }
6126 #endif
6127 __netif_receive_skb_list(head);
6128 rcu_read_unlock();
6129 }
6130
6131 /**
6132 * netif_receive_skb - process receive buffer from network
6133 * @skb: buffer to process
6134 *
6135 * netif_receive_skb() is the main receive data processing function.
6136 * It always succeeds. The buffer may be dropped during processing
6137 * for congestion control or by the protocol layers.
6138 *
6139 * This function may only be called from softirq context and interrupts
6140 * should be enabled.
6141 *
6142 * Return values (usually ignored):
6143 * NET_RX_SUCCESS: no congestion
6144 * NET_RX_DROP: packet was dropped
6145 */
netif_receive_skb(struct sk_buff * skb)6146 int netif_receive_skb(struct sk_buff *skb)
6147 {
6148 int ret;
6149
6150 trace_netif_receive_skb_entry(skb);
6151
6152 ret = netif_receive_skb_internal(skb);
6153 trace_netif_receive_skb_exit(ret);
6154
6155 return ret;
6156 }
6157 EXPORT_SYMBOL(netif_receive_skb);
6158
6159 /**
6160 * netif_receive_skb_list - process many receive buffers from network
6161 * @head: list of skbs to process.
6162 *
6163 * Since return value of netif_receive_skb() is normally ignored, and
6164 * wouldn't be meaningful for a list, this function returns void.
6165 *
6166 * This function may only be called from softirq context and interrupts
6167 * should be enabled.
6168 */
netif_receive_skb_list(struct list_head * head)6169 void netif_receive_skb_list(struct list_head *head)
6170 {
6171 struct sk_buff *skb;
6172
6173 if (list_empty(head))
6174 return;
6175 if (trace_netif_receive_skb_list_entry_enabled()) {
6176 list_for_each_entry(skb, head, list)
6177 trace_netif_receive_skb_list_entry(skb);
6178 }
6179 netif_receive_skb_list_internal(head);
6180 trace_netif_receive_skb_list_exit(0);
6181 }
6182 EXPORT_SYMBOL(netif_receive_skb_list);
6183
6184 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6185 static void flush_backlog(struct work_struct *work)
6186 {
6187 struct sk_buff *skb, *tmp;
6188 struct sk_buff_head list;
6189 struct softnet_data *sd;
6190
6191 __skb_queue_head_init(&list);
6192 local_bh_disable();
6193 sd = this_cpu_ptr(&softnet_data);
6194
6195 backlog_lock_irq_disable(sd);
6196 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6197 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6198 __skb_unlink(skb, &sd->input_pkt_queue);
6199 __skb_queue_tail(&list, skb);
6200 rps_input_queue_head_incr(sd);
6201 }
6202 }
6203 backlog_unlock_irq_enable(sd);
6204
6205 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6206 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6207 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6208 __skb_unlink(skb, &sd->process_queue);
6209 __skb_queue_tail(&list, skb);
6210 rps_input_queue_head_incr(sd);
6211 }
6212 }
6213 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6214 local_bh_enable();
6215
6216 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6217 }
6218
flush_required(int cpu)6219 static bool flush_required(int cpu)
6220 {
6221 #if IS_ENABLED(CONFIG_RPS)
6222 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6223 bool do_flush;
6224
6225 backlog_lock_irq_disable(sd);
6226
6227 /* as insertion into process_queue happens with the rps lock held,
6228 * process_queue access may race only with dequeue
6229 */
6230 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6231 !skb_queue_empty_lockless(&sd->process_queue);
6232 backlog_unlock_irq_enable(sd);
6233
6234 return do_flush;
6235 #endif
6236 /* without RPS we can't safely check input_pkt_queue: during a
6237 * concurrent remote skb_queue_splice() we can detect as empty both
6238 * input_pkt_queue and process_queue even if the latter could end-up
6239 * containing a lot of packets.
6240 */
6241 return true;
6242 }
6243
6244 struct flush_backlogs {
6245 cpumask_t flush_cpus;
6246 struct work_struct w[];
6247 };
6248
flush_backlogs_alloc(void)6249 static struct flush_backlogs *flush_backlogs_alloc(void)
6250 {
6251 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6252 GFP_KERNEL);
6253 }
6254
6255 static struct flush_backlogs *flush_backlogs_fallback;
6256 static DEFINE_MUTEX(flush_backlogs_mutex);
6257
flush_all_backlogs(void)6258 static void flush_all_backlogs(void)
6259 {
6260 struct flush_backlogs *ptr = flush_backlogs_alloc();
6261 unsigned int cpu;
6262
6263 if (!ptr) {
6264 mutex_lock(&flush_backlogs_mutex);
6265 ptr = flush_backlogs_fallback;
6266 }
6267 cpumask_clear(&ptr->flush_cpus);
6268
6269 cpus_read_lock();
6270
6271 for_each_online_cpu(cpu) {
6272 if (flush_required(cpu)) {
6273 INIT_WORK(&ptr->w[cpu], flush_backlog);
6274 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6275 __cpumask_set_cpu(cpu, &ptr->flush_cpus);
6276 }
6277 }
6278
6279 /* we can have in flight packet[s] on the cpus we are not flushing,
6280 * synchronize_net() in unregister_netdevice_many() will take care of
6281 * them.
6282 */
6283 for_each_cpu(cpu, &ptr->flush_cpus)
6284 flush_work(&ptr->w[cpu]);
6285
6286 cpus_read_unlock();
6287
6288 if (ptr != flush_backlogs_fallback)
6289 kfree(ptr);
6290 else
6291 mutex_unlock(&flush_backlogs_mutex);
6292 }
6293
net_rps_send_ipi(struct softnet_data * remsd)6294 static void net_rps_send_ipi(struct softnet_data *remsd)
6295 {
6296 #ifdef CONFIG_RPS
6297 while (remsd) {
6298 struct softnet_data *next = remsd->rps_ipi_next;
6299
6300 if (cpu_online(remsd->cpu))
6301 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6302 remsd = next;
6303 }
6304 #endif
6305 }
6306
6307 /*
6308 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6309 * Note: called with local irq disabled, but exits with local irq enabled.
6310 */
net_rps_action_and_irq_enable(struct softnet_data * sd)6311 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6312 {
6313 #ifdef CONFIG_RPS
6314 struct softnet_data *remsd = sd->rps_ipi_list;
6315
6316 if (!use_backlog_threads() && remsd) {
6317 sd->rps_ipi_list = NULL;
6318
6319 local_irq_enable();
6320
6321 /* Send pending IPI's to kick RPS processing on remote cpus. */
6322 net_rps_send_ipi(remsd);
6323 } else
6324 #endif
6325 local_irq_enable();
6326 }
6327
sd_has_rps_ipi_waiting(struct softnet_data * sd)6328 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6329 {
6330 #ifdef CONFIG_RPS
6331 return !use_backlog_threads() && sd->rps_ipi_list;
6332 #else
6333 return false;
6334 #endif
6335 }
6336
process_backlog(struct napi_struct * napi,int quota)6337 static int process_backlog(struct napi_struct *napi, int quota)
6338 {
6339 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6340 bool again = true;
6341 int work = 0;
6342
6343 /* Check if we have pending ipi, its better to send them now,
6344 * not waiting net_rx_action() end.
6345 */
6346 if (sd_has_rps_ipi_waiting(sd)) {
6347 local_irq_disable();
6348 net_rps_action_and_irq_enable(sd);
6349 }
6350
6351 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6352 while (again) {
6353 struct sk_buff *skb;
6354
6355 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6356 while ((skb = __skb_dequeue(&sd->process_queue))) {
6357 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6358 rcu_read_lock();
6359 __netif_receive_skb(skb);
6360 rcu_read_unlock();
6361 if (++work >= quota) {
6362 rps_input_queue_head_add(sd, work);
6363 return work;
6364 }
6365
6366 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6367 }
6368 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6369
6370 backlog_lock_irq_disable(sd);
6371 if (skb_queue_empty(&sd->input_pkt_queue)) {
6372 /*
6373 * Inline a custom version of __napi_complete().
6374 * only current cpu owns and manipulates this napi,
6375 * and NAPI_STATE_SCHED is the only possible flag set
6376 * on backlog.
6377 * We can use a plain write instead of clear_bit(),
6378 * and we dont need an smp_mb() memory barrier.
6379 */
6380 napi->state &= NAPIF_STATE_THREADED;
6381 again = false;
6382 } else {
6383 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6384 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6385 &sd->process_queue);
6386 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6387 }
6388 backlog_unlock_irq_enable(sd);
6389 }
6390
6391 if (work)
6392 rps_input_queue_head_add(sd, work);
6393 return work;
6394 }
6395
6396 /**
6397 * __napi_schedule - schedule for receive
6398 * @n: entry to schedule
6399 *
6400 * The entry's receive function will be scheduled to run.
6401 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6402 */
__napi_schedule(struct napi_struct * n)6403 void __napi_schedule(struct napi_struct *n)
6404 {
6405 unsigned long flags;
6406
6407 local_irq_save(flags);
6408 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6409 local_irq_restore(flags);
6410 }
6411 EXPORT_SYMBOL(__napi_schedule);
6412
6413 /**
6414 * napi_schedule_prep - check if napi can be scheduled
6415 * @n: napi context
6416 *
6417 * Test if NAPI routine is already running, and if not mark
6418 * it as running. This is used as a condition variable to
6419 * insure only one NAPI poll instance runs. We also make
6420 * sure there is no pending NAPI disable.
6421 */
napi_schedule_prep(struct napi_struct * n)6422 bool napi_schedule_prep(struct napi_struct *n)
6423 {
6424 unsigned long new, val = READ_ONCE(n->state);
6425
6426 do {
6427 if (unlikely(val & NAPIF_STATE_DISABLE))
6428 return false;
6429 new = val | NAPIF_STATE_SCHED;
6430
6431 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6432 * This was suggested by Alexander Duyck, as compiler
6433 * emits better code than :
6434 * if (val & NAPIF_STATE_SCHED)
6435 * new |= NAPIF_STATE_MISSED;
6436 */
6437 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6438 NAPIF_STATE_MISSED;
6439 } while (!try_cmpxchg(&n->state, &val, new));
6440
6441 return !(val & NAPIF_STATE_SCHED);
6442 }
6443 EXPORT_SYMBOL(napi_schedule_prep);
6444
6445 /**
6446 * __napi_schedule_irqoff - schedule for receive
6447 * @n: entry to schedule
6448 *
6449 * Variant of __napi_schedule() assuming hard irqs are masked.
6450 *
6451 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6452 * because the interrupt disabled assumption might not be true
6453 * due to force-threaded interrupts and spinlock substitution.
6454 */
__napi_schedule_irqoff(struct napi_struct * n)6455 void __napi_schedule_irqoff(struct napi_struct *n)
6456 {
6457 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6458 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6459 else
6460 __napi_schedule(n);
6461 }
6462 EXPORT_SYMBOL(__napi_schedule_irqoff);
6463
napi_complete_done(struct napi_struct * n,int work_done)6464 bool napi_complete_done(struct napi_struct *n, int work_done)
6465 {
6466 unsigned long flags, val, new, timeout = 0;
6467 bool ret = true;
6468
6469 /*
6470 * 1) Don't let napi dequeue from the cpu poll list
6471 * just in case its running on a different cpu.
6472 * 2) If we are busy polling, do nothing here, we have
6473 * the guarantee we will be called later.
6474 */
6475 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6476 NAPIF_STATE_IN_BUSY_POLL)))
6477 return false;
6478
6479 if (work_done) {
6480 if (n->gro.bitmask)
6481 timeout = napi_get_gro_flush_timeout(n);
6482 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6483 }
6484 if (n->defer_hard_irqs_count > 0) {
6485 n->defer_hard_irqs_count--;
6486 timeout = napi_get_gro_flush_timeout(n);
6487 if (timeout)
6488 ret = false;
6489 }
6490
6491 /*
6492 * When the NAPI instance uses a timeout and keeps postponing
6493 * it, we need to bound somehow the time packets are kept in
6494 * the GRO layer.
6495 */
6496 gro_flush(&n->gro, !!timeout);
6497 gro_normal_list(&n->gro);
6498
6499 if (unlikely(!list_empty(&n->poll_list))) {
6500 /* If n->poll_list is not empty, we need to mask irqs */
6501 local_irq_save(flags);
6502 list_del_init(&n->poll_list);
6503 local_irq_restore(flags);
6504 }
6505 WRITE_ONCE(n->list_owner, -1);
6506
6507 val = READ_ONCE(n->state);
6508 do {
6509 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6510
6511 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6512 NAPIF_STATE_SCHED_THREADED |
6513 NAPIF_STATE_PREFER_BUSY_POLL);
6514
6515 /* If STATE_MISSED was set, leave STATE_SCHED set,
6516 * because we will call napi->poll() one more time.
6517 * This C code was suggested by Alexander Duyck to help gcc.
6518 */
6519 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6520 NAPIF_STATE_SCHED;
6521 } while (!try_cmpxchg(&n->state, &val, new));
6522
6523 if (unlikely(val & NAPIF_STATE_MISSED)) {
6524 __napi_schedule(n);
6525 return false;
6526 }
6527
6528 if (timeout)
6529 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6530 HRTIMER_MODE_REL_PINNED);
6531 return ret;
6532 }
6533 EXPORT_SYMBOL(napi_complete_done);
6534
skb_defer_free_flush(struct softnet_data * sd)6535 static void skb_defer_free_flush(struct softnet_data *sd)
6536 {
6537 struct sk_buff *skb, *next;
6538
6539 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6540 if (!READ_ONCE(sd->defer_list))
6541 return;
6542
6543 spin_lock(&sd->defer_lock);
6544 skb = sd->defer_list;
6545 sd->defer_list = NULL;
6546 sd->defer_count = 0;
6547 spin_unlock(&sd->defer_lock);
6548
6549 while (skb != NULL) {
6550 next = skb->next;
6551 napi_consume_skb(skb, 1);
6552 skb = next;
6553 }
6554 }
6555
6556 #if defined(CONFIG_NET_RX_BUSY_POLL)
6557
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6558 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6559 {
6560 if (!skip_schedule) {
6561 gro_normal_list(&napi->gro);
6562 __napi_schedule(napi);
6563 return;
6564 }
6565
6566 /* Flush too old packets. If HZ < 1000, flush all packets */
6567 gro_flush(&napi->gro, HZ >= 1000);
6568 gro_normal_list(&napi->gro);
6569
6570 clear_bit(NAPI_STATE_SCHED, &napi->state);
6571 }
6572
6573 enum {
6574 NAPI_F_PREFER_BUSY_POLL = 1,
6575 NAPI_F_END_ON_RESCHED = 2,
6576 };
6577
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6578 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6579 unsigned flags, u16 budget)
6580 {
6581 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6582 bool skip_schedule = false;
6583 unsigned long timeout;
6584 int rc;
6585
6586 /* Busy polling means there is a high chance device driver hard irq
6587 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6588 * set in napi_schedule_prep().
6589 * Since we are about to call napi->poll() once more, we can safely
6590 * clear NAPI_STATE_MISSED.
6591 *
6592 * Note: x86 could use a single "lock and ..." instruction
6593 * to perform these two clear_bit()
6594 */
6595 clear_bit(NAPI_STATE_MISSED, &napi->state);
6596 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6597
6598 local_bh_disable();
6599 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6600
6601 if (flags & NAPI_F_PREFER_BUSY_POLL) {
6602 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6603 timeout = napi_get_gro_flush_timeout(napi);
6604 if (napi->defer_hard_irqs_count && timeout) {
6605 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6606 skip_schedule = true;
6607 }
6608 }
6609
6610 /* All we really want here is to re-enable device interrupts.
6611 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6612 */
6613 rc = napi->poll(napi, budget);
6614 /* We can't gro_normal_list() here, because napi->poll() might have
6615 * rearmed the napi (napi_complete_done()) in which case it could
6616 * already be running on another CPU.
6617 */
6618 trace_napi_poll(napi, rc, budget);
6619 netpoll_poll_unlock(have_poll_lock);
6620 if (rc == budget)
6621 __busy_poll_stop(napi, skip_schedule);
6622 bpf_net_ctx_clear(bpf_net_ctx);
6623 local_bh_enable();
6624 }
6625
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6626 static void __napi_busy_loop(unsigned int napi_id,
6627 bool (*loop_end)(void *, unsigned long),
6628 void *loop_end_arg, unsigned flags, u16 budget)
6629 {
6630 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6631 int (*napi_poll)(struct napi_struct *napi, int budget);
6632 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6633 void *have_poll_lock = NULL;
6634 struct napi_struct *napi;
6635
6636 WARN_ON_ONCE(!rcu_read_lock_held());
6637
6638 restart:
6639 napi_poll = NULL;
6640
6641 napi = napi_by_id(napi_id);
6642 if (!napi)
6643 return;
6644
6645 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6646 preempt_disable();
6647 for (;;) {
6648 int work = 0;
6649
6650 local_bh_disable();
6651 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6652 if (!napi_poll) {
6653 unsigned long val = READ_ONCE(napi->state);
6654
6655 /* If multiple threads are competing for this napi,
6656 * we avoid dirtying napi->state as much as we can.
6657 */
6658 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6659 NAPIF_STATE_IN_BUSY_POLL)) {
6660 if (flags & NAPI_F_PREFER_BUSY_POLL)
6661 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6662 goto count;
6663 }
6664 if (cmpxchg(&napi->state, val,
6665 val | NAPIF_STATE_IN_BUSY_POLL |
6666 NAPIF_STATE_SCHED) != val) {
6667 if (flags & NAPI_F_PREFER_BUSY_POLL)
6668 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6669 goto count;
6670 }
6671 have_poll_lock = netpoll_poll_lock(napi);
6672 napi_poll = napi->poll;
6673 }
6674 work = napi_poll(napi, budget);
6675 trace_napi_poll(napi, work, budget);
6676 gro_normal_list(&napi->gro);
6677 count:
6678 if (work > 0)
6679 __NET_ADD_STATS(dev_net(napi->dev),
6680 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6681 skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6682 bpf_net_ctx_clear(bpf_net_ctx);
6683 local_bh_enable();
6684
6685 if (!loop_end || loop_end(loop_end_arg, start_time))
6686 break;
6687
6688 if (unlikely(need_resched())) {
6689 if (flags & NAPI_F_END_ON_RESCHED)
6690 break;
6691 if (napi_poll)
6692 busy_poll_stop(napi, have_poll_lock, flags, budget);
6693 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6694 preempt_enable();
6695 rcu_read_unlock();
6696 cond_resched();
6697 rcu_read_lock();
6698 if (loop_end(loop_end_arg, start_time))
6699 return;
6700 goto restart;
6701 }
6702 cpu_relax();
6703 }
6704 if (napi_poll)
6705 busy_poll_stop(napi, have_poll_lock, flags, budget);
6706 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6707 preempt_enable();
6708 }
6709
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6710 void napi_busy_loop_rcu(unsigned int napi_id,
6711 bool (*loop_end)(void *, unsigned long),
6712 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6713 {
6714 unsigned flags = NAPI_F_END_ON_RESCHED;
6715
6716 if (prefer_busy_poll)
6717 flags |= NAPI_F_PREFER_BUSY_POLL;
6718
6719 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6720 }
6721
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6722 void napi_busy_loop(unsigned int napi_id,
6723 bool (*loop_end)(void *, unsigned long),
6724 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6725 {
6726 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6727
6728 rcu_read_lock();
6729 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6730 rcu_read_unlock();
6731 }
6732 EXPORT_SYMBOL(napi_busy_loop);
6733
napi_suspend_irqs(unsigned int napi_id)6734 void napi_suspend_irqs(unsigned int napi_id)
6735 {
6736 struct napi_struct *napi;
6737
6738 rcu_read_lock();
6739 napi = napi_by_id(napi_id);
6740 if (napi) {
6741 unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6742
6743 if (timeout)
6744 hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6745 HRTIMER_MODE_REL_PINNED);
6746 }
6747 rcu_read_unlock();
6748 }
6749
napi_resume_irqs(unsigned int napi_id)6750 void napi_resume_irqs(unsigned int napi_id)
6751 {
6752 struct napi_struct *napi;
6753
6754 rcu_read_lock();
6755 napi = napi_by_id(napi_id);
6756 if (napi) {
6757 /* If irq_suspend_timeout is set to 0 between the call to
6758 * napi_suspend_irqs and now, the original value still
6759 * determines the safety timeout as intended and napi_watchdog
6760 * will resume irq processing.
6761 */
6762 if (napi_get_irq_suspend_timeout(napi)) {
6763 local_bh_disable();
6764 napi_schedule(napi);
6765 local_bh_enable();
6766 }
6767 }
6768 rcu_read_unlock();
6769 }
6770
6771 #endif /* CONFIG_NET_RX_BUSY_POLL */
6772
__napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6773 static void __napi_hash_add_with_id(struct napi_struct *napi,
6774 unsigned int napi_id)
6775 {
6776 napi->gro.cached_napi_id = napi_id;
6777
6778 WRITE_ONCE(napi->napi_id, napi_id);
6779 hlist_add_head_rcu(&napi->napi_hash_node,
6780 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6781 }
6782
napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6783 static void napi_hash_add_with_id(struct napi_struct *napi,
6784 unsigned int napi_id)
6785 {
6786 unsigned long flags;
6787
6788 spin_lock_irqsave(&napi_hash_lock, flags);
6789 WARN_ON_ONCE(napi_by_id(napi_id));
6790 __napi_hash_add_with_id(napi, napi_id);
6791 spin_unlock_irqrestore(&napi_hash_lock, flags);
6792 }
6793
napi_hash_add(struct napi_struct * napi)6794 static void napi_hash_add(struct napi_struct *napi)
6795 {
6796 unsigned long flags;
6797
6798 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6799 return;
6800
6801 spin_lock_irqsave(&napi_hash_lock, flags);
6802
6803 /* 0..NR_CPUS range is reserved for sender_cpu use */
6804 do {
6805 if (unlikely(!napi_id_valid(++napi_gen_id)))
6806 napi_gen_id = MIN_NAPI_ID;
6807 } while (napi_by_id(napi_gen_id));
6808
6809 __napi_hash_add_with_id(napi, napi_gen_id);
6810
6811 spin_unlock_irqrestore(&napi_hash_lock, flags);
6812 }
6813
6814 /* Warning : caller is responsible to make sure rcu grace period
6815 * is respected before freeing memory containing @napi
6816 */
napi_hash_del(struct napi_struct * napi)6817 static void napi_hash_del(struct napi_struct *napi)
6818 {
6819 unsigned long flags;
6820
6821 spin_lock_irqsave(&napi_hash_lock, flags);
6822
6823 hlist_del_init_rcu(&napi->napi_hash_node);
6824
6825 spin_unlock_irqrestore(&napi_hash_lock, flags);
6826 }
6827
napi_watchdog(struct hrtimer * timer)6828 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6829 {
6830 struct napi_struct *napi;
6831
6832 napi = container_of(timer, struct napi_struct, timer);
6833
6834 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6835 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6836 */
6837 if (!napi_disable_pending(napi) &&
6838 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6839 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6840 __napi_schedule_irqoff(napi);
6841 }
6842
6843 return HRTIMER_NORESTART;
6844 }
6845
dev_set_threaded(struct net_device * dev,bool threaded)6846 int dev_set_threaded(struct net_device *dev, bool threaded)
6847 {
6848 struct napi_struct *napi;
6849 int err = 0;
6850
6851 netdev_assert_locked_or_invisible(dev);
6852
6853 if (dev->threaded == threaded)
6854 return 0;
6855
6856 if (threaded) {
6857 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6858 if (!napi->thread) {
6859 err = napi_kthread_create(napi);
6860 if (err) {
6861 threaded = false;
6862 break;
6863 }
6864 }
6865 }
6866 }
6867
6868 WRITE_ONCE(dev->threaded, threaded);
6869
6870 /* Make sure kthread is created before THREADED bit
6871 * is set.
6872 */
6873 smp_mb__before_atomic();
6874
6875 /* Setting/unsetting threaded mode on a napi might not immediately
6876 * take effect, if the current napi instance is actively being
6877 * polled. In this case, the switch between threaded mode and
6878 * softirq mode will happen in the next round of napi_schedule().
6879 * This should not cause hiccups/stalls to the live traffic.
6880 */
6881 list_for_each_entry(napi, &dev->napi_list, dev_list)
6882 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6883
6884 return err;
6885 }
6886 EXPORT_SYMBOL(dev_set_threaded);
6887
6888 /**
6889 * netif_queue_set_napi - Associate queue with the napi
6890 * @dev: device to which NAPI and queue belong
6891 * @queue_index: Index of queue
6892 * @type: queue type as RX or TX
6893 * @napi: NAPI context, pass NULL to clear previously set NAPI
6894 *
6895 * Set queue with its corresponding napi context. This should be done after
6896 * registering the NAPI handler for the queue-vector and the queues have been
6897 * mapped to the corresponding interrupt vector.
6898 */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)6899 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6900 enum netdev_queue_type type, struct napi_struct *napi)
6901 {
6902 struct netdev_rx_queue *rxq;
6903 struct netdev_queue *txq;
6904
6905 if (WARN_ON_ONCE(napi && !napi->dev))
6906 return;
6907 netdev_ops_assert_locked_or_invisible(dev);
6908
6909 switch (type) {
6910 case NETDEV_QUEUE_TYPE_RX:
6911 rxq = __netif_get_rx_queue(dev, queue_index);
6912 rxq->napi = napi;
6913 return;
6914 case NETDEV_QUEUE_TYPE_TX:
6915 txq = netdev_get_tx_queue(dev, queue_index);
6916 txq->napi = napi;
6917 return;
6918 default:
6919 return;
6920 }
6921 }
6922 EXPORT_SYMBOL(netif_queue_set_napi);
6923
6924 static void
netif_napi_irq_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)6925 netif_napi_irq_notify(struct irq_affinity_notify *notify,
6926 const cpumask_t *mask)
6927 {
6928 struct napi_struct *napi =
6929 container_of(notify, struct napi_struct, notify);
6930 #ifdef CONFIG_RFS_ACCEL
6931 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6932 int err;
6933 #endif
6934
6935 if (napi->config && napi->dev->irq_affinity_auto)
6936 cpumask_copy(&napi->config->affinity_mask, mask);
6937
6938 #ifdef CONFIG_RFS_ACCEL
6939 if (napi->dev->rx_cpu_rmap_auto) {
6940 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
6941 if (err)
6942 netdev_warn(napi->dev, "RMAP update failed (%d)\n",
6943 err);
6944 }
6945 #endif
6946 }
6947
6948 #ifdef CONFIG_RFS_ACCEL
netif_napi_affinity_release(struct kref * ref)6949 static void netif_napi_affinity_release(struct kref *ref)
6950 {
6951 struct napi_struct *napi =
6952 container_of(ref, struct napi_struct, notify.kref);
6953 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6954
6955 netdev_assert_locked(napi->dev);
6956 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
6957 &napi->state));
6958
6959 if (!napi->dev->rx_cpu_rmap_auto)
6960 return;
6961 rmap->obj[napi->napi_rmap_idx] = NULL;
6962 napi->napi_rmap_idx = -1;
6963 cpu_rmap_put(rmap);
6964 }
6965
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)6966 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6967 {
6968 if (dev->rx_cpu_rmap_auto)
6969 return 0;
6970
6971 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
6972 if (!dev->rx_cpu_rmap)
6973 return -ENOMEM;
6974
6975 dev->rx_cpu_rmap_auto = true;
6976 return 0;
6977 }
6978 EXPORT_SYMBOL(netif_enable_cpu_rmap);
6979
netif_del_cpu_rmap(struct net_device * dev)6980 static void netif_del_cpu_rmap(struct net_device *dev)
6981 {
6982 struct cpu_rmap *rmap = dev->rx_cpu_rmap;
6983
6984 if (!dev->rx_cpu_rmap_auto)
6985 return;
6986
6987 /* Free the rmap */
6988 cpu_rmap_put(rmap);
6989 dev->rx_cpu_rmap = NULL;
6990 dev->rx_cpu_rmap_auto = false;
6991 }
6992
6993 #else
netif_napi_affinity_release(struct kref * ref)6994 static void netif_napi_affinity_release(struct kref *ref)
6995 {
6996 }
6997
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)6998 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6999 {
7000 return 0;
7001 }
7002 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7003
netif_del_cpu_rmap(struct net_device * dev)7004 static void netif_del_cpu_rmap(struct net_device *dev)
7005 {
7006 }
7007 #endif
7008
netif_set_affinity_auto(struct net_device * dev)7009 void netif_set_affinity_auto(struct net_device *dev)
7010 {
7011 unsigned int i, maxqs, numa;
7012
7013 maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7014 numa = dev_to_node(&dev->dev);
7015
7016 for (i = 0; i < maxqs; i++)
7017 cpumask_set_cpu(cpumask_local_spread(i, numa),
7018 &dev->napi_config[i].affinity_mask);
7019
7020 dev->irq_affinity_auto = true;
7021 }
7022 EXPORT_SYMBOL(netif_set_affinity_auto);
7023
netif_napi_set_irq_locked(struct napi_struct * napi,int irq)7024 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7025 {
7026 int rc;
7027
7028 netdev_assert_locked_or_invisible(napi->dev);
7029
7030 if (napi->irq == irq)
7031 return;
7032
7033 /* Remove existing resources */
7034 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7035 irq_set_affinity_notifier(napi->irq, NULL);
7036
7037 napi->irq = irq;
7038 if (irq < 0 ||
7039 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7040 return;
7041
7042 /* Abort for buggy drivers */
7043 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7044 return;
7045
7046 #ifdef CONFIG_RFS_ACCEL
7047 if (napi->dev->rx_cpu_rmap_auto) {
7048 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7049 if (rc < 0)
7050 return;
7051
7052 cpu_rmap_get(napi->dev->rx_cpu_rmap);
7053 napi->napi_rmap_idx = rc;
7054 }
7055 #endif
7056
7057 /* Use core IRQ notifier */
7058 napi->notify.notify = netif_napi_irq_notify;
7059 napi->notify.release = netif_napi_affinity_release;
7060 rc = irq_set_affinity_notifier(irq, &napi->notify);
7061 if (rc) {
7062 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7063 rc);
7064 goto put_rmap;
7065 }
7066
7067 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7068 return;
7069
7070 put_rmap:
7071 #ifdef CONFIG_RFS_ACCEL
7072 if (napi->dev->rx_cpu_rmap_auto) {
7073 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7074 cpu_rmap_put(napi->dev->rx_cpu_rmap);
7075 napi->napi_rmap_idx = -1;
7076 }
7077 #endif
7078 napi->notify.notify = NULL;
7079 napi->notify.release = NULL;
7080 }
7081 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7082
napi_restore_config(struct napi_struct * n)7083 static void napi_restore_config(struct napi_struct *n)
7084 {
7085 n->defer_hard_irqs = n->config->defer_hard_irqs;
7086 n->gro_flush_timeout = n->config->gro_flush_timeout;
7087 n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7088
7089 if (n->dev->irq_affinity_auto &&
7090 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7091 irq_set_affinity(n->irq, &n->config->affinity_mask);
7092
7093 /* a NAPI ID might be stored in the config, if so use it. if not, use
7094 * napi_hash_add to generate one for us.
7095 */
7096 if (n->config->napi_id) {
7097 napi_hash_add_with_id(n, n->config->napi_id);
7098 } else {
7099 napi_hash_add(n);
7100 n->config->napi_id = n->napi_id;
7101 }
7102 }
7103
napi_save_config(struct napi_struct * n)7104 static void napi_save_config(struct napi_struct *n)
7105 {
7106 n->config->defer_hard_irqs = n->defer_hard_irqs;
7107 n->config->gro_flush_timeout = n->gro_flush_timeout;
7108 n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7109 napi_hash_del(n);
7110 }
7111
7112 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7113 * inherit an existing ID try to insert it at the right position.
7114 */
7115 static void
netif_napi_dev_list_add(struct net_device * dev,struct napi_struct * napi)7116 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7117 {
7118 unsigned int new_id, pos_id;
7119 struct list_head *higher;
7120 struct napi_struct *pos;
7121
7122 new_id = UINT_MAX;
7123 if (napi->config && napi->config->napi_id)
7124 new_id = napi->config->napi_id;
7125
7126 higher = &dev->napi_list;
7127 list_for_each_entry(pos, &dev->napi_list, dev_list) {
7128 if (napi_id_valid(pos->napi_id))
7129 pos_id = pos->napi_id;
7130 else if (pos->config)
7131 pos_id = pos->config->napi_id;
7132 else
7133 pos_id = UINT_MAX;
7134
7135 if (pos_id <= new_id)
7136 break;
7137 higher = &pos->dev_list;
7138 }
7139 list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7140 }
7141
7142 /* Double check that napi_get_frags() allocates skbs with
7143 * skb->head being backed by slab, not a page fragment.
7144 * This is to make sure bug fixed in 3226b158e67c
7145 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7146 * does not accidentally come back.
7147 */
napi_get_frags_check(struct napi_struct * napi)7148 static void napi_get_frags_check(struct napi_struct *napi)
7149 {
7150 struct sk_buff *skb;
7151
7152 local_bh_disable();
7153 skb = napi_get_frags(napi);
7154 WARN_ON_ONCE(skb && skb->head_frag);
7155 napi_free_frags(napi);
7156 local_bh_enable();
7157 }
7158
netif_napi_add_weight_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)7159 void netif_napi_add_weight_locked(struct net_device *dev,
7160 struct napi_struct *napi,
7161 int (*poll)(struct napi_struct *, int),
7162 int weight)
7163 {
7164 netdev_assert_locked(dev);
7165 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7166 return;
7167
7168 INIT_LIST_HEAD(&napi->poll_list);
7169 INIT_HLIST_NODE(&napi->napi_hash_node);
7170 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7171 gro_init(&napi->gro);
7172 napi->skb = NULL;
7173 napi->poll = poll;
7174 if (weight > NAPI_POLL_WEIGHT)
7175 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7176 weight);
7177 napi->weight = weight;
7178 napi->dev = dev;
7179 #ifdef CONFIG_NETPOLL
7180 napi->poll_owner = -1;
7181 #endif
7182 napi->list_owner = -1;
7183 set_bit(NAPI_STATE_SCHED, &napi->state);
7184 set_bit(NAPI_STATE_NPSVC, &napi->state);
7185 netif_napi_dev_list_add(dev, napi);
7186
7187 /* default settings from sysfs are applied to all NAPIs. any per-NAPI
7188 * configuration will be loaded in napi_enable
7189 */
7190 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7191 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7192
7193 napi_get_frags_check(napi);
7194 /* Create kthread for this napi if dev->threaded is set.
7195 * Clear dev->threaded if kthread creation failed so that
7196 * threaded mode will not be enabled in napi_enable().
7197 */
7198 if (dev->threaded && napi_kthread_create(napi))
7199 dev->threaded = false;
7200 netif_napi_set_irq_locked(napi, -1);
7201 }
7202 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7203
napi_disable_locked(struct napi_struct * n)7204 void napi_disable_locked(struct napi_struct *n)
7205 {
7206 unsigned long val, new;
7207
7208 might_sleep();
7209 netdev_assert_locked(n->dev);
7210
7211 set_bit(NAPI_STATE_DISABLE, &n->state);
7212
7213 val = READ_ONCE(n->state);
7214 do {
7215 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7216 usleep_range(20, 200);
7217 val = READ_ONCE(n->state);
7218 }
7219
7220 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7221 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7222 } while (!try_cmpxchg(&n->state, &val, new));
7223
7224 hrtimer_cancel(&n->timer);
7225
7226 if (n->config)
7227 napi_save_config(n);
7228 else
7229 napi_hash_del(n);
7230
7231 clear_bit(NAPI_STATE_DISABLE, &n->state);
7232 }
7233 EXPORT_SYMBOL(napi_disable_locked);
7234
7235 /**
7236 * napi_disable() - prevent NAPI from scheduling
7237 * @n: NAPI context
7238 *
7239 * Stop NAPI from being scheduled on this context.
7240 * Waits till any outstanding processing completes.
7241 * Takes netdev_lock() for associated net_device.
7242 */
napi_disable(struct napi_struct * n)7243 void napi_disable(struct napi_struct *n)
7244 {
7245 netdev_lock(n->dev);
7246 napi_disable_locked(n);
7247 netdev_unlock(n->dev);
7248 }
7249 EXPORT_SYMBOL(napi_disable);
7250
napi_enable_locked(struct napi_struct * n)7251 void napi_enable_locked(struct napi_struct *n)
7252 {
7253 unsigned long new, val = READ_ONCE(n->state);
7254
7255 if (n->config)
7256 napi_restore_config(n);
7257 else
7258 napi_hash_add(n);
7259
7260 do {
7261 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7262
7263 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7264 if (n->dev->threaded && n->thread)
7265 new |= NAPIF_STATE_THREADED;
7266 } while (!try_cmpxchg(&n->state, &val, new));
7267 }
7268 EXPORT_SYMBOL(napi_enable_locked);
7269
7270 /**
7271 * napi_enable() - enable NAPI scheduling
7272 * @n: NAPI context
7273 *
7274 * Enable scheduling of a NAPI instance.
7275 * Must be paired with napi_disable().
7276 * Takes netdev_lock() for associated net_device.
7277 */
napi_enable(struct napi_struct * n)7278 void napi_enable(struct napi_struct *n)
7279 {
7280 netdev_lock(n->dev);
7281 napi_enable_locked(n);
7282 netdev_unlock(n->dev);
7283 }
7284 EXPORT_SYMBOL(napi_enable);
7285
7286 /* Must be called in process context */
__netif_napi_del_locked(struct napi_struct * napi)7287 void __netif_napi_del_locked(struct napi_struct *napi)
7288 {
7289 netdev_assert_locked(napi->dev);
7290
7291 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7292 return;
7293
7294 /* Make sure NAPI is disabled (or was never enabled). */
7295 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7296
7297 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7298 irq_set_affinity_notifier(napi->irq, NULL);
7299
7300 if (napi->config) {
7301 napi->index = -1;
7302 napi->config = NULL;
7303 }
7304
7305 list_del_rcu(&napi->dev_list);
7306 napi_free_frags(napi);
7307
7308 gro_cleanup(&napi->gro);
7309
7310 if (napi->thread) {
7311 kthread_stop(napi->thread);
7312 napi->thread = NULL;
7313 }
7314 }
7315 EXPORT_SYMBOL(__netif_napi_del_locked);
7316
__napi_poll(struct napi_struct * n,bool * repoll)7317 static int __napi_poll(struct napi_struct *n, bool *repoll)
7318 {
7319 int work, weight;
7320
7321 weight = n->weight;
7322
7323 /* This NAPI_STATE_SCHED test is for avoiding a race
7324 * with netpoll's poll_napi(). Only the entity which
7325 * obtains the lock and sees NAPI_STATE_SCHED set will
7326 * actually make the ->poll() call. Therefore we avoid
7327 * accidentally calling ->poll() when NAPI is not scheduled.
7328 */
7329 work = 0;
7330 if (napi_is_scheduled(n)) {
7331 work = n->poll(n, weight);
7332 trace_napi_poll(n, work, weight);
7333
7334 xdp_do_check_flushed(n);
7335 }
7336
7337 if (unlikely(work > weight))
7338 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7339 n->poll, work, weight);
7340
7341 if (likely(work < weight))
7342 return work;
7343
7344 /* Drivers must not modify the NAPI state if they
7345 * consume the entire weight. In such cases this code
7346 * still "owns" the NAPI instance and therefore can
7347 * move the instance around on the list at-will.
7348 */
7349 if (unlikely(napi_disable_pending(n))) {
7350 napi_complete(n);
7351 return work;
7352 }
7353
7354 /* The NAPI context has more processing work, but busy-polling
7355 * is preferred. Exit early.
7356 */
7357 if (napi_prefer_busy_poll(n)) {
7358 if (napi_complete_done(n, work)) {
7359 /* If timeout is not set, we need to make sure
7360 * that the NAPI is re-scheduled.
7361 */
7362 napi_schedule(n);
7363 }
7364 return work;
7365 }
7366
7367 /* Flush too old packets. If HZ < 1000, flush all packets */
7368 gro_flush(&n->gro, HZ >= 1000);
7369 gro_normal_list(&n->gro);
7370
7371 /* Some drivers may have called napi_schedule
7372 * prior to exhausting their budget.
7373 */
7374 if (unlikely(!list_empty(&n->poll_list))) {
7375 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7376 n->dev ? n->dev->name : "backlog");
7377 return work;
7378 }
7379
7380 *repoll = true;
7381
7382 return work;
7383 }
7384
napi_poll(struct napi_struct * n,struct list_head * repoll)7385 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7386 {
7387 bool do_repoll = false;
7388 void *have;
7389 int work;
7390
7391 list_del_init(&n->poll_list);
7392
7393 have = netpoll_poll_lock(n);
7394
7395 work = __napi_poll(n, &do_repoll);
7396
7397 if (do_repoll)
7398 list_add_tail(&n->poll_list, repoll);
7399
7400 netpoll_poll_unlock(have);
7401
7402 return work;
7403 }
7404
napi_thread_wait(struct napi_struct * napi)7405 static int napi_thread_wait(struct napi_struct *napi)
7406 {
7407 set_current_state(TASK_INTERRUPTIBLE);
7408
7409 while (!kthread_should_stop()) {
7410 /* Testing SCHED_THREADED bit here to make sure the current
7411 * kthread owns this napi and could poll on this napi.
7412 * Testing SCHED bit is not enough because SCHED bit might be
7413 * set by some other busy poll thread or by napi_disable().
7414 */
7415 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7416 WARN_ON(!list_empty(&napi->poll_list));
7417 __set_current_state(TASK_RUNNING);
7418 return 0;
7419 }
7420
7421 schedule();
7422 set_current_state(TASK_INTERRUPTIBLE);
7423 }
7424 __set_current_state(TASK_RUNNING);
7425
7426 return -1;
7427 }
7428
napi_threaded_poll_loop(struct napi_struct * napi)7429 static void napi_threaded_poll_loop(struct napi_struct *napi)
7430 {
7431 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7432 struct softnet_data *sd;
7433 unsigned long last_qs = jiffies;
7434
7435 for (;;) {
7436 bool repoll = false;
7437 void *have;
7438
7439 local_bh_disable();
7440 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7441
7442 sd = this_cpu_ptr(&softnet_data);
7443 sd->in_napi_threaded_poll = true;
7444
7445 have = netpoll_poll_lock(napi);
7446 __napi_poll(napi, &repoll);
7447 netpoll_poll_unlock(have);
7448
7449 sd->in_napi_threaded_poll = false;
7450 barrier();
7451
7452 if (sd_has_rps_ipi_waiting(sd)) {
7453 local_irq_disable();
7454 net_rps_action_and_irq_enable(sd);
7455 }
7456 skb_defer_free_flush(sd);
7457 bpf_net_ctx_clear(bpf_net_ctx);
7458 local_bh_enable();
7459
7460 if (!repoll)
7461 break;
7462
7463 rcu_softirq_qs_periodic(last_qs);
7464 cond_resched();
7465 }
7466 }
7467
napi_threaded_poll(void * data)7468 static int napi_threaded_poll(void *data)
7469 {
7470 struct napi_struct *napi = data;
7471
7472 while (!napi_thread_wait(napi))
7473 napi_threaded_poll_loop(napi);
7474
7475 return 0;
7476 }
7477
net_rx_action(void)7478 static __latent_entropy void net_rx_action(void)
7479 {
7480 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7481 unsigned long time_limit = jiffies +
7482 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7483 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7484 int budget = READ_ONCE(net_hotdata.netdev_budget);
7485 LIST_HEAD(list);
7486 LIST_HEAD(repoll);
7487
7488 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7489 start:
7490 sd->in_net_rx_action = true;
7491 local_irq_disable();
7492 list_splice_init(&sd->poll_list, &list);
7493 local_irq_enable();
7494
7495 for (;;) {
7496 struct napi_struct *n;
7497
7498 skb_defer_free_flush(sd);
7499
7500 if (list_empty(&list)) {
7501 if (list_empty(&repoll)) {
7502 sd->in_net_rx_action = false;
7503 barrier();
7504 /* We need to check if ____napi_schedule()
7505 * had refilled poll_list while
7506 * sd->in_net_rx_action was true.
7507 */
7508 if (!list_empty(&sd->poll_list))
7509 goto start;
7510 if (!sd_has_rps_ipi_waiting(sd))
7511 goto end;
7512 }
7513 break;
7514 }
7515
7516 n = list_first_entry(&list, struct napi_struct, poll_list);
7517 budget -= napi_poll(n, &repoll);
7518
7519 /* If softirq window is exhausted then punt.
7520 * Allow this to run for 2 jiffies since which will allow
7521 * an average latency of 1.5/HZ.
7522 */
7523 if (unlikely(budget <= 0 ||
7524 time_after_eq(jiffies, time_limit))) {
7525 sd->time_squeeze++;
7526 break;
7527 }
7528 }
7529
7530 local_irq_disable();
7531
7532 list_splice_tail_init(&sd->poll_list, &list);
7533 list_splice_tail(&repoll, &list);
7534 list_splice(&list, &sd->poll_list);
7535 if (!list_empty(&sd->poll_list))
7536 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7537 else
7538 sd->in_net_rx_action = false;
7539
7540 net_rps_action_and_irq_enable(sd);
7541 end:
7542 bpf_net_ctx_clear(bpf_net_ctx);
7543 }
7544
7545 struct netdev_adjacent {
7546 struct net_device *dev;
7547 netdevice_tracker dev_tracker;
7548
7549 /* upper master flag, there can only be one master device per list */
7550 bool master;
7551
7552 /* lookup ignore flag */
7553 bool ignore;
7554
7555 /* counter for the number of times this device was added to us */
7556 u16 ref_nr;
7557
7558 /* private field for the users */
7559 void *private;
7560
7561 struct list_head list;
7562 struct rcu_head rcu;
7563 };
7564
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7565 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7566 struct list_head *adj_list)
7567 {
7568 struct netdev_adjacent *adj;
7569
7570 list_for_each_entry(adj, adj_list, list) {
7571 if (adj->dev == adj_dev)
7572 return adj;
7573 }
7574 return NULL;
7575 }
7576
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7577 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7578 struct netdev_nested_priv *priv)
7579 {
7580 struct net_device *dev = (struct net_device *)priv->data;
7581
7582 return upper_dev == dev;
7583 }
7584
7585 /**
7586 * netdev_has_upper_dev - Check if device is linked to an upper device
7587 * @dev: device
7588 * @upper_dev: upper device to check
7589 *
7590 * Find out if a device is linked to specified upper device and return true
7591 * in case it is. Note that this checks only immediate upper device,
7592 * not through a complete stack of devices. The caller must hold the RTNL lock.
7593 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7594 bool netdev_has_upper_dev(struct net_device *dev,
7595 struct net_device *upper_dev)
7596 {
7597 struct netdev_nested_priv priv = {
7598 .data = (void *)upper_dev,
7599 };
7600
7601 ASSERT_RTNL();
7602
7603 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7604 &priv);
7605 }
7606 EXPORT_SYMBOL(netdev_has_upper_dev);
7607
7608 /**
7609 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7610 * @dev: device
7611 * @upper_dev: upper device to check
7612 *
7613 * Find out if a device is linked to specified upper device and return true
7614 * in case it is. Note that this checks the entire upper device chain.
7615 * The caller must hold rcu lock.
7616 */
7617
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7618 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7619 struct net_device *upper_dev)
7620 {
7621 struct netdev_nested_priv priv = {
7622 .data = (void *)upper_dev,
7623 };
7624
7625 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7626 &priv);
7627 }
7628 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7629
7630 /**
7631 * netdev_has_any_upper_dev - Check if device is linked to some device
7632 * @dev: device
7633 *
7634 * Find out if a device is linked to an upper device and return true in case
7635 * it is. The caller must hold the RTNL lock.
7636 */
netdev_has_any_upper_dev(struct net_device * dev)7637 bool netdev_has_any_upper_dev(struct net_device *dev)
7638 {
7639 ASSERT_RTNL();
7640
7641 return !list_empty(&dev->adj_list.upper);
7642 }
7643 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7644
7645 /**
7646 * netdev_master_upper_dev_get - Get master upper device
7647 * @dev: device
7648 *
7649 * Find a master upper device and return pointer to it or NULL in case
7650 * it's not there. The caller must hold the RTNL lock.
7651 */
netdev_master_upper_dev_get(struct net_device * dev)7652 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7653 {
7654 struct netdev_adjacent *upper;
7655
7656 ASSERT_RTNL();
7657
7658 if (list_empty(&dev->adj_list.upper))
7659 return NULL;
7660
7661 upper = list_first_entry(&dev->adj_list.upper,
7662 struct netdev_adjacent, list);
7663 if (likely(upper->master))
7664 return upper->dev;
7665 return NULL;
7666 }
7667 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7668
__netdev_master_upper_dev_get(struct net_device * dev)7669 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7670 {
7671 struct netdev_adjacent *upper;
7672
7673 ASSERT_RTNL();
7674
7675 if (list_empty(&dev->adj_list.upper))
7676 return NULL;
7677
7678 upper = list_first_entry(&dev->adj_list.upper,
7679 struct netdev_adjacent, list);
7680 if (likely(upper->master) && !upper->ignore)
7681 return upper->dev;
7682 return NULL;
7683 }
7684
7685 /**
7686 * netdev_has_any_lower_dev - Check if device is linked to some device
7687 * @dev: device
7688 *
7689 * Find out if a device is linked to a lower device and return true in case
7690 * it is. The caller must hold the RTNL lock.
7691 */
netdev_has_any_lower_dev(struct net_device * dev)7692 static bool netdev_has_any_lower_dev(struct net_device *dev)
7693 {
7694 ASSERT_RTNL();
7695
7696 return !list_empty(&dev->adj_list.lower);
7697 }
7698
netdev_adjacent_get_private(struct list_head * adj_list)7699 void *netdev_adjacent_get_private(struct list_head *adj_list)
7700 {
7701 struct netdev_adjacent *adj;
7702
7703 adj = list_entry(adj_list, struct netdev_adjacent, list);
7704
7705 return adj->private;
7706 }
7707 EXPORT_SYMBOL(netdev_adjacent_get_private);
7708
7709 /**
7710 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7711 * @dev: device
7712 * @iter: list_head ** of the current position
7713 *
7714 * Gets the next device from the dev's upper list, starting from iter
7715 * position. The caller must hold RCU read lock.
7716 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7717 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7718 struct list_head **iter)
7719 {
7720 struct netdev_adjacent *upper;
7721
7722 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7723
7724 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7725
7726 if (&upper->list == &dev->adj_list.upper)
7727 return NULL;
7728
7729 *iter = &upper->list;
7730
7731 return upper->dev;
7732 }
7733 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7734
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7735 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7736 struct list_head **iter,
7737 bool *ignore)
7738 {
7739 struct netdev_adjacent *upper;
7740
7741 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7742
7743 if (&upper->list == &dev->adj_list.upper)
7744 return NULL;
7745
7746 *iter = &upper->list;
7747 *ignore = upper->ignore;
7748
7749 return upper->dev;
7750 }
7751
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7752 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7753 struct list_head **iter)
7754 {
7755 struct netdev_adjacent *upper;
7756
7757 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7758
7759 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7760
7761 if (&upper->list == &dev->adj_list.upper)
7762 return NULL;
7763
7764 *iter = &upper->list;
7765
7766 return upper->dev;
7767 }
7768
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7769 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7770 int (*fn)(struct net_device *dev,
7771 struct netdev_nested_priv *priv),
7772 struct netdev_nested_priv *priv)
7773 {
7774 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7775 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7776 int ret, cur = 0;
7777 bool ignore;
7778
7779 now = dev;
7780 iter = &dev->adj_list.upper;
7781
7782 while (1) {
7783 if (now != dev) {
7784 ret = fn(now, priv);
7785 if (ret)
7786 return ret;
7787 }
7788
7789 next = NULL;
7790 while (1) {
7791 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7792 if (!udev)
7793 break;
7794 if (ignore)
7795 continue;
7796
7797 next = udev;
7798 niter = &udev->adj_list.upper;
7799 dev_stack[cur] = now;
7800 iter_stack[cur++] = iter;
7801 break;
7802 }
7803
7804 if (!next) {
7805 if (!cur)
7806 return 0;
7807 next = dev_stack[--cur];
7808 niter = iter_stack[cur];
7809 }
7810
7811 now = next;
7812 iter = niter;
7813 }
7814
7815 return 0;
7816 }
7817
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7818 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7819 int (*fn)(struct net_device *dev,
7820 struct netdev_nested_priv *priv),
7821 struct netdev_nested_priv *priv)
7822 {
7823 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7824 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7825 int ret, cur = 0;
7826
7827 now = dev;
7828 iter = &dev->adj_list.upper;
7829
7830 while (1) {
7831 if (now != dev) {
7832 ret = fn(now, priv);
7833 if (ret)
7834 return ret;
7835 }
7836
7837 next = NULL;
7838 while (1) {
7839 udev = netdev_next_upper_dev_rcu(now, &iter);
7840 if (!udev)
7841 break;
7842
7843 next = udev;
7844 niter = &udev->adj_list.upper;
7845 dev_stack[cur] = now;
7846 iter_stack[cur++] = iter;
7847 break;
7848 }
7849
7850 if (!next) {
7851 if (!cur)
7852 return 0;
7853 next = dev_stack[--cur];
7854 niter = iter_stack[cur];
7855 }
7856
7857 now = next;
7858 iter = niter;
7859 }
7860
7861 return 0;
7862 }
7863 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7864
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7865 static bool __netdev_has_upper_dev(struct net_device *dev,
7866 struct net_device *upper_dev)
7867 {
7868 struct netdev_nested_priv priv = {
7869 .flags = 0,
7870 .data = (void *)upper_dev,
7871 };
7872
7873 ASSERT_RTNL();
7874
7875 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7876 &priv);
7877 }
7878
7879 /**
7880 * netdev_lower_get_next_private - Get the next ->private from the
7881 * lower neighbour list
7882 * @dev: device
7883 * @iter: list_head ** of the current position
7884 *
7885 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7886 * list, starting from iter position. The caller must hold either hold the
7887 * RTNL lock or its own locking that guarantees that the neighbour lower
7888 * list will remain unchanged.
7889 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7890 void *netdev_lower_get_next_private(struct net_device *dev,
7891 struct list_head **iter)
7892 {
7893 struct netdev_adjacent *lower;
7894
7895 lower = list_entry(*iter, struct netdev_adjacent, list);
7896
7897 if (&lower->list == &dev->adj_list.lower)
7898 return NULL;
7899
7900 *iter = lower->list.next;
7901
7902 return lower->private;
7903 }
7904 EXPORT_SYMBOL(netdev_lower_get_next_private);
7905
7906 /**
7907 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7908 * lower neighbour list, RCU
7909 * variant
7910 * @dev: device
7911 * @iter: list_head ** of the current position
7912 *
7913 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7914 * list, starting from iter position. The caller must hold RCU read lock.
7915 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7916 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7917 struct list_head **iter)
7918 {
7919 struct netdev_adjacent *lower;
7920
7921 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7922
7923 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7924
7925 if (&lower->list == &dev->adj_list.lower)
7926 return NULL;
7927
7928 *iter = &lower->list;
7929
7930 return lower->private;
7931 }
7932 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7933
7934 /**
7935 * netdev_lower_get_next - Get the next device from the lower neighbour
7936 * list
7937 * @dev: device
7938 * @iter: list_head ** of the current position
7939 *
7940 * Gets the next netdev_adjacent from the dev's lower neighbour
7941 * list, starting from iter position. The caller must hold RTNL lock or
7942 * its own locking that guarantees that the neighbour lower
7943 * list will remain unchanged.
7944 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7945 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7946 {
7947 struct netdev_adjacent *lower;
7948
7949 lower = list_entry(*iter, struct netdev_adjacent, list);
7950
7951 if (&lower->list == &dev->adj_list.lower)
7952 return NULL;
7953
7954 *iter = lower->list.next;
7955
7956 return lower->dev;
7957 }
7958 EXPORT_SYMBOL(netdev_lower_get_next);
7959
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7960 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7961 struct list_head **iter)
7962 {
7963 struct netdev_adjacent *lower;
7964
7965 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7966
7967 if (&lower->list == &dev->adj_list.lower)
7968 return NULL;
7969
7970 *iter = &lower->list;
7971
7972 return lower->dev;
7973 }
7974
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7975 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7976 struct list_head **iter,
7977 bool *ignore)
7978 {
7979 struct netdev_adjacent *lower;
7980
7981 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7982
7983 if (&lower->list == &dev->adj_list.lower)
7984 return NULL;
7985
7986 *iter = &lower->list;
7987 *ignore = lower->ignore;
7988
7989 return lower->dev;
7990 }
7991
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7992 int netdev_walk_all_lower_dev(struct net_device *dev,
7993 int (*fn)(struct net_device *dev,
7994 struct netdev_nested_priv *priv),
7995 struct netdev_nested_priv *priv)
7996 {
7997 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7998 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7999 int ret, cur = 0;
8000
8001 now = dev;
8002 iter = &dev->adj_list.lower;
8003
8004 while (1) {
8005 if (now != dev) {
8006 ret = fn(now, priv);
8007 if (ret)
8008 return ret;
8009 }
8010
8011 next = NULL;
8012 while (1) {
8013 ldev = netdev_next_lower_dev(now, &iter);
8014 if (!ldev)
8015 break;
8016
8017 next = ldev;
8018 niter = &ldev->adj_list.lower;
8019 dev_stack[cur] = now;
8020 iter_stack[cur++] = iter;
8021 break;
8022 }
8023
8024 if (!next) {
8025 if (!cur)
8026 return 0;
8027 next = dev_stack[--cur];
8028 niter = iter_stack[cur];
8029 }
8030
8031 now = next;
8032 iter = niter;
8033 }
8034
8035 return 0;
8036 }
8037 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8038
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8039 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8040 int (*fn)(struct net_device *dev,
8041 struct netdev_nested_priv *priv),
8042 struct netdev_nested_priv *priv)
8043 {
8044 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8045 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8046 int ret, cur = 0;
8047 bool ignore;
8048
8049 now = dev;
8050 iter = &dev->adj_list.lower;
8051
8052 while (1) {
8053 if (now != dev) {
8054 ret = fn(now, priv);
8055 if (ret)
8056 return ret;
8057 }
8058
8059 next = NULL;
8060 while (1) {
8061 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8062 if (!ldev)
8063 break;
8064 if (ignore)
8065 continue;
8066
8067 next = ldev;
8068 niter = &ldev->adj_list.lower;
8069 dev_stack[cur] = now;
8070 iter_stack[cur++] = iter;
8071 break;
8072 }
8073
8074 if (!next) {
8075 if (!cur)
8076 return 0;
8077 next = dev_stack[--cur];
8078 niter = iter_stack[cur];
8079 }
8080
8081 now = next;
8082 iter = niter;
8083 }
8084
8085 return 0;
8086 }
8087
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)8088 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8089 struct list_head **iter)
8090 {
8091 struct netdev_adjacent *lower;
8092
8093 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8094 if (&lower->list == &dev->adj_list.lower)
8095 return NULL;
8096
8097 *iter = &lower->list;
8098
8099 return lower->dev;
8100 }
8101 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8102
__netdev_upper_depth(struct net_device * dev)8103 static u8 __netdev_upper_depth(struct net_device *dev)
8104 {
8105 struct net_device *udev;
8106 struct list_head *iter;
8107 u8 max_depth = 0;
8108 bool ignore;
8109
8110 for (iter = &dev->adj_list.upper,
8111 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8112 udev;
8113 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8114 if (ignore)
8115 continue;
8116 if (max_depth < udev->upper_level)
8117 max_depth = udev->upper_level;
8118 }
8119
8120 return max_depth;
8121 }
8122
__netdev_lower_depth(struct net_device * dev)8123 static u8 __netdev_lower_depth(struct net_device *dev)
8124 {
8125 struct net_device *ldev;
8126 struct list_head *iter;
8127 u8 max_depth = 0;
8128 bool ignore;
8129
8130 for (iter = &dev->adj_list.lower,
8131 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8132 ldev;
8133 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8134 if (ignore)
8135 continue;
8136 if (max_depth < ldev->lower_level)
8137 max_depth = ldev->lower_level;
8138 }
8139
8140 return max_depth;
8141 }
8142
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)8143 static int __netdev_update_upper_level(struct net_device *dev,
8144 struct netdev_nested_priv *__unused)
8145 {
8146 dev->upper_level = __netdev_upper_depth(dev) + 1;
8147 return 0;
8148 }
8149
8150 #ifdef CONFIG_LOCKDEP
8151 static LIST_HEAD(net_unlink_list);
8152
net_unlink_todo(struct net_device * dev)8153 static void net_unlink_todo(struct net_device *dev)
8154 {
8155 if (list_empty(&dev->unlink_list))
8156 list_add_tail(&dev->unlink_list, &net_unlink_list);
8157 }
8158 #endif
8159
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)8160 static int __netdev_update_lower_level(struct net_device *dev,
8161 struct netdev_nested_priv *priv)
8162 {
8163 dev->lower_level = __netdev_lower_depth(dev) + 1;
8164
8165 #ifdef CONFIG_LOCKDEP
8166 if (!priv)
8167 return 0;
8168
8169 if (priv->flags & NESTED_SYNC_IMM)
8170 dev->nested_level = dev->lower_level - 1;
8171 if (priv->flags & NESTED_SYNC_TODO)
8172 net_unlink_todo(dev);
8173 #endif
8174 return 0;
8175 }
8176
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8177 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8178 int (*fn)(struct net_device *dev,
8179 struct netdev_nested_priv *priv),
8180 struct netdev_nested_priv *priv)
8181 {
8182 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8183 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8184 int ret, cur = 0;
8185
8186 now = dev;
8187 iter = &dev->adj_list.lower;
8188
8189 while (1) {
8190 if (now != dev) {
8191 ret = fn(now, priv);
8192 if (ret)
8193 return ret;
8194 }
8195
8196 next = NULL;
8197 while (1) {
8198 ldev = netdev_next_lower_dev_rcu(now, &iter);
8199 if (!ldev)
8200 break;
8201
8202 next = ldev;
8203 niter = &ldev->adj_list.lower;
8204 dev_stack[cur] = now;
8205 iter_stack[cur++] = iter;
8206 break;
8207 }
8208
8209 if (!next) {
8210 if (!cur)
8211 return 0;
8212 next = dev_stack[--cur];
8213 niter = iter_stack[cur];
8214 }
8215
8216 now = next;
8217 iter = niter;
8218 }
8219
8220 return 0;
8221 }
8222 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8223
8224 /**
8225 * netdev_lower_get_first_private_rcu - Get the first ->private from the
8226 * lower neighbour list, RCU
8227 * variant
8228 * @dev: device
8229 *
8230 * Gets the first netdev_adjacent->private from the dev's lower neighbour
8231 * list. The caller must hold RCU read lock.
8232 */
netdev_lower_get_first_private_rcu(struct net_device * dev)8233 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8234 {
8235 struct netdev_adjacent *lower;
8236
8237 lower = list_first_or_null_rcu(&dev->adj_list.lower,
8238 struct netdev_adjacent, list);
8239 if (lower)
8240 return lower->private;
8241 return NULL;
8242 }
8243 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8244
8245 /**
8246 * netdev_master_upper_dev_get_rcu - Get master upper device
8247 * @dev: device
8248 *
8249 * Find a master upper device and return pointer to it or NULL in case
8250 * it's not there. The caller must hold the RCU read lock.
8251 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)8252 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8253 {
8254 struct netdev_adjacent *upper;
8255
8256 upper = list_first_or_null_rcu(&dev->adj_list.upper,
8257 struct netdev_adjacent, list);
8258 if (upper && likely(upper->master))
8259 return upper->dev;
8260 return NULL;
8261 }
8262 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8263
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8264 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8265 struct net_device *adj_dev,
8266 struct list_head *dev_list)
8267 {
8268 char linkname[IFNAMSIZ+7];
8269
8270 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8271 "upper_%s" : "lower_%s", adj_dev->name);
8272 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8273 linkname);
8274 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)8275 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8276 char *name,
8277 struct list_head *dev_list)
8278 {
8279 char linkname[IFNAMSIZ+7];
8280
8281 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8282 "upper_%s" : "lower_%s", name);
8283 sysfs_remove_link(&(dev->dev.kobj), linkname);
8284 }
8285
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8286 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8287 struct net_device *adj_dev,
8288 struct list_head *dev_list)
8289 {
8290 return (dev_list == &dev->adj_list.upper ||
8291 dev_list == &dev->adj_list.lower) &&
8292 net_eq(dev_net(dev), dev_net(adj_dev));
8293 }
8294
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)8295 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8296 struct net_device *adj_dev,
8297 struct list_head *dev_list,
8298 void *private, bool master)
8299 {
8300 struct netdev_adjacent *adj;
8301 int ret;
8302
8303 adj = __netdev_find_adj(adj_dev, dev_list);
8304
8305 if (adj) {
8306 adj->ref_nr += 1;
8307 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8308 dev->name, adj_dev->name, adj->ref_nr);
8309
8310 return 0;
8311 }
8312
8313 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8314 if (!adj)
8315 return -ENOMEM;
8316
8317 adj->dev = adj_dev;
8318 adj->master = master;
8319 adj->ref_nr = 1;
8320 adj->private = private;
8321 adj->ignore = false;
8322 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8323
8324 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8325 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8326
8327 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8328 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8329 if (ret)
8330 goto free_adj;
8331 }
8332
8333 /* Ensure that master link is always the first item in list. */
8334 if (master) {
8335 ret = sysfs_create_link(&(dev->dev.kobj),
8336 &(adj_dev->dev.kobj), "master");
8337 if (ret)
8338 goto remove_symlinks;
8339
8340 list_add_rcu(&adj->list, dev_list);
8341 } else {
8342 list_add_tail_rcu(&adj->list, dev_list);
8343 }
8344
8345 return 0;
8346
8347 remove_symlinks:
8348 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8349 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8350 free_adj:
8351 netdev_put(adj_dev, &adj->dev_tracker);
8352 kfree(adj);
8353
8354 return ret;
8355 }
8356
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8357 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8358 struct net_device *adj_dev,
8359 u16 ref_nr,
8360 struct list_head *dev_list)
8361 {
8362 struct netdev_adjacent *adj;
8363
8364 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8365 dev->name, adj_dev->name, ref_nr);
8366
8367 adj = __netdev_find_adj(adj_dev, dev_list);
8368
8369 if (!adj) {
8370 pr_err("Adjacency does not exist for device %s from %s\n",
8371 dev->name, adj_dev->name);
8372 WARN_ON(1);
8373 return;
8374 }
8375
8376 if (adj->ref_nr > ref_nr) {
8377 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8378 dev->name, adj_dev->name, ref_nr,
8379 adj->ref_nr - ref_nr);
8380 adj->ref_nr -= ref_nr;
8381 return;
8382 }
8383
8384 if (adj->master)
8385 sysfs_remove_link(&(dev->dev.kobj), "master");
8386
8387 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8388 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8389
8390 list_del_rcu(&adj->list);
8391 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8392 adj_dev->name, dev->name, adj_dev->name);
8393 netdev_put(adj_dev, &adj->dev_tracker);
8394 kfree_rcu(adj, rcu);
8395 }
8396
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8397 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8398 struct net_device *upper_dev,
8399 struct list_head *up_list,
8400 struct list_head *down_list,
8401 void *private, bool master)
8402 {
8403 int ret;
8404
8405 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8406 private, master);
8407 if (ret)
8408 return ret;
8409
8410 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8411 private, false);
8412 if (ret) {
8413 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8414 return ret;
8415 }
8416
8417 return 0;
8418 }
8419
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8420 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8421 struct net_device *upper_dev,
8422 u16 ref_nr,
8423 struct list_head *up_list,
8424 struct list_head *down_list)
8425 {
8426 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8427 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8428 }
8429
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8430 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8431 struct net_device *upper_dev,
8432 void *private, bool master)
8433 {
8434 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8435 &dev->adj_list.upper,
8436 &upper_dev->adj_list.lower,
8437 private, master);
8438 }
8439
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8440 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8441 struct net_device *upper_dev)
8442 {
8443 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8444 &dev->adj_list.upper,
8445 &upper_dev->adj_list.lower);
8446 }
8447
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8448 static int __netdev_upper_dev_link(struct net_device *dev,
8449 struct net_device *upper_dev, bool master,
8450 void *upper_priv, void *upper_info,
8451 struct netdev_nested_priv *priv,
8452 struct netlink_ext_ack *extack)
8453 {
8454 struct netdev_notifier_changeupper_info changeupper_info = {
8455 .info = {
8456 .dev = dev,
8457 .extack = extack,
8458 },
8459 .upper_dev = upper_dev,
8460 .master = master,
8461 .linking = true,
8462 .upper_info = upper_info,
8463 };
8464 struct net_device *master_dev;
8465 int ret = 0;
8466
8467 ASSERT_RTNL();
8468
8469 if (dev == upper_dev)
8470 return -EBUSY;
8471
8472 /* To prevent loops, check if dev is not upper device to upper_dev. */
8473 if (__netdev_has_upper_dev(upper_dev, dev))
8474 return -EBUSY;
8475
8476 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8477 return -EMLINK;
8478
8479 if (!master) {
8480 if (__netdev_has_upper_dev(dev, upper_dev))
8481 return -EEXIST;
8482 } else {
8483 master_dev = __netdev_master_upper_dev_get(dev);
8484 if (master_dev)
8485 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8486 }
8487
8488 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8489 &changeupper_info.info);
8490 ret = notifier_to_errno(ret);
8491 if (ret)
8492 return ret;
8493
8494 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8495 master);
8496 if (ret)
8497 return ret;
8498
8499 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8500 &changeupper_info.info);
8501 ret = notifier_to_errno(ret);
8502 if (ret)
8503 goto rollback;
8504
8505 __netdev_update_upper_level(dev, NULL);
8506 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8507
8508 __netdev_update_lower_level(upper_dev, priv);
8509 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8510 priv);
8511
8512 return 0;
8513
8514 rollback:
8515 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8516
8517 return ret;
8518 }
8519
8520 /**
8521 * netdev_upper_dev_link - Add a link to the upper device
8522 * @dev: device
8523 * @upper_dev: new upper device
8524 * @extack: netlink extended ack
8525 *
8526 * Adds a link to device which is upper to this one. The caller must hold
8527 * the RTNL lock. On a failure a negative errno code is returned.
8528 * On success the reference counts are adjusted and the function
8529 * returns zero.
8530 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8531 int netdev_upper_dev_link(struct net_device *dev,
8532 struct net_device *upper_dev,
8533 struct netlink_ext_ack *extack)
8534 {
8535 struct netdev_nested_priv priv = {
8536 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8537 .data = NULL,
8538 };
8539
8540 return __netdev_upper_dev_link(dev, upper_dev, false,
8541 NULL, NULL, &priv, extack);
8542 }
8543 EXPORT_SYMBOL(netdev_upper_dev_link);
8544
8545 /**
8546 * netdev_master_upper_dev_link - Add a master link to the upper device
8547 * @dev: device
8548 * @upper_dev: new upper device
8549 * @upper_priv: upper device private
8550 * @upper_info: upper info to be passed down via notifier
8551 * @extack: netlink extended ack
8552 *
8553 * Adds a link to device which is upper to this one. In this case, only
8554 * one master upper device can be linked, although other non-master devices
8555 * might be linked as well. The caller must hold the RTNL lock.
8556 * On a failure a negative errno code is returned. On success the reference
8557 * counts are adjusted and the function returns zero.
8558 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8559 int netdev_master_upper_dev_link(struct net_device *dev,
8560 struct net_device *upper_dev,
8561 void *upper_priv, void *upper_info,
8562 struct netlink_ext_ack *extack)
8563 {
8564 struct netdev_nested_priv priv = {
8565 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8566 .data = NULL,
8567 };
8568
8569 return __netdev_upper_dev_link(dev, upper_dev, true,
8570 upper_priv, upper_info, &priv, extack);
8571 }
8572 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8573
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8574 static void __netdev_upper_dev_unlink(struct net_device *dev,
8575 struct net_device *upper_dev,
8576 struct netdev_nested_priv *priv)
8577 {
8578 struct netdev_notifier_changeupper_info changeupper_info = {
8579 .info = {
8580 .dev = dev,
8581 },
8582 .upper_dev = upper_dev,
8583 .linking = false,
8584 };
8585
8586 ASSERT_RTNL();
8587
8588 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8589
8590 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8591 &changeupper_info.info);
8592
8593 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8594
8595 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8596 &changeupper_info.info);
8597
8598 __netdev_update_upper_level(dev, NULL);
8599 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8600
8601 __netdev_update_lower_level(upper_dev, priv);
8602 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8603 priv);
8604 }
8605
8606 /**
8607 * netdev_upper_dev_unlink - Removes a link to upper device
8608 * @dev: device
8609 * @upper_dev: new upper device
8610 *
8611 * Removes a link to device which is upper to this one. The caller must hold
8612 * the RTNL lock.
8613 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8614 void netdev_upper_dev_unlink(struct net_device *dev,
8615 struct net_device *upper_dev)
8616 {
8617 struct netdev_nested_priv priv = {
8618 .flags = NESTED_SYNC_TODO,
8619 .data = NULL,
8620 };
8621
8622 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8623 }
8624 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8625
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8626 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8627 struct net_device *lower_dev,
8628 bool val)
8629 {
8630 struct netdev_adjacent *adj;
8631
8632 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8633 if (adj)
8634 adj->ignore = val;
8635
8636 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8637 if (adj)
8638 adj->ignore = val;
8639 }
8640
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8641 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8642 struct net_device *lower_dev)
8643 {
8644 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8645 }
8646
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8647 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8648 struct net_device *lower_dev)
8649 {
8650 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8651 }
8652
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8653 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8654 struct net_device *new_dev,
8655 struct net_device *dev,
8656 struct netlink_ext_ack *extack)
8657 {
8658 struct netdev_nested_priv priv = {
8659 .flags = 0,
8660 .data = NULL,
8661 };
8662 int err;
8663
8664 if (!new_dev)
8665 return 0;
8666
8667 if (old_dev && new_dev != old_dev)
8668 netdev_adjacent_dev_disable(dev, old_dev);
8669 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8670 extack);
8671 if (err) {
8672 if (old_dev && new_dev != old_dev)
8673 netdev_adjacent_dev_enable(dev, old_dev);
8674 return err;
8675 }
8676
8677 return 0;
8678 }
8679 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8680
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8681 void netdev_adjacent_change_commit(struct net_device *old_dev,
8682 struct net_device *new_dev,
8683 struct net_device *dev)
8684 {
8685 struct netdev_nested_priv priv = {
8686 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8687 .data = NULL,
8688 };
8689
8690 if (!new_dev || !old_dev)
8691 return;
8692
8693 if (new_dev == old_dev)
8694 return;
8695
8696 netdev_adjacent_dev_enable(dev, old_dev);
8697 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8698 }
8699 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8700
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8701 void netdev_adjacent_change_abort(struct net_device *old_dev,
8702 struct net_device *new_dev,
8703 struct net_device *dev)
8704 {
8705 struct netdev_nested_priv priv = {
8706 .flags = 0,
8707 .data = NULL,
8708 };
8709
8710 if (!new_dev)
8711 return;
8712
8713 if (old_dev && new_dev != old_dev)
8714 netdev_adjacent_dev_enable(dev, old_dev);
8715
8716 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8717 }
8718 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8719
8720 /**
8721 * netdev_bonding_info_change - Dispatch event about slave change
8722 * @dev: device
8723 * @bonding_info: info to dispatch
8724 *
8725 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8726 * The caller must hold the RTNL lock.
8727 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8728 void netdev_bonding_info_change(struct net_device *dev,
8729 struct netdev_bonding_info *bonding_info)
8730 {
8731 struct netdev_notifier_bonding_info info = {
8732 .info.dev = dev,
8733 };
8734
8735 memcpy(&info.bonding_info, bonding_info,
8736 sizeof(struct netdev_bonding_info));
8737 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8738 &info.info);
8739 }
8740 EXPORT_SYMBOL(netdev_bonding_info_change);
8741
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)8742 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8743 struct netlink_ext_ack *extack)
8744 {
8745 struct netdev_notifier_offload_xstats_info info = {
8746 .info.dev = dev,
8747 .info.extack = extack,
8748 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8749 };
8750 int err;
8751 int rc;
8752
8753 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8754 GFP_KERNEL);
8755 if (!dev->offload_xstats_l3)
8756 return -ENOMEM;
8757
8758 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8759 NETDEV_OFFLOAD_XSTATS_DISABLE,
8760 &info.info);
8761 err = notifier_to_errno(rc);
8762 if (err)
8763 goto free_stats;
8764
8765 return 0;
8766
8767 free_stats:
8768 kfree(dev->offload_xstats_l3);
8769 dev->offload_xstats_l3 = NULL;
8770 return err;
8771 }
8772
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8773 int netdev_offload_xstats_enable(struct net_device *dev,
8774 enum netdev_offload_xstats_type type,
8775 struct netlink_ext_ack *extack)
8776 {
8777 ASSERT_RTNL();
8778
8779 if (netdev_offload_xstats_enabled(dev, type))
8780 return -EALREADY;
8781
8782 switch (type) {
8783 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8784 return netdev_offload_xstats_enable_l3(dev, extack);
8785 }
8786
8787 WARN_ON(1);
8788 return -EINVAL;
8789 }
8790 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8791
netdev_offload_xstats_disable_l3(struct net_device * dev)8792 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8793 {
8794 struct netdev_notifier_offload_xstats_info info = {
8795 .info.dev = dev,
8796 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8797 };
8798
8799 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8800 &info.info);
8801 kfree(dev->offload_xstats_l3);
8802 dev->offload_xstats_l3 = NULL;
8803 }
8804
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8805 int netdev_offload_xstats_disable(struct net_device *dev,
8806 enum netdev_offload_xstats_type type)
8807 {
8808 ASSERT_RTNL();
8809
8810 if (!netdev_offload_xstats_enabled(dev, type))
8811 return -EALREADY;
8812
8813 switch (type) {
8814 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8815 netdev_offload_xstats_disable_l3(dev);
8816 return 0;
8817 }
8818
8819 WARN_ON(1);
8820 return -EINVAL;
8821 }
8822 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8823
netdev_offload_xstats_disable_all(struct net_device * dev)8824 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8825 {
8826 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8827 }
8828
8829 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)8830 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8831 enum netdev_offload_xstats_type type)
8832 {
8833 switch (type) {
8834 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8835 return dev->offload_xstats_l3;
8836 }
8837
8838 WARN_ON(1);
8839 return NULL;
8840 }
8841
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)8842 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8843 enum netdev_offload_xstats_type type)
8844 {
8845 ASSERT_RTNL();
8846
8847 return netdev_offload_xstats_get_ptr(dev, type);
8848 }
8849 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8850
8851 struct netdev_notifier_offload_xstats_ru {
8852 bool used;
8853 };
8854
8855 struct netdev_notifier_offload_xstats_rd {
8856 struct rtnl_hw_stats64 stats;
8857 bool used;
8858 };
8859
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)8860 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8861 const struct rtnl_hw_stats64 *src)
8862 {
8863 dest->rx_packets += src->rx_packets;
8864 dest->tx_packets += src->tx_packets;
8865 dest->rx_bytes += src->rx_bytes;
8866 dest->tx_bytes += src->tx_bytes;
8867 dest->rx_errors += src->rx_errors;
8868 dest->tx_errors += src->tx_errors;
8869 dest->rx_dropped += src->rx_dropped;
8870 dest->tx_dropped += src->tx_dropped;
8871 dest->multicast += src->multicast;
8872 }
8873
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)8874 static int netdev_offload_xstats_get_used(struct net_device *dev,
8875 enum netdev_offload_xstats_type type,
8876 bool *p_used,
8877 struct netlink_ext_ack *extack)
8878 {
8879 struct netdev_notifier_offload_xstats_ru report_used = {};
8880 struct netdev_notifier_offload_xstats_info info = {
8881 .info.dev = dev,
8882 .info.extack = extack,
8883 .type = type,
8884 .report_used = &report_used,
8885 };
8886 int rc;
8887
8888 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8889 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8890 &info.info);
8891 *p_used = report_used.used;
8892 return notifier_to_errno(rc);
8893 }
8894
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8895 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8896 enum netdev_offload_xstats_type type,
8897 struct rtnl_hw_stats64 *p_stats,
8898 bool *p_used,
8899 struct netlink_ext_ack *extack)
8900 {
8901 struct netdev_notifier_offload_xstats_rd report_delta = {};
8902 struct netdev_notifier_offload_xstats_info info = {
8903 .info.dev = dev,
8904 .info.extack = extack,
8905 .type = type,
8906 .report_delta = &report_delta,
8907 };
8908 struct rtnl_hw_stats64 *stats;
8909 int rc;
8910
8911 stats = netdev_offload_xstats_get_ptr(dev, type);
8912 if (WARN_ON(!stats))
8913 return -EINVAL;
8914
8915 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8916 &info.info);
8917
8918 /* Cache whatever we got, even if there was an error, otherwise the
8919 * successful stats retrievals would get lost.
8920 */
8921 netdev_hw_stats64_add(stats, &report_delta.stats);
8922
8923 if (p_stats)
8924 *p_stats = *stats;
8925 *p_used = report_delta.used;
8926
8927 return notifier_to_errno(rc);
8928 }
8929
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8930 int netdev_offload_xstats_get(struct net_device *dev,
8931 enum netdev_offload_xstats_type type,
8932 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8933 struct netlink_ext_ack *extack)
8934 {
8935 ASSERT_RTNL();
8936
8937 if (p_stats)
8938 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8939 p_used, extack);
8940 else
8941 return netdev_offload_xstats_get_used(dev, type, p_used,
8942 extack);
8943 }
8944 EXPORT_SYMBOL(netdev_offload_xstats_get);
8945
8946 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)8947 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8948 const struct rtnl_hw_stats64 *stats)
8949 {
8950 report_delta->used = true;
8951 netdev_hw_stats64_add(&report_delta->stats, stats);
8952 }
8953 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8954
8955 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)8956 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8957 {
8958 report_used->used = true;
8959 }
8960 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8961
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)8962 void netdev_offload_xstats_push_delta(struct net_device *dev,
8963 enum netdev_offload_xstats_type type,
8964 const struct rtnl_hw_stats64 *p_stats)
8965 {
8966 struct rtnl_hw_stats64 *stats;
8967
8968 ASSERT_RTNL();
8969
8970 stats = netdev_offload_xstats_get_ptr(dev, type);
8971 if (WARN_ON(!stats))
8972 return;
8973
8974 netdev_hw_stats64_add(stats, p_stats);
8975 }
8976 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8977
8978 /**
8979 * netdev_get_xmit_slave - Get the xmit slave of master device
8980 * @dev: device
8981 * @skb: The packet
8982 * @all_slaves: assume all the slaves are active
8983 *
8984 * The reference counters are not incremented so the caller must be
8985 * careful with locks. The caller must hold RCU lock.
8986 * %NULL is returned if no slave is found.
8987 */
8988
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8989 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8990 struct sk_buff *skb,
8991 bool all_slaves)
8992 {
8993 const struct net_device_ops *ops = dev->netdev_ops;
8994
8995 if (!ops->ndo_get_xmit_slave)
8996 return NULL;
8997 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8998 }
8999 EXPORT_SYMBOL(netdev_get_xmit_slave);
9000
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)9001 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9002 struct sock *sk)
9003 {
9004 const struct net_device_ops *ops = dev->netdev_ops;
9005
9006 if (!ops->ndo_sk_get_lower_dev)
9007 return NULL;
9008 return ops->ndo_sk_get_lower_dev(dev, sk);
9009 }
9010
9011 /**
9012 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9013 * @dev: device
9014 * @sk: the socket
9015 *
9016 * %NULL is returned if no lower device is found.
9017 */
9018
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)9019 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9020 struct sock *sk)
9021 {
9022 struct net_device *lower;
9023
9024 lower = netdev_sk_get_lower_dev(dev, sk);
9025 while (lower) {
9026 dev = lower;
9027 lower = netdev_sk_get_lower_dev(dev, sk);
9028 }
9029
9030 return dev;
9031 }
9032 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9033
netdev_adjacent_add_links(struct net_device * dev)9034 static void netdev_adjacent_add_links(struct net_device *dev)
9035 {
9036 struct netdev_adjacent *iter;
9037
9038 struct net *net = dev_net(dev);
9039
9040 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9041 if (!net_eq(net, dev_net(iter->dev)))
9042 continue;
9043 netdev_adjacent_sysfs_add(iter->dev, dev,
9044 &iter->dev->adj_list.lower);
9045 netdev_adjacent_sysfs_add(dev, iter->dev,
9046 &dev->adj_list.upper);
9047 }
9048
9049 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9050 if (!net_eq(net, dev_net(iter->dev)))
9051 continue;
9052 netdev_adjacent_sysfs_add(iter->dev, dev,
9053 &iter->dev->adj_list.upper);
9054 netdev_adjacent_sysfs_add(dev, iter->dev,
9055 &dev->adj_list.lower);
9056 }
9057 }
9058
netdev_adjacent_del_links(struct net_device * dev)9059 static void netdev_adjacent_del_links(struct net_device *dev)
9060 {
9061 struct netdev_adjacent *iter;
9062
9063 struct net *net = dev_net(dev);
9064
9065 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9066 if (!net_eq(net, dev_net(iter->dev)))
9067 continue;
9068 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9069 &iter->dev->adj_list.lower);
9070 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9071 &dev->adj_list.upper);
9072 }
9073
9074 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9075 if (!net_eq(net, dev_net(iter->dev)))
9076 continue;
9077 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9078 &iter->dev->adj_list.upper);
9079 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9080 &dev->adj_list.lower);
9081 }
9082 }
9083
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)9084 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9085 {
9086 struct netdev_adjacent *iter;
9087
9088 struct net *net = dev_net(dev);
9089
9090 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9091 if (!net_eq(net, dev_net(iter->dev)))
9092 continue;
9093 netdev_adjacent_sysfs_del(iter->dev, oldname,
9094 &iter->dev->adj_list.lower);
9095 netdev_adjacent_sysfs_add(iter->dev, dev,
9096 &iter->dev->adj_list.lower);
9097 }
9098
9099 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9100 if (!net_eq(net, dev_net(iter->dev)))
9101 continue;
9102 netdev_adjacent_sysfs_del(iter->dev, oldname,
9103 &iter->dev->adj_list.upper);
9104 netdev_adjacent_sysfs_add(iter->dev, dev,
9105 &iter->dev->adj_list.upper);
9106 }
9107 }
9108
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)9109 void *netdev_lower_dev_get_private(struct net_device *dev,
9110 struct net_device *lower_dev)
9111 {
9112 struct netdev_adjacent *lower;
9113
9114 if (!lower_dev)
9115 return NULL;
9116 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9117 if (!lower)
9118 return NULL;
9119
9120 return lower->private;
9121 }
9122 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9123
9124
9125 /**
9126 * netdev_lower_state_changed - Dispatch event about lower device state change
9127 * @lower_dev: device
9128 * @lower_state_info: state to dispatch
9129 *
9130 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9131 * The caller must hold the RTNL lock.
9132 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)9133 void netdev_lower_state_changed(struct net_device *lower_dev,
9134 void *lower_state_info)
9135 {
9136 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9137 .info.dev = lower_dev,
9138 };
9139
9140 ASSERT_RTNL();
9141 changelowerstate_info.lower_state_info = lower_state_info;
9142 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9143 &changelowerstate_info.info);
9144 }
9145 EXPORT_SYMBOL(netdev_lower_state_changed);
9146
dev_change_rx_flags(struct net_device * dev,int flags)9147 static void dev_change_rx_flags(struct net_device *dev, int flags)
9148 {
9149 const struct net_device_ops *ops = dev->netdev_ops;
9150
9151 if (ops->ndo_change_rx_flags)
9152 ops->ndo_change_rx_flags(dev, flags);
9153 }
9154
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)9155 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9156 {
9157 unsigned int old_flags = dev->flags;
9158 unsigned int promiscuity, flags;
9159 kuid_t uid;
9160 kgid_t gid;
9161
9162 ASSERT_RTNL();
9163
9164 promiscuity = dev->promiscuity + inc;
9165 if (promiscuity == 0) {
9166 /*
9167 * Avoid overflow.
9168 * If inc causes overflow, untouch promisc and return error.
9169 */
9170 if (unlikely(inc > 0)) {
9171 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9172 return -EOVERFLOW;
9173 }
9174 flags = old_flags & ~IFF_PROMISC;
9175 } else {
9176 flags = old_flags | IFF_PROMISC;
9177 }
9178 WRITE_ONCE(dev->promiscuity, promiscuity);
9179 if (flags != old_flags) {
9180 WRITE_ONCE(dev->flags, flags);
9181 netdev_info(dev, "%s promiscuous mode\n",
9182 dev->flags & IFF_PROMISC ? "entered" : "left");
9183 if (audit_enabled) {
9184 current_uid_gid(&uid, &gid);
9185 audit_log(audit_context(), GFP_ATOMIC,
9186 AUDIT_ANOM_PROMISCUOUS,
9187 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9188 dev->name, (dev->flags & IFF_PROMISC),
9189 (old_flags & IFF_PROMISC),
9190 from_kuid(&init_user_ns, audit_get_loginuid(current)),
9191 from_kuid(&init_user_ns, uid),
9192 from_kgid(&init_user_ns, gid),
9193 audit_get_sessionid(current));
9194 }
9195
9196 dev_change_rx_flags(dev, IFF_PROMISC);
9197 }
9198 if (notify)
9199 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9200 return 0;
9201 }
9202
9203 /**
9204 * dev_set_promiscuity - update promiscuity count on a device
9205 * @dev: device
9206 * @inc: modifier
9207 *
9208 * Add or remove promiscuity from a device. While the count in the device
9209 * remains above zero the interface remains promiscuous. Once it hits zero
9210 * the device reverts back to normal filtering operation. A negative inc
9211 * value is used to drop promiscuity on the device.
9212 * Return 0 if successful or a negative errno code on error.
9213 */
dev_set_promiscuity(struct net_device * dev,int inc)9214 int dev_set_promiscuity(struct net_device *dev, int inc)
9215 {
9216 unsigned int old_flags = dev->flags;
9217 int err;
9218
9219 err = __dev_set_promiscuity(dev, inc, true);
9220 if (err < 0)
9221 return err;
9222 if (dev->flags != old_flags)
9223 dev_set_rx_mode(dev);
9224 return err;
9225 }
9226 EXPORT_SYMBOL(dev_set_promiscuity);
9227
netif_set_allmulti(struct net_device * dev,int inc,bool notify)9228 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9229 {
9230 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9231 unsigned int allmulti, flags;
9232
9233 ASSERT_RTNL();
9234
9235 allmulti = dev->allmulti + inc;
9236 if (allmulti == 0) {
9237 /*
9238 * Avoid overflow.
9239 * If inc causes overflow, untouch allmulti and return error.
9240 */
9241 if (unlikely(inc > 0)) {
9242 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9243 return -EOVERFLOW;
9244 }
9245 flags = old_flags & ~IFF_ALLMULTI;
9246 } else {
9247 flags = old_flags | IFF_ALLMULTI;
9248 }
9249 WRITE_ONCE(dev->allmulti, allmulti);
9250 if (flags != old_flags) {
9251 WRITE_ONCE(dev->flags, flags);
9252 netdev_info(dev, "%s allmulticast mode\n",
9253 dev->flags & IFF_ALLMULTI ? "entered" : "left");
9254 dev_change_rx_flags(dev, IFF_ALLMULTI);
9255 dev_set_rx_mode(dev);
9256 if (notify)
9257 __dev_notify_flags(dev, old_flags,
9258 dev->gflags ^ old_gflags, 0, NULL);
9259 }
9260 return 0;
9261 }
9262
9263 /*
9264 * Upload unicast and multicast address lists to device and
9265 * configure RX filtering. When the device doesn't support unicast
9266 * filtering it is put in promiscuous mode while unicast addresses
9267 * are present.
9268 */
__dev_set_rx_mode(struct net_device * dev)9269 void __dev_set_rx_mode(struct net_device *dev)
9270 {
9271 const struct net_device_ops *ops = dev->netdev_ops;
9272
9273 /* dev_open will call this function so the list will stay sane. */
9274 if (!(dev->flags&IFF_UP))
9275 return;
9276
9277 if (!netif_device_present(dev))
9278 return;
9279
9280 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9281 /* Unicast addresses changes may only happen under the rtnl,
9282 * therefore calling __dev_set_promiscuity here is safe.
9283 */
9284 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9285 __dev_set_promiscuity(dev, 1, false);
9286 dev->uc_promisc = true;
9287 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9288 __dev_set_promiscuity(dev, -1, false);
9289 dev->uc_promisc = false;
9290 }
9291 }
9292
9293 if (ops->ndo_set_rx_mode)
9294 ops->ndo_set_rx_mode(dev);
9295 }
9296
dev_set_rx_mode(struct net_device * dev)9297 void dev_set_rx_mode(struct net_device *dev)
9298 {
9299 netif_addr_lock_bh(dev);
9300 __dev_set_rx_mode(dev);
9301 netif_addr_unlock_bh(dev);
9302 }
9303
9304 /**
9305 * dev_get_flags - get flags reported to userspace
9306 * @dev: device
9307 *
9308 * Get the combination of flag bits exported through APIs to userspace.
9309 */
dev_get_flags(const struct net_device * dev)9310 unsigned int dev_get_flags(const struct net_device *dev)
9311 {
9312 unsigned int flags;
9313
9314 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9315 IFF_ALLMULTI |
9316 IFF_RUNNING |
9317 IFF_LOWER_UP |
9318 IFF_DORMANT)) |
9319 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
9320 IFF_ALLMULTI));
9321
9322 if (netif_running(dev)) {
9323 if (netif_oper_up(dev))
9324 flags |= IFF_RUNNING;
9325 if (netif_carrier_ok(dev))
9326 flags |= IFF_LOWER_UP;
9327 if (netif_dormant(dev))
9328 flags |= IFF_DORMANT;
9329 }
9330
9331 return flags;
9332 }
9333 EXPORT_SYMBOL(dev_get_flags);
9334
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9335 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9336 struct netlink_ext_ack *extack)
9337 {
9338 unsigned int old_flags = dev->flags;
9339 int ret;
9340
9341 ASSERT_RTNL();
9342
9343 /*
9344 * Set the flags on our device.
9345 */
9346
9347 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9348 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9349 IFF_AUTOMEDIA)) |
9350 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9351 IFF_ALLMULTI));
9352
9353 /*
9354 * Load in the correct multicast list now the flags have changed.
9355 */
9356
9357 if ((old_flags ^ flags) & IFF_MULTICAST)
9358 dev_change_rx_flags(dev, IFF_MULTICAST);
9359
9360 dev_set_rx_mode(dev);
9361
9362 /*
9363 * Have we downed the interface. We handle IFF_UP ourselves
9364 * according to user attempts to set it, rather than blindly
9365 * setting it.
9366 */
9367
9368 ret = 0;
9369 if ((old_flags ^ flags) & IFF_UP) {
9370 if (old_flags & IFF_UP)
9371 __dev_close(dev);
9372 else
9373 ret = __dev_open(dev, extack);
9374 }
9375
9376 if ((flags ^ dev->gflags) & IFF_PROMISC) {
9377 int inc = (flags & IFF_PROMISC) ? 1 : -1;
9378 old_flags = dev->flags;
9379
9380 dev->gflags ^= IFF_PROMISC;
9381
9382 if (__dev_set_promiscuity(dev, inc, false) >= 0)
9383 if (dev->flags != old_flags)
9384 dev_set_rx_mode(dev);
9385 }
9386
9387 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9388 * is important. Some (broken) drivers set IFF_PROMISC, when
9389 * IFF_ALLMULTI is requested not asking us and not reporting.
9390 */
9391 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9392 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9393
9394 dev->gflags ^= IFF_ALLMULTI;
9395 netif_set_allmulti(dev, inc, false);
9396 }
9397
9398 return ret;
9399 }
9400
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)9401 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9402 unsigned int gchanges, u32 portid,
9403 const struct nlmsghdr *nlh)
9404 {
9405 unsigned int changes = dev->flags ^ old_flags;
9406
9407 if (gchanges)
9408 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9409
9410 if (changes & IFF_UP) {
9411 if (dev->flags & IFF_UP)
9412 call_netdevice_notifiers(NETDEV_UP, dev);
9413 else
9414 call_netdevice_notifiers(NETDEV_DOWN, dev);
9415 }
9416
9417 if (dev->flags & IFF_UP &&
9418 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9419 struct netdev_notifier_change_info change_info = {
9420 .info = {
9421 .dev = dev,
9422 },
9423 .flags_changed = changes,
9424 };
9425
9426 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9427 }
9428 }
9429
netif_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9430 int netif_change_flags(struct net_device *dev, unsigned int flags,
9431 struct netlink_ext_ack *extack)
9432 {
9433 int ret;
9434 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9435
9436 ret = __dev_change_flags(dev, flags, extack);
9437 if (ret < 0)
9438 return ret;
9439
9440 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9441 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
9442 return ret;
9443 }
9444
__dev_set_mtu(struct net_device * dev,int new_mtu)9445 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9446 {
9447 const struct net_device_ops *ops = dev->netdev_ops;
9448
9449 if (ops->ndo_change_mtu)
9450 return ops->ndo_change_mtu(dev, new_mtu);
9451
9452 /* Pairs with all the lockless reads of dev->mtu in the stack */
9453 WRITE_ONCE(dev->mtu, new_mtu);
9454 return 0;
9455 }
9456 EXPORT_SYMBOL(__dev_set_mtu);
9457
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9458 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9459 struct netlink_ext_ack *extack)
9460 {
9461 /* MTU must be positive, and in range */
9462 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9463 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9464 return -EINVAL;
9465 }
9466
9467 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9468 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9469 return -EINVAL;
9470 }
9471 return 0;
9472 }
9473
9474 /**
9475 * netif_set_mtu_ext - Change maximum transfer unit
9476 * @dev: device
9477 * @new_mtu: new transfer unit
9478 * @extack: netlink extended ack
9479 *
9480 * Change the maximum transfer size of the network device.
9481 */
netif_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9482 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9483 struct netlink_ext_ack *extack)
9484 {
9485 int err, orig_mtu;
9486
9487 if (new_mtu == dev->mtu)
9488 return 0;
9489
9490 err = dev_validate_mtu(dev, new_mtu, extack);
9491 if (err)
9492 return err;
9493
9494 if (!netif_device_present(dev))
9495 return -ENODEV;
9496
9497 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9498 err = notifier_to_errno(err);
9499 if (err)
9500 return err;
9501
9502 orig_mtu = dev->mtu;
9503 err = __dev_set_mtu(dev, new_mtu);
9504
9505 if (!err) {
9506 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9507 orig_mtu);
9508 err = notifier_to_errno(err);
9509 if (err) {
9510 /* setting mtu back and notifying everyone again,
9511 * so that they have a chance to revert changes.
9512 */
9513 __dev_set_mtu(dev, orig_mtu);
9514 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9515 new_mtu);
9516 }
9517 }
9518 return err;
9519 }
9520
netif_set_mtu(struct net_device * dev,int new_mtu)9521 int netif_set_mtu(struct net_device *dev, int new_mtu)
9522 {
9523 struct netlink_ext_ack extack;
9524 int err;
9525
9526 memset(&extack, 0, sizeof(extack));
9527 err = netif_set_mtu_ext(dev, new_mtu, &extack);
9528 if (err && extack._msg)
9529 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9530 return err;
9531 }
9532 EXPORT_SYMBOL(netif_set_mtu);
9533
netif_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9534 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9535 {
9536 unsigned int orig_len = dev->tx_queue_len;
9537 int res;
9538
9539 if (new_len != (unsigned int)new_len)
9540 return -ERANGE;
9541
9542 if (new_len != orig_len) {
9543 WRITE_ONCE(dev->tx_queue_len, new_len);
9544 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9545 res = notifier_to_errno(res);
9546 if (res)
9547 goto err_rollback;
9548 res = dev_qdisc_change_tx_queue_len(dev);
9549 if (res)
9550 goto err_rollback;
9551 }
9552
9553 return 0;
9554
9555 err_rollback:
9556 netdev_err(dev, "refused to change device tx_queue_len\n");
9557 WRITE_ONCE(dev->tx_queue_len, orig_len);
9558 return res;
9559 }
9560
netif_set_group(struct net_device * dev,int new_group)9561 void netif_set_group(struct net_device *dev, int new_group)
9562 {
9563 dev->group = new_group;
9564 }
9565
9566 /**
9567 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9568 * @dev: device
9569 * @addr: new address
9570 * @extack: netlink extended ack
9571 */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9572 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9573 struct netlink_ext_ack *extack)
9574 {
9575 struct netdev_notifier_pre_changeaddr_info info = {
9576 .info.dev = dev,
9577 .info.extack = extack,
9578 .dev_addr = addr,
9579 };
9580 int rc;
9581
9582 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9583 return notifier_to_errno(rc);
9584 }
9585 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9586
netif_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)9587 int netif_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9588 struct netlink_ext_ack *extack)
9589 {
9590 const struct net_device_ops *ops = dev->netdev_ops;
9591 int err;
9592
9593 if (!ops->ndo_set_mac_address)
9594 return -EOPNOTSUPP;
9595 if (sa->sa_family != dev->type)
9596 return -EINVAL;
9597 if (!netif_device_present(dev))
9598 return -ENODEV;
9599 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9600 if (err)
9601 return err;
9602 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9603 err = ops->ndo_set_mac_address(dev, sa);
9604 if (err)
9605 return err;
9606 }
9607 dev->addr_assign_type = NET_ADDR_SET;
9608 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9609 add_device_randomness(dev->dev_addr, dev->addr_len);
9610 return 0;
9611 }
9612
9613 DECLARE_RWSEM(dev_addr_sem);
9614
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9615 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9616 {
9617 size_t size = sizeof(sa->sa_data_min);
9618 struct net_device *dev;
9619 int ret = 0;
9620
9621 down_read(&dev_addr_sem);
9622 rcu_read_lock();
9623
9624 dev = dev_get_by_name_rcu(net, dev_name);
9625 if (!dev) {
9626 ret = -ENODEV;
9627 goto unlock;
9628 }
9629 if (!dev->addr_len)
9630 memset(sa->sa_data, 0, size);
9631 else
9632 memcpy(sa->sa_data, dev->dev_addr,
9633 min_t(size_t, size, dev->addr_len));
9634 sa->sa_family = dev->type;
9635
9636 unlock:
9637 rcu_read_unlock();
9638 up_read(&dev_addr_sem);
9639 return ret;
9640 }
9641 EXPORT_SYMBOL(dev_get_mac_address);
9642
netif_change_carrier(struct net_device * dev,bool new_carrier)9643 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9644 {
9645 const struct net_device_ops *ops = dev->netdev_ops;
9646
9647 if (!ops->ndo_change_carrier)
9648 return -EOPNOTSUPP;
9649 if (!netif_device_present(dev))
9650 return -ENODEV;
9651 return ops->ndo_change_carrier(dev, new_carrier);
9652 }
9653
9654 /**
9655 * dev_get_phys_port_id - Get device physical port ID
9656 * @dev: device
9657 * @ppid: port ID
9658 *
9659 * Get device physical port ID
9660 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9661 int dev_get_phys_port_id(struct net_device *dev,
9662 struct netdev_phys_item_id *ppid)
9663 {
9664 const struct net_device_ops *ops = dev->netdev_ops;
9665
9666 if (!ops->ndo_get_phys_port_id)
9667 return -EOPNOTSUPP;
9668 return ops->ndo_get_phys_port_id(dev, ppid);
9669 }
9670
9671 /**
9672 * dev_get_phys_port_name - Get device physical port name
9673 * @dev: device
9674 * @name: port name
9675 * @len: limit of bytes to copy to name
9676 *
9677 * Get device physical port name
9678 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9679 int dev_get_phys_port_name(struct net_device *dev,
9680 char *name, size_t len)
9681 {
9682 const struct net_device_ops *ops = dev->netdev_ops;
9683 int err;
9684
9685 if (ops->ndo_get_phys_port_name) {
9686 err = ops->ndo_get_phys_port_name(dev, name, len);
9687 if (err != -EOPNOTSUPP)
9688 return err;
9689 }
9690 return devlink_compat_phys_port_name_get(dev, name, len);
9691 }
9692
9693 /**
9694 * dev_get_port_parent_id - Get the device's port parent identifier
9695 * @dev: network device
9696 * @ppid: pointer to a storage for the port's parent identifier
9697 * @recurse: allow/disallow recursion to lower devices
9698 *
9699 * Get the devices's port parent identifier
9700 */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9701 int dev_get_port_parent_id(struct net_device *dev,
9702 struct netdev_phys_item_id *ppid,
9703 bool recurse)
9704 {
9705 const struct net_device_ops *ops = dev->netdev_ops;
9706 struct netdev_phys_item_id first = { };
9707 struct net_device *lower_dev;
9708 struct list_head *iter;
9709 int err;
9710
9711 if (ops->ndo_get_port_parent_id) {
9712 err = ops->ndo_get_port_parent_id(dev, ppid);
9713 if (err != -EOPNOTSUPP)
9714 return err;
9715 }
9716
9717 err = devlink_compat_switch_id_get(dev, ppid);
9718 if (!recurse || err != -EOPNOTSUPP)
9719 return err;
9720
9721 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9722 err = dev_get_port_parent_id(lower_dev, ppid, true);
9723 if (err)
9724 break;
9725 if (!first.id_len)
9726 first = *ppid;
9727 else if (memcmp(&first, ppid, sizeof(*ppid)))
9728 return -EOPNOTSUPP;
9729 }
9730
9731 return err;
9732 }
9733 EXPORT_SYMBOL(dev_get_port_parent_id);
9734
9735 /**
9736 * netdev_port_same_parent_id - Indicate if two network devices have
9737 * the same port parent identifier
9738 * @a: first network device
9739 * @b: second network device
9740 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9741 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9742 {
9743 struct netdev_phys_item_id a_id = { };
9744 struct netdev_phys_item_id b_id = { };
9745
9746 if (dev_get_port_parent_id(a, &a_id, true) ||
9747 dev_get_port_parent_id(b, &b_id, true))
9748 return false;
9749
9750 return netdev_phys_item_id_same(&a_id, &b_id);
9751 }
9752 EXPORT_SYMBOL(netdev_port_same_parent_id);
9753
netif_change_proto_down(struct net_device * dev,bool proto_down)9754 int netif_change_proto_down(struct net_device *dev, bool proto_down)
9755 {
9756 if (!dev->change_proto_down)
9757 return -EOPNOTSUPP;
9758 if (!netif_device_present(dev))
9759 return -ENODEV;
9760 if (proto_down)
9761 netif_carrier_off(dev);
9762 else
9763 netif_carrier_on(dev);
9764 WRITE_ONCE(dev->proto_down, proto_down);
9765 return 0;
9766 }
9767
9768 /**
9769 * netdev_change_proto_down_reason_locked - proto down reason
9770 *
9771 * @dev: device
9772 * @mask: proto down mask
9773 * @value: proto down value
9774 */
netdev_change_proto_down_reason_locked(struct net_device * dev,unsigned long mask,u32 value)9775 void netdev_change_proto_down_reason_locked(struct net_device *dev,
9776 unsigned long mask, u32 value)
9777 {
9778 u32 proto_down_reason;
9779 int b;
9780
9781 if (!mask) {
9782 proto_down_reason = value;
9783 } else {
9784 proto_down_reason = dev->proto_down_reason;
9785 for_each_set_bit(b, &mask, 32) {
9786 if (value & (1 << b))
9787 proto_down_reason |= BIT(b);
9788 else
9789 proto_down_reason &= ~BIT(b);
9790 }
9791 }
9792 WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9793 }
9794
9795 struct bpf_xdp_link {
9796 struct bpf_link link;
9797 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9798 int flags;
9799 };
9800
dev_xdp_mode(struct net_device * dev,u32 flags)9801 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9802 {
9803 if (flags & XDP_FLAGS_HW_MODE)
9804 return XDP_MODE_HW;
9805 if (flags & XDP_FLAGS_DRV_MODE)
9806 return XDP_MODE_DRV;
9807 if (flags & XDP_FLAGS_SKB_MODE)
9808 return XDP_MODE_SKB;
9809 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9810 }
9811
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9812 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9813 {
9814 switch (mode) {
9815 case XDP_MODE_SKB:
9816 return generic_xdp_install;
9817 case XDP_MODE_DRV:
9818 case XDP_MODE_HW:
9819 return dev->netdev_ops->ndo_bpf;
9820 default:
9821 return NULL;
9822 }
9823 }
9824
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9825 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9826 enum bpf_xdp_mode mode)
9827 {
9828 return dev->xdp_state[mode].link;
9829 }
9830
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9831 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9832 enum bpf_xdp_mode mode)
9833 {
9834 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9835
9836 if (link)
9837 return link->link.prog;
9838 return dev->xdp_state[mode].prog;
9839 }
9840
dev_xdp_prog_count(struct net_device * dev)9841 u8 dev_xdp_prog_count(struct net_device *dev)
9842 {
9843 u8 count = 0;
9844 int i;
9845
9846 for (i = 0; i < __MAX_XDP_MODE; i++)
9847 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9848 count++;
9849 return count;
9850 }
9851 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9852
dev_xdp_sb_prog_count(struct net_device * dev)9853 u8 dev_xdp_sb_prog_count(struct net_device *dev)
9854 {
9855 u8 count = 0;
9856 int i;
9857
9858 for (i = 0; i < __MAX_XDP_MODE; i++)
9859 if (dev->xdp_state[i].prog &&
9860 !dev->xdp_state[i].prog->aux->xdp_has_frags)
9861 count++;
9862 return count;
9863 }
9864
netif_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)9865 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9866 {
9867 if (!dev->netdev_ops->ndo_bpf)
9868 return -EOPNOTSUPP;
9869
9870 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9871 bpf->command == XDP_SETUP_PROG &&
9872 bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9873 NL_SET_ERR_MSG(bpf->extack,
9874 "unable to propagate XDP to device using tcp-data-split");
9875 return -EBUSY;
9876 }
9877
9878 if (dev_get_min_mp_channel_count(dev)) {
9879 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9880 return -EBUSY;
9881 }
9882
9883 return dev->netdev_ops->ndo_bpf(dev, bpf);
9884 }
9885
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9886 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9887 {
9888 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9889
9890 return prog ? prog->aux->id : 0;
9891 }
9892
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9893 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9894 struct bpf_xdp_link *link)
9895 {
9896 dev->xdp_state[mode].link = link;
9897 dev->xdp_state[mode].prog = NULL;
9898 }
9899
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9900 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9901 struct bpf_prog *prog)
9902 {
9903 dev->xdp_state[mode].link = NULL;
9904 dev->xdp_state[mode].prog = prog;
9905 }
9906
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9907 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9908 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9909 u32 flags, struct bpf_prog *prog)
9910 {
9911 struct netdev_bpf xdp;
9912 int err;
9913
9914 netdev_ops_assert_locked(dev);
9915
9916 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9917 prog && !prog->aux->xdp_has_frags) {
9918 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
9919 return -EBUSY;
9920 }
9921
9922 if (dev_get_min_mp_channel_count(dev)) {
9923 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9924 return -EBUSY;
9925 }
9926
9927 memset(&xdp, 0, sizeof(xdp));
9928 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9929 xdp.extack = extack;
9930 xdp.flags = flags;
9931 xdp.prog = prog;
9932
9933 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9934 * "moved" into driver), so they don't increment it on their own, but
9935 * they do decrement refcnt when program is detached or replaced.
9936 * Given net_device also owns link/prog, we need to bump refcnt here
9937 * to prevent drivers from underflowing it.
9938 */
9939 if (prog)
9940 bpf_prog_inc(prog);
9941 err = bpf_op(dev, &xdp);
9942 if (err) {
9943 if (prog)
9944 bpf_prog_put(prog);
9945 return err;
9946 }
9947
9948 if (mode != XDP_MODE_HW)
9949 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9950
9951 return 0;
9952 }
9953
dev_xdp_uninstall(struct net_device * dev)9954 static void dev_xdp_uninstall(struct net_device *dev)
9955 {
9956 struct bpf_xdp_link *link;
9957 struct bpf_prog *prog;
9958 enum bpf_xdp_mode mode;
9959 bpf_op_t bpf_op;
9960
9961 ASSERT_RTNL();
9962
9963 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9964 prog = dev_xdp_prog(dev, mode);
9965 if (!prog)
9966 continue;
9967
9968 bpf_op = dev_xdp_bpf_op(dev, mode);
9969 if (!bpf_op)
9970 continue;
9971
9972 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9973
9974 /* auto-detach link from net device */
9975 link = dev_xdp_link(dev, mode);
9976 if (link)
9977 link->dev = NULL;
9978 else
9979 bpf_prog_put(prog);
9980
9981 dev_xdp_set_link(dev, mode, NULL);
9982 }
9983 }
9984
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9985 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9986 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9987 struct bpf_prog *old_prog, u32 flags)
9988 {
9989 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9990 struct bpf_prog *cur_prog;
9991 struct net_device *upper;
9992 struct list_head *iter;
9993 enum bpf_xdp_mode mode;
9994 bpf_op_t bpf_op;
9995 int err;
9996
9997 ASSERT_RTNL();
9998
9999 /* either link or prog attachment, never both */
10000 if (link && (new_prog || old_prog))
10001 return -EINVAL;
10002 /* link supports only XDP mode flags */
10003 if (link && (flags & ~XDP_FLAGS_MODES)) {
10004 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10005 return -EINVAL;
10006 }
10007 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10008 if (num_modes > 1) {
10009 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10010 return -EINVAL;
10011 }
10012 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10013 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10014 NL_SET_ERR_MSG(extack,
10015 "More than one program loaded, unset mode is ambiguous");
10016 return -EINVAL;
10017 }
10018 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10019 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10020 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10021 return -EINVAL;
10022 }
10023
10024 mode = dev_xdp_mode(dev, flags);
10025 /* can't replace attached link */
10026 if (dev_xdp_link(dev, mode)) {
10027 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10028 return -EBUSY;
10029 }
10030
10031 /* don't allow if an upper device already has a program */
10032 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10033 if (dev_xdp_prog_count(upper) > 0) {
10034 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10035 return -EEXIST;
10036 }
10037 }
10038
10039 cur_prog = dev_xdp_prog(dev, mode);
10040 /* can't replace attached prog with link */
10041 if (link && cur_prog) {
10042 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10043 return -EBUSY;
10044 }
10045 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10046 NL_SET_ERR_MSG(extack, "Active program does not match expected");
10047 return -EEXIST;
10048 }
10049
10050 /* put effective new program into new_prog */
10051 if (link)
10052 new_prog = link->link.prog;
10053
10054 if (new_prog) {
10055 bool offload = mode == XDP_MODE_HW;
10056 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10057 ? XDP_MODE_DRV : XDP_MODE_SKB;
10058
10059 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10060 NL_SET_ERR_MSG(extack, "XDP program already attached");
10061 return -EBUSY;
10062 }
10063 if (!offload && dev_xdp_prog(dev, other_mode)) {
10064 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10065 return -EEXIST;
10066 }
10067 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10068 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10069 return -EINVAL;
10070 }
10071 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10072 NL_SET_ERR_MSG(extack, "Program bound to different device");
10073 return -EINVAL;
10074 }
10075 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10076 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10077 return -EINVAL;
10078 }
10079 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10080 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10081 return -EINVAL;
10082 }
10083 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10084 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10085 return -EINVAL;
10086 }
10087 }
10088
10089 /* don't call drivers if the effective program didn't change */
10090 if (new_prog != cur_prog) {
10091 bpf_op = dev_xdp_bpf_op(dev, mode);
10092 if (!bpf_op) {
10093 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10094 return -EOPNOTSUPP;
10095 }
10096
10097 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10098 if (err)
10099 return err;
10100 }
10101
10102 if (link)
10103 dev_xdp_set_link(dev, mode, link);
10104 else
10105 dev_xdp_set_prog(dev, mode, new_prog);
10106 if (cur_prog)
10107 bpf_prog_put(cur_prog);
10108
10109 return 0;
10110 }
10111
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10112 static int dev_xdp_attach_link(struct net_device *dev,
10113 struct netlink_ext_ack *extack,
10114 struct bpf_xdp_link *link)
10115 {
10116 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10117 }
10118
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10119 static int dev_xdp_detach_link(struct net_device *dev,
10120 struct netlink_ext_ack *extack,
10121 struct bpf_xdp_link *link)
10122 {
10123 enum bpf_xdp_mode mode;
10124 bpf_op_t bpf_op;
10125
10126 ASSERT_RTNL();
10127
10128 mode = dev_xdp_mode(dev, link->flags);
10129 if (dev_xdp_link(dev, mode) != link)
10130 return -EINVAL;
10131
10132 bpf_op = dev_xdp_bpf_op(dev, mode);
10133 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10134 dev_xdp_set_link(dev, mode, NULL);
10135 return 0;
10136 }
10137
bpf_xdp_link_release(struct bpf_link * link)10138 static void bpf_xdp_link_release(struct bpf_link *link)
10139 {
10140 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10141
10142 rtnl_lock();
10143
10144 /* if racing with net_device's tear down, xdp_link->dev might be
10145 * already NULL, in which case link was already auto-detached
10146 */
10147 if (xdp_link->dev) {
10148 netdev_lock_ops(xdp_link->dev);
10149 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10150 netdev_unlock_ops(xdp_link->dev);
10151 xdp_link->dev = NULL;
10152 }
10153
10154 rtnl_unlock();
10155 }
10156
bpf_xdp_link_detach(struct bpf_link * link)10157 static int bpf_xdp_link_detach(struct bpf_link *link)
10158 {
10159 bpf_xdp_link_release(link);
10160 return 0;
10161 }
10162
bpf_xdp_link_dealloc(struct bpf_link * link)10163 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10164 {
10165 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10166
10167 kfree(xdp_link);
10168 }
10169
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)10170 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10171 struct seq_file *seq)
10172 {
10173 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10174 u32 ifindex = 0;
10175
10176 rtnl_lock();
10177 if (xdp_link->dev)
10178 ifindex = xdp_link->dev->ifindex;
10179 rtnl_unlock();
10180
10181 seq_printf(seq, "ifindex:\t%u\n", ifindex);
10182 }
10183
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)10184 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10185 struct bpf_link_info *info)
10186 {
10187 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10188 u32 ifindex = 0;
10189
10190 rtnl_lock();
10191 if (xdp_link->dev)
10192 ifindex = xdp_link->dev->ifindex;
10193 rtnl_unlock();
10194
10195 info->xdp.ifindex = ifindex;
10196 return 0;
10197 }
10198
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)10199 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10200 struct bpf_prog *old_prog)
10201 {
10202 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10203 enum bpf_xdp_mode mode;
10204 bpf_op_t bpf_op;
10205 int err = 0;
10206
10207 rtnl_lock();
10208
10209 /* link might have been auto-released already, so fail */
10210 if (!xdp_link->dev) {
10211 err = -ENOLINK;
10212 goto out_unlock;
10213 }
10214
10215 if (old_prog && link->prog != old_prog) {
10216 err = -EPERM;
10217 goto out_unlock;
10218 }
10219 old_prog = link->prog;
10220 if (old_prog->type != new_prog->type ||
10221 old_prog->expected_attach_type != new_prog->expected_attach_type) {
10222 err = -EINVAL;
10223 goto out_unlock;
10224 }
10225
10226 if (old_prog == new_prog) {
10227 /* no-op, don't disturb drivers */
10228 bpf_prog_put(new_prog);
10229 goto out_unlock;
10230 }
10231
10232 netdev_lock_ops(xdp_link->dev);
10233 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10234 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10235 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10236 xdp_link->flags, new_prog);
10237 netdev_unlock_ops(xdp_link->dev);
10238 if (err)
10239 goto out_unlock;
10240
10241 old_prog = xchg(&link->prog, new_prog);
10242 bpf_prog_put(old_prog);
10243
10244 out_unlock:
10245 rtnl_unlock();
10246 return err;
10247 }
10248
10249 static const struct bpf_link_ops bpf_xdp_link_lops = {
10250 .release = bpf_xdp_link_release,
10251 .dealloc = bpf_xdp_link_dealloc,
10252 .detach = bpf_xdp_link_detach,
10253 .show_fdinfo = bpf_xdp_link_show_fdinfo,
10254 .fill_link_info = bpf_xdp_link_fill_link_info,
10255 .update_prog = bpf_xdp_link_update,
10256 };
10257
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)10258 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10259 {
10260 struct net *net = current->nsproxy->net_ns;
10261 struct bpf_link_primer link_primer;
10262 struct netlink_ext_ack extack = {};
10263 struct bpf_xdp_link *link;
10264 struct net_device *dev;
10265 int err, fd;
10266
10267 rtnl_lock();
10268 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10269 if (!dev) {
10270 rtnl_unlock();
10271 return -EINVAL;
10272 }
10273
10274 link = kzalloc(sizeof(*link), GFP_USER);
10275 if (!link) {
10276 err = -ENOMEM;
10277 goto unlock;
10278 }
10279
10280 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10281 link->dev = dev;
10282 link->flags = attr->link_create.flags;
10283
10284 err = bpf_link_prime(&link->link, &link_primer);
10285 if (err) {
10286 kfree(link);
10287 goto unlock;
10288 }
10289
10290 netdev_lock_ops(dev);
10291 err = dev_xdp_attach_link(dev, &extack, link);
10292 netdev_unlock_ops(dev);
10293 rtnl_unlock();
10294
10295 if (err) {
10296 link->dev = NULL;
10297 bpf_link_cleanup(&link_primer);
10298 trace_bpf_xdp_link_attach_failed(extack._msg);
10299 goto out_put_dev;
10300 }
10301
10302 fd = bpf_link_settle(&link_primer);
10303 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
10304 dev_put(dev);
10305 return fd;
10306
10307 unlock:
10308 rtnl_unlock();
10309
10310 out_put_dev:
10311 dev_put(dev);
10312 return err;
10313 }
10314
10315 /**
10316 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
10317 * @dev: device
10318 * @extack: netlink extended ack
10319 * @fd: new program fd or negative value to clear
10320 * @expected_fd: old program fd that userspace expects to replace or clear
10321 * @flags: xdp-related flags
10322 *
10323 * Set or clear a bpf program for a device
10324 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)10325 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10326 int fd, int expected_fd, u32 flags)
10327 {
10328 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10329 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10330 int err;
10331
10332 ASSERT_RTNL();
10333
10334 if (fd >= 0) {
10335 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10336 mode != XDP_MODE_SKB);
10337 if (IS_ERR(new_prog))
10338 return PTR_ERR(new_prog);
10339 }
10340
10341 if (expected_fd >= 0) {
10342 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10343 mode != XDP_MODE_SKB);
10344 if (IS_ERR(old_prog)) {
10345 err = PTR_ERR(old_prog);
10346 old_prog = NULL;
10347 goto err_out;
10348 }
10349 }
10350
10351 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10352
10353 err_out:
10354 if (err && new_prog)
10355 bpf_prog_put(new_prog);
10356 if (old_prog)
10357 bpf_prog_put(old_prog);
10358 return err;
10359 }
10360
dev_get_min_mp_channel_count(const struct net_device * dev)10361 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10362 {
10363 int i;
10364
10365 netdev_ops_assert_locked(dev);
10366
10367 for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10368 if (dev->_rx[i].mp_params.mp_priv)
10369 /* The channel count is the idx plus 1. */
10370 return i + 1;
10371
10372 return 0;
10373 }
10374
10375 /**
10376 * dev_index_reserve() - allocate an ifindex in a namespace
10377 * @net: the applicable net namespace
10378 * @ifindex: requested ifindex, pass %0 to get one allocated
10379 *
10380 * Allocate a ifindex for a new device. Caller must either use the ifindex
10381 * to store the device (via list_netdevice()) or call dev_index_release()
10382 * to give the index up.
10383 *
10384 * Return: a suitable unique value for a new device interface number or -errno.
10385 */
dev_index_reserve(struct net * net,u32 ifindex)10386 static int dev_index_reserve(struct net *net, u32 ifindex)
10387 {
10388 int err;
10389
10390 if (ifindex > INT_MAX) {
10391 DEBUG_NET_WARN_ON_ONCE(1);
10392 return -EINVAL;
10393 }
10394
10395 if (!ifindex)
10396 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10397 xa_limit_31b, &net->ifindex, GFP_KERNEL);
10398 else
10399 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10400 if (err < 0)
10401 return err;
10402
10403 return ifindex;
10404 }
10405
dev_index_release(struct net * net,int ifindex)10406 static void dev_index_release(struct net *net, int ifindex)
10407 {
10408 /* Expect only unused indexes, unlist_netdevice() removes the used */
10409 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10410 }
10411
from_cleanup_net(void)10412 static bool from_cleanup_net(void)
10413 {
10414 #ifdef CONFIG_NET_NS
10415 return current == cleanup_net_task;
10416 #else
10417 return false;
10418 #endif
10419 }
10420
10421 /* Delayed registration/unregisteration */
10422 LIST_HEAD(net_todo_list);
10423 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10424 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10425
net_set_todo(struct net_device * dev)10426 static void net_set_todo(struct net_device *dev)
10427 {
10428 list_add_tail(&dev->todo_list, &net_todo_list);
10429 }
10430
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10431 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10432 struct net_device *upper, netdev_features_t features)
10433 {
10434 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10435 netdev_features_t feature;
10436 int feature_bit;
10437
10438 for_each_netdev_feature(upper_disables, feature_bit) {
10439 feature = __NETIF_F_BIT(feature_bit);
10440 if (!(upper->wanted_features & feature)
10441 && (features & feature)) {
10442 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10443 &feature, upper->name);
10444 features &= ~feature;
10445 }
10446 }
10447
10448 return features;
10449 }
10450
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10451 static void netdev_sync_lower_features(struct net_device *upper,
10452 struct net_device *lower, netdev_features_t features)
10453 {
10454 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10455 netdev_features_t feature;
10456 int feature_bit;
10457
10458 for_each_netdev_feature(upper_disables, feature_bit) {
10459 feature = __NETIF_F_BIT(feature_bit);
10460 if (!(features & feature) && (lower->features & feature)) {
10461 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10462 &feature, lower->name);
10463 lower->wanted_features &= ~feature;
10464 __netdev_update_features(lower);
10465
10466 if (unlikely(lower->features & feature))
10467 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10468 &feature, lower->name);
10469 else
10470 netdev_features_change(lower);
10471 }
10472 }
10473 }
10474
netdev_has_ip_or_hw_csum(netdev_features_t features)10475 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10476 {
10477 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10478 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10479 bool hw_csum = features & NETIF_F_HW_CSUM;
10480
10481 return ip_csum || hw_csum;
10482 }
10483
netdev_fix_features(struct net_device * dev,netdev_features_t features)10484 static netdev_features_t netdev_fix_features(struct net_device *dev,
10485 netdev_features_t features)
10486 {
10487 /* Fix illegal checksum combinations */
10488 if ((features & NETIF_F_HW_CSUM) &&
10489 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10490 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10491 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10492 }
10493
10494 /* TSO requires that SG is present as well. */
10495 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10496 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10497 features &= ~NETIF_F_ALL_TSO;
10498 }
10499
10500 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10501 !(features & NETIF_F_IP_CSUM)) {
10502 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10503 features &= ~NETIF_F_TSO;
10504 features &= ~NETIF_F_TSO_ECN;
10505 }
10506
10507 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10508 !(features & NETIF_F_IPV6_CSUM)) {
10509 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10510 features &= ~NETIF_F_TSO6;
10511 }
10512
10513 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10514 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10515 features &= ~NETIF_F_TSO_MANGLEID;
10516
10517 /* TSO ECN requires that TSO is present as well. */
10518 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10519 features &= ~NETIF_F_TSO_ECN;
10520
10521 /* Software GSO depends on SG. */
10522 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10523 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10524 features &= ~NETIF_F_GSO;
10525 }
10526
10527 /* GSO partial features require GSO partial be set */
10528 if ((features & dev->gso_partial_features) &&
10529 !(features & NETIF_F_GSO_PARTIAL)) {
10530 netdev_dbg(dev,
10531 "Dropping partially supported GSO features since no GSO partial.\n");
10532 features &= ~dev->gso_partial_features;
10533 }
10534
10535 if (!(features & NETIF_F_RXCSUM)) {
10536 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10537 * successfully merged by hardware must also have the
10538 * checksum verified by hardware. If the user does not
10539 * want to enable RXCSUM, logically, we should disable GRO_HW.
10540 */
10541 if (features & NETIF_F_GRO_HW) {
10542 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10543 features &= ~NETIF_F_GRO_HW;
10544 }
10545 }
10546
10547 /* LRO/HW-GRO features cannot be combined with RX-FCS */
10548 if (features & NETIF_F_RXFCS) {
10549 if (features & NETIF_F_LRO) {
10550 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10551 features &= ~NETIF_F_LRO;
10552 }
10553
10554 if (features & NETIF_F_GRO_HW) {
10555 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10556 features &= ~NETIF_F_GRO_HW;
10557 }
10558 }
10559
10560 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10561 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10562 features &= ~NETIF_F_LRO;
10563 }
10564
10565 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10566 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10567 features &= ~NETIF_F_HW_TLS_TX;
10568 }
10569
10570 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10571 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10572 features &= ~NETIF_F_HW_TLS_RX;
10573 }
10574
10575 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10576 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10577 features &= ~NETIF_F_GSO_UDP_L4;
10578 }
10579
10580 return features;
10581 }
10582
__netdev_update_features(struct net_device * dev)10583 int __netdev_update_features(struct net_device *dev)
10584 {
10585 struct net_device *upper, *lower;
10586 netdev_features_t features;
10587 struct list_head *iter;
10588 int err = -1;
10589
10590 ASSERT_RTNL();
10591 netdev_ops_assert_locked(dev);
10592
10593 features = netdev_get_wanted_features(dev);
10594
10595 if (dev->netdev_ops->ndo_fix_features)
10596 features = dev->netdev_ops->ndo_fix_features(dev, features);
10597
10598 /* driver might be less strict about feature dependencies */
10599 features = netdev_fix_features(dev, features);
10600
10601 /* some features can't be enabled if they're off on an upper device */
10602 netdev_for_each_upper_dev_rcu(dev, upper, iter)
10603 features = netdev_sync_upper_features(dev, upper, features);
10604
10605 if (dev->features == features)
10606 goto sync_lower;
10607
10608 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10609 &dev->features, &features);
10610
10611 if (dev->netdev_ops->ndo_set_features)
10612 err = dev->netdev_ops->ndo_set_features(dev, features);
10613 else
10614 err = 0;
10615
10616 if (unlikely(err < 0)) {
10617 netdev_err(dev,
10618 "set_features() failed (%d); wanted %pNF, left %pNF\n",
10619 err, &features, &dev->features);
10620 /* return non-0 since some features might have changed and
10621 * it's better to fire a spurious notification than miss it
10622 */
10623 return -1;
10624 }
10625
10626 sync_lower:
10627 /* some features must be disabled on lower devices when disabled
10628 * on an upper device (think: bonding master or bridge)
10629 */
10630 netdev_for_each_lower_dev(dev, lower, iter)
10631 netdev_sync_lower_features(dev, lower, features);
10632
10633 if (!err) {
10634 netdev_features_t diff = features ^ dev->features;
10635
10636 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10637 /* udp_tunnel_{get,drop}_rx_info both need
10638 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10639 * device, or they won't do anything.
10640 * Thus we need to update dev->features
10641 * *before* calling udp_tunnel_get_rx_info,
10642 * but *after* calling udp_tunnel_drop_rx_info.
10643 */
10644 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10645 dev->features = features;
10646 udp_tunnel_get_rx_info(dev);
10647 } else {
10648 udp_tunnel_drop_rx_info(dev);
10649 }
10650 }
10651
10652 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10653 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10654 dev->features = features;
10655 err |= vlan_get_rx_ctag_filter_info(dev);
10656 } else {
10657 vlan_drop_rx_ctag_filter_info(dev);
10658 }
10659 }
10660
10661 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10662 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10663 dev->features = features;
10664 err |= vlan_get_rx_stag_filter_info(dev);
10665 } else {
10666 vlan_drop_rx_stag_filter_info(dev);
10667 }
10668 }
10669
10670 dev->features = features;
10671 }
10672
10673 return err < 0 ? 0 : 1;
10674 }
10675
10676 /**
10677 * netdev_update_features - recalculate device features
10678 * @dev: the device to check
10679 *
10680 * Recalculate dev->features set and send notifications if it
10681 * has changed. Should be called after driver or hardware dependent
10682 * conditions might have changed that influence the features.
10683 */
netdev_update_features(struct net_device * dev)10684 void netdev_update_features(struct net_device *dev)
10685 {
10686 if (__netdev_update_features(dev))
10687 netdev_features_change(dev);
10688 }
10689 EXPORT_SYMBOL(netdev_update_features);
10690
10691 /**
10692 * netdev_change_features - recalculate device features
10693 * @dev: the device to check
10694 *
10695 * Recalculate dev->features set and send notifications even
10696 * if they have not changed. Should be called instead of
10697 * netdev_update_features() if also dev->vlan_features might
10698 * have changed to allow the changes to be propagated to stacked
10699 * VLAN devices.
10700 */
netdev_change_features(struct net_device * dev)10701 void netdev_change_features(struct net_device *dev)
10702 {
10703 __netdev_update_features(dev);
10704 netdev_features_change(dev);
10705 }
10706 EXPORT_SYMBOL(netdev_change_features);
10707
10708 /**
10709 * netif_stacked_transfer_operstate - transfer operstate
10710 * @rootdev: the root or lower level device to transfer state from
10711 * @dev: the device to transfer operstate to
10712 *
10713 * Transfer operational state from root to device. This is normally
10714 * called when a stacking relationship exists between the root
10715 * device and the device(a leaf device).
10716 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)10717 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10718 struct net_device *dev)
10719 {
10720 if (rootdev->operstate == IF_OPER_DORMANT)
10721 netif_dormant_on(dev);
10722 else
10723 netif_dormant_off(dev);
10724
10725 if (rootdev->operstate == IF_OPER_TESTING)
10726 netif_testing_on(dev);
10727 else
10728 netif_testing_off(dev);
10729
10730 if (netif_carrier_ok(rootdev))
10731 netif_carrier_on(dev);
10732 else
10733 netif_carrier_off(dev);
10734 }
10735 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10736
netif_alloc_rx_queues(struct net_device * dev)10737 static int netif_alloc_rx_queues(struct net_device *dev)
10738 {
10739 unsigned int i, count = dev->num_rx_queues;
10740 struct netdev_rx_queue *rx;
10741 size_t sz = count * sizeof(*rx);
10742 int err = 0;
10743
10744 BUG_ON(count < 1);
10745
10746 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10747 if (!rx)
10748 return -ENOMEM;
10749
10750 dev->_rx = rx;
10751
10752 for (i = 0; i < count; i++) {
10753 rx[i].dev = dev;
10754
10755 /* XDP RX-queue setup */
10756 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10757 if (err < 0)
10758 goto err_rxq_info;
10759 }
10760 return 0;
10761
10762 err_rxq_info:
10763 /* Rollback successful reg's and free other resources */
10764 while (i--)
10765 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10766 kvfree(dev->_rx);
10767 dev->_rx = NULL;
10768 return err;
10769 }
10770
netif_free_rx_queues(struct net_device * dev)10771 static void netif_free_rx_queues(struct net_device *dev)
10772 {
10773 unsigned int i, count = dev->num_rx_queues;
10774
10775 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10776 if (!dev->_rx)
10777 return;
10778
10779 for (i = 0; i < count; i++)
10780 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10781
10782 kvfree(dev->_rx);
10783 }
10784
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10785 static void netdev_init_one_queue(struct net_device *dev,
10786 struct netdev_queue *queue, void *_unused)
10787 {
10788 /* Initialize queue lock */
10789 spin_lock_init(&queue->_xmit_lock);
10790 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10791 queue->xmit_lock_owner = -1;
10792 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10793 queue->dev = dev;
10794 #ifdef CONFIG_BQL
10795 dql_init(&queue->dql, HZ);
10796 #endif
10797 }
10798
netif_free_tx_queues(struct net_device * dev)10799 static void netif_free_tx_queues(struct net_device *dev)
10800 {
10801 kvfree(dev->_tx);
10802 }
10803
netif_alloc_netdev_queues(struct net_device * dev)10804 static int netif_alloc_netdev_queues(struct net_device *dev)
10805 {
10806 unsigned int count = dev->num_tx_queues;
10807 struct netdev_queue *tx;
10808 size_t sz = count * sizeof(*tx);
10809
10810 if (count < 1 || count > 0xffff)
10811 return -EINVAL;
10812
10813 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10814 if (!tx)
10815 return -ENOMEM;
10816
10817 dev->_tx = tx;
10818
10819 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10820 spin_lock_init(&dev->tx_global_lock);
10821
10822 return 0;
10823 }
10824
netif_tx_stop_all_queues(struct net_device * dev)10825 void netif_tx_stop_all_queues(struct net_device *dev)
10826 {
10827 unsigned int i;
10828
10829 for (i = 0; i < dev->num_tx_queues; i++) {
10830 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10831
10832 netif_tx_stop_queue(txq);
10833 }
10834 }
10835 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10836
netdev_do_alloc_pcpu_stats(struct net_device * dev)10837 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10838 {
10839 void __percpu *v;
10840
10841 /* Drivers implementing ndo_get_peer_dev must support tstat
10842 * accounting, so that skb_do_redirect() can bump the dev's
10843 * RX stats upon network namespace switch.
10844 */
10845 if (dev->netdev_ops->ndo_get_peer_dev &&
10846 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10847 return -EOPNOTSUPP;
10848
10849 switch (dev->pcpu_stat_type) {
10850 case NETDEV_PCPU_STAT_NONE:
10851 return 0;
10852 case NETDEV_PCPU_STAT_LSTATS:
10853 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10854 break;
10855 case NETDEV_PCPU_STAT_TSTATS:
10856 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10857 break;
10858 case NETDEV_PCPU_STAT_DSTATS:
10859 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10860 break;
10861 default:
10862 return -EINVAL;
10863 }
10864
10865 return v ? 0 : -ENOMEM;
10866 }
10867
netdev_do_free_pcpu_stats(struct net_device * dev)10868 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10869 {
10870 switch (dev->pcpu_stat_type) {
10871 case NETDEV_PCPU_STAT_NONE:
10872 return;
10873 case NETDEV_PCPU_STAT_LSTATS:
10874 free_percpu(dev->lstats);
10875 break;
10876 case NETDEV_PCPU_STAT_TSTATS:
10877 free_percpu(dev->tstats);
10878 break;
10879 case NETDEV_PCPU_STAT_DSTATS:
10880 free_percpu(dev->dstats);
10881 break;
10882 }
10883 }
10884
netdev_free_phy_link_topology(struct net_device * dev)10885 static void netdev_free_phy_link_topology(struct net_device *dev)
10886 {
10887 struct phy_link_topology *topo = dev->link_topo;
10888
10889 if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10890 xa_destroy(&topo->phys);
10891 kfree(topo);
10892 dev->link_topo = NULL;
10893 }
10894 }
10895
10896 /**
10897 * register_netdevice() - register a network device
10898 * @dev: device to register
10899 *
10900 * Take a prepared network device structure and make it externally accessible.
10901 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10902 * Callers must hold the rtnl lock - you may want register_netdev()
10903 * instead of this.
10904 */
register_netdevice(struct net_device * dev)10905 int register_netdevice(struct net_device *dev)
10906 {
10907 int ret;
10908 struct net *net = dev_net(dev);
10909
10910 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10911 NETDEV_FEATURE_COUNT);
10912 BUG_ON(dev_boot_phase);
10913 ASSERT_RTNL();
10914
10915 might_sleep();
10916
10917 /* When net_device's are persistent, this will be fatal. */
10918 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10919 BUG_ON(!net);
10920
10921 ret = ethtool_check_ops(dev->ethtool_ops);
10922 if (ret)
10923 return ret;
10924
10925 /* rss ctx ID 0 is reserved for the default context, start from 1 */
10926 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10927 mutex_init(&dev->ethtool->rss_lock);
10928
10929 spin_lock_init(&dev->addr_list_lock);
10930 netdev_set_addr_lockdep_class(dev);
10931
10932 ret = dev_get_valid_name(net, dev, dev->name);
10933 if (ret < 0)
10934 goto out;
10935
10936 ret = -ENOMEM;
10937 dev->name_node = netdev_name_node_head_alloc(dev);
10938 if (!dev->name_node)
10939 goto out;
10940
10941 /* Init, if this function is available */
10942 if (dev->netdev_ops->ndo_init) {
10943 ret = dev->netdev_ops->ndo_init(dev);
10944 if (ret) {
10945 if (ret > 0)
10946 ret = -EIO;
10947 goto err_free_name;
10948 }
10949 }
10950
10951 if (((dev->hw_features | dev->features) &
10952 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10953 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10954 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10955 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10956 ret = -EINVAL;
10957 goto err_uninit;
10958 }
10959
10960 ret = netdev_do_alloc_pcpu_stats(dev);
10961 if (ret)
10962 goto err_uninit;
10963
10964 ret = dev_index_reserve(net, dev->ifindex);
10965 if (ret < 0)
10966 goto err_free_pcpu;
10967 dev->ifindex = ret;
10968
10969 /* Transfer changeable features to wanted_features and enable
10970 * software offloads (GSO and GRO).
10971 */
10972 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10973 dev->features |= NETIF_F_SOFT_FEATURES;
10974
10975 if (dev->udp_tunnel_nic_info) {
10976 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10977 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10978 }
10979
10980 dev->wanted_features = dev->features & dev->hw_features;
10981
10982 if (!(dev->flags & IFF_LOOPBACK))
10983 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10984
10985 /* If IPv4 TCP segmentation offload is supported we should also
10986 * allow the device to enable segmenting the frame with the option
10987 * of ignoring a static IP ID value. This doesn't enable the
10988 * feature itself but allows the user to enable it later.
10989 */
10990 if (dev->hw_features & NETIF_F_TSO)
10991 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10992 if (dev->vlan_features & NETIF_F_TSO)
10993 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10994 if (dev->mpls_features & NETIF_F_TSO)
10995 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10996 if (dev->hw_enc_features & NETIF_F_TSO)
10997 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10998
10999 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11000 */
11001 dev->vlan_features |= NETIF_F_HIGHDMA;
11002
11003 /* Make NETIF_F_SG inheritable to tunnel devices.
11004 */
11005 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11006
11007 /* Make NETIF_F_SG inheritable to MPLS.
11008 */
11009 dev->mpls_features |= NETIF_F_SG;
11010
11011 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11012 ret = notifier_to_errno(ret);
11013 if (ret)
11014 goto err_ifindex_release;
11015
11016 ret = netdev_register_kobject(dev);
11017
11018 netdev_lock(dev);
11019 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11020 netdev_unlock(dev);
11021
11022 if (ret)
11023 goto err_uninit_notify;
11024
11025 netdev_lock_ops(dev);
11026 __netdev_update_features(dev);
11027 netdev_unlock_ops(dev);
11028
11029 /*
11030 * Default initial state at registry is that the
11031 * device is present.
11032 */
11033
11034 set_bit(__LINK_STATE_PRESENT, &dev->state);
11035
11036 linkwatch_init_dev(dev);
11037
11038 dev_init_scheduler(dev);
11039
11040 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11041 list_netdevice(dev);
11042
11043 add_device_randomness(dev->dev_addr, dev->addr_len);
11044
11045 /* If the device has permanent device address, driver should
11046 * set dev_addr and also addr_assign_type should be set to
11047 * NET_ADDR_PERM (default value).
11048 */
11049 if (dev->addr_assign_type == NET_ADDR_PERM)
11050 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11051
11052 /* Notify protocols, that a new device appeared. */
11053 netdev_lock_ops(dev);
11054 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11055 netdev_unlock_ops(dev);
11056 ret = notifier_to_errno(ret);
11057 if (ret) {
11058 /* Expect explicit free_netdev() on failure */
11059 dev->needs_free_netdev = false;
11060 unregister_netdevice_queue(dev, NULL);
11061 goto out;
11062 }
11063 /*
11064 * Prevent userspace races by waiting until the network
11065 * device is fully setup before sending notifications.
11066 */
11067 if (!dev->rtnl_link_ops ||
11068 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11069 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11070
11071 out:
11072 return ret;
11073
11074 err_uninit_notify:
11075 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11076 err_ifindex_release:
11077 dev_index_release(net, dev->ifindex);
11078 err_free_pcpu:
11079 netdev_do_free_pcpu_stats(dev);
11080 err_uninit:
11081 if (dev->netdev_ops->ndo_uninit)
11082 dev->netdev_ops->ndo_uninit(dev);
11083 if (dev->priv_destructor)
11084 dev->priv_destructor(dev);
11085 err_free_name:
11086 netdev_name_node_free(dev->name_node);
11087 goto out;
11088 }
11089 EXPORT_SYMBOL(register_netdevice);
11090
11091 /* Initialize the core of a dummy net device.
11092 * The setup steps dummy netdevs need which normal netdevs get by going
11093 * through register_netdevice().
11094 */
init_dummy_netdev(struct net_device * dev)11095 static void init_dummy_netdev(struct net_device *dev)
11096 {
11097 /* make sure we BUG if trying to hit standard
11098 * register/unregister code path
11099 */
11100 dev->reg_state = NETREG_DUMMY;
11101
11102 /* a dummy interface is started by default */
11103 set_bit(__LINK_STATE_PRESENT, &dev->state);
11104 set_bit(__LINK_STATE_START, &dev->state);
11105
11106 /* Note : We dont allocate pcpu_refcnt for dummy devices,
11107 * because users of this 'device' dont need to change
11108 * its refcount.
11109 */
11110 }
11111
11112 /**
11113 * register_netdev - register a network device
11114 * @dev: device to register
11115 *
11116 * Take a completed network device structure and add it to the kernel
11117 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11118 * chain. 0 is returned on success. A negative errno code is returned
11119 * on a failure to set up the device, or if the name is a duplicate.
11120 *
11121 * This is a wrapper around register_netdevice that takes the rtnl semaphore
11122 * and expands the device name if you passed a format string to
11123 * alloc_netdev.
11124 */
register_netdev(struct net_device * dev)11125 int register_netdev(struct net_device *dev)
11126 {
11127 struct net *net = dev_net(dev);
11128 int err;
11129
11130 if (rtnl_net_lock_killable(net))
11131 return -EINTR;
11132
11133 err = register_netdevice(dev);
11134
11135 rtnl_net_unlock(net);
11136
11137 return err;
11138 }
11139 EXPORT_SYMBOL(register_netdev);
11140
netdev_refcnt_read(const struct net_device * dev)11141 int netdev_refcnt_read(const struct net_device *dev)
11142 {
11143 #ifdef CONFIG_PCPU_DEV_REFCNT
11144 int i, refcnt = 0;
11145
11146 for_each_possible_cpu(i)
11147 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11148 return refcnt;
11149 #else
11150 return refcount_read(&dev->dev_refcnt);
11151 #endif
11152 }
11153 EXPORT_SYMBOL(netdev_refcnt_read);
11154
11155 int netdev_unregister_timeout_secs __read_mostly = 10;
11156
11157 #define WAIT_REFS_MIN_MSECS 1
11158 #define WAIT_REFS_MAX_MSECS 250
11159 /**
11160 * netdev_wait_allrefs_any - wait until all references are gone.
11161 * @list: list of net_devices to wait on
11162 *
11163 * This is called when unregistering network devices.
11164 *
11165 * Any protocol or device that holds a reference should register
11166 * for netdevice notification, and cleanup and put back the
11167 * reference if they receive an UNREGISTER event.
11168 * We can get stuck here if buggy protocols don't correctly
11169 * call dev_put.
11170 */
netdev_wait_allrefs_any(struct list_head * list)11171 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11172 {
11173 unsigned long rebroadcast_time, warning_time;
11174 struct net_device *dev;
11175 int wait = 0;
11176
11177 rebroadcast_time = warning_time = jiffies;
11178
11179 list_for_each_entry(dev, list, todo_list)
11180 if (netdev_refcnt_read(dev) == 1)
11181 return dev;
11182
11183 while (true) {
11184 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11185 rtnl_lock();
11186
11187 /* Rebroadcast unregister notification */
11188 list_for_each_entry(dev, list, todo_list)
11189 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11190
11191 __rtnl_unlock();
11192 rcu_barrier();
11193 rtnl_lock();
11194
11195 list_for_each_entry(dev, list, todo_list)
11196 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11197 &dev->state)) {
11198 /* We must not have linkwatch events
11199 * pending on unregister. If this
11200 * happens, we simply run the queue
11201 * unscheduled, resulting in a noop
11202 * for this device.
11203 */
11204 linkwatch_run_queue();
11205 break;
11206 }
11207
11208 __rtnl_unlock();
11209
11210 rebroadcast_time = jiffies;
11211 }
11212
11213 rcu_barrier();
11214
11215 if (!wait) {
11216 wait = WAIT_REFS_MIN_MSECS;
11217 } else {
11218 msleep(wait);
11219 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11220 }
11221
11222 list_for_each_entry(dev, list, todo_list)
11223 if (netdev_refcnt_read(dev) == 1)
11224 return dev;
11225
11226 if (time_after(jiffies, warning_time +
11227 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11228 list_for_each_entry(dev, list, todo_list) {
11229 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11230 dev->name, netdev_refcnt_read(dev));
11231 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11232 }
11233
11234 warning_time = jiffies;
11235 }
11236 }
11237 }
11238
11239 /* The sequence is:
11240 *
11241 * rtnl_lock();
11242 * ...
11243 * register_netdevice(x1);
11244 * register_netdevice(x2);
11245 * ...
11246 * unregister_netdevice(y1);
11247 * unregister_netdevice(y2);
11248 * ...
11249 * rtnl_unlock();
11250 * free_netdev(y1);
11251 * free_netdev(y2);
11252 *
11253 * We are invoked by rtnl_unlock().
11254 * This allows us to deal with problems:
11255 * 1) We can delete sysfs objects which invoke hotplug
11256 * without deadlocking with linkwatch via keventd.
11257 * 2) Since we run with the RTNL semaphore not held, we can sleep
11258 * safely in order to wait for the netdev refcnt to drop to zero.
11259 *
11260 * We must not return until all unregister events added during
11261 * the interval the lock was held have been completed.
11262 */
netdev_run_todo(void)11263 void netdev_run_todo(void)
11264 {
11265 struct net_device *dev, *tmp;
11266 struct list_head list;
11267 int cnt;
11268 #ifdef CONFIG_LOCKDEP
11269 struct list_head unlink_list;
11270
11271 list_replace_init(&net_unlink_list, &unlink_list);
11272
11273 while (!list_empty(&unlink_list)) {
11274 dev = list_first_entry(&unlink_list, struct net_device,
11275 unlink_list);
11276 list_del_init(&dev->unlink_list);
11277 dev->nested_level = dev->lower_level - 1;
11278 }
11279 #endif
11280
11281 /* Snapshot list, allow later requests */
11282 list_replace_init(&net_todo_list, &list);
11283
11284 __rtnl_unlock();
11285
11286 /* Wait for rcu callbacks to finish before next phase */
11287 if (!list_empty(&list))
11288 rcu_barrier();
11289
11290 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11291 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11292 netdev_WARN(dev, "run_todo but not unregistering\n");
11293 list_del(&dev->todo_list);
11294 continue;
11295 }
11296
11297 netdev_lock(dev);
11298 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11299 netdev_unlock(dev);
11300 linkwatch_sync_dev(dev);
11301 }
11302
11303 cnt = 0;
11304 while (!list_empty(&list)) {
11305 dev = netdev_wait_allrefs_any(&list);
11306 list_del(&dev->todo_list);
11307
11308 /* paranoia */
11309 BUG_ON(netdev_refcnt_read(dev) != 1);
11310 BUG_ON(!list_empty(&dev->ptype_all));
11311 BUG_ON(!list_empty(&dev->ptype_specific));
11312 WARN_ON(rcu_access_pointer(dev->ip_ptr));
11313 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11314
11315 netdev_do_free_pcpu_stats(dev);
11316 if (dev->priv_destructor)
11317 dev->priv_destructor(dev);
11318 if (dev->needs_free_netdev)
11319 free_netdev(dev);
11320
11321 cnt++;
11322
11323 /* Free network device */
11324 kobject_put(&dev->dev.kobj);
11325 }
11326 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11327 wake_up(&netdev_unregistering_wq);
11328 }
11329
11330 /* Collate per-cpu network dstats statistics
11331 *
11332 * Read per-cpu network statistics from dev->dstats and populate the related
11333 * fields in @s.
11334 */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)11335 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11336 const struct pcpu_dstats __percpu *dstats)
11337 {
11338 int cpu;
11339
11340 for_each_possible_cpu(cpu) {
11341 u64 rx_packets, rx_bytes, rx_drops;
11342 u64 tx_packets, tx_bytes, tx_drops;
11343 const struct pcpu_dstats *stats;
11344 unsigned int start;
11345
11346 stats = per_cpu_ptr(dstats, cpu);
11347 do {
11348 start = u64_stats_fetch_begin(&stats->syncp);
11349 rx_packets = u64_stats_read(&stats->rx_packets);
11350 rx_bytes = u64_stats_read(&stats->rx_bytes);
11351 rx_drops = u64_stats_read(&stats->rx_drops);
11352 tx_packets = u64_stats_read(&stats->tx_packets);
11353 tx_bytes = u64_stats_read(&stats->tx_bytes);
11354 tx_drops = u64_stats_read(&stats->tx_drops);
11355 } while (u64_stats_fetch_retry(&stats->syncp, start));
11356
11357 s->rx_packets += rx_packets;
11358 s->rx_bytes += rx_bytes;
11359 s->rx_dropped += rx_drops;
11360 s->tx_packets += tx_packets;
11361 s->tx_bytes += tx_bytes;
11362 s->tx_dropped += tx_drops;
11363 }
11364 }
11365
11366 /* ndo_get_stats64 implementation for dtstats-based accounting.
11367 *
11368 * Populate @s from dev->stats and dev->dstats. This is used internally by the
11369 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11370 */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)11371 static void dev_get_dstats64(const struct net_device *dev,
11372 struct rtnl_link_stats64 *s)
11373 {
11374 netdev_stats_to_stats64(s, &dev->stats);
11375 dev_fetch_dstats(s, dev->dstats);
11376 }
11377
11378 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11379 * all the same fields in the same order as net_device_stats, with only
11380 * the type differing, but rtnl_link_stats64 may have additional fields
11381 * at the end for newer counters.
11382 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)11383 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11384 const struct net_device_stats *netdev_stats)
11385 {
11386 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11387 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11388 u64 *dst = (u64 *)stats64;
11389
11390 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11391 for (i = 0; i < n; i++)
11392 dst[i] = (unsigned long)atomic_long_read(&src[i]);
11393 /* zero out counters that only exist in rtnl_link_stats64 */
11394 memset((char *)stats64 + n * sizeof(u64), 0,
11395 sizeof(*stats64) - n * sizeof(u64));
11396 }
11397 EXPORT_SYMBOL(netdev_stats_to_stats64);
11398
netdev_core_stats_alloc(struct net_device * dev)11399 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11400 struct net_device *dev)
11401 {
11402 struct net_device_core_stats __percpu *p;
11403
11404 p = alloc_percpu_gfp(struct net_device_core_stats,
11405 GFP_ATOMIC | __GFP_NOWARN);
11406
11407 if (p && cmpxchg(&dev->core_stats, NULL, p))
11408 free_percpu(p);
11409
11410 /* This READ_ONCE() pairs with the cmpxchg() above */
11411 return READ_ONCE(dev->core_stats);
11412 }
11413
netdev_core_stats_inc(struct net_device * dev,u32 offset)11414 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11415 {
11416 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11417 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11418 unsigned long __percpu *field;
11419
11420 if (unlikely(!p)) {
11421 p = netdev_core_stats_alloc(dev);
11422 if (!p)
11423 return;
11424 }
11425
11426 field = (unsigned long __percpu *)((void __percpu *)p + offset);
11427 this_cpu_inc(*field);
11428 }
11429 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11430
11431 /**
11432 * dev_get_stats - get network device statistics
11433 * @dev: device to get statistics from
11434 * @storage: place to store stats
11435 *
11436 * Get network statistics from device. Return @storage.
11437 * The device driver may provide its own method by setting
11438 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11439 * otherwise the internal statistics structure is used.
11440 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11441 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11442 struct rtnl_link_stats64 *storage)
11443 {
11444 const struct net_device_ops *ops = dev->netdev_ops;
11445 const struct net_device_core_stats __percpu *p;
11446
11447 /*
11448 * IPv{4,6} and udp tunnels share common stat helpers and use
11449 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11450 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11451 */
11452 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11453 offsetof(struct pcpu_dstats, rx_bytes));
11454 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11455 offsetof(struct pcpu_dstats, rx_packets));
11456 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11457 offsetof(struct pcpu_dstats, tx_bytes));
11458 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11459 offsetof(struct pcpu_dstats, tx_packets));
11460
11461 if (ops->ndo_get_stats64) {
11462 memset(storage, 0, sizeof(*storage));
11463 ops->ndo_get_stats64(dev, storage);
11464 } else if (ops->ndo_get_stats) {
11465 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11466 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11467 dev_get_tstats64(dev, storage);
11468 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11469 dev_get_dstats64(dev, storage);
11470 } else {
11471 netdev_stats_to_stats64(storage, &dev->stats);
11472 }
11473
11474 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11475 p = READ_ONCE(dev->core_stats);
11476 if (p) {
11477 const struct net_device_core_stats *core_stats;
11478 int i;
11479
11480 for_each_possible_cpu(i) {
11481 core_stats = per_cpu_ptr(p, i);
11482 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11483 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11484 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11485 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11486 }
11487 }
11488 return storage;
11489 }
11490 EXPORT_SYMBOL(dev_get_stats);
11491
11492 /**
11493 * dev_fetch_sw_netstats - get per-cpu network device statistics
11494 * @s: place to store stats
11495 * @netstats: per-cpu network stats to read from
11496 *
11497 * Read per-cpu network statistics and populate the related fields in @s.
11498 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11499 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11500 const struct pcpu_sw_netstats __percpu *netstats)
11501 {
11502 int cpu;
11503
11504 for_each_possible_cpu(cpu) {
11505 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11506 const struct pcpu_sw_netstats *stats;
11507 unsigned int start;
11508
11509 stats = per_cpu_ptr(netstats, cpu);
11510 do {
11511 start = u64_stats_fetch_begin(&stats->syncp);
11512 rx_packets = u64_stats_read(&stats->rx_packets);
11513 rx_bytes = u64_stats_read(&stats->rx_bytes);
11514 tx_packets = u64_stats_read(&stats->tx_packets);
11515 tx_bytes = u64_stats_read(&stats->tx_bytes);
11516 } while (u64_stats_fetch_retry(&stats->syncp, start));
11517
11518 s->rx_packets += rx_packets;
11519 s->rx_bytes += rx_bytes;
11520 s->tx_packets += tx_packets;
11521 s->tx_bytes += tx_bytes;
11522 }
11523 }
11524 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11525
11526 /**
11527 * dev_get_tstats64 - ndo_get_stats64 implementation
11528 * @dev: device to get statistics from
11529 * @s: place to store stats
11530 *
11531 * Populate @s from dev->stats and dev->tstats. Can be used as
11532 * ndo_get_stats64() callback.
11533 */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11534 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11535 {
11536 netdev_stats_to_stats64(s, &dev->stats);
11537 dev_fetch_sw_netstats(s, dev->tstats);
11538 }
11539 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11540
dev_ingress_queue_create(struct net_device * dev)11541 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11542 {
11543 struct netdev_queue *queue = dev_ingress_queue(dev);
11544
11545 #ifdef CONFIG_NET_CLS_ACT
11546 if (queue)
11547 return queue;
11548 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11549 if (!queue)
11550 return NULL;
11551 netdev_init_one_queue(dev, queue, NULL);
11552 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11553 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11554 rcu_assign_pointer(dev->ingress_queue, queue);
11555 #endif
11556 return queue;
11557 }
11558
11559 static const struct ethtool_ops default_ethtool_ops;
11560
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11561 void netdev_set_default_ethtool_ops(struct net_device *dev,
11562 const struct ethtool_ops *ops)
11563 {
11564 if (dev->ethtool_ops == &default_ethtool_ops)
11565 dev->ethtool_ops = ops;
11566 }
11567 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11568
11569 /**
11570 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11571 * @dev: netdev to enable the IRQ coalescing on
11572 *
11573 * Sets a conservative default for SW IRQ coalescing. Users can use
11574 * sysfs attributes to override the default values.
11575 */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11576 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11577 {
11578 WARN_ON(dev->reg_state == NETREG_REGISTERED);
11579
11580 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11581 netdev_set_gro_flush_timeout(dev, 20000);
11582 netdev_set_defer_hard_irqs(dev, 1);
11583 }
11584 }
11585 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11586
11587 /**
11588 * alloc_netdev_mqs - allocate network device
11589 * @sizeof_priv: size of private data to allocate space for
11590 * @name: device name format string
11591 * @name_assign_type: origin of device name
11592 * @setup: callback to initialize device
11593 * @txqs: the number of TX subqueues to allocate
11594 * @rxqs: the number of RX subqueues to allocate
11595 *
11596 * Allocates a struct net_device with private data area for driver use
11597 * and performs basic initialization. Also allocates subqueue structs
11598 * for each queue on the device.
11599 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11600 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11601 unsigned char name_assign_type,
11602 void (*setup)(struct net_device *),
11603 unsigned int txqs, unsigned int rxqs)
11604 {
11605 struct net_device *dev;
11606 size_t napi_config_sz;
11607 unsigned int maxqs;
11608
11609 BUG_ON(strlen(name) >= sizeof(dev->name));
11610
11611 if (txqs < 1) {
11612 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11613 return NULL;
11614 }
11615
11616 if (rxqs < 1) {
11617 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11618 return NULL;
11619 }
11620
11621 maxqs = max(txqs, rxqs);
11622
11623 dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11624 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11625 if (!dev)
11626 return NULL;
11627
11628 dev->priv_len = sizeof_priv;
11629
11630 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11631 #ifdef CONFIG_PCPU_DEV_REFCNT
11632 dev->pcpu_refcnt = alloc_percpu(int);
11633 if (!dev->pcpu_refcnt)
11634 goto free_dev;
11635 __dev_hold(dev);
11636 #else
11637 refcount_set(&dev->dev_refcnt, 1);
11638 #endif
11639
11640 if (dev_addr_init(dev))
11641 goto free_pcpu;
11642
11643 dev_mc_init(dev);
11644 dev_uc_init(dev);
11645
11646 dev_net_set(dev, &init_net);
11647
11648 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11649 dev->xdp_zc_max_segs = 1;
11650 dev->gso_max_segs = GSO_MAX_SEGS;
11651 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11652 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11653 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11654 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11655 dev->tso_max_segs = TSO_MAX_SEGS;
11656 dev->upper_level = 1;
11657 dev->lower_level = 1;
11658 #ifdef CONFIG_LOCKDEP
11659 dev->nested_level = 0;
11660 INIT_LIST_HEAD(&dev->unlink_list);
11661 #endif
11662
11663 INIT_LIST_HEAD(&dev->napi_list);
11664 INIT_LIST_HEAD(&dev->unreg_list);
11665 INIT_LIST_HEAD(&dev->close_list);
11666 INIT_LIST_HEAD(&dev->link_watch_list);
11667 INIT_LIST_HEAD(&dev->adj_list.upper);
11668 INIT_LIST_HEAD(&dev->adj_list.lower);
11669 INIT_LIST_HEAD(&dev->ptype_all);
11670 INIT_LIST_HEAD(&dev->ptype_specific);
11671 INIT_LIST_HEAD(&dev->net_notifier_list);
11672 #ifdef CONFIG_NET_SCHED
11673 hash_init(dev->qdisc_hash);
11674 #endif
11675
11676 mutex_init(&dev->lock);
11677
11678 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11679 setup(dev);
11680
11681 if (!dev->tx_queue_len) {
11682 dev->priv_flags |= IFF_NO_QUEUE;
11683 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11684 }
11685
11686 dev->num_tx_queues = txqs;
11687 dev->real_num_tx_queues = txqs;
11688 if (netif_alloc_netdev_queues(dev))
11689 goto free_all;
11690
11691 dev->num_rx_queues = rxqs;
11692 dev->real_num_rx_queues = rxqs;
11693 if (netif_alloc_rx_queues(dev))
11694 goto free_all;
11695 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11696 if (!dev->ethtool)
11697 goto free_all;
11698
11699 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11700 if (!dev->cfg)
11701 goto free_all;
11702 dev->cfg_pending = dev->cfg;
11703
11704 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11705 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11706 if (!dev->napi_config)
11707 goto free_all;
11708
11709 strscpy(dev->name, name);
11710 dev->name_assign_type = name_assign_type;
11711 dev->group = INIT_NETDEV_GROUP;
11712 if (!dev->ethtool_ops)
11713 dev->ethtool_ops = &default_ethtool_ops;
11714
11715 nf_hook_netdev_init(dev);
11716
11717 return dev;
11718
11719 free_all:
11720 free_netdev(dev);
11721 return NULL;
11722
11723 free_pcpu:
11724 #ifdef CONFIG_PCPU_DEV_REFCNT
11725 free_percpu(dev->pcpu_refcnt);
11726 free_dev:
11727 #endif
11728 kvfree(dev);
11729 return NULL;
11730 }
11731 EXPORT_SYMBOL(alloc_netdev_mqs);
11732
netdev_napi_exit(struct net_device * dev)11733 static void netdev_napi_exit(struct net_device *dev)
11734 {
11735 if (!list_empty(&dev->napi_list)) {
11736 struct napi_struct *p, *n;
11737
11738 netdev_lock(dev);
11739 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11740 __netif_napi_del_locked(p);
11741 netdev_unlock(dev);
11742
11743 synchronize_net();
11744 }
11745
11746 kvfree(dev->napi_config);
11747 }
11748
11749 /**
11750 * free_netdev - free network device
11751 * @dev: device
11752 *
11753 * This function does the last stage of destroying an allocated device
11754 * interface. The reference to the device object is released. If this
11755 * is the last reference then it will be freed.Must be called in process
11756 * context.
11757 */
free_netdev(struct net_device * dev)11758 void free_netdev(struct net_device *dev)
11759 {
11760 might_sleep();
11761
11762 /* When called immediately after register_netdevice() failed the unwind
11763 * handling may still be dismantling the device. Handle that case by
11764 * deferring the free.
11765 */
11766 if (dev->reg_state == NETREG_UNREGISTERING) {
11767 ASSERT_RTNL();
11768 dev->needs_free_netdev = true;
11769 return;
11770 }
11771
11772 WARN_ON(dev->cfg != dev->cfg_pending);
11773 kfree(dev->cfg);
11774 kfree(dev->ethtool);
11775 netif_free_tx_queues(dev);
11776 netif_free_rx_queues(dev);
11777
11778 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11779
11780 /* Flush device addresses */
11781 dev_addr_flush(dev);
11782
11783 netdev_napi_exit(dev);
11784
11785 netif_del_cpu_rmap(dev);
11786
11787 ref_tracker_dir_exit(&dev->refcnt_tracker);
11788 #ifdef CONFIG_PCPU_DEV_REFCNT
11789 free_percpu(dev->pcpu_refcnt);
11790 dev->pcpu_refcnt = NULL;
11791 #endif
11792 free_percpu(dev->core_stats);
11793 dev->core_stats = NULL;
11794 free_percpu(dev->xdp_bulkq);
11795 dev->xdp_bulkq = NULL;
11796
11797 netdev_free_phy_link_topology(dev);
11798
11799 mutex_destroy(&dev->lock);
11800
11801 /* Compatibility with error handling in drivers */
11802 if (dev->reg_state == NETREG_UNINITIALIZED ||
11803 dev->reg_state == NETREG_DUMMY) {
11804 kvfree(dev);
11805 return;
11806 }
11807
11808 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11809 WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11810
11811 /* will free via device release */
11812 put_device(&dev->dev);
11813 }
11814 EXPORT_SYMBOL(free_netdev);
11815
11816 /**
11817 * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11818 * @sizeof_priv: size of private data to allocate space for
11819 *
11820 * Return: the allocated net_device on success, NULL otherwise
11821 */
alloc_netdev_dummy(int sizeof_priv)11822 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11823 {
11824 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11825 init_dummy_netdev);
11826 }
11827 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11828
11829 /**
11830 * synchronize_net - Synchronize with packet receive processing
11831 *
11832 * Wait for packets currently being received to be done.
11833 * Does not block later packets from starting.
11834 */
synchronize_net(void)11835 void synchronize_net(void)
11836 {
11837 might_sleep();
11838 if (from_cleanup_net() || rtnl_is_locked())
11839 synchronize_rcu_expedited();
11840 else
11841 synchronize_rcu();
11842 }
11843 EXPORT_SYMBOL(synchronize_net);
11844
netdev_rss_contexts_free(struct net_device * dev)11845 static void netdev_rss_contexts_free(struct net_device *dev)
11846 {
11847 struct ethtool_rxfh_context *ctx;
11848 unsigned long context;
11849
11850 mutex_lock(&dev->ethtool->rss_lock);
11851 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11852 struct ethtool_rxfh_param rxfh;
11853
11854 rxfh.indir = ethtool_rxfh_context_indir(ctx);
11855 rxfh.key = ethtool_rxfh_context_key(ctx);
11856 rxfh.hfunc = ctx->hfunc;
11857 rxfh.input_xfrm = ctx->input_xfrm;
11858 rxfh.rss_context = context;
11859 rxfh.rss_delete = true;
11860
11861 xa_erase(&dev->ethtool->rss_ctx, context);
11862 if (dev->ethtool_ops->create_rxfh_context)
11863 dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11864 context, NULL);
11865 else
11866 dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11867 kfree(ctx);
11868 }
11869 xa_destroy(&dev->ethtool->rss_ctx);
11870 mutex_unlock(&dev->ethtool->rss_lock);
11871 }
11872
11873 /**
11874 * unregister_netdevice_queue - remove device from the kernel
11875 * @dev: device
11876 * @head: list
11877 *
11878 * This function shuts down a device interface and removes it
11879 * from the kernel tables.
11880 * If head not NULL, device is queued to be unregistered later.
11881 *
11882 * Callers must hold the rtnl semaphore. You may want
11883 * unregister_netdev() instead of this.
11884 */
11885
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)11886 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11887 {
11888 ASSERT_RTNL();
11889
11890 if (head) {
11891 list_move_tail(&dev->unreg_list, head);
11892 } else {
11893 LIST_HEAD(single);
11894
11895 list_add(&dev->unreg_list, &single);
11896 unregister_netdevice_many(&single);
11897 }
11898 }
11899 EXPORT_SYMBOL(unregister_netdevice_queue);
11900
dev_memory_provider_uninstall(struct net_device * dev)11901 static void dev_memory_provider_uninstall(struct net_device *dev)
11902 {
11903 unsigned int i;
11904
11905 for (i = 0; i < dev->real_num_rx_queues; i++) {
11906 struct netdev_rx_queue *rxq = &dev->_rx[i];
11907 struct pp_memory_provider_params *p = &rxq->mp_params;
11908
11909 if (p->mp_ops && p->mp_ops->uninstall)
11910 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
11911 }
11912 }
11913
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)11914 void unregister_netdevice_many_notify(struct list_head *head,
11915 u32 portid, const struct nlmsghdr *nlh)
11916 {
11917 struct net_device *dev, *tmp;
11918 LIST_HEAD(close_head);
11919 int cnt = 0;
11920
11921 BUG_ON(dev_boot_phase);
11922 ASSERT_RTNL();
11923
11924 if (list_empty(head))
11925 return;
11926
11927 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11928 /* Some devices call without registering
11929 * for initialization unwind. Remove those
11930 * devices and proceed with the remaining.
11931 */
11932 if (dev->reg_state == NETREG_UNINITIALIZED) {
11933 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11934 dev->name, dev);
11935
11936 WARN_ON(1);
11937 list_del(&dev->unreg_list);
11938 continue;
11939 }
11940 dev->dismantle = true;
11941 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11942 }
11943
11944 /* If device is running, close it first. */
11945 list_for_each_entry(dev, head, unreg_list) {
11946 list_add_tail(&dev->close_list, &close_head);
11947 netdev_lock_ops(dev);
11948 }
11949 dev_close_many(&close_head, true);
11950
11951 list_for_each_entry(dev, head, unreg_list) {
11952 netdev_unlock_ops(dev);
11953 /* And unlink it from device chain. */
11954 unlist_netdevice(dev);
11955 netdev_lock(dev);
11956 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11957 netdev_unlock(dev);
11958 }
11959 flush_all_backlogs();
11960
11961 synchronize_net();
11962
11963 list_for_each_entry(dev, head, unreg_list) {
11964 struct sk_buff *skb = NULL;
11965
11966 /* Shutdown queueing discipline. */
11967 dev_shutdown(dev);
11968 dev_tcx_uninstall(dev);
11969 netdev_lock_ops(dev);
11970 dev_xdp_uninstall(dev);
11971 dev_memory_provider_uninstall(dev);
11972 netdev_unlock_ops(dev);
11973 bpf_dev_bound_netdev_unregister(dev);
11974
11975 netdev_offload_xstats_disable_all(dev);
11976
11977 /* Notify protocols, that we are about to destroy
11978 * this device. They should clean all the things.
11979 */
11980 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11981
11982 if (!dev->rtnl_link_ops ||
11983 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11984 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11985 GFP_KERNEL, NULL, 0,
11986 portid, nlh);
11987
11988 /*
11989 * Flush the unicast and multicast chains
11990 */
11991 dev_uc_flush(dev);
11992 dev_mc_flush(dev);
11993
11994 netdev_name_node_alt_flush(dev);
11995 netdev_name_node_free(dev->name_node);
11996
11997 netdev_rss_contexts_free(dev);
11998
11999 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12000
12001 if (dev->netdev_ops->ndo_uninit)
12002 dev->netdev_ops->ndo_uninit(dev);
12003
12004 mutex_destroy(&dev->ethtool->rss_lock);
12005
12006 net_shaper_flush_netdev(dev);
12007
12008 if (skb)
12009 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12010
12011 /* Notifier chain MUST detach us all upper devices. */
12012 WARN_ON(netdev_has_any_upper_dev(dev));
12013 WARN_ON(netdev_has_any_lower_dev(dev));
12014
12015 /* Remove entries from kobject tree */
12016 netdev_unregister_kobject(dev);
12017 #ifdef CONFIG_XPS
12018 /* Remove XPS queueing entries */
12019 netif_reset_xps_queues_gt(dev, 0);
12020 #endif
12021 }
12022
12023 synchronize_net();
12024
12025 list_for_each_entry(dev, head, unreg_list) {
12026 netdev_put(dev, &dev->dev_registered_tracker);
12027 net_set_todo(dev);
12028 cnt++;
12029 }
12030 atomic_add(cnt, &dev_unreg_count);
12031
12032 list_del(head);
12033 }
12034
12035 /**
12036 * unregister_netdevice_many - unregister many devices
12037 * @head: list of devices
12038 *
12039 * Note: As most callers use a stack allocated list_head,
12040 * we force a list_del() to make sure stack won't be corrupted later.
12041 */
unregister_netdevice_many(struct list_head * head)12042 void unregister_netdevice_many(struct list_head *head)
12043 {
12044 unregister_netdevice_many_notify(head, 0, NULL);
12045 }
12046 EXPORT_SYMBOL(unregister_netdevice_many);
12047
12048 /**
12049 * unregister_netdev - remove device from the kernel
12050 * @dev: device
12051 *
12052 * This function shuts down a device interface and removes it
12053 * from the kernel tables.
12054 *
12055 * This is just a wrapper for unregister_netdevice that takes
12056 * the rtnl semaphore. In general you want to use this and not
12057 * unregister_netdevice.
12058 */
unregister_netdev(struct net_device * dev)12059 void unregister_netdev(struct net_device *dev)
12060 {
12061 rtnl_net_dev_lock(dev);
12062 unregister_netdevice(dev);
12063 rtnl_net_dev_unlock(dev);
12064 }
12065 EXPORT_SYMBOL(unregister_netdev);
12066
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex,struct netlink_ext_ack * extack)12067 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12068 const char *pat, int new_ifindex,
12069 struct netlink_ext_ack *extack)
12070 {
12071 struct netdev_name_node *name_node;
12072 struct net *net_old = dev_net(dev);
12073 char new_name[IFNAMSIZ] = {};
12074 int err, new_nsid;
12075
12076 ASSERT_RTNL();
12077
12078 /* Don't allow namespace local devices to be moved. */
12079 err = -EINVAL;
12080 if (dev->netns_immutable) {
12081 NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12082 goto out;
12083 }
12084
12085 /* Ensure the device has been registered */
12086 if (dev->reg_state != NETREG_REGISTERED) {
12087 NL_SET_ERR_MSG(extack, "The interface isn't registered");
12088 goto out;
12089 }
12090
12091 /* Get out if there is nothing todo */
12092 err = 0;
12093 if (net_eq(net_old, net))
12094 goto out;
12095
12096 /* Pick the destination device name, and ensure
12097 * we can use it in the destination network namespace.
12098 */
12099 err = -EEXIST;
12100 if (netdev_name_in_use(net, dev->name)) {
12101 /* We get here if we can't use the current device name */
12102 if (!pat) {
12103 NL_SET_ERR_MSG(extack,
12104 "An interface with the same name exists in the target netns");
12105 goto out;
12106 }
12107 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12108 if (err < 0) {
12109 NL_SET_ERR_MSG_FMT(extack,
12110 "Unable to use '%s' for the new interface name in the target netns",
12111 pat);
12112 goto out;
12113 }
12114 }
12115 /* Check that none of the altnames conflicts. */
12116 err = -EEXIST;
12117 netdev_for_each_altname(dev, name_node) {
12118 if (netdev_name_in_use(net, name_node->name)) {
12119 NL_SET_ERR_MSG_FMT(extack,
12120 "An interface with the altname %s exists in the target netns",
12121 name_node->name);
12122 goto out;
12123 }
12124 }
12125
12126 /* Check that new_ifindex isn't used yet. */
12127 if (new_ifindex) {
12128 err = dev_index_reserve(net, new_ifindex);
12129 if (err < 0) {
12130 NL_SET_ERR_MSG_FMT(extack,
12131 "The ifindex %d is not available in the target netns",
12132 new_ifindex);
12133 goto out;
12134 }
12135 } else {
12136 /* If there is an ifindex conflict assign a new one */
12137 err = dev_index_reserve(net, dev->ifindex);
12138 if (err == -EBUSY)
12139 err = dev_index_reserve(net, 0);
12140 if (err < 0) {
12141 NL_SET_ERR_MSG(extack,
12142 "Unable to allocate a new ifindex in the target netns");
12143 goto out;
12144 }
12145 new_ifindex = err;
12146 }
12147
12148 /*
12149 * And now a mini version of register_netdevice unregister_netdevice.
12150 */
12151
12152 netdev_lock_ops(dev);
12153 /* If device is running close it first. */
12154 netif_close(dev);
12155 /* And unlink it from device chain */
12156 unlist_netdevice(dev);
12157 netdev_unlock_ops(dev);
12158
12159 synchronize_net();
12160
12161 /* Shutdown queueing discipline. */
12162 dev_shutdown(dev);
12163
12164 /* Notify protocols, that we are about to destroy
12165 * this device. They should clean all the things.
12166 *
12167 * Note that dev->reg_state stays at NETREG_REGISTERED.
12168 * This is wanted because this way 8021q and macvlan know
12169 * the device is just moving and can keep their slaves up.
12170 */
12171 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12172 rcu_barrier();
12173
12174 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12175
12176 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12177 new_ifindex);
12178
12179 /*
12180 * Flush the unicast and multicast chains
12181 */
12182 dev_uc_flush(dev);
12183 dev_mc_flush(dev);
12184
12185 /* Send a netdev-removed uevent to the old namespace */
12186 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12187 netdev_adjacent_del_links(dev);
12188
12189 /* Move per-net netdevice notifiers that are following the netdevice */
12190 move_netdevice_notifiers_dev_net(dev, net);
12191
12192 /* Actually switch the network namespace */
12193 dev_net_set(dev, net);
12194 dev->ifindex = new_ifindex;
12195
12196 if (new_name[0]) {
12197 /* Rename the netdev to prepared name */
12198 write_seqlock_bh(&netdev_rename_lock);
12199 strscpy(dev->name, new_name, IFNAMSIZ);
12200 write_sequnlock_bh(&netdev_rename_lock);
12201 }
12202
12203 /* Fixup kobjects */
12204 dev_set_uevent_suppress(&dev->dev, 1);
12205 err = device_rename(&dev->dev, dev->name);
12206 dev_set_uevent_suppress(&dev->dev, 0);
12207 WARN_ON(err);
12208
12209 /* Send a netdev-add uevent to the new namespace */
12210 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12211 netdev_adjacent_add_links(dev);
12212
12213 /* Adapt owner in case owning user namespace of target network
12214 * namespace is different from the original one.
12215 */
12216 err = netdev_change_owner(dev, net_old, net);
12217 WARN_ON(err);
12218
12219 netdev_lock_ops(dev);
12220 /* Add the device back in the hashes */
12221 list_netdevice(dev);
12222 /* Notify protocols, that a new device appeared. */
12223 call_netdevice_notifiers(NETDEV_REGISTER, dev);
12224 netdev_unlock_ops(dev);
12225
12226 /*
12227 * Prevent userspace races by waiting until the network
12228 * device is fully setup before sending notifications.
12229 */
12230 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12231
12232 synchronize_net();
12233 err = 0;
12234 out:
12235 return err;
12236 }
12237
dev_cpu_dead(unsigned int oldcpu)12238 static int dev_cpu_dead(unsigned int oldcpu)
12239 {
12240 struct sk_buff **list_skb;
12241 struct sk_buff *skb;
12242 unsigned int cpu;
12243 struct softnet_data *sd, *oldsd, *remsd = NULL;
12244
12245 local_irq_disable();
12246 cpu = smp_processor_id();
12247 sd = &per_cpu(softnet_data, cpu);
12248 oldsd = &per_cpu(softnet_data, oldcpu);
12249
12250 /* Find end of our completion_queue. */
12251 list_skb = &sd->completion_queue;
12252 while (*list_skb)
12253 list_skb = &(*list_skb)->next;
12254 /* Append completion queue from offline CPU. */
12255 *list_skb = oldsd->completion_queue;
12256 oldsd->completion_queue = NULL;
12257
12258 /* Append output queue from offline CPU. */
12259 if (oldsd->output_queue) {
12260 *sd->output_queue_tailp = oldsd->output_queue;
12261 sd->output_queue_tailp = oldsd->output_queue_tailp;
12262 oldsd->output_queue = NULL;
12263 oldsd->output_queue_tailp = &oldsd->output_queue;
12264 }
12265 /* Append NAPI poll list from offline CPU, with one exception :
12266 * process_backlog() must be called by cpu owning percpu backlog.
12267 * We properly handle process_queue & input_pkt_queue later.
12268 */
12269 while (!list_empty(&oldsd->poll_list)) {
12270 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12271 struct napi_struct,
12272 poll_list);
12273
12274 list_del_init(&napi->poll_list);
12275 if (napi->poll == process_backlog)
12276 napi->state &= NAPIF_STATE_THREADED;
12277 else
12278 ____napi_schedule(sd, napi);
12279 }
12280
12281 raise_softirq_irqoff(NET_TX_SOFTIRQ);
12282 local_irq_enable();
12283
12284 if (!use_backlog_threads()) {
12285 #ifdef CONFIG_RPS
12286 remsd = oldsd->rps_ipi_list;
12287 oldsd->rps_ipi_list = NULL;
12288 #endif
12289 /* send out pending IPI's on offline CPU */
12290 net_rps_send_ipi(remsd);
12291 }
12292
12293 /* Process offline CPU's input_pkt_queue */
12294 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12295 netif_rx(skb);
12296 rps_input_queue_head_incr(oldsd);
12297 }
12298 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12299 netif_rx(skb);
12300 rps_input_queue_head_incr(oldsd);
12301 }
12302
12303 return 0;
12304 }
12305
12306 /**
12307 * netdev_increment_features - increment feature set by one
12308 * @all: current feature set
12309 * @one: new feature set
12310 * @mask: mask feature set
12311 *
12312 * Computes a new feature set after adding a device with feature set
12313 * @one to the master device with current feature set @all. Will not
12314 * enable anything that is off in @mask. Returns the new feature set.
12315 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)12316 netdev_features_t netdev_increment_features(netdev_features_t all,
12317 netdev_features_t one, netdev_features_t mask)
12318 {
12319 if (mask & NETIF_F_HW_CSUM)
12320 mask |= NETIF_F_CSUM_MASK;
12321 mask |= NETIF_F_VLAN_CHALLENGED;
12322
12323 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12324 all &= one | ~NETIF_F_ALL_FOR_ALL;
12325
12326 /* If one device supports hw checksumming, set for all. */
12327 if (all & NETIF_F_HW_CSUM)
12328 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12329
12330 return all;
12331 }
12332 EXPORT_SYMBOL(netdev_increment_features);
12333
netdev_create_hash(void)12334 static struct hlist_head * __net_init netdev_create_hash(void)
12335 {
12336 int i;
12337 struct hlist_head *hash;
12338
12339 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12340 if (hash != NULL)
12341 for (i = 0; i < NETDEV_HASHENTRIES; i++)
12342 INIT_HLIST_HEAD(&hash[i]);
12343
12344 return hash;
12345 }
12346
12347 /* Initialize per network namespace state */
netdev_init(struct net * net)12348 static int __net_init netdev_init(struct net *net)
12349 {
12350 BUILD_BUG_ON(GRO_HASH_BUCKETS >
12351 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12352
12353 INIT_LIST_HEAD(&net->dev_base_head);
12354
12355 net->dev_name_head = netdev_create_hash();
12356 if (net->dev_name_head == NULL)
12357 goto err_name;
12358
12359 net->dev_index_head = netdev_create_hash();
12360 if (net->dev_index_head == NULL)
12361 goto err_idx;
12362
12363 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12364
12365 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12366
12367 return 0;
12368
12369 err_idx:
12370 kfree(net->dev_name_head);
12371 err_name:
12372 return -ENOMEM;
12373 }
12374
12375 /**
12376 * netdev_drivername - network driver for the device
12377 * @dev: network device
12378 *
12379 * Determine network driver for device.
12380 */
netdev_drivername(const struct net_device * dev)12381 const char *netdev_drivername(const struct net_device *dev)
12382 {
12383 const struct device_driver *driver;
12384 const struct device *parent;
12385 const char *empty = "";
12386
12387 parent = dev->dev.parent;
12388 if (!parent)
12389 return empty;
12390
12391 driver = parent->driver;
12392 if (driver && driver->name)
12393 return driver->name;
12394 return empty;
12395 }
12396
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)12397 static void __netdev_printk(const char *level, const struct net_device *dev,
12398 struct va_format *vaf)
12399 {
12400 if (dev && dev->dev.parent) {
12401 dev_printk_emit(level[1] - '0',
12402 dev->dev.parent,
12403 "%s %s %s%s: %pV",
12404 dev_driver_string(dev->dev.parent),
12405 dev_name(dev->dev.parent),
12406 netdev_name(dev), netdev_reg_state(dev),
12407 vaf);
12408 } else if (dev) {
12409 printk("%s%s%s: %pV",
12410 level, netdev_name(dev), netdev_reg_state(dev), vaf);
12411 } else {
12412 printk("%s(NULL net_device): %pV", level, vaf);
12413 }
12414 }
12415
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)12416 void netdev_printk(const char *level, const struct net_device *dev,
12417 const char *format, ...)
12418 {
12419 struct va_format vaf;
12420 va_list args;
12421
12422 va_start(args, format);
12423
12424 vaf.fmt = format;
12425 vaf.va = &args;
12426
12427 __netdev_printk(level, dev, &vaf);
12428
12429 va_end(args);
12430 }
12431 EXPORT_SYMBOL(netdev_printk);
12432
12433 #define define_netdev_printk_level(func, level) \
12434 void func(const struct net_device *dev, const char *fmt, ...) \
12435 { \
12436 struct va_format vaf; \
12437 va_list args; \
12438 \
12439 va_start(args, fmt); \
12440 \
12441 vaf.fmt = fmt; \
12442 vaf.va = &args; \
12443 \
12444 __netdev_printk(level, dev, &vaf); \
12445 \
12446 va_end(args); \
12447 } \
12448 EXPORT_SYMBOL(func);
12449
12450 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12451 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12452 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12453 define_netdev_printk_level(netdev_err, KERN_ERR);
12454 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12455 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12456 define_netdev_printk_level(netdev_info, KERN_INFO);
12457
netdev_exit(struct net * net)12458 static void __net_exit netdev_exit(struct net *net)
12459 {
12460 kfree(net->dev_name_head);
12461 kfree(net->dev_index_head);
12462 xa_destroy(&net->dev_by_index);
12463 if (net != &init_net)
12464 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12465 }
12466
12467 static struct pernet_operations __net_initdata netdev_net_ops = {
12468 .init = netdev_init,
12469 .exit = netdev_exit,
12470 };
12471
default_device_exit_net(struct net * net)12472 static void __net_exit default_device_exit_net(struct net *net)
12473 {
12474 struct netdev_name_node *name_node, *tmp;
12475 struct net_device *dev, *aux;
12476 /*
12477 * Push all migratable network devices back to the
12478 * initial network namespace
12479 */
12480 ASSERT_RTNL();
12481 for_each_netdev_safe(net, dev, aux) {
12482 int err;
12483 char fb_name[IFNAMSIZ];
12484
12485 /* Ignore unmoveable devices (i.e. loopback) */
12486 if (dev->netns_immutable)
12487 continue;
12488
12489 /* Leave virtual devices for the generic cleanup */
12490 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12491 continue;
12492
12493 /* Push remaining network devices to init_net */
12494 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12495 if (netdev_name_in_use(&init_net, fb_name))
12496 snprintf(fb_name, IFNAMSIZ, "dev%%d");
12497
12498 netdev_for_each_altname_safe(dev, name_node, tmp)
12499 if (netdev_name_in_use(&init_net, name_node->name))
12500 __netdev_name_node_alt_destroy(name_node);
12501
12502 err = dev_change_net_namespace(dev, &init_net, fb_name);
12503 if (err) {
12504 pr_emerg("%s: failed to move %s to init_net: %d\n",
12505 __func__, dev->name, err);
12506 BUG();
12507 }
12508 }
12509 }
12510
default_device_exit_batch(struct list_head * net_list)12511 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12512 {
12513 /* At exit all network devices most be removed from a network
12514 * namespace. Do this in the reverse order of registration.
12515 * Do this across as many network namespaces as possible to
12516 * improve batching efficiency.
12517 */
12518 struct net_device *dev;
12519 struct net *net;
12520 LIST_HEAD(dev_kill_list);
12521
12522 rtnl_lock();
12523 list_for_each_entry(net, net_list, exit_list) {
12524 default_device_exit_net(net);
12525 cond_resched();
12526 }
12527
12528 list_for_each_entry(net, net_list, exit_list) {
12529 for_each_netdev_reverse(net, dev) {
12530 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12531 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12532 else
12533 unregister_netdevice_queue(dev, &dev_kill_list);
12534 }
12535 }
12536 unregister_netdevice_many(&dev_kill_list);
12537 rtnl_unlock();
12538 }
12539
12540 static struct pernet_operations __net_initdata default_device_ops = {
12541 .exit_batch = default_device_exit_batch,
12542 };
12543
net_dev_struct_check(void)12544 static void __init net_dev_struct_check(void)
12545 {
12546 /* TX read-mostly hotpath */
12547 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12548 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12549 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12550 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12551 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12552 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12553 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12554 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12555 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12556 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12557 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12558 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12559 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12560 #ifdef CONFIG_XPS
12561 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12562 #endif
12563 #ifdef CONFIG_NETFILTER_EGRESS
12564 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12565 #endif
12566 #ifdef CONFIG_NET_XGRESS
12567 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12568 #endif
12569 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12570
12571 /* TXRX read-mostly hotpath */
12572 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12573 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12574 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12575 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12576 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12577 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12578 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12579
12580 /* RX read-mostly hotpath */
12581 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12582 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12583 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12584 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12585 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12586 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12587 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12588 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12589 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12590 #ifdef CONFIG_NETPOLL
12591 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12592 #endif
12593 #ifdef CONFIG_NET_XGRESS
12594 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12595 #endif
12596 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12597 }
12598
12599 /*
12600 * Initialize the DEV module. At boot time this walks the device list and
12601 * unhooks any devices that fail to initialise (normally hardware not
12602 * present) and leaves us with a valid list of present and active devices.
12603 *
12604 */
12605
12606 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12607 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
12608
net_page_pool_create(int cpuid)12609 static int net_page_pool_create(int cpuid)
12610 {
12611 #if IS_ENABLED(CONFIG_PAGE_POOL)
12612 struct page_pool_params page_pool_params = {
12613 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12614 .flags = PP_FLAG_SYSTEM_POOL,
12615 .nid = cpu_to_mem(cpuid),
12616 };
12617 struct page_pool *pp_ptr;
12618 int err;
12619
12620 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12621 if (IS_ERR(pp_ptr))
12622 return -ENOMEM;
12623
12624 err = xdp_reg_page_pool(pp_ptr);
12625 if (err) {
12626 page_pool_destroy(pp_ptr);
12627 return err;
12628 }
12629
12630 per_cpu(system_page_pool, cpuid) = pp_ptr;
12631 #endif
12632 return 0;
12633 }
12634
backlog_napi_should_run(unsigned int cpu)12635 static int backlog_napi_should_run(unsigned int cpu)
12636 {
12637 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12638 struct napi_struct *napi = &sd->backlog;
12639
12640 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12641 }
12642
run_backlog_napi(unsigned int cpu)12643 static void run_backlog_napi(unsigned int cpu)
12644 {
12645 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12646
12647 napi_threaded_poll_loop(&sd->backlog);
12648 }
12649
backlog_napi_setup(unsigned int cpu)12650 static void backlog_napi_setup(unsigned int cpu)
12651 {
12652 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12653 struct napi_struct *napi = &sd->backlog;
12654
12655 napi->thread = this_cpu_read(backlog_napi);
12656 set_bit(NAPI_STATE_THREADED, &napi->state);
12657 }
12658
12659 static struct smp_hotplug_thread backlog_threads = {
12660 .store = &backlog_napi,
12661 .thread_should_run = backlog_napi_should_run,
12662 .thread_fn = run_backlog_napi,
12663 .thread_comm = "backlog_napi/%u",
12664 .setup = backlog_napi_setup,
12665 };
12666
12667 /*
12668 * This is called single threaded during boot, so no need
12669 * to take the rtnl semaphore.
12670 */
net_dev_init(void)12671 static int __init net_dev_init(void)
12672 {
12673 int i, rc = -ENOMEM;
12674
12675 BUG_ON(!dev_boot_phase);
12676
12677 net_dev_struct_check();
12678
12679 if (dev_proc_init())
12680 goto out;
12681
12682 if (netdev_kobject_init())
12683 goto out;
12684
12685 for (i = 0; i < PTYPE_HASH_SIZE; i++)
12686 INIT_LIST_HEAD(&ptype_base[i]);
12687
12688 if (register_pernet_subsys(&netdev_net_ops))
12689 goto out;
12690
12691 /*
12692 * Initialise the packet receive queues.
12693 */
12694
12695 flush_backlogs_fallback = flush_backlogs_alloc();
12696 if (!flush_backlogs_fallback)
12697 goto out;
12698
12699 for_each_possible_cpu(i) {
12700 struct softnet_data *sd = &per_cpu(softnet_data, i);
12701
12702 skb_queue_head_init(&sd->input_pkt_queue);
12703 skb_queue_head_init(&sd->process_queue);
12704 #ifdef CONFIG_XFRM_OFFLOAD
12705 skb_queue_head_init(&sd->xfrm_backlog);
12706 #endif
12707 INIT_LIST_HEAD(&sd->poll_list);
12708 sd->output_queue_tailp = &sd->output_queue;
12709 #ifdef CONFIG_RPS
12710 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12711 sd->cpu = i;
12712 #endif
12713 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12714 spin_lock_init(&sd->defer_lock);
12715
12716 gro_init(&sd->backlog.gro);
12717 sd->backlog.poll = process_backlog;
12718 sd->backlog.weight = weight_p;
12719 INIT_LIST_HEAD(&sd->backlog.poll_list);
12720
12721 if (net_page_pool_create(i))
12722 goto out;
12723 }
12724 if (use_backlog_threads())
12725 smpboot_register_percpu_thread(&backlog_threads);
12726
12727 dev_boot_phase = 0;
12728
12729 /* The loopback device is special if any other network devices
12730 * is present in a network namespace the loopback device must
12731 * be present. Since we now dynamically allocate and free the
12732 * loopback device ensure this invariant is maintained by
12733 * keeping the loopback device as the first device on the
12734 * list of network devices. Ensuring the loopback devices
12735 * is the first device that appears and the last network device
12736 * that disappears.
12737 */
12738 if (register_pernet_device(&loopback_net_ops))
12739 goto out;
12740
12741 if (register_pernet_device(&default_device_ops))
12742 goto out;
12743
12744 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12745 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12746
12747 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12748 NULL, dev_cpu_dead);
12749 WARN_ON(rc < 0);
12750 rc = 0;
12751
12752 /* avoid static key IPIs to isolated CPUs */
12753 if (housekeeping_enabled(HK_TYPE_MISC))
12754 net_enable_timestamp();
12755 out:
12756 if (rc < 0) {
12757 for_each_possible_cpu(i) {
12758 struct page_pool *pp_ptr;
12759
12760 pp_ptr = per_cpu(system_page_pool, i);
12761 if (!pp_ptr)
12762 continue;
12763
12764 xdp_unreg_page_pool(pp_ptr);
12765 page_pool_destroy(pp_ptr);
12766 per_cpu(system_page_pool, i) = NULL;
12767 }
12768 }
12769
12770 return rc;
12771 }
12772
12773 subsys_initcall(net_dev_init);
12774