1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 struct net_device *dev,
177 struct netlink_ext_ack *extack);
178
179 static DEFINE_MUTEX(ifalias_mutex);
180
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186
dev_base_seq_inc(struct net * net)187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 unsigned int val = net->dev_base_seq + 1;
190
191 WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193
dev_name_hash(struct net * net,const char * name)194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197
198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200
dev_index_hash(struct net * net,int ifindex)201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205
206 #ifndef CONFIG_PREEMPT_RT
207
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209
setup_backlog_napi_threads(char * arg)210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 static_branch_enable(&use_backlog_threads_key);
213 return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216
use_backlog_threads(void)217 static bool use_backlog_threads(void)
218 {
219 return static_branch_unlikely(&use_backlog_threads_key);
220 }
221
222 #else
223
use_backlog_threads(void)224 static bool use_backlog_threads(void)
225 {
226 return true;
227 }
228
229 #endif
230
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 unsigned long *flags)
233 {
234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 else
237 local_irq_save(*flags);
238 }
239
backlog_lock_irq_disable(struct softnet_data * sd)240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 spin_lock_irq(&sd->input_pkt_queue.lock);
244 else
245 local_irq_disable();
246 }
247
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 unsigned long *flags)
250 {
251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 else
254 local_irq_restore(*flags);
255 }
256
backlog_unlock_irq_enable(struct softnet_data * sd)257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 spin_unlock_irq(&sd->input_pkt_queue.lock);
261 else
262 local_irq_enable();
263 }
264
netdev_name_node_alloc(struct net_device * dev,const char * name)265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 const char *name)
267 {
268 struct netdev_name_node *name_node;
269
270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 if (!name_node)
272 return NULL;
273 INIT_HLIST_NODE(&name_node->hlist);
274 name_node->dev = dev;
275 name_node->name = name;
276 return name_node;
277 }
278
279 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 struct netdev_name_node *name_node;
283
284 name_node = netdev_name_node_alloc(dev, dev->name);
285 if (!name_node)
286 return NULL;
287 INIT_LIST_HEAD(&name_node->list);
288 return name_node;
289 }
290
netdev_name_node_free(struct netdev_name_node * name_node)291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 kfree(name_node);
294 }
295
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)296 static void netdev_name_node_add(struct net *net,
297 struct netdev_name_node *name_node)
298 {
299 hlist_add_head_rcu(&name_node->hlist,
300 dev_name_hash(net, name_node->name));
301 }
302
netdev_name_node_del(struct netdev_name_node * name_node)303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 hlist_del_rcu(&name_node->hlist);
306 }
307
netdev_name_node_lookup(struct net * net,const char * name)308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 const char *name)
310 {
311 struct hlist_head *head = dev_name_hash(net, name);
312 struct netdev_name_node *name_node;
313
314 hlist_for_each_entry(name_node, head, hlist)
315 if (!strcmp(name_node->name, name))
316 return name_node;
317 return NULL;
318 }
319
netdev_name_node_lookup_rcu(struct net * net,const char * name)320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 const char *name)
322 {
323 struct hlist_head *head = dev_name_hash(net, name);
324 struct netdev_name_node *name_node;
325
326 hlist_for_each_entry_rcu(name_node, head, hlist)
327 if (!strcmp(name_node->name, name))
328 return name_node;
329 return NULL;
330 }
331
netdev_name_in_use(struct net * net,const char * name)332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337
netdev_name_node_alt_create(struct net_device * dev,const char * name)338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 struct netdev_name_node *name_node;
341 struct net *net = dev_net(dev);
342
343 name_node = netdev_name_node_lookup(net, name);
344 if (name_node)
345 return -EEXIST;
346 name_node = netdev_name_node_alloc(dev, name);
347 if (!name_node)
348 return -ENOMEM;
349 netdev_name_node_add(net, name_node);
350 /* The node that holds dev->name acts as a head of per-device list. */
351 list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352
353 return 0;
354 }
355
netdev_name_node_alt_free(struct rcu_head * head)356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 struct netdev_name_node *name_node =
359 container_of(head, struct netdev_name_node, rcu);
360
361 kfree(name_node->name);
362 netdev_name_node_free(name_node);
363 }
364
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 netdev_name_node_del(name_node);
368 list_del(&name_node->list);
369 call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 struct netdev_name_node *name_node;
375 struct net *net = dev_net(dev);
376
377 name_node = netdev_name_node_lookup(net, name);
378 if (!name_node)
379 return -ENOENT;
380 /* lookup might have found our primary name or a name belonging
381 * to another device.
382 */
383 if (name_node == dev->name_node || name_node->dev != dev)
384 return -EINVAL;
385
386 __netdev_name_node_alt_destroy(name_node);
387 return 0;
388 }
389
netdev_name_node_alt_flush(struct net_device * dev)390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 struct netdev_name_node *name_node, *tmp;
393
394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 list_del(&name_node->list);
396 netdev_name_node_alt_free(&name_node->rcu);
397 }
398 }
399
400 /* Device list insertion */
list_netdevice(struct net_device * dev)401 static void list_netdevice(struct net_device *dev)
402 {
403 struct netdev_name_node *name_node;
404 struct net *net = dev_net(dev);
405
406 ASSERT_RTNL();
407
408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 netdev_name_node_add(net, dev->name_node);
410 hlist_add_head_rcu(&dev->index_hlist,
411 dev_index_hash(net, dev->ifindex));
412
413 netdev_for_each_altname(dev, name_node)
414 netdev_name_node_add(net, name_node);
415
416 /* We reserved the ifindex, this can't fail */
417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418
419 dev_base_seq_inc(net);
420 }
421
422 /* Device list removal
423 * caller must respect a RCU grace period before freeing/reusing dev
424 */
unlist_netdevice(struct net_device * dev)425 static void unlist_netdevice(struct net_device *dev)
426 {
427 struct netdev_name_node *name_node;
428 struct net *net = dev_net(dev);
429
430 ASSERT_RTNL();
431
432 xa_erase(&net->dev_by_index, dev->ifindex);
433
434 netdev_for_each_altname(dev, name_node)
435 netdev_name_node_del(name_node);
436
437 /* Unlink dev from the device chain */
438 list_del_rcu(&dev->dev_list);
439 netdev_name_node_del(dev->name_node);
440 hlist_del_rcu(&dev->index_hlist);
441
442 dev_base_seq_inc(dev_net(dev));
443 }
444
445 /*
446 * Our notifier list
447 */
448
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450
451 /*
452 * Device drivers call our routines to queue packets here. We empty the
453 * queue in the local softnet handler.
454 */
455
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462 * PP consumers must pay attention to run APIs in the appropriate context
463 * (e.g. NAPI context).
464 */
465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
466 .bh_lock = INIT_LOCAL_LOCK(bh_lock),
467 };
468
469 #ifdef CONFIG_LOCKDEP
470 /*
471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
472 * according to dev->type
473 */
474 static const unsigned short netdev_lock_type[] = {
475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
481 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
482 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
483 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
484 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
485 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
486 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
487 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
488 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
489 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
490
491 static const char *const netdev_lock_name[] = {
492 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
493 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
494 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
495 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
496 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
497 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
498 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
499 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
500 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
501 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
502 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
503 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
504 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
505 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
506 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
507
508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
510
netdev_lock_pos(unsigned short dev_type)511 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
512 {
513 int i;
514
515 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
516 if (netdev_lock_type[i] == dev_type)
517 return i;
518 /* the last key is used by default */
519 return ARRAY_SIZE(netdev_lock_type) - 1;
520 }
521
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
523 unsigned short dev_type)
524 {
525 int i;
526
527 i = netdev_lock_pos(dev_type);
528 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
529 netdev_lock_name[i]);
530 }
531
netdev_set_addr_lockdep_class(struct net_device * dev)532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
533 {
534 int i;
535
536 i = netdev_lock_pos(dev->type);
537 lockdep_set_class_and_name(&dev->addr_list_lock,
538 &netdev_addr_lock_key[i],
539 netdev_lock_name[i]);
540 }
541 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
543 unsigned short dev_type)
544 {
545 }
546
netdev_set_addr_lockdep_class(struct net_device * dev)547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
548 {
549 }
550 #endif
551
552 /*******************************************************************************
553 *
554 * Protocol management and registration routines
555 *
556 *******************************************************************************/
557
558
559 /*
560 * Add a protocol ID to the list. Now that the input handler is
561 * smarter we can dispense with all the messy stuff that used to be
562 * here.
563 *
564 * BEWARE!!! Protocol handlers, mangling input packets,
565 * MUST BE last in hash buckets and checking protocol handlers
566 * MUST start from promiscuous ptype_all chain in net_bh.
567 * It is true now, do not change it.
568 * Explanation follows: if protocol handler, mangling packet, will
569 * be the first on list, it is not able to sense, that packet
570 * is cloned and should be copied-on-write, so that it will
571 * change it and subsequent readers will get broken packet.
572 * --ANK (980803)
573 */
574
ptype_head(const struct packet_type * pt)575 static inline struct list_head *ptype_head(const struct packet_type *pt)
576 {
577 if (pt->type == htons(ETH_P_ALL)) {
578 if (!pt->af_packet_net && !pt->dev)
579 return NULL;
580
581 return pt->dev ? &pt->dev->ptype_all :
582 &pt->af_packet_net->ptype_all;
583 }
584
585 if (pt->dev)
586 return &pt->dev->ptype_specific;
587
588 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
589 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
590 }
591
592 /**
593 * dev_add_pack - add packet handler
594 * @pt: packet type declaration
595 *
596 * Add a protocol handler to the networking stack. The passed &packet_type
597 * is linked into kernel lists and may not be freed until it has been
598 * removed from the kernel lists.
599 *
600 * This call does not sleep therefore it can not
601 * guarantee all CPU's that are in middle of receiving packets
602 * will see the new packet type (until the next received packet).
603 */
604
dev_add_pack(struct packet_type * pt)605 void dev_add_pack(struct packet_type *pt)
606 {
607 struct list_head *head = ptype_head(pt);
608
609 if (WARN_ON_ONCE(!head))
610 return;
611
612 spin_lock(&ptype_lock);
613 list_add_rcu(&pt->list, head);
614 spin_unlock(&ptype_lock);
615 }
616 EXPORT_SYMBOL(dev_add_pack);
617
618 /**
619 * __dev_remove_pack - remove packet handler
620 * @pt: packet type declaration
621 *
622 * Remove a protocol handler that was previously added to the kernel
623 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
624 * from the kernel lists and can be freed or reused once this function
625 * returns.
626 *
627 * The packet type might still be in use by receivers
628 * and must not be freed until after all the CPU's have gone
629 * through a quiescent state.
630 */
__dev_remove_pack(struct packet_type * pt)631 void __dev_remove_pack(struct packet_type *pt)
632 {
633 struct list_head *head = ptype_head(pt);
634 struct packet_type *pt1;
635
636 if (!head)
637 return;
638
639 spin_lock(&ptype_lock);
640
641 list_for_each_entry(pt1, head, list) {
642 if (pt == pt1) {
643 list_del_rcu(&pt->list);
644 goto out;
645 }
646 }
647
648 pr_warn("dev_remove_pack: %p not found\n", pt);
649 out:
650 spin_unlock(&ptype_lock);
651 }
652 EXPORT_SYMBOL(__dev_remove_pack);
653
654 /**
655 * dev_remove_pack - remove packet handler
656 * @pt: packet type declaration
657 *
658 * Remove a protocol handler that was previously added to the kernel
659 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
660 * from the kernel lists and can be freed or reused once this function
661 * returns.
662 *
663 * This call sleeps to guarantee that no CPU is looking at the packet
664 * type after return.
665 */
dev_remove_pack(struct packet_type * pt)666 void dev_remove_pack(struct packet_type *pt)
667 {
668 __dev_remove_pack(pt);
669
670 synchronize_net();
671 }
672 EXPORT_SYMBOL(dev_remove_pack);
673
674
675 /*******************************************************************************
676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
680
681 /**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
dev_get_iflink(const struct net_device * dev)689 int dev_get_iflink(const struct net_device *dev)
690 {
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
694 return READ_ONCE(dev->ifindex);
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
dev_fwd_path(struct net_device_path_stack * stack)724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
725 {
726 int k = stack->num_paths++;
727
728 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
729 return NULL;
730
731 return &stack->path[k];
732 }
733
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
735 struct net_device_path_stack *stack)
736 {
737 const struct net_device *last_dev;
738 struct net_device_path_ctx ctx = {
739 .dev = dev,
740 };
741 struct net_device_path *path;
742 int ret = 0;
743
744 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
745 stack->num_paths = 0;
746 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
747 last_dev = ctx.dev;
748 path = dev_fwd_path(stack);
749 if (!path)
750 return -1;
751
752 memset(path, 0, sizeof(struct net_device_path));
753 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
754 if (ret < 0)
755 return -1;
756
757 if (WARN_ON_ONCE(last_dev == ctx.dev))
758 return -1;
759 }
760
761 if (!ctx.dev)
762 return ret;
763
764 path = dev_fwd_path(stack);
765 if (!path)
766 return -1;
767 path->type = DEV_PATH_ETHERNET;
768 path->dev = ctx.dev;
769
770 return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773
774 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)775 static struct napi_struct *napi_by_id(unsigned int napi_id)
776 {
777 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
778 struct napi_struct *napi;
779
780 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
781 if (napi->napi_id == napi_id)
782 return napi;
783
784 return NULL;
785 }
786
787 /* must be called under rcu_read_lock(), as we dont take a reference */
788 static struct napi_struct *
netdev_napi_by_id(struct net * net,unsigned int napi_id)789 netdev_napi_by_id(struct net *net, unsigned int napi_id)
790 {
791 struct napi_struct *napi;
792
793 napi = napi_by_id(napi_id);
794 if (!napi)
795 return NULL;
796
797 if (WARN_ON_ONCE(!napi->dev))
798 return NULL;
799 if (!net_eq(net, dev_net(napi->dev)))
800 return NULL;
801
802 return napi;
803 }
804
805 /**
806 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
807 * @net: the applicable net namespace
808 * @napi_id: ID of a NAPI of a target device
809 *
810 * Find a NAPI instance with @napi_id. Lock its device.
811 * The device must be in %NETREG_REGISTERED state for lookup to succeed.
812 * netdev_unlock() must be called to release it.
813 *
814 * Return: pointer to NAPI, its device with lock held, NULL if not found.
815 */
816 struct napi_struct *
netdev_napi_by_id_lock(struct net * net,unsigned int napi_id)817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
818 {
819 struct napi_struct *napi;
820 struct net_device *dev;
821
822 rcu_read_lock();
823 napi = netdev_napi_by_id(net, napi_id);
824 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
825 rcu_read_unlock();
826 return NULL;
827 }
828
829 dev = napi->dev;
830 dev_hold(dev);
831 rcu_read_unlock();
832
833 dev = __netdev_put_lock(dev, net);
834 if (!dev)
835 return NULL;
836
837 rcu_read_lock();
838 napi = netdev_napi_by_id(net, napi_id);
839 if (napi && napi->dev != dev)
840 napi = NULL;
841 rcu_read_unlock();
842
843 if (!napi)
844 netdev_unlock(dev);
845 return napi;
846 }
847
848 /**
849 * __dev_get_by_name - find a device by its name
850 * @net: the applicable net namespace
851 * @name: name to find
852 *
853 * Find an interface by name. Must be called under RTNL semaphore.
854 * If the name is found a pointer to the device is returned.
855 * If the name is not found then %NULL is returned. The
856 * reference counters are not incremented so the caller must be
857 * careful with locks.
858 */
859
__dev_get_by_name(struct net * net,const char * name)860 struct net_device *__dev_get_by_name(struct net *net, const char *name)
861 {
862 struct netdev_name_node *node_name;
863
864 node_name = netdev_name_node_lookup(net, name);
865 return node_name ? node_name->dev : NULL;
866 }
867 EXPORT_SYMBOL(__dev_get_by_name);
868
869 /**
870 * dev_get_by_name_rcu - find a device by its name
871 * @net: the applicable net namespace
872 * @name: name to find
873 *
874 * Find an interface by name.
875 * If the name is found a pointer to the device is returned.
876 * If the name is not found then %NULL is returned.
877 * The reference counters are not incremented so the caller must be
878 * careful with locks. The caller must hold RCU lock.
879 */
880
dev_get_by_name_rcu(struct net * net,const char * name)881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882 {
883 struct netdev_name_node *node_name;
884
885 node_name = netdev_name_node_lookup_rcu(net, name);
886 return node_name ? node_name->dev : NULL;
887 }
888 EXPORT_SYMBOL(dev_get_by_name_rcu);
889
890 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)891 struct net_device *dev_get_by_name(struct net *net, const char *name)
892 {
893 struct net_device *dev;
894
895 rcu_read_lock();
896 dev = dev_get_by_name_rcu(net, name);
897 dev_hold(dev);
898 rcu_read_unlock();
899 return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_name);
902
903 /**
904 * netdev_get_by_name() - find a device by its name
905 * @net: the applicable net namespace
906 * @name: name to find
907 * @tracker: tracking object for the acquired reference
908 * @gfp: allocation flags for the tracker
909 *
910 * Find an interface by name. This can be called from any
911 * context and does its own locking. The returned handle has
912 * the usage count incremented and the caller must use netdev_put() to
913 * release it when it is no longer needed. %NULL is returned if no
914 * matching device is found.
915 */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)916 struct net_device *netdev_get_by_name(struct net *net, const char *name,
917 netdevice_tracker *tracker, gfp_t gfp)
918 {
919 struct net_device *dev;
920
921 dev = dev_get_by_name(net, name);
922 if (dev)
923 netdev_tracker_alloc(dev, tracker, gfp);
924 return dev;
925 }
926 EXPORT_SYMBOL(netdev_get_by_name);
927
928 /**
929 * __dev_get_by_index - find a device by its ifindex
930 * @net: the applicable net namespace
931 * @ifindex: index of device
932 *
933 * Search for an interface by index. Returns %NULL if the device
934 * is not found or a pointer to the device. The device has not
935 * had its reference counter increased so the caller must be careful
936 * about locking. The caller must hold the RTNL semaphore.
937 */
938
__dev_get_by_index(struct net * net,int ifindex)939 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
940 {
941 struct net_device *dev;
942 struct hlist_head *head = dev_index_hash(net, ifindex);
943
944 hlist_for_each_entry(dev, head, index_hlist)
945 if (dev->ifindex == ifindex)
946 return dev;
947
948 return NULL;
949 }
950 EXPORT_SYMBOL(__dev_get_by_index);
951
952 /**
953 * dev_get_by_index_rcu - find a device by its ifindex
954 * @net: the applicable net namespace
955 * @ifindex: index of device
956 *
957 * Search for an interface by index. Returns %NULL if the device
958 * is not found or a pointer to the device. The device has not
959 * had its reference counter increased so the caller must be careful
960 * about locking. The caller must hold RCU lock.
961 */
962
dev_get_by_index_rcu(struct net * net,int ifindex)963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
964 {
965 struct net_device *dev;
966 struct hlist_head *head = dev_index_hash(net, ifindex);
967
968 hlist_for_each_entry_rcu(dev, head, index_hlist)
969 if (dev->ifindex == ifindex)
970 return dev;
971
972 return NULL;
973 }
974 EXPORT_SYMBOL(dev_get_by_index_rcu);
975
976 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 struct net_device *dev;
980
981 rcu_read_lock();
982 dev = dev_get_by_index_rcu(net, ifindex);
983 dev_hold(dev);
984 rcu_read_unlock();
985 return dev;
986 }
987 EXPORT_SYMBOL(dev_get_by_index);
988
989 /**
990 * netdev_get_by_index() - find a device by its ifindex
991 * @net: the applicable net namespace
992 * @ifindex: index of device
993 * @tracker: tracking object for the acquired reference
994 * @gfp: allocation flags for the tracker
995 *
996 * Search for an interface by index. Returns NULL if the device
997 * is not found or a pointer to the device. The device returned has
998 * had a reference added and the pointer is safe until the user calls
999 * netdev_put() to indicate they have finished with it.
1000 */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1002 netdevice_tracker *tracker, gfp_t gfp)
1003 {
1004 struct net_device *dev;
1005
1006 dev = dev_get_by_index(net, ifindex);
1007 if (dev)
1008 netdev_tracker_alloc(dev, tracker, gfp);
1009 return dev;
1010 }
1011 EXPORT_SYMBOL(netdev_get_by_index);
1012
1013 /**
1014 * dev_get_by_napi_id - find a device by napi_id
1015 * @napi_id: ID of the NAPI struct
1016 *
1017 * Search for an interface by NAPI ID. Returns %NULL if the device
1018 * is not found or a pointer to the device. The device has not had
1019 * its reference counter increased so the caller must be careful
1020 * about locking. The caller must hold RCU lock.
1021 */
dev_get_by_napi_id(unsigned int napi_id)1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1023 {
1024 struct napi_struct *napi;
1025
1026 WARN_ON_ONCE(!rcu_read_lock_held());
1027
1028 if (!napi_id_valid(napi_id))
1029 return NULL;
1030
1031 napi = napi_by_id(napi_id);
1032
1033 return napi ? napi->dev : NULL;
1034 }
1035
1036 /* Release the held reference on the net_device, and if the net_device
1037 * is still registered try to lock the instance lock. If device is being
1038 * unregistered NULL will be returned (but the reference has been released,
1039 * either way!)
1040 *
1041 * This helper is intended for locking net_device after it has been looked up
1042 * using a lockless lookup helper. Lock prevents the instance from going away.
1043 */
__netdev_put_lock(struct net_device * dev,struct net * net)1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1045 {
1046 netdev_lock(dev);
1047 if (dev->reg_state > NETREG_REGISTERED ||
1048 dev->moving_ns || !net_eq(dev_net(dev), net)) {
1049 netdev_unlock(dev);
1050 dev_put(dev);
1051 return NULL;
1052 }
1053 dev_put(dev);
1054 return dev;
1055 }
1056
1057 static struct net_device *
__netdev_put_lock_ops_compat(struct net_device * dev,struct net * net)1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1059 {
1060 netdev_lock_ops_compat(dev);
1061 if (dev->reg_state > NETREG_REGISTERED ||
1062 dev->moving_ns || !net_eq(dev_net(dev), net)) {
1063 netdev_unlock_ops_compat(dev);
1064 dev_put(dev);
1065 return NULL;
1066 }
1067 dev_put(dev);
1068 return dev;
1069 }
1070
1071 /**
1072 * netdev_get_by_index_lock() - find a device by its ifindex
1073 * @net: the applicable net namespace
1074 * @ifindex: index of device
1075 *
1076 * Search for an interface by index. If a valid device
1077 * with @ifindex is found it will be returned with netdev->lock held.
1078 * netdev_unlock() must be called to release it.
1079 *
1080 * Return: pointer to a device with lock held, NULL if not found.
1081 */
netdev_get_by_index_lock(struct net * net,int ifindex)1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1083 {
1084 struct net_device *dev;
1085
1086 dev = dev_get_by_index(net, ifindex);
1087 if (!dev)
1088 return NULL;
1089
1090 return __netdev_put_lock(dev, net);
1091 }
1092
1093 struct net_device *
netdev_get_by_index_lock_ops_compat(struct net * net,int ifindex)1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1095 {
1096 struct net_device *dev;
1097
1098 dev = dev_get_by_index(net, ifindex);
1099 if (!dev)
1100 return NULL;
1101
1102 return __netdev_put_lock_ops_compat(dev, net);
1103 }
1104
1105 struct net_device *
netdev_xa_find_lock(struct net * net,struct net_device * dev,unsigned long * index)1106 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1107 unsigned long *index)
1108 {
1109 if (dev)
1110 netdev_unlock(dev);
1111
1112 do {
1113 rcu_read_lock();
1114 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1115 if (!dev) {
1116 rcu_read_unlock();
1117 return NULL;
1118 }
1119 dev_hold(dev);
1120 rcu_read_unlock();
1121
1122 dev = __netdev_put_lock(dev, net);
1123 if (dev)
1124 return dev;
1125
1126 (*index)++;
1127 } while (true);
1128 }
1129
1130 struct net_device *
netdev_xa_find_lock_ops_compat(struct net * net,struct net_device * dev,unsigned long * index)1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1132 unsigned long *index)
1133 {
1134 if (dev)
1135 netdev_unlock_ops_compat(dev);
1136
1137 do {
1138 rcu_read_lock();
1139 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1140 if (!dev) {
1141 rcu_read_unlock();
1142 return NULL;
1143 }
1144 dev_hold(dev);
1145 rcu_read_unlock();
1146
1147 dev = __netdev_put_lock_ops_compat(dev, net);
1148 if (dev)
1149 return dev;
1150
1151 (*index)++;
1152 } while (true);
1153 }
1154
1155 static DEFINE_SEQLOCK(netdev_rename_lock);
1156
netdev_copy_name(struct net_device * dev,char * name)1157 void netdev_copy_name(struct net_device *dev, char *name)
1158 {
1159 unsigned int seq;
1160
1161 do {
1162 seq = read_seqbegin(&netdev_rename_lock);
1163 strscpy(name, dev->name, IFNAMSIZ);
1164 } while (read_seqretry(&netdev_rename_lock, seq));
1165 }
1166
1167 /**
1168 * netdev_get_name - get a netdevice name, knowing its ifindex.
1169 * @net: network namespace
1170 * @name: a pointer to the buffer where the name will be stored.
1171 * @ifindex: the ifindex of the interface to get the name from.
1172 */
netdev_get_name(struct net * net,char * name,int ifindex)1173 int netdev_get_name(struct net *net, char *name, int ifindex)
1174 {
1175 struct net_device *dev;
1176 int ret;
1177
1178 rcu_read_lock();
1179
1180 dev = dev_get_by_index_rcu(net, ifindex);
1181 if (!dev) {
1182 ret = -ENODEV;
1183 goto out;
1184 }
1185
1186 netdev_copy_name(dev, name);
1187
1188 ret = 0;
1189 out:
1190 rcu_read_unlock();
1191 return ret;
1192 }
1193
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1195 const char *ha)
1196 {
1197 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1198 }
1199
1200 /**
1201 * dev_getbyhwaddr_rcu - find a device by its hardware address
1202 * @net: the applicable net namespace
1203 * @type: media type of device
1204 * @ha: hardware address
1205 *
1206 * Search for an interface by MAC address. Returns NULL if the device
1207 * is not found or a pointer to the device.
1208 * The caller must hold RCU.
1209 * The returned device has not had its ref count increased
1210 * and the caller must therefore be careful about locking
1211 *
1212 */
1213
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1215 const char *ha)
1216 {
1217 struct net_device *dev;
1218
1219 for_each_netdev_rcu(net, dev)
1220 if (dev_addr_cmp(dev, type, ha))
1221 return dev;
1222
1223 return NULL;
1224 }
1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1226
1227 /**
1228 * dev_getbyhwaddr() - find a device by its hardware address
1229 * @net: the applicable net namespace
1230 * @type: media type of device
1231 * @ha: hardware address
1232 *
1233 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1234 * rtnl_lock.
1235 *
1236 * Context: rtnl_lock() must be held.
1237 * Return: pointer to the net_device, or NULL if not found
1238 */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1240 const char *ha)
1241 {
1242 struct net_device *dev;
1243
1244 ASSERT_RTNL();
1245 for_each_netdev(net, dev)
1246 if (dev_addr_cmp(dev, type, ha))
1247 return dev;
1248
1249 return NULL;
1250 }
1251 EXPORT_SYMBOL(dev_getbyhwaddr);
1252
dev_getfirstbyhwtype(struct net * net,unsigned short type)1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1254 {
1255 struct net_device *dev, *ret = NULL;
1256
1257 rcu_read_lock();
1258 for_each_netdev_rcu(net, dev)
1259 if (dev->type == type) {
1260 dev_hold(dev);
1261 ret = dev;
1262 break;
1263 }
1264 rcu_read_unlock();
1265 return ret;
1266 }
1267 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1268
1269 /**
1270 * __dev_get_by_flags - find any device with given flags
1271 * @net: the applicable net namespace
1272 * @if_flags: IFF_* values
1273 * @mask: bitmask of bits in if_flags to check
1274 *
1275 * Search for any interface with the given flags. Returns NULL if a device
1276 * is not found or a pointer to the device. Must be called inside
1277 * rtnl_lock(), and result refcount is unchanged.
1278 */
1279
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1280 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1281 unsigned short mask)
1282 {
1283 struct net_device *dev, *ret;
1284
1285 ASSERT_RTNL();
1286
1287 ret = NULL;
1288 for_each_netdev(net, dev) {
1289 if (((dev->flags ^ if_flags) & mask) == 0) {
1290 ret = dev;
1291 break;
1292 }
1293 }
1294 return ret;
1295 }
1296 EXPORT_SYMBOL(__dev_get_by_flags);
1297
1298 /**
1299 * dev_valid_name - check if name is okay for network device
1300 * @name: name string
1301 *
1302 * Network device names need to be valid file names to
1303 * allow sysfs to work. We also disallow any kind of
1304 * whitespace.
1305 */
dev_valid_name(const char * name)1306 bool dev_valid_name(const char *name)
1307 {
1308 if (*name == '\0')
1309 return false;
1310 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1311 return false;
1312 if (!strcmp(name, ".") || !strcmp(name, ".."))
1313 return false;
1314
1315 while (*name) {
1316 if (*name == '/' || *name == ':' || isspace(*name))
1317 return false;
1318 name++;
1319 }
1320 return true;
1321 }
1322 EXPORT_SYMBOL(dev_valid_name);
1323
1324 /**
1325 * __dev_alloc_name - allocate a name for a device
1326 * @net: network namespace to allocate the device name in
1327 * @name: name format string
1328 * @res: result name string
1329 *
1330 * Passed a format string - eg "lt%d" it will try and find a suitable
1331 * id. It scans list of devices to build up a free map, then chooses
1332 * the first empty slot. The caller must hold the dev_base or rtnl lock
1333 * while allocating the name and adding the device in order to avoid
1334 * duplicates.
1335 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1336 * Returns the number of the unit assigned or a negative errno code.
1337 */
1338
__dev_alloc_name(struct net * net,const char * name,char * res)1339 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1340 {
1341 int i = 0;
1342 const char *p;
1343 const int max_netdevices = 8*PAGE_SIZE;
1344 unsigned long *inuse;
1345 struct net_device *d;
1346 char buf[IFNAMSIZ];
1347
1348 /* Verify the string as this thing may have come from the user.
1349 * There must be one "%d" and no other "%" characters.
1350 */
1351 p = strchr(name, '%');
1352 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1353 return -EINVAL;
1354
1355 /* Use one page as a bit array of possible slots */
1356 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1357 if (!inuse)
1358 return -ENOMEM;
1359
1360 for_each_netdev(net, d) {
1361 struct netdev_name_node *name_node;
1362
1363 netdev_for_each_altname(d, name_node) {
1364 if (!sscanf(name_node->name, name, &i))
1365 continue;
1366 if (i < 0 || i >= max_netdevices)
1367 continue;
1368
1369 /* avoid cases where sscanf is not exact inverse of printf */
1370 snprintf(buf, IFNAMSIZ, name, i);
1371 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1372 __set_bit(i, inuse);
1373 }
1374 if (!sscanf(d->name, name, &i))
1375 continue;
1376 if (i < 0 || i >= max_netdevices)
1377 continue;
1378
1379 /* avoid cases where sscanf is not exact inverse of printf */
1380 snprintf(buf, IFNAMSIZ, name, i);
1381 if (!strncmp(buf, d->name, IFNAMSIZ))
1382 __set_bit(i, inuse);
1383 }
1384
1385 i = find_first_zero_bit(inuse, max_netdevices);
1386 bitmap_free(inuse);
1387 if (i == max_netdevices)
1388 return -ENFILE;
1389
1390 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1391 strscpy(buf, name, IFNAMSIZ);
1392 snprintf(res, IFNAMSIZ, buf, i);
1393 return i;
1394 }
1395
1396 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1397 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1398 const char *want_name, char *out_name,
1399 int dup_errno)
1400 {
1401 if (!dev_valid_name(want_name))
1402 return -EINVAL;
1403
1404 if (strchr(want_name, '%'))
1405 return __dev_alloc_name(net, want_name, out_name);
1406
1407 if (netdev_name_in_use(net, want_name))
1408 return -dup_errno;
1409 if (out_name != want_name)
1410 strscpy(out_name, want_name, IFNAMSIZ);
1411 return 0;
1412 }
1413
1414 /**
1415 * dev_alloc_name - allocate a name for a device
1416 * @dev: device
1417 * @name: name format string
1418 *
1419 * Passed a format string - eg "lt%d" it will try and find a suitable
1420 * id. It scans list of devices to build up a free map, then chooses
1421 * the first empty slot. The caller must hold the dev_base or rtnl lock
1422 * while allocating the name and adding the device in order to avoid
1423 * duplicates.
1424 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1425 * Returns the number of the unit assigned or a negative errno code.
1426 */
1427
dev_alloc_name(struct net_device * dev,const char * name)1428 int dev_alloc_name(struct net_device *dev, const char *name)
1429 {
1430 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1431 }
1432 EXPORT_SYMBOL(dev_alloc_name);
1433
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1434 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1435 const char *name)
1436 {
1437 int ret;
1438
1439 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1440 return ret < 0 ? ret : 0;
1441 }
1442
netif_change_name(struct net_device * dev,const char * newname)1443 int netif_change_name(struct net_device *dev, const char *newname)
1444 {
1445 struct net *net = dev_net(dev);
1446 unsigned char old_assign_type;
1447 char oldname[IFNAMSIZ];
1448 int err = 0;
1449 int ret;
1450
1451 ASSERT_RTNL_NET(net);
1452
1453 if (!strncmp(newname, dev->name, IFNAMSIZ))
1454 return 0;
1455
1456 memcpy(oldname, dev->name, IFNAMSIZ);
1457
1458 write_seqlock_bh(&netdev_rename_lock);
1459 err = dev_get_valid_name(net, dev, newname);
1460 write_sequnlock_bh(&netdev_rename_lock);
1461
1462 if (err < 0)
1463 return err;
1464
1465 if (oldname[0] && !strchr(oldname, '%'))
1466 netdev_info(dev, "renamed from %s%s\n", oldname,
1467 dev->flags & IFF_UP ? " (while UP)" : "");
1468
1469 old_assign_type = dev->name_assign_type;
1470 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1471
1472 rollback:
1473 ret = device_rename(&dev->dev, dev->name);
1474 if (ret) {
1475 write_seqlock_bh(&netdev_rename_lock);
1476 memcpy(dev->name, oldname, IFNAMSIZ);
1477 write_sequnlock_bh(&netdev_rename_lock);
1478 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1479 return ret;
1480 }
1481
1482 netdev_adjacent_rename_links(dev, oldname);
1483
1484 netdev_name_node_del(dev->name_node);
1485
1486 synchronize_net();
1487
1488 netdev_name_node_add(net, dev->name_node);
1489
1490 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1491 ret = notifier_to_errno(ret);
1492
1493 if (ret) {
1494 /* err >= 0 after dev_alloc_name() or stores the first errno */
1495 if (err >= 0) {
1496 err = ret;
1497 write_seqlock_bh(&netdev_rename_lock);
1498 memcpy(dev->name, oldname, IFNAMSIZ);
1499 write_sequnlock_bh(&netdev_rename_lock);
1500 memcpy(oldname, newname, IFNAMSIZ);
1501 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1502 old_assign_type = NET_NAME_RENAMED;
1503 goto rollback;
1504 } else {
1505 netdev_err(dev, "name change rollback failed: %d\n",
1506 ret);
1507 }
1508 }
1509
1510 return err;
1511 }
1512
netif_set_alias(struct net_device * dev,const char * alias,size_t len)1513 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1514 {
1515 struct dev_ifalias *new_alias = NULL;
1516
1517 if (len >= IFALIASZ)
1518 return -EINVAL;
1519
1520 if (len) {
1521 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1522 if (!new_alias)
1523 return -ENOMEM;
1524
1525 memcpy(new_alias->ifalias, alias, len);
1526 new_alias->ifalias[len] = 0;
1527 }
1528
1529 mutex_lock(&ifalias_mutex);
1530 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1531 mutex_is_locked(&ifalias_mutex));
1532 mutex_unlock(&ifalias_mutex);
1533
1534 if (new_alias)
1535 kfree_rcu(new_alias, rcuhead);
1536
1537 return len;
1538 }
1539
1540 /**
1541 * dev_get_alias - get ifalias of a device
1542 * @dev: device
1543 * @name: buffer to store name of ifalias
1544 * @len: size of buffer
1545 *
1546 * get ifalias for a device. Caller must make sure dev cannot go
1547 * away, e.g. rcu read lock or own a reference count to device.
1548 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1549 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1550 {
1551 const struct dev_ifalias *alias;
1552 int ret = 0;
1553
1554 rcu_read_lock();
1555 alias = rcu_dereference(dev->ifalias);
1556 if (alias)
1557 ret = snprintf(name, len, "%s", alias->ifalias);
1558 rcu_read_unlock();
1559
1560 return ret;
1561 }
1562
1563 /**
1564 * netdev_features_change - device changes features
1565 * @dev: device to cause notification
1566 *
1567 * Called to indicate a device has changed features.
1568 */
netdev_features_change(struct net_device * dev)1569 void netdev_features_change(struct net_device *dev)
1570 {
1571 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1572 }
1573 EXPORT_SYMBOL(netdev_features_change);
1574
netif_state_change(struct net_device * dev)1575 void netif_state_change(struct net_device *dev)
1576 {
1577 netdev_ops_assert_locked_or_invisible(dev);
1578
1579 if (dev->flags & IFF_UP) {
1580 struct netdev_notifier_change_info change_info = {
1581 .info.dev = dev,
1582 };
1583
1584 call_netdevice_notifiers_info(NETDEV_CHANGE,
1585 &change_info.info);
1586 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1587 }
1588 }
1589
1590 /**
1591 * __netdev_notify_peers - notify network peers about existence of @dev,
1592 * to be called when rtnl lock is already held.
1593 * @dev: network device
1594 *
1595 * Generate traffic such that interested network peers are aware of
1596 * @dev, such as by generating a gratuitous ARP. This may be used when
1597 * a device wants to inform the rest of the network about some sort of
1598 * reconfiguration such as a failover event or virtual machine
1599 * migration.
1600 */
__netdev_notify_peers(struct net_device * dev)1601 void __netdev_notify_peers(struct net_device *dev)
1602 {
1603 ASSERT_RTNL();
1604 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1605 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1606 }
1607 EXPORT_SYMBOL(__netdev_notify_peers);
1608
1609 /**
1610 * netdev_notify_peers - notify network peers about existence of @dev
1611 * @dev: network device
1612 *
1613 * Generate traffic such that interested network peers are aware of
1614 * @dev, such as by generating a gratuitous ARP. This may be used when
1615 * a device wants to inform the rest of the network about some sort of
1616 * reconfiguration such as a failover event or virtual machine
1617 * migration.
1618 */
netdev_notify_peers(struct net_device * dev)1619 void netdev_notify_peers(struct net_device *dev)
1620 {
1621 rtnl_lock();
1622 __netdev_notify_peers(dev);
1623 rtnl_unlock();
1624 }
1625 EXPORT_SYMBOL(netdev_notify_peers);
1626
1627 static int napi_threaded_poll(void *data);
1628
napi_kthread_create(struct napi_struct * n)1629 static int napi_kthread_create(struct napi_struct *n)
1630 {
1631 int err = 0;
1632
1633 /* Create and wake up the kthread once to put it in
1634 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1635 * warning and work with loadavg.
1636 */
1637 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1638 n->dev->name, n->napi_id);
1639 if (IS_ERR(n->thread)) {
1640 err = PTR_ERR(n->thread);
1641 pr_err("kthread_run failed with err %d\n", err);
1642 n->thread = NULL;
1643 }
1644
1645 return err;
1646 }
1647
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1648 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1649 {
1650 const struct net_device_ops *ops = dev->netdev_ops;
1651 int ret;
1652
1653 ASSERT_RTNL();
1654 dev_addr_check(dev);
1655
1656 if (!netif_device_present(dev)) {
1657 /* may be detached because parent is runtime-suspended */
1658 if (dev->dev.parent)
1659 pm_runtime_resume(dev->dev.parent);
1660 if (!netif_device_present(dev))
1661 return -ENODEV;
1662 }
1663
1664 /* Block netpoll from trying to do any rx path servicing.
1665 * If we don't do this there is a chance ndo_poll_controller
1666 * or ndo_poll may be running while we open the device
1667 */
1668 netpoll_poll_disable(dev);
1669
1670 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1671 ret = notifier_to_errno(ret);
1672 if (ret)
1673 return ret;
1674
1675 set_bit(__LINK_STATE_START, &dev->state);
1676
1677 netdev_ops_assert_locked(dev);
1678
1679 if (ops->ndo_validate_addr)
1680 ret = ops->ndo_validate_addr(dev);
1681
1682 if (!ret && ops->ndo_open)
1683 ret = ops->ndo_open(dev);
1684
1685 netpoll_poll_enable(dev);
1686
1687 if (ret)
1688 clear_bit(__LINK_STATE_START, &dev->state);
1689 else {
1690 netif_set_up(dev, true);
1691 dev_set_rx_mode(dev);
1692 dev_activate(dev);
1693 add_device_randomness(dev->dev_addr, dev->addr_len);
1694 }
1695
1696 return ret;
1697 }
1698
netif_open(struct net_device * dev,struct netlink_ext_ack * extack)1699 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1700 {
1701 int ret;
1702
1703 if (dev->flags & IFF_UP)
1704 return 0;
1705
1706 ret = __dev_open(dev, extack);
1707 if (ret < 0)
1708 return ret;
1709
1710 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1711 call_netdevice_notifiers(NETDEV_UP, dev);
1712
1713 return ret;
1714 }
1715
__dev_close_many(struct list_head * head)1716 static void __dev_close_many(struct list_head *head)
1717 {
1718 struct net_device *dev;
1719
1720 ASSERT_RTNL();
1721 might_sleep();
1722
1723 list_for_each_entry(dev, head, close_list) {
1724 /* Temporarily disable netpoll until the interface is down */
1725 netpoll_poll_disable(dev);
1726
1727 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1728
1729 clear_bit(__LINK_STATE_START, &dev->state);
1730
1731 /* Synchronize to scheduled poll. We cannot touch poll list, it
1732 * can be even on different cpu. So just clear netif_running().
1733 *
1734 * dev->stop() will invoke napi_disable() on all of it's
1735 * napi_struct instances on this device.
1736 */
1737 smp_mb__after_atomic(); /* Commit netif_running(). */
1738 }
1739
1740 dev_deactivate_many(head);
1741
1742 list_for_each_entry(dev, head, close_list) {
1743 const struct net_device_ops *ops = dev->netdev_ops;
1744
1745 /*
1746 * Call the device specific close. This cannot fail.
1747 * Only if device is UP
1748 *
1749 * We allow it to be called even after a DETACH hot-plug
1750 * event.
1751 */
1752
1753 netdev_ops_assert_locked(dev);
1754
1755 if (ops->ndo_stop)
1756 ops->ndo_stop(dev);
1757
1758 netif_set_up(dev, false);
1759 netpoll_poll_enable(dev);
1760 }
1761 }
1762
__dev_close(struct net_device * dev)1763 static void __dev_close(struct net_device *dev)
1764 {
1765 LIST_HEAD(single);
1766
1767 list_add(&dev->close_list, &single);
1768 __dev_close_many(&single);
1769 list_del(&single);
1770 }
1771
dev_close_many(struct list_head * head,bool unlink)1772 void dev_close_many(struct list_head *head, bool unlink)
1773 {
1774 struct net_device *dev, *tmp;
1775
1776 /* Remove the devices that don't need to be closed */
1777 list_for_each_entry_safe(dev, tmp, head, close_list)
1778 if (!(dev->flags & IFF_UP))
1779 list_del_init(&dev->close_list);
1780
1781 __dev_close_many(head);
1782
1783 list_for_each_entry_safe(dev, tmp, head, close_list) {
1784 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1785 call_netdevice_notifiers(NETDEV_DOWN, dev);
1786 if (unlink)
1787 list_del_init(&dev->close_list);
1788 }
1789 }
1790 EXPORT_SYMBOL(dev_close_many);
1791
netif_close(struct net_device * dev)1792 void netif_close(struct net_device *dev)
1793 {
1794 if (dev->flags & IFF_UP) {
1795 LIST_HEAD(single);
1796
1797 list_add(&dev->close_list, &single);
1798 dev_close_many(&single, true);
1799 list_del(&single);
1800 }
1801 }
1802 EXPORT_SYMBOL(netif_close);
1803
netif_disable_lro(struct net_device * dev)1804 void netif_disable_lro(struct net_device *dev)
1805 {
1806 struct net_device *lower_dev;
1807 struct list_head *iter;
1808
1809 dev->wanted_features &= ~NETIF_F_LRO;
1810 netdev_update_features(dev);
1811
1812 if (unlikely(dev->features & NETIF_F_LRO))
1813 netdev_WARN(dev, "failed to disable LRO!\n");
1814
1815 netdev_for_each_lower_dev(dev, lower_dev, iter) {
1816 netdev_lock_ops(lower_dev);
1817 netif_disable_lro(lower_dev);
1818 netdev_unlock_ops(lower_dev);
1819 }
1820 }
1821 EXPORT_IPV6_MOD(netif_disable_lro);
1822
1823 /**
1824 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1825 * @dev: device
1826 *
1827 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1828 * called under RTNL. This is needed if Generic XDP is installed on
1829 * the device.
1830 */
dev_disable_gro_hw(struct net_device * dev)1831 static void dev_disable_gro_hw(struct net_device *dev)
1832 {
1833 dev->wanted_features &= ~NETIF_F_GRO_HW;
1834 netdev_update_features(dev);
1835
1836 if (unlikely(dev->features & NETIF_F_GRO_HW))
1837 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1838 }
1839
netdev_cmd_to_name(enum netdev_cmd cmd)1840 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1841 {
1842 #define N(val) \
1843 case NETDEV_##val: \
1844 return "NETDEV_" __stringify(val);
1845 switch (cmd) {
1846 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1847 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1848 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1849 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1850 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1851 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1852 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1853 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1854 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1855 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1856 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1857 N(XDP_FEAT_CHANGE)
1858 }
1859 #undef N
1860 return "UNKNOWN_NETDEV_EVENT";
1861 }
1862 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1863
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1864 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1865 struct net_device *dev)
1866 {
1867 struct netdev_notifier_info info = {
1868 .dev = dev,
1869 };
1870
1871 return nb->notifier_call(nb, val, &info);
1872 }
1873
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1874 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1875 struct net_device *dev)
1876 {
1877 int err;
1878
1879 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1880 err = notifier_to_errno(err);
1881 if (err)
1882 return err;
1883
1884 if (!(dev->flags & IFF_UP))
1885 return 0;
1886
1887 call_netdevice_notifier(nb, NETDEV_UP, dev);
1888 return 0;
1889 }
1890
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1891 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1892 struct net_device *dev)
1893 {
1894 if (dev->flags & IFF_UP) {
1895 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1896 dev);
1897 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1898 }
1899 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1900 }
1901
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1902 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1903 struct net *net)
1904 {
1905 struct net_device *dev;
1906 int err;
1907
1908 for_each_netdev(net, dev) {
1909 netdev_lock_ops(dev);
1910 err = call_netdevice_register_notifiers(nb, dev);
1911 netdev_unlock_ops(dev);
1912 if (err)
1913 goto rollback;
1914 }
1915 return 0;
1916
1917 rollback:
1918 for_each_netdev_continue_reverse(net, dev)
1919 call_netdevice_unregister_notifiers(nb, dev);
1920 return err;
1921 }
1922
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1923 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1924 struct net *net)
1925 {
1926 struct net_device *dev;
1927
1928 for_each_netdev(net, dev)
1929 call_netdevice_unregister_notifiers(nb, dev);
1930 }
1931
1932 static int dev_boot_phase = 1;
1933
1934 /**
1935 * register_netdevice_notifier - register a network notifier block
1936 * @nb: notifier
1937 *
1938 * Register a notifier to be called when network device events occur.
1939 * The notifier passed is linked into the kernel structures and must
1940 * not be reused until it has been unregistered. A negative errno code
1941 * is returned on a failure.
1942 *
1943 * When registered all registration and up events are replayed
1944 * to the new notifier to allow device to have a race free
1945 * view of the network device list.
1946 */
1947
register_netdevice_notifier(struct notifier_block * nb)1948 int register_netdevice_notifier(struct notifier_block *nb)
1949 {
1950 struct net *net;
1951 int err;
1952
1953 /* Close race with setup_net() and cleanup_net() */
1954 down_write(&pernet_ops_rwsem);
1955
1956 /* When RTNL is removed, we need protection for netdev_chain. */
1957 rtnl_lock();
1958
1959 err = raw_notifier_chain_register(&netdev_chain, nb);
1960 if (err)
1961 goto unlock;
1962 if (dev_boot_phase)
1963 goto unlock;
1964 for_each_net(net) {
1965 __rtnl_net_lock(net);
1966 err = call_netdevice_register_net_notifiers(nb, net);
1967 __rtnl_net_unlock(net);
1968 if (err)
1969 goto rollback;
1970 }
1971
1972 unlock:
1973 rtnl_unlock();
1974 up_write(&pernet_ops_rwsem);
1975 return err;
1976
1977 rollback:
1978 for_each_net_continue_reverse(net) {
1979 __rtnl_net_lock(net);
1980 call_netdevice_unregister_net_notifiers(nb, net);
1981 __rtnl_net_unlock(net);
1982 }
1983
1984 raw_notifier_chain_unregister(&netdev_chain, nb);
1985 goto unlock;
1986 }
1987 EXPORT_SYMBOL(register_netdevice_notifier);
1988
1989 /**
1990 * unregister_netdevice_notifier - unregister a network notifier block
1991 * @nb: notifier
1992 *
1993 * Unregister a notifier previously registered by
1994 * register_netdevice_notifier(). The notifier is unlinked into the
1995 * kernel structures and may then be reused. A negative errno code
1996 * is returned on a failure.
1997 *
1998 * After unregistering unregister and down device events are synthesized
1999 * for all devices on the device list to the removed notifier to remove
2000 * the need for special case cleanup code.
2001 */
2002
unregister_netdevice_notifier(struct notifier_block * nb)2003 int unregister_netdevice_notifier(struct notifier_block *nb)
2004 {
2005 struct net *net;
2006 int err;
2007
2008 /* Close race with setup_net() and cleanup_net() */
2009 down_write(&pernet_ops_rwsem);
2010 rtnl_lock();
2011 err = raw_notifier_chain_unregister(&netdev_chain, nb);
2012 if (err)
2013 goto unlock;
2014
2015 for_each_net(net) {
2016 __rtnl_net_lock(net);
2017 call_netdevice_unregister_net_notifiers(nb, net);
2018 __rtnl_net_unlock(net);
2019 }
2020
2021 unlock:
2022 rtnl_unlock();
2023 up_write(&pernet_ops_rwsem);
2024 return err;
2025 }
2026 EXPORT_SYMBOL(unregister_netdevice_notifier);
2027
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)2028 static int __register_netdevice_notifier_net(struct net *net,
2029 struct notifier_block *nb,
2030 bool ignore_call_fail)
2031 {
2032 int err;
2033
2034 err = raw_notifier_chain_register(&net->netdev_chain, nb);
2035 if (err)
2036 return err;
2037 if (dev_boot_phase)
2038 return 0;
2039
2040 err = call_netdevice_register_net_notifiers(nb, net);
2041 if (err && !ignore_call_fail)
2042 goto chain_unregister;
2043
2044 return 0;
2045
2046 chain_unregister:
2047 raw_notifier_chain_unregister(&net->netdev_chain, nb);
2048 return err;
2049 }
2050
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2051 static int __unregister_netdevice_notifier_net(struct net *net,
2052 struct notifier_block *nb)
2053 {
2054 int err;
2055
2056 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2057 if (err)
2058 return err;
2059
2060 call_netdevice_unregister_net_notifiers(nb, net);
2061 return 0;
2062 }
2063
2064 /**
2065 * register_netdevice_notifier_net - register a per-netns network notifier block
2066 * @net: network namespace
2067 * @nb: notifier
2068 *
2069 * Register a notifier to be called when network device events occur.
2070 * The notifier passed is linked into the kernel structures and must
2071 * not be reused until it has been unregistered. A negative errno code
2072 * is returned on a failure.
2073 *
2074 * When registered all registration and up events are replayed
2075 * to the new notifier to allow device to have a race free
2076 * view of the network device list.
2077 */
2078
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2079 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2080 {
2081 int err;
2082
2083 rtnl_net_lock(net);
2084 err = __register_netdevice_notifier_net(net, nb, false);
2085 rtnl_net_unlock(net);
2086
2087 return err;
2088 }
2089 EXPORT_SYMBOL(register_netdevice_notifier_net);
2090
2091 /**
2092 * unregister_netdevice_notifier_net - unregister a per-netns
2093 * network notifier block
2094 * @net: network namespace
2095 * @nb: notifier
2096 *
2097 * Unregister a notifier previously registered by
2098 * register_netdevice_notifier_net(). The notifier is unlinked from the
2099 * kernel structures and may then be reused. A negative errno code
2100 * is returned on a failure.
2101 *
2102 * After unregistering unregister and down device events are synthesized
2103 * for all devices on the device list to the removed notifier to remove
2104 * the need for special case cleanup code.
2105 */
2106
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2107 int unregister_netdevice_notifier_net(struct net *net,
2108 struct notifier_block *nb)
2109 {
2110 int err;
2111
2112 rtnl_net_lock(net);
2113 err = __unregister_netdevice_notifier_net(net, nb);
2114 rtnl_net_unlock(net);
2115
2116 return err;
2117 }
2118 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2119
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)2120 static void __move_netdevice_notifier_net(struct net *src_net,
2121 struct net *dst_net,
2122 struct notifier_block *nb)
2123 {
2124 __unregister_netdevice_notifier_net(src_net, nb);
2125 __register_netdevice_notifier_net(dst_net, nb, true);
2126 }
2127
rtnl_net_dev_lock(struct net_device * dev)2128 static void rtnl_net_dev_lock(struct net_device *dev)
2129 {
2130 bool again;
2131
2132 do {
2133 struct net *net;
2134
2135 again = false;
2136
2137 /* netns might be being dismantled. */
2138 rcu_read_lock();
2139 net = dev_net_rcu(dev);
2140 net_passive_inc(net);
2141 rcu_read_unlock();
2142
2143 rtnl_net_lock(net);
2144
2145 #ifdef CONFIG_NET_NS
2146 /* dev might have been moved to another netns. */
2147 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2148 rtnl_net_unlock(net);
2149 net_passive_dec(net);
2150 again = true;
2151 }
2152 #endif
2153 } while (again);
2154 }
2155
rtnl_net_dev_unlock(struct net_device * dev)2156 static void rtnl_net_dev_unlock(struct net_device *dev)
2157 {
2158 struct net *net = dev_net(dev);
2159
2160 rtnl_net_unlock(net);
2161 net_passive_dec(net);
2162 }
2163
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2164 int register_netdevice_notifier_dev_net(struct net_device *dev,
2165 struct notifier_block *nb,
2166 struct netdev_net_notifier *nn)
2167 {
2168 int err;
2169
2170 rtnl_net_dev_lock(dev);
2171 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2172 if (!err) {
2173 nn->nb = nb;
2174 list_add(&nn->list, &dev->net_notifier_list);
2175 }
2176 rtnl_net_dev_unlock(dev);
2177
2178 return err;
2179 }
2180 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2181
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2182 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2183 struct notifier_block *nb,
2184 struct netdev_net_notifier *nn)
2185 {
2186 int err;
2187
2188 rtnl_net_dev_lock(dev);
2189 list_del(&nn->list);
2190 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2191 rtnl_net_dev_unlock(dev);
2192
2193 return err;
2194 }
2195 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2196
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2197 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2198 struct net *net)
2199 {
2200 struct netdev_net_notifier *nn;
2201
2202 list_for_each_entry(nn, &dev->net_notifier_list, list)
2203 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2204 }
2205
2206 /**
2207 * call_netdevice_notifiers_info - call all network notifier blocks
2208 * @val: value passed unmodified to notifier function
2209 * @info: notifier information data
2210 *
2211 * Call all network notifier blocks. Parameters and return value
2212 * are as for raw_notifier_call_chain().
2213 */
2214
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2215 int call_netdevice_notifiers_info(unsigned long val,
2216 struct netdev_notifier_info *info)
2217 {
2218 struct net *net = dev_net(info->dev);
2219 int ret;
2220
2221 ASSERT_RTNL();
2222
2223 /* Run per-netns notifier block chain first, then run the global one.
2224 * Hopefully, one day, the global one is going to be removed after
2225 * all notifier block registrators get converted to be per-netns.
2226 */
2227 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2228 if (ret & NOTIFY_STOP_MASK)
2229 return ret;
2230 return raw_notifier_call_chain(&netdev_chain, val, info);
2231 }
2232
2233 /**
2234 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2235 * for and rollback on error
2236 * @val_up: value passed unmodified to notifier function
2237 * @val_down: value passed unmodified to the notifier function when
2238 * recovering from an error on @val_up
2239 * @info: notifier information data
2240 *
2241 * Call all per-netns network notifier blocks, but not notifier blocks on
2242 * the global notifier chain. Parameters and return value are as for
2243 * raw_notifier_call_chain_robust().
2244 */
2245
2246 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2247 call_netdevice_notifiers_info_robust(unsigned long val_up,
2248 unsigned long val_down,
2249 struct netdev_notifier_info *info)
2250 {
2251 struct net *net = dev_net(info->dev);
2252
2253 ASSERT_RTNL();
2254
2255 return raw_notifier_call_chain_robust(&net->netdev_chain,
2256 val_up, val_down, info);
2257 }
2258
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2259 static int call_netdevice_notifiers_extack(unsigned long val,
2260 struct net_device *dev,
2261 struct netlink_ext_ack *extack)
2262 {
2263 struct netdev_notifier_info info = {
2264 .dev = dev,
2265 .extack = extack,
2266 };
2267
2268 return call_netdevice_notifiers_info(val, &info);
2269 }
2270
2271 /**
2272 * call_netdevice_notifiers - call all network notifier blocks
2273 * @val: value passed unmodified to notifier function
2274 * @dev: net_device pointer passed unmodified to notifier function
2275 *
2276 * Call all network notifier blocks. Parameters and return value
2277 * are as for raw_notifier_call_chain().
2278 */
2279
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2280 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2281 {
2282 return call_netdevice_notifiers_extack(val, dev, NULL);
2283 }
2284 EXPORT_SYMBOL(call_netdevice_notifiers);
2285
2286 /**
2287 * call_netdevice_notifiers_mtu - call all network notifier blocks
2288 * @val: value passed unmodified to notifier function
2289 * @dev: net_device pointer passed unmodified to notifier function
2290 * @arg: additional u32 argument passed to the notifier function
2291 *
2292 * Call all network notifier blocks. Parameters and return value
2293 * are as for raw_notifier_call_chain().
2294 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2295 static int call_netdevice_notifiers_mtu(unsigned long val,
2296 struct net_device *dev, u32 arg)
2297 {
2298 struct netdev_notifier_info_ext info = {
2299 .info.dev = dev,
2300 .ext.mtu = arg,
2301 };
2302
2303 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2304
2305 return call_netdevice_notifiers_info(val, &info.info);
2306 }
2307
2308 #ifdef CONFIG_NET_INGRESS
2309 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2310
net_inc_ingress_queue(void)2311 void net_inc_ingress_queue(void)
2312 {
2313 static_branch_inc(&ingress_needed_key);
2314 }
2315 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2316
net_dec_ingress_queue(void)2317 void net_dec_ingress_queue(void)
2318 {
2319 static_branch_dec(&ingress_needed_key);
2320 }
2321 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2322 #endif
2323
2324 #ifdef CONFIG_NET_EGRESS
2325 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2326
net_inc_egress_queue(void)2327 void net_inc_egress_queue(void)
2328 {
2329 static_branch_inc(&egress_needed_key);
2330 }
2331 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2332
net_dec_egress_queue(void)2333 void net_dec_egress_queue(void)
2334 {
2335 static_branch_dec(&egress_needed_key);
2336 }
2337 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2338 #endif
2339
2340 #ifdef CONFIG_NET_CLS_ACT
2341 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2342 EXPORT_SYMBOL(tcf_sw_enabled_key);
2343 #endif
2344
2345 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2346 EXPORT_SYMBOL(netstamp_needed_key);
2347 #ifdef CONFIG_JUMP_LABEL
2348 static atomic_t netstamp_needed_deferred;
2349 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2350 static void netstamp_clear(struct work_struct *work)
2351 {
2352 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2353 int wanted;
2354
2355 wanted = atomic_add_return(deferred, &netstamp_wanted);
2356 if (wanted > 0)
2357 static_branch_enable(&netstamp_needed_key);
2358 else
2359 static_branch_disable(&netstamp_needed_key);
2360 }
2361 static DECLARE_WORK(netstamp_work, netstamp_clear);
2362 #endif
2363
net_enable_timestamp(void)2364 void net_enable_timestamp(void)
2365 {
2366 #ifdef CONFIG_JUMP_LABEL
2367 int wanted = atomic_read(&netstamp_wanted);
2368
2369 while (wanted > 0) {
2370 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2371 return;
2372 }
2373 atomic_inc(&netstamp_needed_deferred);
2374 schedule_work(&netstamp_work);
2375 #else
2376 static_branch_inc(&netstamp_needed_key);
2377 #endif
2378 }
2379 EXPORT_SYMBOL(net_enable_timestamp);
2380
net_disable_timestamp(void)2381 void net_disable_timestamp(void)
2382 {
2383 #ifdef CONFIG_JUMP_LABEL
2384 int wanted = atomic_read(&netstamp_wanted);
2385
2386 while (wanted > 1) {
2387 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2388 return;
2389 }
2390 atomic_dec(&netstamp_needed_deferred);
2391 schedule_work(&netstamp_work);
2392 #else
2393 static_branch_dec(&netstamp_needed_key);
2394 #endif
2395 }
2396 EXPORT_SYMBOL(net_disable_timestamp);
2397
net_timestamp_set(struct sk_buff * skb)2398 static inline void net_timestamp_set(struct sk_buff *skb)
2399 {
2400 skb->tstamp = 0;
2401 skb->tstamp_type = SKB_CLOCK_REALTIME;
2402 if (static_branch_unlikely(&netstamp_needed_key))
2403 skb->tstamp = ktime_get_real();
2404 }
2405
2406 #define net_timestamp_check(COND, SKB) \
2407 if (static_branch_unlikely(&netstamp_needed_key)) { \
2408 if ((COND) && !(SKB)->tstamp) \
2409 (SKB)->tstamp = ktime_get_real(); \
2410 } \
2411
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2412 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2413 {
2414 return __is_skb_forwardable(dev, skb, true);
2415 }
2416 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2417
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2418 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2419 bool check_mtu)
2420 {
2421 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2422
2423 if (likely(!ret)) {
2424 skb->protocol = eth_type_trans(skb, dev);
2425 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2426 }
2427
2428 return ret;
2429 }
2430
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2431 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2432 {
2433 return __dev_forward_skb2(dev, skb, true);
2434 }
2435 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2436
2437 /**
2438 * dev_forward_skb - loopback an skb to another netif
2439 *
2440 * @dev: destination network device
2441 * @skb: buffer to forward
2442 *
2443 * return values:
2444 * NET_RX_SUCCESS (no congestion)
2445 * NET_RX_DROP (packet was dropped, but freed)
2446 *
2447 * dev_forward_skb can be used for injecting an skb from the
2448 * start_xmit function of one device into the receive queue
2449 * of another device.
2450 *
2451 * The receiving device may be in another namespace, so
2452 * we have to clear all information in the skb that could
2453 * impact namespace isolation.
2454 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2455 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2456 {
2457 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2458 }
2459 EXPORT_SYMBOL_GPL(dev_forward_skb);
2460
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2461 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2462 {
2463 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2464 }
2465
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2466 static inline int deliver_skb(struct sk_buff *skb,
2467 struct packet_type *pt_prev,
2468 struct net_device *orig_dev)
2469 {
2470 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2471 return -ENOMEM;
2472 refcount_inc(&skb->users);
2473 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2474 }
2475
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2476 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2477 struct packet_type **pt,
2478 struct net_device *orig_dev,
2479 __be16 type,
2480 struct list_head *ptype_list)
2481 {
2482 struct packet_type *ptype, *pt_prev = *pt;
2483
2484 list_for_each_entry_rcu(ptype, ptype_list, list) {
2485 if (ptype->type != type)
2486 continue;
2487 if (pt_prev)
2488 deliver_skb(skb, pt_prev, orig_dev);
2489 pt_prev = ptype;
2490 }
2491 *pt = pt_prev;
2492 }
2493
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2494 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2495 {
2496 if (!ptype->af_packet_priv || !skb->sk)
2497 return false;
2498
2499 if (ptype->id_match)
2500 return ptype->id_match(ptype, skb->sk);
2501 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2502 return true;
2503
2504 return false;
2505 }
2506
2507 /**
2508 * dev_nit_active_rcu - return true if any network interface taps are in use
2509 *
2510 * The caller must hold the RCU lock
2511 *
2512 * @dev: network device to check for the presence of taps
2513 */
dev_nit_active_rcu(const struct net_device * dev)2514 bool dev_nit_active_rcu(const struct net_device *dev)
2515 {
2516 /* Callers may hold either RCU or RCU BH lock */
2517 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2518
2519 return !list_empty(&dev_net(dev)->ptype_all) ||
2520 !list_empty(&dev->ptype_all);
2521 }
2522 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2523
2524 /*
2525 * Support routine. Sends outgoing frames to any network
2526 * taps currently in use.
2527 */
2528
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2529 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2530 {
2531 struct packet_type *ptype, *pt_prev = NULL;
2532 struct list_head *ptype_list;
2533 struct sk_buff *skb2 = NULL;
2534
2535 rcu_read_lock();
2536 ptype_list = &dev_net_rcu(dev)->ptype_all;
2537 again:
2538 list_for_each_entry_rcu(ptype, ptype_list, list) {
2539 if (READ_ONCE(ptype->ignore_outgoing))
2540 continue;
2541
2542 /* Never send packets back to the socket
2543 * they originated from - MvS (miquels@drinkel.ow.org)
2544 */
2545 if (skb_loop_sk(ptype, skb))
2546 continue;
2547
2548 if (pt_prev) {
2549 deliver_skb(skb2, pt_prev, skb->dev);
2550 pt_prev = ptype;
2551 continue;
2552 }
2553
2554 /* need to clone skb, done only once */
2555 skb2 = skb_clone(skb, GFP_ATOMIC);
2556 if (!skb2)
2557 goto out_unlock;
2558
2559 net_timestamp_set(skb2);
2560
2561 /* skb->nh should be correctly
2562 * set by sender, so that the second statement is
2563 * just protection against buggy protocols.
2564 */
2565 skb_reset_mac_header(skb2);
2566
2567 if (skb_network_header(skb2) < skb2->data ||
2568 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2569 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2570 ntohs(skb2->protocol),
2571 dev->name);
2572 skb_reset_network_header(skb2);
2573 }
2574
2575 skb2->transport_header = skb2->network_header;
2576 skb2->pkt_type = PACKET_OUTGOING;
2577 pt_prev = ptype;
2578 }
2579
2580 if (ptype_list != &dev->ptype_all) {
2581 ptype_list = &dev->ptype_all;
2582 goto again;
2583 }
2584 out_unlock:
2585 if (pt_prev) {
2586 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2587 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2588 else
2589 kfree_skb(skb2);
2590 }
2591 rcu_read_unlock();
2592 }
2593 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2594
2595 /**
2596 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2597 * @dev: Network device
2598 * @txq: number of queues available
2599 *
2600 * If real_num_tx_queues is changed the tc mappings may no longer be
2601 * valid. To resolve this verify the tc mapping remains valid and if
2602 * not NULL the mapping. With no priorities mapping to this
2603 * offset/count pair it will no longer be used. In the worst case TC0
2604 * is invalid nothing can be done so disable priority mappings. If is
2605 * expected that drivers will fix this mapping if they can before
2606 * calling netif_set_real_num_tx_queues.
2607 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2608 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2609 {
2610 int i;
2611 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2612
2613 /* If TC0 is invalidated disable TC mapping */
2614 if (tc->offset + tc->count > txq) {
2615 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2616 dev->num_tc = 0;
2617 return;
2618 }
2619
2620 /* Invalidated prio to tc mappings set to TC0 */
2621 for (i = 1; i < TC_BITMASK + 1; i++) {
2622 int q = netdev_get_prio_tc_map(dev, i);
2623
2624 tc = &dev->tc_to_txq[q];
2625 if (tc->offset + tc->count > txq) {
2626 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2627 i, q);
2628 netdev_set_prio_tc_map(dev, i, 0);
2629 }
2630 }
2631 }
2632
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2633 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2634 {
2635 if (dev->num_tc) {
2636 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2637 int i;
2638
2639 /* walk through the TCs and see if it falls into any of them */
2640 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2641 if ((txq - tc->offset) < tc->count)
2642 return i;
2643 }
2644
2645 /* didn't find it, just return -1 to indicate no match */
2646 return -1;
2647 }
2648
2649 return 0;
2650 }
2651 EXPORT_SYMBOL(netdev_txq_to_tc);
2652
2653 #ifdef CONFIG_XPS
2654 static struct static_key xps_needed __read_mostly;
2655 static struct static_key xps_rxqs_needed __read_mostly;
2656 static DEFINE_MUTEX(xps_map_mutex);
2657 #define xmap_dereference(P) \
2658 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2659
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2660 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2661 struct xps_dev_maps *old_maps, int tci, u16 index)
2662 {
2663 struct xps_map *map = NULL;
2664 int pos;
2665
2666 map = xmap_dereference(dev_maps->attr_map[tci]);
2667 if (!map)
2668 return false;
2669
2670 for (pos = map->len; pos--;) {
2671 if (map->queues[pos] != index)
2672 continue;
2673
2674 if (map->len > 1) {
2675 map->queues[pos] = map->queues[--map->len];
2676 break;
2677 }
2678
2679 if (old_maps)
2680 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2681 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2682 kfree_rcu(map, rcu);
2683 return false;
2684 }
2685
2686 return true;
2687 }
2688
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2689 static bool remove_xps_queue_cpu(struct net_device *dev,
2690 struct xps_dev_maps *dev_maps,
2691 int cpu, u16 offset, u16 count)
2692 {
2693 int num_tc = dev_maps->num_tc;
2694 bool active = false;
2695 int tci;
2696
2697 for (tci = cpu * num_tc; num_tc--; tci++) {
2698 int i, j;
2699
2700 for (i = count, j = offset; i--; j++) {
2701 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2702 break;
2703 }
2704
2705 active |= i < 0;
2706 }
2707
2708 return active;
2709 }
2710
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2711 static void reset_xps_maps(struct net_device *dev,
2712 struct xps_dev_maps *dev_maps,
2713 enum xps_map_type type)
2714 {
2715 static_key_slow_dec_cpuslocked(&xps_needed);
2716 if (type == XPS_RXQS)
2717 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2718
2719 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2720
2721 kfree_rcu(dev_maps, rcu);
2722 }
2723
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2724 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2725 u16 offset, u16 count)
2726 {
2727 struct xps_dev_maps *dev_maps;
2728 bool active = false;
2729 int i, j;
2730
2731 dev_maps = xmap_dereference(dev->xps_maps[type]);
2732 if (!dev_maps)
2733 return;
2734
2735 for (j = 0; j < dev_maps->nr_ids; j++)
2736 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2737 if (!active)
2738 reset_xps_maps(dev, dev_maps, type);
2739
2740 if (type == XPS_CPUS) {
2741 for (i = offset + (count - 1); count--; i--)
2742 netdev_queue_numa_node_write(
2743 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2744 }
2745 }
2746
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2747 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2748 u16 count)
2749 {
2750 if (!static_key_false(&xps_needed))
2751 return;
2752
2753 cpus_read_lock();
2754 mutex_lock(&xps_map_mutex);
2755
2756 if (static_key_false(&xps_rxqs_needed))
2757 clean_xps_maps(dev, XPS_RXQS, offset, count);
2758
2759 clean_xps_maps(dev, XPS_CPUS, offset, count);
2760
2761 mutex_unlock(&xps_map_mutex);
2762 cpus_read_unlock();
2763 }
2764
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2765 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2766 {
2767 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2768 }
2769
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2770 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2771 u16 index, bool is_rxqs_map)
2772 {
2773 struct xps_map *new_map;
2774 int alloc_len = XPS_MIN_MAP_ALLOC;
2775 int i, pos;
2776
2777 for (pos = 0; map && pos < map->len; pos++) {
2778 if (map->queues[pos] != index)
2779 continue;
2780 return map;
2781 }
2782
2783 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2784 if (map) {
2785 if (pos < map->alloc_len)
2786 return map;
2787
2788 alloc_len = map->alloc_len * 2;
2789 }
2790
2791 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2792 * map
2793 */
2794 if (is_rxqs_map)
2795 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2796 else
2797 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2798 cpu_to_node(attr_index));
2799 if (!new_map)
2800 return NULL;
2801
2802 for (i = 0; i < pos; i++)
2803 new_map->queues[i] = map->queues[i];
2804 new_map->alloc_len = alloc_len;
2805 new_map->len = pos;
2806
2807 return new_map;
2808 }
2809
2810 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2811 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2812 struct xps_dev_maps *new_dev_maps, int index,
2813 int tc, bool skip_tc)
2814 {
2815 int i, tci = index * dev_maps->num_tc;
2816 struct xps_map *map;
2817
2818 /* copy maps belonging to foreign traffic classes */
2819 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2820 if (i == tc && skip_tc)
2821 continue;
2822
2823 /* fill in the new device map from the old device map */
2824 map = xmap_dereference(dev_maps->attr_map[tci]);
2825 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2826 }
2827 }
2828
2829 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2830 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2831 u16 index, enum xps_map_type type)
2832 {
2833 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2834 const unsigned long *online_mask = NULL;
2835 bool active = false, copy = false;
2836 int i, j, tci, numa_node_id = -2;
2837 int maps_sz, num_tc = 1, tc = 0;
2838 struct xps_map *map, *new_map;
2839 unsigned int nr_ids;
2840
2841 WARN_ON_ONCE(index >= dev->num_tx_queues);
2842
2843 if (dev->num_tc) {
2844 /* Do not allow XPS on subordinate device directly */
2845 num_tc = dev->num_tc;
2846 if (num_tc < 0)
2847 return -EINVAL;
2848
2849 /* If queue belongs to subordinate dev use its map */
2850 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2851
2852 tc = netdev_txq_to_tc(dev, index);
2853 if (tc < 0)
2854 return -EINVAL;
2855 }
2856
2857 mutex_lock(&xps_map_mutex);
2858
2859 dev_maps = xmap_dereference(dev->xps_maps[type]);
2860 if (type == XPS_RXQS) {
2861 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2862 nr_ids = dev->num_rx_queues;
2863 } else {
2864 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2865 if (num_possible_cpus() > 1)
2866 online_mask = cpumask_bits(cpu_online_mask);
2867 nr_ids = nr_cpu_ids;
2868 }
2869
2870 if (maps_sz < L1_CACHE_BYTES)
2871 maps_sz = L1_CACHE_BYTES;
2872
2873 /* The old dev_maps could be larger or smaller than the one we're
2874 * setting up now, as dev->num_tc or nr_ids could have been updated in
2875 * between. We could try to be smart, but let's be safe instead and only
2876 * copy foreign traffic classes if the two map sizes match.
2877 */
2878 if (dev_maps &&
2879 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2880 copy = true;
2881
2882 /* allocate memory for queue storage */
2883 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2884 j < nr_ids;) {
2885 if (!new_dev_maps) {
2886 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2887 if (!new_dev_maps) {
2888 mutex_unlock(&xps_map_mutex);
2889 return -ENOMEM;
2890 }
2891
2892 new_dev_maps->nr_ids = nr_ids;
2893 new_dev_maps->num_tc = num_tc;
2894 }
2895
2896 tci = j * num_tc + tc;
2897 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2898
2899 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2900 if (!map)
2901 goto error;
2902
2903 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2904 }
2905
2906 if (!new_dev_maps)
2907 goto out_no_new_maps;
2908
2909 if (!dev_maps) {
2910 /* Increment static keys at most once per type */
2911 static_key_slow_inc_cpuslocked(&xps_needed);
2912 if (type == XPS_RXQS)
2913 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2914 }
2915
2916 for (j = 0; j < nr_ids; j++) {
2917 bool skip_tc = false;
2918
2919 tci = j * num_tc + tc;
2920 if (netif_attr_test_mask(j, mask, nr_ids) &&
2921 netif_attr_test_online(j, online_mask, nr_ids)) {
2922 /* add tx-queue to CPU/rx-queue maps */
2923 int pos = 0;
2924
2925 skip_tc = true;
2926
2927 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2928 while ((pos < map->len) && (map->queues[pos] != index))
2929 pos++;
2930
2931 if (pos == map->len)
2932 map->queues[map->len++] = index;
2933 #ifdef CONFIG_NUMA
2934 if (type == XPS_CPUS) {
2935 if (numa_node_id == -2)
2936 numa_node_id = cpu_to_node(j);
2937 else if (numa_node_id != cpu_to_node(j))
2938 numa_node_id = -1;
2939 }
2940 #endif
2941 }
2942
2943 if (copy)
2944 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2945 skip_tc);
2946 }
2947
2948 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2949
2950 /* Cleanup old maps */
2951 if (!dev_maps)
2952 goto out_no_old_maps;
2953
2954 for (j = 0; j < dev_maps->nr_ids; j++) {
2955 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2956 map = xmap_dereference(dev_maps->attr_map[tci]);
2957 if (!map)
2958 continue;
2959
2960 if (copy) {
2961 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2962 if (map == new_map)
2963 continue;
2964 }
2965
2966 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2967 kfree_rcu(map, rcu);
2968 }
2969 }
2970
2971 old_dev_maps = dev_maps;
2972
2973 out_no_old_maps:
2974 dev_maps = new_dev_maps;
2975 active = true;
2976
2977 out_no_new_maps:
2978 if (type == XPS_CPUS)
2979 /* update Tx queue numa node */
2980 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2981 (numa_node_id >= 0) ?
2982 numa_node_id : NUMA_NO_NODE);
2983
2984 if (!dev_maps)
2985 goto out_no_maps;
2986
2987 /* removes tx-queue from unused CPUs/rx-queues */
2988 for (j = 0; j < dev_maps->nr_ids; j++) {
2989 tci = j * dev_maps->num_tc;
2990
2991 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2992 if (i == tc &&
2993 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2994 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2995 continue;
2996
2997 active |= remove_xps_queue(dev_maps,
2998 copy ? old_dev_maps : NULL,
2999 tci, index);
3000 }
3001 }
3002
3003 if (old_dev_maps)
3004 kfree_rcu(old_dev_maps, rcu);
3005
3006 /* free map if not active */
3007 if (!active)
3008 reset_xps_maps(dev, dev_maps, type);
3009
3010 out_no_maps:
3011 mutex_unlock(&xps_map_mutex);
3012
3013 return 0;
3014 error:
3015 /* remove any maps that we added */
3016 for (j = 0; j < nr_ids; j++) {
3017 for (i = num_tc, tci = j * num_tc; i--; tci++) {
3018 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3019 map = copy ?
3020 xmap_dereference(dev_maps->attr_map[tci]) :
3021 NULL;
3022 if (new_map && new_map != map)
3023 kfree(new_map);
3024 }
3025 }
3026
3027 mutex_unlock(&xps_map_mutex);
3028
3029 kfree(new_dev_maps);
3030 return -ENOMEM;
3031 }
3032 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3033
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3034 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3035 u16 index)
3036 {
3037 int ret;
3038
3039 cpus_read_lock();
3040 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3041 cpus_read_unlock();
3042
3043 return ret;
3044 }
3045 EXPORT_SYMBOL(netif_set_xps_queue);
3046
3047 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)3048 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3049 {
3050 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3051
3052 /* Unbind any subordinate channels */
3053 while (txq-- != &dev->_tx[0]) {
3054 if (txq->sb_dev)
3055 netdev_unbind_sb_channel(dev, txq->sb_dev);
3056 }
3057 }
3058
netdev_reset_tc(struct net_device * dev)3059 void netdev_reset_tc(struct net_device *dev)
3060 {
3061 #ifdef CONFIG_XPS
3062 netif_reset_xps_queues_gt(dev, 0);
3063 #endif
3064 netdev_unbind_all_sb_channels(dev);
3065
3066 /* Reset TC configuration of device */
3067 dev->num_tc = 0;
3068 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3069 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3070 }
3071 EXPORT_SYMBOL(netdev_reset_tc);
3072
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)3073 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3074 {
3075 if (tc >= dev->num_tc)
3076 return -EINVAL;
3077
3078 #ifdef CONFIG_XPS
3079 netif_reset_xps_queues(dev, offset, count);
3080 #endif
3081 dev->tc_to_txq[tc].count = count;
3082 dev->tc_to_txq[tc].offset = offset;
3083 return 0;
3084 }
3085 EXPORT_SYMBOL(netdev_set_tc_queue);
3086
netdev_set_num_tc(struct net_device * dev,u8 num_tc)3087 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3088 {
3089 if (num_tc > TC_MAX_QUEUE)
3090 return -EINVAL;
3091
3092 #ifdef CONFIG_XPS
3093 netif_reset_xps_queues_gt(dev, 0);
3094 #endif
3095 netdev_unbind_all_sb_channels(dev);
3096
3097 dev->num_tc = num_tc;
3098 return 0;
3099 }
3100 EXPORT_SYMBOL(netdev_set_num_tc);
3101
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)3102 void netdev_unbind_sb_channel(struct net_device *dev,
3103 struct net_device *sb_dev)
3104 {
3105 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3106
3107 #ifdef CONFIG_XPS
3108 netif_reset_xps_queues_gt(sb_dev, 0);
3109 #endif
3110 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3111 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3112
3113 while (txq-- != &dev->_tx[0]) {
3114 if (txq->sb_dev == sb_dev)
3115 txq->sb_dev = NULL;
3116 }
3117 }
3118 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3119
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)3120 int netdev_bind_sb_channel_queue(struct net_device *dev,
3121 struct net_device *sb_dev,
3122 u8 tc, u16 count, u16 offset)
3123 {
3124 /* Make certain the sb_dev and dev are already configured */
3125 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3126 return -EINVAL;
3127
3128 /* We cannot hand out queues we don't have */
3129 if ((offset + count) > dev->real_num_tx_queues)
3130 return -EINVAL;
3131
3132 /* Record the mapping */
3133 sb_dev->tc_to_txq[tc].count = count;
3134 sb_dev->tc_to_txq[tc].offset = offset;
3135
3136 /* Provide a way for Tx queue to find the tc_to_txq map or
3137 * XPS map for itself.
3138 */
3139 while (count--)
3140 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3141
3142 return 0;
3143 }
3144 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3145
netdev_set_sb_channel(struct net_device * dev,u16 channel)3146 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3147 {
3148 /* Do not use a multiqueue device to represent a subordinate channel */
3149 if (netif_is_multiqueue(dev))
3150 return -ENODEV;
3151
3152 /* We allow channels 1 - 32767 to be used for subordinate channels.
3153 * Channel 0 is meant to be "native" mode and used only to represent
3154 * the main root device. We allow writing 0 to reset the device back
3155 * to normal mode after being used as a subordinate channel.
3156 */
3157 if (channel > S16_MAX)
3158 return -EINVAL;
3159
3160 dev->num_tc = -channel;
3161
3162 return 0;
3163 }
3164 EXPORT_SYMBOL(netdev_set_sb_channel);
3165
3166 /*
3167 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3168 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3169 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3170 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3171 {
3172 bool disabling;
3173 int rc;
3174
3175 disabling = txq < dev->real_num_tx_queues;
3176
3177 if (txq < 1 || txq > dev->num_tx_queues)
3178 return -EINVAL;
3179
3180 if (dev->reg_state == NETREG_REGISTERED ||
3181 dev->reg_state == NETREG_UNREGISTERING) {
3182 ASSERT_RTNL();
3183 netdev_ops_assert_locked(dev);
3184
3185 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3186 txq);
3187 if (rc)
3188 return rc;
3189
3190 if (dev->num_tc)
3191 netif_setup_tc(dev, txq);
3192
3193 net_shaper_set_real_num_tx_queues(dev, txq);
3194
3195 dev_qdisc_change_real_num_tx(dev, txq);
3196
3197 dev->real_num_tx_queues = txq;
3198
3199 if (disabling) {
3200 synchronize_net();
3201 qdisc_reset_all_tx_gt(dev, txq);
3202 #ifdef CONFIG_XPS
3203 netif_reset_xps_queues_gt(dev, txq);
3204 #endif
3205 }
3206 } else {
3207 dev->real_num_tx_queues = txq;
3208 }
3209
3210 return 0;
3211 }
3212 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3213
3214 /**
3215 * netif_set_real_num_rx_queues - set actual number of RX queues used
3216 * @dev: Network device
3217 * @rxq: Actual number of RX queues
3218 *
3219 * This must be called either with the rtnl_lock held or before
3220 * registration of the net device. Returns 0 on success, or a
3221 * negative error code. If called before registration, it always
3222 * succeeds.
3223 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3225 {
3226 int rc;
3227
3228 if (rxq < 1 || rxq > dev->num_rx_queues)
3229 return -EINVAL;
3230
3231 if (dev->reg_state == NETREG_REGISTERED) {
3232 ASSERT_RTNL();
3233 netdev_ops_assert_locked(dev);
3234
3235 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3236 rxq);
3237 if (rc)
3238 return rc;
3239 }
3240
3241 dev->real_num_rx_queues = rxq;
3242 return 0;
3243 }
3244 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3245
3246 /**
3247 * netif_set_real_num_queues - set actual number of RX and TX queues used
3248 * @dev: Network device
3249 * @txq: Actual number of TX queues
3250 * @rxq: Actual number of RX queues
3251 *
3252 * Set the real number of both TX and RX queues.
3253 * Does nothing if the number of queues is already correct.
3254 */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3255 int netif_set_real_num_queues(struct net_device *dev,
3256 unsigned int txq, unsigned int rxq)
3257 {
3258 unsigned int old_rxq = dev->real_num_rx_queues;
3259 int err;
3260
3261 if (txq < 1 || txq > dev->num_tx_queues ||
3262 rxq < 1 || rxq > dev->num_rx_queues)
3263 return -EINVAL;
3264
3265 /* Start from increases, so the error path only does decreases -
3266 * decreases can't fail.
3267 */
3268 if (rxq > dev->real_num_rx_queues) {
3269 err = netif_set_real_num_rx_queues(dev, rxq);
3270 if (err)
3271 return err;
3272 }
3273 if (txq > dev->real_num_tx_queues) {
3274 err = netif_set_real_num_tx_queues(dev, txq);
3275 if (err)
3276 goto undo_rx;
3277 }
3278 if (rxq < dev->real_num_rx_queues)
3279 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3280 if (txq < dev->real_num_tx_queues)
3281 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3282
3283 return 0;
3284 undo_rx:
3285 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3286 return err;
3287 }
3288 EXPORT_SYMBOL(netif_set_real_num_queues);
3289
3290 /**
3291 * netif_set_tso_max_size() - set the max size of TSO frames supported
3292 * @dev: netdev to update
3293 * @size: max skb->len of a TSO frame
3294 *
3295 * Set the limit on the size of TSO super-frames the device can handle.
3296 * Unless explicitly set the stack will assume the value of
3297 * %GSO_LEGACY_MAX_SIZE.
3298 */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3299 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3300 {
3301 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3302 if (size < READ_ONCE(dev->gso_max_size))
3303 netif_set_gso_max_size(dev, size);
3304 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3305 netif_set_gso_ipv4_max_size(dev, size);
3306 }
3307 EXPORT_SYMBOL(netif_set_tso_max_size);
3308
3309 /**
3310 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3311 * @dev: netdev to update
3312 * @segs: max number of TCP segments
3313 *
3314 * Set the limit on the number of TCP segments the device can generate from
3315 * a single TSO super-frame.
3316 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3317 */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3318 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3319 {
3320 dev->tso_max_segs = segs;
3321 if (segs < READ_ONCE(dev->gso_max_segs))
3322 netif_set_gso_max_segs(dev, segs);
3323 }
3324 EXPORT_SYMBOL(netif_set_tso_max_segs);
3325
3326 /**
3327 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3328 * @to: netdev to update
3329 * @from: netdev from which to copy the limits
3330 */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3331 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3332 {
3333 netif_set_tso_max_size(to, from->tso_max_size);
3334 netif_set_tso_max_segs(to, from->tso_max_segs);
3335 }
3336 EXPORT_SYMBOL(netif_inherit_tso_max);
3337
3338 /**
3339 * netif_get_num_default_rss_queues - default number of RSS queues
3340 *
3341 * Default value is the number of physical cores if there are only 1 or 2, or
3342 * divided by 2 if there are more.
3343 */
netif_get_num_default_rss_queues(void)3344 int netif_get_num_default_rss_queues(void)
3345 {
3346 cpumask_var_t cpus;
3347 int cpu, count = 0;
3348
3349 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3350 return 1;
3351
3352 cpumask_copy(cpus, cpu_online_mask);
3353 for_each_cpu(cpu, cpus) {
3354 ++count;
3355 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3356 }
3357 free_cpumask_var(cpus);
3358
3359 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3360 }
3361 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3362
__netif_reschedule(struct Qdisc * q)3363 static void __netif_reschedule(struct Qdisc *q)
3364 {
3365 struct softnet_data *sd;
3366 unsigned long flags;
3367
3368 local_irq_save(flags);
3369 sd = this_cpu_ptr(&softnet_data);
3370 q->next_sched = NULL;
3371 *sd->output_queue_tailp = q;
3372 sd->output_queue_tailp = &q->next_sched;
3373 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3374 local_irq_restore(flags);
3375 }
3376
__netif_schedule(struct Qdisc * q)3377 void __netif_schedule(struct Qdisc *q)
3378 {
3379 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3380 __netif_reschedule(q);
3381 }
3382 EXPORT_SYMBOL(__netif_schedule);
3383
3384 struct dev_kfree_skb_cb {
3385 enum skb_drop_reason reason;
3386 };
3387
get_kfree_skb_cb(const struct sk_buff * skb)3388 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3389 {
3390 return (struct dev_kfree_skb_cb *)skb->cb;
3391 }
3392
netif_schedule_queue(struct netdev_queue * txq)3393 void netif_schedule_queue(struct netdev_queue *txq)
3394 {
3395 rcu_read_lock();
3396 if (!netif_xmit_stopped(txq)) {
3397 struct Qdisc *q = rcu_dereference(txq->qdisc);
3398
3399 __netif_schedule(q);
3400 }
3401 rcu_read_unlock();
3402 }
3403 EXPORT_SYMBOL(netif_schedule_queue);
3404
netif_tx_wake_queue(struct netdev_queue * dev_queue)3405 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3406 {
3407 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3408 struct Qdisc *q;
3409
3410 rcu_read_lock();
3411 q = rcu_dereference(dev_queue->qdisc);
3412 __netif_schedule(q);
3413 rcu_read_unlock();
3414 }
3415 }
3416 EXPORT_SYMBOL(netif_tx_wake_queue);
3417
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3418 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3419 {
3420 unsigned long flags;
3421
3422 if (unlikely(!skb))
3423 return;
3424
3425 if (likely(refcount_read(&skb->users) == 1)) {
3426 smp_rmb();
3427 refcount_set(&skb->users, 0);
3428 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3429 return;
3430 }
3431 get_kfree_skb_cb(skb)->reason = reason;
3432 local_irq_save(flags);
3433 skb->next = __this_cpu_read(softnet_data.completion_queue);
3434 __this_cpu_write(softnet_data.completion_queue, skb);
3435 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3436 local_irq_restore(flags);
3437 }
3438 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3439
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3440 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3441 {
3442 if (in_hardirq() || irqs_disabled())
3443 dev_kfree_skb_irq_reason(skb, reason);
3444 else
3445 kfree_skb_reason(skb, reason);
3446 }
3447 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3448
3449
3450 /**
3451 * netif_device_detach - mark device as removed
3452 * @dev: network device
3453 *
3454 * Mark device as removed from system and therefore no longer available.
3455 */
netif_device_detach(struct net_device * dev)3456 void netif_device_detach(struct net_device *dev)
3457 {
3458 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3459 netif_running(dev)) {
3460 netif_tx_stop_all_queues(dev);
3461 }
3462 }
3463 EXPORT_SYMBOL(netif_device_detach);
3464
3465 /**
3466 * netif_device_attach - mark device as attached
3467 * @dev: network device
3468 *
3469 * Mark device as attached from system and restart if needed.
3470 */
netif_device_attach(struct net_device * dev)3471 void netif_device_attach(struct net_device *dev)
3472 {
3473 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3474 netif_running(dev)) {
3475 netif_tx_wake_all_queues(dev);
3476 netdev_watchdog_up(dev);
3477 }
3478 }
3479 EXPORT_SYMBOL(netif_device_attach);
3480
3481 /*
3482 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3483 * to be used as a distribution range.
3484 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3485 static u16 skb_tx_hash(const struct net_device *dev,
3486 const struct net_device *sb_dev,
3487 struct sk_buff *skb)
3488 {
3489 u32 hash;
3490 u16 qoffset = 0;
3491 u16 qcount = dev->real_num_tx_queues;
3492
3493 if (dev->num_tc) {
3494 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3495
3496 qoffset = sb_dev->tc_to_txq[tc].offset;
3497 qcount = sb_dev->tc_to_txq[tc].count;
3498 if (unlikely(!qcount)) {
3499 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3500 sb_dev->name, qoffset, tc);
3501 qoffset = 0;
3502 qcount = dev->real_num_tx_queues;
3503 }
3504 }
3505
3506 if (skb_rx_queue_recorded(skb)) {
3507 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3508 hash = skb_get_rx_queue(skb);
3509 if (hash >= qoffset)
3510 hash -= qoffset;
3511 while (unlikely(hash >= qcount))
3512 hash -= qcount;
3513 return hash + qoffset;
3514 }
3515
3516 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3517 }
3518
skb_warn_bad_offload(const struct sk_buff * skb)3519 void skb_warn_bad_offload(const struct sk_buff *skb)
3520 {
3521 static const netdev_features_t null_features;
3522 struct net_device *dev = skb->dev;
3523 const char *name = "";
3524
3525 if (!net_ratelimit())
3526 return;
3527
3528 if (dev) {
3529 if (dev->dev.parent)
3530 name = dev_driver_string(dev->dev.parent);
3531 else
3532 name = netdev_name(dev);
3533 }
3534 skb_dump(KERN_WARNING, skb, false);
3535 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3536 name, dev ? &dev->features : &null_features,
3537 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3538 }
3539
3540 /*
3541 * Invalidate hardware checksum when packet is to be mangled, and
3542 * complete checksum manually on outgoing path.
3543 */
skb_checksum_help(struct sk_buff * skb)3544 int skb_checksum_help(struct sk_buff *skb)
3545 {
3546 __wsum csum;
3547 int ret = 0, offset;
3548
3549 if (skb->ip_summed == CHECKSUM_COMPLETE)
3550 goto out_set_summed;
3551
3552 if (unlikely(skb_is_gso(skb))) {
3553 skb_warn_bad_offload(skb);
3554 return -EINVAL;
3555 }
3556
3557 if (!skb_frags_readable(skb)) {
3558 return -EFAULT;
3559 }
3560
3561 /* Before computing a checksum, we should make sure no frag could
3562 * be modified by an external entity : checksum could be wrong.
3563 */
3564 if (skb_has_shared_frag(skb)) {
3565 ret = __skb_linearize(skb);
3566 if (ret)
3567 goto out;
3568 }
3569
3570 offset = skb_checksum_start_offset(skb);
3571 ret = -EINVAL;
3572 if (unlikely(offset >= skb_headlen(skb))) {
3573 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3574 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3575 offset, skb_headlen(skb));
3576 goto out;
3577 }
3578 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3579
3580 offset += skb->csum_offset;
3581 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3582 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3583 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3584 offset + sizeof(__sum16), skb_headlen(skb));
3585 goto out;
3586 }
3587 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3588 if (ret)
3589 goto out;
3590
3591 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3592 out_set_summed:
3593 skb->ip_summed = CHECKSUM_NONE;
3594 out:
3595 return ret;
3596 }
3597 EXPORT_SYMBOL(skb_checksum_help);
3598
3599 #ifdef CONFIG_NET_CRC32C
skb_crc32c_csum_help(struct sk_buff * skb)3600 int skb_crc32c_csum_help(struct sk_buff *skb)
3601 {
3602 u32 crc;
3603 int ret = 0, offset, start;
3604
3605 if (skb->ip_summed != CHECKSUM_PARTIAL)
3606 goto out;
3607
3608 if (unlikely(skb_is_gso(skb)))
3609 goto out;
3610
3611 /* Before computing a checksum, we should make sure no frag could
3612 * be modified by an external entity : checksum could be wrong.
3613 */
3614 if (unlikely(skb_has_shared_frag(skb))) {
3615 ret = __skb_linearize(skb);
3616 if (ret)
3617 goto out;
3618 }
3619 start = skb_checksum_start_offset(skb);
3620 offset = start + offsetof(struct sctphdr, checksum);
3621 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3622 ret = -EINVAL;
3623 goto out;
3624 }
3625
3626 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3627 if (ret)
3628 goto out;
3629
3630 crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3631 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3632 skb_reset_csum_not_inet(skb);
3633 out:
3634 return ret;
3635 }
3636 EXPORT_SYMBOL(skb_crc32c_csum_help);
3637 #endif /* CONFIG_NET_CRC32C */
3638
skb_network_protocol(struct sk_buff * skb,int * depth)3639 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3640 {
3641 __be16 type = skb->protocol;
3642
3643 /* Tunnel gso handlers can set protocol to ethernet. */
3644 if (type == htons(ETH_P_TEB)) {
3645 struct ethhdr *eth;
3646
3647 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3648 return 0;
3649
3650 eth = (struct ethhdr *)skb->data;
3651 type = eth->h_proto;
3652 }
3653
3654 return vlan_get_protocol_and_depth(skb, type, depth);
3655 }
3656
3657
3658 /* Take action when hardware reception checksum errors are detected. */
3659 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3660 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3661 {
3662 netdev_err(dev, "hw csum failure\n");
3663 skb_dump(KERN_ERR, skb, true);
3664 dump_stack();
3665 }
3666
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3667 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3668 {
3669 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3670 }
3671 EXPORT_SYMBOL(netdev_rx_csum_fault);
3672 #endif
3673
3674 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3675 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3676 {
3677 #ifdef CONFIG_HIGHMEM
3678 int i;
3679
3680 if (!(dev->features & NETIF_F_HIGHDMA)) {
3681 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3682 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3683 struct page *page = skb_frag_page(frag);
3684
3685 if (page && PageHighMem(page))
3686 return 1;
3687 }
3688 }
3689 #endif
3690 return 0;
3691 }
3692
3693 /* If MPLS offload request, verify we are testing hardware MPLS features
3694 * instead of standard features for the netdev.
3695 */
3696 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3697 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3698 netdev_features_t features,
3699 __be16 type)
3700 {
3701 if (eth_p_mpls(type))
3702 features &= skb->dev->mpls_features;
3703
3704 return features;
3705 }
3706 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3707 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3708 netdev_features_t features,
3709 __be16 type)
3710 {
3711 return features;
3712 }
3713 #endif
3714
harmonize_features(struct sk_buff * skb,netdev_features_t features)3715 static netdev_features_t harmonize_features(struct sk_buff *skb,
3716 netdev_features_t features)
3717 {
3718 __be16 type;
3719
3720 type = skb_network_protocol(skb, NULL);
3721 features = net_mpls_features(skb, features, type);
3722
3723 if (skb->ip_summed != CHECKSUM_NONE &&
3724 !can_checksum_protocol(features, type)) {
3725 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3726 }
3727 if (illegal_highdma(skb->dev, skb))
3728 features &= ~NETIF_F_SG;
3729
3730 return features;
3731 }
3732
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3733 netdev_features_t passthru_features_check(struct sk_buff *skb,
3734 struct net_device *dev,
3735 netdev_features_t features)
3736 {
3737 return features;
3738 }
3739 EXPORT_SYMBOL(passthru_features_check);
3740
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3741 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3742 struct net_device *dev,
3743 netdev_features_t features)
3744 {
3745 return vlan_features_check(skb, features);
3746 }
3747
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3748 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3749 struct net_device *dev,
3750 netdev_features_t features)
3751 {
3752 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3753
3754 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3755 return features & ~NETIF_F_GSO_MASK;
3756
3757 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3758 return features & ~NETIF_F_GSO_MASK;
3759
3760 if (!skb_shinfo(skb)->gso_type) {
3761 skb_warn_bad_offload(skb);
3762 return features & ~NETIF_F_GSO_MASK;
3763 }
3764
3765 /* Support for GSO partial features requires software
3766 * intervention before we can actually process the packets
3767 * so we need to strip support for any partial features now
3768 * and we can pull them back in after we have partially
3769 * segmented the frame.
3770 */
3771 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3772 features &= ~dev->gso_partial_features;
3773
3774 /* Make sure to clear the IPv4 ID mangling feature if the
3775 * IPv4 header has the potential to be fragmented.
3776 */
3777 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3778 struct iphdr *iph = skb->encapsulation ?
3779 inner_ip_hdr(skb) : ip_hdr(skb);
3780
3781 if (!(iph->frag_off & htons(IP_DF)))
3782 features &= ~NETIF_F_TSO_MANGLEID;
3783 }
3784
3785 return features;
3786 }
3787
netif_skb_features(struct sk_buff * skb)3788 netdev_features_t netif_skb_features(struct sk_buff *skb)
3789 {
3790 struct net_device *dev = skb->dev;
3791 netdev_features_t features = dev->features;
3792
3793 if (skb_is_gso(skb))
3794 features = gso_features_check(skb, dev, features);
3795
3796 /* If encapsulation offload request, verify we are testing
3797 * hardware encapsulation features instead of standard
3798 * features for the netdev
3799 */
3800 if (skb->encapsulation)
3801 features &= dev->hw_enc_features;
3802
3803 if (skb_vlan_tagged(skb))
3804 features = netdev_intersect_features(features,
3805 dev->vlan_features |
3806 NETIF_F_HW_VLAN_CTAG_TX |
3807 NETIF_F_HW_VLAN_STAG_TX);
3808
3809 if (dev->netdev_ops->ndo_features_check)
3810 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3811 features);
3812 else
3813 features &= dflt_features_check(skb, dev, features);
3814
3815 return harmonize_features(skb, features);
3816 }
3817 EXPORT_SYMBOL(netif_skb_features);
3818
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3819 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3820 struct netdev_queue *txq, bool more)
3821 {
3822 unsigned int len;
3823 int rc;
3824
3825 if (dev_nit_active_rcu(dev))
3826 dev_queue_xmit_nit(skb, dev);
3827
3828 len = skb->len;
3829 trace_net_dev_start_xmit(skb, dev);
3830 rc = netdev_start_xmit(skb, dev, txq, more);
3831 trace_net_dev_xmit(skb, rc, dev, len);
3832
3833 return rc;
3834 }
3835
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3836 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3837 struct netdev_queue *txq, int *ret)
3838 {
3839 struct sk_buff *skb = first;
3840 int rc = NETDEV_TX_OK;
3841
3842 while (skb) {
3843 struct sk_buff *next = skb->next;
3844
3845 skb_mark_not_on_list(skb);
3846 rc = xmit_one(skb, dev, txq, next != NULL);
3847 if (unlikely(!dev_xmit_complete(rc))) {
3848 skb->next = next;
3849 goto out;
3850 }
3851
3852 skb = next;
3853 if (netif_tx_queue_stopped(txq) && skb) {
3854 rc = NETDEV_TX_BUSY;
3855 break;
3856 }
3857 }
3858
3859 out:
3860 *ret = rc;
3861 return skb;
3862 }
3863
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3864 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3865 netdev_features_t features)
3866 {
3867 if (skb_vlan_tag_present(skb) &&
3868 !vlan_hw_offload_capable(features, skb->vlan_proto))
3869 skb = __vlan_hwaccel_push_inside(skb);
3870 return skb;
3871 }
3872
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3873 int skb_csum_hwoffload_help(struct sk_buff *skb,
3874 const netdev_features_t features)
3875 {
3876 if (unlikely(skb_csum_is_sctp(skb)))
3877 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3878 skb_crc32c_csum_help(skb);
3879
3880 if (features & NETIF_F_HW_CSUM)
3881 return 0;
3882
3883 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3884 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3885 skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3886 !ipv6_has_hopopt_jumbo(skb))
3887 goto sw_checksum;
3888
3889 switch (skb->csum_offset) {
3890 case offsetof(struct tcphdr, check):
3891 case offsetof(struct udphdr, check):
3892 return 0;
3893 }
3894 }
3895
3896 sw_checksum:
3897 return skb_checksum_help(skb);
3898 }
3899 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3900
validate_xmit_unreadable_skb(struct sk_buff * skb,struct net_device * dev)3901 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3902 struct net_device *dev)
3903 {
3904 struct skb_shared_info *shinfo;
3905 struct net_iov *niov;
3906
3907 if (likely(skb_frags_readable(skb)))
3908 goto out;
3909
3910 if (!dev->netmem_tx)
3911 goto out_free;
3912
3913 shinfo = skb_shinfo(skb);
3914
3915 if (shinfo->nr_frags > 0) {
3916 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3917 if (net_is_devmem_iov(niov) &&
3918 net_devmem_iov_binding(niov)->dev != dev)
3919 goto out_free;
3920 }
3921
3922 out:
3923 return skb;
3924
3925 out_free:
3926 kfree_skb(skb);
3927 return NULL;
3928 }
3929
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3930 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3931 {
3932 netdev_features_t features;
3933
3934 skb = validate_xmit_unreadable_skb(skb, dev);
3935 if (unlikely(!skb))
3936 goto out_null;
3937
3938 features = netif_skb_features(skb);
3939 skb = validate_xmit_vlan(skb, features);
3940 if (unlikely(!skb))
3941 goto out_null;
3942
3943 skb = sk_validate_xmit_skb(skb, dev);
3944 if (unlikely(!skb))
3945 goto out_null;
3946
3947 if (netif_needs_gso(skb, features)) {
3948 struct sk_buff *segs;
3949
3950 segs = skb_gso_segment(skb, features);
3951 if (IS_ERR(segs)) {
3952 goto out_kfree_skb;
3953 } else if (segs) {
3954 consume_skb(skb);
3955 skb = segs;
3956 }
3957 } else {
3958 if (skb_needs_linearize(skb, features) &&
3959 __skb_linearize(skb))
3960 goto out_kfree_skb;
3961
3962 /* If packet is not checksummed and device does not
3963 * support checksumming for this protocol, complete
3964 * checksumming here.
3965 */
3966 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3967 if (skb->encapsulation)
3968 skb_set_inner_transport_header(skb,
3969 skb_checksum_start_offset(skb));
3970 else
3971 skb_set_transport_header(skb,
3972 skb_checksum_start_offset(skb));
3973 if (skb_csum_hwoffload_help(skb, features))
3974 goto out_kfree_skb;
3975 }
3976 }
3977
3978 skb = validate_xmit_xfrm(skb, features, again);
3979
3980 return skb;
3981
3982 out_kfree_skb:
3983 kfree_skb(skb);
3984 out_null:
3985 dev_core_stats_tx_dropped_inc(dev);
3986 return NULL;
3987 }
3988
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3989 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3990 {
3991 struct sk_buff *next, *head = NULL, *tail;
3992
3993 for (; skb != NULL; skb = next) {
3994 next = skb->next;
3995 skb_mark_not_on_list(skb);
3996
3997 /* in case skb won't be segmented, point to itself */
3998 skb->prev = skb;
3999
4000 skb = validate_xmit_skb(skb, dev, again);
4001 if (!skb)
4002 continue;
4003
4004 if (!head)
4005 head = skb;
4006 else
4007 tail->next = skb;
4008 /* If skb was segmented, skb->prev points to
4009 * the last segment. If not, it still contains skb.
4010 */
4011 tail = skb->prev;
4012 }
4013 return head;
4014 }
4015 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4016
qdisc_pkt_len_init(struct sk_buff * skb)4017 static void qdisc_pkt_len_init(struct sk_buff *skb)
4018 {
4019 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4020
4021 qdisc_skb_cb(skb)->pkt_len = skb->len;
4022
4023 /* To get more precise estimation of bytes sent on wire,
4024 * we add to pkt_len the headers size of all segments
4025 */
4026 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
4027 u16 gso_segs = shinfo->gso_segs;
4028 unsigned int hdr_len;
4029
4030 /* mac layer + network layer */
4031 hdr_len = skb_transport_offset(skb);
4032
4033 /* + transport layer */
4034 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4035 const struct tcphdr *th;
4036 struct tcphdr _tcphdr;
4037
4038 th = skb_header_pointer(skb, hdr_len,
4039 sizeof(_tcphdr), &_tcphdr);
4040 if (likely(th))
4041 hdr_len += __tcp_hdrlen(th);
4042 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4043 struct udphdr _udphdr;
4044
4045 if (skb_header_pointer(skb, hdr_len,
4046 sizeof(_udphdr), &_udphdr))
4047 hdr_len += sizeof(struct udphdr);
4048 }
4049
4050 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4051 int payload = skb->len - hdr_len;
4052
4053 /* Malicious packet. */
4054 if (payload <= 0)
4055 return;
4056 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4057 }
4058 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4059 }
4060 }
4061
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)4062 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4063 struct sk_buff **to_free,
4064 struct netdev_queue *txq)
4065 {
4066 int rc;
4067
4068 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4069 if (rc == NET_XMIT_SUCCESS)
4070 trace_qdisc_enqueue(q, txq, skb);
4071 return rc;
4072 }
4073
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)4074 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4075 struct net_device *dev,
4076 struct netdev_queue *txq)
4077 {
4078 spinlock_t *root_lock = qdisc_lock(q);
4079 struct sk_buff *to_free = NULL;
4080 bool contended;
4081 int rc;
4082
4083 qdisc_calculate_pkt_len(skb, q);
4084
4085 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4086
4087 if (q->flags & TCQ_F_NOLOCK) {
4088 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4089 qdisc_run_begin(q)) {
4090 /* Retest nolock_qdisc_is_empty() within the protection
4091 * of q->seqlock to protect from racing with requeuing.
4092 */
4093 if (unlikely(!nolock_qdisc_is_empty(q))) {
4094 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4095 __qdisc_run(q);
4096 qdisc_run_end(q);
4097
4098 goto no_lock_out;
4099 }
4100
4101 qdisc_bstats_cpu_update(q, skb);
4102 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4103 !nolock_qdisc_is_empty(q))
4104 __qdisc_run(q);
4105
4106 qdisc_run_end(q);
4107 return NET_XMIT_SUCCESS;
4108 }
4109
4110 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4111 qdisc_run(q);
4112
4113 no_lock_out:
4114 if (unlikely(to_free))
4115 kfree_skb_list_reason(to_free,
4116 tcf_get_drop_reason(to_free));
4117 return rc;
4118 }
4119
4120 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4121 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4122 return NET_XMIT_DROP;
4123 }
4124 /*
4125 * Heuristic to force contended enqueues to serialize on a
4126 * separate lock before trying to get qdisc main lock.
4127 * This permits qdisc->running owner to get the lock more
4128 * often and dequeue packets faster.
4129 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4130 * and then other tasks will only enqueue packets. The packets will be
4131 * sent after the qdisc owner is scheduled again. To prevent this
4132 * scenario the task always serialize on the lock.
4133 */
4134 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4135 if (unlikely(contended))
4136 spin_lock(&q->busylock);
4137
4138 spin_lock(root_lock);
4139 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4140 __qdisc_drop(skb, &to_free);
4141 rc = NET_XMIT_DROP;
4142 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4143 qdisc_run_begin(q)) {
4144 /*
4145 * This is a work-conserving queue; there are no old skbs
4146 * waiting to be sent out; and the qdisc is not running -
4147 * xmit the skb directly.
4148 */
4149
4150 qdisc_bstats_update(q, skb);
4151
4152 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4153 if (unlikely(contended)) {
4154 spin_unlock(&q->busylock);
4155 contended = false;
4156 }
4157 __qdisc_run(q);
4158 }
4159
4160 qdisc_run_end(q);
4161 rc = NET_XMIT_SUCCESS;
4162 } else {
4163 WRITE_ONCE(q->owner, smp_processor_id());
4164 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4165 WRITE_ONCE(q->owner, -1);
4166 if (qdisc_run_begin(q)) {
4167 if (unlikely(contended)) {
4168 spin_unlock(&q->busylock);
4169 contended = false;
4170 }
4171 __qdisc_run(q);
4172 qdisc_run_end(q);
4173 }
4174 }
4175 spin_unlock(root_lock);
4176 if (unlikely(to_free))
4177 kfree_skb_list_reason(to_free,
4178 tcf_get_drop_reason(to_free));
4179 if (unlikely(contended))
4180 spin_unlock(&q->busylock);
4181 return rc;
4182 }
4183
4184 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)4185 static void skb_update_prio(struct sk_buff *skb)
4186 {
4187 const struct netprio_map *map;
4188 const struct sock *sk;
4189 unsigned int prioidx;
4190
4191 if (skb->priority)
4192 return;
4193 map = rcu_dereference_bh(skb->dev->priomap);
4194 if (!map)
4195 return;
4196 sk = skb_to_full_sk(skb);
4197 if (!sk)
4198 return;
4199
4200 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4201
4202 if (prioidx < map->priomap_len)
4203 skb->priority = map->priomap[prioidx];
4204 }
4205 #else
4206 #define skb_update_prio(skb)
4207 #endif
4208
4209 /**
4210 * dev_loopback_xmit - loop back @skb
4211 * @net: network namespace this loopback is happening in
4212 * @sk: sk needed to be a netfilter okfn
4213 * @skb: buffer to transmit
4214 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4215 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4216 {
4217 skb_reset_mac_header(skb);
4218 __skb_pull(skb, skb_network_offset(skb));
4219 skb->pkt_type = PACKET_LOOPBACK;
4220 if (skb->ip_summed == CHECKSUM_NONE)
4221 skb->ip_summed = CHECKSUM_UNNECESSARY;
4222 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4223 skb_dst_force(skb);
4224 netif_rx(skb);
4225 return 0;
4226 }
4227 EXPORT_SYMBOL(dev_loopback_xmit);
4228
4229 #ifdef CONFIG_NET_EGRESS
4230 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4231 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4232 {
4233 int qm = skb_get_queue_mapping(skb);
4234
4235 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4236 }
4237
4238 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4239 static bool netdev_xmit_txqueue_skipped(void)
4240 {
4241 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4242 }
4243
netdev_xmit_skip_txqueue(bool skip)4244 void netdev_xmit_skip_txqueue(bool skip)
4245 {
4246 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4247 }
4248 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4249
4250 #else
netdev_xmit_txqueue_skipped(void)4251 static bool netdev_xmit_txqueue_skipped(void)
4252 {
4253 return current->net_xmit.skip_txqueue;
4254 }
4255
netdev_xmit_skip_txqueue(bool skip)4256 void netdev_xmit_skip_txqueue(bool skip)
4257 {
4258 current->net_xmit.skip_txqueue = skip;
4259 }
4260 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4261 #endif
4262 #endif /* CONFIG_NET_EGRESS */
4263
4264 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4265 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4266 enum skb_drop_reason *drop_reason)
4267 {
4268 int ret = TC_ACT_UNSPEC;
4269 #ifdef CONFIG_NET_CLS_ACT
4270 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4271 struct tcf_result res;
4272
4273 if (!miniq)
4274 return ret;
4275
4276 /* Global bypass */
4277 if (!static_branch_likely(&tcf_sw_enabled_key))
4278 return ret;
4279
4280 /* Block-wise bypass */
4281 if (tcf_block_bypass_sw(miniq->block))
4282 return ret;
4283
4284 tc_skb_cb(skb)->mru = 0;
4285 tc_skb_cb(skb)->post_ct = false;
4286 tcf_set_drop_reason(skb, *drop_reason);
4287
4288 mini_qdisc_bstats_cpu_update(miniq, skb);
4289 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4290 /* Only tcf related quirks below. */
4291 switch (ret) {
4292 case TC_ACT_SHOT:
4293 *drop_reason = tcf_get_drop_reason(skb);
4294 mini_qdisc_qstats_cpu_drop(miniq);
4295 break;
4296 case TC_ACT_OK:
4297 case TC_ACT_RECLASSIFY:
4298 skb->tc_index = TC_H_MIN(res.classid);
4299 break;
4300 }
4301 #endif /* CONFIG_NET_CLS_ACT */
4302 return ret;
4303 }
4304
4305 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4306
tcx_inc(void)4307 void tcx_inc(void)
4308 {
4309 static_branch_inc(&tcx_needed_key);
4310 }
4311
tcx_dec(void)4312 void tcx_dec(void)
4313 {
4314 static_branch_dec(&tcx_needed_key);
4315 }
4316
4317 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4318 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4319 const bool needs_mac)
4320 {
4321 const struct bpf_mprog_fp *fp;
4322 const struct bpf_prog *prog;
4323 int ret = TCX_NEXT;
4324
4325 if (needs_mac)
4326 __skb_push(skb, skb->mac_len);
4327 bpf_mprog_foreach_prog(entry, fp, prog) {
4328 bpf_compute_data_pointers(skb);
4329 ret = bpf_prog_run(prog, skb);
4330 if (ret != TCX_NEXT)
4331 break;
4332 }
4333 if (needs_mac)
4334 __skb_pull(skb, skb->mac_len);
4335 return tcx_action_code(skb, ret);
4336 }
4337
4338 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4339 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4340 struct net_device *orig_dev, bool *another)
4341 {
4342 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4343 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4344 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4345 int sch_ret;
4346
4347 if (!entry)
4348 return skb;
4349
4350 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4351 if (*pt_prev) {
4352 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4353 *pt_prev = NULL;
4354 }
4355
4356 qdisc_skb_cb(skb)->pkt_len = skb->len;
4357 tcx_set_ingress(skb, true);
4358
4359 if (static_branch_unlikely(&tcx_needed_key)) {
4360 sch_ret = tcx_run(entry, skb, true);
4361 if (sch_ret != TC_ACT_UNSPEC)
4362 goto ingress_verdict;
4363 }
4364 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4365 ingress_verdict:
4366 switch (sch_ret) {
4367 case TC_ACT_REDIRECT:
4368 /* skb_mac_header check was done by BPF, so we can safely
4369 * push the L2 header back before redirecting to another
4370 * netdev.
4371 */
4372 __skb_push(skb, skb->mac_len);
4373 if (skb_do_redirect(skb) == -EAGAIN) {
4374 __skb_pull(skb, skb->mac_len);
4375 *another = true;
4376 break;
4377 }
4378 *ret = NET_RX_SUCCESS;
4379 bpf_net_ctx_clear(bpf_net_ctx);
4380 return NULL;
4381 case TC_ACT_SHOT:
4382 kfree_skb_reason(skb, drop_reason);
4383 *ret = NET_RX_DROP;
4384 bpf_net_ctx_clear(bpf_net_ctx);
4385 return NULL;
4386 /* used by tc_run */
4387 case TC_ACT_STOLEN:
4388 case TC_ACT_QUEUED:
4389 case TC_ACT_TRAP:
4390 consume_skb(skb);
4391 fallthrough;
4392 case TC_ACT_CONSUMED:
4393 *ret = NET_RX_SUCCESS;
4394 bpf_net_ctx_clear(bpf_net_ctx);
4395 return NULL;
4396 }
4397 bpf_net_ctx_clear(bpf_net_ctx);
4398
4399 return skb;
4400 }
4401
4402 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4403 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4404 {
4405 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4406 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4407 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4408 int sch_ret;
4409
4410 if (!entry)
4411 return skb;
4412
4413 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4414
4415 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4416 * already set by the caller.
4417 */
4418 if (static_branch_unlikely(&tcx_needed_key)) {
4419 sch_ret = tcx_run(entry, skb, false);
4420 if (sch_ret != TC_ACT_UNSPEC)
4421 goto egress_verdict;
4422 }
4423 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4424 egress_verdict:
4425 switch (sch_ret) {
4426 case TC_ACT_REDIRECT:
4427 /* No need to push/pop skb's mac_header here on egress! */
4428 skb_do_redirect(skb);
4429 *ret = NET_XMIT_SUCCESS;
4430 bpf_net_ctx_clear(bpf_net_ctx);
4431 return NULL;
4432 case TC_ACT_SHOT:
4433 kfree_skb_reason(skb, drop_reason);
4434 *ret = NET_XMIT_DROP;
4435 bpf_net_ctx_clear(bpf_net_ctx);
4436 return NULL;
4437 /* used by tc_run */
4438 case TC_ACT_STOLEN:
4439 case TC_ACT_QUEUED:
4440 case TC_ACT_TRAP:
4441 consume_skb(skb);
4442 fallthrough;
4443 case TC_ACT_CONSUMED:
4444 *ret = NET_XMIT_SUCCESS;
4445 bpf_net_ctx_clear(bpf_net_ctx);
4446 return NULL;
4447 }
4448 bpf_net_ctx_clear(bpf_net_ctx);
4449
4450 return skb;
4451 }
4452 #else
4453 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4454 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4455 struct net_device *orig_dev, bool *another)
4456 {
4457 return skb;
4458 }
4459
4460 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4461 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4462 {
4463 return skb;
4464 }
4465 #endif /* CONFIG_NET_XGRESS */
4466
4467 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4468 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4469 struct xps_dev_maps *dev_maps, unsigned int tci)
4470 {
4471 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4472 struct xps_map *map;
4473 int queue_index = -1;
4474
4475 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4476 return queue_index;
4477
4478 tci *= dev_maps->num_tc;
4479 tci += tc;
4480
4481 map = rcu_dereference(dev_maps->attr_map[tci]);
4482 if (map) {
4483 if (map->len == 1)
4484 queue_index = map->queues[0];
4485 else
4486 queue_index = map->queues[reciprocal_scale(
4487 skb_get_hash(skb), map->len)];
4488 if (unlikely(queue_index >= dev->real_num_tx_queues))
4489 queue_index = -1;
4490 }
4491 return queue_index;
4492 }
4493 #endif
4494
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4495 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4496 struct sk_buff *skb)
4497 {
4498 #ifdef CONFIG_XPS
4499 struct xps_dev_maps *dev_maps;
4500 struct sock *sk = skb->sk;
4501 int queue_index = -1;
4502
4503 if (!static_key_false(&xps_needed))
4504 return -1;
4505
4506 rcu_read_lock();
4507 if (!static_key_false(&xps_rxqs_needed))
4508 goto get_cpus_map;
4509
4510 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4511 if (dev_maps) {
4512 int tci = sk_rx_queue_get(sk);
4513
4514 if (tci >= 0)
4515 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4516 tci);
4517 }
4518
4519 get_cpus_map:
4520 if (queue_index < 0) {
4521 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4522 if (dev_maps) {
4523 unsigned int tci = skb->sender_cpu - 1;
4524
4525 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4526 tci);
4527 }
4528 }
4529 rcu_read_unlock();
4530
4531 return queue_index;
4532 #else
4533 return -1;
4534 #endif
4535 }
4536
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4537 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4538 struct net_device *sb_dev)
4539 {
4540 return 0;
4541 }
4542 EXPORT_SYMBOL(dev_pick_tx_zero);
4543
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4544 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4545 struct net_device *sb_dev)
4546 {
4547 struct sock *sk = skb->sk;
4548 int queue_index = sk_tx_queue_get(sk);
4549
4550 sb_dev = sb_dev ? : dev;
4551
4552 if (queue_index < 0 || skb->ooo_okay ||
4553 queue_index >= dev->real_num_tx_queues) {
4554 int new_index = get_xps_queue(dev, sb_dev, skb);
4555
4556 if (new_index < 0)
4557 new_index = skb_tx_hash(dev, sb_dev, skb);
4558
4559 if (queue_index != new_index && sk &&
4560 sk_fullsock(sk) &&
4561 rcu_access_pointer(sk->sk_dst_cache))
4562 sk_tx_queue_set(sk, new_index);
4563
4564 queue_index = new_index;
4565 }
4566
4567 return queue_index;
4568 }
4569 EXPORT_SYMBOL(netdev_pick_tx);
4570
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4571 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4572 struct sk_buff *skb,
4573 struct net_device *sb_dev)
4574 {
4575 int queue_index = 0;
4576
4577 #ifdef CONFIG_XPS
4578 u32 sender_cpu = skb->sender_cpu - 1;
4579
4580 if (sender_cpu >= (u32)NR_CPUS)
4581 skb->sender_cpu = raw_smp_processor_id() + 1;
4582 #endif
4583
4584 if (dev->real_num_tx_queues != 1) {
4585 const struct net_device_ops *ops = dev->netdev_ops;
4586
4587 if (ops->ndo_select_queue)
4588 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4589 else
4590 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4591
4592 queue_index = netdev_cap_txqueue(dev, queue_index);
4593 }
4594
4595 skb_set_queue_mapping(skb, queue_index);
4596 return netdev_get_tx_queue(dev, queue_index);
4597 }
4598
4599 /**
4600 * __dev_queue_xmit() - transmit a buffer
4601 * @skb: buffer to transmit
4602 * @sb_dev: suboordinate device used for L2 forwarding offload
4603 *
4604 * Queue a buffer for transmission to a network device. The caller must
4605 * have set the device and priority and built the buffer before calling
4606 * this function. The function can be called from an interrupt.
4607 *
4608 * When calling this method, interrupts MUST be enabled. This is because
4609 * the BH enable code must have IRQs enabled so that it will not deadlock.
4610 *
4611 * Regardless of the return value, the skb is consumed, so it is currently
4612 * difficult to retry a send to this method. (You can bump the ref count
4613 * before sending to hold a reference for retry if you are careful.)
4614 *
4615 * Return:
4616 * * 0 - buffer successfully transmitted
4617 * * positive qdisc return code - NET_XMIT_DROP etc.
4618 * * negative errno - other errors
4619 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4620 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4621 {
4622 struct net_device *dev = skb->dev;
4623 struct netdev_queue *txq = NULL;
4624 struct Qdisc *q;
4625 int rc = -ENOMEM;
4626 bool again = false;
4627
4628 skb_reset_mac_header(skb);
4629 skb_assert_len(skb);
4630
4631 if (unlikely(skb_shinfo(skb)->tx_flags &
4632 (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4633 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4634
4635 /* Disable soft irqs for various locks below. Also
4636 * stops preemption for RCU.
4637 */
4638 rcu_read_lock_bh();
4639
4640 skb_update_prio(skb);
4641
4642 qdisc_pkt_len_init(skb);
4643 tcx_set_ingress(skb, false);
4644 #ifdef CONFIG_NET_EGRESS
4645 if (static_branch_unlikely(&egress_needed_key)) {
4646 if (nf_hook_egress_active()) {
4647 skb = nf_hook_egress(skb, &rc, dev);
4648 if (!skb)
4649 goto out;
4650 }
4651
4652 netdev_xmit_skip_txqueue(false);
4653
4654 nf_skip_egress(skb, true);
4655 skb = sch_handle_egress(skb, &rc, dev);
4656 if (!skb)
4657 goto out;
4658 nf_skip_egress(skb, false);
4659
4660 if (netdev_xmit_txqueue_skipped())
4661 txq = netdev_tx_queue_mapping(dev, skb);
4662 }
4663 #endif
4664 /* If device/qdisc don't need skb->dst, release it right now while
4665 * its hot in this cpu cache.
4666 */
4667 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4668 skb_dst_drop(skb);
4669 else
4670 skb_dst_force(skb);
4671
4672 if (!txq)
4673 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4674
4675 q = rcu_dereference_bh(txq->qdisc);
4676
4677 trace_net_dev_queue(skb);
4678 if (q->enqueue) {
4679 rc = __dev_xmit_skb(skb, q, dev, txq);
4680 goto out;
4681 }
4682
4683 /* The device has no queue. Common case for software devices:
4684 * loopback, all the sorts of tunnels...
4685
4686 * Really, it is unlikely that netif_tx_lock protection is necessary
4687 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4688 * counters.)
4689 * However, it is possible, that they rely on protection
4690 * made by us here.
4691
4692 * Check this and shot the lock. It is not prone from deadlocks.
4693 *Either shot noqueue qdisc, it is even simpler 8)
4694 */
4695 if (dev->flags & IFF_UP) {
4696 int cpu = smp_processor_id(); /* ok because BHs are off */
4697
4698 /* Other cpus might concurrently change txq->xmit_lock_owner
4699 * to -1 or to their cpu id, but not to our id.
4700 */
4701 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4702 if (dev_xmit_recursion())
4703 goto recursion_alert;
4704
4705 skb = validate_xmit_skb(skb, dev, &again);
4706 if (!skb)
4707 goto out;
4708
4709 HARD_TX_LOCK(dev, txq, cpu);
4710
4711 if (!netif_xmit_stopped(txq)) {
4712 dev_xmit_recursion_inc();
4713 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4714 dev_xmit_recursion_dec();
4715 if (dev_xmit_complete(rc)) {
4716 HARD_TX_UNLOCK(dev, txq);
4717 goto out;
4718 }
4719 }
4720 HARD_TX_UNLOCK(dev, txq);
4721 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4722 dev->name);
4723 } else {
4724 /* Recursion is detected! It is possible,
4725 * unfortunately
4726 */
4727 recursion_alert:
4728 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4729 dev->name);
4730 }
4731 }
4732
4733 rc = -ENETDOWN;
4734 rcu_read_unlock_bh();
4735
4736 dev_core_stats_tx_dropped_inc(dev);
4737 kfree_skb_list(skb);
4738 return rc;
4739 out:
4740 rcu_read_unlock_bh();
4741 return rc;
4742 }
4743 EXPORT_SYMBOL(__dev_queue_xmit);
4744
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4745 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4746 {
4747 struct net_device *dev = skb->dev;
4748 struct sk_buff *orig_skb = skb;
4749 struct netdev_queue *txq;
4750 int ret = NETDEV_TX_BUSY;
4751 bool again = false;
4752
4753 if (unlikely(!netif_running(dev) ||
4754 !netif_carrier_ok(dev)))
4755 goto drop;
4756
4757 skb = validate_xmit_skb_list(skb, dev, &again);
4758 if (skb != orig_skb)
4759 goto drop;
4760
4761 skb_set_queue_mapping(skb, queue_id);
4762 txq = skb_get_tx_queue(dev, skb);
4763
4764 local_bh_disable();
4765
4766 dev_xmit_recursion_inc();
4767 HARD_TX_LOCK(dev, txq, smp_processor_id());
4768 if (!netif_xmit_frozen_or_drv_stopped(txq))
4769 ret = netdev_start_xmit(skb, dev, txq, false);
4770 HARD_TX_UNLOCK(dev, txq);
4771 dev_xmit_recursion_dec();
4772
4773 local_bh_enable();
4774 return ret;
4775 drop:
4776 dev_core_stats_tx_dropped_inc(dev);
4777 kfree_skb_list(skb);
4778 return NET_XMIT_DROP;
4779 }
4780 EXPORT_SYMBOL(__dev_direct_xmit);
4781
4782 /*************************************************************************
4783 * Receiver routines
4784 *************************************************************************/
4785 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4786
4787 int weight_p __read_mostly = 64; /* old backlog weight */
4788 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4789 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4790
4791 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4792 static inline void ____napi_schedule(struct softnet_data *sd,
4793 struct napi_struct *napi)
4794 {
4795 struct task_struct *thread;
4796
4797 lockdep_assert_irqs_disabled();
4798
4799 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4800 /* Paired with smp_mb__before_atomic() in
4801 * napi_enable()/dev_set_threaded().
4802 * Use READ_ONCE() to guarantee a complete
4803 * read on napi->thread. Only call
4804 * wake_up_process() when it's not NULL.
4805 */
4806 thread = READ_ONCE(napi->thread);
4807 if (thread) {
4808 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4809 goto use_local_napi;
4810
4811 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4812 wake_up_process(thread);
4813 return;
4814 }
4815 }
4816
4817 use_local_napi:
4818 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4819 list_add_tail(&napi->poll_list, &sd->poll_list);
4820 WRITE_ONCE(napi->list_owner, smp_processor_id());
4821 /* If not called from net_rx_action()
4822 * we have to raise NET_RX_SOFTIRQ.
4823 */
4824 if (!sd->in_net_rx_action)
4825 raise_softirq_irqoff(NET_RX_SOFTIRQ);
4826 }
4827
4828 #ifdef CONFIG_RPS
4829
4830 struct static_key_false rps_needed __read_mostly;
4831 EXPORT_SYMBOL(rps_needed);
4832 struct static_key_false rfs_needed __read_mostly;
4833 EXPORT_SYMBOL(rfs_needed);
4834
rfs_slot(u32 hash,const struct rps_dev_flow_table * flow_table)4835 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4836 {
4837 return hash_32(hash, flow_table->log);
4838 }
4839
4840 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4841 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4842 struct rps_dev_flow *rflow, u16 next_cpu)
4843 {
4844 if (next_cpu < nr_cpu_ids) {
4845 u32 head;
4846 #ifdef CONFIG_RFS_ACCEL
4847 struct netdev_rx_queue *rxqueue;
4848 struct rps_dev_flow_table *flow_table;
4849 struct rps_dev_flow *old_rflow;
4850 u16 rxq_index;
4851 u32 flow_id;
4852 int rc;
4853
4854 /* Should we steer this flow to a different hardware queue? */
4855 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4856 !(dev->features & NETIF_F_NTUPLE))
4857 goto out;
4858 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4859 if (rxq_index == skb_get_rx_queue(skb))
4860 goto out;
4861
4862 rxqueue = dev->_rx + rxq_index;
4863 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4864 if (!flow_table)
4865 goto out;
4866 flow_id = rfs_slot(skb_get_hash(skb), flow_table);
4867 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4868 rxq_index, flow_id);
4869 if (rc < 0)
4870 goto out;
4871 old_rflow = rflow;
4872 rflow = &flow_table->flows[flow_id];
4873 WRITE_ONCE(rflow->filter, rc);
4874 if (old_rflow->filter == rc)
4875 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4876 out:
4877 #endif
4878 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4879 rps_input_queue_tail_save(&rflow->last_qtail, head);
4880 }
4881
4882 WRITE_ONCE(rflow->cpu, next_cpu);
4883 return rflow;
4884 }
4885
4886 /*
4887 * get_rps_cpu is called from netif_receive_skb and returns the target
4888 * CPU from the RPS map of the receiving queue for a given skb.
4889 * rcu_read_lock must be held on entry.
4890 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4891 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4892 struct rps_dev_flow **rflowp)
4893 {
4894 const struct rps_sock_flow_table *sock_flow_table;
4895 struct netdev_rx_queue *rxqueue = dev->_rx;
4896 struct rps_dev_flow_table *flow_table;
4897 struct rps_map *map;
4898 int cpu = -1;
4899 u32 tcpu;
4900 u32 hash;
4901
4902 if (skb_rx_queue_recorded(skb)) {
4903 u16 index = skb_get_rx_queue(skb);
4904
4905 if (unlikely(index >= dev->real_num_rx_queues)) {
4906 WARN_ONCE(dev->real_num_rx_queues > 1,
4907 "%s received packet on queue %u, but number "
4908 "of RX queues is %u\n",
4909 dev->name, index, dev->real_num_rx_queues);
4910 goto done;
4911 }
4912 rxqueue += index;
4913 }
4914
4915 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4916
4917 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4918 map = rcu_dereference(rxqueue->rps_map);
4919 if (!flow_table && !map)
4920 goto done;
4921
4922 skb_reset_network_header(skb);
4923 hash = skb_get_hash(skb);
4924 if (!hash)
4925 goto done;
4926
4927 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4928 if (flow_table && sock_flow_table) {
4929 struct rps_dev_flow *rflow;
4930 u32 next_cpu;
4931 u32 ident;
4932
4933 /* First check into global flow table if there is a match.
4934 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4935 */
4936 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4937 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4938 goto try_rps;
4939
4940 next_cpu = ident & net_hotdata.rps_cpu_mask;
4941
4942 /* OK, now we know there is a match,
4943 * we can look at the local (per receive queue) flow table
4944 */
4945 rflow = &flow_table->flows[rfs_slot(hash, flow_table)];
4946 tcpu = rflow->cpu;
4947
4948 /*
4949 * If the desired CPU (where last recvmsg was done) is
4950 * different from current CPU (one in the rx-queue flow
4951 * table entry), switch if one of the following holds:
4952 * - Current CPU is unset (>= nr_cpu_ids).
4953 * - Current CPU is offline.
4954 * - The current CPU's queue tail has advanced beyond the
4955 * last packet that was enqueued using this table entry.
4956 * This guarantees that all previous packets for the flow
4957 * have been dequeued, thus preserving in order delivery.
4958 */
4959 if (unlikely(tcpu != next_cpu) &&
4960 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4961 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4962 rflow->last_qtail)) >= 0)) {
4963 tcpu = next_cpu;
4964 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4965 }
4966
4967 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4968 *rflowp = rflow;
4969 cpu = tcpu;
4970 goto done;
4971 }
4972 }
4973
4974 try_rps:
4975
4976 if (map) {
4977 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4978 if (cpu_online(tcpu)) {
4979 cpu = tcpu;
4980 goto done;
4981 }
4982 }
4983
4984 done:
4985 return cpu;
4986 }
4987
4988 #ifdef CONFIG_RFS_ACCEL
4989
4990 /**
4991 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4992 * @dev: Device on which the filter was set
4993 * @rxq_index: RX queue index
4994 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4995 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4996 *
4997 * Drivers that implement ndo_rx_flow_steer() should periodically call
4998 * this function for each installed filter and remove the filters for
4999 * which it returns %true.
5000 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)5001 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5002 u32 flow_id, u16 filter_id)
5003 {
5004 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5005 struct rps_dev_flow_table *flow_table;
5006 struct rps_dev_flow *rflow;
5007 bool expire = true;
5008 unsigned int cpu;
5009
5010 rcu_read_lock();
5011 flow_table = rcu_dereference(rxqueue->rps_flow_table);
5012 if (flow_table && flow_id < (1UL << flow_table->log)) {
5013 rflow = &flow_table->flows[flow_id];
5014 cpu = READ_ONCE(rflow->cpu);
5015 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
5016 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
5017 READ_ONCE(rflow->last_qtail)) <
5018 (int)(10 << flow_table->log)))
5019 expire = false;
5020 }
5021 rcu_read_unlock();
5022 return expire;
5023 }
5024 EXPORT_SYMBOL(rps_may_expire_flow);
5025
5026 #endif /* CONFIG_RFS_ACCEL */
5027
5028 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)5029 static void rps_trigger_softirq(void *data)
5030 {
5031 struct softnet_data *sd = data;
5032
5033 ____napi_schedule(sd, &sd->backlog);
5034 /* Pairs with READ_ONCE() in softnet_seq_show() */
5035 WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5036 }
5037
5038 #endif /* CONFIG_RPS */
5039
5040 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)5041 static void trigger_rx_softirq(void *data)
5042 {
5043 struct softnet_data *sd = data;
5044
5045 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5046 smp_store_release(&sd->defer_ipi_scheduled, 0);
5047 }
5048
5049 /*
5050 * After we queued a packet into sd->input_pkt_queue,
5051 * we need to make sure this queue is serviced soon.
5052 *
5053 * - If this is another cpu queue, link it to our rps_ipi_list,
5054 * and make sure we will process rps_ipi_list from net_rx_action().
5055 *
5056 * - If this is our own queue, NAPI schedule our backlog.
5057 * Note that this also raises NET_RX_SOFTIRQ.
5058 */
napi_schedule_rps(struct softnet_data * sd)5059 static void napi_schedule_rps(struct softnet_data *sd)
5060 {
5061 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5062
5063 #ifdef CONFIG_RPS
5064 if (sd != mysd) {
5065 if (use_backlog_threads()) {
5066 __napi_schedule_irqoff(&sd->backlog);
5067 return;
5068 }
5069
5070 sd->rps_ipi_next = mysd->rps_ipi_list;
5071 mysd->rps_ipi_list = sd;
5072
5073 /* If not called from net_rx_action() or napi_threaded_poll()
5074 * we have to raise NET_RX_SOFTIRQ.
5075 */
5076 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5077 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5078 return;
5079 }
5080 #endif /* CONFIG_RPS */
5081 __napi_schedule_irqoff(&mysd->backlog);
5082 }
5083
kick_defer_list_purge(struct softnet_data * sd,unsigned int cpu)5084 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5085 {
5086 unsigned long flags;
5087
5088 if (use_backlog_threads()) {
5089 backlog_lock_irq_save(sd, &flags);
5090
5091 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5092 __napi_schedule_irqoff(&sd->backlog);
5093
5094 backlog_unlock_irq_restore(sd, &flags);
5095
5096 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5097 smp_call_function_single_async(cpu, &sd->defer_csd);
5098 }
5099 }
5100
5101 #ifdef CONFIG_NET_FLOW_LIMIT
5102 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5103 #endif
5104
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)5105 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5106 {
5107 #ifdef CONFIG_NET_FLOW_LIMIT
5108 struct sd_flow_limit *fl;
5109 struct softnet_data *sd;
5110 unsigned int old_flow, new_flow;
5111
5112 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5113 return false;
5114
5115 sd = this_cpu_ptr(&softnet_data);
5116
5117 rcu_read_lock();
5118 fl = rcu_dereference(sd->flow_limit);
5119 if (fl) {
5120 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5121 old_flow = fl->history[fl->history_head];
5122 fl->history[fl->history_head] = new_flow;
5123
5124 fl->history_head++;
5125 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5126
5127 if (likely(fl->buckets[old_flow]))
5128 fl->buckets[old_flow]--;
5129
5130 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5131 /* Pairs with READ_ONCE() in softnet_seq_show() */
5132 WRITE_ONCE(fl->count, fl->count + 1);
5133 rcu_read_unlock();
5134 return true;
5135 }
5136 }
5137 rcu_read_unlock();
5138 #endif
5139 return false;
5140 }
5141
5142 /*
5143 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5144 * queue (may be a remote CPU queue).
5145 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)5146 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5147 unsigned int *qtail)
5148 {
5149 enum skb_drop_reason reason;
5150 struct softnet_data *sd;
5151 unsigned long flags;
5152 unsigned int qlen;
5153 int max_backlog;
5154 u32 tail;
5155
5156 reason = SKB_DROP_REASON_DEV_READY;
5157 if (!netif_running(skb->dev))
5158 goto bad_dev;
5159
5160 reason = SKB_DROP_REASON_CPU_BACKLOG;
5161 sd = &per_cpu(softnet_data, cpu);
5162
5163 qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5164 max_backlog = READ_ONCE(net_hotdata.max_backlog);
5165 if (unlikely(qlen > max_backlog))
5166 goto cpu_backlog_drop;
5167 backlog_lock_irq_save(sd, &flags);
5168 qlen = skb_queue_len(&sd->input_pkt_queue);
5169 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5170 if (!qlen) {
5171 /* Schedule NAPI for backlog device. We can use
5172 * non atomic operation as we own the queue lock.
5173 */
5174 if (!__test_and_set_bit(NAPI_STATE_SCHED,
5175 &sd->backlog.state))
5176 napi_schedule_rps(sd);
5177 }
5178 __skb_queue_tail(&sd->input_pkt_queue, skb);
5179 tail = rps_input_queue_tail_incr(sd);
5180 backlog_unlock_irq_restore(sd, &flags);
5181
5182 /* save the tail outside of the critical section */
5183 rps_input_queue_tail_save(qtail, tail);
5184 return NET_RX_SUCCESS;
5185 }
5186
5187 backlog_unlock_irq_restore(sd, &flags);
5188
5189 cpu_backlog_drop:
5190 atomic_inc(&sd->dropped);
5191 bad_dev:
5192 dev_core_stats_rx_dropped_inc(skb->dev);
5193 kfree_skb_reason(skb, reason);
5194 return NET_RX_DROP;
5195 }
5196
netif_get_rxqueue(struct sk_buff * skb)5197 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5198 {
5199 struct net_device *dev = skb->dev;
5200 struct netdev_rx_queue *rxqueue;
5201
5202 rxqueue = dev->_rx;
5203
5204 if (skb_rx_queue_recorded(skb)) {
5205 u16 index = skb_get_rx_queue(skb);
5206
5207 if (unlikely(index >= dev->real_num_rx_queues)) {
5208 WARN_ONCE(dev->real_num_rx_queues > 1,
5209 "%s received packet on queue %u, but number "
5210 "of RX queues is %u\n",
5211 dev->name, index, dev->real_num_rx_queues);
5212
5213 return rxqueue; /* Return first rxqueue */
5214 }
5215 rxqueue += index;
5216 }
5217 return rxqueue;
5218 }
5219
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5220 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5221 const struct bpf_prog *xdp_prog)
5222 {
5223 void *orig_data, *orig_data_end, *hard_start;
5224 struct netdev_rx_queue *rxqueue;
5225 bool orig_bcast, orig_host;
5226 u32 mac_len, frame_sz;
5227 __be16 orig_eth_type;
5228 struct ethhdr *eth;
5229 u32 metalen, act;
5230 int off;
5231
5232 /* The XDP program wants to see the packet starting at the MAC
5233 * header.
5234 */
5235 mac_len = skb->data - skb_mac_header(skb);
5236 hard_start = skb->data - skb_headroom(skb);
5237
5238 /* SKB "head" area always have tailroom for skb_shared_info */
5239 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5240 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5241
5242 rxqueue = netif_get_rxqueue(skb);
5243 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5244 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5245 skb_headlen(skb) + mac_len, true);
5246 if (skb_is_nonlinear(skb)) {
5247 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5248 xdp_buff_set_frags_flag(xdp);
5249 } else {
5250 xdp_buff_clear_frags_flag(xdp);
5251 }
5252
5253 orig_data_end = xdp->data_end;
5254 orig_data = xdp->data;
5255 eth = (struct ethhdr *)xdp->data;
5256 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5257 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5258 orig_eth_type = eth->h_proto;
5259
5260 act = bpf_prog_run_xdp(xdp_prog, xdp);
5261
5262 /* check if bpf_xdp_adjust_head was used */
5263 off = xdp->data - orig_data;
5264 if (off) {
5265 if (off > 0)
5266 __skb_pull(skb, off);
5267 else if (off < 0)
5268 __skb_push(skb, -off);
5269
5270 skb->mac_header += off;
5271 skb_reset_network_header(skb);
5272 }
5273
5274 /* check if bpf_xdp_adjust_tail was used */
5275 off = xdp->data_end - orig_data_end;
5276 if (off != 0) {
5277 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5278 skb->len += off; /* positive on grow, negative on shrink */
5279 }
5280
5281 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5282 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5283 */
5284 if (xdp_buff_has_frags(xdp))
5285 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5286 else
5287 skb->data_len = 0;
5288
5289 /* check if XDP changed eth hdr such SKB needs update */
5290 eth = (struct ethhdr *)xdp->data;
5291 if ((orig_eth_type != eth->h_proto) ||
5292 (orig_host != ether_addr_equal_64bits(eth->h_dest,
5293 skb->dev->dev_addr)) ||
5294 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5295 __skb_push(skb, ETH_HLEN);
5296 skb->pkt_type = PACKET_HOST;
5297 skb->protocol = eth_type_trans(skb, skb->dev);
5298 }
5299
5300 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5301 * before calling us again on redirect path. We do not call do_redirect
5302 * as we leave that up to the caller.
5303 *
5304 * Caller is responsible for managing lifetime of skb (i.e. calling
5305 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5306 */
5307 switch (act) {
5308 case XDP_REDIRECT:
5309 case XDP_TX:
5310 __skb_push(skb, mac_len);
5311 break;
5312 case XDP_PASS:
5313 metalen = xdp->data - xdp->data_meta;
5314 if (metalen)
5315 skb_metadata_set(skb, metalen);
5316 break;
5317 }
5318
5319 return act;
5320 }
5321
5322 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,const struct bpf_prog * prog)5323 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5324 {
5325 struct sk_buff *skb = *pskb;
5326 int err, hroom, troom;
5327
5328 local_lock_nested_bh(&system_page_pool.bh_lock);
5329 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5330 local_unlock_nested_bh(&system_page_pool.bh_lock);
5331 if (!err)
5332 return 0;
5333
5334 /* In case we have to go down the path and also linearize,
5335 * then lets do the pskb_expand_head() work just once here.
5336 */
5337 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5338 troom = skb->tail + skb->data_len - skb->end;
5339 err = pskb_expand_head(skb,
5340 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5341 troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5342 if (err)
5343 return err;
5344
5345 return skb_linearize(skb);
5346 }
5347
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5348 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5349 struct xdp_buff *xdp,
5350 const struct bpf_prog *xdp_prog)
5351 {
5352 struct sk_buff *skb = *pskb;
5353 u32 mac_len, act = XDP_DROP;
5354
5355 /* Reinjected packets coming from act_mirred or similar should
5356 * not get XDP generic processing.
5357 */
5358 if (skb_is_redirected(skb))
5359 return XDP_PASS;
5360
5361 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5362 * bytes. This is the guarantee that also native XDP provides,
5363 * thus we need to do it here as well.
5364 */
5365 mac_len = skb->data - skb_mac_header(skb);
5366 __skb_push(skb, mac_len);
5367
5368 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5369 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5370 if (netif_skb_check_for_xdp(pskb, xdp_prog))
5371 goto do_drop;
5372 }
5373
5374 __skb_pull(*pskb, mac_len);
5375
5376 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5377 switch (act) {
5378 case XDP_REDIRECT:
5379 case XDP_TX:
5380 case XDP_PASS:
5381 break;
5382 default:
5383 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5384 fallthrough;
5385 case XDP_ABORTED:
5386 trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5387 fallthrough;
5388 case XDP_DROP:
5389 do_drop:
5390 kfree_skb(*pskb);
5391 break;
5392 }
5393
5394 return act;
5395 }
5396
5397 /* When doing generic XDP we have to bypass the qdisc layer and the
5398 * network taps in order to match in-driver-XDP behavior. This also means
5399 * that XDP packets are able to starve other packets going through a qdisc,
5400 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5401 * queues, so they do not have this starvation issue.
5402 */
generic_xdp_tx(struct sk_buff * skb,const struct bpf_prog * xdp_prog)5403 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5404 {
5405 struct net_device *dev = skb->dev;
5406 struct netdev_queue *txq;
5407 bool free_skb = true;
5408 int cpu, rc;
5409
5410 txq = netdev_core_pick_tx(dev, skb, NULL);
5411 cpu = smp_processor_id();
5412 HARD_TX_LOCK(dev, txq, cpu);
5413 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5414 rc = netdev_start_xmit(skb, dev, txq, 0);
5415 if (dev_xmit_complete(rc))
5416 free_skb = false;
5417 }
5418 HARD_TX_UNLOCK(dev, txq);
5419 if (free_skb) {
5420 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5421 dev_core_stats_tx_dropped_inc(dev);
5422 kfree_skb(skb);
5423 }
5424 }
5425
5426 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5427
do_xdp_generic(const struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5428 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5429 {
5430 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5431
5432 if (xdp_prog) {
5433 struct xdp_buff xdp;
5434 u32 act;
5435 int err;
5436
5437 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5438 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5439 if (act != XDP_PASS) {
5440 switch (act) {
5441 case XDP_REDIRECT:
5442 err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5443 &xdp, xdp_prog);
5444 if (err)
5445 goto out_redir;
5446 break;
5447 case XDP_TX:
5448 generic_xdp_tx(*pskb, xdp_prog);
5449 break;
5450 }
5451 bpf_net_ctx_clear(bpf_net_ctx);
5452 return XDP_DROP;
5453 }
5454 bpf_net_ctx_clear(bpf_net_ctx);
5455 }
5456 return XDP_PASS;
5457 out_redir:
5458 bpf_net_ctx_clear(bpf_net_ctx);
5459 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5460 return XDP_DROP;
5461 }
5462 EXPORT_SYMBOL_GPL(do_xdp_generic);
5463
netif_rx_internal(struct sk_buff * skb)5464 static int netif_rx_internal(struct sk_buff *skb)
5465 {
5466 int ret;
5467
5468 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5469
5470 trace_netif_rx(skb);
5471
5472 #ifdef CONFIG_RPS
5473 if (static_branch_unlikely(&rps_needed)) {
5474 struct rps_dev_flow voidflow, *rflow = &voidflow;
5475 int cpu;
5476
5477 rcu_read_lock();
5478
5479 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5480 if (cpu < 0)
5481 cpu = smp_processor_id();
5482
5483 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5484
5485 rcu_read_unlock();
5486 } else
5487 #endif
5488 {
5489 unsigned int qtail;
5490
5491 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5492 }
5493 return ret;
5494 }
5495
5496 /**
5497 * __netif_rx - Slightly optimized version of netif_rx
5498 * @skb: buffer to post
5499 *
5500 * This behaves as netif_rx except that it does not disable bottom halves.
5501 * As a result this function may only be invoked from the interrupt context
5502 * (either hard or soft interrupt).
5503 */
__netif_rx(struct sk_buff * skb)5504 int __netif_rx(struct sk_buff *skb)
5505 {
5506 int ret;
5507
5508 lockdep_assert_once(hardirq_count() | softirq_count());
5509
5510 trace_netif_rx_entry(skb);
5511 ret = netif_rx_internal(skb);
5512 trace_netif_rx_exit(ret);
5513 return ret;
5514 }
5515 EXPORT_SYMBOL(__netif_rx);
5516
5517 /**
5518 * netif_rx - post buffer to the network code
5519 * @skb: buffer to post
5520 *
5521 * This function receives a packet from a device driver and queues it for
5522 * the upper (protocol) levels to process via the backlog NAPI device. It
5523 * always succeeds. The buffer may be dropped during processing for
5524 * congestion control or by the protocol layers.
5525 * The network buffer is passed via the backlog NAPI device. Modern NIC
5526 * driver should use NAPI and GRO.
5527 * This function can used from interrupt and from process context. The
5528 * caller from process context must not disable interrupts before invoking
5529 * this function.
5530 *
5531 * return values:
5532 * NET_RX_SUCCESS (no congestion)
5533 * NET_RX_DROP (packet was dropped)
5534 *
5535 */
netif_rx(struct sk_buff * skb)5536 int netif_rx(struct sk_buff *skb)
5537 {
5538 bool need_bh_off = !(hardirq_count() | softirq_count());
5539 int ret;
5540
5541 if (need_bh_off)
5542 local_bh_disable();
5543 trace_netif_rx_entry(skb);
5544 ret = netif_rx_internal(skb);
5545 trace_netif_rx_exit(ret);
5546 if (need_bh_off)
5547 local_bh_enable();
5548 return ret;
5549 }
5550 EXPORT_SYMBOL(netif_rx);
5551
net_tx_action(void)5552 static __latent_entropy void net_tx_action(void)
5553 {
5554 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5555
5556 if (sd->completion_queue) {
5557 struct sk_buff *clist;
5558
5559 local_irq_disable();
5560 clist = sd->completion_queue;
5561 sd->completion_queue = NULL;
5562 local_irq_enable();
5563
5564 while (clist) {
5565 struct sk_buff *skb = clist;
5566
5567 clist = clist->next;
5568
5569 WARN_ON(refcount_read(&skb->users));
5570 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5571 trace_consume_skb(skb, net_tx_action);
5572 else
5573 trace_kfree_skb(skb, net_tx_action,
5574 get_kfree_skb_cb(skb)->reason, NULL);
5575
5576 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5577 __kfree_skb(skb);
5578 else
5579 __napi_kfree_skb(skb,
5580 get_kfree_skb_cb(skb)->reason);
5581 }
5582 }
5583
5584 if (sd->output_queue) {
5585 struct Qdisc *head;
5586
5587 local_irq_disable();
5588 head = sd->output_queue;
5589 sd->output_queue = NULL;
5590 sd->output_queue_tailp = &sd->output_queue;
5591 local_irq_enable();
5592
5593 rcu_read_lock();
5594
5595 while (head) {
5596 struct Qdisc *q = head;
5597 spinlock_t *root_lock = NULL;
5598
5599 head = head->next_sched;
5600
5601 /* We need to make sure head->next_sched is read
5602 * before clearing __QDISC_STATE_SCHED
5603 */
5604 smp_mb__before_atomic();
5605
5606 if (!(q->flags & TCQ_F_NOLOCK)) {
5607 root_lock = qdisc_lock(q);
5608 spin_lock(root_lock);
5609 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5610 &q->state))) {
5611 /* There is a synchronize_net() between
5612 * STATE_DEACTIVATED flag being set and
5613 * qdisc_reset()/some_qdisc_is_busy() in
5614 * dev_deactivate(), so we can safely bail out
5615 * early here to avoid data race between
5616 * qdisc_deactivate() and some_qdisc_is_busy()
5617 * for lockless qdisc.
5618 */
5619 clear_bit(__QDISC_STATE_SCHED, &q->state);
5620 continue;
5621 }
5622
5623 clear_bit(__QDISC_STATE_SCHED, &q->state);
5624 qdisc_run(q);
5625 if (root_lock)
5626 spin_unlock(root_lock);
5627 }
5628
5629 rcu_read_unlock();
5630 }
5631
5632 xfrm_dev_backlog(sd);
5633 }
5634
5635 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5636 /* This hook is defined here for ATM LANE */
5637 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5638 unsigned char *addr) __read_mostly;
5639 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5640 #endif
5641
5642 /**
5643 * netdev_is_rx_handler_busy - check if receive handler is registered
5644 * @dev: device to check
5645 *
5646 * Check if a receive handler is already registered for a given device.
5647 * Return true if there one.
5648 *
5649 * The caller must hold the rtnl_mutex.
5650 */
netdev_is_rx_handler_busy(struct net_device * dev)5651 bool netdev_is_rx_handler_busy(struct net_device *dev)
5652 {
5653 ASSERT_RTNL();
5654 return dev && rtnl_dereference(dev->rx_handler);
5655 }
5656 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5657
5658 /**
5659 * netdev_rx_handler_register - register receive handler
5660 * @dev: device to register a handler for
5661 * @rx_handler: receive handler to register
5662 * @rx_handler_data: data pointer that is used by rx handler
5663 *
5664 * Register a receive handler for a device. This handler will then be
5665 * called from __netif_receive_skb. A negative errno code is returned
5666 * on a failure.
5667 *
5668 * The caller must hold the rtnl_mutex.
5669 *
5670 * For a general description of rx_handler, see enum rx_handler_result.
5671 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5672 int netdev_rx_handler_register(struct net_device *dev,
5673 rx_handler_func_t *rx_handler,
5674 void *rx_handler_data)
5675 {
5676 if (netdev_is_rx_handler_busy(dev))
5677 return -EBUSY;
5678
5679 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5680 return -EINVAL;
5681
5682 /* Note: rx_handler_data must be set before rx_handler */
5683 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5684 rcu_assign_pointer(dev->rx_handler, rx_handler);
5685
5686 return 0;
5687 }
5688 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5689
5690 /**
5691 * netdev_rx_handler_unregister - unregister receive handler
5692 * @dev: device to unregister a handler from
5693 *
5694 * Unregister a receive handler from a device.
5695 *
5696 * The caller must hold the rtnl_mutex.
5697 */
netdev_rx_handler_unregister(struct net_device * dev)5698 void netdev_rx_handler_unregister(struct net_device *dev)
5699 {
5700
5701 ASSERT_RTNL();
5702 RCU_INIT_POINTER(dev->rx_handler, NULL);
5703 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5704 * section has a guarantee to see a non NULL rx_handler_data
5705 * as well.
5706 */
5707 synchronize_net();
5708 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5709 }
5710 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5711
5712 /*
5713 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5714 * the special handling of PFMEMALLOC skbs.
5715 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5716 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5717 {
5718 switch (skb->protocol) {
5719 case htons(ETH_P_ARP):
5720 case htons(ETH_P_IP):
5721 case htons(ETH_P_IPV6):
5722 case htons(ETH_P_8021Q):
5723 case htons(ETH_P_8021AD):
5724 return true;
5725 default:
5726 return false;
5727 }
5728 }
5729
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5730 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5731 int *ret, struct net_device *orig_dev)
5732 {
5733 if (nf_hook_ingress_active(skb)) {
5734 int ingress_retval;
5735
5736 if (*pt_prev) {
5737 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5738 *pt_prev = NULL;
5739 }
5740
5741 rcu_read_lock();
5742 ingress_retval = nf_hook_ingress(skb);
5743 rcu_read_unlock();
5744 return ingress_retval;
5745 }
5746 return 0;
5747 }
5748
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5749 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5750 struct packet_type **ppt_prev)
5751 {
5752 struct packet_type *ptype, *pt_prev;
5753 rx_handler_func_t *rx_handler;
5754 struct sk_buff *skb = *pskb;
5755 struct net_device *orig_dev;
5756 bool deliver_exact = false;
5757 int ret = NET_RX_DROP;
5758 __be16 type;
5759
5760 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5761
5762 trace_netif_receive_skb(skb);
5763
5764 orig_dev = skb->dev;
5765
5766 skb_reset_network_header(skb);
5767 #if !defined(CONFIG_DEBUG_NET)
5768 /* We plan to no longer reset the transport header here.
5769 * Give some time to fuzzers and dev build to catch bugs
5770 * in network stacks.
5771 */
5772 if (!skb_transport_header_was_set(skb))
5773 skb_reset_transport_header(skb);
5774 #endif
5775 skb_reset_mac_len(skb);
5776
5777 pt_prev = NULL;
5778
5779 another_round:
5780 skb->skb_iif = skb->dev->ifindex;
5781
5782 __this_cpu_inc(softnet_data.processed);
5783
5784 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5785 int ret2;
5786
5787 migrate_disable();
5788 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5789 &skb);
5790 migrate_enable();
5791
5792 if (ret2 != XDP_PASS) {
5793 ret = NET_RX_DROP;
5794 goto out;
5795 }
5796 }
5797
5798 if (eth_type_vlan(skb->protocol)) {
5799 skb = skb_vlan_untag(skb);
5800 if (unlikely(!skb))
5801 goto out;
5802 }
5803
5804 if (skb_skip_tc_classify(skb))
5805 goto skip_classify;
5806
5807 if (pfmemalloc)
5808 goto skip_taps;
5809
5810 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5811 list) {
5812 if (pt_prev)
5813 ret = deliver_skb(skb, pt_prev, orig_dev);
5814 pt_prev = ptype;
5815 }
5816
5817 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5818 if (pt_prev)
5819 ret = deliver_skb(skb, pt_prev, orig_dev);
5820 pt_prev = ptype;
5821 }
5822
5823 skip_taps:
5824 #ifdef CONFIG_NET_INGRESS
5825 if (static_branch_unlikely(&ingress_needed_key)) {
5826 bool another = false;
5827
5828 nf_skip_egress(skb, true);
5829 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5830 &another);
5831 if (another)
5832 goto another_round;
5833 if (!skb)
5834 goto out;
5835
5836 nf_skip_egress(skb, false);
5837 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5838 goto out;
5839 }
5840 #endif
5841 skb_reset_redirect(skb);
5842 skip_classify:
5843 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5844 goto drop;
5845
5846 if (skb_vlan_tag_present(skb)) {
5847 if (pt_prev) {
5848 ret = deliver_skb(skb, pt_prev, orig_dev);
5849 pt_prev = NULL;
5850 }
5851 if (vlan_do_receive(&skb))
5852 goto another_round;
5853 else if (unlikely(!skb))
5854 goto out;
5855 }
5856
5857 rx_handler = rcu_dereference(skb->dev->rx_handler);
5858 if (rx_handler) {
5859 if (pt_prev) {
5860 ret = deliver_skb(skb, pt_prev, orig_dev);
5861 pt_prev = NULL;
5862 }
5863 switch (rx_handler(&skb)) {
5864 case RX_HANDLER_CONSUMED:
5865 ret = NET_RX_SUCCESS;
5866 goto out;
5867 case RX_HANDLER_ANOTHER:
5868 goto another_round;
5869 case RX_HANDLER_EXACT:
5870 deliver_exact = true;
5871 break;
5872 case RX_HANDLER_PASS:
5873 break;
5874 default:
5875 BUG();
5876 }
5877 }
5878
5879 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5880 check_vlan_id:
5881 if (skb_vlan_tag_get_id(skb)) {
5882 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5883 * find vlan device.
5884 */
5885 skb->pkt_type = PACKET_OTHERHOST;
5886 } else if (eth_type_vlan(skb->protocol)) {
5887 /* Outer header is 802.1P with vlan 0, inner header is
5888 * 802.1Q or 802.1AD and vlan_do_receive() above could
5889 * not find vlan dev for vlan id 0.
5890 */
5891 __vlan_hwaccel_clear_tag(skb);
5892 skb = skb_vlan_untag(skb);
5893 if (unlikely(!skb))
5894 goto out;
5895 if (vlan_do_receive(&skb))
5896 /* After stripping off 802.1P header with vlan 0
5897 * vlan dev is found for inner header.
5898 */
5899 goto another_round;
5900 else if (unlikely(!skb))
5901 goto out;
5902 else
5903 /* We have stripped outer 802.1P vlan 0 header.
5904 * But could not find vlan dev.
5905 * check again for vlan id to set OTHERHOST.
5906 */
5907 goto check_vlan_id;
5908 }
5909 /* Note: we might in the future use prio bits
5910 * and set skb->priority like in vlan_do_receive()
5911 * For the time being, just ignore Priority Code Point
5912 */
5913 __vlan_hwaccel_clear_tag(skb);
5914 }
5915
5916 type = skb->protocol;
5917
5918 /* deliver only exact match when indicated */
5919 if (likely(!deliver_exact)) {
5920 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5921 &ptype_base[ntohs(type) &
5922 PTYPE_HASH_MASK]);
5923
5924 /* orig_dev and skb->dev could belong to different netns;
5925 * Even in such case we need to traverse only the list
5926 * coming from skb->dev, as the ptype owner (packet socket)
5927 * will use dev_net(skb->dev) to do namespace filtering.
5928 */
5929 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5930 &dev_net_rcu(skb->dev)->ptype_specific);
5931 }
5932
5933 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5934 &orig_dev->ptype_specific);
5935
5936 if (unlikely(skb->dev != orig_dev)) {
5937 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5938 &skb->dev->ptype_specific);
5939 }
5940
5941 if (pt_prev) {
5942 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5943 goto drop;
5944 *ppt_prev = pt_prev;
5945 } else {
5946 drop:
5947 if (!deliver_exact)
5948 dev_core_stats_rx_dropped_inc(skb->dev);
5949 else
5950 dev_core_stats_rx_nohandler_inc(skb->dev);
5951 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5952 /* Jamal, now you will not able to escape explaining
5953 * me how you were going to use this. :-)
5954 */
5955 ret = NET_RX_DROP;
5956 }
5957
5958 out:
5959 /* The invariant here is that if *ppt_prev is not NULL
5960 * then skb should also be non-NULL.
5961 *
5962 * Apparently *ppt_prev assignment above holds this invariant due to
5963 * skb dereferencing near it.
5964 */
5965 *pskb = skb;
5966 return ret;
5967 }
5968
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5969 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5970 {
5971 struct net_device *orig_dev = skb->dev;
5972 struct packet_type *pt_prev = NULL;
5973 int ret;
5974
5975 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5976 if (pt_prev)
5977 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5978 skb->dev, pt_prev, orig_dev);
5979 return ret;
5980 }
5981
5982 /**
5983 * netif_receive_skb_core - special purpose version of netif_receive_skb
5984 * @skb: buffer to process
5985 *
5986 * More direct receive version of netif_receive_skb(). It should
5987 * only be used by callers that have a need to skip RPS and Generic XDP.
5988 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5989 *
5990 * This function may only be called from softirq context and interrupts
5991 * should be enabled.
5992 *
5993 * Return values (usually ignored):
5994 * NET_RX_SUCCESS: no congestion
5995 * NET_RX_DROP: packet was dropped
5996 */
netif_receive_skb_core(struct sk_buff * skb)5997 int netif_receive_skb_core(struct sk_buff *skb)
5998 {
5999 int ret;
6000
6001 rcu_read_lock();
6002 ret = __netif_receive_skb_one_core(skb, false);
6003 rcu_read_unlock();
6004
6005 return ret;
6006 }
6007 EXPORT_SYMBOL(netif_receive_skb_core);
6008
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)6009 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6010 struct packet_type *pt_prev,
6011 struct net_device *orig_dev)
6012 {
6013 struct sk_buff *skb, *next;
6014
6015 if (!pt_prev)
6016 return;
6017 if (list_empty(head))
6018 return;
6019 if (pt_prev->list_func != NULL)
6020 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6021 ip_list_rcv, head, pt_prev, orig_dev);
6022 else
6023 list_for_each_entry_safe(skb, next, head, list) {
6024 skb_list_del_init(skb);
6025 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6026 }
6027 }
6028
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)6029 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6030 {
6031 /* Fast-path assumptions:
6032 * - There is no RX handler.
6033 * - Only one packet_type matches.
6034 * If either of these fails, we will end up doing some per-packet
6035 * processing in-line, then handling the 'last ptype' for the whole
6036 * sublist. This can't cause out-of-order delivery to any single ptype,
6037 * because the 'last ptype' must be constant across the sublist, and all
6038 * other ptypes are handled per-packet.
6039 */
6040 /* Current (common) ptype of sublist */
6041 struct packet_type *pt_curr = NULL;
6042 /* Current (common) orig_dev of sublist */
6043 struct net_device *od_curr = NULL;
6044 struct sk_buff *skb, *next;
6045 LIST_HEAD(sublist);
6046
6047 list_for_each_entry_safe(skb, next, head, list) {
6048 struct net_device *orig_dev = skb->dev;
6049 struct packet_type *pt_prev = NULL;
6050
6051 skb_list_del_init(skb);
6052 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6053 if (!pt_prev)
6054 continue;
6055 if (pt_curr != pt_prev || od_curr != orig_dev) {
6056 /* dispatch old sublist */
6057 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6058 /* start new sublist */
6059 INIT_LIST_HEAD(&sublist);
6060 pt_curr = pt_prev;
6061 od_curr = orig_dev;
6062 }
6063 list_add_tail(&skb->list, &sublist);
6064 }
6065
6066 /* dispatch final sublist */
6067 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6068 }
6069
__netif_receive_skb(struct sk_buff * skb)6070 static int __netif_receive_skb(struct sk_buff *skb)
6071 {
6072 int ret;
6073
6074 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6075 unsigned int noreclaim_flag;
6076
6077 /*
6078 * PFMEMALLOC skbs are special, they should
6079 * - be delivered to SOCK_MEMALLOC sockets only
6080 * - stay away from userspace
6081 * - have bounded memory usage
6082 *
6083 * Use PF_MEMALLOC as this saves us from propagating the allocation
6084 * context down to all allocation sites.
6085 */
6086 noreclaim_flag = memalloc_noreclaim_save();
6087 ret = __netif_receive_skb_one_core(skb, true);
6088 memalloc_noreclaim_restore(noreclaim_flag);
6089 } else
6090 ret = __netif_receive_skb_one_core(skb, false);
6091
6092 return ret;
6093 }
6094
__netif_receive_skb_list(struct list_head * head)6095 static void __netif_receive_skb_list(struct list_head *head)
6096 {
6097 unsigned long noreclaim_flag = 0;
6098 struct sk_buff *skb, *next;
6099 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6100
6101 list_for_each_entry_safe(skb, next, head, list) {
6102 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6103 struct list_head sublist;
6104
6105 /* Handle the previous sublist */
6106 list_cut_before(&sublist, head, &skb->list);
6107 if (!list_empty(&sublist))
6108 __netif_receive_skb_list_core(&sublist, pfmemalloc);
6109 pfmemalloc = !pfmemalloc;
6110 /* See comments in __netif_receive_skb */
6111 if (pfmemalloc)
6112 noreclaim_flag = memalloc_noreclaim_save();
6113 else
6114 memalloc_noreclaim_restore(noreclaim_flag);
6115 }
6116 }
6117 /* Handle the remaining sublist */
6118 if (!list_empty(head))
6119 __netif_receive_skb_list_core(head, pfmemalloc);
6120 /* Restore pflags */
6121 if (pfmemalloc)
6122 memalloc_noreclaim_restore(noreclaim_flag);
6123 }
6124
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)6125 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6126 {
6127 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6128 struct bpf_prog *new = xdp->prog;
6129 int ret = 0;
6130
6131 switch (xdp->command) {
6132 case XDP_SETUP_PROG:
6133 rcu_assign_pointer(dev->xdp_prog, new);
6134 if (old)
6135 bpf_prog_put(old);
6136
6137 if (old && !new) {
6138 static_branch_dec(&generic_xdp_needed_key);
6139 } else if (new && !old) {
6140 static_branch_inc(&generic_xdp_needed_key);
6141 netif_disable_lro(dev);
6142 dev_disable_gro_hw(dev);
6143 }
6144 break;
6145
6146 default:
6147 ret = -EINVAL;
6148 break;
6149 }
6150
6151 return ret;
6152 }
6153
netif_receive_skb_internal(struct sk_buff * skb)6154 static int netif_receive_skb_internal(struct sk_buff *skb)
6155 {
6156 int ret;
6157
6158 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6159
6160 if (skb_defer_rx_timestamp(skb))
6161 return NET_RX_SUCCESS;
6162
6163 rcu_read_lock();
6164 #ifdef CONFIG_RPS
6165 if (static_branch_unlikely(&rps_needed)) {
6166 struct rps_dev_flow voidflow, *rflow = &voidflow;
6167 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6168
6169 if (cpu >= 0) {
6170 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6171 rcu_read_unlock();
6172 return ret;
6173 }
6174 }
6175 #endif
6176 ret = __netif_receive_skb(skb);
6177 rcu_read_unlock();
6178 return ret;
6179 }
6180
netif_receive_skb_list_internal(struct list_head * head)6181 void netif_receive_skb_list_internal(struct list_head *head)
6182 {
6183 struct sk_buff *skb, *next;
6184 LIST_HEAD(sublist);
6185
6186 list_for_each_entry_safe(skb, next, head, list) {
6187 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6188 skb);
6189 skb_list_del_init(skb);
6190 if (!skb_defer_rx_timestamp(skb))
6191 list_add_tail(&skb->list, &sublist);
6192 }
6193 list_splice_init(&sublist, head);
6194
6195 rcu_read_lock();
6196 #ifdef CONFIG_RPS
6197 if (static_branch_unlikely(&rps_needed)) {
6198 list_for_each_entry_safe(skb, next, head, list) {
6199 struct rps_dev_flow voidflow, *rflow = &voidflow;
6200 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6201
6202 if (cpu >= 0) {
6203 /* Will be handled, remove from list */
6204 skb_list_del_init(skb);
6205 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6206 }
6207 }
6208 }
6209 #endif
6210 __netif_receive_skb_list(head);
6211 rcu_read_unlock();
6212 }
6213
6214 /**
6215 * netif_receive_skb - process receive buffer from network
6216 * @skb: buffer to process
6217 *
6218 * netif_receive_skb() is the main receive data processing function.
6219 * It always succeeds. The buffer may be dropped during processing
6220 * for congestion control or by the protocol layers.
6221 *
6222 * This function may only be called from softirq context and interrupts
6223 * should be enabled.
6224 *
6225 * Return values (usually ignored):
6226 * NET_RX_SUCCESS: no congestion
6227 * NET_RX_DROP: packet was dropped
6228 */
netif_receive_skb(struct sk_buff * skb)6229 int netif_receive_skb(struct sk_buff *skb)
6230 {
6231 int ret;
6232
6233 trace_netif_receive_skb_entry(skb);
6234
6235 ret = netif_receive_skb_internal(skb);
6236 trace_netif_receive_skb_exit(ret);
6237
6238 return ret;
6239 }
6240 EXPORT_SYMBOL(netif_receive_skb);
6241
6242 /**
6243 * netif_receive_skb_list - process many receive buffers from network
6244 * @head: list of skbs to process.
6245 *
6246 * Since return value of netif_receive_skb() is normally ignored, and
6247 * wouldn't be meaningful for a list, this function returns void.
6248 *
6249 * This function may only be called from softirq context and interrupts
6250 * should be enabled.
6251 */
netif_receive_skb_list(struct list_head * head)6252 void netif_receive_skb_list(struct list_head *head)
6253 {
6254 struct sk_buff *skb;
6255
6256 if (list_empty(head))
6257 return;
6258 if (trace_netif_receive_skb_list_entry_enabled()) {
6259 list_for_each_entry(skb, head, list)
6260 trace_netif_receive_skb_list_entry(skb);
6261 }
6262 netif_receive_skb_list_internal(head);
6263 trace_netif_receive_skb_list_exit(0);
6264 }
6265 EXPORT_SYMBOL(netif_receive_skb_list);
6266
6267 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6268 static void flush_backlog(struct work_struct *work)
6269 {
6270 struct sk_buff *skb, *tmp;
6271 struct sk_buff_head list;
6272 struct softnet_data *sd;
6273
6274 __skb_queue_head_init(&list);
6275 local_bh_disable();
6276 sd = this_cpu_ptr(&softnet_data);
6277
6278 backlog_lock_irq_disable(sd);
6279 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6280 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6281 __skb_unlink(skb, &sd->input_pkt_queue);
6282 __skb_queue_tail(&list, skb);
6283 rps_input_queue_head_incr(sd);
6284 }
6285 }
6286 backlog_unlock_irq_enable(sd);
6287
6288 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6289 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6290 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6291 __skb_unlink(skb, &sd->process_queue);
6292 __skb_queue_tail(&list, skb);
6293 rps_input_queue_head_incr(sd);
6294 }
6295 }
6296 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6297 local_bh_enable();
6298
6299 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6300 }
6301
flush_required(int cpu)6302 static bool flush_required(int cpu)
6303 {
6304 #if IS_ENABLED(CONFIG_RPS)
6305 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6306 bool do_flush;
6307
6308 backlog_lock_irq_disable(sd);
6309
6310 /* as insertion into process_queue happens with the rps lock held,
6311 * process_queue access may race only with dequeue
6312 */
6313 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6314 !skb_queue_empty_lockless(&sd->process_queue);
6315 backlog_unlock_irq_enable(sd);
6316
6317 return do_flush;
6318 #endif
6319 /* without RPS we can't safely check input_pkt_queue: during a
6320 * concurrent remote skb_queue_splice() we can detect as empty both
6321 * input_pkt_queue and process_queue even if the latter could end-up
6322 * containing a lot of packets.
6323 */
6324 return true;
6325 }
6326
6327 struct flush_backlogs {
6328 cpumask_t flush_cpus;
6329 struct work_struct w[];
6330 };
6331
flush_backlogs_alloc(void)6332 static struct flush_backlogs *flush_backlogs_alloc(void)
6333 {
6334 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6335 GFP_KERNEL);
6336 }
6337
6338 static struct flush_backlogs *flush_backlogs_fallback;
6339 static DEFINE_MUTEX(flush_backlogs_mutex);
6340
flush_all_backlogs(void)6341 static void flush_all_backlogs(void)
6342 {
6343 struct flush_backlogs *ptr = flush_backlogs_alloc();
6344 unsigned int cpu;
6345
6346 if (!ptr) {
6347 mutex_lock(&flush_backlogs_mutex);
6348 ptr = flush_backlogs_fallback;
6349 }
6350 cpumask_clear(&ptr->flush_cpus);
6351
6352 cpus_read_lock();
6353
6354 for_each_online_cpu(cpu) {
6355 if (flush_required(cpu)) {
6356 INIT_WORK(&ptr->w[cpu], flush_backlog);
6357 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6358 __cpumask_set_cpu(cpu, &ptr->flush_cpus);
6359 }
6360 }
6361
6362 /* we can have in flight packet[s] on the cpus we are not flushing,
6363 * synchronize_net() in unregister_netdevice_many() will take care of
6364 * them.
6365 */
6366 for_each_cpu(cpu, &ptr->flush_cpus)
6367 flush_work(&ptr->w[cpu]);
6368
6369 cpus_read_unlock();
6370
6371 if (ptr != flush_backlogs_fallback)
6372 kfree(ptr);
6373 else
6374 mutex_unlock(&flush_backlogs_mutex);
6375 }
6376
net_rps_send_ipi(struct softnet_data * remsd)6377 static void net_rps_send_ipi(struct softnet_data *remsd)
6378 {
6379 #ifdef CONFIG_RPS
6380 while (remsd) {
6381 struct softnet_data *next = remsd->rps_ipi_next;
6382
6383 if (cpu_online(remsd->cpu))
6384 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6385 remsd = next;
6386 }
6387 #endif
6388 }
6389
6390 /*
6391 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6392 * Note: called with local irq disabled, but exits with local irq enabled.
6393 */
net_rps_action_and_irq_enable(struct softnet_data * sd)6394 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6395 {
6396 #ifdef CONFIG_RPS
6397 struct softnet_data *remsd = sd->rps_ipi_list;
6398
6399 if (!use_backlog_threads() && remsd) {
6400 sd->rps_ipi_list = NULL;
6401
6402 local_irq_enable();
6403
6404 /* Send pending IPI's to kick RPS processing on remote cpus. */
6405 net_rps_send_ipi(remsd);
6406 } else
6407 #endif
6408 local_irq_enable();
6409 }
6410
sd_has_rps_ipi_waiting(struct softnet_data * sd)6411 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6412 {
6413 #ifdef CONFIG_RPS
6414 return !use_backlog_threads() && sd->rps_ipi_list;
6415 #else
6416 return false;
6417 #endif
6418 }
6419
process_backlog(struct napi_struct * napi,int quota)6420 static int process_backlog(struct napi_struct *napi, int quota)
6421 {
6422 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6423 bool again = true;
6424 int work = 0;
6425
6426 /* Check if we have pending ipi, its better to send them now,
6427 * not waiting net_rx_action() end.
6428 */
6429 if (sd_has_rps_ipi_waiting(sd)) {
6430 local_irq_disable();
6431 net_rps_action_and_irq_enable(sd);
6432 }
6433
6434 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6435 while (again) {
6436 struct sk_buff *skb;
6437
6438 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6439 while ((skb = __skb_dequeue(&sd->process_queue))) {
6440 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6441 rcu_read_lock();
6442 __netif_receive_skb(skb);
6443 rcu_read_unlock();
6444 if (++work >= quota) {
6445 rps_input_queue_head_add(sd, work);
6446 return work;
6447 }
6448
6449 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6450 }
6451 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6452
6453 backlog_lock_irq_disable(sd);
6454 if (skb_queue_empty(&sd->input_pkt_queue)) {
6455 /*
6456 * Inline a custom version of __napi_complete().
6457 * only current cpu owns and manipulates this napi,
6458 * and NAPI_STATE_SCHED is the only possible flag set
6459 * on backlog.
6460 * We can use a plain write instead of clear_bit(),
6461 * and we dont need an smp_mb() memory barrier.
6462 */
6463 napi->state &= NAPIF_STATE_THREADED;
6464 again = false;
6465 } else {
6466 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6467 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6468 &sd->process_queue);
6469 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6470 }
6471 backlog_unlock_irq_enable(sd);
6472 }
6473
6474 if (work)
6475 rps_input_queue_head_add(sd, work);
6476 return work;
6477 }
6478
6479 /**
6480 * __napi_schedule - schedule for receive
6481 * @n: entry to schedule
6482 *
6483 * The entry's receive function will be scheduled to run.
6484 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6485 */
__napi_schedule(struct napi_struct * n)6486 void __napi_schedule(struct napi_struct *n)
6487 {
6488 unsigned long flags;
6489
6490 local_irq_save(flags);
6491 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6492 local_irq_restore(flags);
6493 }
6494 EXPORT_SYMBOL(__napi_schedule);
6495
6496 /**
6497 * napi_schedule_prep - check if napi can be scheduled
6498 * @n: napi context
6499 *
6500 * Test if NAPI routine is already running, and if not mark
6501 * it as running. This is used as a condition variable to
6502 * insure only one NAPI poll instance runs. We also make
6503 * sure there is no pending NAPI disable.
6504 */
napi_schedule_prep(struct napi_struct * n)6505 bool napi_schedule_prep(struct napi_struct *n)
6506 {
6507 unsigned long new, val = READ_ONCE(n->state);
6508
6509 do {
6510 if (unlikely(val & NAPIF_STATE_DISABLE))
6511 return false;
6512 new = val | NAPIF_STATE_SCHED;
6513
6514 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6515 * This was suggested by Alexander Duyck, as compiler
6516 * emits better code than :
6517 * if (val & NAPIF_STATE_SCHED)
6518 * new |= NAPIF_STATE_MISSED;
6519 */
6520 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6521 NAPIF_STATE_MISSED;
6522 } while (!try_cmpxchg(&n->state, &val, new));
6523
6524 return !(val & NAPIF_STATE_SCHED);
6525 }
6526 EXPORT_SYMBOL(napi_schedule_prep);
6527
6528 /**
6529 * __napi_schedule_irqoff - schedule for receive
6530 * @n: entry to schedule
6531 *
6532 * Variant of __napi_schedule() assuming hard irqs are masked.
6533 *
6534 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6535 * because the interrupt disabled assumption might not be true
6536 * due to force-threaded interrupts and spinlock substitution.
6537 */
__napi_schedule_irqoff(struct napi_struct * n)6538 void __napi_schedule_irqoff(struct napi_struct *n)
6539 {
6540 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6541 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6542 else
6543 __napi_schedule(n);
6544 }
6545 EXPORT_SYMBOL(__napi_schedule_irqoff);
6546
napi_complete_done(struct napi_struct * n,int work_done)6547 bool napi_complete_done(struct napi_struct *n, int work_done)
6548 {
6549 unsigned long flags, val, new, timeout = 0;
6550 bool ret = true;
6551
6552 /*
6553 * 1) Don't let napi dequeue from the cpu poll list
6554 * just in case its running on a different cpu.
6555 * 2) If we are busy polling, do nothing here, we have
6556 * the guarantee we will be called later.
6557 */
6558 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6559 NAPIF_STATE_IN_BUSY_POLL)))
6560 return false;
6561
6562 if (work_done) {
6563 if (n->gro.bitmask)
6564 timeout = napi_get_gro_flush_timeout(n);
6565 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6566 }
6567 if (n->defer_hard_irqs_count > 0) {
6568 n->defer_hard_irqs_count--;
6569 timeout = napi_get_gro_flush_timeout(n);
6570 if (timeout)
6571 ret = false;
6572 }
6573
6574 /*
6575 * When the NAPI instance uses a timeout and keeps postponing
6576 * it, we need to bound somehow the time packets are kept in
6577 * the GRO layer.
6578 */
6579 gro_flush(&n->gro, !!timeout);
6580 gro_normal_list(&n->gro);
6581
6582 if (unlikely(!list_empty(&n->poll_list))) {
6583 /* If n->poll_list is not empty, we need to mask irqs */
6584 local_irq_save(flags);
6585 list_del_init(&n->poll_list);
6586 local_irq_restore(flags);
6587 }
6588 WRITE_ONCE(n->list_owner, -1);
6589
6590 val = READ_ONCE(n->state);
6591 do {
6592 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6593
6594 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6595 NAPIF_STATE_SCHED_THREADED |
6596 NAPIF_STATE_PREFER_BUSY_POLL);
6597
6598 /* If STATE_MISSED was set, leave STATE_SCHED set,
6599 * because we will call napi->poll() one more time.
6600 * This C code was suggested by Alexander Duyck to help gcc.
6601 */
6602 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6603 NAPIF_STATE_SCHED;
6604 } while (!try_cmpxchg(&n->state, &val, new));
6605
6606 if (unlikely(val & NAPIF_STATE_MISSED)) {
6607 __napi_schedule(n);
6608 return false;
6609 }
6610
6611 if (timeout)
6612 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6613 HRTIMER_MODE_REL_PINNED);
6614 return ret;
6615 }
6616 EXPORT_SYMBOL(napi_complete_done);
6617
skb_defer_free_flush(struct softnet_data * sd)6618 static void skb_defer_free_flush(struct softnet_data *sd)
6619 {
6620 struct sk_buff *skb, *next;
6621
6622 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6623 if (!READ_ONCE(sd->defer_list))
6624 return;
6625
6626 spin_lock(&sd->defer_lock);
6627 skb = sd->defer_list;
6628 sd->defer_list = NULL;
6629 sd->defer_count = 0;
6630 spin_unlock(&sd->defer_lock);
6631
6632 while (skb != NULL) {
6633 next = skb->next;
6634 napi_consume_skb(skb, 1);
6635 skb = next;
6636 }
6637 }
6638
6639 #if defined(CONFIG_NET_RX_BUSY_POLL)
6640
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6641 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6642 {
6643 if (!skip_schedule) {
6644 gro_normal_list(&napi->gro);
6645 __napi_schedule(napi);
6646 return;
6647 }
6648
6649 /* Flush too old packets. If HZ < 1000, flush all packets */
6650 gro_flush(&napi->gro, HZ >= 1000);
6651 gro_normal_list(&napi->gro);
6652
6653 clear_bit(NAPI_STATE_SCHED, &napi->state);
6654 }
6655
6656 enum {
6657 NAPI_F_PREFER_BUSY_POLL = 1,
6658 NAPI_F_END_ON_RESCHED = 2,
6659 };
6660
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6661 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6662 unsigned flags, u16 budget)
6663 {
6664 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6665 bool skip_schedule = false;
6666 unsigned long timeout;
6667 int rc;
6668
6669 /* Busy polling means there is a high chance device driver hard irq
6670 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6671 * set in napi_schedule_prep().
6672 * Since we are about to call napi->poll() once more, we can safely
6673 * clear NAPI_STATE_MISSED.
6674 *
6675 * Note: x86 could use a single "lock and ..." instruction
6676 * to perform these two clear_bit()
6677 */
6678 clear_bit(NAPI_STATE_MISSED, &napi->state);
6679 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6680
6681 local_bh_disable();
6682 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6683
6684 if (flags & NAPI_F_PREFER_BUSY_POLL) {
6685 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6686 timeout = napi_get_gro_flush_timeout(napi);
6687 if (napi->defer_hard_irqs_count && timeout) {
6688 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6689 skip_schedule = true;
6690 }
6691 }
6692
6693 /* All we really want here is to re-enable device interrupts.
6694 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6695 */
6696 rc = napi->poll(napi, budget);
6697 /* We can't gro_normal_list() here, because napi->poll() might have
6698 * rearmed the napi (napi_complete_done()) in which case it could
6699 * already be running on another CPU.
6700 */
6701 trace_napi_poll(napi, rc, budget);
6702 netpoll_poll_unlock(have_poll_lock);
6703 if (rc == budget)
6704 __busy_poll_stop(napi, skip_schedule);
6705 bpf_net_ctx_clear(bpf_net_ctx);
6706 local_bh_enable();
6707 }
6708
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6709 static void __napi_busy_loop(unsigned int napi_id,
6710 bool (*loop_end)(void *, unsigned long),
6711 void *loop_end_arg, unsigned flags, u16 budget)
6712 {
6713 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6714 int (*napi_poll)(struct napi_struct *napi, int budget);
6715 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6716 void *have_poll_lock = NULL;
6717 struct napi_struct *napi;
6718
6719 WARN_ON_ONCE(!rcu_read_lock_held());
6720
6721 restart:
6722 napi_poll = NULL;
6723
6724 napi = napi_by_id(napi_id);
6725 if (!napi)
6726 return;
6727
6728 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6729 preempt_disable();
6730 for (;;) {
6731 int work = 0;
6732
6733 local_bh_disable();
6734 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6735 if (!napi_poll) {
6736 unsigned long val = READ_ONCE(napi->state);
6737
6738 /* If multiple threads are competing for this napi,
6739 * we avoid dirtying napi->state as much as we can.
6740 */
6741 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6742 NAPIF_STATE_IN_BUSY_POLL)) {
6743 if (flags & NAPI_F_PREFER_BUSY_POLL)
6744 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6745 goto count;
6746 }
6747 if (cmpxchg(&napi->state, val,
6748 val | NAPIF_STATE_IN_BUSY_POLL |
6749 NAPIF_STATE_SCHED) != val) {
6750 if (flags & NAPI_F_PREFER_BUSY_POLL)
6751 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6752 goto count;
6753 }
6754 have_poll_lock = netpoll_poll_lock(napi);
6755 napi_poll = napi->poll;
6756 }
6757 work = napi_poll(napi, budget);
6758 trace_napi_poll(napi, work, budget);
6759 gro_normal_list(&napi->gro);
6760 count:
6761 if (work > 0)
6762 __NET_ADD_STATS(dev_net(napi->dev),
6763 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6764 skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6765 bpf_net_ctx_clear(bpf_net_ctx);
6766 local_bh_enable();
6767
6768 if (!loop_end || loop_end(loop_end_arg, start_time))
6769 break;
6770
6771 if (unlikely(need_resched())) {
6772 if (flags & NAPI_F_END_ON_RESCHED)
6773 break;
6774 if (napi_poll)
6775 busy_poll_stop(napi, have_poll_lock, flags, budget);
6776 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6777 preempt_enable();
6778 rcu_read_unlock();
6779 cond_resched();
6780 rcu_read_lock();
6781 if (loop_end(loop_end_arg, start_time))
6782 return;
6783 goto restart;
6784 }
6785 cpu_relax();
6786 }
6787 if (napi_poll)
6788 busy_poll_stop(napi, have_poll_lock, flags, budget);
6789 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6790 preempt_enable();
6791 }
6792
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6793 void napi_busy_loop_rcu(unsigned int napi_id,
6794 bool (*loop_end)(void *, unsigned long),
6795 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6796 {
6797 unsigned flags = NAPI_F_END_ON_RESCHED;
6798
6799 if (prefer_busy_poll)
6800 flags |= NAPI_F_PREFER_BUSY_POLL;
6801
6802 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6803 }
6804
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6805 void napi_busy_loop(unsigned int napi_id,
6806 bool (*loop_end)(void *, unsigned long),
6807 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6808 {
6809 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6810
6811 rcu_read_lock();
6812 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6813 rcu_read_unlock();
6814 }
6815 EXPORT_SYMBOL(napi_busy_loop);
6816
napi_suspend_irqs(unsigned int napi_id)6817 void napi_suspend_irqs(unsigned int napi_id)
6818 {
6819 struct napi_struct *napi;
6820
6821 rcu_read_lock();
6822 napi = napi_by_id(napi_id);
6823 if (napi) {
6824 unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6825
6826 if (timeout)
6827 hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6828 HRTIMER_MODE_REL_PINNED);
6829 }
6830 rcu_read_unlock();
6831 }
6832
napi_resume_irqs(unsigned int napi_id)6833 void napi_resume_irqs(unsigned int napi_id)
6834 {
6835 struct napi_struct *napi;
6836
6837 rcu_read_lock();
6838 napi = napi_by_id(napi_id);
6839 if (napi) {
6840 /* If irq_suspend_timeout is set to 0 between the call to
6841 * napi_suspend_irqs and now, the original value still
6842 * determines the safety timeout as intended and napi_watchdog
6843 * will resume irq processing.
6844 */
6845 if (napi_get_irq_suspend_timeout(napi)) {
6846 local_bh_disable();
6847 napi_schedule(napi);
6848 local_bh_enable();
6849 }
6850 }
6851 rcu_read_unlock();
6852 }
6853
6854 #endif /* CONFIG_NET_RX_BUSY_POLL */
6855
__napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6856 static void __napi_hash_add_with_id(struct napi_struct *napi,
6857 unsigned int napi_id)
6858 {
6859 napi->gro.cached_napi_id = napi_id;
6860
6861 WRITE_ONCE(napi->napi_id, napi_id);
6862 hlist_add_head_rcu(&napi->napi_hash_node,
6863 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6864 }
6865
napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6866 static void napi_hash_add_with_id(struct napi_struct *napi,
6867 unsigned int napi_id)
6868 {
6869 unsigned long flags;
6870
6871 spin_lock_irqsave(&napi_hash_lock, flags);
6872 WARN_ON_ONCE(napi_by_id(napi_id));
6873 __napi_hash_add_with_id(napi, napi_id);
6874 spin_unlock_irqrestore(&napi_hash_lock, flags);
6875 }
6876
napi_hash_add(struct napi_struct * napi)6877 static void napi_hash_add(struct napi_struct *napi)
6878 {
6879 unsigned long flags;
6880
6881 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6882 return;
6883
6884 spin_lock_irqsave(&napi_hash_lock, flags);
6885
6886 /* 0..NR_CPUS range is reserved for sender_cpu use */
6887 do {
6888 if (unlikely(!napi_id_valid(++napi_gen_id)))
6889 napi_gen_id = MIN_NAPI_ID;
6890 } while (napi_by_id(napi_gen_id));
6891
6892 __napi_hash_add_with_id(napi, napi_gen_id);
6893
6894 spin_unlock_irqrestore(&napi_hash_lock, flags);
6895 }
6896
6897 /* Warning : caller is responsible to make sure rcu grace period
6898 * is respected before freeing memory containing @napi
6899 */
napi_hash_del(struct napi_struct * napi)6900 static void napi_hash_del(struct napi_struct *napi)
6901 {
6902 unsigned long flags;
6903
6904 spin_lock_irqsave(&napi_hash_lock, flags);
6905
6906 hlist_del_init_rcu(&napi->napi_hash_node);
6907
6908 spin_unlock_irqrestore(&napi_hash_lock, flags);
6909 }
6910
napi_watchdog(struct hrtimer * timer)6911 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6912 {
6913 struct napi_struct *napi;
6914
6915 napi = container_of(timer, struct napi_struct, timer);
6916
6917 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6918 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6919 */
6920 if (!napi_disable_pending(napi) &&
6921 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6922 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6923 __napi_schedule_irqoff(napi);
6924 }
6925
6926 return HRTIMER_NORESTART;
6927 }
6928
dev_set_threaded(struct net_device * dev,bool threaded)6929 int dev_set_threaded(struct net_device *dev, bool threaded)
6930 {
6931 struct napi_struct *napi;
6932 int err = 0;
6933
6934 netdev_assert_locked_or_invisible(dev);
6935
6936 if (dev->threaded == threaded)
6937 return 0;
6938
6939 if (threaded) {
6940 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6941 if (!napi->thread) {
6942 err = napi_kthread_create(napi);
6943 if (err) {
6944 threaded = false;
6945 break;
6946 }
6947 }
6948 }
6949 }
6950
6951 WRITE_ONCE(dev->threaded, threaded);
6952
6953 /* Make sure kthread is created before THREADED bit
6954 * is set.
6955 */
6956 smp_mb__before_atomic();
6957
6958 /* Setting/unsetting threaded mode on a napi might not immediately
6959 * take effect, if the current napi instance is actively being
6960 * polled. In this case, the switch between threaded mode and
6961 * softirq mode will happen in the next round of napi_schedule().
6962 * This should not cause hiccups/stalls to the live traffic.
6963 */
6964 list_for_each_entry(napi, &dev->napi_list, dev_list)
6965 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6966
6967 return err;
6968 }
6969 EXPORT_SYMBOL(dev_set_threaded);
6970
6971 /**
6972 * netif_queue_set_napi - Associate queue with the napi
6973 * @dev: device to which NAPI and queue belong
6974 * @queue_index: Index of queue
6975 * @type: queue type as RX or TX
6976 * @napi: NAPI context, pass NULL to clear previously set NAPI
6977 *
6978 * Set queue with its corresponding napi context. This should be done after
6979 * registering the NAPI handler for the queue-vector and the queues have been
6980 * mapped to the corresponding interrupt vector.
6981 */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)6982 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6983 enum netdev_queue_type type, struct napi_struct *napi)
6984 {
6985 struct netdev_rx_queue *rxq;
6986 struct netdev_queue *txq;
6987
6988 if (WARN_ON_ONCE(napi && !napi->dev))
6989 return;
6990 netdev_ops_assert_locked_or_invisible(dev);
6991
6992 switch (type) {
6993 case NETDEV_QUEUE_TYPE_RX:
6994 rxq = __netif_get_rx_queue(dev, queue_index);
6995 rxq->napi = napi;
6996 return;
6997 case NETDEV_QUEUE_TYPE_TX:
6998 txq = netdev_get_tx_queue(dev, queue_index);
6999 txq->napi = napi;
7000 return;
7001 default:
7002 return;
7003 }
7004 }
7005 EXPORT_SYMBOL(netif_queue_set_napi);
7006
7007 static void
netif_napi_irq_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)7008 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7009 const cpumask_t *mask)
7010 {
7011 struct napi_struct *napi =
7012 container_of(notify, struct napi_struct, notify);
7013 #ifdef CONFIG_RFS_ACCEL
7014 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7015 int err;
7016 #endif
7017
7018 if (napi->config && napi->dev->irq_affinity_auto)
7019 cpumask_copy(&napi->config->affinity_mask, mask);
7020
7021 #ifdef CONFIG_RFS_ACCEL
7022 if (napi->dev->rx_cpu_rmap_auto) {
7023 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7024 if (err)
7025 netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7026 err);
7027 }
7028 #endif
7029 }
7030
7031 #ifdef CONFIG_RFS_ACCEL
netif_napi_affinity_release(struct kref * ref)7032 static void netif_napi_affinity_release(struct kref *ref)
7033 {
7034 struct napi_struct *napi =
7035 container_of(ref, struct napi_struct, notify.kref);
7036 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7037
7038 netdev_assert_locked(napi->dev);
7039 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7040 &napi->state));
7041
7042 if (!napi->dev->rx_cpu_rmap_auto)
7043 return;
7044 rmap->obj[napi->napi_rmap_idx] = NULL;
7045 napi->napi_rmap_idx = -1;
7046 cpu_rmap_put(rmap);
7047 }
7048
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7049 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7050 {
7051 if (dev->rx_cpu_rmap_auto)
7052 return 0;
7053
7054 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7055 if (!dev->rx_cpu_rmap)
7056 return -ENOMEM;
7057
7058 dev->rx_cpu_rmap_auto = true;
7059 return 0;
7060 }
7061 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7062
netif_del_cpu_rmap(struct net_device * dev)7063 static void netif_del_cpu_rmap(struct net_device *dev)
7064 {
7065 struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7066
7067 if (!dev->rx_cpu_rmap_auto)
7068 return;
7069
7070 /* Free the rmap */
7071 cpu_rmap_put(rmap);
7072 dev->rx_cpu_rmap = NULL;
7073 dev->rx_cpu_rmap_auto = false;
7074 }
7075
7076 #else
netif_napi_affinity_release(struct kref * ref)7077 static void netif_napi_affinity_release(struct kref *ref)
7078 {
7079 }
7080
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7081 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7082 {
7083 return 0;
7084 }
7085 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7086
netif_del_cpu_rmap(struct net_device * dev)7087 static void netif_del_cpu_rmap(struct net_device *dev)
7088 {
7089 }
7090 #endif
7091
netif_set_affinity_auto(struct net_device * dev)7092 void netif_set_affinity_auto(struct net_device *dev)
7093 {
7094 unsigned int i, maxqs, numa;
7095
7096 maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7097 numa = dev_to_node(&dev->dev);
7098
7099 for (i = 0; i < maxqs; i++)
7100 cpumask_set_cpu(cpumask_local_spread(i, numa),
7101 &dev->napi_config[i].affinity_mask);
7102
7103 dev->irq_affinity_auto = true;
7104 }
7105 EXPORT_SYMBOL(netif_set_affinity_auto);
7106
netif_napi_set_irq_locked(struct napi_struct * napi,int irq)7107 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7108 {
7109 int rc;
7110
7111 netdev_assert_locked_or_invisible(napi->dev);
7112
7113 if (napi->irq == irq)
7114 return;
7115
7116 /* Remove existing resources */
7117 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7118 irq_set_affinity_notifier(napi->irq, NULL);
7119
7120 napi->irq = irq;
7121 if (irq < 0 ||
7122 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7123 return;
7124
7125 /* Abort for buggy drivers */
7126 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7127 return;
7128
7129 #ifdef CONFIG_RFS_ACCEL
7130 if (napi->dev->rx_cpu_rmap_auto) {
7131 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7132 if (rc < 0)
7133 return;
7134
7135 cpu_rmap_get(napi->dev->rx_cpu_rmap);
7136 napi->napi_rmap_idx = rc;
7137 }
7138 #endif
7139
7140 /* Use core IRQ notifier */
7141 napi->notify.notify = netif_napi_irq_notify;
7142 napi->notify.release = netif_napi_affinity_release;
7143 rc = irq_set_affinity_notifier(irq, &napi->notify);
7144 if (rc) {
7145 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7146 rc);
7147 goto put_rmap;
7148 }
7149
7150 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7151 return;
7152
7153 put_rmap:
7154 #ifdef CONFIG_RFS_ACCEL
7155 if (napi->dev->rx_cpu_rmap_auto) {
7156 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7157 cpu_rmap_put(napi->dev->rx_cpu_rmap);
7158 napi->napi_rmap_idx = -1;
7159 }
7160 #endif
7161 napi->notify.notify = NULL;
7162 napi->notify.release = NULL;
7163 }
7164 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7165
napi_restore_config(struct napi_struct * n)7166 static void napi_restore_config(struct napi_struct *n)
7167 {
7168 n->defer_hard_irqs = n->config->defer_hard_irqs;
7169 n->gro_flush_timeout = n->config->gro_flush_timeout;
7170 n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7171
7172 if (n->dev->irq_affinity_auto &&
7173 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7174 irq_set_affinity(n->irq, &n->config->affinity_mask);
7175
7176 /* a NAPI ID might be stored in the config, if so use it. if not, use
7177 * napi_hash_add to generate one for us.
7178 */
7179 if (n->config->napi_id) {
7180 napi_hash_add_with_id(n, n->config->napi_id);
7181 } else {
7182 napi_hash_add(n);
7183 n->config->napi_id = n->napi_id;
7184 }
7185 }
7186
napi_save_config(struct napi_struct * n)7187 static void napi_save_config(struct napi_struct *n)
7188 {
7189 n->config->defer_hard_irqs = n->defer_hard_irqs;
7190 n->config->gro_flush_timeout = n->gro_flush_timeout;
7191 n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7192 napi_hash_del(n);
7193 }
7194
7195 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7196 * inherit an existing ID try to insert it at the right position.
7197 */
7198 static void
netif_napi_dev_list_add(struct net_device * dev,struct napi_struct * napi)7199 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7200 {
7201 unsigned int new_id, pos_id;
7202 struct list_head *higher;
7203 struct napi_struct *pos;
7204
7205 new_id = UINT_MAX;
7206 if (napi->config && napi->config->napi_id)
7207 new_id = napi->config->napi_id;
7208
7209 higher = &dev->napi_list;
7210 list_for_each_entry(pos, &dev->napi_list, dev_list) {
7211 if (napi_id_valid(pos->napi_id))
7212 pos_id = pos->napi_id;
7213 else if (pos->config)
7214 pos_id = pos->config->napi_id;
7215 else
7216 pos_id = UINT_MAX;
7217
7218 if (pos_id <= new_id)
7219 break;
7220 higher = &pos->dev_list;
7221 }
7222 list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7223 }
7224
7225 /* Double check that napi_get_frags() allocates skbs with
7226 * skb->head being backed by slab, not a page fragment.
7227 * This is to make sure bug fixed in 3226b158e67c
7228 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7229 * does not accidentally come back.
7230 */
napi_get_frags_check(struct napi_struct * napi)7231 static void napi_get_frags_check(struct napi_struct *napi)
7232 {
7233 struct sk_buff *skb;
7234
7235 local_bh_disable();
7236 skb = napi_get_frags(napi);
7237 WARN_ON_ONCE(skb && skb->head_frag);
7238 napi_free_frags(napi);
7239 local_bh_enable();
7240 }
7241
netif_napi_add_weight_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)7242 void netif_napi_add_weight_locked(struct net_device *dev,
7243 struct napi_struct *napi,
7244 int (*poll)(struct napi_struct *, int),
7245 int weight)
7246 {
7247 netdev_assert_locked(dev);
7248 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7249 return;
7250
7251 INIT_LIST_HEAD(&napi->poll_list);
7252 INIT_HLIST_NODE(&napi->napi_hash_node);
7253 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7254 gro_init(&napi->gro);
7255 napi->skb = NULL;
7256 napi->poll = poll;
7257 if (weight > NAPI_POLL_WEIGHT)
7258 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7259 weight);
7260 napi->weight = weight;
7261 napi->dev = dev;
7262 #ifdef CONFIG_NETPOLL
7263 napi->poll_owner = -1;
7264 #endif
7265 napi->list_owner = -1;
7266 set_bit(NAPI_STATE_SCHED, &napi->state);
7267 set_bit(NAPI_STATE_NPSVC, &napi->state);
7268 netif_napi_dev_list_add(dev, napi);
7269
7270 /* default settings from sysfs are applied to all NAPIs. any per-NAPI
7271 * configuration will be loaded in napi_enable
7272 */
7273 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7274 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7275
7276 napi_get_frags_check(napi);
7277 /* Create kthread for this napi if dev->threaded is set.
7278 * Clear dev->threaded if kthread creation failed so that
7279 * threaded mode will not be enabled in napi_enable().
7280 */
7281 if (dev->threaded && napi_kthread_create(napi))
7282 dev->threaded = false;
7283 netif_napi_set_irq_locked(napi, -1);
7284 }
7285 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7286
napi_disable_locked(struct napi_struct * n)7287 void napi_disable_locked(struct napi_struct *n)
7288 {
7289 unsigned long val, new;
7290
7291 might_sleep();
7292 netdev_assert_locked(n->dev);
7293
7294 set_bit(NAPI_STATE_DISABLE, &n->state);
7295
7296 val = READ_ONCE(n->state);
7297 do {
7298 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7299 usleep_range(20, 200);
7300 val = READ_ONCE(n->state);
7301 }
7302
7303 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7304 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7305 } while (!try_cmpxchg(&n->state, &val, new));
7306
7307 hrtimer_cancel(&n->timer);
7308
7309 if (n->config)
7310 napi_save_config(n);
7311 else
7312 napi_hash_del(n);
7313
7314 clear_bit(NAPI_STATE_DISABLE, &n->state);
7315 }
7316 EXPORT_SYMBOL(napi_disable_locked);
7317
7318 /**
7319 * napi_disable() - prevent NAPI from scheduling
7320 * @n: NAPI context
7321 *
7322 * Stop NAPI from being scheduled on this context.
7323 * Waits till any outstanding processing completes.
7324 * Takes netdev_lock() for associated net_device.
7325 */
napi_disable(struct napi_struct * n)7326 void napi_disable(struct napi_struct *n)
7327 {
7328 netdev_lock(n->dev);
7329 napi_disable_locked(n);
7330 netdev_unlock(n->dev);
7331 }
7332 EXPORT_SYMBOL(napi_disable);
7333
napi_enable_locked(struct napi_struct * n)7334 void napi_enable_locked(struct napi_struct *n)
7335 {
7336 unsigned long new, val = READ_ONCE(n->state);
7337
7338 if (n->config)
7339 napi_restore_config(n);
7340 else
7341 napi_hash_add(n);
7342
7343 do {
7344 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7345
7346 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7347 if (n->dev->threaded && n->thread)
7348 new |= NAPIF_STATE_THREADED;
7349 } while (!try_cmpxchg(&n->state, &val, new));
7350 }
7351 EXPORT_SYMBOL(napi_enable_locked);
7352
7353 /**
7354 * napi_enable() - enable NAPI scheduling
7355 * @n: NAPI context
7356 *
7357 * Enable scheduling of a NAPI instance.
7358 * Must be paired with napi_disable().
7359 * Takes netdev_lock() for associated net_device.
7360 */
napi_enable(struct napi_struct * n)7361 void napi_enable(struct napi_struct *n)
7362 {
7363 netdev_lock(n->dev);
7364 napi_enable_locked(n);
7365 netdev_unlock(n->dev);
7366 }
7367 EXPORT_SYMBOL(napi_enable);
7368
7369 /* Must be called in process context */
__netif_napi_del_locked(struct napi_struct * napi)7370 void __netif_napi_del_locked(struct napi_struct *napi)
7371 {
7372 netdev_assert_locked(napi->dev);
7373
7374 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7375 return;
7376
7377 /* Make sure NAPI is disabled (or was never enabled). */
7378 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7379
7380 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7381 irq_set_affinity_notifier(napi->irq, NULL);
7382
7383 if (napi->config) {
7384 napi->index = -1;
7385 napi->config = NULL;
7386 }
7387
7388 list_del_rcu(&napi->dev_list);
7389 napi_free_frags(napi);
7390
7391 gro_cleanup(&napi->gro);
7392
7393 if (napi->thread) {
7394 kthread_stop(napi->thread);
7395 napi->thread = NULL;
7396 }
7397 }
7398 EXPORT_SYMBOL(__netif_napi_del_locked);
7399
__napi_poll(struct napi_struct * n,bool * repoll)7400 static int __napi_poll(struct napi_struct *n, bool *repoll)
7401 {
7402 int work, weight;
7403
7404 weight = n->weight;
7405
7406 /* This NAPI_STATE_SCHED test is for avoiding a race
7407 * with netpoll's poll_napi(). Only the entity which
7408 * obtains the lock and sees NAPI_STATE_SCHED set will
7409 * actually make the ->poll() call. Therefore we avoid
7410 * accidentally calling ->poll() when NAPI is not scheduled.
7411 */
7412 work = 0;
7413 if (napi_is_scheduled(n)) {
7414 work = n->poll(n, weight);
7415 trace_napi_poll(n, work, weight);
7416
7417 xdp_do_check_flushed(n);
7418 }
7419
7420 if (unlikely(work > weight))
7421 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7422 n->poll, work, weight);
7423
7424 if (likely(work < weight))
7425 return work;
7426
7427 /* Drivers must not modify the NAPI state if they
7428 * consume the entire weight. In such cases this code
7429 * still "owns" the NAPI instance and therefore can
7430 * move the instance around on the list at-will.
7431 */
7432 if (unlikely(napi_disable_pending(n))) {
7433 napi_complete(n);
7434 return work;
7435 }
7436
7437 /* The NAPI context has more processing work, but busy-polling
7438 * is preferred. Exit early.
7439 */
7440 if (napi_prefer_busy_poll(n)) {
7441 if (napi_complete_done(n, work)) {
7442 /* If timeout is not set, we need to make sure
7443 * that the NAPI is re-scheduled.
7444 */
7445 napi_schedule(n);
7446 }
7447 return work;
7448 }
7449
7450 /* Flush too old packets. If HZ < 1000, flush all packets */
7451 gro_flush(&n->gro, HZ >= 1000);
7452 gro_normal_list(&n->gro);
7453
7454 /* Some drivers may have called napi_schedule
7455 * prior to exhausting their budget.
7456 */
7457 if (unlikely(!list_empty(&n->poll_list))) {
7458 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7459 n->dev ? n->dev->name : "backlog");
7460 return work;
7461 }
7462
7463 *repoll = true;
7464
7465 return work;
7466 }
7467
napi_poll(struct napi_struct * n,struct list_head * repoll)7468 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7469 {
7470 bool do_repoll = false;
7471 void *have;
7472 int work;
7473
7474 list_del_init(&n->poll_list);
7475
7476 have = netpoll_poll_lock(n);
7477
7478 work = __napi_poll(n, &do_repoll);
7479
7480 if (do_repoll) {
7481 #if defined(CONFIG_DEBUG_NET)
7482 if (unlikely(!napi_is_scheduled(n)))
7483 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7484 n->dev->name, n->poll);
7485 #endif
7486 list_add_tail(&n->poll_list, repoll);
7487 }
7488 netpoll_poll_unlock(have);
7489
7490 return work;
7491 }
7492
napi_thread_wait(struct napi_struct * napi)7493 static int napi_thread_wait(struct napi_struct *napi)
7494 {
7495 set_current_state(TASK_INTERRUPTIBLE);
7496
7497 while (!kthread_should_stop()) {
7498 /* Testing SCHED_THREADED bit here to make sure the current
7499 * kthread owns this napi and could poll on this napi.
7500 * Testing SCHED bit is not enough because SCHED bit might be
7501 * set by some other busy poll thread or by napi_disable().
7502 */
7503 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7504 WARN_ON(!list_empty(&napi->poll_list));
7505 __set_current_state(TASK_RUNNING);
7506 return 0;
7507 }
7508
7509 schedule();
7510 set_current_state(TASK_INTERRUPTIBLE);
7511 }
7512 __set_current_state(TASK_RUNNING);
7513
7514 return -1;
7515 }
7516
napi_threaded_poll_loop(struct napi_struct * napi)7517 static void napi_threaded_poll_loop(struct napi_struct *napi)
7518 {
7519 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7520 struct softnet_data *sd;
7521 unsigned long last_qs = jiffies;
7522
7523 for (;;) {
7524 bool repoll = false;
7525 void *have;
7526
7527 local_bh_disable();
7528 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7529
7530 sd = this_cpu_ptr(&softnet_data);
7531 sd->in_napi_threaded_poll = true;
7532
7533 have = netpoll_poll_lock(napi);
7534 __napi_poll(napi, &repoll);
7535 netpoll_poll_unlock(have);
7536
7537 sd->in_napi_threaded_poll = false;
7538 barrier();
7539
7540 if (sd_has_rps_ipi_waiting(sd)) {
7541 local_irq_disable();
7542 net_rps_action_and_irq_enable(sd);
7543 }
7544 skb_defer_free_flush(sd);
7545 bpf_net_ctx_clear(bpf_net_ctx);
7546 local_bh_enable();
7547
7548 if (!repoll)
7549 break;
7550
7551 rcu_softirq_qs_periodic(last_qs);
7552 cond_resched();
7553 }
7554 }
7555
napi_threaded_poll(void * data)7556 static int napi_threaded_poll(void *data)
7557 {
7558 struct napi_struct *napi = data;
7559
7560 while (!napi_thread_wait(napi))
7561 napi_threaded_poll_loop(napi);
7562
7563 return 0;
7564 }
7565
net_rx_action(void)7566 static __latent_entropy void net_rx_action(void)
7567 {
7568 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7569 unsigned long time_limit = jiffies +
7570 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7571 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7572 int budget = READ_ONCE(net_hotdata.netdev_budget);
7573 LIST_HEAD(list);
7574 LIST_HEAD(repoll);
7575
7576 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7577 start:
7578 sd->in_net_rx_action = true;
7579 local_irq_disable();
7580 list_splice_init(&sd->poll_list, &list);
7581 local_irq_enable();
7582
7583 for (;;) {
7584 struct napi_struct *n;
7585
7586 skb_defer_free_flush(sd);
7587
7588 if (list_empty(&list)) {
7589 if (list_empty(&repoll)) {
7590 sd->in_net_rx_action = false;
7591 barrier();
7592 /* We need to check if ____napi_schedule()
7593 * had refilled poll_list while
7594 * sd->in_net_rx_action was true.
7595 */
7596 if (!list_empty(&sd->poll_list))
7597 goto start;
7598 if (!sd_has_rps_ipi_waiting(sd))
7599 goto end;
7600 }
7601 break;
7602 }
7603
7604 n = list_first_entry(&list, struct napi_struct, poll_list);
7605 budget -= napi_poll(n, &repoll);
7606
7607 /* If softirq window is exhausted then punt.
7608 * Allow this to run for 2 jiffies since which will allow
7609 * an average latency of 1.5/HZ.
7610 */
7611 if (unlikely(budget <= 0 ||
7612 time_after_eq(jiffies, time_limit))) {
7613 /* Pairs with READ_ONCE() in softnet_seq_show() */
7614 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7615 break;
7616 }
7617 }
7618
7619 local_irq_disable();
7620
7621 list_splice_tail_init(&sd->poll_list, &list);
7622 list_splice_tail(&repoll, &list);
7623 list_splice(&list, &sd->poll_list);
7624 if (!list_empty(&sd->poll_list))
7625 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7626 else
7627 sd->in_net_rx_action = false;
7628
7629 net_rps_action_and_irq_enable(sd);
7630 end:
7631 bpf_net_ctx_clear(bpf_net_ctx);
7632 }
7633
7634 struct netdev_adjacent {
7635 struct net_device *dev;
7636 netdevice_tracker dev_tracker;
7637
7638 /* upper master flag, there can only be one master device per list */
7639 bool master;
7640
7641 /* lookup ignore flag */
7642 bool ignore;
7643
7644 /* counter for the number of times this device was added to us */
7645 u16 ref_nr;
7646
7647 /* private field for the users */
7648 void *private;
7649
7650 struct list_head list;
7651 struct rcu_head rcu;
7652 };
7653
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7654 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7655 struct list_head *adj_list)
7656 {
7657 struct netdev_adjacent *adj;
7658
7659 list_for_each_entry(adj, adj_list, list) {
7660 if (adj->dev == adj_dev)
7661 return adj;
7662 }
7663 return NULL;
7664 }
7665
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7666 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7667 struct netdev_nested_priv *priv)
7668 {
7669 struct net_device *dev = (struct net_device *)priv->data;
7670
7671 return upper_dev == dev;
7672 }
7673
7674 /**
7675 * netdev_has_upper_dev - Check if device is linked to an upper device
7676 * @dev: device
7677 * @upper_dev: upper device to check
7678 *
7679 * Find out if a device is linked to specified upper device and return true
7680 * in case it is. Note that this checks only immediate upper device,
7681 * not through a complete stack of devices. The caller must hold the RTNL lock.
7682 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7683 bool netdev_has_upper_dev(struct net_device *dev,
7684 struct net_device *upper_dev)
7685 {
7686 struct netdev_nested_priv priv = {
7687 .data = (void *)upper_dev,
7688 };
7689
7690 ASSERT_RTNL();
7691
7692 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7693 &priv);
7694 }
7695 EXPORT_SYMBOL(netdev_has_upper_dev);
7696
7697 /**
7698 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7699 * @dev: device
7700 * @upper_dev: upper device to check
7701 *
7702 * Find out if a device is linked to specified upper device and return true
7703 * in case it is. Note that this checks the entire upper device chain.
7704 * The caller must hold rcu lock.
7705 */
7706
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7707 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7708 struct net_device *upper_dev)
7709 {
7710 struct netdev_nested_priv priv = {
7711 .data = (void *)upper_dev,
7712 };
7713
7714 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7715 &priv);
7716 }
7717 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7718
7719 /**
7720 * netdev_has_any_upper_dev - Check if device is linked to some device
7721 * @dev: device
7722 *
7723 * Find out if a device is linked to an upper device and return true in case
7724 * it is. The caller must hold the RTNL lock.
7725 */
netdev_has_any_upper_dev(struct net_device * dev)7726 bool netdev_has_any_upper_dev(struct net_device *dev)
7727 {
7728 ASSERT_RTNL();
7729
7730 return !list_empty(&dev->adj_list.upper);
7731 }
7732 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7733
7734 /**
7735 * netdev_master_upper_dev_get - Get master upper device
7736 * @dev: device
7737 *
7738 * Find a master upper device and return pointer to it or NULL in case
7739 * it's not there. The caller must hold the RTNL lock.
7740 */
netdev_master_upper_dev_get(struct net_device * dev)7741 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7742 {
7743 struct netdev_adjacent *upper;
7744
7745 ASSERT_RTNL();
7746
7747 if (list_empty(&dev->adj_list.upper))
7748 return NULL;
7749
7750 upper = list_first_entry(&dev->adj_list.upper,
7751 struct netdev_adjacent, list);
7752 if (likely(upper->master))
7753 return upper->dev;
7754 return NULL;
7755 }
7756 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7757
__netdev_master_upper_dev_get(struct net_device * dev)7758 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7759 {
7760 struct netdev_adjacent *upper;
7761
7762 ASSERT_RTNL();
7763
7764 if (list_empty(&dev->adj_list.upper))
7765 return NULL;
7766
7767 upper = list_first_entry(&dev->adj_list.upper,
7768 struct netdev_adjacent, list);
7769 if (likely(upper->master) && !upper->ignore)
7770 return upper->dev;
7771 return NULL;
7772 }
7773
7774 /**
7775 * netdev_has_any_lower_dev - Check if device is linked to some device
7776 * @dev: device
7777 *
7778 * Find out if a device is linked to a lower device and return true in case
7779 * it is. The caller must hold the RTNL lock.
7780 */
netdev_has_any_lower_dev(struct net_device * dev)7781 static bool netdev_has_any_lower_dev(struct net_device *dev)
7782 {
7783 ASSERT_RTNL();
7784
7785 return !list_empty(&dev->adj_list.lower);
7786 }
7787
netdev_adjacent_get_private(struct list_head * adj_list)7788 void *netdev_adjacent_get_private(struct list_head *adj_list)
7789 {
7790 struct netdev_adjacent *adj;
7791
7792 adj = list_entry(adj_list, struct netdev_adjacent, list);
7793
7794 return adj->private;
7795 }
7796 EXPORT_SYMBOL(netdev_adjacent_get_private);
7797
7798 /**
7799 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7800 * @dev: device
7801 * @iter: list_head ** of the current position
7802 *
7803 * Gets the next device from the dev's upper list, starting from iter
7804 * position. The caller must hold RCU read lock.
7805 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7806 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7807 struct list_head **iter)
7808 {
7809 struct netdev_adjacent *upper;
7810
7811 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7812
7813 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7814
7815 if (&upper->list == &dev->adj_list.upper)
7816 return NULL;
7817
7818 *iter = &upper->list;
7819
7820 return upper->dev;
7821 }
7822 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7823
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7824 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7825 struct list_head **iter,
7826 bool *ignore)
7827 {
7828 struct netdev_adjacent *upper;
7829
7830 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7831
7832 if (&upper->list == &dev->adj_list.upper)
7833 return NULL;
7834
7835 *iter = &upper->list;
7836 *ignore = upper->ignore;
7837
7838 return upper->dev;
7839 }
7840
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7841 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7842 struct list_head **iter)
7843 {
7844 struct netdev_adjacent *upper;
7845
7846 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7847
7848 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7849
7850 if (&upper->list == &dev->adj_list.upper)
7851 return NULL;
7852
7853 *iter = &upper->list;
7854
7855 return upper->dev;
7856 }
7857
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7858 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7859 int (*fn)(struct net_device *dev,
7860 struct netdev_nested_priv *priv),
7861 struct netdev_nested_priv *priv)
7862 {
7863 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7864 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7865 int ret, cur = 0;
7866 bool ignore;
7867
7868 now = dev;
7869 iter = &dev->adj_list.upper;
7870
7871 while (1) {
7872 if (now != dev) {
7873 ret = fn(now, priv);
7874 if (ret)
7875 return ret;
7876 }
7877
7878 next = NULL;
7879 while (1) {
7880 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7881 if (!udev)
7882 break;
7883 if (ignore)
7884 continue;
7885
7886 next = udev;
7887 niter = &udev->adj_list.upper;
7888 dev_stack[cur] = now;
7889 iter_stack[cur++] = iter;
7890 break;
7891 }
7892
7893 if (!next) {
7894 if (!cur)
7895 return 0;
7896 next = dev_stack[--cur];
7897 niter = iter_stack[cur];
7898 }
7899
7900 now = next;
7901 iter = niter;
7902 }
7903
7904 return 0;
7905 }
7906
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7907 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7908 int (*fn)(struct net_device *dev,
7909 struct netdev_nested_priv *priv),
7910 struct netdev_nested_priv *priv)
7911 {
7912 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7913 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7914 int ret, cur = 0;
7915
7916 now = dev;
7917 iter = &dev->adj_list.upper;
7918
7919 while (1) {
7920 if (now != dev) {
7921 ret = fn(now, priv);
7922 if (ret)
7923 return ret;
7924 }
7925
7926 next = NULL;
7927 while (1) {
7928 udev = netdev_next_upper_dev_rcu(now, &iter);
7929 if (!udev)
7930 break;
7931
7932 next = udev;
7933 niter = &udev->adj_list.upper;
7934 dev_stack[cur] = now;
7935 iter_stack[cur++] = iter;
7936 break;
7937 }
7938
7939 if (!next) {
7940 if (!cur)
7941 return 0;
7942 next = dev_stack[--cur];
7943 niter = iter_stack[cur];
7944 }
7945
7946 now = next;
7947 iter = niter;
7948 }
7949
7950 return 0;
7951 }
7952 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7953
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7954 static bool __netdev_has_upper_dev(struct net_device *dev,
7955 struct net_device *upper_dev)
7956 {
7957 struct netdev_nested_priv priv = {
7958 .flags = 0,
7959 .data = (void *)upper_dev,
7960 };
7961
7962 ASSERT_RTNL();
7963
7964 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7965 &priv);
7966 }
7967
7968 /**
7969 * netdev_lower_get_next_private - Get the next ->private from the
7970 * lower neighbour list
7971 * @dev: device
7972 * @iter: list_head ** of the current position
7973 *
7974 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7975 * list, starting from iter position. The caller must hold either hold the
7976 * RTNL lock or its own locking that guarantees that the neighbour lower
7977 * list will remain unchanged.
7978 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7979 void *netdev_lower_get_next_private(struct net_device *dev,
7980 struct list_head **iter)
7981 {
7982 struct netdev_adjacent *lower;
7983
7984 lower = list_entry(*iter, struct netdev_adjacent, list);
7985
7986 if (&lower->list == &dev->adj_list.lower)
7987 return NULL;
7988
7989 *iter = lower->list.next;
7990
7991 return lower->private;
7992 }
7993 EXPORT_SYMBOL(netdev_lower_get_next_private);
7994
7995 /**
7996 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7997 * lower neighbour list, RCU
7998 * variant
7999 * @dev: device
8000 * @iter: list_head ** of the current position
8001 *
8002 * Gets the next netdev_adjacent->private from the dev's lower neighbour
8003 * list, starting from iter position. The caller must hold RCU read lock.
8004 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)8005 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8006 struct list_head **iter)
8007 {
8008 struct netdev_adjacent *lower;
8009
8010 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8011
8012 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8013
8014 if (&lower->list == &dev->adj_list.lower)
8015 return NULL;
8016
8017 *iter = &lower->list;
8018
8019 return lower->private;
8020 }
8021 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8022
8023 /**
8024 * netdev_lower_get_next - Get the next device from the lower neighbour
8025 * list
8026 * @dev: device
8027 * @iter: list_head ** of the current position
8028 *
8029 * Gets the next netdev_adjacent from the dev's lower neighbour
8030 * list, starting from iter position. The caller must hold RTNL lock or
8031 * its own locking that guarantees that the neighbour lower
8032 * list will remain unchanged.
8033 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)8034 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8035 {
8036 struct netdev_adjacent *lower;
8037
8038 lower = list_entry(*iter, struct netdev_adjacent, list);
8039
8040 if (&lower->list == &dev->adj_list.lower)
8041 return NULL;
8042
8043 *iter = lower->list.next;
8044
8045 return lower->dev;
8046 }
8047 EXPORT_SYMBOL(netdev_lower_get_next);
8048
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)8049 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8050 struct list_head **iter)
8051 {
8052 struct netdev_adjacent *lower;
8053
8054 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8055
8056 if (&lower->list == &dev->adj_list.lower)
8057 return NULL;
8058
8059 *iter = &lower->list;
8060
8061 return lower->dev;
8062 }
8063
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8064 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8065 struct list_head **iter,
8066 bool *ignore)
8067 {
8068 struct netdev_adjacent *lower;
8069
8070 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8071
8072 if (&lower->list == &dev->adj_list.lower)
8073 return NULL;
8074
8075 *iter = &lower->list;
8076 *ignore = lower->ignore;
8077
8078 return lower->dev;
8079 }
8080
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8081 int netdev_walk_all_lower_dev(struct net_device *dev,
8082 int (*fn)(struct net_device *dev,
8083 struct netdev_nested_priv *priv),
8084 struct netdev_nested_priv *priv)
8085 {
8086 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8087 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8088 int ret, cur = 0;
8089
8090 now = dev;
8091 iter = &dev->adj_list.lower;
8092
8093 while (1) {
8094 if (now != dev) {
8095 ret = fn(now, priv);
8096 if (ret)
8097 return ret;
8098 }
8099
8100 next = NULL;
8101 while (1) {
8102 ldev = netdev_next_lower_dev(now, &iter);
8103 if (!ldev)
8104 break;
8105
8106 next = ldev;
8107 niter = &ldev->adj_list.lower;
8108 dev_stack[cur] = now;
8109 iter_stack[cur++] = iter;
8110 break;
8111 }
8112
8113 if (!next) {
8114 if (!cur)
8115 return 0;
8116 next = dev_stack[--cur];
8117 niter = iter_stack[cur];
8118 }
8119
8120 now = next;
8121 iter = niter;
8122 }
8123
8124 return 0;
8125 }
8126 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8127
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8128 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8129 int (*fn)(struct net_device *dev,
8130 struct netdev_nested_priv *priv),
8131 struct netdev_nested_priv *priv)
8132 {
8133 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8134 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8135 int ret, cur = 0;
8136 bool ignore;
8137
8138 now = dev;
8139 iter = &dev->adj_list.lower;
8140
8141 while (1) {
8142 if (now != dev) {
8143 ret = fn(now, priv);
8144 if (ret)
8145 return ret;
8146 }
8147
8148 next = NULL;
8149 while (1) {
8150 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8151 if (!ldev)
8152 break;
8153 if (ignore)
8154 continue;
8155
8156 next = ldev;
8157 niter = &ldev->adj_list.lower;
8158 dev_stack[cur] = now;
8159 iter_stack[cur++] = iter;
8160 break;
8161 }
8162
8163 if (!next) {
8164 if (!cur)
8165 return 0;
8166 next = dev_stack[--cur];
8167 niter = iter_stack[cur];
8168 }
8169
8170 now = next;
8171 iter = niter;
8172 }
8173
8174 return 0;
8175 }
8176
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)8177 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8178 struct list_head **iter)
8179 {
8180 struct netdev_adjacent *lower;
8181
8182 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8183 if (&lower->list == &dev->adj_list.lower)
8184 return NULL;
8185
8186 *iter = &lower->list;
8187
8188 return lower->dev;
8189 }
8190 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8191
__netdev_upper_depth(struct net_device * dev)8192 static u8 __netdev_upper_depth(struct net_device *dev)
8193 {
8194 struct net_device *udev;
8195 struct list_head *iter;
8196 u8 max_depth = 0;
8197 bool ignore;
8198
8199 for (iter = &dev->adj_list.upper,
8200 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8201 udev;
8202 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8203 if (ignore)
8204 continue;
8205 if (max_depth < udev->upper_level)
8206 max_depth = udev->upper_level;
8207 }
8208
8209 return max_depth;
8210 }
8211
__netdev_lower_depth(struct net_device * dev)8212 static u8 __netdev_lower_depth(struct net_device *dev)
8213 {
8214 struct net_device *ldev;
8215 struct list_head *iter;
8216 u8 max_depth = 0;
8217 bool ignore;
8218
8219 for (iter = &dev->adj_list.lower,
8220 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8221 ldev;
8222 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8223 if (ignore)
8224 continue;
8225 if (max_depth < ldev->lower_level)
8226 max_depth = ldev->lower_level;
8227 }
8228
8229 return max_depth;
8230 }
8231
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)8232 static int __netdev_update_upper_level(struct net_device *dev,
8233 struct netdev_nested_priv *__unused)
8234 {
8235 dev->upper_level = __netdev_upper_depth(dev) + 1;
8236 return 0;
8237 }
8238
8239 #ifdef CONFIG_LOCKDEP
8240 static LIST_HEAD(net_unlink_list);
8241
net_unlink_todo(struct net_device * dev)8242 static void net_unlink_todo(struct net_device *dev)
8243 {
8244 if (list_empty(&dev->unlink_list))
8245 list_add_tail(&dev->unlink_list, &net_unlink_list);
8246 }
8247 #endif
8248
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)8249 static int __netdev_update_lower_level(struct net_device *dev,
8250 struct netdev_nested_priv *priv)
8251 {
8252 dev->lower_level = __netdev_lower_depth(dev) + 1;
8253
8254 #ifdef CONFIG_LOCKDEP
8255 if (!priv)
8256 return 0;
8257
8258 if (priv->flags & NESTED_SYNC_IMM)
8259 dev->nested_level = dev->lower_level - 1;
8260 if (priv->flags & NESTED_SYNC_TODO)
8261 net_unlink_todo(dev);
8262 #endif
8263 return 0;
8264 }
8265
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8266 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8267 int (*fn)(struct net_device *dev,
8268 struct netdev_nested_priv *priv),
8269 struct netdev_nested_priv *priv)
8270 {
8271 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8272 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8273 int ret, cur = 0;
8274
8275 now = dev;
8276 iter = &dev->adj_list.lower;
8277
8278 while (1) {
8279 if (now != dev) {
8280 ret = fn(now, priv);
8281 if (ret)
8282 return ret;
8283 }
8284
8285 next = NULL;
8286 while (1) {
8287 ldev = netdev_next_lower_dev_rcu(now, &iter);
8288 if (!ldev)
8289 break;
8290
8291 next = ldev;
8292 niter = &ldev->adj_list.lower;
8293 dev_stack[cur] = now;
8294 iter_stack[cur++] = iter;
8295 break;
8296 }
8297
8298 if (!next) {
8299 if (!cur)
8300 return 0;
8301 next = dev_stack[--cur];
8302 niter = iter_stack[cur];
8303 }
8304
8305 now = next;
8306 iter = niter;
8307 }
8308
8309 return 0;
8310 }
8311 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8312
8313 /**
8314 * netdev_lower_get_first_private_rcu - Get the first ->private from the
8315 * lower neighbour list, RCU
8316 * variant
8317 * @dev: device
8318 *
8319 * Gets the first netdev_adjacent->private from the dev's lower neighbour
8320 * list. The caller must hold RCU read lock.
8321 */
netdev_lower_get_first_private_rcu(struct net_device * dev)8322 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8323 {
8324 struct netdev_adjacent *lower;
8325
8326 lower = list_first_or_null_rcu(&dev->adj_list.lower,
8327 struct netdev_adjacent, list);
8328 if (lower)
8329 return lower->private;
8330 return NULL;
8331 }
8332 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8333
8334 /**
8335 * netdev_master_upper_dev_get_rcu - Get master upper device
8336 * @dev: device
8337 *
8338 * Find a master upper device and return pointer to it or NULL in case
8339 * it's not there. The caller must hold the RCU read lock.
8340 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)8341 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8342 {
8343 struct netdev_adjacent *upper;
8344
8345 upper = list_first_or_null_rcu(&dev->adj_list.upper,
8346 struct netdev_adjacent, list);
8347 if (upper && likely(upper->master))
8348 return upper->dev;
8349 return NULL;
8350 }
8351 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8352
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8353 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8354 struct net_device *adj_dev,
8355 struct list_head *dev_list)
8356 {
8357 char linkname[IFNAMSIZ+7];
8358
8359 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8360 "upper_%s" : "lower_%s", adj_dev->name);
8361 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8362 linkname);
8363 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)8364 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8365 char *name,
8366 struct list_head *dev_list)
8367 {
8368 char linkname[IFNAMSIZ+7];
8369
8370 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8371 "upper_%s" : "lower_%s", name);
8372 sysfs_remove_link(&(dev->dev.kobj), linkname);
8373 }
8374
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8375 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8376 struct net_device *adj_dev,
8377 struct list_head *dev_list)
8378 {
8379 return (dev_list == &dev->adj_list.upper ||
8380 dev_list == &dev->adj_list.lower) &&
8381 net_eq(dev_net(dev), dev_net(adj_dev));
8382 }
8383
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)8384 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8385 struct net_device *adj_dev,
8386 struct list_head *dev_list,
8387 void *private, bool master)
8388 {
8389 struct netdev_adjacent *adj;
8390 int ret;
8391
8392 adj = __netdev_find_adj(adj_dev, dev_list);
8393
8394 if (adj) {
8395 adj->ref_nr += 1;
8396 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8397 dev->name, adj_dev->name, adj->ref_nr);
8398
8399 return 0;
8400 }
8401
8402 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8403 if (!adj)
8404 return -ENOMEM;
8405
8406 adj->dev = adj_dev;
8407 adj->master = master;
8408 adj->ref_nr = 1;
8409 adj->private = private;
8410 adj->ignore = false;
8411 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8412
8413 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8414 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8415
8416 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8417 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8418 if (ret)
8419 goto free_adj;
8420 }
8421
8422 /* Ensure that master link is always the first item in list. */
8423 if (master) {
8424 ret = sysfs_create_link(&(dev->dev.kobj),
8425 &(adj_dev->dev.kobj), "master");
8426 if (ret)
8427 goto remove_symlinks;
8428
8429 list_add_rcu(&adj->list, dev_list);
8430 } else {
8431 list_add_tail_rcu(&adj->list, dev_list);
8432 }
8433
8434 return 0;
8435
8436 remove_symlinks:
8437 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8438 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8439 free_adj:
8440 netdev_put(adj_dev, &adj->dev_tracker);
8441 kfree(adj);
8442
8443 return ret;
8444 }
8445
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8446 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8447 struct net_device *adj_dev,
8448 u16 ref_nr,
8449 struct list_head *dev_list)
8450 {
8451 struct netdev_adjacent *adj;
8452
8453 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8454 dev->name, adj_dev->name, ref_nr);
8455
8456 adj = __netdev_find_adj(adj_dev, dev_list);
8457
8458 if (!adj) {
8459 pr_err("Adjacency does not exist for device %s from %s\n",
8460 dev->name, adj_dev->name);
8461 WARN_ON(1);
8462 return;
8463 }
8464
8465 if (adj->ref_nr > ref_nr) {
8466 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8467 dev->name, adj_dev->name, ref_nr,
8468 adj->ref_nr - ref_nr);
8469 adj->ref_nr -= ref_nr;
8470 return;
8471 }
8472
8473 if (adj->master)
8474 sysfs_remove_link(&(dev->dev.kobj), "master");
8475
8476 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8477 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8478
8479 list_del_rcu(&adj->list);
8480 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8481 adj_dev->name, dev->name, adj_dev->name);
8482 netdev_put(adj_dev, &adj->dev_tracker);
8483 kfree_rcu(adj, rcu);
8484 }
8485
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8486 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8487 struct net_device *upper_dev,
8488 struct list_head *up_list,
8489 struct list_head *down_list,
8490 void *private, bool master)
8491 {
8492 int ret;
8493
8494 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8495 private, master);
8496 if (ret)
8497 return ret;
8498
8499 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8500 private, false);
8501 if (ret) {
8502 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8503 return ret;
8504 }
8505
8506 return 0;
8507 }
8508
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8509 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8510 struct net_device *upper_dev,
8511 u16 ref_nr,
8512 struct list_head *up_list,
8513 struct list_head *down_list)
8514 {
8515 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8516 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8517 }
8518
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8519 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8520 struct net_device *upper_dev,
8521 void *private, bool master)
8522 {
8523 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8524 &dev->adj_list.upper,
8525 &upper_dev->adj_list.lower,
8526 private, master);
8527 }
8528
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8529 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8530 struct net_device *upper_dev)
8531 {
8532 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8533 &dev->adj_list.upper,
8534 &upper_dev->adj_list.lower);
8535 }
8536
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8537 static int __netdev_upper_dev_link(struct net_device *dev,
8538 struct net_device *upper_dev, bool master,
8539 void *upper_priv, void *upper_info,
8540 struct netdev_nested_priv *priv,
8541 struct netlink_ext_ack *extack)
8542 {
8543 struct netdev_notifier_changeupper_info changeupper_info = {
8544 .info = {
8545 .dev = dev,
8546 .extack = extack,
8547 },
8548 .upper_dev = upper_dev,
8549 .master = master,
8550 .linking = true,
8551 .upper_info = upper_info,
8552 };
8553 struct net_device *master_dev;
8554 int ret = 0;
8555
8556 ASSERT_RTNL();
8557
8558 if (dev == upper_dev)
8559 return -EBUSY;
8560
8561 /* To prevent loops, check if dev is not upper device to upper_dev. */
8562 if (__netdev_has_upper_dev(upper_dev, dev))
8563 return -EBUSY;
8564
8565 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8566 return -EMLINK;
8567
8568 if (!master) {
8569 if (__netdev_has_upper_dev(dev, upper_dev))
8570 return -EEXIST;
8571 } else {
8572 master_dev = __netdev_master_upper_dev_get(dev);
8573 if (master_dev)
8574 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8575 }
8576
8577 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8578 &changeupper_info.info);
8579 ret = notifier_to_errno(ret);
8580 if (ret)
8581 return ret;
8582
8583 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8584 master);
8585 if (ret)
8586 return ret;
8587
8588 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8589 &changeupper_info.info);
8590 ret = notifier_to_errno(ret);
8591 if (ret)
8592 goto rollback;
8593
8594 __netdev_update_upper_level(dev, NULL);
8595 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8596
8597 __netdev_update_lower_level(upper_dev, priv);
8598 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8599 priv);
8600
8601 return 0;
8602
8603 rollback:
8604 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8605
8606 return ret;
8607 }
8608
8609 /**
8610 * netdev_upper_dev_link - Add a link to the upper device
8611 * @dev: device
8612 * @upper_dev: new upper device
8613 * @extack: netlink extended ack
8614 *
8615 * Adds a link to device which is upper to this one. The caller must hold
8616 * the RTNL lock. On a failure a negative errno code is returned.
8617 * On success the reference counts are adjusted and the function
8618 * returns zero.
8619 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8620 int netdev_upper_dev_link(struct net_device *dev,
8621 struct net_device *upper_dev,
8622 struct netlink_ext_ack *extack)
8623 {
8624 struct netdev_nested_priv priv = {
8625 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8626 .data = NULL,
8627 };
8628
8629 return __netdev_upper_dev_link(dev, upper_dev, false,
8630 NULL, NULL, &priv, extack);
8631 }
8632 EXPORT_SYMBOL(netdev_upper_dev_link);
8633
8634 /**
8635 * netdev_master_upper_dev_link - Add a master link to the upper device
8636 * @dev: device
8637 * @upper_dev: new upper device
8638 * @upper_priv: upper device private
8639 * @upper_info: upper info to be passed down via notifier
8640 * @extack: netlink extended ack
8641 *
8642 * Adds a link to device which is upper to this one. In this case, only
8643 * one master upper device can be linked, although other non-master devices
8644 * might be linked as well. The caller must hold the RTNL lock.
8645 * On a failure a negative errno code is returned. On success the reference
8646 * counts are adjusted and the function returns zero.
8647 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8648 int netdev_master_upper_dev_link(struct net_device *dev,
8649 struct net_device *upper_dev,
8650 void *upper_priv, void *upper_info,
8651 struct netlink_ext_ack *extack)
8652 {
8653 struct netdev_nested_priv priv = {
8654 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8655 .data = NULL,
8656 };
8657
8658 return __netdev_upper_dev_link(dev, upper_dev, true,
8659 upper_priv, upper_info, &priv, extack);
8660 }
8661 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8662
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8663 static void __netdev_upper_dev_unlink(struct net_device *dev,
8664 struct net_device *upper_dev,
8665 struct netdev_nested_priv *priv)
8666 {
8667 struct netdev_notifier_changeupper_info changeupper_info = {
8668 .info = {
8669 .dev = dev,
8670 },
8671 .upper_dev = upper_dev,
8672 .linking = false,
8673 };
8674
8675 ASSERT_RTNL();
8676
8677 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8678
8679 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8680 &changeupper_info.info);
8681
8682 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8683
8684 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8685 &changeupper_info.info);
8686
8687 __netdev_update_upper_level(dev, NULL);
8688 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8689
8690 __netdev_update_lower_level(upper_dev, priv);
8691 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8692 priv);
8693 }
8694
8695 /**
8696 * netdev_upper_dev_unlink - Removes a link to upper device
8697 * @dev: device
8698 * @upper_dev: new upper device
8699 *
8700 * Removes a link to device which is upper to this one. The caller must hold
8701 * the RTNL lock.
8702 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8703 void netdev_upper_dev_unlink(struct net_device *dev,
8704 struct net_device *upper_dev)
8705 {
8706 struct netdev_nested_priv priv = {
8707 .flags = NESTED_SYNC_TODO,
8708 .data = NULL,
8709 };
8710
8711 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8712 }
8713 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8714
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8715 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8716 struct net_device *lower_dev,
8717 bool val)
8718 {
8719 struct netdev_adjacent *adj;
8720
8721 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8722 if (adj)
8723 adj->ignore = val;
8724
8725 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8726 if (adj)
8727 adj->ignore = val;
8728 }
8729
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8730 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8731 struct net_device *lower_dev)
8732 {
8733 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8734 }
8735
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8736 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8737 struct net_device *lower_dev)
8738 {
8739 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8740 }
8741
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8742 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8743 struct net_device *new_dev,
8744 struct net_device *dev,
8745 struct netlink_ext_ack *extack)
8746 {
8747 struct netdev_nested_priv priv = {
8748 .flags = 0,
8749 .data = NULL,
8750 };
8751 int err;
8752
8753 if (!new_dev)
8754 return 0;
8755
8756 if (old_dev && new_dev != old_dev)
8757 netdev_adjacent_dev_disable(dev, old_dev);
8758 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8759 extack);
8760 if (err) {
8761 if (old_dev && new_dev != old_dev)
8762 netdev_adjacent_dev_enable(dev, old_dev);
8763 return err;
8764 }
8765
8766 return 0;
8767 }
8768 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8769
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8770 void netdev_adjacent_change_commit(struct net_device *old_dev,
8771 struct net_device *new_dev,
8772 struct net_device *dev)
8773 {
8774 struct netdev_nested_priv priv = {
8775 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8776 .data = NULL,
8777 };
8778
8779 if (!new_dev || !old_dev)
8780 return;
8781
8782 if (new_dev == old_dev)
8783 return;
8784
8785 netdev_adjacent_dev_enable(dev, old_dev);
8786 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8787 }
8788 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8789
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8790 void netdev_adjacent_change_abort(struct net_device *old_dev,
8791 struct net_device *new_dev,
8792 struct net_device *dev)
8793 {
8794 struct netdev_nested_priv priv = {
8795 .flags = 0,
8796 .data = NULL,
8797 };
8798
8799 if (!new_dev)
8800 return;
8801
8802 if (old_dev && new_dev != old_dev)
8803 netdev_adjacent_dev_enable(dev, old_dev);
8804
8805 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8806 }
8807 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8808
8809 /**
8810 * netdev_bonding_info_change - Dispatch event about slave change
8811 * @dev: device
8812 * @bonding_info: info to dispatch
8813 *
8814 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8815 * The caller must hold the RTNL lock.
8816 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8817 void netdev_bonding_info_change(struct net_device *dev,
8818 struct netdev_bonding_info *bonding_info)
8819 {
8820 struct netdev_notifier_bonding_info info = {
8821 .info.dev = dev,
8822 };
8823
8824 memcpy(&info.bonding_info, bonding_info,
8825 sizeof(struct netdev_bonding_info));
8826 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8827 &info.info);
8828 }
8829 EXPORT_SYMBOL(netdev_bonding_info_change);
8830
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)8831 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8832 struct netlink_ext_ack *extack)
8833 {
8834 struct netdev_notifier_offload_xstats_info info = {
8835 .info.dev = dev,
8836 .info.extack = extack,
8837 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8838 };
8839 int err;
8840 int rc;
8841
8842 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8843 GFP_KERNEL);
8844 if (!dev->offload_xstats_l3)
8845 return -ENOMEM;
8846
8847 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8848 NETDEV_OFFLOAD_XSTATS_DISABLE,
8849 &info.info);
8850 err = notifier_to_errno(rc);
8851 if (err)
8852 goto free_stats;
8853
8854 return 0;
8855
8856 free_stats:
8857 kfree(dev->offload_xstats_l3);
8858 dev->offload_xstats_l3 = NULL;
8859 return err;
8860 }
8861
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8862 int netdev_offload_xstats_enable(struct net_device *dev,
8863 enum netdev_offload_xstats_type type,
8864 struct netlink_ext_ack *extack)
8865 {
8866 ASSERT_RTNL();
8867
8868 if (netdev_offload_xstats_enabled(dev, type))
8869 return -EALREADY;
8870
8871 switch (type) {
8872 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8873 return netdev_offload_xstats_enable_l3(dev, extack);
8874 }
8875
8876 WARN_ON(1);
8877 return -EINVAL;
8878 }
8879 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8880
netdev_offload_xstats_disable_l3(struct net_device * dev)8881 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8882 {
8883 struct netdev_notifier_offload_xstats_info info = {
8884 .info.dev = dev,
8885 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8886 };
8887
8888 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8889 &info.info);
8890 kfree(dev->offload_xstats_l3);
8891 dev->offload_xstats_l3 = NULL;
8892 }
8893
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8894 int netdev_offload_xstats_disable(struct net_device *dev,
8895 enum netdev_offload_xstats_type type)
8896 {
8897 ASSERT_RTNL();
8898
8899 if (!netdev_offload_xstats_enabled(dev, type))
8900 return -EALREADY;
8901
8902 switch (type) {
8903 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8904 netdev_offload_xstats_disable_l3(dev);
8905 return 0;
8906 }
8907
8908 WARN_ON(1);
8909 return -EINVAL;
8910 }
8911 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8912
netdev_offload_xstats_disable_all(struct net_device * dev)8913 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8914 {
8915 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8916 }
8917
8918 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)8919 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8920 enum netdev_offload_xstats_type type)
8921 {
8922 switch (type) {
8923 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8924 return dev->offload_xstats_l3;
8925 }
8926
8927 WARN_ON(1);
8928 return NULL;
8929 }
8930
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)8931 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8932 enum netdev_offload_xstats_type type)
8933 {
8934 ASSERT_RTNL();
8935
8936 return netdev_offload_xstats_get_ptr(dev, type);
8937 }
8938 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8939
8940 struct netdev_notifier_offload_xstats_ru {
8941 bool used;
8942 };
8943
8944 struct netdev_notifier_offload_xstats_rd {
8945 struct rtnl_hw_stats64 stats;
8946 bool used;
8947 };
8948
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)8949 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8950 const struct rtnl_hw_stats64 *src)
8951 {
8952 dest->rx_packets += src->rx_packets;
8953 dest->tx_packets += src->tx_packets;
8954 dest->rx_bytes += src->rx_bytes;
8955 dest->tx_bytes += src->tx_bytes;
8956 dest->rx_errors += src->rx_errors;
8957 dest->tx_errors += src->tx_errors;
8958 dest->rx_dropped += src->rx_dropped;
8959 dest->tx_dropped += src->tx_dropped;
8960 dest->multicast += src->multicast;
8961 }
8962
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)8963 static int netdev_offload_xstats_get_used(struct net_device *dev,
8964 enum netdev_offload_xstats_type type,
8965 bool *p_used,
8966 struct netlink_ext_ack *extack)
8967 {
8968 struct netdev_notifier_offload_xstats_ru report_used = {};
8969 struct netdev_notifier_offload_xstats_info info = {
8970 .info.dev = dev,
8971 .info.extack = extack,
8972 .type = type,
8973 .report_used = &report_used,
8974 };
8975 int rc;
8976
8977 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8978 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8979 &info.info);
8980 *p_used = report_used.used;
8981 return notifier_to_errno(rc);
8982 }
8983
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8984 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8985 enum netdev_offload_xstats_type type,
8986 struct rtnl_hw_stats64 *p_stats,
8987 bool *p_used,
8988 struct netlink_ext_ack *extack)
8989 {
8990 struct netdev_notifier_offload_xstats_rd report_delta = {};
8991 struct netdev_notifier_offload_xstats_info info = {
8992 .info.dev = dev,
8993 .info.extack = extack,
8994 .type = type,
8995 .report_delta = &report_delta,
8996 };
8997 struct rtnl_hw_stats64 *stats;
8998 int rc;
8999
9000 stats = netdev_offload_xstats_get_ptr(dev, type);
9001 if (WARN_ON(!stats))
9002 return -EINVAL;
9003
9004 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9005 &info.info);
9006
9007 /* Cache whatever we got, even if there was an error, otherwise the
9008 * successful stats retrievals would get lost.
9009 */
9010 netdev_hw_stats64_add(stats, &report_delta.stats);
9011
9012 if (p_stats)
9013 *p_stats = *stats;
9014 *p_used = report_delta.used;
9015
9016 return notifier_to_errno(rc);
9017 }
9018
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9019 int netdev_offload_xstats_get(struct net_device *dev,
9020 enum netdev_offload_xstats_type type,
9021 struct rtnl_hw_stats64 *p_stats, bool *p_used,
9022 struct netlink_ext_ack *extack)
9023 {
9024 ASSERT_RTNL();
9025
9026 if (p_stats)
9027 return netdev_offload_xstats_get_stats(dev, type, p_stats,
9028 p_used, extack);
9029 else
9030 return netdev_offload_xstats_get_used(dev, type, p_used,
9031 extack);
9032 }
9033 EXPORT_SYMBOL(netdev_offload_xstats_get);
9034
9035 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)9036 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9037 const struct rtnl_hw_stats64 *stats)
9038 {
9039 report_delta->used = true;
9040 netdev_hw_stats64_add(&report_delta->stats, stats);
9041 }
9042 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9043
9044 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)9045 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9046 {
9047 report_used->used = true;
9048 }
9049 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9050
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)9051 void netdev_offload_xstats_push_delta(struct net_device *dev,
9052 enum netdev_offload_xstats_type type,
9053 const struct rtnl_hw_stats64 *p_stats)
9054 {
9055 struct rtnl_hw_stats64 *stats;
9056
9057 ASSERT_RTNL();
9058
9059 stats = netdev_offload_xstats_get_ptr(dev, type);
9060 if (WARN_ON(!stats))
9061 return;
9062
9063 netdev_hw_stats64_add(stats, p_stats);
9064 }
9065 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9066
9067 /**
9068 * netdev_get_xmit_slave - Get the xmit slave of master device
9069 * @dev: device
9070 * @skb: The packet
9071 * @all_slaves: assume all the slaves are active
9072 *
9073 * The reference counters are not incremented so the caller must be
9074 * careful with locks. The caller must hold RCU lock.
9075 * %NULL is returned if no slave is found.
9076 */
9077
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)9078 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9079 struct sk_buff *skb,
9080 bool all_slaves)
9081 {
9082 const struct net_device_ops *ops = dev->netdev_ops;
9083
9084 if (!ops->ndo_get_xmit_slave)
9085 return NULL;
9086 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9087 }
9088 EXPORT_SYMBOL(netdev_get_xmit_slave);
9089
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)9090 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9091 struct sock *sk)
9092 {
9093 const struct net_device_ops *ops = dev->netdev_ops;
9094
9095 if (!ops->ndo_sk_get_lower_dev)
9096 return NULL;
9097 return ops->ndo_sk_get_lower_dev(dev, sk);
9098 }
9099
9100 /**
9101 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9102 * @dev: device
9103 * @sk: the socket
9104 *
9105 * %NULL is returned if no lower device is found.
9106 */
9107
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)9108 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9109 struct sock *sk)
9110 {
9111 struct net_device *lower;
9112
9113 lower = netdev_sk_get_lower_dev(dev, sk);
9114 while (lower) {
9115 dev = lower;
9116 lower = netdev_sk_get_lower_dev(dev, sk);
9117 }
9118
9119 return dev;
9120 }
9121 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9122
netdev_adjacent_add_links(struct net_device * dev)9123 static void netdev_adjacent_add_links(struct net_device *dev)
9124 {
9125 struct netdev_adjacent *iter;
9126
9127 struct net *net = dev_net(dev);
9128
9129 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9130 if (!net_eq(net, dev_net(iter->dev)))
9131 continue;
9132 netdev_adjacent_sysfs_add(iter->dev, dev,
9133 &iter->dev->adj_list.lower);
9134 netdev_adjacent_sysfs_add(dev, iter->dev,
9135 &dev->adj_list.upper);
9136 }
9137
9138 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9139 if (!net_eq(net, dev_net(iter->dev)))
9140 continue;
9141 netdev_adjacent_sysfs_add(iter->dev, dev,
9142 &iter->dev->adj_list.upper);
9143 netdev_adjacent_sysfs_add(dev, iter->dev,
9144 &dev->adj_list.lower);
9145 }
9146 }
9147
netdev_adjacent_del_links(struct net_device * dev)9148 static void netdev_adjacent_del_links(struct net_device *dev)
9149 {
9150 struct netdev_adjacent *iter;
9151
9152 struct net *net = dev_net(dev);
9153
9154 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9155 if (!net_eq(net, dev_net(iter->dev)))
9156 continue;
9157 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9158 &iter->dev->adj_list.lower);
9159 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9160 &dev->adj_list.upper);
9161 }
9162
9163 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9164 if (!net_eq(net, dev_net(iter->dev)))
9165 continue;
9166 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9167 &iter->dev->adj_list.upper);
9168 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9169 &dev->adj_list.lower);
9170 }
9171 }
9172
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)9173 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9174 {
9175 struct netdev_adjacent *iter;
9176
9177 struct net *net = dev_net(dev);
9178
9179 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9180 if (!net_eq(net, dev_net(iter->dev)))
9181 continue;
9182 netdev_adjacent_sysfs_del(iter->dev, oldname,
9183 &iter->dev->adj_list.lower);
9184 netdev_adjacent_sysfs_add(iter->dev, dev,
9185 &iter->dev->adj_list.lower);
9186 }
9187
9188 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9189 if (!net_eq(net, dev_net(iter->dev)))
9190 continue;
9191 netdev_adjacent_sysfs_del(iter->dev, oldname,
9192 &iter->dev->adj_list.upper);
9193 netdev_adjacent_sysfs_add(iter->dev, dev,
9194 &iter->dev->adj_list.upper);
9195 }
9196 }
9197
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)9198 void *netdev_lower_dev_get_private(struct net_device *dev,
9199 struct net_device *lower_dev)
9200 {
9201 struct netdev_adjacent *lower;
9202
9203 if (!lower_dev)
9204 return NULL;
9205 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9206 if (!lower)
9207 return NULL;
9208
9209 return lower->private;
9210 }
9211 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9212
9213
9214 /**
9215 * netdev_lower_state_changed - Dispatch event about lower device state change
9216 * @lower_dev: device
9217 * @lower_state_info: state to dispatch
9218 *
9219 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9220 * The caller must hold the RTNL lock.
9221 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)9222 void netdev_lower_state_changed(struct net_device *lower_dev,
9223 void *lower_state_info)
9224 {
9225 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9226 .info.dev = lower_dev,
9227 };
9228
9229 ASSERT_RTNL();
9230 changelowerstate_info.lower_state_info = lower_state_info;
9231 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9232 &changelowerstate_info.info);
9233 }
9234 EXPORT_SYMBOL(netdev_lower_state_changed);
9235
dev_change_rx_flags(struct net_device * dev,int flags)9236 static void dev_change_rx_flags(struct net_device *dev, int flags)
9237 {
9238 const struct net_device_ops *ops = dev->netdev_ops;
9239
9240 if (ops->ndo_change_rx_flags)
9241 ops->ndo_change_rx_flags(dev, flags);
9242 }
9243
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)9244 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9245 {
9246 unsigned int old_flags = dev->flags;
9247 unsigned int promiscuity, flags;
9248 kuid_t uid;
9249 kgid_t gid;
9250
9251 ASSERT_RTNL();
9252
9253 promiscuity = dev->promiscuity + inc;
9254 if (promiscuity == 0) {
9255 /*
9256 * Avoid overflow.
9257 * If inc causes overflow, untouch promisc and return error.
9258 */
9259 if (unlikely(inc > 0)) {
9260 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9261 return -EOVERFLOW;
9262 }
9263 flags = old_flags & ~IFF_PROMISC;
9264 } else {
9265 flags = old_flags | IFF_PROMISC;
9266 }
9267 WRITE_ONCE(dev->promiscuity, promiscuity);
9268 if (flags != old_flags) {
9269 WRITE_ONCE(dev->flags, flags);
9270 netdev_info(dev, "%s promiscuous mode\n",
9271 dev->flags & IFF_PROMISC ? "entered" : "left");
9272 if (audit_enabled) {
9273 current_uid_gid(&uid, &gid);
9274 audit_log(audit_context(), GFP_ATOMIC,
9275 AUDIT_ANOM_PROMISCUOUS,
9276 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9277 dev->name, (dev->flags & IFF_PROMISC),
9278 (old_flags & IFF_PROMISC),
9279 from_kuid(&init_user_ns, audit_get_loginuid(current)),
9280 from_kuid(&init_user_ns, uid),
9281 from_kgid(&init_user_ns, gid),
9282 audit_get_sessionid(current));
9283 }
9284
9285 dev_change_rx_flags(dev, IFF_PROMISC);
9286 }
9287 if (notify) {
9288 /* The ops lock is only required to ensure consistent locking
9289 * for `NETDEV_CHANGE` notifiers. This function is sometimes
9290 * called without the lock, even for devices that are ops
9291 * locked, such as in `dev_uc_sync_multiple` when using
9292 * bonding or teaming.
9293 */
9294 netdev_ops_assert_locked(dev);
9295 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9296 }
9297 return 0;
9298 }
9299
netif_set_promiscuity(struct net_device * dev,int inc)9300 int netif_set_promiscuity(struct net_device *dev, int inc)
9301 {
9302 unsigned int old_flags = dev->flags;
9303 int err;
9304
9305 err = __dev_set_promiscuity(dev, inc, true);
9306 if (err < 0)
9307 return err;
9308 if (dev->flags != old_flags)
9309 dev_set_rx_mode(dev);
9310 return err;
9311 }
9312
netif_set_allmulti(struct net_device * dev,int inc,bool notify)9313 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9314 {
9315 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9316 unsigned int allmulti, flags;
9317
9318 ASSERT_RTNL();
9319
9320 allmulti = dev->allmulti + inc;
9321 if (allmulti == 0) {
9322 /*
9323 * Avoid overflow.
9324 * If inc causes overflow, untouch allmulti and return error.
9325 */
9326 if (unlikely(inc > 0)) {
9327 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9328 return -EOVERFLOW;
9329 }
9330 flags = old_flags & ~IFF_ALLMULTI;
9331 } else {
9332 flags = old_flags | IFF_ALLMULTI;
9333 }
9334 WRITE_ONCE(dev->allmulti, allmulti);
9335 if (flags != old_flags) {
9336 WRITE_ONCE(dev->flags, flags);
9337 netdev_info(dev, "%s allmulticast mode\n",
9338 dev->flags & IFF_ALLMULTI ? "entered" : "left");
9339 dev_change_rx_flags(dev, IFF_ALLMULTI);
9340 dev_set_rx_mode(dev);
9341 if (notify)
9342 __dev_notify_flags(dev, old_flags,
9343 dev->gflags ^ old_gflags, 0, NULL);
9344 }
9345 return 0;
9346 }
9347
9348 /*
9349 * Upload unicast and multicast address lists to device and
9350 * configure RX filtering. When the device doesn't support unicast
9351 * filtering it is put in promiscuous mode while unicast addresses
9352 * are present.
9353 */
__dev_set_rx_mode(struct net_device * dev)9354 void __dev_set_rx_mode(struct net_device *dev)
9355 {
9356 const struct net_device_ops *ops = dev->netdev_ops;
9357
9358 /* dev_open will call this function so the list will stay sane. */
9359 if (!(dev->flags&IFF_UP))
9360 return;
9361
9362 if (!netif_device_present(dev))
9363 return;
9364
9365 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9366 /* Unicast addresses changes may only happen under the rtnl,
9367 * therefore calling __dev_set_promiscuity here is safe.
9368 */
9369 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9370 __dev_set_promiscuity(dev, 1, false);
9371 dev->uc_promisc = true;
9372 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9373 __dev_set_promiscuity(dev, -1, false);
9374 dev->uc_promisc = false;
9375 }
9376 }
9377
9378 if (ops->ndo_set_rx_mode)
9379 ops->ndo_set_rx_mode(dev);
9380 }
9381
dev_set_rx_mode(struct net_device * dev)9382 void dev_set_rx_mode(struct net_device *dev)
9383 {
9384 netif_addr_lock_bh(dev);
9385 __dev_set_rx_mode(dev);
9386 netif_addr_unlock_bh(dev);
9387 }
9388
9389 /**
9390 * dev_get_flags - get flags reported to userspace
9391 * @dev: device
9392 *
9393 * Get the combination of flag bits exported through APIs to userspace.
9394 */
dev_get_flags(const struct net_device * dev)9395 unsigned int dev_get_flags(const struct net_device *dev)
9396 {
9397 unsigned int flags;
9398
9399 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9400 IFF_ALLMULTI |
9401 IFF_RUNNING |
9402 IFF_LOWER_UP |
9403 IFF_DORMANT)) |
9404 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
9405 IFF_ALLMULTI));
9406
9407 if (netif_running(dev)) {
9408 if (netif_oper_up(dev))
9409 flags |= IFF_RUNNING;
9410 if (netif_carrier_ok(dev))
9411 flags |= IFF_LOWER_UP;
9412 if (netif_dormant(dev))
9413 flags |= IFF_DORMANT;
9414 }
9415
9416 return flags;
9417 }
9418 EXPORT_SYMBOL(dev_get_flags);
9419
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9420 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9421 struct netlink_ext_ack *extack)
9422 {
9423 unsigned int old_flags = dev->flags;
9424 int ret;
9425
9426 ASSERT_RTNL();
9427
9428 /*
9429 * Set the flags on our device.
9430 */
9431
9432 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9433 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9434 IFF_AUTOMEDIA)) |
9435 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9436 IFF_ALLMULTI));
9437
9438 /*
9439 * Load in the correct multicast list now the flags have changed.
9440 */
9441
9442 if ((old_flags ^ flags) & IFF_MULTICAST)
9443 dev_change_rx_flags(dev, IFF_MULTICAST);
9444
9445 dev_set_rx_mode(dev);
9446
9447 /*
9448 * Have we downed the interface. We handle IFF_UP ourselves
9449 * according to user attempts to set it, rather than blindly
9450 * setting it.
9451 */
9452
9453 ret = 0;
9454 if ((old_flags ^ flags) & IFF_UP) {
9455 if (old_flags & IFF_UP)
9456 __dev_close(dev);
9457 else
9458 ret = __dev_open(dev, extack);
9459 }
9460
9461 if ((flags ^ dev->gflags) & IFF_PROMISC) {
9462 int inc = (flags & IFF_PROMISC) ? 1 : -1;
9463 old_flags = dev->flags;
9464
9465 dev->gflags ^= IFF_PROMISC;
9466
9467 if (__dev_set_promiscuity(dev, inc, false) >= 0)
9468 if (dev->flags != old_flags)
9469 dev_set_rx_mode(dev);
9470 }
9471
9472 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9473 * is important. Some (broken) drivers set IFF_PROMISC, when
9474 * IFF_ALLMULTI is requested not asking us and not reporting.
9475 */
9476 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9477 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9478
9479 dev->gflags ^= IFF_ALLMULTI;
9480 netif_set_allmulti(dev, inc, false);
9481 }
9482
9483 return ret;
9484 }
9485
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)9486 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9487 unsigned int gchanges, u32 portid,
9488 const struct nlmsghdr *nlh)
9489 {
9490 unsigned int changes = dev->flags ^ old_flags;
9491
9492 if (gchanges)
9493 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9494
9495 if (changes & IFF_UP) {
9496 if (dev->flags & IFF_UP)
9497 call_netdevice_notifiers(NETDEV_UP, dev);
9498 else
9499 call_netdevice_notifiers(NETDEV_DOWN, dev);
9500 }
9501
9502 if (dev->flags & IFF_UP &&
9503 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9504 struct netdev_notifier_change_info change_info = {
9505 .info = {
9506 .dev = dev,
9507 },
9508 .flags_changed = changes,
9509 };
9510
9511 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9512 }
9513 }
9514
netif_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9515 int netif_change_flags(struct net_device *dev, unsigned int flags,
9516 struct netlink_ext_ack *extack)
9517 {
9518 int ret;
9519 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9520
9521 ret = __dev_change_flags(dev, flags, extack);
9522 if (ret < 0)
9523 return ret;
9524
9525 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9526 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
9527 return ret;
9528 }
9529
__dev_set_mtu(struct net_device * dev,int new_mtu)9530 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9531 {
9532 const struct net_device_ops *ops = dev->netdev_ops;
9533
9534 if (ops->ndo_change_mtu)
9535 return ops->ndo_change_mtu(dev, new_mtu);
9536
9537 /* Pairs with all the lockless reads of dev->mtu in the stack */
9538 WRITE_ONCE(dev->mtu, new_mtu);
9539 return 0;
9540 }
9541 EXPORT_SYMBOL(__dev_set_mtu);
9542
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9543 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9544 struct netlink_ext_ack *extack)
9545 {
9546 /* MTU must be positive, and in range */
9547 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9548 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9549 return -EINVAL;
9550 }
9551
9552 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9553 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9554 return -EINVAL;
9555 }
9556 return 0;
9557 }
9558
9559 /**
9560 * netif_set_mtu_ext - Change maximum transfer unit
9561 * @dev: device
9562 * @new_mtu: new transfer unit
9563 * @extack: netlink extended ack
9564 *
9565 * Change the maximum transfer size of the network device.
9566 */
netif_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9567 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9568 struct netlink_ext_ack *extack)
9569 {
9570 int err, orig_mtu;
9571
9572 if (new_mtu == dev->mtu)
9573 return 0;
9574
9575 err = dev_validate_mtu(dev, new_mtu, extack);
9576 if (err)
9577 return err;
9578
9579 if (!netif_device_present(dev))
9580 return -ENODEV;
9581
9582 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9583 err = notifier_to_errno(err);
9584 if (err)
9585 return err;
9586
9587 orig_mtu = dev->mtu;
9588 err = __dev_set_mtu(dev, new_mtu);
9589
9590 if (!err) {
9591 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9592 orig_mtu);
9593 err = notifier_to_errno(err);
9594 if (err) {
9595 /* setting mtu back and notifying everyone again,
9596 * so that they have a chance to revert changes.
9597 */
9598 __dev_set_mtu(dev, orig_mtu);
9599 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9600 new_mtu);
9601 }
9602 }
9603 return err;
9604 }
9605
netif_set_mtu(struct net_device * dev,int new_mtu)9606 int netif_set_mtu(struct net_device *dev, int new_mtu)
9607 {
9608 struct netlink_ext_ack extack;
9609 int err;
9610
9611 memset(&extack, 0, sizeof(extack));
9612 err = netif_set_mtu_ext(dev, new_mtu, &extack);
9613 if (err && extack._msg)
9614 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9615 return err;
9616 }
9617 EXPORT_SYMBOL(netif_set_mtu);
9618
netif_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9619 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9620 {
9621 unsigned int orig_len = dev->tx_queue_len;
9622 int res;
9623
9624 if (new_len != (unsigned int)new_len)
9625 return -ERANGE;
9626
9627 if (new_len != orig_len) {
9628 WRITE_ONCE(dev->tx_queue_len, new_len);
9629 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9630 res = notifier_to_errno(res);
9631 if (res)
9632 goto err_rollback;
9633 res = dev_qdisc_change_tx_queue_len(dev);
9634 if (res)
9635 goto err_rollback;
9636 }
9637
9638 return 0;
9639
9640 err_rollback:
9641 netdev_err(dev, "refused to change device tx_queue_len\n");
9642 WRITE_ONCE(dev->tx_queue_len, orig_len);
9643 return res;
9644 }
9645
netif_set_group(struct net_device * dev,int new_group)9646 void netif_set_group(struct net_device *dev, int new_group)
9647 {
9648 dev->group = new_group;
9649 }
9650
9651 /**
9652 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9653 * @dev: device
9654 * @addr: new address
9655 * @extack: netlink extended ack
9656 */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9657 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9658 struct netlink_ext_ack *extack)
9659 {
9660 struct netdev_notifier_pre_changeaddr_info info = {
9661 .info.dev = dev,
9662 .info.extack = extack,
9663 .dev_addr = addr,
9664 };
9665 int rc;
9666
9667 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9668 return notifier_to_errno(rc);
9669 }
9670 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9671
netif_set_mac_address(struct net_device * dev,struct sockaddr_storage * ss,struct netlink_ext_ack * extack)9672 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9673 struct netlink_ext_ack *extack)
9674 {
9675 const struct net_device_ops *ops = dev->netdev_ops;
9676 int err;
9677
9678 if (!ops->ndo_set_mac_address)
9679 return -EOPNOTSUPP;
9680 if (ss->ss_family != dev->type)
9681 return -EINVAL;
9682 if (!netif_device_present(dev))
9683 return -ENODEV;
9684 err = dev_pre_changeaddr_notify(dev, ss->__data, extack);
9685 if (err)
9686 return err;
9687 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9688 err = ops->ndo_set_mac_address(dev, ss);
9689 if (err)
9690 return err;
9691 }
9692 dev->addr_assign_type = NET_ADDR_SET;
9693 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9694 add_device_randomness(dev->dev_addr, dev->addr_len);
9695 return 0;
9696 }
9697
9698 DECLARE_RWSEM(dev_addr_sem);
9699
9700 /* "sa" is a true struct sockaddr with limited "sa_data" member. */
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9701 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9702 {
9703 size_t size = sizeof(sa->sa_data_min);
9704 struct net_device *dev;
9705 int ret = 0;
9706
9707 down_read(&dev_addr_sem);
9708 rcu_read_lock();
9709
9710 dev = dev_get_by_name_rcu(net, dev_name);
9711 if (!dev) {
9712 ret = -ENODEV;
9713 goto unlock;
9714 }
9715 if (!dev->addr_len)
9716 memset(sa->sa_data, 0, size);
9717 else
9718 memcpy(sa->sa_data, dev->dev_addr,
9719 min_t(size_t, size, dev->addr_len));
9720 sa->sa_family = dev->type;
9721
9722 unlock:
9723 rcu_read_unlock();
9724 up_read(&dev_addr_sem);
9725 return ret;
9726 }
9727 EXPORT_SYMBOL(dev_get_mac_address);
9728
netif_change_carrier(struct net_device * dev,bool new_carrier)9729 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9730 {
9731 const struct net_device_ops *ops = dev->netdev_ops;
9732
9733 if (!ops->ndo_change_carrier)
9734 return -EOPNOTSUPP;
9735 if (!netif_device_present(dev))
9736 return -ENODEV;
9737 return ops->ndo_change_carrier(dev, new_carrier);
9738 }
9739
9740 /**
9741 * dev_get_phys_port_id - Get device physical port ID
9742 * @dev: device
9743 * @ppid: port ID
9744 *
9745 * Get device physical port ID
9746 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9747 int dev_get_phys_port_id(struct net_device *dev,
9748 struct netdev_phys_item_id *ppid)
9749 {
9750 const struct net_device_ops *ops = dev->netdev_ops;
9751
9752 if (!ops->ndo_get_phys_port_id)
9753 return -EOPNOTSUPP;
9754 return ops->ndo_get_phys_port_id(dev, ppid);
9755 }
9756
9757 /**
9758 * dev_get_phys_port_name - Get device physical port name
9759 * @dev: device
9760 * @name: port name
9761 * @len: limit of bytes to copy to name
9762 *
9763 * Get device physical port name
9764 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9765 int dev_get_phys_port_name(struct net_device *dev,
9766 char *name, size_t len)
9767 {
9768 const struct net_device_ops *ops = dev->netdev_ops;
9769 int err;
9770
9771 if (ops->ndo_get_phys_port_name) {
9772 err = ops->ndo_get_phys_port_name(dev, name, len);
9773 if (err != -EOPNOTSUPP)
9774 return err;
9775 }
9776 return devlink_compat_phys_port_name_get(dev, name, len);
9777 }
9778
9779 /**
9780 * dev_get_port_parent_id - Get the device's port parent identifier
9781 * @dev: network device
9782 * @ppid: pointer to a storage for the port's parent identifier
9783 * @recurse: allow/disallow recursion to lower devices
9784 *
9785 * Get the devices's port parent identifier
9786 */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9787 int dev_get_port_parent_id(struct net_device *dev,
9788 struct netdev_phys_item_id *ppid,
9789 bool recurse)
9790 {
9791 const struct net_device_ops *ops = dev->netdev_ops;
9792 struct netdev_phys_item_id first = { };
9793 struct net_device *lower_dev;
9794 struct list_head *iter;
9795 int err;
9796
9797 if (ops->ndo_get_port_parent_id) {
9798 err = ops->ndo_get_port_parent_id(dev, ppid);
9799 if (err != -EOPNOTSUPP)
9800 return err;
9801 }
9802
9803 err = devlink_compat_switch_id_get(dev, ppid);
9804 if (!recurse || err != -EOPNOTSUPP)
9805 return err;
9806
9807 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9808 err = dev_get_port_parent_id(lower_dev, ppid, true);
9809 if (err)
9810 break;
9811 if (!first.id_len)
9812 first = *ppid;
9813 else if (memcmp(&first, ppid, sizeof(*ppid)))
9814 return -EOPNOTSUPP;
9815 }
9816
9817 return err;
9818 }
9819 EXPORT_SYMBOL(dev_get_port_parent_id);
9820
9821 /**
9822 * netdev_port_same_parent_id - Indicate if two network devices have
9823 * the same port parent identifier
9824 * @a: first network device
9825 * @b: second network device
9826 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9827 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9828 {
9829 struct netdev_phys_item_id a_id = { };
9830 struct netdev_phys_item_id b_id = { };
9831
9832 if (dev_get_port_parent_id(a, &a_id, true) ||
9833 dev_get_port_parent_id(b, &b_id, true))
9834 return false;
9835
9836 return netdev_phys_item_id_same(&a_id, &b_id);
9837 }
9838 EXPORT_SYMBOL(netdev_port_same_parent_id);
9839
netif_change_proto_down(struct net_device * dev,bool proto_down)9840 int netif_change_proto_down(struct net_device *dev, bool proto_down)
9841 {
9842 if (!dev->change_proto_down)
9843 return -EOPNOTSUPP;
9844 if (!netif_device_present(dev))
9845 return -ENODEV;
9846 if (proto_down)
9847 netif_carrier_off(dev);
9848 else
9849 netif_carrier_on(dev);
9850 WRITE_ONCE(dev->proto_down, proto_down);
9851 return 0;
9852 }
9853
9854 /**
9855 * netdev_change_proto_down_reason_locked - proto down reason
9856 *
9857 * @dev: device
9858 * @mask: proto down mask
9859 * @value: proto down value
9860 */
netdev_change_proto_down_reason_locked(struct net_device * dev,unsigned long mask,u32 value)9861 void netdev_change_proto_down_reason_locked(struct net_device *dev,
9862 unsigned long mask, u32 value)
9863 {
9864 u32 proto_down_reason;
9865 int b;
9866
9867 if (!mask) {
9868 proto_down_reason = value;
9869 } else {
9870 proto_down_reason = dev->proto_down_reason;
9871 for_each_set_bit(b, &mask, 32) {
9872 if (value & (1 << b))
9873 proto_down_reason |= BIT(b);
9874 else
9875 proto_down_reason &= ~BIT(b);
9876 }
9877 }
9878 WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9879 }
9880
9881 struct bpf_xdp_link {
9882 struct bpf_link link;
9883 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9884 int flags;
9885 };
9886
dev_xdp_mode(struct net_device * dev,u32 flags)9887 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9888 {
9889 if (flags & XDP_FLAGS_HW_MODE)
9890 return XDP_MODE_HW;
9891 if (flags & XDP_FLAGS_DRV_MODE)
9892 return XDP_MODE_DRV;
9893 if (flags & XDP_FLAGS_SKB_MODE)
9894 return XDP_MODE_SKB;
9895 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9896 }
9897
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9898 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9899 {
9900 switch (mode) {
9901 case XDP_MODE_SKB:
9902 return generic_xdp_install;
9903 case XDP_MODE_DRV:
9904 case XDP_MODE_HW:
9905 return dev->netdev_ops->ndo_bpf;
9906 default:
9907 return NULL;
9908 }
9909 }
9910
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9911 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9912 enum bpf_xdp_mode mode)
9913 {
9914 return dev->xdp_state[mode].link;
9915 }
9916
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9917 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9918 enum bpf_xdp_mode mode)
9919 {
9920 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9921
9922 if (link)
9923 return link->link.prog;
9924 return dev->xdp_state[mode].prog;
9925 }
9926
dev_xdp_prog_count(struct net_device * dev)9927 u8 dev_xdp_prog_count(struct net_device *dev)
9928 {
9929 u8 count = 0;
9930 int i;
9931
9932 for (i = 0; i < __MAX_XDP_MODE; i++)
9933 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9934 count++;
9935 return count;
9936 }
9937 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9938
dev_xdp_sb_prog_count(struct net_device * dev)9939 u8 dev_xdp_sb_prog_count(struct net_device *dev)
9940 {
9941 u8 count = 0;
9942 int i;
9943
9944 for (i = 0; i < __MAX_XDP_MODE; i++)
9945 if (dev->xdp_state[i].prog &&
9946 !dev->xdp_state[i].prog->aux->xdp_has_frags)
9947 count++;
9948 return count;
9949 }
9950
netif_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)9951 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9952 {
9953 if (!dev->netdev_ops->ndo_bpf)
9954 return -EOPNOTSUPP;
9955
9956 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9957 bpf->command == XDP_SETUP_PROG &&
9958 bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9959 NL_SET_ERR_MSG(bpf->extack,
9960 "unable to propagate XDP to device using tcp-data-split");
9961 return -EBUSY;
9962 }
9963
9964 if (dev_get_min_mp_channel_count(dev)) {
9965 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9966 return -EBUSY;
9967 }
9968
9969 return dev->netdev_ops->ndo_bpf(dev, bpf);
9970 }
9971 EXPORT_SYMBOL_GPL(netif_xdp_propagate);
9972
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9973 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9974 {
9975 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9976
9977 return prog ? prog->aux->id : 0;
9978 }
9979
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9980 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9981 struct bpf_xdp_link *link)
9982 {
9983 dev->xdp_state[mode].link = link;
9984 dev->xdp_state[mode].prog = NULL;
9985 }
9986
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9987 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9988 struct bpf_prog *prog)
9989 {
9990 dev->xdp_state[mode].link = NULL;
9991 dev->xdp_state[mode].prog = prog;
9992 }
9993
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9994 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9995 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9996 u32 flags, struct bpf_prog *prog)
9997 {
9998 struct netdev_bpf xdp;
9999 int err;
10000
10001 netdev_ops_assert_locked(dev);
10002
10003 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10004 prog && !prog->aux->xdp_has_frags) {
10005 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10006 return -EBUSY;
10007 }
10008
10009 if (dev_get_min_mp_channel_count(dev)) {
10010 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10011 return -EBUSY;
10012 }
10013
10014 memset(&xdp, 0, sizeof(xdp));
10015 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10016 xdp.extack = extack;
10017 xdp.flags = flags;
10018 xdp.prog = prog;
10019
10020 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
10021 * "moved" into driver), so they don't increment it on their own, but
10022 * they do decrement refcnt when program is detached or replaced.
10023 * Given net_device also owns link/prog, we need to bump refcnt here
10024 * to prevent drivers from underflowing it.
10025 */
10026 if (prog)
10027 bpf_prog_inc(prog);
10028 err = bpf_op(dev, &xdp);
10029 if (err) {
10030 if (prog)
10031 bpf_prog_put(prog);
10032 return err;
10033 }
10034
10035 if (mode != XDP_MODE_HW)
10036 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10037
10038 return 0;
10039 }
10040
dev_xdp_uninstall(struct net_device * dev)10041 static void dev_xdp_uninstall(struct net_device *dev)
10042 {
10043 struct bpf_xdp_link *link;
10044 struct bpf_prog *prog;
10045 enum bpf_xdp_mode mode;
10046 bpf_op_t bpf_op;
10047
10048 ASSERT_RTNL();
10049
10050 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10051 prog = dev_xdp_prog(dev, mode);
10052 if (!prog)
10053 continue;
10054
10055 bpf_op = dev_xdp_bpf_op(dev, mode);
10056 if (!bpf_op)
10057 continue;
10058
10059 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10060
10061 /* auto-detach link from net device */
10062 link = dev_xdp_link(dev, mode);
10063 if (link)
10064 link->dev = NULL;
10065 else
10066 bpf_prog_put(prog);
10067
10068 dev_xdp_set_link(dev, mode, NULL);
10069 }
10070 }
10071
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)10072 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10073 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10074 struct bpf_prog *old_prog, u32 flags)
10075 {
10076 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10077 struct bpf_prog *cur_prog;
10078 struct net_device *upper;
10079 struct list_head *iter;
10080 enum bpf_xdp_mode mode;
10081 bpf_op_t bpf_op;
10082 int err;
10083
10084 ASSERT_RTNL();
10085
10086 /* either link or prog attachment, never both */
10087 if (link && (new_prog || old_prog))
10088 return -EINVAL;
10089 /* link supports only XDP mode flags */
10090 if (link && (flags & ~XDP_FLAGS_MODES)) {
10091 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10092 return -EINVAL;
10093 }
10094 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10095 if (num_modes > 1) {
10096 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10097 return -EINVAL;
10098 }
10099 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10100 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10101 NL_SET_ERR_MSG(extack,
10102 "More than one program loaded, unset mode is ambiguous");
10103 return -EINVAL;
10104 }
10105 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10106 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10107 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10108 return -EINVAL;
10109 }
10110
10111 mode = dev_xdp_mode(dev, flags);
10112 /* can't replace attached link */
10113 if (dev_xdp_link(dev, mode)) {
10114 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10115 return -EBUSY;
10116 }
10117
10118 /* don't allow if an upper device already has a program */
10119 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10120 if (dev_xdp_prog_count(upper) > 0) {
10121 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10122 return -EEXIST;
10123 }
10124 }
10125
10126 cur_prog = dev_xdp_prog(dev, mode);
10127 /* can't replace attached prog with link */
10128 if (link && cur_prog) {
10129 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10130 return -EBUSY;
10131 }
10132 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10133 NL_SET_ERR_MSG(extack, "Active program does not match expected");
10134 return -EEXIST;
10135 }
10136
10137 /* put effective new program into new_prog */
10138 if (link)
10139 new_prog = link->link.prog;
10140
10141 if (new_prog) {
10142 bool offload = mode == XDP_MODE_HW;
10143 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10144 ? XDP_MODE_DRV : XDP_MODE_SKB;
10145
10146 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10147 NL_SET_ERR_MSG(extack, "XDP program already attached");
10148 return -EBUSY;
10149 }
10150 if (!offload && dev_xdp_prog(dev, other_mode)) {
10151 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10152 return -EEXIST;
10153 }
10154 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10155 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10156 return -EINVAL;
10157 }
10158 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10159 NL_SET_ERR_MSG(extack, "Program bound to different device");
10160 return -EINVAL;
10161 }
10162 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10163 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10164 return -EINVAL;
10165 }
10166 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10167 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10168 return -EINVAL;
10169 }
10170 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10171 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10172 return -EINVAL;
10173 }
10174 }
10175
10176 /* don't call drivers if the effective program didn't change */
10177 if (new_prog != cur_prog) {
10178 bpf_op = dev_xdp_bpf_op(dev, mode);
10179 if (!bpf_op) {
10180 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10181 return -EOPNOTSUPP;
10182 }
10183
10184 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10185 if (err)
10186 return err;
10187 }
10188
10189 if (link)
10190 dev_xdp_set_link(dev, mode, link);
10191 else
10192 dev_xdp_set_prog(dev, mode, new_prog);
10193 if (cur_prog)
10194 bpf_prog_put(cur_prog);
10195
10196 return 0;
10197 }
10198
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10199 static int dev_xdp_attach_link(struct net_device *dev,
10200 struct netlink_ext_ack *extack,
10201 struct bpf_xdp_link *link)
10202 {
10203 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10204 }
10205
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10206 static int dev_xdp_detach_link(struct net_device *dev,
10207 struct netlink_ext_ack *extack,
10208 struct bpf_xdp_link *link)
10209 {
10210 enum bpf_xdp_mode mode;
10211 bpf_op_t bpf_op;
10212
10213 ASSERT_RTNL();
10214
10215 mode = dev_xdp_mode(dev, link->flags);
10216 if (dev_xdp_link(dev, mode) != link)
10217 return -EINVAL;
10218
10219 bpf_op = dev_xdp_bpf_op(dev, mode);
10220 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10221 dev_xdp_set_link(dev, mode, NULL);
10222 return 0;
10223 }
10224
bpf_xdp_link_release(struct bpf_link * link)10225 static void bpf_xdp_link_release(struct bpf_link *link)
10226 {
10227 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10228
10229 rtnl_lock();
10230
10231 /* if racing with net_device's tear down, xdp_link->dev might be
10232 * already NULL, in which case link was already auto-detached
10233 */
10234 if (xdp_link->dev) {
10235 netdev_lock_ops(xdp_link->dev);
10236 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10237 netdev_unlock_ops(xdp_link->dev);
10238 xdp_link->dev = NULL;
10239 }
10240
10241 rtnl_unlock();
10242 }
10243
bpf_xdp_link_detach(struct bpf_link * link)10244 static int bpf_xdp_link_detach(struct bpf_link *link)
10245 {
10246 bpf_xdp_link_release(link);
10247 return 0;
10248 }
10249
bpf_xdp_link_dealloc(struct bpf_link * link)10250 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10251 {
10252 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10253
10254 kfree(xdp_link);
10255 }
10256
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)10257 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10258 struct seq_file *seq)
10259 {
10260 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10261 u32 ifindex = 0;
10262
10263 rtnl_lock();
10264 if (xdp_link->dev)
10265 ifindex = xdp_link->dev->ifindex;
10266 rtnl_unlock();
10267
10268 seq_printf(seq, "ifindex:\t%u\n", ifindex);
10269 }
10270
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)10271 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10272 struct bpf_link_info *info)
10273 {
10274 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10275 u32 ifindex = 0;
10276
10277 rtnl_lock();
10278 if (xdp_link->dev)
10279 ifindex = xdp_link->dev->ifindex;
10280 rtnl_unlock();
10281
10282 info->xdp.ifindex = ifindex;
10283 return 0;
10284 }
10285
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)10286 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10287 struct bpf_prog *old_prog)
10288 {
10289 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10290 enum bpf_xdp_mode mode;
10291 bpf_op_t bpf_op;
10292 int err = 0;
10293
10294 rtnl_lock();
10295
10296 /* link might have been auto-released already, so fail */
10297 if (!xdp_link->dev) {
10298 err = -ENOLINK;
10299 goto out_unlock;
10300 }
10301
10302 if (old_prog && link->prog != old_prog) {
10303 err = -EPERM;
10304 goto out_unlock;
10305 }
10306 old_prog = link->prog;
10307 if (old_prog->type != new_prog->type ||
10308 old_prog->expected_attach_type != new_prog->expected_attach_type) {
10309 err = -EINVAL;
10310 goto out_unlock;
10311 }
10312
10313 if (old_prog == new_prog) {
10314 /* no-op, don't disturb drivers */
10315 bpf_prog_put(new_prog);
10316 goto out_unlock;
10317 }
10318
10319 netdev_lock_ops(xdp_link->dev);
10320 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10321 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10322 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10323 xdp_link->flags, new_prog);
10324 netdev_unlock_ops(xdp_link->dev);
10325 if (err)
10326 goto out_unlock;
10327
10328 old_prog = xchg(&link->prog, new_prog);
10329 bpf_prog_put(old_prog);
10330
10331 out_unlock:
10332 rtnl_unlock();
10333 return err;
10334 }
10335
10336 static const struct bpf_link_ops bpf_xdp_link_lops = {
10337 .release = bpf_xdp_link_release,
10338 .dealloc = bpf_xdp_link_dealloc,
10339 .detach = bpf_xdp_link_detach,
10340 .show_fdinfo = bpf_xdp_link_show_fdinfo,
10341 .fill_link_info = bpf_xdp_link_fill_link_info,
10342 .update_prog = bpf_xdp_link_update,
10343 };
10344
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)10345 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10346 {
10347 struct net *net = current->nsproxy->net_ns;
10348 struct bpf_link_primer link_primer;
10349 struct netlink_ext_ack extack = {};
10350 struct bpf_xdp_link *link;
10351 struct net_device *dev;
10352 int err, fd;
10353
10354 rtnl_lock();
10355 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10356 if (!dev) {
10357 rtnl_unlock();
10358 return -EINVAL;
10359 }
10360
10361 link = kzalloc(sizeof(*link), GFP_USER);
10362 if (!link) {
10363 err = -ENOMEM;
10364 goto unlock;
10365 }
10366
10367 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10368 link->dev = dev;
10369 link->flags = attr->link_create.flags;
10370
10371 err = bpf_link_prime(&link->link, &link_primer);
10372 if (err) {
10373 kfree(link);
10374 goto unlock;
10375 }
10376
10377 netdev_lock_ops(dev);
10378 err = dev_xdp_attach_link(dev, &extack, link);
10379 netdev_unlock_ops(dev);
10380 rtnl_unlock();
10381
10382 if (err) {
10383 link->dev = NULL;
10384 bpf_link_cleanup(&link_primer);
10385 trace_bpf_xdp_link_attach_failed(extack._msg);
10386 goto out_put_dev;
10387 }
10388
10389 fd = bpf_link_settle(&link_primer);
10390 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
10391 dev_put(dev);
10392 return fd;
10393
10394 unlock:
10395 rtnl_unlock();
10396
10397 out_put_dev:
10398 dev_put(dev);
10399 return err;
10400 }
10401
10402 /**
10403 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
10404 * @dev: device
10405 * @extack: netlink extended ack
10406 * @fd: new program fd or negative value to clear
10407 * @expected_fd: old program fd that userspace expects to replace or clear
10408 * @flags: xdp-related flags
10409 *
10410 * Set or clear a bpf program for a device
10411 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)10412 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10413 int fd, int expected_fd, u32 flags)
10414 {
10415 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10416 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10417 int err;
10418
10419 ASSERT_RTNL();
10420
10421 if (fd >= 0) {
10422 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10423 mode != XDP_MODE_SKB);
10424 if (IS_ERR(new_prog))
10425 return PTR_ERR(new_prog);
10426 }
10427
10428 if (expected_fd >= 0) {
10429 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10430 mode != XDP_MODE_SKB);
10431 if (IS_ERR(old_prog)) {
10432 err = PTR_ERR(old_prog);
10433 old_prog = NULL;
10434 goto err_out;
10435 }
10436 }
10437
10438 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10439
10440 err_out:
10441 if (err && new_prog)
10442 bpf_prog_put(new_prog);
10443 if (old_prog)
10444 bpf_prog_put(old_prog);
10445 return err;
10446 }
10447
dev_get_min_mp_channel_count(const struct net_device * dev)10448 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10449 {
10450 int i;
10451
10452 netdev_ops_assert_locked(dev);
10453
10454 for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10455 if (dev->_rx[i].mp_params.mp_priv)
10456 /* The channel count is the idx plus 1. */
10457 return i + 1;
10458
10459 return 0;
10460 }
10461
10462 /**
10463 * dev_index_reserve() - allocate an ifindex in a namespace
10464 * @net: the applicable net namespace
10465 * @ifindex: requested ifindex, pass %0 to get one allocated
10466 *
10467 * Allocate a ifindex for a new device. Caller must either use the ifindex
10468 * to store the device (via list_netdevice()) or call dev_index_release()
10469 * to give the index up.
10470 *
10471 * Return: a suitable unique value for a new device interface number or -errno.
10472 */
dev_index_reserve(struct net * net,u32 ifindex)10473 static int dev_index_reserve(struct net *net, u32 ifindex)
10474 {
10475 int err;
10476
10477 if (ifindex > INT_MAX) {
10478 DEBUG_NET_WARN_ON_ONCE(1);
10479 return -EINVAL;
10480 }
10481
10482 if (!ifindex)
10483 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10484 xa_limit_31b, &net->ifindex, GFP_KERNEL);
10485 else
10486 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10487 if (err < 0)
10488 return err;
10489
10490 return ifindex;
10491 }
10492
dev_index_release(struct net * net,int ifindex)10493 static void dev_index_release(struct net *net, int ifindex)
10494 {
10495 /* Expect only unused indexes, unlist_netdevice() removes the used */
10496 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10497 }
10498
from_cleanup_net(void)10499 static bool from_cleanup_net(void)
10500 {
10501 #ifdef CONFIG_NET_NS
10502 return current == READ_ONCE(cleanup_net_task);
10503 #else
10504 return false;
10505 #endif
10506 }
10507
10508 /* Delayed registration/unregisteration */
10509 LIST_HEAD(net_todo_list);
10510 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10511 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10512
net_set_todo(struct net_device * dev)10513 static void net_set_todo(struct net_device *dev)
10514 {
10515 list_add_tail(&dev->todo_list, &net_todo_list);
10516 }
10517
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10518 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10519 struct net_device *upper, netdev_features_t features)
10520 {
10521 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10522 netdev_features_t feature;
10523 int feature_bit;
10524
10525 for_each_netdev_feature(upper_disables, feature_bit) {
10526 feature = __NETIF_F_BIT(feature_bit);
10527 if (!(upper->wanted_features & feature)
10528 && (features & feature)) {
10529 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10530 &feature, upper->name);
10531 features &= ~feature;
10532 }
10533 }
10534
10535 return features;
10536 }
10537
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10538 static void netdev_sync_lower_features(struct net_device *upper,
10539 struct net_device *lower, netdev_features_t features)
10540 {
10541 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10542 netdev_features_t feature;
10543 int feature_bit;
10544
10545 for_each_netdev_feature(upper_disables, feature_bit) {
10546 feature = __NETIF_F_BIT(feature_bit);
10547 if (!(features & feature) && (lower->features & feature)) {
10548 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10549 &feature, lower->name);
10550 netdev_lock_ops(lower);
10551 lower->wanted_features &= ~feature;
10552 __netdev_update_features(lower);
10553
10554 if (unlikely(lower->features & feature))
10555 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10556 &feature, lower->name);
10557 else
10558 netdev_features_change(lower);
10559 netdev_unlock_ops(lower);
10560 }
10561 }
10562 }
10563
netdev_has_ip_or_hw_csum(netdev_features_t features)10564 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10565 {
10566 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10567 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10568 bool hw_csum = features & NETIF_F_HW_CSUM;
10569
10570 return ip_csum || hw_csum;
10571 }
10572
netdev_fix_features(struct net_device * dev,netdev_features_t features)10573 static netdev_features_t netdev_fix_features(struct net_device *dev,
10574 netdev_features_t features)
10575 {
10576 /* Fix illegal checksum combinations */
10577 if ((features & NETIF_F_HW_CSUM) &&
10578 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10579 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10580 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10581 }
10582
10583 /* TSO requires that SG is present as well. */
10584 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10585 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10586 features &= ~NETIF_F_ALL_TSO;
10587 }
10588
10589 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10590 !(features & NETIF_F_IP_CSUM)) {
10591 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10592 features &= ~NETIF_F_TSO;
10593 features &= ~NETIF_F_TSO_ECN;
10594 }
10595
10596 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10597 !(features & NETIF_F_IPV6_CSUM)) {
10598 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10599 features &= ~NETIF_F_TSO6;
10600 }
10601
10602 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10603 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10604 features &= ~NETIF_F_TSO_MANGLEID;
10605
10606 /* TSO ECN requires that TSO is present as well. */
10607 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10608 features &= ~NETIF_F_TSO_ECN;
10609
10610 /* Software GSO depends on SG. */
10611 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10612 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10613 features &= ~NETIF_F_GSO;
10614 }
10615
10616 /* GSO partial features require GSO partial be set */
10617 if ((features & dev->gso_partial_features) &&
10618 !(features & NETIF_F_GSO_PARTIAL)) {
10619 netdev_dbg(dev,
10620 "Dropping partially supported GSO features since no GSO partial.\n");
10621 features &= ~dev->gso_partial_features;
10622 }
10623
10624 if (!(features & NETIF_F_RXCSUM)) {
10625 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10626 * successfully merged by hardware must also have the
10627 * checksum verified by hardware. If the user does not
10628 * want to enable RXCSUM, logically, we should disable GRO_HW.
10629 */
10630 if (features & NETIF_F_GRO_HW) {
10631 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10632 features &= ~NETIF_F_GRO_HW;
10633 }
10634 }
10635
10636 /* LRO/HW-GRO features cannot be combined with RX-FCS */
10637 if (features & NETIF_F_RXFCS) {
10638 if (features & NETIF_F_LRO) {
10639 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10640 features &= ~NETIF_F_LRO;
10641 }
10642
10643 if (features & NETIF_F_GRO_HW) {
10644 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10645 features &= ~NETIF_F_GRO_HW;
10646 }
10647 }
10648
10649 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10650 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10651 features &= ~NETIF_F_LRO;
10652 }
10653
10654 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10655 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10656 features &= ~NETIF_F_HW_TLS_TX;
10657 }
10658
10659 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10660 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10661 features &= ~NETIF_F_HW_TLS_RX;
10662 }
10663
10664 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10665 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10666 features &= ~NETIF_F_GSO_UDP_L4;
10667 }
10668
10669 return features;
10670 }
10671
__netdev_update_features(struct net_device * dev)10672 int __netdev_update_features(struct net_device *dev)
10673 {
10674 struct net_device *upper, *lower;
10675 netdev_features_t features;
10676 struct list_head *iter;
10677 int err = -1;
10678
10679 ASSERT_RTNL();
10680 netdev_ops_assert_locked(dev);
10681
10682 features = netdev_get_wanted_features(dev);
10683
10684 if (dev->netdev_ops->ndo_fix_features)
10685 features = dev->netdev_ops->ndo_fix_features(dev, features);
10686
10687 /* driver might be less strict about feature dependencies */
10688 features = netdev_fix_features(dev, features);
10689
10690 /* some features can't be enabled if they're off on an upper device */
10691 netdev_for_each_upper_dev_rcu(dev, upper, iter)
10692 features = netdev_sync_upper_features(dev, upper, features);
10693
10694 if (dev->features == features)
10695 goto sync_lower;
10696
10697 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10698 &dev->features, &features);
10699
10700 if (dev->netdev_ops->ndo_set_features)
10701 err = dev->netdev_ops->ndo_set_features(dev, features);
10702 else
10703 err = 0;
10704
10705 if (unlikely(err < 0)) {
10706 netdev_err(dev,
10707 "set_features() failed (%d); wanted %pNF, left %pNF\n",
10708 err, &features, &dev->features);
10709 /* return non-0 since some features might have changed and
10710 * it's better to fire a spurious notification than miss it
10711 */
10712 return -1;
10713 }
10714
10715 sync_lower:
10716 /* some features must be disabled on lower devices when disabled
10717 * on an upper device (think: bonding master or bridge)
10718 */
10719 netdev_for_each_lower_dev(dev, lower, iter)
10720 netdev_sync_lower_features(dev, lower, features);
10721
10722 if (!err) {
10723 netdev_features_t diff = features ^ dev->features;
10724
10725 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10726 /* udp_tunnel_{get,drop}_rx_info both need
10727 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10728 * device, or they won't do anything.
10729 * Thus we need to update dev->features
10730 * *before* calling udp_tunnel_get_rx_info,
10731 * but *after* calling udp_tunnel_drop_rx_info.
10732 */
10733 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10734 dev->features = features;
10735 udp_tunnel_get_rx_info(dev);
10736 } else {
10737 udp_tunnel_drop_rx_info(dev);
10738 }
10739 }
10740
10741 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10742 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10743 dev->features = features;
10744 err |= vlan_get_rx_ctag_filter_info(dev);
10745 } else {
10746 vlan_drop_rx_ctag_filter_info(dev);
10747 }
10748 }
10749
10750 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10751 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10752 dev->features = features;
10753 err |= vlan_get_rx_stag_filter_info(dev);
10754 } else {
10755 vlan_drop_rx_stag_filter_info(dev);
10756 }
10757 }
10758
10759 dev->features = features;
10760 }
10761
10762 return err < 0 ? 0 : 1;
10763 }
10764
10765 /**
10766 * netdev_update_features - recalculate device features
10767 * @dev: the device to check
10768 *
10769 * Recalculate dev->features set and send notifications if it
10770 * has changed. Should be called after driver or hardware dependent
10771 * conditions might have changed that influence the features.
10772 */
netdev_update_features(struct net_device * dev)10773 void netdev_update_features(struct net_device *dev)
10774 {
10775 if (__netdev_update_features(dev))
10776 netdev_features_change(dev);
10777 }
10778 EXPORT_SYMBOL(netdev_update_features);
10779
10780 /**
10781 * netdev_change_features - recalculate device features
10782 * @dev: the device to check
10783 *
10784 * Recalculate dev->features set and send notifications even
10785 * if they have not changed. Should be called instead of
10786 * netdev_update_features() if also dev->vlan_features might
10787 * have changed to allow the changes to be propagated to stacked
10788 * VLAN devices.
10789 */
netdev_change_features(struct net_device * dev)10790 void netdev_change_features(struct net_device *dev)
10791 {
10792 __netdev_update_features(dev);
10793 netdev_features_change(dev);
10794 }
10795 EXPORT_SYMBOL(netdev_change_features);
10796
10797 /**
10798 * netif_stacked_transfer_operstate - transfer operstate
10799 * @rootdev: the root or lower level device to transfer state from
10800 * @dev: the device to transfer operstate to
10801 *
10802 * Transfer operational state from root to device. This is normally
10803 * called when a stacking relationship exists between the root
10804 * device and the device(a leaf device).
10805 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)10806 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10807 struct net_device *dev)
10808 {
10809 if (rootdev->operstate == IF_OPER_DORMANT)
10810 netif_dormant_on(dev);
10811 else
10812 netif_dormant_off(dev);
10813
10814 if (rootdev->operstate == IF_OPER_TESTING)
10815 netif_testing_on(dev);
10816 else
10817 netif_testing_off(dev);
10818
10819 if (netif_carrier_ok(rootdev))
10820 netif_carrier_on(dev);
10821 else
10822 netif_carrier_off(dev);
10823 }
10824 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10825
netif_alloc_rx_queues(struct net_device * dev)10826 static int netif_alloc_rx_queues(struct net_device *dev)
10827 {
10828 unsigned int i, count = dev->num_rx_queues;
10829 struct netdev_rx_queue *rx;
10830 size_t sz = count * sizeof(*rx);
10831 int err = 0;
10832
10833 BUG_ON(count < 1);
10834
10835 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10836 if (!rx)
10837 return -ENOMEM;
10838
10839 dev->_rx = rx;
10840
10841 for (i = 0; i < count; i++) {
10842 rx[i].dev = dev;
10843
10844 /* XDP RX-queue setup */
10845 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10846 if (err < 0)
10847 goto err_rxq_info;
10848 }
10849 return 0;
10850
10851 err_rxq_info:
10852 /* Rollback successful reg's and free other resources */
10853 while (i--)
10854 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10855 kvfree(dev->_rx);
10856 dev->_rx = NULL;
10857 return err;
10858 }
10859
netif_free_rx_queues(struct net_device * dev)10860 static void netif_free_rx_queues(struct net_device *dev)
10861 {
10862 unsigned int i, count = dev->num_rx_queues;
10863
10864 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10865 if (!dev->_rx)
10866 return;
10867
10868 for (i = 0; i < count; i++)
10869 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10870
10871 kvfree(dev->_rx);
10872 }
10873
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10874 static void netdev_init_one_queue(struct net_device *dev,
10875 struct netdev_queue *queue, void *_unused)
10876 {
10877 /* Initialize queue lock */
10878 spin_lock_init(&queue->_xmit_lock);
10879 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10880 queue->xmit_lock_owner = -1;
10881 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10882 queue->dev = dev;
10883 #ifdef CONFIG_BQL
10884 dql_init(&queue->dql, HZ);
10885 #endif
10886 }
10887
netif_free_tx_queues(struct net_device * dev)10888 static void netif_free_tx_queues(struct net_device *dev)
10889 {
10890 kvfree(dev->_tx);
10891 }
10892
netif_alloc_netdev_queues(struct net_device * dev)10893 static int netif_alloc_netdev_queues(struct net_device *dev)
10894 {
10895 unsigned int count = dev->num_tx_queues;
10896 struct netdev_queue *tx;
10897 size_t sz = count * sizeof(*tx);
10898
10899 if (count < 1 || count > 0xffff)
10900 return -EINVAL;
10901
10902 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10903 if (!tx)
10904 return -ENOMEM;
10905
10906 dev->_tx = tx;
10907
10908 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10909 spin_lock_init(&dev->tx_global_lock);
10910
10911 return 0;
10912 }
10913
netif_tx_stop_all_queues(struct net_device * dev)10914 void netif_tx_stop_all_queues(struct net_device *dev)
10915 {
10916 unsigned int i;
10917
10918 for (i = 0; i < dev->num_tx_queues; i++) {
10919 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10920
10921 netif_tx_stop_queue(txq);
10922 }
10923 }
10924 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10925
netdev_do_alloc_pcpu_stats(struct net_device * dev)10926 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10927 {
10928 void __percpu *v;
10929
10930 /* Drivers implementing ndo_get_peer_dev must support tstat
10931 * accounting, so that skb_do_redirect() can bump the dev's
10932 * RX stats upon network namespace switch.
10933 */
10934 if (dev->netdev_ops->ndo_get_peer_dev &&
10935 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10936 return -EOPNOTSUPP;
10937
10938 switch (dev->pcpu_stat_type) {
10939 case NETDEV_PCPU_STAT_NONE:
10940 return 0;
10941 case NETDEV_PCPU_STAT_LSTATS:
10942 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10943 break;
10944 case NETDEV_PCPU_STAT_TSTATS:
10945 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10946 break;
10947 case NETDEV_PCPU_STAT_DSTATS:
10948 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10949 break;
10950 default:
10951 return -EINVAL;
10952 }
10953
10954 return v ? 0 : -ENOMEM;
10955 }
10956
netdev_do_free_pcpu_stats(struct net_device * dev)10957 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10958 {
10959 switch (dev->pcpu_stat_type) {
10960 case NETDEV_PCPU_STAT_NONE:
10961 return;
10962 case NETDEV_PCPU_STAT_LSTATS:
10963 free_percpu(dev->lstats);
10964 break;
10965 case NETDEV_PCPU_STAT_TSTATS:
10966 free_percpu(dev->tstats);
10967 break;
10968 case NETDEV_PCPU_STAT_DSTATS:
10969 free_percpu(dev->dstats);
10970 break;
10971 }
10972 }
10973
netdev_free_phy_link_topology(struct net_device * dev)10974 static void netdev_free_phy_link_topology(struct net_device *dev)
10975 {
10976 struct phy_link_topology *topo = dev->link_topo;
10977
10978 if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10979 xa_destroy(&topo->phys);
10980 kfree(topo);
10981 dev->link_topo = NULL;
10982 }
10983 }
10984
10985 /**
10986 * register_netdevice() - register a network device
10987 * @dev: device to register
10988 *
10989 * Take a prepared network device structure and make it externally accessible.
10990 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10991 * Callers must hold the rtnl lock - you may want register_netdev()
10992 * instead of this.
10993 */
register_netdevice(struct net_device * dev)10994 int register_netdevice(struct net_device *dev)
10995 {
10996 int ret;
10997 struct net *net = dev_net(dev);
10998
10999 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11000 NETDEV_FEATURE_COUNT);
11001 BUG_ON(dev_boot_phase);
11002 ASSERT_RTNL();
11003
11004 might_sleep();
11005
11006 /* When net_device's are persistent, this will be fatal. */
11007 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11008 BUG_ON(!net);
11009
11010 ret = ethtool_check_ops(dev->ethtool_ops);
11011 if (ret)
11012 return ret;
11013
11014 /* rss ctx ID 0 is reserved for the default context, start from 1 */
11015 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11016 mutex_init(&dev->ethtool->rss_lock);
11017
11018 spin_lock_init(&dev->addr_list_lock);
11019 netdev_set_addr_lockdep_class(dev);
11020
11021 ret = dev_get_valid_name(net, dev, dev->name);
11022 if (ret < 0)
11023 goto out;
11024
11025 ret = -ENOMEM;
11026 dev->name_node = netdev_name_node_head_alloc(dev);
11027 if (!dev->name_node)
11028 goto out;
11029
11030 /* Init, if this function is available */
11031 if (dev->netdev_ops->ndo_init) {
11032 ret = dev->netdev_ops->ndo_init(dev);
11033 if (ret) {
11034 if (ret > 0)
11035 ret = -EIO;
11036 goto err_free_name;
11037 }
11038 }
11039
11040 if (((dev->hw_features | dev->features) &
11041 NETIF_F_HW_VLAN_CTAG_FILTER) &&
11042 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11043 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11044 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11045 ret = -EINVAL;
11046 goto err_uninit;
11047 }
11048
11049 ret = netdev_do_alloc_pcpu_stats(dev);
11050 if (ret)
11051 goto err_uninit;
11052
11053 ret = dev_index_reserve(net, dev->ifindex);
11054 if (ret < 0)
11055 goto err_free_pcpu;
11056 dev->ifindex = ret;
11057
11058 /* Transfer changeable features to wanted_features and enable
11059 * software offloads (GSO and GRO).
11060 */
11061 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11062 dev->features |= NETIF_F_SOFT_FEATURES;
11063
11064 if (dev->udp_tunnel_nic_info) {
11065 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11066 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11067 }
11068
11069 dev->wanted_features = dev->features & dev->hw_features;
11070
11071 if (!(dev->flags & IFF_LOOPBACK))
11072 dev->hw_features |= NETIF_F_NOCACHE_COPY;
11073
11074 /* If IPv4 TCP segmentation offload is supported we should also
11075 * allow the device to enable segmenting the frame with the option
11076 * of ignoring a static IP ID value. This doesn't enable the
11077 * feature itself but allows the user to enable it later.
11078 */
11079 if (dev->hw_features & NETIF_F_TSO)
11080 dev->hw_features |= NETIF_F_TSO_MANGLEID;
11081 if (dev->vlan_features & NETIF_F_TSO)
11082 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11083 if (dev->mpls_features & NETIF_F_TSO)
11084 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11085 if (dev->hw_enc_features & NETIF_F_TSO)
11086 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11087
11088 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11089 */
11090 dev->vlan_features |= NETIF_F_HIGHDMA;
11091
11092 /* Make NETIF_F_SG inheritable to tunnel devices.
11093 */
11094 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11095
11096 /* Make NETIF_F_SG inheritable to MPLS.
11097 */
11098 dev->mpls_features |= NETIF_F_SG;
11099
11100 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11101 ret = notifier_to_errno(ret);
11102 if (ret)
11103 goto err_ifindex_release;
11104
11105 ret = netdev_register_kobject(dev);
11106
11107 netdev_lock(dev);
11108 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11109 netdev_unlock(dev);
11110
11111 if (ret)
11112 goto err_uninit_notify;
11113
11114 netdev_lock_ops(dev);
11115 __netdev_update_features(dev);
11116 netdev_unlock_ops(dev);
11117
11118 /*
11119 * Default initial state at registry is that the
11120 * device is present.
11121 */
11122
11123 set_bit(__LINK_STATE_PRESENT, &dev->state);
11124
11125 linkwatch_init_dev(dev);
11126
11127 dev_init_scheduler(dev);
11128
11129 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11130 list_netdevice(dev);
11131
11132 add_device_randomness(dev->dev_addr, dev->addr_len);
11133
11134 /* If the device has permanent device address, driver should
11135 * set dev_addr and also addr_assign_type should be set to
11136 * NET_ADDR_PERM (default value).
11137 */
11138 if (dev->addr_assign_type == NET_ADDR_PERM)
11139 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11140
11141 /* Notify protocols, that a new device appeared. */
11142 netdev_lock_ops(dev);
11143 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11144 netdev_unlock_ops(dev);
11145 ret = notifier_to_errno(ret);
11146 if (ret) {
11147 /* Expect explicit free_netdev() on failure */
11148 dev->needs_free_netdev = false;
11149 unregister_netdevice_queue(dev, NULL);
11150 goto out;
11151 }
11152 /*
11153 * Prevent userspace races by waiting until the network
11154 * device is fully setup before sending notifications.
11155 */
11156 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11157 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11158
11159 out:
11160 return ret;
11161
11162 err_uninit_notify:
11163 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11164 err_ifindex_release:
11165 dev_index_release(net, dev->ifindex);
11166 err_free_pcpu:
11167 netdev_do_free_pcpu_stats(dev);
11168 err_uninit:
11169 if (dev->netdev_ops->ndo_uninit)
11170 dev->netdev_ops->ndo_uninit(dev);
11171 if (dev->priv_destructor)
11172 dev->priv_destructor(dev);
11173 err_free_name:
11174 netdev_name_node_free(dev->name_node);
11175 goto out;
11176 }
11177 EXPORT_SYMBOL(register_netdevice);
11178
11179 /* Initialize the core of a dummy net device.
11180 * The setup steps dummy netdevs need which normal netdevs get by going
11181 * through register_netdevice().
11182 */
init_dummy_netdev(struct net_device * dev)11183 static void init_dummy_netdev(struct net_device *dev)
11184 {
11185 /* make sure we BUG if trying to hit standard
11186 * register/unregister code path
11187 */
11188 dev->reg_state = NETREG_DUMMY;
11189
11190 /* a dummy interface is started by default */
11191 set_bit(__LINK_STATE_PRESENT, &dev->state);
11192 set_bit(__LINK_STATE_START, &dev->state);
11193
11194 /* Note : We dont allocate pcpu_refcnt for dummy devices,
11195 * because users of this 'device' dont need to change
11196 * its refcount.
11197 */
11198 }
11199
11200 /**
11201 * register_netdev - register a network device
11202 * @dev: device to register
11203 *
11204 * Take a completed network device structure and add it to the kernel
11205 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11206 * chain. 0 is returned on success. A negative errno code is returned
11207 * on a failure to set up the device, or if the name is a duplicate.
11208 *
11209 * This is a wrapper around register_netdevice that takes the rtnl semaphore
11210 * and expands the device name if you passed a format string to
11211 * alloc_netdev.
11212 */
register_netdev(struct net_device * dev)11213 int register_netdev(struct net_device *dev)
11214 {
11215 struct net *net = dev_net(dev);
11216 int err;
11217
11218 if (rtnl_net_lock_killable(net))
11219 return -EINTR;
11220
11221 err = register_netdevice(dev);
11222
11223 rtnl_net_unlock(net);
11224
11225 return err;
11226 }
11227 EXPORT_SYMBOL(register_netdev);
11228
netdev_refcnt_read(const struct net_device * dev)11229 int netdev_refcnt_read(const struct net_device *dev)
11230 {
11231 #ifdef CONFIG_PCPU_DEV_REFCNT
11232 int i, refcnt = 0;
11233
11234 for_each_possible_cpu(i)
11235 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11236 return refcnt;
11237 #else
11238 return refcount_read(&dev->dev_refcnt);
11239 #endif
11240 }
11241 EXPORT_SYMBOL(netdev_refcnt_read);
11242
11243 int netdev_unregister_timeout_secs __read_mostly = 10;
11244
11245 #define WAIT_REFS_MIN_MSECS 1
11246 #define WAIT_REFS_MAX_MSECS 250
11247 /**
11248 * netdev_wait_allrefs_any - wait until all references are gone.
11249 * @list: list of net_devices to wait on
11250 *
11251 * This is called when unregistering network devices.
11252 *
11253 * Any protocol or device that holds a reference should register
11254 * for netdevice notification, and cleanup and put back the
11255 * reference if they receive an UNREGISTER event.
11256 * We can get stuck here if buggy protocols don't correctly
11257 * call dev_put.
11258 */
netdev_wait_allrefs_any(struct list_head * list)11259 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11260 {
11261 unsigned long rebroadcast_time, warning_time;
11262 struct net_device *dev;
11263 int wait = 0;
11264
11265 rebroadcast_time = warning_time = jiffies;
11266
11267 list_for_each_entry(dev, list, todo_list)
11268 if (netdev_refcnt_read(dev) == 1)
11269 return dev;
11270
11271 while (true) {
11272 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11273 rtnl_lock();
11274
11275 /* Rebroadcast unregister notification */
11276 list_for_each_entry(dev, list, todo_list)
11277 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11278
11279 __rtnl_unlock();
11280 rcu_barrier();
11281 rtnl_lock();
11282
11283 list_for_each_entry(dev, list, todo_list)
11284 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11285 &dev->state)) {
11286 /* We must not have linkwatch events
11287 * pending on unregister. If this
11288 * happens, we simply run the queue
11289 * unscheduled, resulting in a noop
11290 * for this device.
11291 */
11292 linkwatch_run_queue();
11293 break;
11294 }
11295
11296 __rtnl_unlock();
11297
11298 rebroadcast_time = jiffies;
11299 }
11300
11301 rcu_barrier();
11302
11303 if (!wait) {
11304 wait = WAIT_REFS_MIN_MSECS;
11305 } else {
11306 msleep(wait);
11307 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11308 }
11309
11310 list_for_each_entry(dev, list, todo_list)
11311 if (netdev_refcnt_read(dev) == 1)
11312 return dev;
11313
11314 if (time_after(jiffies, warning_time +
11315 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11316 list_for_each_entry(dev, list, todo_list) {
11317 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11318 dev->name, netdev_refcnt_read(dev));
11319 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11320 }
11321
11322 warning_time = jiffies;
11323 }
11324 }
11325 }
11326
11327 /* The sequence is:
11328 *
11329 * rtnl_lock();
11330 * ...
11331 * register_netdevice(x1);
11332 * register_netdevice(x2);
11333 * ...
11334 * unregister_netdevice(y1);
11335 * unregister_netdevice(y2);
11336 * ...
11337 * rtnl_unlock();
11338 * free_netdev(y1);
11339 * free_netdev(y2);
11340 *
11341 * We are invoked by rtnl_unlock().
11342 * This allows us to deal with problems:
11343 * 1) We can delete sysfs objects which invoke hotplug
11344 * without deadlocking with linkwatch via keventd.
11345 * 2) Since we run with the RTNL semaphore not held, we can sleep
11346 * safely in order to wait for the netdev refcnt to drop to zero.
11347 *
11348 * We must not return until all unregister events added during
11349 * the interval the lock was held have been completed.
11350 */
netdev_run_todo(void)11351 void netdev_run_todo(void)
11352 {
11353 struct net_device *dev, *tmp;
11354 struct list_head list;
11355 int cnt;
11356 #ifdef CONFIG_LOCKDEP
11357 struct list_head unlink_list;
11358
11359 list_replace_init(&net_unlink_list, &unlink_list);
11360
11361 while (!list_empty(&unlink_list)) {
11362 dev = list_first_entry(&unlink_list, struct net_device,
11363 unlink_list);
11364 list_del_init(&dev->unlink_list);
11365 dev->nested_level = dev->lower_level - 1;
11366 }
11367 #endif
11368
11369 /* Snapshot list, allow later requests */
11370 list_replace_init(&net_todo_list, &list);
11371
11372 __rtnl_unlock();
11373
11374 /* Wait for rcu callbacks to finish before next phase */
11375 if (!list_empty(&list))
11376 rcu_barrier();
11377
11378 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11379 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11380 netdev_WARN(dev, "run_todo but not unregistering\n");
11381 list_del(&dev->todo_list);
11382 continue;
11383 }
11384
11385 netdev_lock(dev);
11386 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11387 netdev_unlock(dev);
11388 linkwatch_sync_dev(dev);
11389 }
11390
11391 cnt = 0;
11392 while (!list_empty(&list)) {
11393 dev = netdev_wait_allrefs_any(&list);
11394 list_del(&dev->todo_list);
11395
11396 /* paranoia */
11397 BUG_ON(netdev_refcnt_read(dev) != 1);
11398 BUG_ON(!list_empty(&dev->ptype_all));
11399 BUG_ON(!list_empty(&dev->ptype_specific));
11400 WARN_ON(rcu_access_pointer(dev->ip_ptr));
11401 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11402
11403 netdev_do_free_pcpu_stats(dev);
11404 if (dev->priv_destructor)
11405 dev->priv_destructor(dev);
11406 if (dev->needs_free_netdev)
11407 free_netdev(dev);
11408
11409 cnt++;
11410
11411 /* Free network device */
11412 kobject_put(&dev->dev.kobj);
11413 }
11414 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11415 wake_up(&netdev_unregistering_wq);
11416 }
11417
11418 /* Collate per-cpu network dstats statistics
11419 *
11420 * Read per-cpu network statistics from dev->dstats and populate the related
11421 * fields in @s.
11422 */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)11423 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11424 const struct pcpu_dstats __percpu *dstats)
11425 {
11426 int cpu;
11427
11428 for_each_possible_cpu(cpu) {
11429 u64 rx_packets, rx_bytes, rx_drops;
11430 u64 tx_packets, tx_bytes, tx_drops;
11431 const struct pcpu_dstats *stats;
11432 unsigned int start;
11433
11434 stats = per_cpu_ptr(dstats, cpu);
11435 do {
11436 start = u64_stats_fetch_begin(&stats->syncp);
11437 rx_packets = u64_stats_read(&stats->rx_packets);
11438 rx_bytes = u64_stats_read(&stats->rx_bytes);
11439 rx_drops = u64_stats_read(&stats->rx_drops);
11440 tx_packets = u64_stats_read(&stats->tx_packets);
11441 tx_bytes = u64_stats_read(&stats->tx_bytes);
11442 tx_drops = u64_stats_read(&stats->tx_drops);
11443 } while (u64_stats_fetch_retry(&stats->syncp, start));
11444
11445 s->rx_packets += rx_packets;
11446 s->rx_bytes += rx_bytes;
11447 s->rx_dropped += rx_drops;
11448 s->tx_packets += tx_packets;
11449 s->tx_bytes += tx_bytes;
11450 s->tx_dropped += tx_drops;
11451 }
11452 }
11453
11454 /* ndo_get_stats64 implementation for dtstats-based accounting.
11455 *
11456 * Populate @s from dev->stats and dev->dstats. This is used internally by the
11457 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11458 */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)11459 static void dev_get_dstats64(const struct net_device *dev,
11460 struct rtnl_link_stats64 *s)
11461 {
11462 netdev_stats_to_stats64(s, &dev->stats);
11463 dev_fetch_dstats(s, dev->dstats);
11464 }
11465
11466 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11467 * all the same fields in the same order as net_device_stats, with only
11468 * the type differing, but rtnl_link_stats64 may have additional fields
11469 * at the end for newer counters.
11470 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)11471 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11472 const struct net_device_stats *netdev_stats)
11473 {
11474 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11475 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11476 u64 *dst = (u64 *)stats64;
11477
11478 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11479 for (i = 0; i < n; i++)
11480 dst[i] = (unsigned long)atomic_long_read(&src[i]);
11481 /* zero out counters that only exist in rtnl_link_stats64 */
11482 memset((char *)stats64 + n * sizeof(u64), 0,
11483 sizeof(*stats64) - n * sizeof(u64));
11484 }
11485 EXPORT_SYMBOL(netdev_stats_to_stats64);
11486
netdev_core_stats_alloc(struct net_device * dev)11487 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11488 struct net_device *dev)
11489 {
11490 struct net_device_core_stats __percpu *p;
11491
11492 p = alloc_percpu_gfp(struct net_device_core_stats,
11493 GFP_ATOMIC | __GFP_NOWARN);
11494
11495 if (p && cmpxchg(&dev->core_stats, NULL, p))
11496 free_percpu(p);
11497
11498 /* This READ_ONCE() pairs with the cmpxchg() above */
11499 return READ_ONCE(dev->core_stats);
11500 }
11501
netdev_core_stats_inc(struct net_device * dev,u32 offset)11502 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11503 {
11504 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11505 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11506 unsigned long __percpu *field;
11507
11508 if (unlikely(!p)) {
11509 p = netdev_core_stats_alloc(dev);
11510 if (!p)
11511 return;
11512 }
11513
11514 field = (unsigned long __percpu *)((void __percpu *)p + offset);
11515 this_cpu_inc(*field);
11516 }
11517 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11518
11519 /**
11520 * dev_get_stats - get network device statistics
11521 * @dev: device to get statistics from
11522 * @storage: place to store stats
11523 *
11524 * Get network statistics from device. Return @storage.
11525 * The device driver may provide its own method by setting
11526 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11527 * otherwise the internal statistics structure is used.
11528 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11529 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11530 struct rtnl_link_stats64 *storage)
11531 {
11532 const struct net_device_ops *ops = dev->netdev_ops;
11533 const struct net_device_core_stats __percpu *p;
11534
11535 /*
11536 * IPv{4,6} and udp tunnels share common stat helpers and use
11537 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11538 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11539 */
11540 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11541 offsetof(struct pcpu_dstats, rx_bytes));
11542 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11543 offsetof(struct pcpu_dstats, rx_packets));
11544 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11545 offsetof(struct pcpu_dstats, tx_bytes));
11546 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11547 offsetof(struct pcpu_dstats, tx_packets));
11548
11549 if (ops->ndo_get_stats64) {
11550 memset(storage, 0, sizeof(*storage));
11551 ops->ndo_get_stats64(dev, storage);
11552 } else if (ops->ndo_get_stats) {
11553 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11554 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11555 dev_get_tstats64(dev, storage);
11556 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11557 dev_get_dstats64(dev, storage);
11558 } else {
11559 netdev_stats_to_stats64(storage, &dev->stats);
11560 }
11561
11562 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11563 p = READ_ONCE(dev->core_stats);
11564 if (p) {
11565 const struct net_device_core_stats *core_stats;
11566 int i;
11567
11568 for_each_possible_cpu(i) {
11569 core_stats = per_cpu_ptr(p, i);
11570 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11571 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11572 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11573 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11574 }
11575 }
11576 return storage;
11577 }
11578 EXPORT_SYMBOL(dev_get_stats);
11579
11580 /**
11581 * dev_fetch_sw_netstats - get per-cpu network device statistics
11582 * @s: place to store stats
11583 * @netstats: per-cpu network stats to read from
11584 *
11585 * Read per-cpu network statistics and populate the related fields in @s.
11586 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11587 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11588 const struct pcpu_sw_netstats __percpu *netstats)
11589 {
11590 int cpu;
11591
11592 for_each_possible_cpu(cpu) {
11593 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11594 const struct pcpu_sw_netstats *stats;
11595 unsigned int start;
11596
11597 stats = per_cpu_ptr(netstats, cpu);
11598 do {
11599 start = u64_stats_fetch_begin(&stats->syncp);
11600 rx_packets = u64_stats_read(&stats->rx_packets);
11601 rx_bytes = u64_stats_read(&stats->rx_bytes);
11602 tx_packets = u64_stats_read(&stats->tx_packets);
11603 tx_bytes = u64_stats_read(&stats->tx_bytes);
11604 } while (u64_stats_fetch_retry(&stats->syncp, start));
11605
11606 s->rx_packets += rx_packets;
11607 s->rx_bytes += rx_bytes;
11608 s->tx_packets += tx_packets;
11609 s->tx_bytes += tx_bytes;
11610 }
11611 }
11612 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11613
11614 /**
11615 * dev_get_tstats64 - ndo_get_stats64 implementation
11616 * @dev: device to get statistics from
11617 * @s: place to store stats
11618 *
11619 * Populate @s from dev->stats and dev->tstats. Can be used as
11620 * ndo_get_stats64() callback.
11621 */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11622 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11623 {
11624 netdev_stats_to_stats64(s, &dev->stats);
11625 dev_fetch_sw_netstats(s, dev->tstats);
11626 }
11627 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11628
dev_ingress_queue_create(struct net_device * dev)11629 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11630 {
11631 struct netdev_queue *queue = dev_ingress_queue(dev);
11632
11633 #ifdef CONFIG_NET_CLS_ACT
11634 if (queue)
11635 return queue;
11636 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11637 if (!queue)
11638 return NULL;
11639 netdev_init_one_queue(dev, queue, NULL);
11640 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11641 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11642 rcu_assign_pointer(dev->ingress_queue, queue);
11643 #endif
11644 return queue;
11645 }
11646
11647 static const struct ethtool_ops default_ethtool_ops;
11648
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11649 void netdev_set_default_ethtool_ops(struct net_device *dev,
11650 const struct ethtool_ops *ops)
11651 {
11652 if (dev->ethtool_ops == &default_ethtool_ops)
11653 dev->ethtool_ops = ops;
11654 }
11655 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11656
11657 /**
11658 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11659 * @dev: netdev to enable the IRQ coalescing on
11660 *
11661 * Sets a conservative default for SW IRQ coalescing. Users can use
11662 * sysfs attributes to override the default values.
11663 */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11664 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11665 {
11666 WARN_ON(dev->reg_state == NETREG_REGISTERED);
11667
11668 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11669 netdev_set_gro_flush_timeout(dev, 20000);
11670 netdev_set_defer_hard_irqs(dev, 1);
11671 }
11672 }
11673 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11674
11675 /**
11676 * alloc_netdev_mqs - allocate network device
11677 * @sizeof_priv: size of private data to allocate space for
11678 * @name: device name format string
11679 * @name_assign_type: origin of device name
11680 * @setup: callback to initialize device
11681 * @txqs: the number of TX subqueues to allocate
11682 * @rxqs: the number of RX subqueues to allocate
11683 *
11684 * Allocates a struct net_device with private data area for driver use
11685 * and performs basic initialization. Also allocates subqueue structs
11686 * for each queue on the device.
11687 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11688 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11689 unsigned char name_assign_type,
11690 void (*setup)(struct net_device *),
11691 unsigned int txqs, unsigned int rxqs)
11692 {
11693 struct net_device *dev;
11694 size_t napi_config_sz;
11695 unsigned int maxqs;
11696
11697 BUG_ON(strlen(name) >= sizeof(dev->name));
11698
11699 if (txqs < 1) {
11700 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11701 return NULL;
11702 }
11703
11704 if (rxqs < 1) {
11705 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11706 return NULL;
11707 }
11708
11709 maxqs = max(txqs, rxqs);
11710
11711 dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11712 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11713 if (!dev)
11714 return NULL;
11715
11716 dev->priv_len = sizeof_priv;
11717
11718 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11719 #ifdef CONFIG_PCPU_DEV_REFCNT
11720 dev->pcpu_refcnt = alloc_percpu(int);
11721 if (!dev->pcpu_refcnt)
11722 goto free_dev;
11723 __dev_hold(dev);
11724 #else
11725 refcount_set(&dev->dev_refcnt, 1);
11726 #endif
11727
11728 if (dev_addr_init(dev))
11729 goto free_pcpu;
11730
11731 dev_mc_init(dev);
11732 dev_uc_init(dev);
11733
11734 dev_net_set(dev, &init_net);
11735
11736 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11737 dev->xdp_zc_max_segs = 1;
11738 dev->gso_max_segs = GSO_MAX_SEGS;
11739 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11740 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11741 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11742 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11743 dev->tso_max_segs = TSO_MAX_SEGS;
11744 dev->upper_level = 1;
11745 dev->lower_level = 1;
11746 #ifdef CONFIG_LOCKDEP
11747 dev->nested_level = 0;
11748 INIT_LIST_HEAD(&dev->unlink_list);
11749 #endif
11750
11751 INIT_LIST_HEAD(&dev->napi_list);
11752 INIT_LIST_HEAD(&dev->unreg_list);
11753 INIT_LIST_HEAD(&dev->close_list);
11754 INIT_LIST_HEAD(&dev->link_watch_list);
11755 INIT_LIST_HEAD(&dev->adj_list.upper);
11756 INIT_LIST_HEAD(&dev->adj_list.lower);
11757 INIT_LIST_HEAD(&dev->ptype_all);
11758 INIT_LIST_HEAD(&dev->ptype_specific);
11759 INIT_LIST_HEAD(&dev->net_notifier_list);
11760 #ifdef CONFIG_NET_SCHED
11761 hash_init(dev->qdisc_hash);
11762 #endif
11763
11764 mutex_init(&dev->lock);
11765
11766 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11767 setup(dev);
11768
11769 if (!dev->tx_queue_len) {
11770 dev->priv_flags |= IFF_NO_QUEUE;
11771 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11772 }
11773
11774 dev->num_tx_queues = txqs;
11775 dev->real_num_tx_queues = txqs;
11776 if (netif_alloc_netdev_queues(dev))
11777 goto free_all;
11778
11779 dev->num_rx_queues = rxqs;
11780 dev->real_num_rx_queues = rxqs;
11781 if (netif_alloc_rx_queues(dev))
11782 goto free_all;
11783 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11784 if (!dev->ethtool)
11785 goto free_all;
11786
11787 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11788 if (!dev->cfg)
11789 goto free_all;
11790 dev->cfg_pending = dev->cfg;
11791
11792 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11793 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11794 if (!dev->napi_config)
11795 goto free_all;
11796
11797 strscpy(dev->name, name);
11798 dev->name_assign_type = name_assign_type;
11799 dev->group = INIT_NETDEV_GROUP;
11800 if (!dev->ethtool_ops)
11801 dev->ethtool_ops = &default_ethtool_ops;
11802
11803 nf_hook_netdev_init(dev);
11804
11805 return dev;
11806
11807 free_all:
11808 free_netdev(dev);
11809 return NULL;
11810
11811 free_pcpu:
11812 #ifdef CONFIG_PCPU_DEV_REFCNT
11813 free_percpu(dev->pcpu_refcnt);
11814 free_dev:
11815 #endif
11816 kvfree(dev);
11817 return NULL;
11818 }
11819 EXPORT_SYMBOL(alloc_netdev_mqs);
11820
netdev_napi_exit(struct net_device * dev)11821 static void netdev_napi_exit(struct net_device *dev)
11822 {
11823 if (!list_empty(&dev->napi_list)) {
11824 struct napi_struct *p, *n;
11825
11826 netdev_lock(dev);
11827 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11828 __netif_napi_del_locked(p);
11829 netdev_unlock(dev);
11830
11831 synchronize_net();
11832 }
11833
11834 kvfree(dev->napi_config);
11835 }
11836
11837 /**
11838 * free_netdev - free network device
11839 * @dev: device
11840 *
11841 * This function does the last stage of destroying an allocated device
11842 * interface. The reference to the device object is released. If this
11843 * is the last reference then it will be freed.Must be called in process
11844 * context.
11845 */
free_netdev(struct net_device * dev)11846 void free_netdev(struct net_device *dev)
11847 {
11848 might_sleep();
11849
11850 /* When called immediately after register_netdevice() failed the unwind
11851 * handling may still be dismantling the device. Handle that case by
11852 * deferring the free.
11853 */
11854 if (dev->reg_state == NETREG_UNREGISTERING) {
11855 ASSERT_RTNL();
11856 dev->needs_free_netdev = true;
11857 return;
11858 }
11859
11860 WARN_ON(dev->cfg != dev->cfg_pending);
11861 kfree(dev->cfg);
11862 kfree(dev->ethtool);
11863 netif_free_tx_queues(dev);
11864 netif_free_rx_queues(dev);
11865
11866 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11867
11868 /* Flush device addresses */
11869 dev_addr_flush(dev);
11870
11871 netdev_napi_exit(dev);
11872
11873 netif_del_cpu_rmap(dev);
11874
11875 ref_tracker_dir_exit(&dev->refcnt_tracker);
11876 #ifdef CONFIG_PCPU_DEV_REFCNT
11877 free_percpu(dev->pcpu_refcnt);
11878 dev->pcpu_refcnt = NULL;
11879 #endif
11880 free_percpu(dev->core_stats);
11881 dev->core_stats = NULL;
11882 free_percpu(dev->xdp_bulkq);
11883 dev->xdp_bulkq = NULL;
11884
11885 netdev_free_phy_link_topology(dev);
11886
11887 mutex_destroy(&dev->lock);
11888
11889 /* Compatibility with error handling in drivers */
11890 if (dev->reg_state == NETREG_UNINITIALIZED ||
11891 dev->reg_state == NETREG_DUMMY) {
11892 kvfree(dev);
11893 return;
11894 }
11895
11896 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11897 WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11898
11899 /* will free via device release */
11900 put_device(&dev->dev);
11901 }
11902 EXPORT_SYMBOL(free_netdev);
11903
11904 /**
11905 * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11906 * @sizeof_priv: size of private data to allocate space for
11907 *
11908 * Return: the allocated net_device on success, NULL otherwise
11909 */
alloc_netdev_dummy(int sizeof_priv)11910 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11911 {
11912 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11913 init_dummy_netdev);
11914 }
11915 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11916
11917 /**
11918 * synchronize_net - Synchronize with packet receive processing
11919 *
11920 * Wait for packets currently being received to be done.
11921 * Does not block later packets from starting.
11922 */
synchronize_net(void)11923 void synchronize_net(void)
11924 {
11925 might_sleep();
11926 if (from_cleanup_net() || rtnl_is_locked())
11927 synchronize_rcu_expedited();
11928 else
11929 synchronize_rcu();
11930 }
11931 EXPORT_SYMBOL(synchronize_net);
11932
netdev_rss_contexts_free(struct net_device * dev)11933 static void netdev_rss_contexts_free(struct net_device *dev)
11934 {
11935 struct ethtool_rxfh_context *ctx;
11936 unsigned long context;
11937
11938 mutex_lock(&dev->ethtool->rss_lock);
11939 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11940 struct ethtool_rxfh_param rxfh;
11941
11942 rxfh.indir = ethtool_rxfh_context_indir(ctx);
11943 rxfh.key = ethtool_rxfh_context_key(ctx);
11944 rxfh.hfunc = ctx->hfunc;
11945 rxfh.input_xfrm = ctx->input_xfrm;
11946 rxfh.rss_context = context;
11947 rxfh.rss_delete = true;
11948
11949 xa_erase(&dev->ethtool->rss_ctx, context);
11950 if (dev->ethtool_ops->create_rxfh_context)
11951 dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11952 context, NULL);
11953 else
11954 dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11955 kfree(ctx);
11956 }
11957 xa_destroy(&dev->ethtool->rss_ctx);
11958 mutex_unlock(&dev->ethtool->rss_lock);
11959 }
11960
11961 /**
11962 * unregister_netdevice_queue - remove device from the kernel
11963 * @dev: device
11964 * @head: list
11965 *
11966 * This function shuts down a device interface and removes it
11967 * from the kernel tables.
11968 * If head not NULL, device is queued to be unregistered later.
11969 *
11970 * Callers must hold the rtnl semaphore. You may want
11971 * unregister_netdev() instead of this.
11972 */
11973
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)11974 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11975 {
11976 ASSERT_RTNL();
11977
11978 if (head) {
11979 list_move_tail(&dev->unreg_list, head);
11980 } else {
11981 LIST_HEAD(single);
11982
11983 list_add(&dev->unreg_list, &single);
11984 unregister_netdevice_many(&single);
11985 }
11986 }
11987 EXPORT_SYMBOL(unregister_netdevice_queue);
11988
dev_memory_provider_uninstall(struct net_device * dev)11989 static void dev_memory_provider_uninstall(struct net_device *dev)
11990 {
11991 unsigned int i;
11992
11993 for (i = 0; i < dev->real_num_rx_queues; i++) {
11994 struct netdev_rx_queue *rxq = &dev->_rx[i];
11995 struct pp_memory_provider_params *p = &rxq->mp_params;
11996
11997 if (p->mp_ops && p->mp_ops->uninstall)
11998 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
11999 }
12000 }
12001
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)12002 void unregister_netdevice_many_notify(struct list_head *head,
12003 u32 portid, const struct nlmsghdr *nlh)
12004 {
12005 struct net_device *dev, *tmp;
12006 LIST_HEAD(close_head);
12007 int cnt = 0;
12008
12009 BUG_ON(dev_boot_phase);
12010 ASSERT_RTNL();
12011
12012 if (list_empty(head))
12013 return;
12014
12015 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12016 /* Some devices call without registering
12017 * for initialization unwind. Remove those
12018 * devices and proceed with the remaining.
12019 */
12020 if (dev->reg_state == NETREG_UNINITIALIZED) {
12021 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12022 dev->name, dev);
12023
12024 WARN_ON(1);
12025 list_del(&dev->unreg_list);
12026 continue;
12027 }
12028 dev->dismantle = true;
12029 BUG_ON(dev->reg_state != NETREG_REGISTERED);
12030 }
12031
12032 /* If device is running, close it first. Start with ops locked... */
12033 list_for_each_entry(dev, head, unreg_list) {
12034 if (netdev_need_ops_lock(dev)) {
12035 list_add_tail(&dev->close_list, &close_head);
12036 netdev_lock(dev);
12037 }
12038 }
12039 dev_close_many(&close_head, true);
12040 /* ... now unlock them and go over the rest. */
12041 list_for_each_entry(dev, head, unreg_list) {
12042 if (netdev_need_ops_lock(dev))
12043 netdev_unlock(dev);
12044 else
12045 list_add_tail(&dev->close_list, &close_head);
12046 }
12047 dev_close_many(&close_head, true);
12048
12049 list_for_each_entry(dev, head, unreg_list) {
12050 /* And unlink it from device chain. */
12051 unlist_netdevice(dev);
12052 netdev_lock(dev);
12053 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12054 netdev_unlock(dev);
12055 }
12056 flush_all_backlogs();
12057
12058 synchronize_net();
12059
12060 list_for_each_entry(dev, head, unreg_list) {
12061 struct sk_buff *skb = NULL;
12062
12063 /* Shutdown queueing discipline. */
12064 netdev_lock_ops(dev);
12065 dev_shutdown(dev);
12066 dev_tcx_uninstall(dev);
12067 dev_xdp_uninstall(dev);
12068 dev_memory_provider_uninstall(dev);
12069 netdev_unlock_ops(dev);
12070 bpf_dev_bound_netdev_unregister(dev);
12071
12072 netdev_offload_xstats_disable_all(dev);
12073
12074 /* Notify protocols, that we are about to destroy
12075 * this device. They should clean all the things.
12076 */
12077 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12078
12079 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12080 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12081 GFP_KERNEL, NULL, 0,
12082 portid, nlh);
12083
12084 /*
12085 * Flush the unicast and multicast chains
12086 */
12087 dev_uc_flush(dev);
12088 dev_mc_flush(dev);
12089
12090 netdev_name_node_alt_flush(dev);
12091 netdev_name_node_free(dev->name_node);
12092
12093 netdev_rss_contexts_free(dev);
12094
12095 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12096
12097 if (dev->netdev_ops->ndo_uninit)
12098 dev->netdev_ops->ndo_uninit(dev);
12099
12100 mutex_destroy(&dev->ethtool->rss_lock);
12101
12102 net_shaper_flush_netdev(dev);
12103
12104 if (skb)
12105 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12106
12107 /* Notifier chain MUST detach us all upper devices. */
12108 WARN_ON(netdev_has_any_upper_dev(dev));
12109 WARN_ON(netdev_has_any_lower_dev(dev));
12110
12111 /* Remove entries from kobject tree */
12112 netdev_unregister_kobject(dev);
12113 #ifdef CONFIG_XPS
12114 /* Remove XPS queueing entries */
12115 netif_reset_xps_queues_gt(dev, 0);
12116 #endif
12117 }
12118
12119 synchronize_net();
12120
12121 list_for_each_entry(dev, head, unreg_list) {
12122 netdev_put(dev, &dev->dev_registered_tracker);
12123 net_set_todo(dev);
12124 cnt++;
12125 }
12126 atomic_add(cnt, &dev_unreg_count);
12127
12128 list_del(head);
12129 }
12130
12131 /**
12132 * unregister_netdevice_many - unregister many devices
12133 * @head: list of devices
12134 *
12135 * Note: As most callers use a stack allocated list_head,
12136 * we force a list_del() to make sure stack won't be corrupted later.
12137 */
unregister_netdevice_many(struct list_head * head)12138 void unregister_netdevice_many(struct list_head *head)
12139 {
12140 unregister_netdevice_many_notify(head, 0, NULL);
12141 }
12142 EXPORT_SYMBOL(unregister_netdevice_many);
12143
12144 /**
12145 * unregister_netdev - remove device from the kernel
12146 * @dev: device
12147 *
12148 * This function shuts down a device interface and removes it
12149 * from the kernel tables.
12150 *
12151 * This is just a wrapper for unregister_netdevice that takes
12152 * the rtnl semaphore. In general you want to use this and not
12153 * unregister_netdevice.
12154 */
unregister_netdev(struct net_device * dev)12155 void unregister_netdev(struct net_device *dev)
12156 {
12157 rtnl_net_dev_lock(dev);
12158 unregister_netdevice(dev);
12159 rtnl_net_dev_unlock(dev);
12160 }
12161 EXPORT_SYMBOL(unregister_netdev);
12162
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex,struct netlink_ext_ack * extack)12163 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12164 const char *pat, int new_ifindex,
12165 struct netlink_ext_ack *extack)
12166 {
12167 struct netdev_name_node *name_node;
12168 struct net *net_old = dev_net(dev);
12169 char new_name[IFNAMSIZ] = {};
12170 int err, new_nsid;
12171
12172 ASSERT_RTNL();
12173
12174 /* Don't allow namespace local devices to be moved. */
12175 err = -EINVAL;
12176 if (dev->netns_immutable) {
12177 NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12178 goto out;
12179 }
12180
12181 /* Ensure the device has been registered */
12182 if (dev->reg_state != NETREG_REGISTERED) {
12183 NL_SET_ERR_MSG(extack, "The interface isn't registered");
12184 goto out;
12185 }
12186
12187 /* Get out if there is nothing todo */
12188 err = 0;
12189 if (net_eq(net_old, net))
12190 goto out;
12191
12192 /* Pick the destination device name, and ensure
12193 * we can use it in the destination network namespace.
12194 */
12195 err = -EEXIST;
12196 if (netdev_name_in_use(net, dev->name)) {
12197 /* We get here if we can't use the current device name */
12198 if (!pat) {
12199 NL_SET_ERR_MSG(extack,
12200 "An interface with the same name exists in the target netns");
12201 goto out;
12202 }
12203 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12204 if (err < 0) {
12205 NL_SET_ERR_MSG_FMT(extack,
12206 "Unable to use '%s' for the new interface name in the target netns",
12207 pat);
12208 goto out;
12209 }
12210 }
12211 /* Check that none of the altnames conflicts. */
12212 err = -EEXIST;
12213 netdev_for_each_altname(dev, name_node) {
12214 if (netdev_name_in_use(net, name_node->name)) {
12215 NL_SET_ERR_MSG_FMT(extack,
12216 "An interface with the altname %s exists in the target netns",
12217 name_node->name);
12218 goto out;
12219 }
12220 }
12221
12222 /* Check that new_ifindex isn't used yet. */
12223 if (new_ifindex) {
12224 err = dev_index_reserve(net, new_ifindex);
12225 if (err < 0) {
12226 NL_SET_ERR_MSG_FMT(extack,
12227 "The ifindex %d is not available in the target netns",
12228 new_ifindex);
12229 goto out;
12230 }
12231 } else {
12232 /* If there is an ifindex conflict assign a new one */
12233 err = dev_index_reserve(net, dev->ifindex);
12234 if (err == -EBUSY)
12235 err = dev_index_reserve(net, 0);
12236 if (err < 0) {
12237 NL_SET_ERR_MSG(extack,
12238 "Unable to allocate a new ifindex in the target netns");
12239 goto out;
12240 }
12241 new_ifindex = err;
12242 }
12243
12244 /*
12245 * And now a mini version of register_netdevice unregister_netdevice.
12246 */
12247
12248 netdev_lock_ops(dev);
12249 /* If device is running close it first. */
12250 netif_close(dev);
12251 /* And unlink it from device chain */
12252 unlist_netdevice(dev);
12253
12254 if (!netdev_need_ops_lock(dev))
12255 netdev_lock(dev);
12256 dev->moving_ns = true;
12257 netdev_unlock(dev);
12258
12259 synchronize_net();
12260
12261 /* Shutdown queueing discipline. */
12262 netdev_lock_ops(dev);
12263 dev_shutdown(dev);
12264 netdev_unlock_ops(dev);
12265
12266 /* Notify protocols, that we are about to destroy
12267 * this device. They should clean all the things.
12268 *
12269 * Note that dev->reg_state stays at NETREG_REGISTERED.
12270 * This is wanted because this way 8021q and macvlan know
12271 * the device is just moving and can keep their slaves up.
12272 */
12273 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12274 rcu_barrier();
12275
12276 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12277
12278 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12279 new_ifindex);
12280
12281 /*
12282 * Flush the unicast and multicast chains
12283 */
12284 dev_uc_flush(dev);
12285 dev_mc_flush(dev);
12286
12287 /* Send a netdev-removed uevent to the old namespace */
12288 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12289 netdev_adjacent_del_links(dev);
12290
12291 /* Move per-net netdevice notifiers that are following the netdevice */
12292 move_netdevice_notifiers_dev_net(dev, net);
12293
12294 /* Actually switch the network namespace */
12295 netdev_lock(dev);
12296 dev_net_set(dev, net);
12297 netdev_unlock(dev);
12298 dev->ifindex = new_ifindex;
12299
12300 if (new_name[0]) {
12301 /* Rename the netdev to prepared name */
12302 write_seqlock_bh(&netdev_rename_lock);
12303 strscpy(dev->name, new_name, IFNAMSIZ);
12304 write_sequnlock_bh(&netdev_rename_lock);
12305 }
12306
12307 /* Fixup kobjects */
12308 dev_set_uevent_suppress(&dev->dev, 1);
12309 err = device_rename(&dev->dev, dev->name);
12310 dev_set_uevent_suppress(&dev->dev, 0);
12311 WARN_ON(err);
12312
12313 /* Send a netdev-add uevent to the new namespace */
12314 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12315 netdev_adjacent_add_links(dev);
12316
12317 /* Adapt owner in case owning user namespace of target network
12318 * namespace is different from the original one.
12319 */
12320 err = netdev_change_owner(dev, net_old, net);
12321 WARN_ON(err);
12322
12323 netdev_lock(dev);
12324 dev->moving_ns = false;
12325 if (!netdev_need_ops_lock(dev))
12326 netdev_unlock(dev);
12327
12328 /* Add the device back in the hashes */
12329 list_netdevice(dev);
12330 /* Notify protocols, that a new device appeared. */
12331 call_netdevice_notifiers(NETDEV_REGISTER, dev);
12332 netdev_unlock_ops(dev);
12333
12334 /*
12335 * Prevent userspace races by waiting until the network
12336 * device is fully setup before sending notifications.
12337 */
12338 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12339
12340 synchronize_net();
12341 err = 0;
12342 out:
12343 return err;
12344 }
12345
dev_cpu_dead(unsigned int oldcpu)12346 static int dev_cpu_dead(unsigned int oldcpu)
12347 {
12348 struct sk_buff **list_skb;
12349 struct sk_buff *skb;
12350 unsigned int cpu;
12351 struct softnet_data *sd, *oldsd, *remsd = NULL;
12352
12353 local_irq_disable();
12354 cpu = smp_processor_id();
12355 sd = &per_cpu(softnet_data, cpu);
12356 oldsd = &per_cpu(softnet_data, oldcpu);
12357
12358 /* Find end of our completion_queue. */
12359 list_skb = &sd->completion_queue;
12360 while (*list_skb)
12361 list_skb = &(*list_skb)->next;
12362 /* Append completion queue from offline CPU. */
12363 *list_skb = oldsd->completion_queue;
12364 oldsd->completion_queue = NULL;
12365
12366 /* Append output queue from offline CPU. */
12367 if (oldsd->output_queue) {
12368 *sd->output_queue_tailp = oldsd->output_queue;
12369 sd->output_queue_tailp = oldsd->output_queue_tailp;
12370 oldsd->output_queue = NULL;
12371 oldsd->output_queue_tailp = &oldsd->output_queue;
12372 }
12373 /* Append NAPI poll list from offline CPU, with one exception :
12374 * process_backlog() must be called by cpu owning percpu backlog.
12375 * We properly handle process_queue & input_pkt_queue later.
12376 */
12377 while (!list_empty(&oldsd->poll_list)) {
12378 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12379 struct napi_struct,
12380 poll_list);
12381
12382 list_del_init(&napi->poll_list);
12383 if (napi->poll == process_backlog)
12384 napi->state &= NAPIF_STATE_THREADED;
12385 else
12386 ____napi_schedule(sd, napi);
12387 }
12388
12389 raise_softirq_irqoff(NET_TX_SOFTIRQ);
12390 local_irq_enable();
12391
12392 if (!use_backlog_threads()) {
12393 #ifdef CONFIG_RPS
12394 remsd = oldsd->rps_ipi_list;
12395 oldsd->rps_ipi_list = NULL;
12396 #endif
12397 /* send out pending IPI's on offline CPU */
12398 net_rps_send_ipi(remsd);
12399 }
12400
12401 /* Process offline CPU's input_pkt_queue */
12402 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12403 netif_rx(skb);
12404 rps_input_queue_head_incr(oldsd);
12405 }
12406 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12407 netif_rx(skb);
12408 rps_input_queue_head_incr(oldsd);
12409 }
12410
12411 return 0;
12412 }
12413
12414 /**
12415 * netdev_increment_features - increment feature set by one
12416 * @all: current feature set
12417 * @one: new feature set
12418 * @mask: mask feature set
12419 *
12420 * Computes a new feature set after adding a device with feature set
12421 * @one to the master device with current feature set @all. Will not
12422 * enable anything that is off in @mask. Returns the new feature set.
12423 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)12424 netdev_features_t netdev_increment_features(netdev_features_t all,
12425 netdev_features_t one, netdev_features_t mask)
12426 {
12427 if (mask & NETIF_F_HW_CSUM)
12428 mask |= NETIF_F_CSUM_MASK;
12429 mask |= NETIF_F_VLAN_CHALLENGED;
12430
12431 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12432 all &= one | ~NETIF_F_ALL_FOR_ALL;
12433
12434 /* If one device supports hw checksumming, set for all. */
12435 if (all & NETIF_F_HW_CSUM)
12436 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12437
12438 return all;
12439 }
12440 EXPORT_SYMBOL(netdev_increment_features);
12441
netdev_create_hash(void)12442 static struct hlist_head * __net_init netdev_create_hash(void)
12443 {
12444 int i;
12445 struct hlist_head *hash;
12446
12447 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12448 if (hash != NULL)
12449 for (i = 0; i < NETDEV_HASHENTRIES; i++)
12450 INIT_HLIST_HEAD(&hash[i]);
12451
12452 return hash;
12453 }
12454
12455 /* Initialize per network namespace state */
netdev_init(struct net * net)12456 static int __net_init netdev_init(struct net *net)
12457 {
12458 BUILD_BUG_ON(GRO_HASH_BUCKETS >
12459 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12460
12461 INIT_LIST_HEAD(&net->dev_base_head);
12462
12463 net->dev_name_head = netdev_create_hash();
12464 if (net->dev_name_head == NULL)
12465 goto err_name;
12466
12467 net->dev_index_head = netdev_create_hash();
12468 if (net->dev_index_head == NULL)
12469 goto err_idx;
12470
12471 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12472
12473 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12474
12475 return 0;
12476
12477 err_idx:
12478 kfree(net->dev_name_head);
12479 err_name:
12480 return -ENOMEM;
12481 }
12482
12483 /**
12484 * netdev_drivername - network driver for the device
12485 * @dev: network device
12486 *
12487 * Determine network driver for device.
12488 */
netdev_drivername(const struct net_device * dev)12489 const char *netdev_drivername(const struct net_device *dev)
12490 {
12491 const struct device_driver *driver;
12492 const struct device *parent;
12493 const char *empty = "";
12494
12495 parent = dev->dev.parent;
12496 if (!parent)
12497 return empty;
12498
12499 driver = parent->driver;
12500 if (driver && driver->name)
12501 return driver->name;
12502 return empty;
12503 }
12504
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)12505 static void __netdev_printk(const char *level, const struct net_device *dev,
12506 struct va_format *vaf)
12507 {
12508 if (dev && dev->dev.parent) {
12509 dev_printk_emit(level[1] - '0',
12510 dev->dev.parent,
12511 "%s %s %s%s: %pV",
12512 dev_driver_string(dev->dev.parent),
12513 dev_name(dev->dev.parent),
12514 netdev_name(dev), netdev_reg_state(dev),
12515 vaf);
12516 } else if (dev) {
12517 printk("%s%s%s: %pV",
12518 level, netdev_name(dev), netdev_reg_state(dev), vaf);
12519 } else {
12520 printk("%s(NULL net_device): %pV", level, vaf);
12521 }
12522 }
12523
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)12524 void netdev_printk(const char *level, const struct net_device *dev,
12525 const char *format, ...)
12526 {
12527 struct va_format vaf;
12528 va_list args;
12529
12530 va_start(args, format);
12531
12532 vaf.fmt = format;
12533 vaf.va = &args;
12534
12535 __netdev_printk(level, dev, &vaf);
12536
12537 va_end(args);
12538 }
12539 EXPORT_SYMBOL(netdev_printk);
12540
12541 #define define_netdev_printk_level(func, level) \
12542 void func(const struct net_device *dev, const char *fmt, ...) \
12543 { \
12544 struct va_format vaf; \
12545 va_list args; \
12546 \
12547 va_start(args, fmt); \
12548 \
12549 vaf.fmt = fmt; \
12550 vaf.va = &args; \
12551 \
12552 __netdev_printk(level, dev, &vaf); \
12553 \
12554 va_end(args); \
12555 } \
12556 EXPORT_SYMBOL(func);
12557
12558 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12559 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12560 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12561 define_netdev_printk_level(netdev_err, KERN_ERR);
12562 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12563 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12564 define_netdev_printk_level(netdev_info, KERN_INFO);
12565
netdev_exit(struct net * net)12566 static void __net_exit netdev_exit(struct net *net)
12567 {
12568 kfree(net->dev_name_head);
12569 kfree(net->dev_index_head);
12570 xa_destroy(&net->dev_by_index);
12571 if (net != &init_net)
12572 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12573 }
12574
12575 static struct pernet_operations __net_initdata netdev_net_ops = {
12576 .init = netdev_init,
12577 .exit = netdev_exit,
12578 };
12579
default_device_exit_net(struct net * net)12580 static void __net_exit default_device_exit_net(struct net *net)
12581 {
12582 struct netdev_name_node *name_node, *tmp;
12583 struct net_device *dev, *aux;
12584 /*
12585 * Push all migratable network devices back to the
12586 * initial network namespace
12587 */
12588 ASSERT_RTNL();
12589 for_each_netdev_safe(net, dev, aux) {
12590 int err;
12591 char fb_name[IFNAMSIZ];
12592
12593 /* Ignore unmoveable devices (i.e. loopback) */
12594 if (dev->netns_immutable)
12595 continue;
12596
12597 /* Leave virtual devices for the generic cleanup */
12598 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12599 continue;
12600
12601 /* Push remaining network devices to init_net */
12602 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12603 if (netdev_name_in_use(&init_net, fb_name))
12604 snprintf(fb_name, IFNAMSIZ, "dev%%d");
12605
12606 netdev_for_each_altname_safe(dev, name_node, tmp)
12607 if (netdev_name_in_use(&init_net, name_node->name))
12608 __netdev_name_node_alt_destroy(name_node);
12609
12610 err = dev_change_net_namespace(dev, &init_net, fb_name);
12611 if (err) {
12612 pr_emerg("%s: failed to move %s to init_net: %d\n",
12613 __func__, dev->name, err);
12614 BUG();
12615 }
12616 }
12617 }
12618
default_device_exit_batch(struct list_head * net_list)12619 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12620 {
12621 /* At exit all network devices most be removed from a network
12622 * namespace. Do this in the reverse order of registration.
12623 * Do this across as many network namespaces as possible to
12624 * improve batching efficiency.
12625 */
12626 struct net_device *dev;
12627 struct net *net;
12628 LIST_HEAD(dev_kill_list);
12629
12630 rtnl_lock();
12631 list_for_each_entry(net, net_list, exit_list) {
12632 default_device_exit_net(net);
12633 cond_resched();
12634 }
12635
12636 list_for_each_entry(net, net_list, exit_list) {
12637 for_each_netdev_reverse(net, dev) {
12638 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12639 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12640 else
12641 unregister_netdevice_queue(dev, &dev_kill_list);
12642 }
12643 }
12644 unregister_netdevice_many(&dev_kill_list);
12645 rtnl_unlock();
12646 }
12647
12648 static struct pernet_operations __net_initdata default_device_ops = {
12649 .exit_batch = default_device_exit_batch,
12650 };
12651
net_dev_struct_check(void)12652 static void __init net_dev_struct_check(void)
12653 {
12654 /* TX read-mostly hotpath */
12655 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12656 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12657 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12658 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12659 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12660 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12661 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12662 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12663 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12664 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12665 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12666 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12667 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12668 #ifdef CONFIG_XPS
12669 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12670 #endif
12671 #ifdef CONFIG_NETFILTER_EGRESS
12672 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12673 #endif
12674 #ifdef CONFIG_NET_XGRESS
12675 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12676 #endif
12677 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12678
12679 /* TXRX read-mostly hotpath */
12680 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12681 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12682 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12683 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12684 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12685 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12686 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12687
12688 /* RX read-mostly hotpath */
12689 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12690 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12691 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12692 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12693 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12694 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12695 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12696 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12697 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12698 #ifdef CONFIG_NETPOLL
12699 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12700 #endif
12701 #ifdef CONFIG_NET_XGRESS
12702 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12703 #endif
12704 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12705 }
12706
12707 /*
12708 * Initialize the DEV module. At boot time this walks the device list and
12709 * unhooks any devices that fail to initialise (normally hardware not
12710 * present) and leaves us with a valid list of present and active devices.
12711 *
12712 */
12713
12714 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12715 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
12716
net_page_pool_create(int cpuid)12717 static int net_page_pool_create(int cpuid)
12718 {
12719 #if IS_ENABLED(CONFIG_PAGE_POOL)
12720 struct page_pool_params page_pool_params = {
12721 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12722 .flags = PP_FLAG_SYSTEM_POOL,
12723 .nid = cpu_to_mem(cpuid),
12724 };
12725 struct page_pool *pp_ptr;
12726 int err;
12727
12728 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12729 if (IS_ERR(pp_ptr))
12730 return -ENOMEM;
12731
12732 err = xdp_reg_page_pool(pp_ptr);
12733 if (err) {
12734 page_pool_destroy(pp_ptr);
12735 return err;
12736 }
12737
12738 per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
12739 #endif
12740 return 0;
12741 }
12742
backlog_napi_should_run(unsigned int cpu)12743 static int backlog_napi_should_run(unsigned int cpu)
12744 {
12745 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12746 struct napi_struct *napi = &sd->backlog;
12747
12748 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12749 }
12750
run_backlog_napi(unsigned int cpu)12751 static void run_backlog_napi(unsigned int cpu)
12752 {
12753 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12754
12755 napi_threaded_poll_loop(&sd->backlog);
12756 }
12757
backlog_napi_setup(unsigned int cpu)12758 static void backlog_napi_setup(unsigned int cpu)
12759 {
12760 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12761 struct napi_struct *napi = &sd->backlog;
12762
12763 napi->thread = this_cpu_read(backlog_napi);
12764 set_bit(NAPI_STATE_THREADED, &napi->state);
12765 }
12766
12767 static struct smp_hotplug_thread backlog_threads = {
12768 .store = &backlog_napi,
12769 .thread_should_run = backlog_napi_should_run,
12770 .thread_fn = run_backlog_napi,
12771 .thread_comm = "backlog_napi/%u",
12772 .setup = backlog_napi_setup,
12773 };
12774
12775 /*
12776 * This is called single threaded during boot, so no need
12777 * to take the rtnl semaphore.
12778 */
net_dev_init(void)12779 static int __init net_dev_init(void)
12780 {
12781 int i, rc = -ENOMEM;
12782
12783 BUG_ON(!dev_boot_phase);
12784
12785 net_dev_struct_check();
12786
12787 if (dev_proc_init())
12788 goto out;
12789
12790 if (netdev_kobject_init())
12791 goto out;
12792
12793 for (i = 0; i < PTYPE_HASH_SIZE; i++)
12794 INIT_LIST_HEAD(&ptype_base[i]);
12795
12796 if (register_pernet_subsys(&netdev_net_ops))
12797 goto out;
12798
12799 /*
12800 * Initialise the packet receive queues.
12801 */
12802
12803 flush_backlogs_fallback = flush_backlogs_alloc();
12804 if (!flush_backlogs_fallback)
12805 goto out;
12806
12807 for_each_possible_cpu(i) {
12808 struct softnet_data *sd = &per_cpu(softnet_data, i);
12809
12810 skb_queue_head_init(&sd->input_pkt_queue);
12811 skb_queue_head_init(&sd->process_queue);
12812 #ifdef CONFIG_XFRM_OFFLOAD
12813 skb_queue_head_init(&sd->xfrm_backlog);
12814 #endif
12815 INIT_LIST_HEAD(&sd->poll_list);
12816 sd->output_queue_tailp = &sd->output_queue;
12817 #ifdef CONFIG_RPS
12818 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12819 sd->cpu = i;
12820 #endif
12821 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12822 spin_lock_init(&sd->defer_lock);
12823
12824 gro_init(&sd->backlog.gro);
12825 sd->backlog.poll = process_backlog;
12826 sd->backlog.weight = weight_p;
12827 INIT_LIST_HEAD(&sd->backlog.poll_list);
12828
12829 if (net_page_pool_create(i))
12830 goto out;
12831 }
12832 if (use_backlog_threads())
12833 smpboot_register_percpu_thread(&backlog_threads);
12834
12835 dev_boot_phase = 0;
12836
12837 /* The loopback device is special if any other network devices
12838 * is present in a network namespace the loopback device must
12839 * be present. Since we now dynamically allocate and free the
12840 * loopback device ensure this invariant is maintained by
12841 * keeping the loopback device as the first device on the
12842 * list of network devices. Ensuring the loopback devices
12843 * is the first device that appears and the last network device
12844 * that disappears.
12845 */
12846 if (register_pernet_device(&loopback_net_ops))
12847 goto out;
12848
12849 if (register_pernet_device(&default_device_ops))
12850 goto out;
12851
12852 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12853 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12854
12855 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12856 NULL, dev_cpu_dead);
12857 WARN_ON(rc < 0);
12858 rc = 0;
12859
12860 /* avoid static key IPIs to isolated CPUs */
12861 if (housekeeping_enabled(HK_TYPE_MISC))
12862 net_enable_timestamp();
12863 out:
12864 if (rc < 0) {
12865 for_each_possible_cpu(i) {
12866 struct page_pool *pp_ptr;
12867
12868 pp_ptr = per_cpu(system_page_pool.pool, i);
12869 if (!pp_ptr)
12870 continue;
12871
12872 xdp_unreg_page_pool(pp_ptr);
12873 page_pool_destroy(pp_ptr);
12874 per_cpu(system_page_pool.pool, i) = NULL;
12875 }
12876 }
12877
12878 return rc;
12879 }
12880
12881 subsys_initcall(net_dev_init);
12882