1 // SPDX-License-Identifier: GPL-2.0
2
3 /* erasure coding */
4
5 #include "bcachefs.h"
6 #include "alloc_background.h"
7 #include "alloc_foreground.h"
8 #include "backpointers.h"
9 #include "bkey_buf.h"
10 #include "bset.h"
11 #include "btree_gc.h"
12 #include "btree_update.h"
13 #include "btree_write_buffer.h"
14 #include "buckets.h"
15 #include "checksum.h"
16 #include "disk_accounting.h"
17 #include "disk_groups.h"
18 #include "ec.h"
19 #include "error.h"
20 #include "io_read.h"
21 #include "io_write.h"
22 #include "keylist.h"
23 #include "lru.h"
24 #include "recovery.h"
25 #include "replicas.h"
26 #include "super-io.h"
27 #include "util.h"
28
29 #include <linux/sort.h>
30 #include <linux/string_choices.h>
31
32 #ifdef __KERNEL__
33
34 #include <linux/raid/pq.h>
35 #include <linux/raid/xor.h>
36
raid5_recov(unsigned disks,unsigned failed_idx,size_t size,void ** data)37 static void raid5_recov(unsigned disks, unsigned failed_idx,
38 size_t size, void **data)
39 {
40 unsigned i = 2, nr;
41
42 BUG_ON(failed_idx >= disks);
43
44 swap(data[0], data[failed_idx]);
45 memcpy(data[0], data[1], size);
46
47 while (i < disks) {
48 nr = min_t(unsigned, disks - i, MAX_XOR_BLOCKS);
49 xor_blocks(nr, size, data[0], data + i);
50 i += nr;
51 }
52
53 swap(data[0], data[failed_idx]);
54 }
55
raid_gen(int nd,int np,size_t size,void ** v)56 static void raid_gen(int nd, int np, size_t size, void **v)
57 {
58 if (np >= 1)
59 raid5_recov(nd + np, nd, size, v);
60 if (np >= 2)
61 raid6_call.gen_syndrome(nd + np, size, v);
62 BUG_ON(np > 2);
63 }
64
raid_rec(int nr,int * ir,int nd,int np,size_t size,void ** v)65 static void raid_rec(int nr, int *ir, int nd, int np, size_t size, void **v)
66 {
67 switch (nr) {
68 case 0:
69 break;
70 case 1:
71 if (ir[0] < nd + 1)
72 raid5_recov(nd + 1, ir[0], size, v);
73 else
74 raid6_call.gen_syndrome(nd + np, size, v);
75 break;
76 case 2:
77 if (ir[1] < nd) {
78 /* data+data failure. */
79 raid6_2data_recov(nd + np, size, ir[0], ir[1], v);
80 } else if (ir[0] < nd) {
81 /* data + p/q failure */
82
83 if (ir[1] == nd) /* data + p failure */
84 raid6_datap_recov(nd + np, size, ir[0], v);
85 else { /* data + q failure */
86 raid5_recov(nd + 1, ir[0], size, v);
87 raid6_call.gen_syndrome(nd + np, size, v);
88 }
89 } else {
90 raid_gen(nd, np, size, v);
91 }
92 break;
93 default:
94 BUG();
95 }
96 }
97
98 #else
99
100 #include <raid/raid.h>
101
102 #endif
103
104 struct ec_bio {
105 struct bch_dev *ca;
106 struct ec_stripe_buf *buf;
107 size_t idx;
108 u64 submit_time;
109 struct bio bio;
110 };
111
112 /* Stripes btree keys: */
113
bch2_stripe_validate(struct bch_fs * c,struct bkey_s_c k,struct bkey_validate_context from)114 int bch2_stripe_validate(struct bch_fs *c, struct bkey_s_c k,
115 struct bkey_validate_context from)
116 {
117 const struct bch_stripe *s = bkey_s_c_to_stripe(k).v;
118 int ret = 0;
119
120 bkey_fsck_err_on(bkey_eq(k.k->p, POS_MIN) ||
121 bpos_gt(k.k->p, POS(0, U32_MAX)),
122 c, stripe_pos_bad,
123 "stripe at bad pos");
124
125 bkey_fsck_err_on(bkey_val_u64s(k.k) < stripe_val_u64s(s),
126 c, stripe_val_size_bad,
127 "incorrect value size (%zu < %u)",
128 bkey_val_u64s(k.k), stripe_val_u64s(s));
129
130 bkey_fsck_err_on(s->csum_granularity_bits >= 64,
131 c, stripe_csum_granularity_bad,
132 "invalid csum granularity (%u >= 64)",
133 s->csum_granularity_bits);
134
135 ret = bch2_bkey_ptrs_validate(c, k, from);
136 fsck_err:
137 return ret;
138 }
139
bch2_stripe_to_text(struct printbuf * out,struct bch_fs * c,struct bkey_s_c k)140 void bch2_stripe_to_text(struct printbuf *out, struct bch_fs *c,
141 struct bkey_s_c k)
142 {
143 const struct bch_stripe *sp = bkey_s_c_to_stripe(k).v;
144 struct bch_stripe s = {};
145
146 memcpy(&s, sp, min(sizeof(s), bkey_val_bytes(k.k)));
147
148 unsigned nr_data = s.nr_blocks - s.nr_redundant;
149
150 prt_printf(out, "algo %u sectors %u blocks %u:%u csum ",
151 s.algorithm,
152 le16_to_cpu(s.sectors),
153 nr_data,
154 s.nr_redundant);
155 bch2_prt_csum_type(out, s.csum_type);
156 prt_str(out, " gran ");
157 if (s.csum_granularity_bits < 64)
158 prt_printf(out, "%llu", 1ULL << s.csum_granularity_bits);
159 else
160 prt_printf(out, "(invalid shift %u)", s.csum_granularity_bits);
161
162 if (s.disk_label) {
163 prt_str(out, " label");
164 bch2_disk_path_to_text(out, c, s.disk_label - 1);
165 }
166
167 for (unsigned i = 0; i < s.nr_blocks; i++) {
168 const struct bch_extent_ptr *ptr = sp->ptrs + i;
169
170 if ((void *) ptr >= bkey_val_end(k))
171 break;
172
173 prt_char(out, ' ');
174 bch2_extent_ptr_to_text(out, c, ptr);
175
176 if (s.csum_type < BCH_CSUM_NR &&
177 i < nr_data &&
178 stripe_blockcount_offset(&s, i) < bkey_val_bytes(k.k))
179 prt_printf(out, "#%u", stripe_blockcount_get(sp, i));
180 }
181 }
182
183 /* Triggers: */
184
__mark_stripe_bucket(struct btree_trans * trans,struct bch_dev * ca,struct bkey_s_c_stripe s,unsigned ptr_idx,bool deleting,struct bpos bucket,struct bch_alloc_v4 * a,enum btree_iter_update_trigger_flags flags)185 static int __mark_stripe_bucket(struct btree_trans *trans,
186 struct bch_dev *ca,
187 struct bkey_s_c_stripe s,
188 unsigned ptr_idx, bool deleting,
189 struct bpos bucket,
190 struct bch_alloc_v4 *a,
191 enum btree_iter_update_trigger_flags flags)
192 {
193 const struct bch_extent_ptr *ptr = s.v->ptrs + ptr_idx;
194 unsigned nr_data = s.v->nr_blocks - s.v->nr_redundant;
195 bool parity = ptr_idx >= nr_data;
196 enum bch_data_type data_type = parity ? BCH_DATA_parity : BCH_DATA_stripe;
197 s64 sectors = parity ? le16_to_cpu(s.v->sectors) : 0;
198 struct printbuf buf = PRINTBUF;
199 int ret = 0;
200
201 struct bch_fs *c = trans->c;
202 if (deleting)
203 sectors = -sectors;
204
205 if (!deleting) {
206 if (bch2_trans_inconsistent_on(a->stripe ||
207 a->stripe_redundancy, trans,
208 "bucket %llu:%llu gen %u data type %s dirty_sectors %u: multiple stripes using same bucket (%u, %llu)\n%s",
209 bucket.inode, bucket.offset, a->gen,
210 bch2_data_type_str(a->data_type),
211 a->dirty_sectors,
212 a->stripe, s.k->p.offset,
213 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) {
214 ret = -BCH_ERR_mark_stripe;
215 goto err;
216 }
217
218 if (bch2_trans_inconsistent_on(parity && bch2_bucket_sectors_total(*a), trans,
219 "bucket %llu:%llu gen %u data type %s dirty_sectors %u cached_sectors %u: data already in parity bucket\n%s",
220 bucket.inode, bucket.offset, a->gen,
221 bch2_data_type_str(a->data_type),
222 a->dirty_sectors,
223 a->cached_sectors,
224 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) {
225 ret = -BCH_ERR_mark_stripe;
226 goto err;
227 }
228 } else {
229 if (bch2_trans_inconsistent_on(a->stripe != s.k->p.offset ||
230 a->stripe_redundancy != s.v->nr_redundant, trans,
231 "bucket %llu:%llu gen %u: not marked as stripe when deleting stripe (got %u)\n%s",
232 bucket.inode, bucket.offset, a->gen,
233 a->stripe,
234 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) {
235 ret = -BCH_ERR_mark_stripe;
236 goto err;
237 }
238
239 if (bch2_trans_inconsistent_on(a->data_type != data_type, trans,
240 "bucket %llu:%llu gen %u data type %s: wrong data type when stripe, should be %s\n%s",
241 bucket.inode, bucket.offset, a->gen,
242 bch2_data_type_str(a->data_type),
243 bch2_data_type_str(data_type),
244 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) {
245 ret = -BCH_ERR_mark_stripe;
246 goto err;
247 }
248
249 if (bch2_trans_inconsistent_on(parity &&
250 (a->dirty_sectors != -sectors ||
251 a->cached_sectors), trans,
252 "bucket %llu:%llu gen %u dirty_sectors %u cached_sectors %u: wrong sectors when deleting parity block of stripe\n%s",
253 bucket.inode, bucket.offset, a->gen,
254 a->dirty_sectors,
255 a->cached_sectors,
256 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) {
257 ret = -BCH_ERR_mark_stripe;
258 goto err;
259 }
260 }
261
262 if (sectors) {
263 ret = bch2_bucket_ref_update(trans, ca, s.s_c, ptr, sectors, data_type,
264 a->gen, a->data_type, &a->dirty_sectors);
265 if (ret)
266 goto err;
267 }
268
269 if (!deleting) {
270 a->stripe = s.k->p.offset;
271 a->stripe_redundancy = s.v->nr_redundant;
272 alloc_data_type_set(a, data_type);
273 } else {
274 a->stripe = 0;
275 a->stripe_redundancy = 0;
276 alloc_data_type_set(a, BCH_DATA_user);
277 }
278 err:
279 printbuf_exit(&buf);
280 return ret;
281 }
282
mark_stripe_bucket(struct btree_trans * trans,struct bkey_s_c_stripe s,unsigned ptr_idx,bool deleting,enum btree_iter_update_trigger_flags flags)283 static int mark_stripe_bucket(struct btree_trans *trans,
284 struct bkey_s_c_stripe s,
285 unsigned ptr_idx, bool deleting,
286 enum btree_iter_update_trigger_flags flags)
287 {
288 struct bch_fs *c = trans->c;
289 const struct bch_extent_ptr *ptr = s.v->ptrs + ptr_idx;
290 struct printbuf buf = PRINTBUF;
291 int ret = 0;
292
293 struct bch_dev *ca = bch2_dev_tryget(c, ptr->dev);
294 if (unlikely(!ca)) {
295 if (ptr->dev != BCH_SB_MEMBER_INVALID && !(flags & BTREE_TRIGGER_overwrite))
296 ret = -BCH_ERR_mark_stripe;
297 goto err;
298 }
299
300 struct bpos bucket = PTR_BUCKET_POS(ca, ptr);
301
302 if (flags & BTREE_TRIGGER_transactional) {
303 struct extent_ptr_decoded p = {
304 .ptr = *ptr,
305 .crc = bch2_extent_crc_unpack(s.k, NULL),
306 };
307 struct bkey_i_backpointer bp;
308 bch2_extent_ptr_to_bp(c, BTREE_ID_stripes, 0, s.s_c, p,
309 (const union bch_extent_entry *) ptr, &bp);
310
311 struct bkey_i_alloc_v4 *a =
312 bch2_trans_start_alloc_update(trans, bucket, 0);
313 ret = PTR_ERR_OR_ZERO(a) ?:
314 __mark_stripe_bucket(trans, ca, s, ptr_idx, deleting, bucket, &a->v, flags) ?:
315 bch2_bucket_backpointer_mod(trans, s.s_c, &bp,
316 !(flags & BTREE_TRIGGER_overwrite));
317 if (ret)
318 goto err;
319 }
320
321 if (flags & BTREE_TRIGGER_gc) {
322 struct bucket *g = gc_bucket(ca, bucket.offset);
323 if (bch2_fs_inconsistent_on(!g, c, "reference to invalid bucket on device %u\n %s",
324 ptr->dev,
325 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) {
326 ret = -BCH_ERR_mark_stripe;
327 goto err;
328 }
329
330 bucket_lock(g);
331 struct bch_alloc_v4 old = bucket_m_to_alloc(*g), new = old;
332 ret = __mark_stripe_bucket(trans, ca, s, ptr_idx, deleting, bucket, &new, flags);
333 alloc_to_bucket(g, new);
334 bucket_unlock(g);
335
336 if (!ret)
337 ret = bch2_alloc_key_to_dev_counters(trans, ca, &old, &new, flags);
338 }
339 err:
340 bch2_dev_put(ca);
341 printbuf_exit(&buf);
342 return ret;
343 }
344
mark_stripe_buckets(struct btree_trans * trans,struct bkey_s_c old,struct bkey_s_c new,enum btree_iter_update_trigger_flags flags)345 static int mark_stripe_buckets(struct btree_trans *trans,
346 struct bkey_s_c old, struct bkey_s_c new,
347 enum btree_iter_update_trigger_flags flags)
348 {
349 const struct bch_stripe *old_s = old.k->type == KEY_TYPE_stripe
350 ? bkey_s_c_to_stripe(old).v : NULL;
351 const struct bch_stripe *new_s = new.k->type == KEY_TYPE_stripe
352 ? bkey_s_c_to_stripe(new).v : NULL;
353
354 BUG_ON(old_s && new_s && old_s->nr_blocks != new_s->nr_blocks);
355
356 unsigned nr_blocks = new_s ? new_s->nr_blocks : old_s->nr_blocks;
357
358 for (unsigned i = 0; i < nr_blocks; i++) {
359 if (new_s && old_s &&
360 !memcmp(&new_s->ptrs[i],
361 &old_s->ptrs[i],
362 sizeof(new_s->ptrs[i])))
363 continue;
364
365 if (new_s) {
366 int ret = mark_stripe_bucket(trans,
367 bkey_s_c_to_stripe(new), i, false, flags);
368 if (ret)
369 return ret;
370 }
371
372 if (old_s) {
373 int ret = mark_stripe_bucket(trans,
374 bkey_s_c_to_stripe(old), i, true, flags);
375 if (ret)
376 return ret;
377 }
378 }
379
380 return 0;
381 }
382
bch2_trigger_stripe(struct btree_trans * trans,enum btree_id btree,unsigned level,struct bkey_s_c old,struct bkey_s _new,enum btree_iter_update_trigger_flags flags)383 int bch2_trigger_stripe(struct btree_trans *trans,
384 enum btree_id btree, unsigned level,
385 struct bkey_s_c old, struct bkey_s _new,
386 enum btree_iter_update_trigger_flags flags)
387 {
388 struct bkey_s_c new = _new.s_c;
389 struct bch_fs *c = trans->c;
390 u64 idx = new.k->p.offset;
391 const struct bch_stripe *old_s = old.k->type == KEY_TYPE_stripe
392 ? bkey_s_c_to_stripe(old).v : NULL;
393 const struct bch_stripe *new_s = new.k->type == KEY_TYPE_stripe
394 ? bkey_s_c_to_stripe(new).v : NULL;
395
396 if (unlikely(flags & BTREE_TRIGGER_check_repair))
397 return bch2_check_fix_ptrs(trans, btree, level, _new.s_c, flags);
398
399 BUG_ON(new_s && old_s &&
400 (new_s->nr_blocks != old_s->nr_blocks ||
401 new_s->nr_redundant != old_s->nr_redundant));
402
403 if (flags & BTREE_TRIGGER_transactional) {
404 int ret = bch2_lru_change(trans,
405 BCH_LRU_STRIPE_FRAGMENTATION,
406 idx,
407 stripe_lru_pos(old_s),
408 stripe_lru_pos(new_s));
409 if (ret)
410 return ret;
411 }
412
413 if (flags & (BTREE_TRIGGER_transactional|BTREE_TRIGGER_gc)) {
414 /*
415 * If the pointers aren't changing, we don't need to do anything:
416 */
417 if (new_s && old_s &&
418 new_s->nr_blocks == old_s->nr_blocks &&
419 new_s->nr_redundant == old_s->nr_redundant &&
420 !memcmp(old_s->ptrs, new_s->ptrs,
421 new_s->nr_blocks * sizeof(struct bch_extent_ptr)))
422 return 0;
423
424 struct gc_stripe *gc = NULL;
425 if (flags & BTREE_TRIGGER_gc) {
426 gc = genradix_ptr_alloc(&c->gc_stripes, idx, GFP_KERNEL);
427 if (!gc) {
428 bch_err(c, "error allocating memory for gc_stripes, idx %llu", idx);
429 return -BCH_ERR_ENOMEM_mark_stripe;
430 }
431
432 /*
433 * This will be wrong when we bring back runtime gc: we should
434 * be unmarking the old key and then marking the new key
435 *
436 * Also: when we bring back runtime gc, locking
437 */
438 gc->alive = true;
439 gc->sectors = le16_to_cpu(new_s->sectors);
440 gc->nr_blocks = new_s->nr_blocks;
441 gc->nr_redundant = new_s->nr_redundant;
442
443 for (unsigned i = 0; i < new_s->nr_blocks; i++)
444 gc->ptrs[i] = new_s->ptrs[i];
445
446 /*
447 * gc recalculates this field from stripe ptr
448 * references:
449 */
450 memset(gc->block_sectors, 0, sizeof(gc->block_sectors));
451 }
452
453 if (new_s) {
454 s64 sectors = (u64) le16_to_cpu(new_s->sectors) * new_s->nr_redundant;
455
456 struct disk_accounting_pos acc = {
457 .type = BCH_DISK_ACCOUNTING_replicas,
458 };
459 bch2_bkey_to_replicas(&acc.replicas, new);
460 int ret = bch2_disk_accounting_mod(trans, &acc, §ors, 1, gc);
461 if (ret)
462 return ret;
463
464 if (gc)
465 memcpy(&gc->r.e, &acc.replicas, replicas_entry_bytes(&acc.replicas));
466 }
467
468 if (old_s) {
469 s64 sectors = -((s64) le16_to_cpu(old_s->sectors)) * old_s->nr_redundant;
470
471 struct disk_accounting_pos acc = {
472 .type = BCH_DISK_ACCOUNTING_replicas,
473 };
474 bch2_bkey_to_replicas(&acc.replicas, old);
475 int ret = bch2_disk_accounting_mod(trans, &acc, §ors, 1, gc);
476 if (ret)
477 return ret;
478 }
479
480 int ret = mark_stripe_buckets(trans, old, new, flags);
481 if (ret)
482 return ret;
483 }
484
485 return 0;
486 }
487
488 /* returns blocknr in stripe that we matched: */
bkey_matches_stripe(struct bch_stripe * s,struct bkey_s_c k,unsigned * block)489 static const struct bch_extent_ptr *bkey_matches_stripe(struct bch_stripe *s,
490 struct bkey_s_c k, unsigned *block)
491 {
492 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
493 unsigned i, nr_data = s->nr_blocks - s->nr_redundant;
494
495 bkey_for_each_ptr(ptrs, ptr)
496 for (i = 0; i < nr_data; i++)
497 if (__bch2_ptr_matches_stripe(&s->ptrs[i], ptr,
498 le16_to_cpu(s->sectors))) {
499 *block = i;
500 return ptr;
501 }
502
503 return NULL;
504 }
505
extent_has_stripe_ptr(struct bkey_s_c k,u64 idx)506 static bool extent_has_stripe_ptr(struct bkey_s_c k, u64 idx)
507 {
508 switch (k.k->type) {
509 case KEY_TYPE_extent: {
510 struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
511 const union bch_extent_entry *entry;
512
513 extent_for_each_entry(e, entry)
514 if (extent_entry_type(entry) ==
515 BCH_EXTENT_ENTRY_stripe_ptr &&
516 entry->stripe_ptr.idx == idx)
517 return true;
518
519 break;
520 }
521 }
522
523 return false;
524 }
525
526 /* Stripe bufs: */
527
ec_stripe_buf_exit(struct ec_stripe_buf * buf)528 static void ec_stripe_buf_exit(struct ec_stripe_buf *buf)
529 {
530 if (buf->key.k.type == KEY_TYPE_stripe) {
531 struct bkey_i_stripe *s = bkey_i_to_stripe(&buf->key);
532 unsigned i;
533
534 for (i = 0; i < s->v.nr_blocks; i++) {
535 kvfree(buf->data[i]);
536 buf->data[i] = NULL;
537 }
538 }
539 }
540
541 /* XXX: this is a non-mempoolified memory allocation: */
ec_stripe_buf_init(struct ec_stripe_buf * buf,unsigned offset,unsigned size)542 static int ec_stripe_buf_init(struct ec_stripe_buf *buf,
543 unsigned offset, unsigned size)
544 {
545 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v;
546 unsigned csum_granularity = 1U << v->csum_granularity_bits;
547 unsigned end = offset + size;
548 unsigned i;
549
550 BUG_ON(end > le16_to_cpu(v->sectors));
551
552 offset = round_down(offset, csum_granularity);
553 end = min_t(unsigned, le16_to_cpu(v->sectors),
554 round_up(end, csum_granularity));
555
556 buf->offset = offset;
557 buf->size = end - offset;
558
559 memset(buf->valid, 0xFF, sizeof(buf->valid));
560
561 for (i = 0; i < v->nr_blocks; i++) {
562 buf->data[i] = kvmalloc(buf->size << 9, GFP_KERNEL);
563 if (!buf->data[i])
564 goto err;
565 }
566
567 return 0;
568 err:
569 ec_stripe_buf_exit(buf);
570 return -BCH_ERR_ENOMEM_stripe_buf;
571 }
572
573 /* Checksumming: */
574
ec_block_checksum(struct ec_stripe_buf * buf,unsigned block,unsigned offset)575 static struct bch_csum ec_block_checksum(struct ec_stripe_buf *buf,
576 unsigned block, unsigned offset)
577 {
578 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v;
579 unsigned csum_granularity = 1 << v->csum_granularity_bits;
580 unsigned end = buf->offset + buf->size;
581 unsigned len = min(csum_granularity, end - offset);
582
583 BUG_ON(offset >= end);
584 BUG_ON(offset < buf->offset);
585 BUG_ON(offset & (csum_granularity - 1));
586 BUG_ON(offset + len != le16_to_cpu(v->sectors) &&
587 (len & (csum_granularity - 1)));
588
589 return bch2_checksum(NULL, v->csum_type,
590 null_nonce(),
591 buf->data[block] + ((offset - buf->offset) << 9),
592 len << 9);
593 }
594
ec_generate_checksums(struct ec_stripe_buf * buf)595 static void ec_generate_checksums(struct ec_stripe_buf *buf)
596 {
597 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v;
598 unsigned i, j, csums_per_device = stripe_csums_per_device(v);
599
600 if (!v->csum_type)
601 return;
602
603 BUG_ON(buf->offset);
604 BUG_ON(buf->size != le16_to_cpu(v->sectors));
605
606 for (i = 0; i < v->nr_blocks; i++)
607 for (j = 0; j < csums_per_device; j++)
608 stripe_csum_set(v, i, j,
609 ec_block_checksum(buf, i, j << v->csum_granularity_bits));
610 }
611
ec_validate_checksums(struct bch_fs * c,struct ec_stripe_buf * buf)612 static void ec_validate_checksums(struct bch_fs *c, struct ec_stripe_buf *buf)
613 {
614 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v;
615 unsigned csum_granularity = 1 << v->csum_granularity_bits;
616 unsigned i;
617
618 if (!v->csum_type)
619 return;
620
621 for (i = 0; i < v->nr_blocks; i++) {
622 unsigned offset = buf->offset;
623 unsigned end = buf->offset + buf->size;
624
625 if (!test_bit(i, buf->valid))
626 continue;
627
628 while (offset < end) {
629 unsigned j = offset >> v->csum_granularity_bits;
630 unsigned len = min(csum_granularity, end - offset);
631 struct bch_csum want = stripe_csum_get(v, i, j);
632 struct bch_csum got = ec_block_checksum(buf, i, offset);
633
634 if (bch2_crc_cmp(want, got)) {
635 struct bch_dev *ca = bch2_dev_tryget(c, v->ptrs[i].dev);
636 if (ca) {
637 struct printbuf err = PRINTBUF;
638
639 prt_str(&err, "stripe ");
640 bch2_csum_err_msg(&err, v->csum_type, want, got);
641 prt_printf(&err, " for %ps at %u of\n ", (void *) _RET_IP_, i);
642 bch2_bkey_val_to_text(&err, c, bkey_i_to_s_c(&buf->key));
643 bch_err_ratelimited(ca, "%s", err.buf);
644 printbuf_exit(&err);
645
646 bch2_io_error(ca, BCH_MEMBER_ERROR_checksum);
647 }
648
649 clear_bit(i, buf->valid);
650 break;
651 }
652
653 offset += len;
654 }
655 }
656 }
657
658 /* Erasure coding: */
659
ec_generate_ec(struct ec_stripe_buf * buf)660 static void ec_generate_ec(struct ec_stripe_buf *buf)
661 {
662 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v;
663 unsigned nr_data = v->nr_blocks - v->nr_redundant;
664 unsigned bytes = le16_to_cpu(v->sectors) << 9;
665
666 raid_gen(nr_data, v->nr_redundant, bytes, buf->data);
667 }
668
ec_nr_failed(struct ec_stripe_buf * buf)669 static unsigned ec_nr_failed(struct ec_stripe_buf *buf)
670 {
671 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v;
672
673 return v->nr_blocks - bitmap_weight(buf->valid, v->nr_blocks);
674 }
675
ec_do_recov(struct bch_fs * c,struct ec_stripe_buf * buf)676 static int ec_do_recov(struct bch_fs *c, struct ec_stripe_buf *buf)
677 {
678 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v;
679 unsigned i, failed[BCH_BKEY_PTRS_MAX], nr_failed = 0;
680 unsigned nr_data = v->nr_blocks - v->nr_redundant;
681 unsigned bytes = buf->size << 9;
682
683 if (ec_nr_failed(buf) > v->nr_redundant) {
684 bch_err_ratelimited(c,
685 "error doing reconstruct read: unable to read enough blocks");
686 return -1;
687 }
688
689 for (i = 0; i < nr_data; i++)
690 if (!test_bit(i, buf->valid))
691 failed[nr_failed++] = i;
692
693 raid_rec(nr_failed, failed, nr_data, v->nr_redundant, bytes, buf->data);
694 return 0;
695 }
696
697 /* IO: */
698
ec_block_endio(struct bio * bio)699 static void ec_block_endio(struct bio *bio)
700 {
701 struct ec_bio *ec_bio = container_of(bio, struct ec_bio, bio);
702 struct bch_stripe *v = &bkey_i_to_stripe(&ec_bio->buf->key)->v;
703 struct bch_extent_ptr *ptr = &v->ptrs[ec_bio->idx];
704 struct bch_dev *ca = ec_bio->ca;
705 struct closure *cl = bio->bi_private;
706
707 bch2_account_io_completion(ca, bio_data_dir(bio),
708 ec_bio->submit_time, !bio->bi_status);
709
710 if (bio->bi_status) {
711 bch_err_dev_ratelimited(ca, "erasure coding %s error: %s",
712 str_write_read(bio_data_dir(bio)),
713 bch2_blk_status_to_str(bio->bi_status));
714 clear_bit(ec_bio->idx, ec_bio->buf->valid);
715 }
716
717 int stale = dev_ptr_stale(ca, ptr);
718 if (stale) {
719 bch_err_ratelimited(ca->fs,
720 "error %s stripe: stale/invalid pointer (%i) after io",
721 bio_data_dir(bio) == READ ? "reading from" : "writing to",
722 stale);
723 clear_bit(ec_bio->idx, ec_bio->buf->valid);
724 }
725
726 bio_put(&ec_bio->bio);
727 percpu_ref_put(&ca->io_ref);
728 closure_put(cl);
729 }
730
ec_block_io(struct bch_fs * c,struct ec_stripe_buf * buf,blk_opf_t opf,unsigned idx,struct closure * cl)731 static void ec_block_io(struct bch_fs *c, struct ec_stripe_buf *buf,
732 blk_opf_t opf, unsigned idx, struct closure *cl)
733 {
734 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v;
735 unsigned offset = 0, bytes = buf->size << 9;
736 struct bch_extent_ptr *ptr = &v->ptrs[idx];
737 enum bch_data_type data_type = idx < v->nr_blocks - v->nr_redundant
738 ? BCH_DATA_user
739 : BCH_DATA_parity;
740 int rw = op_is_write(opf);
741
742 struct bch_dev *ca = bch2_dev_get_ioref(c, ptr->dev, rw);
743 if (!ca) {
744 clear_bit(idx, buf->valid);
745 return;
746 }
747
748 int stale = dev_ptr_stale(ca, ptr);
749 if (stale) {
750 bch_err_ratelimited(c,
751 "error %s stripe: stale pointer (%i)",
752 rw == READ ? "reading from" : "writing to",
753 stale);
754 clear_bit(idx, buf->valid);
755 return;
756 }
757
758
759 this_cpu_add(ca->io_done->sectors[rw][data_type], buf->size);
760
761 while (offset < bytes) {
762 unsigned nr_iovecs = min_t(size_t, BIO_MAX_VECS,
763 DIV_ROUND_UP(bytes, PAGE_SIZE));
764 unsigned b = min_t(size_t, bytes - offset,
765 nr_iovecs << PAGE_SHIFT);
766 struct ec_bio *ec_bio;
767
768 ec_bio = container_of(bio_alloc_bioset(ca->disk_sb.bdev,
769 nr_iovecs,
770 opf,
771 GFP_KERNEL,
772 &c->ec_bioset),
773 struct ec_bio, bio);
774
775 ec_bio->ca = ca;
776 ec_bio->buf = buf;
777 ec_bio->idx = idx;
778 ec_bio->submit_time = local_clock();
779
780 ec_bio->bio.bi_iter.bi_sector = ptr->offset + buf->offset + (offset >> 9);
781 ec_bio->bio.bi_end_io = ec_block_endio;
782 ec_bio->bio.bi_private = cl;
783
784 bch2_bio_map(&ec_bio->bio, buf->data[idx] + offset, b);
785
786 closure_get(cl);
787 percpu_ref_get(&ca->io_ref);
788
789 submit_bio(&ec_bio->bio);
790
791 offset += b;
792 }
793
794 percpu_ref_put(&ca->io_ref);
795 }
796
get_stripe_key_trans(struct btree_trans * trans,u64 idx,struct ec_stripe_buf * stripe)797 static int get_stripe_key_trans(struct btree_trans *trans, u64 idx,
798 struct ec_stripe_buf *stripe)
799 {
800 struct btree_iter iter;
801 struct bkey_s_c k;
802 int ret;
803
804 k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_stripes,
805 POS(0, idx), BTREE_ITER_slots);
806 ret = bkey_err(k);
807 if (ret)
808 goto err;
809 if (k.k->type != KEY_TYPE_stripe) {
810 ret = -ENOENT;
811 goto err;
812 }
813 bkey_reassemble(&stripe->key, k);
814 err:
815 bch2_trans_iter_exit(trans, &iter);
816 return ret;
817 }
818
819 /* recovery read path: */
bch2_ec_read_extent(struct btree_trans * trans,struct bch_read_bio * rbio,struct bkey_s_c orig_k)820 int bch2_ec_read_extent(struct btree_trans *trans, struct bch_read_bio *rbio,
821 struct bkey_s_c orig_k)
822 {
823 struct bch_fs *c = trans->c;
824 struct ec_stripe_buf *buf = NULL;
825 struct closure cl;
826 struct bch_stripe *v;
827 unsigned i, offset;
828 const char *msg = NULL;
829 struct printbuf msgbuf = PRINTBUF;
830 int ret = 0;
831
832 closure_init_stack(&cl);
833
834 BUG_ON(!rbio->pick.has_ec);
835
836 buf = kzalloc(sizeof(*buf), GFP_NOFS);
837 if (!buf)
838 return -BCH_ERR_ENOMEM_ec_read_extent;
839
840 ret = lockrestart_do(trans, get_stripe_key_trans(trans, rbio->pick.ec.idx, buf));
841 if (ret) {
842 msg = "stripe not found";
843 goto err;
844 }
845
846 v = &bkey_i_to_stripe(&buf->key)->v;
847
848 if (!bch2_ptr_matches_stripe(v, rbio->pick)) {
849 msg = "pointer doesn't match stripe";
850 goto err;
851 }
852
853 offset = rbio->bio.bi_iter.bi_sector - v->ptrs[rbio->pick.ec.block].offset;
854 if (offset + bio_sectors(&rbio->bio) > le16_to_cpu(v->sectors)) {
855 msg = "read is bigger than stripe";
856 goto err;
857 }
858
859 ret = ec_stripe_buf_init(buf, offset, bio_sectors(&rbio->bio));
860 if (ret) {
861 msg = "-ENOMEM";
862 goto err;
863 }
864
865 for (i = 0; i < v->nr_blocks; i++)
866 ec_block_io(c, buf, REQ_OP_READ, i, &cl);
867
868 closure_sync(&cl);
869
870 if (ec_nr_failed(buf) > v->nr_redundant) {
871 msg = "unable to read enough blocks";
872 goto err;
873 }
874
875 ec_validate_checksums(c, buf);
876
877 ret = ec_do_recov(c, buf);
878 if (ret)
879 goto err;
880
881 memcpy_to_bio(&rbio->bio, rbio->bio.bi_iter,
882 buf->data[rbio->pick.ec.block] + ((offset - buf->offset) << 9));
883 out:
884 ec_stripe_buf_exit(buf);
885 kfree(buf);
886 return ret;
887 err:
888 bch2_bkey_val_to_text(&msgbuf, c, orig_k);
889 bch_err_ratelimited(c,
890 "error doing reconstruct read: %s\n %s", msg, msgbuf.buf);
891 printbuf_exit(&msgbuf);
892 ret = -BCH_ERR_stripe_reconstruct;
893 goto out;
894 }
895
896 /* stripe bucket accounting: */
897
__ec_stripe_mem_alloc(struct bch_fs * c,size_t idx,gfp_t gfp)898 static int __ec_stripe_mem_alloc(struct bch_fs *c, size_t idx, gfp_t gfp)
899 {
900 if (c->gc_pos.phase != GC_PHASE_not_running &&
901 !genradix_ptr_alloc(&c->gc_stripes, idx, gfp))
902 return -BCH_ERR_ENOMEM_ec_stripe_mem_alloc;
903
904 return 0;
905 }
906
ec_stripe_mem_alloc(struct btree_trans * trans,struct btree_iter * iter)907 static int ec_stripe_mem_alloc(struct btree_trans *trans,
908 struct btree_iter *iter)
909 {
910 return allocate_dropping_locks_errcode(trans,
911 __ec_stripe_mem_alloc(trans->c, iter->pos.offset, _gfp));
912 }
913
914 /*
915 * Hash table of open stripes:
916 * Stripes that are being created or modified are kept in a hash table, so that
917 * stripe deletion can skip them.
918 */
919
__bch2_stripe_is_open(struct bch_fs * c,u64 idx)920 static bool __bch2_stripe_is_open(struct bch_fs *c, u64 idx)
921 {
922 unsigned hash = hash_64(idx, ilog2(ARRAY_SIZE(c->ec_stripes_new)));
923 struct ec_stripe_new *s;
924
925 hlist_for_each_entry(s, &c->ec_stripes_new[hash], hash)
926 if (s->idx == idx)
927 return true;
928 return false;
929 }
930
bch2_stripe_is_open(struct bch_fs * c,u64 idx)931 static bool bch2_stripe_is_open(struct bch_fs *c, u64 idx)
932 {
933 bool ret = false;
934
935 spin_lock(&c->ec_stripes_new_lock);
936 ret = __bch2_stripe_is_open(c, idx);
937 spin_unlock(&c->ec_stripes_new_lock);
938
939 return ret;
940 }
941
bch2_try_open_stripe(struct bch_fs * c,struct ec_stripe_new * s,u64 idx)942 static bool bch2_try_open_stripe(struct bch_fs *c,
943 struct ec_stripe_new *s,
944 u64 idx)
945 {
946 bool ret;
947
948 spin_lock(&c->ec_stripes_new_lock);
949 ret = !__bch2_stripe_is_open(c, idx);
950 if (ret) {
951 unsigned hash = hash_64(idx, ilog2(ARRAY_SIZE(c->ec_stripes_new)));
952
953 s->idx = idx;
954 hlist_add_head(&s->hash, &c->ec_stripes_new[hash]);
955 }
956 spin_unlock(&c->ec_stripes_new_lock);
957
958 return ret;
959 }
960
bch2_stripe_close(struct bch_fs * c,struct ec_stripe_new * s)961 static void bch2_stripe_close(struct bch_fs *c, struct ec_stripe_new *s)
962 {
963 BUG_ON(!s->idx);
964
965 spin_lock(&c->ec_stripes_new_lock);
966 hlist_del_init(&s->hash);
967 spin_unlock(&c->ec_stripes_new_lock);
968
969 s->idx = 0;
970 }
971
972 /* stripe deletion */
973
ec_stripe_delete(struct btree_trans * trans,u64 idx)974 static int ec_stripe_delete(struct btree_trans *trans, u64 idx)
975 {
976 struct btree_iter iter;
977 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter,
978 BTREE_ID_stripes, POS(0, idx),
979 BTREE_ITER_intent);
980 int ret = bkey_err(k);
981 if (ret)
982 goto err;
983
984 /*
985 * We expect write buffer races here
986 * Important: check stripe_is_open with stripe key locked:
987 */
988 if (k.k->type == KEY_TYPE_stripe &&
989 !bch2_stripe_is_open(trans->c, idx) &&
990 stripe_lru_pos(bkey_s_c_to_stripe(k).v) == 1)
991 ret = bch2_btree_delete_at(trans, &iter, 0);
992 err:
993 bch2_trans_iter_exit(trans, &iter);
994 return ret;
995 }
996
997 /*
998 * XXX
999 * can we kill this and delete stripes from the trigger?
1000 */
ec_stripe_delete_work(struct work_struct * work)1001 static void ec_stripe_delete_work(struct work_struct *work)
1002 {
1003 struct bch_fs *c =
1004 container_of(work, struct bch_fs, ec_stripe_delete_work);
1005
1006 bch2_trans_run(c,
1007 bch2_btree_write_buffer_tryflush(trans) ?:
1008 for_each_btree_key_max_commit(trans, lru_iter, BTREE_ID_lru,
1009 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 1, 0),
1010 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 1, LRU_TIME_MAX),
1011 0, lru_k,
1012 NULL, NULL,
1013 BCH_TRANS_COMMIT_no_enospc, ({
1014 ec_stripe_delete(trans, lru_k.k->p.offset);
1015 })));
1016 bch2_write_ref_put(c, BCH_WRITE_REF_stripe_delete);
1017 }
1018
bch2_do_stripe_deletes(struct bch_fs * c)1019 void bch2_do_stripe_deletes(struct bch_fs *c)
1020 {
1021 if (bch2_write_ref_tryget(c, BCH_WRITE_REF_stripe_delete) &&
1022 !queue_work(c->write_ref_wq, &c->ec_stripe_delete_work))
1023 bch2_write_ref_put(c, BCH_WRITE_REF_stripe_delete);
1024 }
1025
1026 /* stripe creation: */
1027
ec_stripe_key_update(struct btree_trans * trans,struct bkey_i_stripe * old,struct bkey_i_stripe * new)1028 static int ec_stripe_key_update(struct btree_trans *trans,
1029 struct bkey_i_stripe *old,
1030 struct bkey_i_stripe *new)
1031 {
1032 struct bch_fs *c = trans->c;
1033 bool create = !old;
1034
1035 struct btree_iter iter;
1036 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_stripes,
1037 new->k.p, BTREE_ITER_intent);
1038 int ret = bkey_err(k);
1039 if (ret)
1040 goto err;
1041
1042 if (bch2_fs_inconsistent_on(k.k->type != (create ? KEY_TYPE_deleted : KEY_TYPE_stripe),
1043 c, "error %s stripe: got existing key type %s",
1044 create ? "creating" : "updating",
1045 bch2_bkey_types[k.k->type])) {
1046 ret = -EINVAL;
1047 goto err;
1048 }
1049
1050 if (k.k->type == KEY_TYPE_stripe) {
1051 const struct bch_stripe *v = bkey_s_c_to_stripe(k).v;
1052
1053 BUG_ON(old->v.nr_blocks != new->v.nr_blocks);
1054 BUG_ON(old->v.nr_blocks != v->nr_blocks);
1055
1056 for (unsigned i = 0; i < new->v.nr_blocks; i++) {
1057 unsigned sectors = stripe_blockcount_get(v, i);
1058
1059 if (!bch2_extent_ptr_eq(old->v.ptrs[i], new->v.ptrs[i]) && sectors) {
1060 struct printbuf buf = PRINTBUF;
1061
1062 prt_printf(&buf, "stripe changed nonempty block %u", i);
1063 prt_str(&buf, "\nold: ");
1064 bch2_bkey_val_to_text(&buf, c, k);
1065 prt_str(&buf, "\nnew: ");
1066 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&new->k_i));
1067 bch2_fs_inconsistent(c, "%s", buf.buf);
1068 printbuf_exit(&buf);
1069 ret = -EINVAL;
1070 goto err;
1071 }
1072
1073 /*
1074 * If the stripe ptr changed underneath us, it must have
1075 * been dev_remove_stripes() -> * invalidate_stripe_to_dev()
1076 */
1077 if (!bch2_extent_ptr_eq(old->v.ptrs[i], v->ptrs[i])) {
1078 BUG_ON(v->ptrs[i].dev != BCH_SB_MEMBER_INVALID);
1079
1080 if (bch2_extent_ptr_eq(old->v.ptrs[i], new->v.ptrs[i]))
1081 new->v.ptrs[i].dev = BCH_SB_MEMBER_INVALID;
1082 }
1083
1084 stripe_blockcount_set(&new->v, i, sectors);
1085 }
1086 }
1087
1088 ret = bch2_trans_update(trans, &iter, &new->k_i, 0);
1089 err:
1090 bch2_trans_iter_exit(trans, &iter);
1091 return ret;
1092 }
1093
ec_stripe_update_extent(struct btree_trans * trans,struct bch_dev * ca,struct bpos bucket,u8 gen,struct ec_stripe_buf * s,struct bkey_s_c_backpointer bp,struct bkey_buf * last_flushed)1094 static int ec_stripe_update_extent(struct btree_trans *trans,
1095 struct bch_dev *ca,
1096 struct bpos bucket, u8 gen,
1097 struct ec_stripe_buf *s,
1098 struct bkey_s_c_backpointer bp,
1099 struct bkey_buf *last_flushed)
1100 {
1101 struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v;
1102 struct bch_fs *c = trans->c;
1103 struct btree_iter iter;
1104 struct bkey_s_c k;
1105 const struct bch_extent_ptr *ptr_c;
1106 struct bch_extent_ptr *ec_ptr = NULL;
1107 struct bch_extent_stripe_ptr stripe_ptr;
1108 struct bkey_i *n;
1109 int ret, dev, block;
1110
1111 if (bp.v->level) {
1112 struct printbuf buf = PRINTBUF;
1113 struct btree_iter node_iter;
1114 struct btree *b;
1115
1116 b = bch2_backpointer_get_node(trans, bp, &node_iter, last_flushed);
1117 bch2_trans_iter_exit(trans, &node_iter);
1118
1119 if (!b)
1120 return 0;
1121
1122 prt_printf(&buf, "found btree node in erasure coded bucket: b=%px\n", b);
1123 bch2_bkey_val_to_text(&buf, c, bp.s_c);
1124
1125 bch2_fs_inconsistent(c, "%s", buf.buf);
1126 printbuf_exit(&buf);
1127 return -BCH_ERR_erasure_coding_found_btree_node;
1128 }
1129
1130 k = bch2_backpointer_get_key(trans, bp, &iter, BTREE_ITER_intent, last_flushed);
1131 ret = bkey_err(k);
1132 if (ret)
1133 return ret;
1134 if (!k.k) {
1135 /*
1136 * extent no longer exists - we could flush the btree
1137 * write buffer and retry to verify, but no need:
1138 */
1139 return 0;
1140 }
1141
1142 if (extent_has_stripe_ptr(k, s->key.k.p.offset))
1143 goto out;
1144
1145 ptr_c = bkey_matches_stripe(v, k, &block);
1146 /*
1147 * It doesn't generally make sense to erasure code cached ptrs:
1148 * XXX: should we be incrementing a counter?
1149 */
1150 if (!ptr_c || ptr_c->cached)
1151 goto out;
1152
1153 dev = v->ptrs[block].dev;
1154
1155 n = bch2_trans_kmalloc(trans, bkey_bytes(k.k) + sizeof(stripe_ptr));
1156 ret = PTR_ERR_OR_ZERO(n);
1157 if (ret)
1158 goto out;
1159
1160 bkey_reassemble(n, k);
1161
1162 bch2_bkey_drop_ptrs_noerror(bkey_i_to_s(n), ptr, ptr->dev != dev);
1163 ec_ptr = bch2_bkey_has_device(bkey_i_to_s(n), dev);
1164 BUG_ON(!ec_ptr);
1165
1166 stripe_ptr = (struct bch_extent_stripe_ptr) {
1167 .type = 1 << BCH_EXTENT_ENTRY_stripe_ptr,
1168 .block = block,
1169 .redundancy = v->nr_redundant,
1170 .idx = s->key.k.p.offset,
1171 };
1172
1173 __extent_entry_insert(n,
1174 (union bch_extent_entry *) ec_ptr,
1175 (union bch_extent_entry *) &stripe_ptr);
1176
1177 ret = bch2_trans_update(trans, &iter, n, 0);
1178 out:
1179 bch2_trans_iter_exit(trans, &iter);
1180 return ret;
1181 }
1182
ec_stripe_update_bucket(struct btree_trans * trans,struct ec_stripe_buf * s,unsigned block)1183 static int ec_stripe_update_bucket(struct btree_trans *trans, struct ec_stripe_buf *s,
1184 unsigned block)
1185 {
1186 struct bch_fs *c = trans->c;
1187 struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v;
1188 struct bch_extent_ptr ptr = v->ptrs[block];
1189 int ret = 0;
1190
1191 struct bch_dev *ca = bch2_dev_tryget(c, ptr.dev);
1192 if (!ca)
1193 return -BCH_ERR_ENOENT_dev_not_found;
1194
1195 struct bpos bucket_pos = PTR_BUCKET_POS(ca, &ptr);
1196
1197 struct bkey_buf last_flushed;
1198 bch2_bkey_buf_init(&last_flushed);
1199 bkey_init(&last_flushed.k->k);
1200
1201 ret = for_each_btree_key_max_commit(trans, bp_iter, BTREE_ID_backpointers,
1202 bucket_pos_to_bp_start(ca, bucket_pos),
1203 bucket_pos_to_bp_end(ca, bucket_pos), 0, bp_k,
1204 NULL, NULL,
1205 BCH_TRANS_COMMIT_no_check_rw|
1206 BCH_TRANS_COMMIT_no_enospc, ({
1207 if (bkey_ge(bp_k.k->p, bucket_pos_to_bp(ca, bpos_nosnap_successor(bucket_pos), 0)))
1208 break;
1209
1210 if (bp_k.k->type != KEY_TYPE_backpointer)
1211 continue;
1212
1213 struct bkey_s_c_backpointer bp = bkey_s_c_to_backpointer(bp_k);
1214 if (bp.v->btree_id == BTREE_ID_stripes)
1215 continue;
1216
1217 ec_stripe_update_extent(trans, ca, bucket_pos, ptr.gen, s,
1218 bp, &last_flushed);
1219 }));
1220
1221 bch2_bkey_buf_exit(&last_flushed, c);
1222 bch2_dev_put(ca);
1223 return ret;
1224 }
1225
ec_stripe_update_extents(struct bch_fs * c,struct ec_stripe_buf * s)1226 static int ec_stripe_update_extents(struct bch_fs *c, struct ec_stripe_buf *s)
1227 {
1228 struct btree_trans *trans = bch2_trans_get(c);
1229 struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v;
1230 unsigned nr_data = v->nr_blocks - v->nr_redundant;
1231
1232 int ret = bch2_btree_write_buffer_flush_sync(trans);
1233 if (ret)
1234 goto err;
1235
1236 for (unsigned i = 0; i < nr_data; i++) {
1237 ret = ec_stripe_update_bucket(trans, s, i);
1238 if (ret)
1239 break;
1240 }
1241 err:
1242 bch2_trans_put(trans);
1243 return ret;
1244 }
1245
zero_out_rest_of_ec_bucket(struct bch_fs * c,struct ec_stripe_new * s,unsigned block,struct open_bucket * ob)1246 static void zero_out_rest_of_ec_bucket(struct bch_fs *c,
1247 struct ec_stripe_new *s,
1248 unsigned block,
1249 struct open_bucket *ob)
1250 {
1251 struct bch_dev *ca = bch2_dev_get_ioref(c, ob->dev, WRITE);
1252 if (!ca) {
1253 s->err = -BCH_ERR_erofs_no_writes;
1254 return;
1255 }
1256
1257 unsigned offset = ca->mi.bucket_size - ob->sectors_free;
1258 memset(s->new_stripe.data[block] + (offset << 9),
1259 0,
1260 ob->sectors_free << 9);
1261
1262 int ret = blkdev_issue_zeroout(ca->disk_sb.bdev,
1263 ob->bucket * ca->mi.bucket_size + offset,
1264 ob->sectors_free,
1265 GFP_KERNEL, 0);
1266
1267 percpu_ref_put(&ca->io_ref);
1268
1269 if (ret)
1270 s->err = ret;
1271 }
1272
bch2_ec_stripe_new_free(struct bch_fs * c,struct ec_stripe_new * s)1273 void bch2_ec_stripe_new_free(struct bch_fs *c, struct ec_stripe_new *s)
1274 {
1275 if (s->idx)
1276 bch2_stripe_close(c, s);
1277 kfree(s);
1278 }
1279
1280 /*
1281 * data buckets of new stripe all written: create the stripe
1282 */
ec_stripe_create(struct ec_stripe_new * s)1283 static void ec_stripe_create(struct ec_stripe_new *s)
1284 {
1285 struct bch_fs *c = s->c;
1286 struct open_bucket *ob;
1287 struct bch_stripe *v = &bkey_i_to_stripe(&s->new_stripe.key)->v;
1288 unsigned i, nr_data = v->nr_blocks - v->nr_redundant;
1289 int ret;
1290
1291 BUG_ON(s->h->s == s);
1292
1293 closure_sync(&s->iodone);
1294
1295 if (!s->err) {
1296 for (i = 0; i < nr_data; i++)
1297 if (s->blocks[i]) {
1298 ob = c->open_buckets + s->blocks[i];
1299
1300 if (ob->sectors_free)
1301 zero_out_rest_of_ec_bucket(c, s, i, ob);
1302 }
1303 }
1304
1305 if (s->err) {
1306 if (!bch2_err_matches(s->err, EROFS))
1307 bch_err(c, "error creating stripe: error writing data buckets");
1308 ret = s->err;
1309 goto err;
1310 }
1311
1312 if (s->have_existing_stripe) {
1313 ec_validate_checksums(c, &s->existing_stripe);
1314
1315 if (ec_do_recov(c, &s->existing_stripe)) {
1316 bch_err(c, "error creating stripe: error reading existing stripe");
1317 ret = -BCH_ERR_ec_block_read;
1318 goto err;
1319 }
1320
1321 for (i = 0; i < nr_data; i++)
1322 if (stripe_blockcount_get(&bkey_i_to_stripe(&s->existing_stripe.key)->v, i))
1323 swap(s->new_stripe.data[i],
1324 s->existing_stripe.data[i]);
1325
1326 ec_stripe_buf_exit(&s->existing_stripe);
1327 }
1328
1329 BUG_ON(!s->allocated);
1330 BUG_ON(!s->idx);
1331
1332 ec_generate_ec(&s->new_stripe);
1333
1334 ec_generate_checksums(&s->new_stripe);
1335
1336 /* write p/q: */
1337 for (i = nr_data; i < v->nr_blocks; i++)
1338 ec_block_io(c, &s->new_stripe, REQ_OP_WRITE, i, &s->iodone);
1339 closure_sync(&s->iodone);
1340
1341 if (ec_nr_failed(&s->new_stripe)) {
1342 bch_err(c, "error creating stripe: error writing redundancy buckets");
1343 ret = -BCH_ERR_ec_block_write;
1344 goto err;
1345 }
1346
1347 ret = bch2_trans_commit_do(c, &s->res, NULL,
1348 BCH_TRANS_COMMIT_no_check_rw|
1349 BCH_TRANS_COMMIT_no_enospc,
1350 ec_stripe_key_update(trans,
1351 s->have_existing_stripe
1352 ? bkey_i_to_stripe(&s->existing_stripe.key)
1353 : NULL,
1354 bkey_i_to_stripe(&s->new_stripe.key)));
1355 bch_err_msg(c, ret, "creating stripe key");
1356 if (ret) {
1357 goto err;
1358 }
1359
1360 ret = ec_stripe_update_extents(c, &s->new_stripe);
1361 bch_err_msg(c, ret, "error updating extents");
1362 if (ret)
1363 goto err;
1364 err:
1365 trace_stripe_create(c, s->idx, ret);
1366
1367 bch2_disk_reservation_put(c, &s->res);
1368
1369 for (i = 0; i < v->nr_blocks; i++)
1370 if (s->blocks[i]) {
1371 ob = c->open_buckets + s->blocks[i];
1372
1373 if (i < nr_data) {
1374 ob->ec = NULL;
1375 __bch2_open_bucket_put(c, ob);
1376 } else {
1377 bch2_open_bucket_put(c, ob);
1378 }
1379 }
1380
1381 mutex_lock(&c->ec_stripe_new_lock);
1382 list_del(&s->list);
1383 mutex_unlock(&c->ec_stripe_new_lock);
1384 wake_up(&c->ec_stripe_new_wait);
1385
1386 ec_stripe_buf_exit(&s->existing_stripe);
1387 ec_stripe_buf_exit(&s->new_stripe);
1388 closure_debug_destroy(&s->iodone);
1389
1390 ec_stripe_new_put(c, s, STRIPE_REF_stripe);
1391 }
1392
get_pending_stripe(struct bch_fs * c)1393 static struct ec_stripe_new *get_pending_stripe(struct bch_fs *c)
1394 {
1395 struct ec_stripe_new *s;
1396
1397 mutex_lock(&c->ec_stripe_new_lock);
1398 list_for_each_entry(s, &c->ec_stripe_new_list, list)
1399 if (!atomic_read(&s->ref[STRIPE_REF_io]))
1400 goto out;
1401 s = NULL;
1402 out:
1403 mutex_unlock(&c->ec_stripe_new_lock);
1404
1405 return s;
1406 }
1407
ec_stripe_create_work(struct work_struct * work)1408 static void ec_stripe_create_work(struct work_struct *work)
1409 {
1410 struct bch_fs *c = container_of(work,
1411 struct bch_fs, ec_stripe_create_work);
1412 struct ec_stripe_new *s;
1413
1414 while ((s = get_pending_stripe(c)))
1415 ec_stripe_create(s);
1416
1417 bch2_write_ref_put(c, BCH_WRITE_REF_stripe_create);
1418 }
1419
bch2_ec_do_stripe_creates(struct bch_fs * c)1420 void bch2_ec_do_stripe_creates(struct bch_fs *c)
1421 {
1422 bch2_write_ref_get(c, BCH_WRITE_REF_stripe_create);
1423
1424 if (!queue_work(system_long_wq, &c->ec_stripe_create_work))
1425 bch2_write_ref_put(c, BCH_WRITE_REF_stripe_create);
1426 }
1427
ec_stripe_new_set_pending(struct bch_fs * c,struct ec_stripe_head * h)1428 static void ec_stripe_new_set_pending(struct bch_fs *c, struct ec_stripe_head *h)
1429 {
1430 struct ec_stripe_new *s = h->s;
1431
1432 lockdep_assert_held(&h->lock);
1433
1434 BUG_ON(!s->allocated && !s->err);
1435
1436 h->s = NULL;
1437 s->pending = true;
1438
1439 mutex_lock(&c->ec_stripe_new_lock);
1440 list_add(&s->list, &c->ec_stripe_new_list);
1441 mutex_unlock(&c->ec_stripe_new_lock);
1442
1443 ec_stripe_new_put(c, s, STRIPE_REF_io);
1444 }
1445
ec_stripe_new_cancel(struct bch_fs * c,struct ec_stripe_head * h,int err)1446 static void ec_stripe_new_cancel(struct bch_fs *c, struct ec_stripe_head *h, int err)
1447 {
1448 h->s->err = err;
1449 ec_stripe_new_set_pending(c, h);
1450 }
1451
bch2_ec_bucket_cancel(struct bch_fs * c,struct open_bucket * ob,int err)1452 void bch2_ec_bucket_cancel(struct bch_fs *c, struct open_bucket *ob, int err)
1453 {
1454 struct ec_stripe_new *s = ob->ec;
1455
1456 s->err = err;
1457 }
1458
bch2_writepoint_ec_buf(struct bch_fs * c,struct write_point * wp)1459 void *bch2_writepoint_ec_buf(struct bch_fs *c, struct write_point *wp)
1460 {
1461 struct open_bucket *ob = ec_open_bucket(c, &wp->ptrs);
1462 if (!ob)
1463 return NULL;
1464
1465 BUG_ON(!ob->ec->new_stripe.data[ob->ec_idx]);
1466
1467 struct bch_dev *ca = ob_dev(c, ob);
1468 unsigned offset = ca->mi.bucket_size - ob->sectors_free;
1469
1470 return ob->ec->new_stripe.data[ob->ec_idx] + (offset << 9);
1471 }
1472
unsigned_cmp(const void * _l,const void * _r)1473 static int unsigned_cmp(const void *_l, const void *_r)
1474 {
1475 unsigned l = *((const unsigned *) _l);
1476 unsigned r = *((const unsigned *) _r);
1477
1478 return cmp_int(l, r);
1479 }
1480
1481 /* pick most common bucket size: */
pick_blocksize(struct bch_fs * c,struct bch_devs_mask * devs)1482 static unsigned pick_blocksize(struct bch_fs *c,
1483 struct bch_devs_mask *devs)
1484 {
1485 unsigned nr = 0, sizes[BCH_SB_MEMBERS_MAX];
1486 struct {
1487 unsigned nr, size;
1488 } cur = { 0, 0 }, best = { 0, 0 };
1489
1490 for_each_member_device_rcu(c, ca, devs)
1491 sizes[nr++] = ca->mi.bucket_size;
1492
1493 sort(sizes, nr, sizeof(unsigned), unsigned_cmp, NULL);
1494
1495 for (unsigned i = 0; i < nr; i++) {
1496 if (sizes[i] != cur.size) {
1497 if (cur.nr > best.nr)
1498 best = cur;
1499
1500 cur.nr = 0;
1501 cur.size = sizes[i];
1502 }
1503
1504 cur.nr++;
1505 }
1506
1507 if (cur.nr > best.nr)
1508 best = cur;
1509
1510 return best.size;
1511 }
1512
may_create_new_stripe(struct bch_fs * c)1513 static bool may_create_new_stripe(struct bch_fs *c)
1514 {
1515 return false;
1516 }
1517
ec_stripe_key_init(struct bch_fs * c,struct bkey_i * k,unsigned nr_data,unsigned nr_parity,unsigned stripe_size,unsigned disk_label)1518 static void ec_stripe_key_init(struct bch_fs *c,
1519 struct bkey_i *k,
1520 unsigned nr_data,
1521 unsigned nr_parity,
1522 unsigned stripe_size,
1523 unsigned disk_label)
1524 {
1525 struct bkey_i_stripe *s = bkey_stripe_init(k);
1526 unsigned u64s;
1527
1528 s->v.sectors = cpu_to_le16(stripe_size);
1529 s->v.algorithm = 0;
1530 s->v.nr_blocks = nr_data + nr_parity;
1531 s->v.nr_redundant = nr_parity;
1532 s->v.csum_granularity_bits = ilog2(c->opts.encoded_extent_max >> 9);
1533 s->v.csum_type = BCH_CSUM_crc32c;
1534 s->v.disk_label = disk_label;
1535
1536 while ((u64s = stripe_val_u64s(&s->v)) > BKEY_VAL_U64s_MAX) {
1537 BUG_ON(1 << s->v.csum_granularity_bits >=
1538 le16_to_cpu(s->v.sectors) ||
1539 s->v.csum_granularity_bits == U8_MAX);
1540 s->v.csum_granularity_bits++;
1541 }
1542
1543 set_bkey_val_u64s(&s->k, u64s);
1544 }
1545
ec_new_stripe_alloc(struct bch_fs * c,struct ec_stripe_head * h)1546 static struct ec_stripe_new *ec_new_stripe_alloc(struct bch_fs *c, struct ec_stripe_head *h)
1547 {
1548 struct ec_stripe_new *s;
1549
1550 lockdep_assert_held(&h->lock);
1551
1552 s = kzalloc(sizeof(*s), GFP_KERNEL);
1553 if (!s)
1554 return NULL;
1555
1556 mutex_init(&s->lock);
1557 closure_init(&s->iodone, NULL);
1558 atomic_set(&s->ref[STRIPE_REF_stripe], 1);
1559 atomic_set(&s->ref[STRIPE_REF_io], 1);
1560 s->c = c;
1561 s->h = h;
1562 s->nr_data = min_t(unsigned, h->nr_active_devs,
1563 BCH_BKEY_PTRS_MAX) - h->redundancy;
1564 s->nr_parity = h->redundancy;
1565
1566 ec_stripe_key_init(c, &s->new_stripe.key,
1567 s->nr_data, s->nr_parity,
1568 h->blocksize, h->disk_label);
1569 return s;
1570 }
1571
ec_stripe_head_devs_update(struct bch_fs * c,struct ec_stripe_head * h)1572 static void ec_stripe_head_devs_update(struct bch_fs *c, struct ec_stripe_head *h)
1573 {
1574 struct bch_devs_mask devs = h->devs;
1575
1576 rcu_read_lock();
1577 h->devs = target_rw_devs(c, BCH_DATA_user, h->disk_label
1578 ? group_to_target(h->disk_label - 1)
1579 : 0);
1580 unsigned nr_devs = dev_mask_nr(&h->devs);
1581
1582 for_each_member_device_rcu(c, ca, &h->devs)
1583 if (!ca->mi.durability)
1584 __clear_bit(ca->dev_idx, h->devs.d);
1585 unsigned nr_devs_with_durability = dev_mask_nr(&h->devs);
1586
1587 h->blocksize = pick_blocksize(c, &h->devs);
1588
1589 h->nr_active_devs = 0;
1590 for_each_member_device_rcu(c, ca, &h->devs)
1591 if (ca->mi.bucket_size == h->blocksize)
1592 h->nr_active_devs++;
1593
1594 rcu_read_unlock();
1595
1596 /*
1597 * If we only have redundancy + 1 devices, we're better off with just
1598 * replication:
1599 */
1600 h->insufficient_devs = h->nr_active_devs < h->redundancy + 2;
1601
1602 if (h->insufficient_devs) {
1603 const char *err;
1604
1605 if (nr_devs < h->redundancy + 2)
1606 err = NULL;
1607 else if (nr_devs_with_durability < h->redundancy + 2)
1608 err = "cannot use durability=0 devices";
1609 else
1610 err = "mismatched bucket sizes";
1611
1612 if (err)
1613 bch_err(c, "insufficient devices available to create stripe (have %u, need %u): %s",
1614 h->nr_active_devs, h->redundancy + 2, err);
1615 }
1616
1617 struct bch_devs_mask devs_leaving;
1618 bitmap_andnot(devs_leaving.d, devs.d, h->devs.d, BCH_SB_MEMBERS_MAX);
1619
1620 if (h->s && !h->s->allocated && dev_mask_nr(&devs_leaving))
1621 ec_stripe_new_cancel(c, h, -EINTR);
1622
1623 h->rw_devs_change_count = c->rw_devs_change_count;
1624 }
1625
1626 static struct ec_stripe_head *
ec_new_stripe_head_alloc(struct bch_fs * c,unsigned disk_label,unsigned algo,unsigned redundancy,enum bch_watermark watermark)1627 ec_new_stripe_head_alloc(struct bch_fs *c, unsigned disk_label,
1628 unsigned algo, unsigned redundancy,
1629 enum bch_watermark watermark)
1630 {
1631 struct ec_stripe_head *h;
1632
1633 h = kzalloc(sizeof(*h), GFP_KERNEL);
1634 if (!h)
1635 return NULL;
1636
1637 mutex_init(&h->lock);
1638 BUG_ON(!mutex_trylock(&h->lock));
1639
1640 h->disk_label = disk_label;
1641 h->algo = algo;
1642 h->redundancy = redundancy;
1643 h->watermark = watermark;
1644
1645 list_add(&h->list, &c->ec_stripe_head_list);
1646 return h;
1647 }
1648
bch2_ec_stripe_head_put(struct bch_fs * c,struct ec_stripe_head * h)1649 void bch2_ec_stripe_head_put(struct bch_fs *c, struct ec_stripe_head *h)
1650 {
1651 if (h->s &&
1652 h->s->allocated &&
1653 bitmap_weight(h->s->blocks_allocated,
1654 h->s->nr_data) == h->s->nr_data)
1655 ec_stripe_new_set_pending(c, h);
1656
1657 mutex_unlock(&h->lock);
1658 }
1659
1660 static struct ec_stripe_head *
__bch2_ec_stripe_head_get(struct btree_trans * trans,unsigned disk_label,unsigned algo,unsigned redundancy,enum bch_watermark watermark)1661 __bch2_ec_stripe_head_get(struct btree_trans *trans,
1662 unsigned disk_label,
1663 unsigned algo,
1664 unsigned redundancy,
1665 enum bch_watermark watermark)
1666 {
1667 struct bch_fs *c = trans->c;
1668 struct ec_stripe_head *h;
1669 int ret;
1670
1671 if (!redundancy)
1672 return NULL;
1673
1674 ret = bch2_trans_mutex_lock(trans, &c->ec_stripe_head_lock);
1675 if (ret)
1676 return ERR_PTR(ret);
1677
1678 if (test_bit(BCH_FS_going_ro, &c->flags)) {
1679 h = ERR_PTR(-BCH_ERR_erofs_no_writes);
1680 goto err;
1681 }
1682
1683 list_for_each_entry(h, &c->ec_stripe_head_list, list)
1684 if (h->disk_label == disk_label &&
1685 h->algo == algo &&
1686 h->redundancy == redundancy &&
1687 h->watermark == watermark) {
1688 ret = bch2_trans_mutex_lock(trans, &h->lock);
1689 if (ret) {
1690 h = ERR_PTR(ret);
1691 goto err;
1692 }
1693 goto found;
1694 }
1695
1696 h = ec_new_stripe_head_alloc(c, disk_label, algo, redundancy, watermark);
1697 if (!h) {
1698 h = ERR_PTR(-BCH_ERR_ENOMEM_stripe_head_alloc);
1699 goto err;
1700 }
1701 found:
1702 if (h->rw_devs_change_count != c->rw_devs_change_count)
1703 ec_stripe_head_devs_update(c, h);
1704
1705 if (h->insufficient_devs) {
1706 mutex_unlock(&h->lock);
1707 h = NULL;
1708 }
1709 err:
1710 mutex_unlock(&c->ec_stripe_head_lock);
1711 return h;
1712 }
1713
new_stripe_alloc_buckets(struct btree_trans * trans,struct ec_stripe_head * h,struct ec_stripe_new * s,enum bch_watermark watermark,struct closure * cl)1714 static int new_stripe_alloc_buckets(struct btree_trans *trans,
1715 struct ec_stripe_head *h, struct ec_stripe_new *s,
1716 enum bch_watermark watermark, struct closure *cl)
1717 {
1718 struct bch_fs *c = trans->c;
1719 struct bch_devs_mask devs = h->devs;
1720 struct open_bucket *ob;
1721 struct open_buckets buckets;
1722 struct bch_stripe *v = &bkey_i_to_stripe(&s->new_stripe.key)->v;
1723 unsigned i, j, nr_have_parity = 0, nr_have_data = 0;
1724 bool have_cache = true;
1725 int ret = 0;
1726
1727 BUG_ON(v->nr_blocks != s->nr_data + s->nr_parity);
1728 BUG_ON(v->nr_redundant != s->nr_parity);
1729
1730 /* * We bypass the sector allocator which normally does this: */
1731 bitmap_and(devs.d, devs.d, c->rw_devs[BCH_DATA_user].d, BCH_SB_MEMBERS_MAX);
1732
1733 for_each_set_bit(i, s->blocks_gotten, v->nr_blocks) {
1734 /*
1735 * Note: we don't yet repair invalid blocks (failed/removed
1736 * devices) when reusing stripes - we still need a codepath to
1737 * walk backpointers and update all extents that point to that
1738 * block when updating the stripe
1739 */
1740 if (v->ptrs[i].dev != BCH_SB_MEMBER_INVALID)
1741 __clear_bit(v->ptrs[i].dev, devs.d);
1742
1743 if (i < s->nr_data)
1744 nr_have_data++;
1745 else
1746 nr_have_parity++;
1747 }
1748
1749 BUG_ON(nr_have_data > s->nr_data);
1750 BUG_ON(nr_have_parity > s->nr_parity);
1751
1752 buckets.nr = 0;
1753 if (nr_have_parity < s->nr_parity) {
1754 ret = bch2_bucket_alloc_set_trans(trans, &buckets,
1755 &h->parity_stripe,
1756 &devs,
1757 s->nr_parity,
1758 &nr_have_parity,
1759 &have_cache, 0,
1760 BCH_DATA_parity,
1761 watermark,
1762 cl);
1763
1764 open_bucket_for_each(c, &buckets, ob, i) {
1765 j = find_next_zero_bit(s->blocks_gotten,
1766 s->nr_data + s->nr_parity,
1767 s->nr_data);
1768 BUG_ON(j >= s->nr_data + s->nr_parity);
1769
1770 s->blocks[j] = buckets.v[i];
1771 v->ptrs[j] = bch2_ob_ptr(c, ob);
1772 __set_bit(j, s->blocks_gotten);
1773 }
1774
1775 if (ret)
1776 return ret;
1777 }
1778
1779 buckets.nr = 0;
1780 if (nr_have_data < s->nr_data) {
1781 ret = bch2_bucket_alloc_set_trans(trans, &buckets,
1782 &h->block_stripe,
1783 &devs,
1784 s->nr_data,
1785 &nr_have_data,
1786 &have_cache, 0,
1787 BCH_DATA_user,
1788 watermark,
1789 cl);
1790
1791 open_bucket_for_each(c, &buckets, ob, i) {
1792 j = find_next_zero_bit(s->blocks_gotten,
1793 s->nr_data, 0);
1794 BUG_ON(j >= s->nr_data);
1795
1796 s->blocks[j] = buckets.v[i];
1797 v->ptrs[j] = bch2_ob_ptr(c, ob);
1798 __set_bit(j, s->blocks_gotten);
1799 }
1800
1801 if (ret)
1802 return ret;
1803 }
1804
1805 return 0;
1806 }
1807
__get_existing_stripe(struct btree_trans * trans,struct ec_stripe_head * head,struct ec_stripe_buf * stripe,u64 idx)1808 static int __get_existing_stripe(struct btree_trans *trans,
1809 struct ec_stripe_head *head,
1810 struct ec_stripe_buf *stripe,
1811 u64 idx)
1812 {
1813 struct bch_fs *c = trans->c;
1814
1815 struct btree_iter iter;
1816 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter,
1817 BTREE_ID_stripes, POS(0, idx), 0);
1818 int ret = bkey_err(k);
1819 if (ret)
1820 goto err;
1821
1822 /* We expect write buffer races here */
1823 if (k.k->type != KEY_TYPE_stripe)
1824 goto out;
1825
1826 struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k);
1827 if (stripe_lru_pos(s.v) <= 1)
1828 goto out;
1829
1830 if (s.v->disk_label == head->disk_label &&
1831 s.v->algorithm == head->algo &&
1832 s.v->nr_redundant == head->redundancy &&
1833 le16_to_cpu(s.v->sectors) == head->blocksize &&
1834 bch2_try_open_stripe(c, head->s, idx)) {
1835 bkey_reassemble(&stripe->key, k);
1836 ret = 1;
1837 }
1838 out:
1839 bch2_set_btree_iter_dontneed(&iter);
1840 err:
1841 bch2_trans_iter_exit(trans, &iter);
1842 return ret;
1843 }
1844
init_new_stripe_from_existing(struct bch_fs * c,struct ec_stripe_new * s)1845 static int init_new_stripe_from_existing(struct bch_fs *c, struct ec_stripe_new *s)
1846 {
1847 struct bch_stripe *new_v = &bkey_i_to_stripe(&s->new_stripe.key)->v;
1848 struct bch_stripe *existing_v = &bkey_i_to_stripe(&s->existing_stripe.key)->v;
1849 unsigned i;
1850
1851 BUG_ON(existing_v->nr_redundant != s->nr_parity);
1852 s->nr_data = existing_v->nr_blocks -
1853 existing_v->nr_redundant;
1854
1855 int ret = ec_stripe_buf_init(&s->existing_stripe, 0, le16_to_cpu(existing_v->sectors));
1856 if (ret) {
1857 bch2_stripe_close(c, s);
1858 return ret;
1859 }
1860
1861 BUG_ON(s->existing_stripe.size != le16_to_cpu(existing_v->sectors));
1862
1863 /*
1864 * Free buckets we initially allocated - they might conflict with
1865 * blocks from the stripe we're reusing:
1866 */
1867 for_each_set_bit(i, s->blocks_gotten, new_v->nr_blocks) {
1868 bch2_open_bucket_put(c, c->open_buckets + s->blocks[i]);
1869 s->blocks[i] = 0;
1870 }
1871 memset(s->blocks_gotten, 0, sizeof(s->blocks_gotten));
1872 memset(s->blocks_allocated, 0, sizeof(s->blocks_allocated));
1873
1874 for (unsigned i = 0; i < existing_v->nr_blocks; i++) {
1875 if (stripe_blockcount_get(existing_v, i)) {
1876 __set_bit(i, s->blocks_gotten);
1877 __set_bit(i, s->blocks_allocated);
1878 }
1879
1880 ec_block_io(c, &s->existing_stripe, READ, i, &s->iodone);
1881 }
1882
1883 bkey_copy(&s->new_stripe.key, &s->existing_stripe.key);
1884 s->have_existing_stripe = true;
1885
1886 return 0;
1887 }
1888
__bch2_ec_stripe_head_reuse(struct btree_trans * trans,struct ec_stripe_head * h,struct ec_stripe_new * s)1889 static int __bch2_ec_stripe_head_reuse(struct btree_trans *trans, struct ec_stripe_head *h,
1890 struct ec_stripe_new *s)
1891 {
1892 struct bch_fs *c = trans->c;
1893
1894 /*
1895 * If we can't allocate a new stripe, and there's no stripes with empty
1896 * blocks for us to reuse, that means we have to wait on copygc:
1897 */
1898 if (may_create_new_stripe(c))
1899 return -1;
1900
1901 struct btree_iter lru_iter;
1902 struct bkey_s_c lru_k;
1903 int ret = 0;
1904
1905 for_each_btree_key_max_norestart(trans, lru_iter, BTREE_ID_lru,
1906 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 2, 0),
1907 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 2, LRU_TIME_MAX),
1908 0, lru_k, ret) {
1909 ret = __get_existing_stripe(trans, h, &s->existing_stripe, lru_k.k->p.offset);
1910 if (ret)
1911 break;
1912 }
1913 bch2_trans_iter_exit(trans, &lru_iter);
1914 if (!ret)
1915 ret = -BCH_ERR_stripe_alloc_blocked;
1916 if (ret == 1)
1917 ret = 0;
1918 if (ret)
1919 return ret;
1920
1921 return init_new_stripe_from_existing(c, s);
1922 }
1923
__bch2_ec_stripe_head_reserve(struct btree_trans * trans,struct ec_stripe_head * h,struct ec_stripe_new * s)1924 static int __bch2_ec_stripe_head_reserve(struct btree_trans *trans, struct ec_stripe_head *h,
1925 struct ec_stripe_new *s)
1926 {
1927 struct bch_fs *c = trans->c;
1928 struct btree_iter iter;
1929 struct bkey_s_c k;
1930 struct bpos min_pos = POS(0, 1);
1931 struct bpos start_pos = bpos_max(min_pos, POS(0, c->ec_stripe_hint));
1932 int ret;
1933
1934 if (!s->res.sectors) {
1935 ret = bch2_disk_reservation_get(c, &s->res,
1936 h->blocksize,
1937 s->nr_parity,
1938 BCH_DISK_RESERVATION_NOFAIL);
1939 if (ret)
1940 return ret;
1941 }
1942
1943 /*
1944 * Allocate stripe slot
1945 * XXX: we're going to need a bitrange btree of free stripes
1946 */
1947 for_each_btree_key_norestart(trans, iter, BTREE_ID_stripes, start_pos,
1948 BTREE_ITER_slots|BTREE_ITER_intent, k, ret) {
1949 if (bkey_gt(k.k->p, POS(0, U32_MAX))) {
1950 if (start_pos.offset) {
1951 start_pos = min_pos;
1952 bch2_btree_iter_set_pos(&iter, start_pos);
1953 continue;
1954 }
1955
1956 ret = -BCH_ERR_ENOSPC_stripe_create;
1957 break;
1958 }
1959
1960 if (bkey_deleted(k.k) &&
1961 bch2_try_open_stripe(c, s, k.k->p.offset))
1962 break;
1963 }
1964
1965 c->ec_stripe_hint = iter.pos.offset;
1966
1967 if (ret)
1968 goto err;
1969
1970 ret = ec_stripe_mem_alloc(trans, &iter);
1971 if (ret) {
1972 bch2_stripe_close(c, s);
1973 goto err;
1974 }
1975
1976 s->new_stripe.key.k.p = iter.pos;
1977 out:
1978 bch2_trans_iter_exit(trans, &iter);
1979 return ret;
1980 err:
1981 bch2_disk_reservation_put(c, &s->res);
1982 goto out;
1983 }
1984
bch2_ec_stripe_head_get(struct btree_trans * trans,unsigned target,unsigned algo,unsigned redundancy,enum bch_watermark watermark,struct closure * cl)1985 struct ec_stripe_head *bch2_ec_stripe_head_get(struct btree_trans *trans,
1986 unsigned target,
1987 unsigned algo,
1988 unsigned redundancy,
1989 enum bch_watermark watermark,
1990 struct closure *cl)
1991 {
1992 struct bch_fs *c = trans->c;
1993 struct ec_stripe_head *h;
1994 bool waiting = false;
1995 unsigned disk_label = 0;
1996 struct target t = target_decode(target);
1997 int ret;
1998
1999 if (t.type == TARGET_GROUP) {
2000 if (t.group > U8_MAX) {
2001 bch_err(c, "cannot create a stripe when disk_label > U8_MAX");
2002 return NULL;
2003 }
2004 disk_label = t.group + 1; /* 0 == no label */
2005 }
2006
2007 h = __bch2_ec_stripe_head_get(trans, disk_label, algo, redundancy, watermark);
2008 if (IS_ERR_OR_NULL(h))
2009 return h;
2010
2011 if (!h->s) {
2012 h->s = ec_new_stripe_alloc(c, h);
2013 if (!h->s) {
2014 ret = -BCH_ERR_ENOMEM_ec_new_stripe_alloc;
2015 bch_err(c, "failed to allocate new stripe");
2016 goto err;
2017 }
2018
2019 h->nr_created++;
2020 }
2021
2022 struct ec_stripe_new *s = h->s;
2023
2024 if (s->allocated)
2025 goto allocated;
2026
2027 if (s->have_existing_stripe)
2028 goto alloc_existing;
2029
2030 /* First, try to allocate a full stripe: */
2031 ret = new_stripe_alloc_buckets(trans, h, s, BCH_WATERMARK_stripe, NULL) ?:
2032 __bch2_ec_stripe_head_reserve(trans, h, s);
2033 if (!ret)
2034 goto allocate_buf;
2035 if (bch2_err_matches(ret, BCH_ERR_transaction_restart) ||
2036 bch2_err_matches(ret, ENOMEM))
2037 goto err;
2038
2039 /*
2040 * Not enough buckets available for a full stripe: we must reuse an
2041 * existing stripe:
2042 */
2043 while (1) {
2044 ret = __bch2_ec_stripe_head_reuse(trans, h, s);
2045 if (!ret)
2046 break;
2047 if (waiting || !cl || ret != -BCH_ERR_stripe_alloc_blocked)
2048 goto err;
2049
2050 if (watermark == BCH_WATERMARK_copygc) {
2051 ret = new_stripe_alloc_buckets(trans, h, s, watermark, NULL) ?:
2052 __bch2_ec_stripe_head_reserve(trans, h, s);
2053 if (ret)
2054 goto err;
2055 goto allocate_buf;
2056 }
2057
2058 /* XXX freelist_wait? */
2059 closure_wait(&c->freelist_wait, cl);
2060 waiting = true;
2061 }
2062
2063 if (waiting)
2064 closure_wake_up(&c->freelist_wait);
2065 alloc_existing:
2066 /*
2067 * Retry allocating buckets, with the watermark for this
2068 * particular write:
2069 */
2070 ret = new_stripe_alloc_buckets(trans, h, s, watermark, cl);
2071 if (ret)
2072 goto err;
2073
2074 allocate_buf:
2075 ret = ec_stripe_buf_init(&s->new_stripe, 0, h->blocksize);
2076 if (ret)
2077 goto err;
2078
2079 s->allocated = true;
2080 allocated:
2081 BUG_ON(!s->idx);
2082 BUG_ON(!s->new_stripe.data[0]);
2083 BUG_ON(trans->restarted);
2084 return h;
2085 err:
2086 bch2_ec_stripe_head_put(c, h);
2087 return ERR_PTR(ret);
2088 }
2089
2090 /* device removal */
2091
bch2_invalidate_stripe_to_dev(struct btree_trans * trans,struct bkey_s_c k_a)2092 static int bch2_invalidate_stripe_to_dev(struct btree_trans *trans, struct bkey_s_c k_a)
2093 {
2094 struct bch_alloc_v4 a_convert;
2095 const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k_a, &a_convert);
2096
2097 if (!a->stripe)
2098 return 0;
2099
2100 if (a->stripe_sectors) {
2101 bch_err(trans->c, "trying to invalidate device in stripe when bucket has stripe data");
2102 return -BCH_ERR_invalidate_stripe_to_dev;
2103 }
2104
2105 struct btree_iter iter;
2106 struct bkey_i_stripe *s =
2107 bch2_bkey_get_mut_typed(trans, &iter, BTREE_ID_stripes, POS(0, a->stripe),
2108 BTREE_ITER_slots, stripe);
2109 int ret = PTR_ERR_OR_ZERO(s);
2110 if (ret)
2111 return ret;
2112
2113 struct disk_accounting_pos acc = {
2114 .type = BCH_DISK_ACCOUNTING_replicas,
2115 };
2116
2117 s64 sectors = 0;
2118 for (unsigned i = 0; i < s->v.nr_blocks; i++)
2119 sectors -= stripe_blockcount_get(&s->v, i);
2120
2121 bch2_bkey_to_replicas(&acc.replicas, bkey_i_to_s_c(&s->k_i));
2122 acc.replicas.data_type = BCH_DATA_user;
2123 ret = bch2_disk_accounting_mod(trans, &acc, §ors, 1, false);
2124 if (ret)
2125 goto err;
2126
2127 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(&s->k_i));
2128 bkey_for_each_ptr(ptrs, ptr)
2129 if (ptr->dev == k_a.k->p.inode)
2130 ptr->dev = BCH_SB_MEMBER_INVALID;
2131
2132 sectors = -sectors;
2133
2134 bch2_bkey_to_replicas(&acc.replicas, bkey_i_to_s_c(&s->k_i));
2135 acc.replicas.data_type = BCH_DATA_user;
2136 ret = bch2_disk_accounting_mod(trans, &acc, §ors, 1, false);
2137 if (ret)
2138 goto err;
2139 err:
2140 bch2_trans_iter_exit(trans, &iter);
2141 return ret;
2142 }
2143
bch2_dev_remove_stripes(struct bch_fs * c,unsigned dev_idx)2144 int bch2_dev_remove_stripes(struct bch_fs *c, unsigned dev_idx)
2145 {
2146 return bch2_trans_run(c,
2147 for_each_btree_key_max_commit(trans, iter,
2148 BTREE_ID_alloc, POS(dev_idx, 0), POS(dev_idx, U64_MAX),
2149 BTREE_ITER_intent, k,
2150 NULL, NULL, 0, ({
2151 bch2_invalidate_stripe_to_dev(trans, k);
2152 })));
2153 }
2154
2155 /* startup/shutdown */
2156
__bch2_ec_stop(struct bch_fs * c,struct bch_dev * ca)2157 static void __bch2_ec_stop(struct bch_fs *c, struct bch_dev *ca)
2158 {
2159 struct ec_stripe_head *h;
2160 struct open_bucket *ob;
2161 unsigned i;
2162
2163 mutex_lock(&c->ec_stripe_head_lock);
2164 list_for_each_entry(h, &c->ec_stripe_head_list, list) {
2165 mutex_lock(&h->lock);
2166 if (!h->s)
2167 goto unlock;
2168
2169 if (!ca)
2170 goto found;
2171
2172 for (i = 0; i < bkey_i_to_stripe(&h->s->new_stripe.key)->v.nr_blocks; i++) {
2173 if (!h->s->blocks[i])
2174 continue;
2175
2176 ob = c->open_buckets + h->s->blocks[i];
2177 if (ob->dev == ca->dev_idx)
2178 goto found;
2179 }
2180 goto unlock;
2181 found:
2182 ec_stripe_new_cancel(c, h, -BCH_ERR_erofs_no_writes);
2183 unlock:
2184 mutex_unlock(&h->lock);
2185 }
2186 mutex_unlock(&c->ec_stripe_head_lock);
2187 }
2188
bch2_ec_stop_dev(struct bch_fs * c,struct bch_dev * ca)2189 void bch2_ec_stop_dev(struct bch_fs *c, struct bch_dev *ca)
2190 {
2191 __bch2_ec_stop(c, ca);
2192 }
2193
bch2_fs_ec_stop(struct bch_fs * c)2194 void bch2_fs_ec_stop(struct bch_fs *c)
2195 {
2196 __bch2_ec_stop(c, NULL);
2197 }
2198
bch2_fs_ec_flush_done(struct bch_fs * c)2199 static bool bch2_fs_ec_flush_done(struct bch_fs *c)
2200 {
2201 bool ret;
2202
2203 mutex_lock(&c->ec_stripe_new_lock);
2204 ret = list_empty(&c->ec_stripe_new_list);
2205 mutex_unlock(&c->ec_stripe_new_lock);
2206
2207 return ret;
2208 }
2209
bch2_fs_ec_flush(struct bch_fs * c)2210 void bch2_fs_ec_flush(struct bch_fs *c)
2211 {
2212 wait_event(c->ec_stripe_new_wait, bch2_fs_ec_flush_done(c));
2213 }
2214
bch2_stripes_read(struct bch_fs * c)2215 int bch2_stripes_read(struct bch_fs *c)
2216 {
2217 return 0;
2218 }
2219
bch2_new_stripe_to_text(struct printbuf * out,struct bch_fs * c,struct ec_stripe_new * s)2220 static void bch2_new_stripe_to_text(struct printbuf *out, struct bch_fs *c,
2221 struct ec_stripe_new *s)
2222 {
2223 prt_printf(out, "\tidx %llu blocks %u+%u allocated %u ref %u %u %s obs",
2224 s->idx, s->nr_data, s->nr_parity,
2225 bitmap_weight(s->blocks_allocated, s->nr_data),
2226 atomic_read(&s->ref[STRIPE_REF_io]),
2227 atomic_read(&s->ref[STRIPE_REF_stripe]),
2228 bch2_watermarks[s->h->watermark]);
2229
2230 struct bch_stripe *v = &bkey_i_to_stripe(&s->new_stripe.key)->v;
2231 unsigned i;
2232 for_each_set_bit(i, s->blocks_gotten, v->nr_blocks)
2233 prt_printf(out, " %u", s->blocks[i]);
2234 prt_newline(out);
2235 bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&s->new_stripe.key));
2236 prt_newline(out);
2237 }
2238
bch2_new_stripes_to_text(struct printbuf * out,struct bch_fs * c)2239 void bch2_new_stripes_to_text(struct printbuf *out, struct bch_fs *c)
2240 {
2241 struct ec_stripe_head *h;
2242 struct ec_stripe_new *s;
2243
2244 mutex_lock(&c->ec_stripe_head_lock);
2245 list_for_each_entry(h, &c->ec_stripe_head_list, list) {
2246 prt_printf(out, "disk label %u algo %u redundancy %u %s nr created %llu:\n",
2247 h->disk_label, h->algo, h->redundancy,
2248 bch2_watermarks[h->watermark],
2249 h->nr_created);
2250
2251 if (h->s)
2252 bch2_new_stripe_to_text(out, c, h->s);
2253 }
2254 mutex_unlock(&c->ec_stripe_head_lock);
2255
2256 prt_printf(out, "in flight:\n");
2257
2258 mutex_lock(&c->ec_stripe_new_lock);
2259 list_for_each_entry(s, &c->ec_stripe_new_list, list)
2260 bch2_new_stripe_to_text(out, c, s);
2261 mutex_unlock(&c->ec_stripe_new_lock);
2262 }
2263
bch2_fs_ec_exit(struct bch_fs * c)2264 void bch2_fs_ec_exit(struct bch_fs *c)
2265 {
2266 struct ec_stripe_head *h;
2267 unsigned i;
2268
2269 while (1) {
2270 mutex_lock(&c->ec_stripe_head_lock);
2271 h = list_pop_entry(&c->ec_stripe_head_list, struct ec_stripe_head, list);
2272 mutex_unlock(&c->ec_stripe_head_lock);
2273
2274 if (!h)
2275 break;
2276
2277 if (h->s) {
2278 for (i = 0; i < bkey_i_to_stripe(&h->s->new_stripe.key)->v.nr_blocks; i++)
2279 BUG_ON(h->s->blocks[i]);
2280
2281 kfree(h->s);
2282 }
2283 kfree(h);
2284 }
2285
2286 BUG_ON(!list_empty(&c->ec_stripe_new_list));
2287
2288 bioset_exit(&c->ec_bioset);
2289 }
2290
bch2_fs_ec_init_early(struct bch_fs * c)2291 void bch2_fs_ec_init_early(struct bch_fs *c)
2292 {
2293 spin_lock_init(&c->ec_stripes_new_lock);
2294
2295 INIT_LIST_HEAD(&c->ec_stripe_head_list);
2296 mutex_init(&c->ec_stripe_head_lock);
2297
2298 INIT_LIST_HEAD(&c->ec_stripe_new_list);
2299 mutex_init(&c->ec_stripe_new_lock);
2300 init_waitqueue_head(&c->ec_stripe_new_wait);
2301
2302 INIT_WORK(&c->ec_stripe_create_work, ec_stripe_create_work);
2303 INIT_WORK(&c->ec_stripe_delete_work, ec_stripe_delete_work);
2304 }
2305
bch2_fs_ec_init(struct bch_fs * c)2306 int bch2_fs_ec_init(struct bch_fs *c)
2307 {
2308 return bioset_init(&c->ec_bioset, 1, offsetof(struct ec_bio, bio),
2309 BIOSET_NEED_BVECS);
2310 }
2311
bch2_check_stripe_to_lru_ref(struct btree_trans * trans,struct bkey_s_c k,struct bkey_buf * last_flushed)2312 static int bch2_check_stripe_to_lru_ref(struct btree_trans *trans,
2313 struct bkey_s_c k,
2314 struct bkey_buf *last_flushed)
2315 {
2316 if (k.k->type != KEY_TYPE_stripe)
2317 return 0;
2318
2319 struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k);
2320
2321 u64 lru_idx = stripe_lru_pos(s.v);
2322 if (lru_idx) {
2323 int ret = bch2_lru_check_set(trans, BCH_LRU_STRIPE_FRAGMENTATION,
2324 k.k->p.offset, lru_idx, k, last_flushed);
2325 if (ret)
2326 return ret;
2327 }
2328 return 0;
2329 }
2330
bch2_check_stripe_to_lru_refs(struct bch_fs * c)2331 int bch2_check_stripe_to_lru_refs(struct bch_fs *c)
2332 {
2333 struct bkey_buf last_flushed;
2334
2335 bch2_bkey_buf_init(&last_flushed);
2336 bkey_init(&last_flushed.k->k);
2337
2338 int ret = bch2_trans_run(c,
2339 for_each_btree_key_commit(trans, iter, BTREE_ID_stripes,
2340 POS_MIN, BTREE_ITER_prefetch, k,
2341 NULL, NULL, BCH_TRANS_COMMIT_no_enospc,
2342 bch2_check_stripe_to_lru_ref(trans, k, &last_flushed)));
2343
2344 bch2_bkey_buf_exit(&last_flushed, c);
2345 bch_err_fn(c, ret);
2346 return ret;
2347 }
2348