1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012 ARM Ltd.
4 */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16
17 /*
18 * VMALLOC range.
19 *
20 * VMALLOC_START: beginning of the kernel vmalloc space
21 * VMALLOC_END: extends to the available space below vmemmap
22 */
23 #define VMALLOC_START (MODULES_END)
24 #if VA_BITS == VA_BITS_MIN
25 #define VMALLOC_END (VMEMMAP_START - SZ_8M)
26 #else
27 #define VMEMMAP_UNUSED_NPAGES ((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
28 #define VMALLOC_END (VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
29 #endif
30
31 #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
32
33 #ifndef __ASSEMBLY__
34
35 #include <asm/cmpxchg.h>
36 #include <asm/fixmap.h>
37 #include <asm/por.h>
38 #include <linux/mmdebug.h>
39 #include <linux/mm_types.h>
40 #include <linux/sched.h>
41 #include <linux/page_table_check.h>
42
emit_pte_barriers(void)43 static inline void emit_pte_barriers(void)
44 {
45 /*
46 * These barriers are emitted under certain conditions after a pte entry
47 * was modified (see e.g. __set_pte_complete()). The dsb makes the store
48 * visible to the table walker. The isb ensures that any previous
49 * speculative "invalid translation" marker that is in the CPU's
50 * pipeline gets cleared, so that any access to that address after
51 * setting the pte to valid won't cause a spurious fault. If the thread
52 * gets preempted after storing to the pgtable but before emitting these
53 * barriers, __switch_to() emits a dsb which ensure the walker gets to
54 * see the store. There is no guarantee of an isb being issued though.
55 * This is safe because it will still get issued (albeit on a
56 * potentially different CPU) when the thread starts running again,
57 * before any access to the address.
58 */
59 dsb(ishst);
60 isb();
61 }
62
queue_pte_barriers(void)63 static inline void queue_pte_barriers(void)
64 {
65 unsigned long flags;
66
67 if (in_interrupt()) {
68 emit_pte_barriers();
69 return;
70 }
71
72 flags = read_thread_flags();
73
74 if (flags & BIT(TIF_LAZY_MMU)) {
75 /* Avoid the atomic op if already set. */
76 if (!(flags & BIT(TIF_LAZY_MMU_PENDING)))
77 set_thread_flag(TIF_LAZY_MMU_PENDING);
78 } else {
79 emit_pte_barriers();
80 }
81 }
82
83 #define __HAVE_ARCH_ENTER_LAZY_MMU_MODE
arch_enter_lazy_mmu_mode(void)84 static inline void arch_enter_lazy_mmu_mode(void)
85 {
86 /*
87 * lazy_mmu_mode is not supposed to permit nesting. But in practice this
88 * does happen with CONFIG_DEBUG_PAGEALLOC, where a page allocation
89 * inside a lazy_mmu_mode section (such as zap_pte_range()) will change
90 * permissions on the linear map with apply_to_page_range(), which
91 * re-enters lazy_mmu_mode. So we tolerate nesting in our
92 * implementation. The first call to arch_leave_lazy_mmu_mode() will
93 * flush and clear the flag such that the remainder of the work in the
94 * outer nest behaves as if outside of lazy mmu mode. This is safe and
95 * keeps tracking simple.
96 */
97
98 if (in_interrupt())
99 return;
100
101 set_thread_flag(TIF_LAZY_MMU);
102 }
103
arch_flush_lazy_mmu_mode(void)104 static inline void arch_flush_lazy_mmu_mode(void)
105 {
106 if (in_interrupt())
107 return;
108
109 if (test_and_clear_thread_flag(TIF_LAZY_MMU_PENDING))
110 emit_pte_barriers();
111 }
112
arch_leave_lazy_mmu_mode(void)113 static inline void arch_leave_lazy_mmu_mode(void)
114 {
115 if (in_interrupt())
116 return;
117
118 arch_flush_lazy_mmu_mode();
119 clear_thread_flag(TIF_LAZY_MMU);
120 }
121
122 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
123 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
124
125 /* Set stride and tlb_level in flush_*_tlb_range */
126 #define flush_pmd_tlb_range(vma, addr, end) \
127 __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
128 #define flush_pud_tlb_range(vma, addr, end) \
129 __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
130 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
131
132 /*
133 * Outside of a few very special situations (e.g. hibernation), we always
134 * use broadcast TLB invalidation instructions, therefore a spurious page
135 * fault on one CPU which has been handled concurrently by another CPU
136 * does not need to perform additional invalidation.
137 */
138 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
139
140 /*
141 * ZERO_PAGE is a global shared page that is always zero: used
142 * for zero-mapped memory areas etc..
143 */
144 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
145 #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
146
147 #define pte_ERROR(e) \
148 pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
149
150 #ifdef CONFIG_ARM64_PA_BITS_52
__pte_to_phys(pte_t pte)151 static inline phys_addr_t __pte_to_phys(pte_t pte)
152 {
153 pte_val(pte) &= ~PTE_MAYBE_SHARED;
154 return (pte_val(pte) & PTE_ADDR_LOW) |
155 ((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
156 }
__phys_to_pte_val(phys_addr_t phys)157 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
158 {
159 return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
160 }
161 #else
__pte_to_phys(pte_t pte)162 static inline phys_addr_t __pte_to_phys(pte_t pte)
163 {
164 return pte_val(pte) & PTE_ADDR_LOW;
165 }
166
__phys_to_pte_val(phys_addr_t phys)167 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
168 {
169 return phys;
170 }
171 #endif
172
173 #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
174 #define pfn_pte(pfn,prot) \
175 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
176
177 #define pte_none(pte) (!pte_val(pte))
178 #define __pte_clear(mm, addr, ptep) \
179 __set_pte(ptep, __pte(0))
180 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
181
182 /*
183 * The following only work if pte_present(). Undefined behaviour otherwise.
184 */
185 #define pte_present(pte) (pte_valid(pte) || pte_present_invalid(pte))
186 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
187 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
188 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
189 #define pte_rdonly(pte) (!!(pte_val(pte) & PTE_RDONLY))
190 #define pte_user(pte) (!!(pte_val(pte) & PTE_USER))
191 #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
192 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
193 #define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \
194 PTE_ATTRINDX(MT_NORMAL_TAGGED))
195
196 #define pte_cont_addr_end(addr, end) \
197 ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
198 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
199 })
200
201 #define pmd_cont_addr_end(addr, end) \
202 ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
203 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
204 })
205
206 #define pte_hw_dirty(pte) (pte_write(pte) && !pte_rdonly(pte))
207 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
208 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
209
210 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
211 #define pte_present_invalid(pte) \
212 ((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID)
213 /*
214 * Execute-only user mappings do not have the PTE_USER bit set. All valid
215 * kernel mappings have the PTE_UXN bit set.
216 */
217 #define pte_valid_not_user(pte) \
218 ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
219 /*
220 * Returns true if the pte is valid and has the contiguous bit set.
221 */
222 #define pte_valid_cont(pte) (pte_valid(pte) && pte_cont(pte))
223 /*
224 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
225 * so that we don't erroneously return false for pages that have been
226 * remapped as PROT_NONE but are yet to be flushed from the TLB.
227 * Note that we can't make any assumptions based on the state of the access
228 * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
229 * TLB.
230 */
231 #define pte_accessible(mm, pte) \
232 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
233
por_el0_allows_pkey(u8 pkey,bool write,bool execute)234 static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute)
235 {
236 u64 por;
237
238 if (!system_supports_poe())
239 return true;
240
241 por = read_sysreg_s(SYS_POR_EL0);
242
243 if (write)
244 return por_elx_allows_write(por, pkey);
245
246 if (execute)
247 return por_elx_allows_exec(por, pkey);
248
249 return por_elx_allows_read(por, pkey);
250 }
251
252 /*
253 * p??_access_permitted() is true for valid user mappings (PTE_USER
254 * bit set, subject to the write permission check). For execute-only
255 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
256 * not set) must return false. PROT_NONE mappings do not have the
257 * PTE_VALID bit set.
258 */
259 #define pte_access_permitted_no_overlay(pte, write) \
260 (((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
261 #define pte_access_permitted(pte, write) \
262 (pte_access_permitted_no_overlay(pte, write) && \
263 por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false))
264 #define pmd_access_permitted(pmd, write) \
265 (pte_access_permitted(pmd_pte(pmd), (write)))
266 #define pud_access_permitted(pud, write) \
267 (pte_access_permitted(pud_pte(pud), (write)))
268
clear_pte_bit(pte_t pte,pgprot_t prot)269 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
270 {
271 pte_val(pte) &= ~pgprot_val(prot);
272 return pte;
273 }
274
set_pte_bit(pte_t pte,pgprot_t prot)275 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
276 {
277 pte_val(pte) |= pgprot_val(prot);
278 return pte;
279 }
280
clear_pmd_bit(pmd_t pmd,pgprot_t prot)281 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
282 {
283 pmd_val(pmd) &= ~pgprot_val(prot);
284 return pmd;
285 }
286
set_pmd_bit(pmd_t pmd,pgprot_t prot)287 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
288 {
289 pmd_val(pmd) |= pgprot_val(prot);
290 return pmd;
291 }
292
pte_mkwrite_novma(pte_t pte)293 static inline pte_t pte_mkwrite_novma(pte_t pte)
294 {
295 pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
296 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
297 return pte;
298 }
299
pte_mkclean(pte_t pte)300 static inline pte_t pte_mkclean(pte_t pte)
301 {
302 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
303 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
304
305 return pte;
306 }
307
pte_mkdirty(pte_t pte)308 static inline pte_t pte_mkdirty(pte_t pte)
309 {
310 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
311
312 if (pte_write(pte))
313 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
314
315 return pte;
316 }
317
pte_wrprotect(pte_t pte)318 static inline pte_t pte_wrprotect(pte_t pte)
319 {
320 /*
321 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
322 * clear), set the PTE_DIRTY bit.
323 */
324 if (pte_hw_dirty(pte))
325 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
326
327 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
328 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
329 return pte;
330 }
331
pte_mkold(pte_t pte)332 static inline pte_t pte_mkold(pte_t pte)
333 {
334 return clear_pte_bit(pte, __pgprot(PTE_AF));
335 }
336
pte_mkyoung(pte_t pte)337 static inline pte_t pte_mkyoung(pte_t pte)
338 {
339 return set_pte_bit(pte, __pgprot(PTE_AF));
340 }
341
pte_mkspecial(pte_t pte)342 static inline pte_t pte_mkspecial(pte_t pte)
343 {
344 return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
345 }
346
pte_mkcont(pte_t pte)347 static inline pte_t pte_mkcont(pte_t pte)
348 {
349 return set_pte_bit(pte, __pgprot(PTE_CONT));
350 }
351
pte_mknoncont(pte_t pte)352 static inline pte_t pte_mknoncont(pte_t pte)
353 {
354 return clear_pte_bit(pte, __pgprot(PTE_CONT));
355 }
356
pte_mkvalid(pte_t pte)357 static inline pte_t pte_mkvalid(pte_t pte)
358 {
359 return set_pte_bit(pte, __pgprot(PTE_VALID));
360 }
361
pte_mkinvalid(pte_t pte)362 static inline pte_t pte_mkinvalid(pte_t pte)
363 {
364 pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID));
365 pte = clear_pte_bit(pte, __pgprot(PTE_VALID));
366 return pte;
367 }
368
pmd_mkcont(pmd_t pmd)369 static inline pmd_t pmd_mkcont(pmd_t pmd)
370 {
371 return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
372 }
373
pmd_mknoncont(pmd_t pmd)374 static inline pmd_t pmd_mknoncont(pmd_t pmd)
375 {
376 return __pmd(pmd_val(pmd) & ~PMD_SECT_CONT);
377 }
378
379 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_uffd_wp(pte_t pte)380 static inline int pte_uffd_wp(pte_t pte)
381 {
382 return !!(pte_val(pte) & PTE_UFFD_WP);
383 }
384
pte_mkuffd_wp(pte_t pte)385 static inline pte_t pte_mkuffd_wp(pte_t pte)
386 {
387 return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP)));
388 }
389
pte_clear_uffd_wp(pte_t pte)390 static inline pte_t pte_clear_uffd_wp(pte_t pte)
391 {
392 return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP));
393 }
394 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
395
__set_pte_nosync(pte_t * ptep,pte_t pte)396 static inline void __set_pte_nosync(pte_t *ptep, pte_t pte)
397 {
398 WRITE_ONCE(*ptep, pte);
399 }
400
__set_pte_complete(pte_t pte)401 static inline void __set_pte_complete(pte_t pte)
402 {
403 /*
404 * Only if the new pte is valid and kernel, otherwise TLB maintenance
405 * has the necessary barriers.
406 */
407 if (pte_valid_not_user(pte))
408 queue_pte_barriers();
409 }
410
__set_pte(pte_t * ptep,pte_t pte)411 static inline void __set_pte(pte_t *ptep, pte_t pte)
412 {
413 __set_pte_nosync(ptep, pte);
414 __set_pte_complete(pte);
415 }
416
__ptep_get(pte_t * ptep)417 static inline pte_t __ptep_get(pte_t *ptep)
418 {
419 return READ_ONCE(*ptep);
420 }
421
422 extern void __sync_icache_dcache(pte_t pteval);
423 bool pgattr_change_is_safe(pteval_t old, pteval_t new);
424
425 /*
426 * PTE bits configuration in the presence of hardware Dirty Bit Management
427 * (PTE_WRITE == PTE_DBM):
428 *
429 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
430 * 0 0 | 1 0 0
431 * 0 1 | 1 1 0
432 * 1 0 | 1 0 1
433 * 1 1 | 0 1 x
434 *
435 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
436 * the page fault mechanism. Checking the dirty status of a pte becomes:
437 *
438 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
439 */
440
__check_safe_pte_update(struct mm_struct * mm,pte_t * ptep,pte_t pte)441 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
442 pte_t pte)
443 {
444 pte_t old_pte;
445
446 if (!IS_ENABLED(CONFIG_DEBUG_VM))
447 return;
448
449 old_pte = __ptep_get(ptep);
450
451 if (!pte_valid(old_pte) || !pte_valid(pte))
452 return;
453 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
454 return;
455
456 /*
457 * Check for potential race with hardware updates of the pte
458 * (__ptep_set_access_flags safely changes valid ptes without going
459 * through an invalid entry).
460 */
461 VM_WARN_ONCE(!pte_young(pte),
462 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
463 __func__, pte_val(old_pte), pte_val(pte));
464 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
465 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
466 __func__, pte_val(old_pte), pte_val(pte));
467 VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
468 "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
469 __func__, pte_val(old_pte), pte_val(pte));
470 }
471
__sync_cache_and_tags(pte_t pte,unsigned int nr_pages)472 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
473 {
474 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
475 __sync_icache_dcache(pte);
476
477 /*
478 * If the PTE would provide user space access to the tags associated
479 * with it then ensure that the MTE tags are synchronised. Although
480 * pte_access_permitted_no_overlay() returns false for exec only
481 * mappings, they don't expose tags (instruction fetches don't check
482 * tags).
483 */
484 if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) &&
485 !pte_special(pte) && pte_tagged(pte))
486 mte_sync_tags(pte, nr_pages);
487 }
488
489 /*
490 * Select all bits except the pfn
491 */
492 #define pte_pgprot pte_pgprot
pte_pgprot(pte_t pte)493 static inline pgprot_t pte_pgprot(pte_t pte)
494 {
495 unsigned long pfn = pte_pfn(pte);
496
497 return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
498 }
499
500 #define pte_advance_pfn pte_advance_pfn
pte_advance_pfn(pte_t pte,unsigned long nr)501 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
502 {
503 return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
504 }
505
506 /*
507 * Hugetlb definitions.
508 */
509 #define HUGE_MAX_HSTATE 4
510 #define HPAGE_SHIFT PMD_SHIFT
511 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
512 #define HPAGE_MASK (~(HPAGE_SIZE - 1))
513 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
514
pgd_pte(pgd_t pgd)515 static inline pte_t pgd_pte(pgd_t pgd)
516 {
517 return __pte(pgd_val(pgd));
518 }
519
p4d_pte(p4d_t p4d)520 static inline pte_t p4d_pte(p4d_t p4d)
521 {
522 return __pte(p4d_val(p4d));
523 }
524
pud_pte(pud_t pud)525 static inline pte_t pud_pte(pud_t pud)
526 {
527 return __pte(pud_val(pud));
528 }
529
pte_pud(pte_t pte)530 static inline pud_t pte_pud(pte_t pte)
531 {
532 return __pud(pte_val(pte));
533 }
534
pud_pmd(pud_t pud)535 static inline pmd_t pud_pmd(pud_t pud)
536 {
537 return __pmd(pud_val(pud));
538 }
539
pmd_pte(pmd_t pmd)540 static inline pte_t pmd_pte(pmd_t pmd)
541 {
542 return __pte(pmd_val(pmd));
543 }
544
pte_pmd(pte_t pte)545 static inline pmd_t pte_pmd(pte_t pte)
546 {
547 return __pmd(pte_val(pte));
548 }
549
mk_pud_sect_prot(pgprot_t prot)550 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
551 {
552 return __pgprot((pgprot_val(prot) & ~PUD_TYPE_MASK) | PUD_TYPE_SECT);
553 }
554
mk_pmd_sect_prot(pgprot_t prot)555 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
556 {
557 return __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT);
558 }
559
pte_swp_mkexclusive(pte_t pte)560 static inline pte_t pte_swp_mkexclusive(pte_t pte)
561 {
562 return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
563 }
564
pte_swp_exclusive(pte_t pte)565 static inline bool pte_swp_exclusive(pte_t pte)
566 {
567 return pte_val(pte) & PTE_SWP_EXCLUSIVE;
568 }
569
pte_swp_clear_exclusive(pte_t pte)570 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
571 {
572 return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
573 }
574
575 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_swp_mkuffd_wp(pte_t pte)576 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
577 {
578 return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
579 }
580
pte_swp_uffd_wp(pte_t pte)581 static inline int pte_swp_uffd_wp(pte_t pte)
582 {
583 return !!(pte_val(pte) & PTE_SWP_UFFD_WP);
584 }
585
pte_swp_clear_uffd_wp(pte_t pte)586 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
587 {
588 return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
589 }
590 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
591
592 #ifdef CONFIG_NUMA_BALANCING
593 /*
594 * See the comment in include/linux/pgtable.h
595 */
pte_protnone(pte_t pte)596 static inline int pte_protnone(pte_t pte)
597 {
598 /*
599 * pte_present_invalid() tells us that the pte is invalid from HW
600 * perspective but present from SW perspective, so the fields are to be
601 * interpretted as per the HW layout. The second 2 checks are the unique
602 * encoding that we use for PROT_NONE. It is insufficient to only use
603 * the first check because we share the same encoding scheme with pmds
604 * which support pmd_mkinvalid(), so can be present-invalid without
605 * being PROT_NONE.
606 */
607 return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte);
608 }
609
pmd_protnone(pmd_t pmd)610 static inline int pmd_protnone(pmd_t pmd)
611 {
612 return pte_protnone(pmd_pte(pmd));
613 }
614 #endif
615
616 #define pmd_present(pmd) pte_present(pmd_pte(pmd))
617 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
618 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
619 #define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
620 #define pmd_user(pmd) pte_user(pmd_pte(pmd))
621 #define pmd_user_exec(pmd) pte_user_exec(pmd_pte(pmd))
622 #define pmd_cont(pmd) pte_cont(pmd_pte(pmd))
623 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
624 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
625 #define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
626 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
627 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
628 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
629 #define pmd_mkinvalid(pmd) pte_pmd(pte_mkinvalid(pmd_pte(pmd)))
630 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
631 #define pmd_uffd_wp(pmd) pte_uffd_wp(pmd_pte(pmd))
632 #define pmd_mkuffd_wp(pmd) pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)))
633 #define pmd_clear_uffd_wp(pmd) pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)))
634 #define pmd_swp_uffd_wp(pmd) pte_swp_uffd_wp(pmd_pte(pmd))
635 #define pmd_swp_mkuffd_wp(pmd) pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)))
636 #define pmd_swp_clear_uffd_wp(pmd) \
637 pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)))
638 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
639
640 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
641
pmd_mkhuge(pmd_t pmd)642 static inline pmd_t pmd_mkhuge(pmd_t pmd)
643 {
644 /*
645 * It's possible that the pmd is present-invalid on entry
646 * and in that case it needs to remain present-invalid on
647 * exit. So ensure the VALID bit does not get modified.
648 */
649 pmdval_t mask = PMD_TYPE_MASK & ~PTE_VALID;
650 pmdval_t val = PMD_TYPE_SECT & ~PTE_VALID;
651
652 return __pmd((pmd_val(pmd) & ~mask) | val);
653 }
654
655 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
656 #define pmd_special(pte) (!!((pmd_val(pte) & PTE_SPECIAL)))
pmd_mkspecial(pmd_t pmd)657 static inline pmd_t pmd_mkspecial(pmd_t pmd)
658 {
659 return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL));
660 }
661 #endif
662
663 #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
664 #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
665 #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
666 #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
667
668 #define pud_young(pud) pte_young(pud_pte(pud))
669 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
670 #define pud_write(pud) pte_write(pud_pte(pud))
671
pud_mkhuge(pud_t pud)672 static inline pud_t pud_mkhuge(pud_t pud)
673 {
674 /*
675 * It's possible that the pud is present-invalid on entry
676 * and in that case it needs to remain present-invalid on
677 * exit. So ensure the VALID bit does not get modified.
678 */
679 pudval_t mask = PUD_TYPE_MASK & ~PTE_VALID;
680 pudval_t val = PUD_TYPE_SECT & ~PTE_VALID;
681
682 return __pud((pud_val(pud) & ~mask) | val);
683 }
684
685 #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
686 #define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
687 #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
688 #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
689
690 #define pmd_pgprot pmd_pgprot
pmd_pgprot(pmd_t pmd)691 static inline pgprot_t pmd_pgprot(pmd_t pmd)
692 {
693 unsigned long pfn = pmd_pfn(pmd);
694
695 return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd));
696 }
697
698 #define pud_pgprot pud_pgprot
pud_pgprot(pud_t pud)699 static inline pgprot_t pud_pgprot(pud_t pud)
700 {
701 unsigned long pfn = pud_pfn(pud);
702
703 return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud));
704 }
705
__set_ptes_anysz(struct mm_struct * mm,pte_t * ptep,pte_t pte,unsigned int nr,unsigned long pgsize)706 static inline void __set_ptes_anysz(struct mm_struct *mm, pte_t *ptep,
707 pte_t pte, unsigned int nr,
708 unsigned long pgsize)
709 {
710 unsigned long stride = pgsize >> PAGE_SHIFT;
711
712 switch (pgsize) {
713 case PAGE_SIZE:
714 page_table_check_ptes_set(mm, ptep, pte, nr);
715 break;
716 case PMD_SIZE:
717 page_table_check_pmds_set(mm, (pmd_t *)ptep, pte_pmd(pte), nr);
718 break;
719 #ifndef __PAGETABLE_PMD_FOLDED
720 case PUD_SIZE:
721 page_table_check_puds_set(mm, (pud_t *)ptep, pte_pud(pte), nr);
722 break;
723 #endif
724 default:
725 VM_WARN_ON(1);
726 }
727
728 __sync_cache_and_tags(pte, nr * stride);
729
730 for (;;) {
731 __check_safe_pte_update(mm, ptep, pte);
732 __set_pte_nosync(ptep, pte);
733 if (--nr == 0)
734 break;
735 ptep++;
736 pte = pte_advance_pfn(pte, stride);
737 }
738
739 __set_pte_complete(pte);
740 }
741
__set_ptes(struct mm_struct * mm,unsigned long __always_unused addr,pte_t * ptep,pte_t pte,unsigned int nr)742 static inline void __set_ptes(struct mm_struct *mm,
743 unsigned long __always_unused addr,
744 pte_t *ptep, pte_t pte, unsigned int nr)
745 {
746 __set_ptes_anysz(mm, ptep, pte, nr, PAGE_SIZE);
747 }
748
__set_pmds(struct mm_struct * mm,unsigned long __always_unused addr,pmd_t * pmdp,pmd_t pmd,unsigned int nr)749 static inline void __set_pmds(struct mm_struct *mm,
750 unsigned long __always_unused addr,
751 pmd_t *pmdp, pmd_t pmd, unsigned int nr)
752 {
753 __set_ptes_anysz(mm, (pte_t *)pmdp, pmd_pte(pmd), nr, PMD_SIZE);
754 }
755 #define set_pmd_at(mm, addr, pmdp, pmd) __set_pmds(mm, addr, pmdp, pmd, 1)
756
__set_puds(struct mm_struct * mm,unsigned long __always_unused addr,pud_t * pudp,pud_t pud,unsigned int nr)757 static inline void __set_puds(struct mm_struct *mm,
758 unsigned long __always_unused addr,
759 pud_t *pudp, pud_t pud, unsigned int nr)
760 {
761 __set_ptes_anysz(mm, (pte_t *)pudp, pud_pte(pud), nr, PUD_SIZE);
762 }
763 #define set_pud_at(mm, addr, pudp, pud) __set_puds(mm, addr, pudp, pud, 1)
764
765 #define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d))
766 #define __phys_to_p4d_val(phys) __phys_to_pte_val(phys)
767
768 #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
769 #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
770
771 #define __pgprot_modify(prot,mask,bits) \
772 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
773
774 #define pgprot_nx(prot) \
775 __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
776
777 #define pgprot_decrypted(prot) \
778 __pgprot_modify(prot, PROT_NS_SHARED, PROT_NS_SHARED)
779 #define pgprot_encrypted(prot) \
780 __pgprot_modify(prot, PROT_NS_SHARED, 0)
781
782 /*
783 * Mark the prot value as uncacheable and unbufferable.
784 */
785 #define pgprot_noncached(prot) \
786 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
787 #define pgprot_writecombine(prot) \
788 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
789 #define pgprot_device(prot) \
790 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
791 #define pgprot_tagged(prot) \
792 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
793 #define pgprot_mhp pgprot_tagged
794 /*
795 * DMA allocations for non-coherent devices use what the Arm architecture calls
796 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
797 * and merging of writes. This is different from "Device-nGnR[nE]" memory which
798 * is intended for MMIO and thus forbids speculation, preserves access size,
799 * requires strict alignment and can also force write responses to come from the
800 * endpoint.
801 */
802 #define pgprot_dmacoherent(prot) \
803 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \
804 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
805
806 #define __HAVE_PHYS_MEM_ACCESS_PROT
807 struct file;
808 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
809 unsigned long size, pgprot_t vma_prot);
810
811 #define pmd_none(pmd) (!pmd_val(pmd))
812
813 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
814 PMD_TYPE_TABLE)
815 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
816 PMD_TYPE_SECT)
817 #define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd))
818 #define pmd_bad(pmd) (!pmd_table(pmd))
819
820 #define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
821 #define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
822
823 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)824 static inline int pmd_trans_huge(pmd_t pmd)
825 {
826 /*
827 * If pmd is present-invalid, pmd_table() won't detect it
828 * as a table, so force the valid bit for the comparison.
829 */
830 return pmd_present(pmd) && !pmd_table(__pmd(pmd_val(pmd) | PTE_VALID));
831 }
832 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
833
834 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
pud_sect(pud_t pud)835 static inline bool pud_sect(pud_t pud) { return false; }
pud_table(pud_t pud)836 static inline bool pud_table(pud_t pud) { return true; }
837 #else
838 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
839 PUD_TYPE_SECT)
840 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
841 PUD_TYPE_TABLE)
842 #endif
843
844 extern pgd_t swapper_pg_dir[];
845 extern pgd_t idmap_pg_dir[];
846 extern pgd_t tramp_pg_dir[];
847 extern pgd_t reserved_pg_dir[];
848
849 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
850
in_swapper_pgdir(void * addr)851 static inline bool in_swapper_pgdir(void *addr)
852 {
853 return ((unsigned long)addr & PAGE_MASK) ==
854 ((unsigned long)swapper_pg_dir & PAGE_MASK);
855 }
856
set_pmd(pmd_t * pmdp,pmd_t pmd)857 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
858 {
859 #ifdef __PAGETABLE_PMD_FOLDED
860 if (in_swapper_pgdir(pmdp)) {
861 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
862 return;
863 }
864 #endif /* __PAGETABLE_PMD_FOLDED */
865
866 WRITE_ONCE(*pmdp, pmd);
867
868 if (pmd_valid(pmd))
869 queue_pte_barriers();
870 }
871
pmd_clear(pmd_t * pmdp)872 static inline void pmd_clear(pmd_t *pmdp)
873 {
874 set_pmd(pmdp, __pmd(0));
875 }
876
pmd_page_paddr(pmd_t pmd)877 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
878 {
879 return __pmd_to_phys(pmd);
880 }
881
pmd_page_vaddr(pmd_t pmd)882 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
883 {
884 return (unsigned long)__va(pmd_page_paddr(pmd));
885 }
886
887 /* Find an entry in the third-level page table. */
888 #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
889
890 #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
891 #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
892 #define pte_clear_fixmap() clear_fixmap(FIX_PTE)
893
894 #define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd))
895
896 /* use ONLY for statically allocated translation tables */
897 #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
898
899 #if CONFIG_PGTABLE_LEVELS > 2
900
901 #define pmd_ERROR(e) \
902 pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
903
904 #define pud_none(pud) (!pud_val(pud))
905 #define pud_bad(pud) ((pud_val(pud) & PUD_TYPE_MASK) != \
906 PUD_TYPE_TABLE)
907 #define pud_present(pud) pte_present(pud_pte(pud))
908 #ifndef __PAGETABLE_PMD_FOLDED
909 #define pud_leaf(pud) (pud_present(pud) && !pud_table(pud))
910 #else
911 #define pud_leaf(pud) false
912 #endif
913 #define pud_valid(pud) pte_valid(pud_pte(pud))
914 #define pud_user(pud) pte_user(pud_pte(pud))
915 #define pud_user_exec(pud) pte_user_exec(pud_pte(pud))
916
917 static inline bool pgtable_l4_enabled(void);
918
set_pud(pud_t * pudp,pud_t pud)919 static inline void set_pud(pud_t *pudp, pud_t pud)
920 {
921 if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
922 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
923 return;
924 }
925
926 WRITE_ONCE(*pudp, pud);
927
928 if (pud_valid(pud))
929 queue_pte_barriers();
930 }
931
pud_clear(pud_t * pudp)932 static inline void pud_clear(pud_t *pudp)
933 {
934 set_pud(pudp, __pud(0));
935 }
936
pud_page_paddr(pud_t pud)937 static inline phys_addr_t pud_page_paddr(pud_t pud)
938 {
939 return __pud_to_phys(pud);
940 }
941
pud_pgtable(pud_t pud)942 static inline pmd_t *pud_pgtable(pud_t pud)
943 {
944 return (pmd_t *)__va(pud_page_paddr(pud));
945 }
946
947 /* Find an entry in the second-level page table. */
948 #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
949
950 #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
951 #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
952 #define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
953
954 #define pud_page(pud) phys_to_page(__pud_to_phys(pud))
955
956 /* use ONLY for statically allocated translation tables */
957 #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
958
959 #else
960
961 #define pud_valid(pud) false
962 #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
963 #define pud_user_exec(pud) pud_user(pud) /* Always 0 with folding */
964
965 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
966 #define pmd_set_fixmap(addr) NULL
967 #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
968 #define pmd_clear_fixmap()
969
970 #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
971
972 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
973
974 #if CONFIG_PGTABLE_LEVELS > 3
975
pgtable_l4_enabled(void)976 static __always_inline bool pgtable_l4_enabled(void)
977 {
978 if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
979 return true;
980 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
981 return vabits_actual == VA_BITS;
982 return alternative_has_cap_unlikely(ARM64_HAS_VA52);
983 }
984
mm_pud_folded(const struct mm_struct * mm)985 static inline bool mm_pud_folded(const struct mm_struct *mm)
986 {
987 return !pgtable_l4_enabled();
988 }
989 #define mm_pud_folded mm_pud_folded
990
991 #define pud_ERROR(e) \
992 pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
993
994 #define p4d_none(p4d) (pgtable_l4_enabled() && !p4d_val(p4d))
995 #define p4d_bad(p4d) (pgtable_l4_enabled() && \
996 ((p4d_val(p4d) & P4D_TYPE_MASK) != \
997 P4D_TYPE_TABLE))
998 #define p4d_present(p4d) (!p4d_none(p4d))
999
set_p4d(p4d_t * p4dp,p4d_t p4d)1000 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
1001 {
1002 if (in_swapper_pgdir(p4dp)) {
1003 set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
1004 return;
1005 }
1006
1007 WRITE_ONCE(*p4dp, p4d);
1008 queue_pte_barriers();
1009 }
1010
p4d_clear(p4d_t * p4dp)1011 static inline void p4d_clear(p4d_t *p4dp)
1012 {
1013 if (pgtable_l4_enabled())
1014 set_p4d(p4dp, __p4d(0));
1015 }
1016
p4d_page_paddr(p4d_t p4d)1017 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
1018 {
1019 return __p4d_to_phys(p4d);
1020 }
1021
1022 #define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
1023
p4d_to_folded_pud(p4d_t * p4dp,unsigned long addr)1024 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
1025 {
1026 /* Ensure that 'p4dp' indexes a page table according to 'addr' */
1027 VM_BUG_ON(((addr >> P4D_SHIFT) ^ ((u64)p4dp >> 3)) % PTRS_PER_P4D);
1028
1029 return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
1030 }
1031
p4d_pgtable(p4d_t p4d)1032 static inline pud_t *p4d_pgtable(p4d_t p4d)
1033 {
1034 return (pud_t *)__va(p4d_page_paddr(p4d));
1035 }
1036
pud_offset_phys(p4d_t * p4dp,unsigned long addr)1037 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
1038 {
1039 BUG_ON(!pgtable_l4_enabled());
1040
1041 return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
1042 }
1043
1044 static inline
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long addr)1045 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
1046 {
1047 if (!pgtable_l4_enabled())
1048 return p4d_to_folded_pud(p4dp, addr);
1049 return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
1050 }
1051 #define pud_offset_lockless pud_offset_lockless
1052
pud_offset(p4d_t * p4dp,unsigned long addr)1053 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
1054 {
1055 return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
1056 }
1057 #define pud_offset pud_offset
1058
pud_set_fixmap(unsigned long addr)1059 static inline pud_t *pud_set_fixmap(unsigned long addr)
1060 {
1061 if (!pgtable_l4_enabled())
1062 return NULL;
1063 return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
1064 }
1065
pud_set_fixmap_offset(p4d_t * p4dp,unsigned long addr)1066 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
1067 {
1068 if (!pgtable_l4_enabled())
1069 return p4d_to_folded_pud(p4dp, addr);
1070 return pud_set_fixmap(pud_offset_phys(p4dp, addr));
1071 }
1072
pud_clear_fixmap(void)1073 static inline void pud_clear_fixmap(void)
1074 {
1075 if (pgtable_l4_enabled())
1076 clear_fixmap(FIX_PUD);
1077 }
1078
1079 /* use ONLY for statically allocated translation tables */
pud_offset_kimg(p4d_t * p4dp,u64 addr)1080 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
1081 {
1082 if (!pgtable_l4_enabled())
1083 return p4d_to_folded_pud(p4dp, addr);
1084 return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
1085 }
1086
1087 #define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
1088
1089 #else
1090
pgtable_l4_enabled(void)1091 static inline bool pgtable_l4_enabled(void) { return false; }
1092
1093 #define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;})
1094
1095 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
1096 #define pud_set_fixmap(addr) NULL
1097 #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
1098 #define pud_clear_fixmap()
1099
1100 #define pud_offset_kimg(dir,addr) ((pud_t *)dir)
1101
1102 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
1103
1104 #if CONFIG_PGTABLE_LEVELS > 4
1105
pgtable_l5_enabled(void)1106 static __always_inline bool pgtable_l5_enabled(void)
1107 {
1108 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
1109 return vabits_actual == VA_BITS;
1110 return alternative_has_cap_unlikely(ARM64_HAS_VA52);
1111 }
1112
mm_p4d_folded(const struct mm_struct * mm)1113 static inline bool mm_p4d_folded(const struct mm_struct *mm)
1114 {
1115 return !pgtable_l5_enabled();
1116 }
1117 #define mm_p4d_folded mm_p4d_folded
1118
1119 #define p4d_ERROR(e) \
1120 pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
1121
1122 #define pgd_none(pgd) (pgtable_l5_enabled() && !pgd_val(pgd))
1123 #define pgd_bad(pgd) (pgtable_l5_enabled() && \
1124 ((pgd_val(pgd) & PGD_TYPE_MASK) != \
1125 PGD_TYPE_TABLE))
1126 #define pgd_present(pgd) (!pgd_none(pgd))
1127
set_pgd(pgd_t * pgdp,pgd_t pgd)1128 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1129 {
1130 if (in_swapper_pgdir(pgdp)) {
1131 set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
1132 return;
1133 }
1134
1135 WRITE_ONCE(*pgdp, pgd);
1136 queue_pte_barriers();
1137 }
1138
pgd_clear(pgd_t * pgdp)1139 static inline void pgd_clear(pgd_t *pgdp)
1140 {
1141 if (pgtable_l5_enabled())
1142 set_pgd(pgdp, __pgd(0));
1143 }
1144
pgd_page_paddr(pgd_t pgd)1145 static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
1146 {
1147 return __pgd_to_phys(pgd);
1148 }
1149
1150 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1151
pgd_to_folded_p4d(pgd_t * pgdp,unsigned long addr)1152 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
1153 {
1154 /* Ensure that 'pgdp' indexes a page table according to 'addr' */
1155 VM_BUG_ON(((addr >> PGDIR_SHIFT) ^ ((u64)pgdp >> 3)) % PTRS_PER_PGD);
1156
1157 return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
1158 }
1159
p4d_offset_phys(pgd_t * pgdp,unsigned long addr)1160 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
1161 {
1162 BUG_ON(!pgtable_l5_enabled());
1163
1164 return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
1165 }
1166
1167 static inline
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long addr)1168 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1169 {
1170 if (!pgtable_l5_enabled())
1171 return pgd_to_folded_p4d(pgdp, addr);
1172 return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
1173 }
1174 #define p4d_offset_lockless p4d_offset_lockless
1175
p4d_offset(pgd_t * pgdp,unsigned long addr)1176 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
1177 {
1178 return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
1179 }
1180
p4d_set_fixmap(unsigned long addr)1181 static inline p4d_t *p4d_set_fixmap(unsigned long addr)
1182 {
1183 if (!pgtable_l5_enabled())
1184 return NULL;
1185 return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
1186 }
1187
p4d_set_fixmap_offset(pgd_t * pgdp,unsigned long addr)1188 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
1189 {
1190 if (!pgtable_l5_enabled())
1191 return pgd_to_folded_p4d(pgdp, addr);
1192 return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
1193 }
1194
p4d_clear_fixmap(void)1195 static inline void p4d_clear_fixmap(void)
1196 {
1197 if (pgtable_l5_enabled())
1198 clear_fixmap(FIX_P4D);
1199 }
1200
1201 /* use ONLY for statically allocated translation tables */
p4d_offset_kimg(pgd_t * pgdp,u64 addr)1202 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
1203 {
1204 if (!pgtable_l5_enabled())
1205 return pgd_to_folded_p4d(pgdp, addr);
1206 return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
1207 }
1208
1209 #define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
1210
1211 #else
1212
pgtable_l5_enabled(void)1213 static inline bool pgtable_l5_enabled(void) { return false; }
1214
1215 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1216
1217 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
1218 #define p4d_set_fixmap(addr) NULL
1219 #define p4d_set_fixmap_offset(p4dp, addr) ((p4d_t *)p4dp)
1220 #define p4d_clear_fixmap()
1221
1222 #define p4d_offset_kimg(dir,addr) ((p4d_t *)dir)
1223
1224 static inline
p4d_offset_lockless_folded(pgd_t * pgdp,pgd_t pgd,unsigned long addr)1225 p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1226 {
1227 /*
1228 * With runtime folding of the pud, pud_offset_lockless() passes
1229 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which
1230 * will offset the pointer assuming that it points into
1231 * a page-table page. However, the fast GUP path passes us a
1232 * pgd_t allocated on the stack and so we must use the original
1233 * pointer in 'pgdp' to construct the p4d pointer instead of
1234 * using the generic p4d_offset_lockless() implementation.
1235 *
1236 * Note: reusing the original pointer means that we may
1237 * dereference the same (live) page-table entry multiple times.
1238 * This is safe because it is still only loaded once in the
1239 * context of each level and the CPU guarantees same-address
1240 * read-after-read ordering.
1241 */
1242 return p4d_offset(pgdp, addr);
1243 }
1244 #define p4d_offset_lockless p4d_offset_lockless_folded
1245
1246 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
1247
1248 #define pgd_ERROR(e) \
1249 pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
1250
1251 #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
1252 #define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
1253
pte_modify(pte_t pte,pgprot_t newprot)1254 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1255 {
1256 /*
1257 * Normal and Normal-Tagged are two different memory types and indices
1258 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
1259 */
1260 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
1261 PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE |
1262 PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK;
1263
1264 /* preserve the hardware dirty information */
1265 if (pte_hw_dirty(pte))
1266 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
1267
1268 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
1269 /*
1270 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
1271 * dirtiness again.
1272 */
1273 if (pte_sw_dirty(pte))
1274 pte = pte_mkdirty(pte);
1275 return pte;
1276 }
1277
pmd_modify(pmd_t pmd,pgprot_t newprot)1278 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1279 {
1280 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
1281 }
1282
1283 extern int __ptep_set_access_flags(struct vm_area_struct *vma,
1284 unsigned long address, pte_t *ptep,
1285 pte_t entry, int dirty);
1286
1287 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1288 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)1289 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1290 unsigned long address, pmd_t *pmdp,
1291 pmd_t entry, int dirty)
1292 {
1293 return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
1294 pmd_pte(entry), dirty);
1295 }
1296 #endif
1297
1298 #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)1299 static inline bool pte_user_accessible_page(pte_t pte)
1300 {
1301 return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte));
1302 }
1303
pmd_user_accessible_page(pmd_t pmd)1304 static inline bool pmd_user_accessible_page(pmd_t pmd)
1305 {
1306 return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
1307 }
1308
pud_user_accessible_page(pud_t pud)1309 static inline bool pud_user_accessible_page(pud_t pud)
1310 {
1311 return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud));
1312 }
1313 #endif
1314
1315 /*
1316 * Atomic pte/pmd modifications.
1317 */
__ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1318 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
1319 unsigned long address,
1320 pte_t *ptep)
1321 {
1322 pte_t old_pte, pte;
1323
1324 pte = __ptep_get(ptep);
1325 do {
1326 old_pte = pte;
1327 pte = pte_mkold(pte);
1328 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1329 pte_val(old_pte), pte_val(pte));
1330 } while (pte_val(pte) != pte_val(old_pte));
1331
1332 return pte_young(pte);
1333 }
1334
__ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1335 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
1336 unsigned long address, pte_t *ptep)
1337 {
1338 int young = __ptep_test_and_clear_young(vma, address, ptep);
1339
1340 if (young) {
1341 /*
1342 * We can elide the trailing DSB here since the worst that can
1343 * happen is that a CPU continues to use the young entry in its
1344 * TLB and we mistakenly reclaim the associated page. The
1345 * window for such an event is bounded by the next
1346 * context-switch, which provides a DSB to complete the TLB
1347 * invalidation.
1348 */
1349 flush_tlb_page_nosync(vma, address);
1350 }
1351
1352 return young;
1353 }
1354
1355 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
1356 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1357 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1358 unsigned long address,
1359 pmd_t *pmdp)
1360 {
1361 /* Operation applies to PMD table entry only if FEAT_HAFT is enabled */
1362 VM_WARN_ON(pmd_table(READ_ONCE(*pmdp)) && !system_supports_haft());
1363 return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
1364 }
1365 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
1366
__ptep_get_and_clear_anysz(struct mm_struct * mm,pte_t * ptep,unsigned long pgsize)1367 static inline pte_t __ptep_get_and_clear_anysz(struct mm_struct *mm,
1368 pte_t *ptep,
1369 unsigned long pgsize)
1370 {
1371 pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
1372
1373 switch (pgsize) {
1374 case PAGE_SIZE:
1375 page_table_check_pte_clear(mm, pte);
1376 break;
1377 case PMD_SIZE:
1378 page_table_check_pmd_clear(mm, pte_pmd(pte));
1379 break;
1380 #ifndef __PAGETABLE_PMD_FOLDED
1381 case PUD_SIZE:
1382 page_table_check_pud_clear(mm, pte_pud(pte));
1383 break;
1384 #endif
1385 default:
1386 VM_WARN_ON(1);
1387 }
1388
1389 return pte;
1390 }
1391
__ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)1392 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
1393 unsigned long address, pte_t *ptep)
1394 {
1395 return __ptep_get_and_clear_anysz(mm, ptep, PAGE_SIZE);
1396 }
1397
__clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1398 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1399 pte_t *ptep, unsigned int nr, int full)
1400 {
1401 for (;;) {
1402 __ptep_get_and_clear(mm, addr, ptep);
1403 if (--nr == 0)
1404 break;
1405 ptep++;
1406 addr += PAGE_SIZE;
1407 }
1408 }
1409
__get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1410 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
1411 unsigned long addr, pte_t *ptep,
1412 unsigned int nr, int full)
1413 {
1414 pte_t pte, tmp_pte;
1415
1416 pte = __ptep_get_and_clear(mm, addr, ptep);
1417 while (--nr) {
1418 ptep++;
1419 addr += PAGE_SIZE;
1420 tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
1421 if (pte_dirty(tmp_pte))
1422 pte = pte_mkdirty(pte);
1423 if (pte_young(tmp_pte))
1424 pte = pte_mkyoung(pte);
1425 }
1426 return pte;
1427 }
1428
1429 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1430 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1431 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1432 unsigned long address, pmd_t *pmdp)
1433 {
1434 return pte_pmd(__ptep_get_and_clear_anysz(mm, (pte_t *)pmdp, PMD_SIZE));
1435 }
1436 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1437
___ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep,pte_t pte)1438 static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1439 unsigned long address, pte_t *ptep,
1440 pte_t pte)
1441 {
1442 pte_t old_pte;
1443
1444 do {
1445 old_pte = pte;
1446 pte = pte_wrprotect(pte);
1447 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1448 pte_val(old_pte), pte_val(pte));
1449 } while (pte_val(pte) != pte_val(old_pte));
1450 }
1451
1452 /*
1453 * __ptep_set_wrprotect - mark read-only while transferring potential hardware
1454 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1455 */
__ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)1456 static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1457 unsigned long address, pte_t *ptep)
1458 {
1459 ___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1460 }
1461
__wrprotect_ptes(struct mm_struct * mm,unsigned long address,pte_t * ptep,unsigned int nr)1462 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1463 pte_t *ptep, unsigned int nr)
1464 {
1465 unsigned int i;
1466
1467 for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1468 __ptep_set_wrprotect(mm, address, ptep);
1469 }
1470
__clear_young_dirty_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte,cydp_t flags)1471 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
1472 unsigned long addr, pte_t *ptep,
1473 pte_t pte, cydp_t flags)
1474 {
1475 pte_t old_pte;
1476
1477 do {
1478 old_pte = pte;
1479
1480 if (flags & CYDP_CLEAR_YOUNG)
1481 pte = pte_mkold(pte);
1482 if (flags & CYDP_CLEAR_DIRTY)
1483 pte = pte_mkclean(pte);
1484
1485 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1486 pte_val(old_pte), pte_val(pte));
1487 } while (pte_val(pte) != pte_val(old_pte));
1488 }
1489
__clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1490 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
1491 unsigned long addr, pte_t *ptep,
1492 unsigned int nr, cydp_t flags)
1493 {
1494 pte_t pte;
1495
1496 for (;;) {
1497 pte = __ptep_get(ptep);
1498
1499 if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
1500 __set_pte(ptep, pte_mkclean(pte_mkold(pte)));
1501 else
1502 __clear_young_dirty_pte(vma, addr, ptep, pte, flags);
1503
1504 if (--nr == 0)
1505 break;
1506 ptep++;
1507 addr += PAGE_SIZE;
1508 }
1509 }
1510
1511 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1512 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1513 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1514 unsigned long address, pmd_t *pmdp)
1515 {
1516 __ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1517 }
1518
1519 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)1520 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1521 unsigned long address, pmd_t *pmdp, pmd_t pmd)
1522 {
1523 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1524 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1525 }
1526 #endif
1527
1528 /*
1529 * Encode and decode a swap entry:
1530 * bits 0-1: present (must be zero)
1531 * bits 2: remember PG_anon_exclusive
1532 * bit 3: remember uffd-wp state
1533 * bits 6-10: swap type
1534 * bit 11: PTE_PRESENT_INVALID (must be zero)
1535 * bits 12-61: swap offset
1536 */
1537 #define __SWP_TYPE_SHIFT 6
1538 #define __SWP_TYPE_BITS 5
1539 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
1540 #define __SWP_OFFSET_SHIFT 12
1541 #define __SWP_OFFSET_BITS 50
1542 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
1543
1544 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1545 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1546 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1547
1548 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1549 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
1550
1551 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1552 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
1553 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
1554 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1555
1556 /*
1557 * Ensure that there are not more swap files than can be encoded in the kernel
1558 * PTEs.
1559 */
1560 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1561
1562 #ifdef CONFIG_ARM64_MTE
1563
1564 #define __HAVE_ARCH_PREPARE_TO_SWAP
1565 extern int arch_prepare_to_swap(struct folio *folio);
1566
1567 #define __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)1568 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1569 {
1570 if (system_supports_mte())
1571 mte_invalidate_tags(type, offset);
1572 }
1573
arch_swap_invalidate_area(int type)1574 static inline void arch_swap_invalidate_area(int type)
1575 {
1576 if (system_supports_mte())
1577 mte_invalidate_tags_area(type);
1578 }
1579
1580 #define __HAVE_ARCH_SWAP_RESTORE
1581 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
1582
1583 #endif /* CONFIG_ARM64_MTE */
1584
1585 /*
1586 * On AArch64, the cache coherency is handled via the __set_ptes() function.
1587 */
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr)1588 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1589 struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1590 unsigned int nr)
1591 {
1592 /*
1593 * We don't do anything here, so there's a very small chance of
1594 * us retaking a user fault which we just fixed up. The alternative
1595 * is doing a dsb(ishst), but that penalises the fastpath.
1596 */
1597 }
1598
1599 #define update_mmu_cache(vma, addr, ptep) \
1600 update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1601 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1602
1603 #ifdef CONFIG_ARM64_PA_BITS_52
1604 #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1605 #else
1606 #define phys_to_ttbr(addr) (addr)
1607 #endif
1608
1609 /*
1610 * On arm64 without hardware Access Flag, copying from user will fail because
1611 * the pte is old and cannot be marked young. So we always end up with zeroed
1612 * page after fork() + CoW for pfn mappings. We don't always have a
1613 * hardware-managed access flag on arm64.
1614 */
1615 #define arch_has_hw_pte_young cpu_has_hw_af
1616
1617 #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
1618 #define arch_has_hw_nonleaf_pmd_young system_supports_haft
1619 #endif
1620
1621 /*
1622 * Experimentally, it's cheap to set the access flag in hardware and we
1623 * benefit from prefaulting mappings as 'old' to start with.
1624 */
1625 #define arch_wants_old_prefaulted_pte cpu_has_hw_af
1626
1627 /*
1628 * Request exec memory is read into pagecache in at least 64K folios. This size
1629 * can be contpte-mapped when 4K base pages are in use (16 pages into 1 iTLB
1630 * entry), and HPA can coalesce it (4 pages into 1 TLB entry) when 16K base
1631 * pages are in use.
1632 */
1633 #define exec_folio_order() ilog2(SZ_64K >> PAGE_SHIFT)
1634
pud_sect_supported(void)1635 static inline bool pud_sect_supported(void)
1636 {
1637 return PAGE_SIZE == SZ_4K;
1638 }
1639
1640
1641 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1642 #define ptep_modify_prot_start ptep_modify_prot_start
1643 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1644 unsigned long addr, pte_t *ptep);
1645
1646 #define ptep_modify_prot_commit ptep_modify_prot_commit
1647 extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1648 unsigned long addr, pte_t *ptep,
1649 pte_t old_pte, pte_t new_pte);
1650
1651 #define modify_prot_start_ptes modify_prot_start_ptes
1652 extern pte_t modify_prot_start_ptes(struct vm_area_struct *vma,
1653 unsigned long addr, pte_t *ptep,
1654 unsigned int nr);
1655
1656 #define modify_prot_commit_ptes modify_prot_commit_ptes
1657 extern void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr,
1658 pte_t *ptep, pte_t old_pte, pte_t pte,
1659 unsigned int nr);
1660
1661 #ifdef CONFIG_ARM64_CONTPTE
1662
1663 /*
1664 * The contpte APIs are used to transparently manage the contiguous bit in ptes
1665 * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1666 * a private implementation detail of the public ptep API (see below).
1667 */
1668 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1669 pte_t *ptep, pte_t pte);
1670 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1671 pte_t *ptep, pte_t pte);
1672 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1673 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1674 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1675 pte_t *ptep, pte_t pte, unsigned int nr);
1676 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1677 pte_t *ptep, unsigned int nr, int full);
1678 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1679 unsigned long addr, pte_t *ptep,
1680 unsigned int nr, int full);
1681 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1682 unsigned long addr, pte_t *ptep);
1683 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1684 unsigned long addr, pte_t *ptep);
1685 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1686 pte_t *ptep, unsigned int nr);
1687 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1688 unsigned long addr, pte_t *ptep,
1689 pte_t entry, int dirty);
1690 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
1691 unsigned long addr, pte_t *ptep,
1692 unsigned int nr, cydp_t flags);
1693
contpte_try_fold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1694 static __always_inline void contpte_try_fold(struct mm_struct *mm,
1695 unsigned long addr, pte_t *ptep, pte_t pte)
1696 {
1697 /*
1698 * Only bother trying if both the virtual and physical addresses are
1699 * aligned and correspond to the last entry in a contig range. The core
1700 * code mostly modifies ranges from low to high, so this is the likely
1701 * the last modification in the contig range, so a good time to fold.
1702 * We can't fold special mappings, because there is no associated folio.
1703 */
1704
1705 const unsigned long contmask = CONT_PTES - 1;
1706 bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1707
1708 if (unlikely(valign)) {
1709 bool palign = (pte_pfn(pte) & contmask) == contmask;
1710
1711 if (unlikely(palign &&
1712 pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1713 __contpte_try_fold(mm, addr, ptep, pte);
1714 }
1715 }
1716
contpte_try_unfold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1717 static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1718 unsigned long addr, pte_t *ptep, pte_t pte)
1719 {
1720 if (unlikely(pte_valid_cont(pte)))
1721 __contpte_try_unfold(mm, addr, ptep, pte);
1722 }
1723
1724 #define pte_batch_hint pte_batch_hint
pte_batch_hint(pte_t * ptep,pte_t pte)1725 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1726 {
1727 if (!pte_valid_cont(pte))
1728 return 1;
1729
1730 return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1731 }
1732
1733 /*
1734 * The below functions constitute the public API that arm64 presents to the
1735 * core-mm to manipulate PTE entries within their page tables (or at least this
1736 * is the subset of the API that arm64 needs to implement). These public
1737 * versions will automatically and transparently apply the contiguous bit where
1738 * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1739 * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1740 * private versions, which are prefixed with double underscore. All of these
1741 * APIs except for ptep_get_lockless() are expected to be called with the PTL
1742 * held. Although the contiguous bit is considered private to the
1743 * implementation, it is deliberately allowed to leak through the getters (e.g.
1744 * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1745 * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1746 * its possible a pte will be passed to a setter with the contiguous bit set, so
1747 * we explicitly clear the contiguous bit in those cases to prevent accidentally
1748 * setting it in the pgtable.
1749 */
1750
1751 #define ptep_get ptep_get
ptep_get(pte_t * ptep)1752 static inline pte_t ptep_get(pte_t *ptep)
1753 {
1754 pte_t pte = __ptep_get(ptep);
1755
1756 if (likely(!pte_valid_cont(pte)))
1757 return pte;
1758
1759 return contpte_ptep_get(ptep, pte);
1760 }
1761
1762 #define ptep_get_lockless ptep_get_lockless
ptep_get_lockless(pte_t * ptep)1763 static inline pte_t ptep_get_lockless(pte_t *ptep)
1764 {
1765 pte_t pte = __ptep_get(ptep);
1766
1767 if (likely(!pte_valid_cont(pte)))
1768 return pte;
1769
1770 return contpte_ptep_get_lockless(ptep);
1771 }
1772
set_pte(pte_t * ptep,pte_t pte)1773 static inline void set_pte(pte_t *ptep, pte_t pte)
1774 {
1775 /*
1776 * We don't have the mm or vaddr so cannot unfold contig entries (since
1777 * it requires tlb maintenance). set_pte() is not used in core code, so
1778 * this should never even be called. Regardless do our best to service
1779 * any call and emit a warning if there is any attempt to set a pte on
1780 * top of an existing contig range.
1781 */
1782 pte_t orig_pte = __ptep_get(ptep);
1783
1784 WARN_ON_ONCE(pte_valid_cont(orig_pte));
1785 __set_pte(ptep, pte_mknoncont(pte));
1786 }
1787
1788 #define set_ptes set_ptes
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned int nr)1789 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1790 pte_t *ptep, pte_t pte, unsigned int nr)
1791 {
1792 pte = pte_mknoncont(pte);
1793
1794 if (likely(nr == 1)) {
1795 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1796 __set_ptes(mm, addr, ptep, pte, 1);
1797 contpte_try_fold(mm, addr, ptep, pte);
1798 } else {
1799 contpte_set_ptes(mm, addr, ptep, pte, nr);
1800 }
1801 }
1802
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1803 static inline void pte_clear(struct mm_struct *mm,
1804 unsigned long addr, pte_t *ptep)
1805 {
1806 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1807 __pte_clear(mm, addr, ptep);
1808 }
1809
1810 #define clear_full_ptes clear_full_ptes
clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1811 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1812 pte_t *ptep, unsigned int nr, int full)
1813 {
1814 if (likely(nr == 1)) {
1815 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1816 __clear_full_ptes(mm, addr, ptep, nr, full);
1817 } else {
1818 contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1819 }
1820 }
1821
1822 #define get_and_clear_full_ptes get_and_clear_full_ptes
get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1823 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1824 unsigned long addr, pte_t *ptep,
1825 unsigned int nr, int full)
1826 {
1827 pte_t pte;
1828
1829 if (likely(nr == 1)) {
1830 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1831 pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1832 } else {
1833 pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1834 }
1835
1836 return pte;
1837 }
1838
1839 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1840 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1841 unsigned long addr, pte_t *ptep)
1842 {
1843 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1844 return __ptep_get_and_clear(mm, addr, ptep);
1845 }
1846
1847 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1848 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1849 unsigned long addr, pte_t *ptep)
1850 {
1851 pte_t orig_pte = __ptep_get(ptep);
1852
1853 if (likely(!pte_valid_cont(orig_pte)))
1854 return __ptep_test_and_clear_young(vma, addr, ptep);
1855
1856 return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1857 }
1858
1859 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1860 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1861 unsigned long addr, pte_t *ptep)
1862 {
1863 pte_t orig_pte = __ptep_get(ptep);
1864
1865 if (likely(!pte_valid_cont(orig_pte)))
1866 return __ptep_clear_flush_young(vma, addr, ptep);
1867
1868 return contpte_ptep_clear_flush_young(vma, addr, ptep);
1869 }
1870
1871 #define wrprotect_ptes wrprotect_ptes
wrprotect_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr)1872 static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1873 unsigned long addr, pte_t *ptep, unsigned int nr)
1874 {
1875 if (likely(nr == 1)) {
1876 /*
1877 * Optimization: wrprotect_ptes() can only be called for present
1878 * ptes so we only need to check contig bit as condition for
1879 * unfold, and we can remove the contig bit from the pte we read
1880 * to avoid re-reading. This speeds up fork() which is sensitive
1881 * for order-0 folios. Equivalent to contpte_try_unfold().
1882 */
1883 pte_t orig_pte = __ptep_get(ptep);
1884
1885 if (unlikely(pte_cont(orig_pte))) {
1886 __contpte_try_unfold(mm, addr, ptep, orig_pte);
1887 orig_pte = pte_mknoncont(orig_pte);
1888 }
1889 ___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1890 } else {
1891 contpte_wrprotect_ptes(mm, addr, ptep, nr);
1892 }
1893 }
1894
1895 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1896 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1897 unsigned long addr, pte_t *ptep)
1898 {
1899 wrprotect_ptes(mm, addr, ptep, 1);
1900 }
1901
1902 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1903 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1904 unsigned long addr, pte_t *ptep,
1905 pte_t entry, int dirty)
1906 {
1907 pte_t orig_pte = __ptep_get(ptep);
1908
1909 entry = pte_mknoncont(entry);
1910
1911 if (likely(!pte_valid_cont(orig_pte)))
1912 return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1913
1914 return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1915 }
1916
1917 #define clear_young_dirty_ptes clear_young_dirty_ptes
clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1918 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
1919 unsigned long addr, pte_t *ptep,
1920 unsigned int nr, cydp_t flags)
1921 {
1922 if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
1923 __clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1924 else
1925 contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1926 }
1927
1928 #else /* CONFIG_ARM64_CONTPTE */
1929
1930 #define ptep_get __ptep_get
1931 #define set_pte __set_pte
1932 #define set_ptes __set_ptes
1933 #define pte_clear __pte_clear
1934 #define clear_full_ptes __clear_full_ptes
1935 #define get_and_clear_full_ptes __get_and_clear_full_ptes
1936 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1937 #define ptep_get_and_clear __ptep_get_and_clear
1938 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1939 #define ptep_test_and_clear_young __ptep_test_and_clear_young
1940 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1941 #define ptep_clear_flush_young __ptep_clear_flush_young
1942 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1943 #define ptep_set_wrprotect __ptep_set_wrprotect
1944 #define wrprotect_ptes __wrprotect_ptes
1945 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1946 #define ptep_set_access_flags __ptep_set_access_flags
1947 #define clear_young_dirty_ptes __clear_young_dirty_ptes
1948
1949 #endif /* CONFIG_ARM64_CONTPTE */
1950
1951 #endif /* !__ASSEMBLY__ */
1952
1953 #endif /* __ASM_PGTABLE_H */
1954