xref: /linux/arch/x86/kernel/cpu/common.c (revision 6e9128ff9d8113ef208e5ec82573b96ead100072)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29 
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/cpuid/api.h>
33 #include <asm/perf_event.h>
34 #include <asm/mmu_context.h>
35 #include <asm/doublefault.h>
36 #include <asm/archrandom.h>
37 #include <asm/hypervisor.h>
38 #include <asm/processor.h>
39 #include <asm/tlbflush.h>
40 #include <asm/debugreg.h>
41 #include <asm/sections.h>
42 #include <asm/vsyscall.h>
43 #include <linux/topology.h>
44 #include <linux/cpumask.h>
45 #include <linux/atomic.h>
46 #include <asm/proto.h>
47 #include <asm/setup.h>
48 #include <asm/apic.h>
49 #include <asm/desc.h>
50 #include <asm/fpu/api.h>
51 #include <asm/mtrr.h>
52 #include <asm/hwcap2.h>
53 #include <linux/numa.h>
54 #include <asm/numa.h>
55 #include <asm/asm.h>
56 #include <asm/bugs.h>
57 #include <asm/cpu.h>
58 #include <asm/mce.h>
59 #include <asm/msr.h>
60 #include <asm/cacheinfo.h>
61 #include <asm/memtype.h>
62 #include <asm/microcode.h>
63 #include <asm/intel-family.h>
64 #include <asm/cpu_device_id.h>
65 #include <asm/fred.h>
66 #include <asm/uv/uv.h>
67 #include <asm/ia32.h>
68 #include <asm/set_memory.h>
69 #include <asm/traps.h>
70 #include <asm/sev.h>
71 #include <asm/tdx.h>
72 #include <asm/posted_intr.h>
73 #include <asm/runtime-const.h>
74 
75 #include "cpu.h"
76 
77 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
78 EXPORT_PER_CPU_SYMBOL(cpu_info);
79 
80 u32 elf_hwcap2 __read_mostly;
81 
82 /* Number of siblings per CPU package */
83 unsigned int __max_threads_per_core __ro_after_init = 1;
84 EXPORT_SYMBOL(__max_threads_per_core);
85 
86 unsigned int __max_dies_per_package __ro_after_init = 1;
87 EXPORT_SYMBOL(__max_dies_per_package);
88 
89 unsigned int __max_logical_packages __ro_after_init = 1;
90 EXPORT_SYMBOL(__max_logical_packages);
91 
92 unsigned int __num_cores_per_package __ro_after_init = 1;
93 EXPORT_SYMBOL(__num_cores_per_package);
94 
95 unsigned int __num_threads_per_package __ro_after_init = 1;
96 EXPORT_SYMBOL(__num_threads_per_package);
97 
98 static struct ppin_info {
99 	int	feature;
100 	int	msr_ppin_ctl;
101 	int	msr_ppin;
102 } ppin_info[] = {
103 	[X86_VENDOR_INTEL] = {
104 		.feature = X86_FEATURE_INTEL_PPIN,
105 		.msr_ppin_ctl = MSR_PPIN_CTL,
106 		.msr_ppin = MSR_PPIN
107 	},
108 	[X86_VENDOR_AMD] = {
109 		.feature = X86_FEATURE_AMD_PPIN,
110 		.msr_ppin_ctl = MSR_AMD_PPIN_CTL,
111 		.msr_ppin = MSR_AMD_PPIN
112 	},
113 };
114 
115 static const struct x86_cpu_id ppin_cpuids[] = {
116 	X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
117 	X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
118 
119 	/* Legacy models without CPUID enumeration */
120 	X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
121 	X86_MATCH_VFM(INTEL_HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
122 	X86_MATCH_VFM(INTEL_BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
123 	X86_MATCH_VFM(INTEL_BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
124 	X86_MATCH_VFM(INTEL_SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
125 	X86_MATCH_VFM(INTEL_ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
126 	X86_MATCH_VFM(INTEL_ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
127 	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
128 	X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
129 	X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
130 	X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
131 
132 	{}
133 };
134 
ppin_init(struct cpuinfo_x86 * c)135 static void ppin_init(struct cpuinfo_x86 *c)
136 {
137 	const struct x86_cpu_id *id;
138 	unsigned long long val;
139 	struct ppin_info *info;
140 
141 	id = x86_match_cpu(ppin_cpuids);
142 	if (!id)
143 		return;
144 
145 	/*
146 	 * Testing the presence of the MSR is not enough. Need to check
147 	 * that the PPIN_CTL allows reading of the PPIN.
148 	 */
149 	info = (struct ppin_info *)id->driver_data;
150 
151 	if (rdmsrq_safe(info->msr_ppin_ctl, &val))
152 		goto clear_ppin;
153 
154 	if ((val & 3UL) == 1UL) {
155 		/* PPIN locked in disabled mode */
156 		goto clear_ppin;
157 	}
158 
159 	/* If PPIN is disabled, try to enable */
160 	if (!(val & 2UL)) {
161 		wrmsrq_safe(info->msr_ppin_ctl,  val | 2UL);
162 		rdmsrq_safe(info->msr_ppin_ctl, &val);
163 	}
164 
165 	/* Is the enable bit set? */
166 	if (val & 2UL) {
167 		c->ppin = native_rdmsrq(info->msr_ppin);
168 		set_cpu_cap(c, info->feature);
169 		return;
170 	}
171 
172 clear_ppin:
173 	setup_clear_cpu_cap(info->feature);
174 }
175 
default_init(struct cpuinfo_x86 * c)176 static void default_init(struct cpuinfo_x86 *c)
177 {
178 #ifdef CONFIG_X86_64
179 	cpu_detect_cache_sizes(c);
180 #else
181 	/* Not much we can do here... */
182 	/* Check if at least it has cpuid */
183 	if (c->cpuid_level == -1) {
184 		/* No cpuid. It must be an ancient CPU */
185 		if (c->x86 == 4)
186 			strcpy(c->x86_model_id, "486");
187 		else if (c->x86 == 3)
188 			strcpy(c->x86_model_id, "386");
189 	}
190 #endif
191 }
192 
193 static const struct cpu_dev default_cpu = {
194 	.c_init		= default_init,
195 	.c_vendor	= "Unknown",
196 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
197 };
198 
199 static const struct cpu_dev *this_cpu = &default_cpu;
200 
201 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
202 #ifdef CONFIG_X86_64
203 	/*
204 	 * We need valid kernel segments for data and code in long mode too
205 	 * IRET will check the segment types  kkeil 2000/10/28
206 	 * Also sysret mandates a special GDT layout
207 	 *
208 	 * TLS descriptors are currently at a different place compared to i386.
209 	 * Hopefully nobody expects them at a fixed place (Wine?)
210 	 */
211 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
212 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
213 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
214 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
215 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
216 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
217 #else
218 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
219 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
220 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
221 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
222 	/*
223 	 * Segments used for calling PnP BIOS have byte granularity.
224 	 * They code segments and data segments have fixed 64k limits,
225 	 * the transfer segment sizes are set at run time.
226 	 */
227 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
228 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
229 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
230 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
231 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
232 	/*
233 	 * The APM segments have byte granularity and their bases
234 	 * are set at run time.  All have 64k limits.
235 	 */
236 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
237 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
238 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
239 
240 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
241 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
242 #endif
243 } };
244 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
245 SYM_PIC_ALIAS(gdt_page);
246 
247 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)248 static int __init x86_nopcid_setup(char *s)
249 {
250 	/* nopcid doesn't accept parameters */
251 	if (s)
252 		return -EINVAL;
253 
254 	/* do not emit a message if the feature is not present */
255 	if (!boot_cpu_has(X86_FEATURE_PCID))
256 		return 0;
257 
258 	setup_clear_cpu_cap(X86_FEATURE_PCID);
259 	pr_info("nopcid: PCID feature disabled\n");
260 	return 0;
261 }
262 early_param("nopcid", x86_nopcid_setup);
263 #endif
264 
x86_noinvpcid_setup(char * s)265 static int __init x86_noinvpcid_setup(char *s)
266 {
267 	/* noinvpcid doesn't accept parameters */
268 	if (s)
269 		return -EINVAL;
270 
271 	/* do not emit a message if the feature is not present */
272 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
273 		return 0;
274 
275 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
276 	pr_info("noinvpcid: INVPCID feature disabled\n");
277 	return 0;
278 }
279 early_param("noinvpcid", x86_noinvpcid_setup);
280 
281 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(unsigned long flag)282 static inline bool flag_is_changeable_p(unsigned long flag)
283 {
284 	unsigned long f1, f2;
285 
286 	if (!IS_ENABLED(CONFIG_X86_32))
287 		return true;
288 
289 	/*
290 	 * Cyrix and IDT cpus allow disabling of CPUID
291 	 * so the code below may return different results
292 	 * when it is executed before and after enabling
293 	 * the CPUID. Add "volatile" to not allow gcc to
294 	 * optimize the subsequent calls to this function.
295 	 */
296 	asm volatile ("pushfl		\n\t"
297 		      "pushfl		\n\t"
298 		      "popl %0		\n\t"
299 		      "movl %0, %1	\n\t"
300 		      "xorl %2, %0	\n\t"
301 		      "pushl %0		\n\t"
302 		      "popfl		\n\t"
303 		      "pushfl		\n\t"
304 		      "popl %0		\n\t"
305 		      "popfl		\n\t"
306 
307 		      : "=&r" (f1), "=&r" (f2)
308 		      : "ir" (flag));
309 
310 	return (f1 ^ f2) & flag;
311 }
312 
313 #ifdef CONFIG_X86_32
314 static int cachesize_override = -1;
315 static int disable_x86_serial_nr = 1;
316 
cachesize_setup(char * str)317 static int __init cachesize_setup(char *str)
318 {
319 	get_option(&str, &cachesize_override);
320 	return 1;
321 }
322 __setup("cachesize=", cachesize_setup);
323 
324 /* Probe for the CPUID instruction */
cpuid_feature(void)325 bool cpuid_feature(void)
326 {
327 	return flag_is_changeable_p(X86_EFLAGS_ID);
328 }
329 
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)330 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
331 {
332 	unsigned long lo, hi;
333 
334 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
335 		return;
336 
337 	/* Disable processor serial number: */
338 
339 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
340 	lo |= 0x200000;
341 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
342 
343 	pr_notice("CPU serial number disabled.\n");
344 	clear_cpu_cap(c, X86_FEATURE_PN);
345 
346 	/* Disabling the serial number may affect the cpuid level */
347 	c->cpuid_level = cpuid_eax(0);
348 }
349 
x86_serial_nr_setup(char * s)350 static int __init x86_serial_nr_setup(char *s)
351 {
352 	disable_x86_serial_nr = 0;
353 	return 1;
354 }
355 __setup("serialnumber", x86_serial_nr_setup);
356 #else
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)357 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
358 {
359 }
360 #endif
361 
setup_smep(struct cpuinfo_x86 * c)362 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
363 {
364 	if (cpu_has(c, X86_FEATURE_SMEP))
365 		cr4_set_bits(X86_CR4_SMEP);
366 }
367 
setup_smap(struct cpuinfo_x86 * c)368 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
369 {
370 	unsigned long eflags = native_save_fl();
371 
372 	/* This should have been cleared long ago */
373 	BUG_ON(eflags & X86_EFLAGS_AC);
374 
375 	if (cpu_has(c, X86_FEATURE_SMAP))
376 		cr4_set_bits(X86_CR4_SMAP);
377 }
378 
setup_umip(struct cpuinfo_x86 * c)379 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
380 {
381 	/* Check the boot processor, plus build option for UMIP. */
382 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
383 		goto out;
384 
385 	/* Check the current processor's cpuid bits. */
386 	if (!cpu_has(c, X86_FEATURE_UMIP))
387 		goto out;
388 
389 	cr4_set_bits(X86_CR4_UMIP);
390 
391 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
392 
393 	return;
394 
395 out:
396 	/*
397 	 * Make sure UMIP is disabled in case it was enabled in a
398 	 * previous boot (e.g., via kexec).
399 	 */
400 	cr4_clear_bits(X86_CR4_UMIP);
401 }
402 
403 /* These bits should not change their value after CPU init is finished. */
404 static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
405 					     X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED;
406 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
407 static unsigned long cr4_pinned_bits __ro_after_init;
408 
native_write_cr0(unsigned long val)409 void native_write_cr0(unsigned long val)
410 {
411 	unsigned long bits_missing = 0;
412 
413 set_register:
414 	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
415 
416 	if (static_branch_likely(&cr_pinning)) {
417 		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
418 			bits_missing = X86_CR0_WP;
419 			val |= bits_missing;
420 			goto set_register;
421 		}
422 		/* Warn after we've set the missing bits. */
423 		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
424 	}
425 }
426 EXPORT_SYMBOL(native_write_cr0);
427 
native_write_cr4(unsigned long val)428 void __no_profile native_write_cr4(unsigned long val)
429 {
430 	unsigned long bits_changed = 0;
431 
432 set_register:
433 	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
434 
435 	if (static_branch_likely(&cr_pinning)) {
436 		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
437 			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
438 			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
439 			goto set_register;
440 		}
441 		/* Warn after we've corrected the changed bits. */
442 		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
443 			  bits_changed);
444 	}
445 }
446 #if IS_MODULE(CONFIG_LKDTM)
447 EXPORT_SYMBOL_GPL(native_write_cr4);
448 #endif
449 
cr4_update_irqsoff(unsigned long set,unsigned long clear)450 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
451 {
452 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
453 
454 	lockdep_assert_irqs_disabled();
455 
456 	newval = (cr4 & ~clear) | set;
457 	if (newval != cr4) {
458 		this_cpu_write(cpu_tlbstate.cr4, newval);
459 		__write_cr4(newval);
460 	}
461 }
462 EXPORT_SYMBOL(cr4_update_irqsoff);
463 
464 /* Read the CR4 shadow. */
cr4_read_shadow(void)465 unsigned long cr4_read_shadow(void)
466 {
467 	return this_cpu_read(cpu_tlbstate.cr4);
468 }
469 EXPORT_SYMBOL_GPL(cr4_read_shadow);
470 
cr4_init(void)471 void cr4_init(void)
472 {
473 	unsigned long cr4 = __read_cr4();
474 
475 	if (boot_cpu_has(X86_FEATURE_PCID))
476 		cr4 |= X86_CR4_PCIDE;
477 	if (static_branch_likely(&cr_pinning))
478 		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
479 
480 	__write_cr4(cr4);
481 
482 	/* Initialize cr4 shadow for this CPU. */
483 	this_cpu_write(cpu_tlbstate.cr4, cr4);
484 }
485 
486 /*
487  * Once CPU feature detection is finished (and boot params have been
488  * parsed), record any of the sensitive CR bits that are set, and
489  * enable CR pinning.
490  */
setup_cr_pinning(void)491 static void __init setup_cr_pinning(void)
492 {
493 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
494 	static_key_enable(&cr_pinning.key);
495 }
496 
x86_nofsgsbase_setup(char * arg)497 static __init int x86_nofsgsbase_setup(char *arg)
498 {
499 	/* Require an exact match without trailing characters. */
500 	if (strlen(arg))
501 		return 0;
502 
503 	/* Do not emit a message if the feature is not present. */
504 	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
505 		return 1;
506 
507 	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
508 	pr_info("FSGSBASE disabled via kernel command line\n");
509 	return 1;
510 }
511 __setup("nofsgsbase", x86_nofsgsbase_setup);
512 
513 /*
514  * Protection Keys are not available in 32-bit mode.
515  */
516 static bool pku_disabled;
517 
setup_pku(struct cpuinfo_x86 * c)518 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
519 {
520 	if (c == &boot_cpu_data) {
521 		if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
522 			return;
523 		/*
524 		 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
525 		 * bit to be set.  Enforce it.
526 		 */
527 		setup_force_cpu_cap(X86_FEATURE_OSPKE);
528 
529 	} else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
530 		return;
531 	}
532 
533 	cr4_set_bits(X86_CR4_PKE);
534 	/* Load the default PKRU value */
535 	pkru_write_default();
536 }
537 
538 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)539 static __init int setup_disable_pku(char *arg)
540 {
541 	/*
542 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
543 	 * runtime checks are against OSPKE so clearing the
544 	 * bit does nothing.
545 	 *
546 	 * This way, we will see "pku" in cpuinfo, but not
547 	 * "ospke", which is exactly what we want.  It shows
548 	 * that the CPU has PKU, but the OS has not enabled it.
549 	 * This happens to be exactly how a system would look
550 	 * if we disabled the config option.
551 	 */
552 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
553 	pku_disabled = true;
554 	return 1;
555 }
556 __setup("nopku", setup_disable_pku);
557 #endif
558 
559 #ifdef CONFIG_X86_KERNEL_IBT
560 
ibt_save(bool disable)561 __noendbr u64 ibt_save(bool disable)
562 {
563 	u64 msr = 0;
564 
565 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
566 		rdmsrq(MSR_IA32_S_CET, msr);
567 		if (disable)
568 			wrmsrq(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
569 	}
570 
571 	return msr;
572 }
573 
ibt_restore(u64 save)574 __noendbr void ibt_restore(u64 save)
575 {
576 	u64 msr;
577 
578 	if (cpu_feature_enabled(X86_FEATURE_IBT)) {
579 		rdmsrq(MSR_IA32_S_CET, msr);
580 		msr &= ~CET_ENDBR_EN;
581 		msr |= (save & CET_ENDBR_EN);
582 		wrmsrq(MSR_IA32_S_CET, msr);
583 	}
584 }
585 
586 #endif
587 
setup_cet(struct cpuinfo_x86 * c)588 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
589 {
590 	bool user_shstk, kernel_ibt;
591 
592 	if (!IS_ENABLED(CONFIG_X86_CET))
593 		return;
594 
595 	kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
596 	user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
597 		     IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
598 
599 	if (!kernel_ibt && !user_shstk)
600 		return;
601 
602 	if (user_shstk)
603 		set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
604 
605 	if (kernel_ibt)
606 		wrmsrq(MSR_IA32_S_CET, CET_ENDBR_EN);
607 	else
608 		wrmsrq(MSR_IA32_S_CET, 0);
609 
610 	cr4_set_bits(X86_CR4_CET);
611 
612 	if (kernel_ibt && ibt_selftest()) {
613 		pr_err("IBT selftest: Failed!\n");
614 		wrmsrq(MSR_IA32_S_CET, 0);
615 		setup_clear_cpu_cap(X86_FEATURE_IBT);
616 	}
617 }
618 
cet_disable(void)619 __noendbr void cet_disable(void)
620 {
621 	if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
622 	      cpu_feature_enabled(X86_FEATURE_SHSTK)))
623 		return;
624 
625 	wrmsrq(MSR_IA32_S_CET, 0);
626 	wrmsrq(MSR_IA32_U_CET, 0);
627 }
628 
629 /*
630  * Some CPU features depend on higher CPUID levels, which may not always
631  * be available due to CPUID level capping or broken virtualization
632  * software.  Add those features to this table to auto-disable them.
633  */
634 struct cpuid_dependent_feature {
635 	u32 feature;
636 	u32 level;
637 };
638 
639 static const struct cpuid_dependent_feature
640 cpuid_dependent_features[] = {
641 	{ X86_FEATURE_MWAIT,		CPUID_LEAF_MWAIT },
642 	{ X86_FEATURE_DCA,		CPUID_LEAF_DCA },
643 	{ X86_FEATURE_XSAVE,		CPUID_LEAF_XSTATE },
644 	{ 0, 0 }
645 };
646 
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)647 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
648 {
649 	const struct cpuid_dependent_feature *df;
650 
651 	for (df = cpuid_dependent_features; df->feature; df++) {
652 
653 		if (!cpu_has(c, df->feature))
654 			continue;
655 		/*
656 		 * Note: cpuid_level is set to -1 if unavailable, but
657 		 * extended_extended_level is set to 0 if unavailable
658 		 * and the legitimate extended levels are all negative
659 		 * when signed; hence the weird messing around with
660 		 * signs here...
661 		 */
662 		if (!((s32)df->level < 0 ?
663 		     (u32)df->level > (u32)c->extended_cpuid_level :
664 		     (s32)df->level > (s32)c->cpuid_level))
665 			continue;
666 
667 		clear_cpu_cap(c, df->feature);
668 		if (!warn)
669 			continue;
670 
671 		pr_warn("CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
672 			x86_cap_flags[df->feature], df->level);
673 	}
674 }
675 
676 /*
677  * Naming convention should be: <Name> [(<Codename>)]
678  * This table only is used unless init_<vendor>() below doesn't set it;
679  * in particular, if CPUID levels 0x80000002..4 are supported, this
680  * isn't used
681  */
682 
683 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)684 static const char *table_lookup_model(struct cpuinfo_x86 *c)
685 {
686 #ifdef CONFIG_X86_32
687 	const struct legacy_cpu_model_info *info;
688 
689 	if (c->x86_model >= 16)
690 		return NULL;	/* Range check */
691 
692 	if (!this_cpu)
693 		return NULL;
694 
695 	info = this_cpu->legacy_models;
696 
697 	while (info->family) {
698 		if (info->family == c->x86)
699 			return info->model_names[c->x86_model];
700 		info++;
701 	}
702 #endif
703 	return NULL;		/* Not found */
704 }
705 
706 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
707 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
708 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
709 
710 #ifdef CONFIG_X86_32
711 /* The 32-bit entry code needs to find cpu_entry_area. */
712 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
713 #endif
714 
715 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)716 void load_direct_gdt(int cpu)
717 {
718 	struct desc_ptr gdt_descr;
719 
720 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
721 	gdt_descr.size = GDT_SIZE - 1;
722 	load_gdt(&gdt_descr);
723 }
724 EXPORT_SYMBOL_GPL(load_direct_gdt);
725 
726 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)727 void load_fixmap_gdt(int cpu)
728 {
729 	struct desc_ptr gdt_descr;
730 
731 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
732 	gdt_descr.size = GDT_SIZE - 1;
733 	load_gdt(&gdt_descr);
734 }
735 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
736 
737 /**
738  * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
739  * @cpu:	The CPU number for which this is invoked
740  *
741  * Invoked during early boot to switch from early GDT and early per CPU to
742  * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
743  * switch is implicit by loading the direct GDT. On 64bit this requires
744  * to update GSBASE.
745  */
switch_gdt_and_percpu_base(int cpu)746 void __init switch_gdt_and_percpu_base(int cpu)
747 {
748 	load_direct_gdt(cpu);
749 
750 #ifdef CONFIG_X86_64
751 	/*
752 	 * No need to load %gs. It is already correct.
753 	 *
754 	 * Writing %gs on 64bit would zero GSBASE which would make any per
755 	 * CPU operation up to the point of the wrmsrq() fault.
756 	 *
757 	 * Set GSBASE to the new offset. Until the wrmsrq() happens the
758 	 * early mapping is still valid. That means the GSBASE update will
759 	 * lose any prior per CPU data which was not copied over in
760 	 * setup_per_cpu_areas().
761 	 *
762 	 * This works even with stackprotector enabled because the
763 	 * per CPU stack canary is 0 in both per CPU areas.
764 	 */
765 	wrmsrq(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
766 #else
767 	/*
768 	 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
769 	 * it is required to load FS again so that the 'hidden' part is
770 	 * updated from the new GDT. Up to this point the early per CPU
771 	 * translation is active. Any content of the early per CPU data
772 	 * which was not copied over in setup_per_cpu_areas() is lost.
773 	 */
774 	loadsegment(fs, __KERNEL_PERCPU);
775 #endif
776 }
777 
778 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
779 
get_model_name(struct cpuinfo_x86 * c)780 static void get_model_name(struct cpuinfo_x86 *c)
781 {
782 	unsigned int *v;
783 	char *p, *q, *s;
784 
785 	if (c->extended_cpuid_level < 0x80000004)
786 		return;
787 
788 	v = (unsigned int *)c->x86_model_id;
789 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
790 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
791 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
792 	c->x86_model_id[48] = 0;
793 
794 	/* Trim whitespace */
795 	p = q = s = &c->x86_model_id[0];
796 
797 	while (*p == ' ')
798 		p++;
799 
800 	while (*p) {
801 		/* Note the last non-whitespace index */
802 		if (!isspace(*p))
803 			s = q;
804 
805 		*q++ = *p++;
806 	}
807 
808 	*(s + 1) = '\0';
809 }
810 
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)811 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
812 {
813 	unsigned int n, dummy, ebx, ecx, edx, l2size;
814 
815 	n = c->extended_cpuid_level;
816 
817 	if (n >= 0x80000005) {
818 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
819 		c->x86_cache_size = (ecx>>24) + (edx>>24);
820 #ifdef CONFIG_X86_64
821 		/* On K8 L1 TLB is inclusive, so don't count it */
822 		c->x86_tlbsize = 0;
823 #endif
824 	}
825 
826 	if (n < 0x80000006)	/* Some chips just has a large L1. */
827 		return;
828 
829 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
830 	l2size = ecx >> 16;
831 
832 #ifdef CONFIG_X86_64
833 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
834 #else
835 	/* do processor-specific cache resizing */
836 	if (this_cpu->legacy_cache_size)
837 		l2size = this_cpu->legacy_cache_size(c, l2size);
838 
839 	/* Allow user to override all this if necessary. */
840 	if (cachesize_override != -1)
841 		l2size = cachesize_override;
842 
843 	if (l2size == 0)
844 		return;		/* Again, no L2 cache is possible */
845 #endif
846 
847 	c->x86_cache_size = l2size;
848 }
849 
850 u16 __read_mostly tlb_lli_4k;
851 u16 __read_mostly tlb_lli_2m;
852 u16 __read_mostly tlb_lli_4m;
853 u16 __read_mostly tlb_lld_4k;
854 u16 __read_mostly tlb_lld_2m;
855 u16 __read_mostly tlb_lld_4m;
856 u16 __read_mostly tlb_lld_1g;
857 
cpu_detect_tlb(struct cpuinfo_x86 * c)858 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
859 {
860 	if (this_cpu->c_detect_tlb)
861 		this_cpu->c_detect_tlb(c);
862 
863 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
864 		tlb_lli_4k, tlb_lli_2m, tlb_lli_4m);
865 
866 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
867 		tlb_lld_4k, tlb_lld_2m, tlb_lld_4m, tlb_lld_1g);
868 }
869 
get_cpu_vendor(struct cpuinfo_x86 * c)870 void get_cpu_vendor(struct cpuinfo_x86 *c)
871 {
872 	char *v = c->x86_vendor_id;
873 	int i;
874 
875 	for (i = 0; i < X86_VENDOR_NUM; i++) {
876 		if (!cpu_devs[i])
877 			break;
878 
879 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
880 		    (cpu_devs[i]->c_ident[1] &&
881 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
882 
883 			this_cpu = cpu_devs[i];
884 			c->x86_vendor = this_cpu->c_x86_vendor;
885 			return;
886 		}
887 	}
888 
889 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
890 		    "CPU: Your system may be unstable.\n", v);
891 
892 	c->x86_vendor = X86_VENDOR_UNKNOWN;
893 	this_cpu = &default_cpu;
894 }
895 
cpu_detect(struct cpuinfo_x86 * c)896 void cpu_detect(struct cpuinfo_x86 *c)
897 {
898 	/* Get vendor name */
899 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
900 	      (unsigned int *)&c->x86_vendor_id[0],
901 	      (unsigned int *)&c->x86_vendor_id[8],
902 	      (unsigned int *)&c->x86_vendor_id[4]);
903 
904 	c->x86 = 4;
905 	/* Intel-defined flags: level 0x00000001 */
906 	if (c->cpuid_level >= 0x00000001) {
907 		u32 junk, tfms, cap0, misc;
908 
909 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
910 		c->x86		= x86_family(tfms);
911 		c->x86_model	= x86_model(tfms);
912 		c->x86_stepping	= x86_stepping(tfms);
913 
914 		if (cap0 & (1<<19)) {
915 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
916 			c->x86_cache_alignment = c->x86_clflush_size;
917 		}
918 	}
919 }
920 
apply_forced_caps(struct cpuinfo_x86 * c)921 static void apply_forced_caps(struct cpuinfo_x86 *c)
922 {
923 	int i;
924 
925 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
926 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
927 		c->x86_capability[i] |= cpu_caps_set[i];
928 	}
929 }
930 
init_speculation_control(struct cpuinfo_x86 * c)931 static void init_speculation_control(struct cpuinfo_x86 *c)
932 {
933 	/*
934 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
935 	 * and they also have a different bit for STIBP support. Also,
936 	 * a hypervisor might have set the individual AMD bits even on
937 	 * Intel CPUs, for finer-grained selection of what's available.
938 	 */
939 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
940 		set_cpu_cap(c, X86_FEATURE_IBRS);
941 		set_cpu_cap(c, X86_FEATURE_IBPB);
942 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
943 	}
944 
945 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
946 		set_cpu_cap(c, X86_FEATURE_STIBP);
947 
948 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
949 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
950 		set_cpu_cap(c, X86_FEATURE_SSBD);
951 
952 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
953 		set_cpu_cap(c, X86_FEATURE_IBRS);
954 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
955 	}
956 
957 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
958 		set_cpu_cap(c, X86_FEATURE_IBPB);
959 
960 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
961 		set_cpu_cap(c, X86_FEATURE_STIBP);
962 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
963 	}
964 
965 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
966 		set_cpu_cap(c, X86_FEATURE_SSBD);
967 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
968 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
969 	}
970 }
971 
get_cpu_cap(struct cpuinfo_x86 * c)972 void get_cpu_cap(struct cpuinfo_x86 *c)
973 {
974 	u32 eax, ebx, ecx, edx;
975 
976 	/* Intel-defined flags: level 0x00000001 */
977 	if (c->cpuid_level >= 0x00000001) {
978 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
979 
980 		c->x86_capability[CPUID_1_ECX] = ecx;
981 		c->x86_capability[CPUID_1_EDX] = edx;
982 	}
983 
984 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
985 	if (c->cpuid_level >= 0x00000006)
986 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
987 
988 	/* Additional Intel-defined flags: level 0x00000007 */
989 	if (c->cpuid_level >= 0x00000007) {
990 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
991 		c->x86_capability[CPUID_7_0_EBX] = ebx;
992 		c->x86_capability[CPUID_7_ECX] = ecx;
993 		c->x86_capability[CPUID_7_EDX] = edx;
994 
995 		/* Check valid sub-leaf index before accessing it */
996 		if (eax >= 1) {
997 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
998 			c->x86_capability[CPUID_7_1_EAX] = eax;
999 		}
1000 	}
1001 
1002 	/* Extended state features: level 0x0000000d */
1003 	if (c->cpuid_level >= 0x0000000d) {
1004 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1005 
1006 		c->x86_capability[CPUID_D_1_EAX] = eax;
1007 	}
1008 
1009 	/*
1010 	 * Check if extended CPUID leaves are implemented: Max extended
1011 	 * CPUID leaf must be in the 0x80000001-0x8000ffff range.
1012 	 */
1013 	eax = cpuid_eax(0x80000000);
1014 	c->extended_cpuid_level = ((eax & 0xffff0000) == 0x80000000) ? eax : 0;
1015 
1016 	if (c->extended_cpuid_level >= 0x80000001) {
1017 		cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1018 
1019 		c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1020 		c->x86_capability[CPUID_8000_0001_EDX] = edx;
1021 	}
1022 
1023 	if (c->extended_cpuid_level >= 0x80000007) {
1024 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1025 
1026 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1027 		c->x86_power = edx;
1028 	}
1029 
1030 	if (c->extended_cpuid_level >= 0x80000008) {
1031 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1032 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1033 	}
1034 
1035 	if (c->extended_cpuid_level >= 0x8000000a)
1036 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1037 
1038 	if (c->extended_cpuid_level >= 0x8000001f)
1039 		c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1040 
1041 	if (c->extended_cpuid_level >= 0x80000021)
1042 		c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1043 
1044 	init_scattered_cpuid_features(c);
1045 	init_speculation_control(c);
1046 
1047 	/*
1048 	 * Clear/Set all flags overridden by options, after probe.
1049 	 * This needs to happen each time we re-probe, which may happen
1050 	 * several times during CPU initialization.
1051 	 */
1052 	apply_forced_caps(c);
1053 }
1054 
get_cpu_address_sizes(struct cpuinfo_x86 * c)1055 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1056 {
1057 	u32 eax, ebx, ecx, edx;
1058 
1059 	if (!cpu_has(c, X86_FEATURE_CPUID) ||
1060 	    (c->extended_cpuid_level < 0x80000008)) {
1061 		if (IS_ENABLED(CONFIG_X86_64)) {
1062 			c->x86_clflush_size = 64;
1063 			c->x86_phys_bits = 36;
1064 			c->x86_virt_bits = 48;
1065 		} else {
1066 			c->x86_clflush_size = 32;
1067 			c->x86_virt_bits = 32;
1068 			c->x86_phys_bits = 32;
1069 
1070 			if (cpu_has(c, X86_FEATURE_PAE) ||
1071 			    cpu_has(c, X86_FEATURE_PSE36))
1072 				c->x86_phys_bits = 36;
1073 		}
1074 	} else {
1075 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1076 
1077 		c->x86_virt_bits = (eax >> 8) & 0xff;
1078 		c->x86_phys_bits = eax & 0xff;
1079 
1080 		/* Provide a sane default if not enumerated: */
1081 		if (!c->x86_clflush_size)
1082 			c->x86_clflush_size = 32;
1083 	}
1084 
1085 	c->x86_cache_bits = c->x86_phys_bits;
1086 	c->x86_cache_alignment = c->x86_clflush_size;
1087 }
1088 
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)1089 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1090 {
1091 	int i;
1092 
1093 	/*
1094 	 * First of all, decide if this is a 486 or higher
1095 	 * It's a 486 if we can modify the AC flag
1096 	 */
1097 	if (flag_is_changeable_p(X86_EFLAGS_AC))
1098 		c->x86 = 4;
1099 	else
1100 		c->x86 = 3;
1101 
1102 	for (i = 0; i < X86_VENDOR_NUM; i++)
1103 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1104 			c->x86_vendor_id[0] = 0;
1105 			cpu_devs[i]->c_identify(c);
1106 			if (c->x86_vendor_id[0]) {
1107 				get_cpu_vendor(c);
1108 				break;
1109 			}
1110 		}
1111 }
1112 
1113 #define NO_SPECULATION		BIT(0)
1114 #define NO_MELTDOWN		BIT(1)
1115 #define NO_SSB			BIT(2)
1116 #define NO_L1TF			BIT(3)
1117 #define NO_MDS			BIT(4)
1118 #define MSBDS_ONLY		BIT(5)
1119 #define NO_SWAPGS		BIT(6)
1120 #define NO_ITLB_MULTIHIT	BIT(7)
1121 #define NO_SPECTRE_V2		BIT(8)
1122 #define NO_MMIO			BIT(9)
1123 #define NO_EIBRS_PBRSB		BIT(10)
1124 #define NO_BHI			BIT(11)
1125 
1126 #define VULNWL(vendor, family, model, whitelist)	\
1127 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1128 
1129 #define VULNWL_INTEL(vfm, whitelist)		\
1130 	X86_MATCH_VFM(vfm, whitelist)
1131 
1132 #define VULNWL_AMD(family, whitelist)		\
1133 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1134 
1135 #define VULNWL_HYGON(family, whitelist)		\
1136 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1137 
1138 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1139 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1140 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1141 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1142 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1143 	VULNWL(VORTEX,	5, X86_MODEL_ANY,	NO_SPECULATION),
1144 	VULNWL(VORTEX,	6, X86_MODEL_ANY,	NO_SPECULATION),
1145 
1146 	/* Intel Family 6 */
1147 	VULNWL_INTEL(INTEL_TIGERLAKE,		NO_MMIO),
1148 	VULNWL_INTEL(INTEL_TIGERLAKE_L,		NO_MMIO),
1149 	VULNWL_INTEL(INTEL_ALDERLAKE,		NO_MMIO),
1150 	VULNWL_INTEL(INTEL_ALDERLAKE_L,		NO_MMIO),
1151 
1152 	VULNWL_INTEL(INTEL_ATOM_SALTWELL,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1153 	VULNWL_INTEL(INTEL_ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1154 	VULNWL_INTEL(INTEL_ATOM_SALTWELL_MID,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1155 	VULNWL_INTEL(INTEL_ATOM_BONNELL,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1156 	VULNWL_INTEL(INTEL_ATOM_BONNELL_MID,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1157 
1158 	VULNWL_INTEL(INTEL_ATOM_SILVERMONT,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1159 	VULNWL_INTEL(INTEL_ATOM_SILVERMONT_D,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1160 	VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1161 	VULNWL_INTEL(INTEL_ATOM_AIRMONT,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1162 	VULNWL_INTEL(INTEL_XEON_PHI_KNL,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1163 	VULNWL_INTEL(INTEL_XEON_PHI_KNM,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1164 
1165 	VULNWL_INTEL(INTEL_CORE_YONAH,		NO_SSB),
1166 
1167 	VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID2,NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | MSBDS_ONLY),
1168 	VULNWL_INTEL(INTEL_ATOM_AIRMONT_NP,	NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1169 
1170 	VULNWL_INTEL(INTEL_ATOM_GOLDMONT,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1171 	VULNWL_INTEL(INTEL_ATOM_GOLDMONT_D,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1172 	VULNWL_INTEL(INTEL_ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1173 
1174 	/*
1175 	 * Technically, swapgs isn't serializing on AMD (despite it previously
1176 	 * being documented as such in the APM).  But according to AMD, %gs is
1177 	 * updated non-speculatively, and the issuing of %gs-relative memory
1178 	 * operands will be blocked until the %gs update completes, which is
1179 	 * good enough for our purposes.
1180 	 */
1181 
1182 	VULNWL_INTEL(INTEL_ATOM_TREMONT,	NO_EIBRS_PBRSB),
1183 	VULNWL_INTEL(INTEL_ATOM_TREMONT_L,	NO_EIBRS_PBRSB),
1184 	VULNWL_INTEL(INTEL_ATOM_TREMONT_D,	NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1185 
1186 	/* AMD Family 0xf - 0x12 */
1187 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1188 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1189 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1190 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1191 
1192 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1193 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1194 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1195 
1196 	/* Zhaoxin Family 7 */
1197 	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1198 	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1199 	{}
1200 };
1201 
1202 #define VULNBL(vendor, family, model, blacklist)	\
1203 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1204 
1205 #define VULNBL_INTEL_STEPS(vfm, max_stepping, issues)		   \
1206 	X86_MATCH_VFM_STEPS(vfm, X86_STEP_MIN, max_stepping, issues)
1207 
1208 #define VULNBL_INTEL_TYPE(vfm, cpu_type, issues)	\
1209 	X86_MATCH_VFM_CPU_TYPE(vfm, INTEL_CPU_TYPE_##cpu_type, issues)
1210 
1211 #define VULNBL_AMD(family, blacklist)		\
1212 	VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1213 
1214 #define VULNBL_HYGON(family, blacklist)		\
1215 	VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1216 
1217 #define SRBDS		BIT(0)
1218 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1219 #define MMIO		BIT(1)
1220 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1221 #define MMIO_SBDS	BIT(2)
1222 /* CPU is affected by RETbleed, speculating where you would not expect it */
1223 #define RETBLEED	BIT(3)
1224 /* CPU is affected by SMT (cross-thread) return predictions */
1225 #define SMT_RSB		BIT(4)
1226 /* CPU is affected by SRSO */
1227 #define SRSO		BIT(5)
1228 /* CPU is affected by GDS */
1229 #define GDS		BIT(6)
1230 /* CPU is affected by Register File Data Sampling */
1231 #define RFDS		BIT(7)
1232 /* CPU is affected by Indirect Target Selection */
1233 #define ITS		BIT(8)
1234 /* CPU is affected by Indirect Target Selection, but guest-host isolation is not affected */
1235 #define ITS_NATIVE_ONLY	BIT(9)
1236 /* CPU is affected by Transient Scheduler Attacks */
1237 #define TSA		BIT(10)
1238 
1239 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1240 	VULNBL_INTEL_STEPS(INTEL_IVYBRIDGE,	     X86_STEP_MAX,	SRBDS),
1241 	VULNBL_INTEL_STEPS(INTEL_HASWELL,	     X86_STEP_MAX,	SRBDS),
1242 	VULNBL_INTEL_STEPS(INTEL_HASWELL_L,	     X86_STEP_MAX,	SRBDS),
1243 	VULNBL_INTEL_STEPS(INTEL_HASWELL_G,	     X86_STEP_MAX,	SRBDS),
1244 	VULNBL_INTEL_STEPS(INTEL_HASWELL_X,	     X86_STEP_MAX,	MMIO),
1245 	VULNBL_INTEL_STEPS(INTEL_BROADWELL_D,	     X86_STEP_MAX,	MMIO),
1246 	VULNBL_INTEL_STEPS(INTEL_BROADWELL_G,	     X86_STEP_MAX,	SRBDS),
1247 	VULNBL_INTEL_STEPS(INTEL_BROADWELL_X,	     X86_STEP_MAX,	MMIO),
1248 	VULNBL_INTEL_STEPS(INTEL_BROADWELL,	     X86_STEP_MAX,	SRBDS),
1249 	VULNBL_INTEL_STEPS(INTEL_SKYLAKE_X,		      0x5,	MMIO | RETBLEED | GDS),
1250 	VULNBL_INTEL_STEPS(INTEL_SKYLAKE_X,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | ITS),
1251 	VULNBL_INTEL_STEPS(INTEL_SKYLAKE_L,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | SRBDS),
1252 	VULNBL_INTEL_STEPS(INTEL_SKYLAKE,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | SRBDS),
1253 	VULNBL_INTEL_STEPS(INTEL_KABYLAKE_L,		      0xb,	MMIO | RETBLEED | GDS | SRBDS),
1254 	VULNBL_INTEL_STEPS(INTEL_KABYLAKE_L,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | SRBDS | ITS),
1255 	VULNBL_INTEL_STEPS(INTEL_KABYLAKE,		      0xc,	MMIO | RETBLEED | GDS | SRBDS),
1256 	VULNBL_INTEL_STEPS(INTEL_KABYLAKE,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | SRBDS | ITS),
1257 	VULNBL_INTEL_STEPS(INTEL_CANNONLAKE_L,	     X86_STEP_MAX,	RETBLEED),
1258 	VULNBL_INTEL_STEPS(INTEL_ICELAKE_L,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RETBLEED | GDS | ITS | ITS_NATIVE_ONLY),
1259 	VULNBL_INTEL_STEPS(INTEL_ICELAKE_D,	     X86_STEP_MAX,	MMIO | GDS | ITS | ITS_NATIVE_ONLY),
1260 	VULNBL_INTEL_STEPS(INTEL_ICELAKE_X,	     X86_STEP_MAX,	MMIO | GDS | ITS | ITS_NATIVE_ONLY),
1261 	VULNBL_INTEL_STEPS(INTEL_COMETLAKE,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RETBLEED | GDS | ITS),
1262 	VULNBL_INTEL_STEPS(INTEL_COMETLAKE_L,		      0x0,	MMIO | RETBLEED | ITS),
1263 	VULNBL_INTEL_STEPS(INTEL_COMETLAKE_L,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RETBLEED | GDS | ITS),
1264 	VULNBL_INTEL_STEPS(INTEL_TIGERLAKE_L,	     X86_STEP_MAX,	GDS | ITS | ITS_NATIVE_ONLY),
1265 	VULNBL_INTEL_STEPS(INTEL_TIGERLAKE,	     X86_STEP_MAX,	GDS | ITS | ITS_NATIVE_ONLY),
1266 	VULNBL_INTEL_STEPS(INTEL_LAKEFIELD,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RETBLEED),
1267 	VULNBL_INTEL_STEPS(INTEL_ROCKETLAKE,	     X86_STEP_MAX,	MMIO | RETBLEED | GDS | ITS | ITS_NATIVE_ONLY),
1268 	VULNBL_INTEL_TYPE(INTEL_ALDERLAKE,		     ATOM,	RFDS),
1269 	VULNBL_INTEL_STEPS(INTEL_ALDERLAKE_L,	     X86_STEP_MAX,	RFDS),
1270 	VULNBL_INTEL_TYPE(INTEL_RAPTORLAKE,		     ATOM,	RFDS),
1271 	VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE_P,	     X86_STEP_MAX,	RFDS),
1272 	VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE_S,	     X86_STEP_MAX,	RFDS),
1273 	VULNBL_INTEL_STEPS(INTEL_ATOM_GRACEMONT,     X86_STEP_MAX,	RFDS),
1274 	VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT,	     X86_STEP_MAX,	MMIO | MMIO_SBDS | RFDS),
1275 	VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT_D,     X86_STEP_MAX,	MMIO | RFDS),
1276 	VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT_L,     X86_STEP_MAX,	MMIO | MMIO_SBDS | RFDS),
1277 	VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT,      X86_STEP_MAX,	RFDS),
1278 	VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT_D,    X86_STEP_MAX,	RFDS),
1279 	VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT_PLUS, X86_STEP_MAX,	RFDS),
1280 
1281 	VULNBL_AMD(0x15, RETBLEED),
1282 	VULNBL_AMD(0x16, RETBLEED),
1283 	VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1284 	VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1285 	VULNBL_AMD(0x19, SRSO | TSA),
1286 	VULNBL_AMD(0x1a, SRSO),
1287 	{}
1288 };
1289 
cpu_matches(const struct x86_cpu_id * table,unsigned long which)1290 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1291 {
1292 	const struct x86_cpu_id *m = x86_match_cpu(table);
1293 
1294 	return m && !!(m->driver_data & which);
1295 }
1296 
x86_read_arch_cap_msr(void)1297 u64 x86_read_arch_cap_msr(void)
1298 {
1299 	u64 x86_arch_cap_msr = 0;
1300 
1301 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1302 		rdmsrq(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr);
1303 
1304 	return x86_arch_cap_msr;
1305 }
1306 
arch_cap_mmio_immune(u64 x86_arch_cap_msr)1307 static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr)
1308 {
1309 	return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO &&
1310 		x86_arch_cap_msr & ARCH_CAP_PSDP_NO &&
1311 		x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO);
1312 }
1313 
vulnerable_to_rfds(u64 x86_arch_cap_msr)1314 static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr)
1315 {
1316 	/* The "immunity" bit trumps everything else: */
1317 	if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO)
1318 		return false;
1319 
1320 	/*
1321 	 * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
1322 	 * indicate that mitigation is needed because guest is running on a
1323 	 * vulnerable hardware or may migrate to such hardware:
1324 	 */
1325 	if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
1326 		return true;
1327 
1328 	/* Only consult the blacklist when there is no enumeration: */
1329 	return cpu_matches(cpu_vuln_blacklist, RFDS);
1330 }
1331 
vulnerable_to_its(u64 x86_arch_cap_msr)1332 static bool __init vulnerable_to_its(u64 x86_arch_cap_msr)
1333 {
1334 	/* The "immunity" bit trumps everything else: */
1335 	if (x86_arch_cap_msr & ARCH_CAP_ITS_NO)
1336 		return false;
1337 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1338 		return false;
1339 
1340 	/* None of the affected CPUs have BHI_CTRL */
1341 	if (boot_cpu_has(X86_FEATURE_BHI_CTRL))
1342 		return false;
1343 
1344 	/*
1345 	 * If a VMM did not expose ITS_NO, assume that a guest could
1346 	 * be running on a vulnerable hardware or may migrate to such
1347 	 * hardware.
1348 	 */
1349 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1350 		return true;
1351 
1352 	if (cpu_matches(cpu_vuln_blacklist, ITS))
1353 		return true;
1354 
1355 	return false;
1356 }
1357 
1358 static struct x86_cpu_id cpu_latest_microcode[] = {
1359 #include "microcode/intel-ucode-defs.h"
1360 	{}
1361 };
1362 
cpu_has_old_microcode(void)1363 static bool __init cpu_has_old_microcode(void)
1364 {
1365 	const struct x86_cpu_id *m = x86_match_cpu(cpu_latest_microcode);
1366 
1367 	/* Give unknown CPUs a pass: */
1368 	if (!m) {
1369 		/* Intel CPUs should be in the list. Warn if not: */
1370 		if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1371 			pr_info("x86/CPU: Model not found in latest microcode list\n");
1372 		return false;
1373 	}
1374 
1375 	/*
1376 	 * Hosts usually lie to guests with a super high microcode
1377 	 * version. Just ignore what hosts tell guests:
1378 	 */
1379 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1380 		return false;
1381 
1382 	/* Consider all debug microcode to be old: */
1383 	if (boot_cpu_data.microcode & BIT(31))
1384 		return true;
1385 
1386 	/* Give new microcode a pass: */
1387 	if (boot_cpu_data.microcode >= m->driver_data)
1388 		return false;
1389 
1390 	/* Uh oh, too old: */
1391 	return true;
1392 }
1393 
cpu_set_bug_bits(struct cpuinfo_x86 * c)1394 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1395 {
1396 	u64 x86_arch_cap_msr = x86_read_arch_cap_msr();
1397 
1398 	if (cpu_has_old_microcode()) {
1399 		pr_warn("x86/CPU: Running old microcode\n");
1400 		setup_force_cpu_bug(X86_BUG_OLD_MICROCODE);
1401 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1402 	}
1403 
1404 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1405 	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1406 	    !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO))
1407 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1408 
1409 	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1410 		return;
1411 
1412 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1413 
1414 	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2)) {
1415 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1416 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2_USER);
1417 	}
1418 
1419 	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1420 	    !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) &&
1421 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1422 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1423 
1424 	/*
1425 	 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1426 	 * flag and protect from vendor-specific bugs via the whitelist.
1427 	 *
1428 	 * Don't use AutoIBRS when SNP is enabled because it degrades host
1429 	 * userspace indirect branch performance.
1430 	 */
1431 	if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) ||
1432 	    (cpu_has(c, X86_FEATURE_AUTOIBRS) &&
1433 	     !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) {
1434 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1435 		if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1436 		    !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO))
1437 			setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1438 	}
1439 
1440 	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1441 	    !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) {
1442 		setup_force_cpu_bug(X86_BUG_MDS);
1443 		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1444 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1445 	}
1446 
1447 	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1448 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1449 
1450 	/*
1451 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1452 	 *	- TSX is supported or
1453 	 *	- TSX_CTRL is present
1454 	 *
1455 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1456 	 * the kernel boot e.g. kexec.
1457 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1458 	 * update is not present or running as guest that don't get TSX_CTRL.
1459 	 */
1460 	if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) &&
1461 	    (cpu_has(c, X86_FEATURE_RTM) ||
1462 	     (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)))
1463 		setup_force_cpu_bug(X86_BUG_TAA);
1464 
1465 	/*
1466 	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1467 	 * in the vulnerability blacklist.
1468 	 *
1469 	 * Some of the implications and mitigation of Shared Buffers Data
1470 	 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1471 	 * SRBDS.
1472 	 */
1473 	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1474 	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1475 	    cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1476 		    setup_force_cpu_bug(X86_BUG_SRBDS);
1477 
1478 	/*
1479 	 * Processor MMIO Stale Data bug enumeration
1480 	 *
1481 	 * Affected CPU list is generally enough to enumerate the vulnerability,
1482 	 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1483 	 * not want the guest to enumerate the bug.
1484 	 */
1485 	if (!arch_cap_mmio_immune(x86_arch_cap_msr)) {
1486 		if (cpu_matches(cpu_vuln_blacklist, MMIO))
1487 			setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1488 	}
1489 
1490 	if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1491 		if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA))
1492 			setup_force_cpu_bug(X86_BUG_RETBLEED);
1493 	}
1494 
1495 	if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1496 		setup_force_cpu_bug(X86_BUG_SMT_RSB);
1497 
1498 	if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1499 		if (cpu_matches(cpu_vuln_blacklist, SRSO))
1500 			setup_force_cpu_bug(X86_BUG_SRSO);
1501 	}
1502 
1503 	/*
1504 	 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1505 	 * an affected processor, the VMM may have disabled the use of GATHER by
1506 	 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1507 	 * which means that AVX will be disabled.
1508 	 */
1509 	if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) &&
1510 	    boot_cpu_has(X86_FEATURE_AVX))
1511 		setup_force_cpu_bug(X86_BUG_GDS);
1512 
1513 	if (vulnerable_to_rfds(x86_arch_cap_msr))
1514 		setup_force_cpu_bug(X86_BUG_RFDS);
1515 
1516 	/*
1517 	 * Intel parts with eIBRS are vulnerable to BHI attacks. Parts with
1518 	 * BHI_NO still need to use the BHI mitigation to prevent Intra-mode
1519 	 * attacks.  When virtualized, eIBRS could be hidden, assume vulnerable.
1520 	 */
1521 	if (!cpu_matches(cpu_vuln_whitelist, NO_BHI) &&
1522 	    (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) ||
1523 	     boot_cpu_has(X86_FEATURE_HYPERVISOR)))
1524 		setup_force_cpu_bug(X86_BUG_BHI);
1525 
1526 	if (cpu_has(c, X86_FEATURE_AMD_IBPB) && !cpu_has(c, X86_FEATURE_AMD_IBPB_RET))
1527 		setup_force_cpu_bug(X86_BUG_IBPB_NO_RET);
1528 
1529 	if (vulnerable_to_its(x86_arch_cap_msr)) {
1530 		setup_force_cpu_bug(X86_BUG_ITS);
1531 		if (cpu_matches(cpu_vuln_blacklist, ITS_NATIVE_ONLY))
1532 			setup_force_cpu_bug(X86_BUG_ITS_NATIVE_ONLY);
1533 	}
1534 
1535 	if (c->x86_vendor == X86_VENDOR_AMD) {
1536 		if (!cpu_has(c, X86_FEATURE_TSA_SQ_NO) ||
1537 		    !cpu_has(c, X86_FEATURE_TSA_L1_NO)) {
1538 			if (cpu_matches(cpu_vuln_blacklist, TSA) ||
1539 			    /* Enable bug on Zen guests to allow for live migration. */
1540 			    (cpu_has(c, X86_FEATURE_HYPERVISOR) && cpu_has(c, X86_FEATURE_ZEN)))
1541 				setup_force_cpu_bug(X86_BUG_TSA);
1542 		}
1543 	}
1544 
1545 	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1546 		return;
1547 
1548 	/* Rogue Data Cache Load? No! */
1549 	if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO)
1550 		return;
1551 
1552 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1553 
1554 	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1555 		return;
1556 
1557 	setup_force_cpu_bug(X86_BUG_L1TF);
1558 }
1559 
1560 /*
1561  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1562  * unfortunately, that's not true in practice because of early VIA
1563  * chips and (more importantly) broken virtualizers that are not easy
1564  * to detect. In the latter case it doesn't even *fail* reliably, so
1565  * probing for it doesn't even work. Disable it completely on 32-bit
1566  * unless we can find a reliable way to detect all the broken cases.
1567  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1568  */
detect_nopl(void)1569 static void detect_nopl(void)
1570 {
1571 #ifdef CONFIG_X86_32
1572 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1573 #else
1574 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1575 #endif
1576 }
1577 
parse_set_clear_cpuid(char * arg,bool set)1578 static inline bool parse_set_clear_cpuid(char *arg, bool set)
1579 {
1580 	char *opt;
1581 	int taint = 0;
1582 
1583 	while (arg) {
1584 		bool found __maybe_unused = false;
1585 		unsigned int bit;
1586 
1587 		opt = strsep(&arg, ",");
1588 
1589 		/*
1590 		 * Handle naked numbers first for feature flags which don't
1591 		 * have names. It doesn't make sense for a bug not to have a
1592 		 * name so don't handle bug flags here.
1593 		 */
1594 		if (!kstrtouint(opt, 10, &bit)) {
1595 			if (bit < NCAPINTS * 32) {
1596 
1597 				if (set) {
1598 					pr_warn("setcpuid: force-enabling CPU feature flag:");
1599 					setup_force_cpu_cap(bit);
1600 				} else {
1601 					pr_warn("clearcpuid: force-disabling CPU feature flag:");
1602 					setup_clear_cpu_cap(bit);
1603 				}
1604 				/* empty-string, i.e., ""-defined feature flags */
1605 				if (!x86_cap_flags[bit])
1606 					pr_cont(" %d:%d\n", bit >> 5, bit & 31);
1607 				else
1608 					pr_cont(" %s\n", x86_cap_flags[bit]);
1609 
1610 				taint++;
1611 			}
1612 			/*
1613 			 * The assumption is that there are no feature names with only
1614 			 * numbers in the name thus go to the next argument.
1615 			 */
1616 			continue;
1617 		}
1618 
1619 		for (bit = 0; bit < 32 * (NCAPINTS + NBUGINTS); bit++) {
1620 			const char *flag;
1621 			const char *kind;
1622 
1623 			if (bit < 32 * NCAPINTS) {
1624 				flag = x86_cap_flags[bit];
1625 				kind = "feature";
1626 			} else {
1627 				kind = "bug";
1628 				flag = x86_bug_flags[bit - (32 * NCAPINTS)];
1629 			}
1630 
1631 			if (!flag)
1632 				continue;
1633 
1634 			if (strcmp(flag, opt))
1635 				continue;
1636 
1637 			if (set) {
1638 				pr_warn("setcpuid: force-enabling CPU %s flag: %s\n",
1639 					kind, flag);
1640 				setup_force_cpu_cap(bit);
1641 			} else {
1642 				pr_warn("clearcpuid: force-disabling CPU %s flag: %s\n",
1643 					kind, flag);
1644 				setup_clear_cpu_cap(bit);
1645 			}
1646 			taint++;
1647 			found = true;
1648 			break;
1649 		}
1650 
1651 		if (!found)
1652 			pr_warn("%s: unknown CPU flag: %s", set ? "setcpuid" : "clearcpuid", opt);
1653 	}
1654 
1655 	return taint;
1656 }
1657 
1658 
1659 /*
1660  * We parse cpu parameters early because fpu__init_system() is executed
1661  * before parse_early_param().
1662  */
cpu_parse_early_param(void)1663 static void __init cpu_parse_early_param(void)
1664 {
1665 	bool cpuid_taint = false;
1666 	char arg[128];
1667 	int arglen;
1668 
1669 #ifdef CONFIG_X86_32
1670 	if (cmdline_find_option_bool(boot_command_line, "no387"))
1671 #ifdef CONFIG_MATH_EMULATION
1672 		setup_clear_cpu_cap(X86_FEATURE_FPU);
1673 #else
1674 		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1675 #endif
1676 
1677 	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1678 		setup_clear_cpu_cap(X86_FEATURE_FXSR);
1679 #endif
1680 
1681 	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1682 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1683 
1684 	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1685 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1686 
1687 	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1688 		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1689 
1690 	if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1691 		setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1692 
1693 	/* Minimize the gap between FRED is available and available but disabled. */
1694 	arglen = cmdline_find_option(boot_command_line, "fred", arg, sizeof(arg));
1695 	if (arglen != 2 || strncmp(arg, "on", 2))
1696 		setup_clear_cpu_cap(X86_FEATURE_FRED);
1697 
1698 	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1699 	if (arglen > 0)
1700 		cpuid_taint |= parse_set_clear_cpuid(arg, false);
1701 
1702 	arglen = cmdline_find_option(boot_command_line, "setcpuid", arg, sizeof(arg));
1703 	if (arglen > 0)
1704 		cpuid_taint |= parse_set_clear_cpuid(arg, true);
1705 
1706 	if (cpuid_taint) {
1707 		pr_warn("!!! setcpuid=/clearcpuid= in use, this is for TESTING ONLY, may break things horribly. Tainting kernel.\n");
1708 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1709 	}
1710 }
1711 
1712 /*
1713  * Do minimum CPU detection early.
1714  * Fields really needed: vendor, cpuid_level, family, model, mask,
1715  * cache alignment.
1716  * The others are not touched to avoid unwanted side effects.
1717  *
1718  * WARNING: this function is only called on the boot CPU.  Don't add code
1719  * here that is supposed to run on all CPUs.
1720  */
early_identify_cpu(struct cpuinfo_x86 * c)1721 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1722 {
1723 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1724 	c->extended_cpuid_level = 0;
1725 
1726 	if (!cpuid_feature())
1727 		identify_cpu_without_cpuid(c);
1728 
1729 	/* cyrix could have cpuid enabled via c_identify()*/
1730 	if (cpuid_feature()) {
1731 		cpu_detect(c);
1732 		get_cpu_vendor(c);
1733 		intel_unlock_cpuid_leafs(c);
1734 		get_cpu_cap(c);
1735 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1736 		get_cpu_address_sizes(c);
1737 		cpu_parse_early_param();
1738 
1739 		cpu_init_topology(c);
1740 
1741 		if (this_cpu->c_early_init)
1742 			this_cpu->c_early_init(c);
1743 
1744 		c->cpu_index = 0;
1745 		filter_cpuid_features(c, false);
1746 		check_cpufeature_deps(c);
1747 
1748 		if (this_cpu->c_bsp_init)
1749 			this_cpu->c_bsp_init(c);
1750 	} else {
1751 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1752 		get_cpu_address_sizes(c);
1753 		cpu_init_topology(c);
1754 	}
1755 
1756 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1757 
1758 	cpu_set_bug_bits(c);
1759 
1760 	sld_setup(c);
1761 
1762 #ifdef CONFIG_X86_32
1763 	/*
1764 	 * Regardless of whether PCID is enumerated, the SDM says
1765 	 * that it can't be enabled in 32-bit mode.
1766 	 */
1767 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1768 #endif
1769 
1770 	/*
1771 	 * Later in the boot process pgtable_l5_enabled() relies on
1772 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1773 	 * enabled by this point we need to clear the feature bit to avoid
1774 	 * false-positives at the later stage.
1775 	 *
1776 	 * pgtable_l5_enabled() can be false here for several reasons:
1777 	 *  - 5-level paging is disabled compile-time;
1778 	 *  - it's 32-bit kernel;
1779 	 *  - machine doesn't support 5-level paging;
1780 	 *  - user specified 'no5lvl' in kernel command line.
1781 	 */
1782 	if (!pgtable_l5_enabled())
1783 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1784 
1785 	detect_nopl();
1786 }
1787 
init_cpu_devs(void)1788 void __init init_cpu_devs(void)
1789 {
1790 	const struct cpu_dev *const *cdev;
1791 	int count = 0;
1792 
1793 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1794 		const struct cpu_dev *cpudev = *cdev;
1795 
1796 		if (count >= X86_VENDOR_NUM)
1797 			break;
1798 		cpu_devs[count] = cpudev;
1799 		count++;
1800 	}
1801 }
1802 
early_cpu_init(void)1803 void __init early_cpu_init(void)
1804 {
1805 #ifdef CONFIG_PROCESSOR_SELECT
1806 	unsigned int i, j;
1807 
1808 	pr_info("KERNEL supported cpus:\n");
1809 #endif
1810 
1811 	init_cpu_devs();
1812 
1813 #ifdef CONFIG_PROCESSOR_SELECT
1814 	for (i = 0; i < X86_VENDOR_NUM && cpu_devs[i]; i++) {
1815 		for (j = 0; j < 2; j++) {
1816 			if (!cpu_devs[i]->c_ident[j])
1817 				continue;
1818 			pr_info("  %s %s\n", cpu_devs[i]->c_vendor,
1819 				cpu_devs[i]->c_ident[j]);
1820 		}
1821 	}
1822 #endif
1823 
1824 	early_identify_cpu(&boot_cpu_data);
1825 }
1826 
detect_null_seg_behavior(void)1827 static bool detect_null_seg_behavior(void)
1828 {
1829 	/*
1830 	 * Empirically, writing zero to a segment selector on AMD does
1831 	 * not clear the base, whereas writing zero to a segment
1832 	 * selector on Intel does clear the base.  Intel's behavior
1833 	 * allows slightly faster context switches in the common case
1834 	 * where GS is unused by the prev and next threads.
1835 	 *
1836 	 * Since neither vendor documents this anywhere that I can see,
1837 	 * detect it directly instead of hard-coding the choice by
1838 	 * vendor.
1839 	 *
1840 	 * I've designated AMD's behavior as the "bug" because it's
1841 	 * counterintuitive and less friendly.
1842 	 */
1843 
1844 	unsigned long old_base, tmp;
1845 	rdmsrq(MSR_FS_BASE, old_base);
1846 	wrmsrq(MSR_FS_BASE, 1);
1847 	loadsegment(fs, 0);
1848 	rdmsrq(MSR_FS_BASE, tmp);
1849 	wrmsrq(MSR_FS_BASE, old_base);
1850 	return tmp == 0;
1851 }
1852 
check_null_seg_clears_base(struct cpuinfo_x86 * c)1853 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1854 {
1855 	/* BUG_NULL_SEG is only relevant with 64bit userspace */
1856 	if (!IS_ENABLED(CONFIG_X86_64))
1857 		return;
1858 
1859 	if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1860 		return;
1861 
1862 	/*
1863 	 * CPUID bit above wasn't set. If this kernel is still running
1864 	 * as a HV guest, then the HV has decided not to advertize
1865 	 * that CPUID bit for whatever reason.	For example, one
1866 	 * member of the migration pool might be vulnerable.  Which
1867 	 * means, the bug is present: set the BUG flag and return.
1868 	 */
1869 	if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1870 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1871 		return;
1872 	}
1873 
1874 	/*
1875 	 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1876 	 * 0x18 is the respective family for Hygon.
1877 	 */
1878 	if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1879 	    detect_null_seg_behavior())
1880 		return;
1881 
1882 	/* All the remaining ones are affected */
1883 	set_cpu_bug(c, X86_BUG_NULL_SEG);
1884 }
1885 
generic_identify(struct cpuinfo_x86 * c)1886 static void generic_identify(struct cpuinfo_x86 *c)
1887 {
1888 	c->extended_cpuid_level = 0;
1889 
1890 	if (!cpuid_feature())
1891 		identify_cpu_without_cpuid(c);
1892 
1893 	/* cyrix could have cpuid enabled via c_identify()*/
1894 	if (!cpuid_feature())
1895 		return;
1896 
1897 	cpu_detect(c);
1898 
1899 	get_cpu_vendor(c);
1900 	intel_unlock_cpuid_leafs(c);
1901 	get_cpu_cap(c);
1902 
1903 	get_cpu_address_sizes(c);
1904 
1905 	get_model_name(c); /* Default name */
1906 
1907 	/*
1908 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1909 	 * systems that run Linux at CPL > 0 may or may not have the
1910 	 * issue, but, even if they have the issue, there's absolutely
1911 	 * nothing we can do about it because we can't use the real IRET
1912 	 * instruction.
1913 	 *
1914 	 * NB: For the time being, only 32-bit kernels support
1915 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1916 	 * whether to apply espfix using paravirt hooks.  If any
1917 	 * non-paravirt system ever shows up that does *not* have the
1918 	 * ESPFIX issue, we can change this.
1919 	 */
1920 #ifdef CONFIG_X86_32
1921 	set_cpu_bug(c, X86_BUG_ESPFIX);
1922 #endif
1923 }
1924 
1925 /*
1926  * This does the hard work of actually picking apart the CPU stuff...
1927  */
identify_cpu(struct cpuinfo_x86 * c)1928 static void identify_cpu(struct cpuinfo_x86 *c)
1929 {
1930 	int i;
1931 
1932 	c->loops_per_jiffy = loops_per_jiffy;
1933 	c->x86_cache_size = 0;
1934 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1935 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1936 	c->x86_vendor_id[0] = '\0'; /* Unset */
1937 	c->x86_model_id[0] = '\0';  /* Unset */
1938 #ifdef CONFIG_X86_64
1939 	c->x86_clflush_size = 64;
1940 	c->x86_phys_bits = 36;
1941 	c->x86_virt_bits = 48;
1942 #else
1943 	c->cpuid_level = -1;	/* CPUID not detected */
1944 	c->x86_clflush_size = 32;
1945 	c->x86_phys_bits = 32;
1946 	c->x86_virt_bits = 32;
1947 #endif
1948 	c->x86_cache_alignment = c->x86_clflush_size;
1949 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1950 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1951 	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1952 #endif
1953 
1954 	generic_identify(c);
1955 
1956 	cpu_parse_topology(c);
1957 
1958 	if (this_cpu->c_identify)
1959 		this_cpu->c_identify(c);
1960 
1961 	/* Clear/Set all flags overridden by options, after probe */
1962 	apply_forced_caps(c);
1963 
1964 	/*
1965 	 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1966 	 * Hygon will clear it in ->c_init() below.
1967 	 */
1968 	set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1969 
1970 	/*
1971 	 * Vendor-specific initialization.  In this section we
1972 	 * canonicalize the feature flags, meaning if there are
1973 	 * features a certain CPU supports which CPUID doesn't
1974 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1975 	 * we handle them here.
1976 	 *
1977 	 * At the end of this section, c->x86_capability better
1978 	 * indicate the features this CPU genuinely supports!
1979 	 */
1980 	if (this_cpu->c_init)
1981 		this_cpu->c_init(c);
1982 
1983 	bus_lock_init();
1984 
1985 	/* Disable the PN if appropriate */
1986 	squash_the_stupid_serial_number(c);
1987 
1988 	/* Set up SMEP/SMAP/UMIP */
1989 	setup_smep(c);
1990 	setup_smap(c);
1991 	setup_umip(c);
1992 
1993 	/* Enable FSGSBASE instructions if available. */
1994 	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1995 		cr4_set_bits(X86_CR4_FSGSBASE);
1996 		elf_hwcap2 |= HWCAP2_FSGSBASE;
1997 	}
1998 
1999 	/*
2000 	 * The vendor-specific functions might have changed features.
2001 	 * Now we do "generic changes."
2002 	 */
2003 
2004 	/* Filter out anything that depends on CPUID levels we don't have */
2005 	filter_cpuid_features(c, true);
2006 
2007 	/* Check for unmet dependencies based on the CPUID dependency table */
2008 	check_cpufeature_deps(c);
2009 
2010 	/* If the model name is still unset, do table lookup. */
2011 	if (!c->x86_model_id[0]) {
2012 		const char *p;
2013 		p = table_lookup_model(c);
2014 		if (p)
2015 			strcpy(c->x86_model_id, p);
2016 		else
2017 			/* Last resort... */
2018 			sprintf(c->x86_model_id, "%02x/%02x",
2019 				c->x86, c->x86_model);
2020 	}
2021 
2022 	x86_init_rdrand(c);
2023 	setup_pku(c);
2024 	setup_cet(c);
2025 
2026 	/*
2027 	 * Clear/Set all flags overridden by options, need do it
2028 	 * before following smp all cpus cap AND.
2029 	 */
2030 	apply_forced_caps(c);
2031 
2032 	/*
2033 	 * On SMP, boot_cpu_data holds the common feature set between
2034 	 * all CPUs; so make sure that we indicate which features are
2035 	 * common between the CPUs.  The first time this routine gets
2036 	 * executed, c == &boot_cpu_data.
2037 	 */
2038 	if (c != &boot_cpu_data) {
2039 		/* AND the already accumulated flags with these */
2040 		for (i = 0; i < NCAPINTS; i++)
2041 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
2042 
2043 		/* OR, i.e. replicate the bug flags */
2044 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
2045 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
2046 	}
2047 
2048 	ppin_init(c);
2049 
2050 	/* Init Machine Check Exception if available. */
2051 	mcheck_cpu_init(c);
2052 
2053 	numa_add_cpu(smp_processor_id());
2054 }
2055 
2056 /*
2057  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
2058  * on 32-bit kernels:
2059  */
2060 #ifdef CONFIG_X86_32
enable_sep_cpu(void)2061 void enable_sep_cpu(void)
2062 {
2063 	struct tss_struct *tss;
2064 	int cpu;
2065 
2066 	if (!boot_cpu_has(X86_FEATURE_SEP))
2067 		return;
2068 
2069 	cpu = get_cpu();
2070 	tss = &per_cpu(cpu_tss_rw, cpu);
2071 
2072 	/*
2073 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
2074 	 * see the big comment in struct x86_hw_tss's definition.
2075 	 */
2076 
2077 	tss->x86_tss.ss1 = __KERNEL_CS;
2078 	wrmsrq(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1);
2079 	wrmsrq(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
2080 	wrmsrq(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32);
2081 
2082 	put_cpu();
2083 }
2084 #endif
2085 
identify_boot_cpu(void)2086 static __init void identify_boot_cpu(void)
2087 {
2088 	identify_cpu(&boot_cpu_data);
2089 	if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
2090 		pr_info("CET detected: Indirect Branch Tracking enabled\n");
2091 #ifdef CONFIG_X86_32
2092 	enable_sep_cpu();
2093 #endif
2094 	cpu_detect_tlb(&boot_cpu_data);
2095 	setup_cr_pinning();
2096 
2097 	tsx_init();
2098 	tdx_init();
2099 	lkgs_init();
2100 }
2101 
identify_secondary_cpu(unsigned int cpu)2102 void identify_secondary_cpu(unsigned int cpu)
2103 {
2104 	struct cpuinfo_x86 *c = &cpu_data(cpu);
2105 
2106 	/* Copy boot_cpu_data only on the first bringup */
2107 	if (!c->initialized)
2108 		*c = boot_cpu_data;
2109 	c->cpu_index = cpu;
2110 
2111 	identify_cpu(c);
2112 #ifdef CONFIG_X86_32
2113 	enable_sep_cpu();
2114 #endif
2115 	x86_spec_ctrl_setup_ap();
2116 	update_srbds_msr();
2117 	if (boot_cpu_has_bug(X86_BUG_GDS))
2118 		update_gds_msr();
2119 
2120 	tsx_ap_init();
2121 	c->initialized = true;
2122 }
2123 
print_cpu_info(struct cpuinfo_x86 * c)2124 void print_cpu_info(struct cpuinfo_x86 *c)
2125 {
2126 	const char *vendor = NULL;
2127 
2128 	if (c->x86_vendor < X86_VENDOR_NUM) {
2129 		vendor = this_cpu->c_vendor;
2130 	} else {
2131 		if (c->cpuid_level >= 0)
2132 			vendor = c->x86_vendor_id;
2133 	}
2134 
2135 	if (vendor && !strstr(c->x86_model_id, vendor))
2136 		pr_cont("%s ", vendor);
2137 
2138 	if (c->x86_model_id[0])
2139 		pr_cont("%s", c->x86_model_id);
2140 	else
2141 		pr_cont("%d86", c->x86);
2142 
2143 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2144 
2145 	if (c->x86_stepping || c->cpuid_level >= 0)
2146 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2147 	else
2148 		pr_cont(")\n");
2149 }
2150 
2151 /*
2152  * clearcpuid= and setcpuid= were already parsed in cpu_parse_early_param().
2153  * These dummy functions prevent them from becoming an environment variable for
2154  * init.
2155  */
2156 
setup_clearcpuid(char * arg)2157 static __init int setup_clearcpuid(char *arg)
2158 {
2159 	return 1;
2160 }
2161 __setup("clearcpuid=", setup_clearcpuid);
2162 
setup_setcpuid(char * arg)2163 static __init int setup_setcpuid(char *arg)
2164 {
2165 	return 1;
2166 }
2167 __setup("setcpuid=", setup_setcpuid);
2168 
2169 DEFINE_PER_CPU_CACHE_HOT(struct task_struct *, current_task) = &init_task;
2170 EXPORT_PER_CPU_SYMBOL(current_task);
2171 EXPORT_PER_CPU_SYMBOL(const_current_task);
2172 
2173 DEFINE_PER_CPU_CACHE_HOT(int, __preempt_count) = INIT_PREEMPT_COUNT;
2174 EXPORT_PER_CPU_SYMBOL(__preempt_count);
2175 
2176 DEFINE_PER_CPU_CACHE_HOT(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
2177 
2178 #ifdef CONFIG_X86_64
2179 /*
2180  * Note: Do not make this dependant on CONFIG_MITIGATION_CALL_DEPTH_TRACKING
2181  * so that this space is reserved in the hot cache section even when the
2182  * mitigation is disabled.
2183  */
2184 DEFINE_PER_CPU_CACHE_HOT(u64, __x86_call_depth);
2185 EXPORT_PER_CPU_SYMBOL(__x86_call_depth);
2186 
wrmsrq_cstar(unsigned long val)2187 static void wrmsrq_cstar(unsigned long val)
2188 {
2189 	/*
2190 	 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2191 	 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2192 	 * guest. Avoid the pointless write on all Intel CPUs.
2193 	 */
2194 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2195 		wrmsrq(MSR_CSTAR, val);
2196 }
2197 
idt_syscall_init(void)2198 static inline void idt_syscall_init(void)
2199 {
2200 	wrmsrq(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2201 
2202 	if (ia32_enabled()) {
2203 		wrmsrq_cstar((unsigned long)entry_SYSCALL_compat);
2204 		/*
2205 		 * This only works on Intel CPUs.
2206 		 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2207 		 * This does not cause SYSENTER to jump to the wrong location, because
2208 		 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2209 		 */
2210 		wrmsrq_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2211 		wrmsrq_safe(MSR_IA32_SYSENTER_ESP,
2212 			    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2213 		wrmsrq_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2214 	} else {
2215 		wrmsrq_cstar((unsigned long)entry_SYSCALL32_ignore);
2216 		wrmsrq_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2217 		wrmsrq_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2218 		wrmsrq_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2219 	}
2220 
2221 	/*
2222 	 * Flags to clear on syscall; clear as much as possible
2223 	 * to minimize user space-kernel interference.
2224 	 */
2225 	wrmsrq(MSR_SYSCALL_MASK,
2226 	       X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2227 	       X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2228 	       X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2229 	       X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2230 	       X86_EFLAGS_AC|X86_EFLAGS_ID);
2231 }
2232 
2233 /* May not be marked __init: used by software suspend */
syscall_init(void)2234 void syscall_init(void)
2235 {
2236 	/* The default user and kernel segments */
2237 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2238 
2239 	/*
2240 	 * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and
2241 	 * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED
2242 	 * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit
2243 	 * instruction to return to ring 3 (both sysexit and sysret cause
2244 	 * #UD when FRED is enabled).
2245 	 */
2246 	if (!cpu_feature_enabled(X86_FEATURE_FRED))
2247 		idt_syscall_init();
2248 }
2249 #endif /* CONFIG_X86_64 */
2250 
2251 #ifdef CONFIG_STACKPROTECTOR
2252 DEFINE_PER_CPU_CACHE_HOT(unsigned long, __stack_chk_guard);
2253 #ifndef CONFIG_SMP
2254 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2255 #endif
2256 #endif
2257 
initialize_debug_regs(void)2258 static void initialize_debug_regs(void)
2259 {
2260 	/* Control register first -- to make sure everything is disabled. */
2261 	set_debugreg(DR7_FIXED_1, 7);
2262 	set_debugreg(DR6_RESERVED, 6);
2263 	/* dr5 and dr4 don't exist */
2264 	set_debugreg(0, 3);
2265 	set_debugreg(0, 2);
2266 	set_debugreg(0, 1);
2267 	set_debugreg(0, 0);
2268 }
2269 
2270 #ifdef CONFIG_KGDB
2271 /*
2272  * Restore debug regs if using kgdbwait and you have a kernel debugger
2273  * connection established.
2274  */
dbg_restore_debug_regs(void)2275 static void dbg_restore_debug_regs(void)
2276 {
2277 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2278 		arch_kgdb_ops.correct_hw_break();
2279 }
2280 #else /* ! CONFIG_KGDB */
2281 #define dbg_restore_debug_regs()
2282 #endif /* ! CONFIG_KGDB */
2283 
setup_getcpu(int cpu)2284 static inline void setup_getcpu(int cpu)
2285 {
2286 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2287 	struct desc_struct d = { };
2288 
2289 	if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2290 		wrmsrq(MSR_TSC_AUX, cpudata);
2291 
2292 	/* Store CPU and node number in limit. */
2293 	d.limit0 = cpudata;
2294 	d.limit1 = cpudata >> 16;
2295 
2296 	d.type = 5;		/* RO data, expand down, accessed */
2297 	d.dpl = 3;		/* Visible to user code */
2298 	d.s = 1;		/* Not a system segment */
2299 	d.p = 1;		/* Present */
2300 	d.d = 1;		/* 32-bit */
2301 
2302 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2303 }
2304 
2305 #ifdef CONFIG_X86_64
tss_setup_ist(struct tss_struct * tss)2306 static inline void tss_setup_ist(struct tss_struct *tss)
2307 {
2308 	/* Set up the per-CPU TSS IST stacks */
2309 	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2310 	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2311 	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2312 	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2313 	/* Only mapped when SEV-ES is active */
2314 	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2315 }
2316 #else /* CONFIG_X86_64 */
tss_setup_ist(struct tss_struct * tss)2317 static inline void tss_setup_ist(struct tss_struct *tss) { }
2318 #endif /* !CONFIG_X86_64 */
2319 
tss_setup_io_bitmap(struct tss_struct * tss)2320 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2321 {
2322 	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2323 
2324 #ifdef CONFIG_X86_IOPL_IOPERM
2325 	tss->io_bitmap.prev_max = 0;
2326 	tss->io_bitmap.prev_sequence = 0;
2327 	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2328 	/*
2329 	 * Invalidate the extra array entry past the end of the all
2330 	 * permission bitmap as required by the hardware.
2331 	 */
2332 	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2333 #endif
2334 }
2335 
2336 /*
2337  * Setup everything needed to handle exceptions from the IDT, including the IST
2338  * exceptions which use paranoid_entry().
2339  */
cpu_init_exception_handling(bool boot_cpu)2340 void cpu_init_exception_handling(bool boot_cpu)
2341 {
2342 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2343 	int cpu = raw_smp_processor_id();
2344 
2345 	/* paranoid_entry() gets the CPU number from the GDT */
2346 	setup_getcpu(cpu);
2347 
2348 	/* For IDT mode, IST vectors need to be set in TSS. */
2349 	if (!cpu_feature_enabled(X86_FEATURE_FRED))
2350 		tss_setup_ist(tss);
2351 	tss_setup_io_bitmap(tss);
2352 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2353 
2354 	load_TR_desc();
2355 
2356 	/* GHCB needs to be setup to handle #VC. */
2357 	setup_ghcb();
2358 
2359 	if (cpu_feature_enabled(X86_FEATURE_FRED)) {
2360 		/* The boot CPU has enabled FRED during early boot */
2361 		if (!boot_cpu)
2362 			cpu_init_fred_exceptions();
2363 
2364 		cpu_init_fred_rsps();
2365 	} else {
2366 		load_current_idt();
2367 	}
2368 }
2369 
cpu_init_replace_early_idt(void)2370 void __init cpu_init_replace_early_idt(void)
2371 {
2372 	if (cpu_feature_enabled(X86_FEATURE_FRED))
2373 		cpu_init_fred_exceptions();
2374 	else
2375 		idt_setup_early_pf();
2376 }
2377 
2378 /*
2379  * cpu_init() initializes state that is per-CPU. Some data is already
2380  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2381  * reload it nevertheless, this function acts as a 'CPU state barrier',
2382  * nothing should get across.
2383  */
cpu_init(void)2384 void cpu_init(void)
2385 {
2386 	struct task_struct *cur = current;
2387 	int cpu = raw_smp_processor_id();
2388 
2389 #ifdef CONFIG_NUMA
2390 	if (this_cpu_read(numa_node) == 0 &&
2391 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
2392 		set_numa_node(early_cpu_to_node(cpu));
2393 #endif
2394 	pr_debug("Initializing CPU#%d\n", cpu);
2395 
2396 	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2397 	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2398 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2399 
2400 	if (IS_ENABLED(CONFIG_X86_64)) {
2401 		loadsegment(fs, 0);
2402 		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2403 		syscall_init();
2404 
2405 		wrmsrq(MSR_FS_BASE, 0);
2406 		wrmsrq(MSR_KERNEL_GS_BASE, 0);
2407 		barrier();
2408 
2409 		x2apic_setup();
2410 
2411 		intel_posted_msi_init();
2412 	}
2413 
2414 	mmgrab(&init_mm);
2415 	cur->active_mm = &init_mm;
2416 	BUG_ON(cur->mm);
2417 	initialize_tlbstate_and_flush();
2418 	enter_lazy_tlb(&init_mm, cur);
2419 
2420 	/*
2421 	 * sp0 points to the entry trampoline stack regardless of what task
2422 	 * is running.
2423 	 */
2424 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2425 
2426 	load_mm_ldt(&init_mm);
2427 
2428 	initialize_debug_regs();
2429 	dbg_restore_debug_regs();
2430 
2431 	doublefault_init_cpu_tss();
2432 
2433 	if (is_uv_system())
2434 		uv_cpu_init();
2435 
2436 	load_fixmap_gdt(cpu);
2437 }
2438 
2439 #ifdef CONFIG_MICROCODE_LATE_LOADING
2440 /**
2441  * store_cpu_caps() - Store a snapshot of CPU capabilities
2442  * @curr_info: Pointer where to store it
2443  *
2444  * Returns: None
2445  */
store_cpu_caps(struct cpuinfo_x86 * curr_info)2446 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2447 {
2448 	/* Reload CPUID max function as it might've changed. */
2449 	curr_info->cpuid_level = cpuid_eax(0);
2450 
2451 	/* Copy all capability leafs and pick up the synthetic ones. */
2452 	memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2453 	       sizeof(curr_info->x86_capability));
2454 
2455 	/* Get the hardware CPUID leafs */
2456 	get_cpu_cap(curr_info);
2457 }
2458 
2459 /**
2460  * microcode_check() - Check if any CPU capabilities changed after an update.
2461  * @prev_info:	CPU capabilities stored before an update.
2462  *
2463  * The microcode loader calls this upon late microcode load to recheck features,
2464  * only when microcode has been updated. Caller holds and CPU hotplug lock.
2465  *
2466  * Return: None
2467  */
microcode_check(struct cpuinfo_x86 * prev_info)2468 void microcode_check(struct cpuinfo_x86 *prev_info)
2469 {
2470 	struct cpuinfo_x86 curr_info;
2471 
2472 	perf_check_microcode();
2473 
2474 	amd_check_microcode();
2475 
2476 	store_cpu_caps(&curr_info);
2477 
2478 	if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2479 		    sizeof(prev_info->x86_capability)))
2480 		return;
2481 
2482 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2483 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2484 }
2485 #endif
2486 
2487 /*
2488  * Invoked from core CPU hotplug code after hotplug operations
2489  */
arch_smt_update(void)2490 void arch_smt_update(void)
2491 {
2492 	/* Handle the speculative execution misfeatures */
2493 	cpu_bugs_smt_update();
2494 	/* Check whether IPI broadcasting can be enabled */
2495 	apic_smt_update();
2496 }
2497 
arch_cpu_finalize_init(void)2498 void __init arch_cpu_finalize_init(void)
2499 {
2500 	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
2501 
2502 	identify_boot_cpu();
2503 
2504 	select_idle_routine();
2505 
2506 	/*
2507 	 * identify_boot_cpu() initialized SMT support information, let the
2508 	 * core code know.
2509 	 */
2510 	cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core);
2511 
2512 	if (!IS_ENABLED(CONFIG_SMP)) {
2513 		pr_info("CPU: ");
2514 		print_cpu_info(&boot_cpu_data);
2515 	}
2516 
2517 	cpu_select_mitigations();
2518 
2519 	arch_smt_update();
2520 
2521 	if (IS_ENABLED(CONFIG_X86_32)) {
2522 		/*
2523 		 * Check whether this is a real i386 which is not longer
2524 		 * supported and fixup the utsname.
2525 		 */
2526 		if (boot_cpu_data.x86 < 4)
2527 			panic("Kernel requires i486+ for 'invlpg' and other features");
2528 
2529 		init_utsname()->machine[1] =
2530 			'0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2531 	}
2532 
2533 	/*
2534 	 * Must be before alternatives because it might set or clear
2535 	 * feature bits.
2536 	 */
2537 	fpu__init_system();
2538 	fpu__init_cpu();
2539 
2540 	/*
2541 	 * Ensure that access to the per CPU representation has the initial
2542 	 * boot CPU configuration.
2543 	 */
2544 	*c = boot_cpu_data;
2545 	c->initialized = true;
2546 
2547 	alternative_instructions();
2548 
2549 	if (IS_ENABLED(CONFIG_X86_64)) {
2550 		unsigned long USER_PTR_MAX = TASK_SIZE_MAX;
2551 
2552 		/*
2553 		 * Enable this when LAM is gated on LASS support
2554 		if (cpu_feature_enabled(X86_FEATURE_LAM))
2555 			USER_PTR_MAX = (1ul << 63) - PAGE_SIZE;
2556 		 */
2557 		runtime_const_init(ptr, USER_PTR_MAX);
2558 
2559 		/*
2560 		 * Make sure the first 2MB area is not mapped by huge pages
2561 		 * There are typically fixed size MTRRs in there and overlapping
2562 		 * MTRRs into large pages causes slow downs.
2563 		 *
2564 		 * Right now we don't do that with gbpages because there seems
2565 		 * very little benefit for that case.
2566 		 */
2567 		if (!direct_gbpages)
2568 			set_memory_4k((unsigned long)__va(0), 1);
2569 	} else {
2570 		fpu__init_check_bugs();
2571 	}
2572 
2573 	/*
2574 	 * This needs to be called before any devices perform DMA
2575 	 * operations that might use the SWIOTLB bounce buffers. It will
2576 	 * mark the bounce buffers as decrypted so that their usage will
2577 	 * not cause "plain-text" data to be decrypted when accessed. It
2578 	 * must be called after late_time_init() so that Hyper-V x86/x64
2579 	 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2580 	 */
2581 	mem_encrypt_init();
2582 }
2583