1 // SPDX-License-Identifier: GPL-2.0
2
3 //! Kernel errors.
4 //!
5 //! C header: [`include/uapi/asm-generic/errno-base.h`](srctree/include/uapi/asm-generic/errno-base.h)
6
7 use crate::{
8 alloc::{layout::LayoutError, AllocError},
9 fmt,
10 str::CStr,
11 };
12
13 use core::num::NonZeroI32;
14 use core::num::TryFromIntError;
15 use core::str::Utf8Error;
16
17 /// Contains the C-compatible error codes.
18 #[rustfmt::skip]
19 pub mod code {
20 macro_rules! declare_err {
21 ($err:tt $(,)? $($doc:expr),+) => {
22 $(
23 #[doc = $doc]
24 )*
25 pub const $err: super::Error =
26 match super::Error::try_from_errno(-(crate::bindings::$err as i32)) {
27 Some(err) => err,
28 None => panic!("Invalid errno in `declare_err!`"),
29 };
30 };
31 }
32
33 declare_err!(EPERM, "Operation not permitted.");
34 declare_err!(ENOENT, "No such file or directory.");
35 declare_err!(ESRCH, "No such process.");
36 declare_err!(EINTR, "Interrupted system call.");
37 declare_err!(EIO, "I/O error.");
38 declare_err!(ENXIO, "No such device or address.");
39 declare_err!(E2BIG, "Argument list too long.");
40 declare_err!(ENOEXEC, "Exec format error.");
41 declare_err!(EBADF, "Bad file number.");
42 declare_err!(ECHILD, "No child processes.");
43 declare_err!(EAGAIN, "Try again.");
44 declare_err!(ENOMEM, "Out of memory.");
45 declare_err!(EACCES, "Permission denied.");
46 declare_err!(EFAULT, "Bad address.");
47 declare_err!(ENOTBLK, "Block device required.");
48 declare_err!(EBUSY, "Device or resource busy.");
49 declare_err!(EEXIST, "File exists.");
50 declare_err!(EXDEV, "Cross-device link.");
51 declare_err!(ENODEV, "No such device.");
52 declare_err!(ENOTDIR, "Not a directory.");
53 declare_err!(EISDIR, "Is a directory.");
54 declare_err!(EINVAL, "Invalid argument.");
55 declare_err!(ENFILE, "File table overflow.");
56 declare_err!(EMFILE, "Too many open files.");
57 declare_err!(ENOTTY, "Not a typewriter.");
58 declare_err!(ETXTBSY, "Text file busy.");
59 declare_err!(EFBIG, "File too large.");
60 declare_err!(ENOSPC, "No space left on device.");
61 declare_err!(ESPIPE, "Illegal seek.");
62 declare_err!(EROFS, "Read-only file system.");
63 declare_err!(EMLINK, "Too many links.");
64 declare_err!(EPIPE, "Broken pipe.");
65 declare_err!(EDOM, "Math argument out of domain of func.");
66 declare_err!(ERANGE, "Math result not representable.");
67 declare_err!(EOVERFLOW, "Value too large for defined data type.");
68 declare_err!(ETIMEDOUT, "Connection timed out.");
69 declare_err!(ERESTARTSYS, "Restart the system call.");
70 declare_err!(ERESTARTNOINTR, "System call was interrupted by a signal and will be restarted.");
71 declare_err!(ERESTARTNOHAND, "Restart if no handler.");
72 declare_err!(ENOIOCTLCMD, "No ioctl command.");
73 declare_err!(ERESTART_RESTARTBLOCK, "Restart by calling sys_restart_syscall.");
74 declare_err!(EPROBE_DEFER, "Driver requests probe retry.");
75 declare_err!(EOPENSTALE, "Open found a stale dentry.");
76 declare_err!(ENOPARAM, "Parameter not supported.");
77 declare_err!(EBADHANDLE, "Illegal NFS file handle.");
78 declare_err!(ENOTSYNC, "Update synchronization mismatch.");
79 declare_err!(EBADCOOKIE, "Cookie is stale.");
80 declare_err!(ENOTSUPP, "Operation is not supported.");
81 declare_err!(ETOOSMALL, "Buffer or request is too small.");
82 declare_err!(ESERVERFAULT, "An untranslatable error occurred.");
83 declare_err!(EBADTYPE, "Type not supported by server.");
84 declare_err!(EJUKEBOX, "Request initiated, but will not complete before timeout.");
85 declare_err!(EIOCBQUEUED, "iocb queued, will get completion event.");
86 declare_err!(ERECALLCONFLICT, "Conflict with recalled state.");
87 declare_err!(ENOGRACE, "NFS file lock reclaim refused.");
88 }
89
90 /// Generic integer kernel error.
91 ///
92 /// The kernel defines a set of integer generic error codes based on C and
93 /// POSIX ones. These codes may have a more specific meaning in some contexts.
94 ///
95 /// # Invariants
96 ///
97 /// The value is a valid `errno` (i.e. `>= -MAX_ERRNO && < 0`).
98 #[derive(Clone, Copy, PartialEq, Eq)]
99 pub struct Error(NonZeroI32);
100
101 impl Error {
102 /// Creates an [`Error`] from a kernel error code.
103 ///
104 /// It is a bug to pass an out-of-range `errno`. `EINVAL` would
105 /// be returned in such a case.
from_errno(errno: crate::ffi::c_int) -> Error106 pub fn from_errno(errno: crate::ffi::c_int) -> Error {
107 if let Some(error) = Self::try_from_errno(errno) {
108 error
109 } else {
110 // TODO: Make it a `WARN_ONCE` once available.
111 crate::pr_warn!(
112 "attempted to create `Error` with out of range `errno`: {}\n",
113 errno
114 );
115 code::EINVAL
116 }
117 }
118
119 /// Creates an [`Error`] from a kernel error code.
120 ///
121 /// Returns [`None`] if `errno` is out-of-range.
try_from_errno(errno: crate::ffi::c_int) -> Option<Error>122 const fn try_from_errno(errno: crate::ffi::c_int) -> Option<Error> {
123 if errno < -(bindings::MAX_ERRNO as i32) || errno >= 0 {
124 return None;
125 }
126
127 // SAFETY: `errno` is checked above to be in a valid range.
128 Some(unsafe { Error::from_errno_unchecked(errno) })
129 }
130
131 /// Creates an [`Error`] from a kernel error code.
132 ///
133 /// # Safety
134 ///
135 /// `errno` must be within error code range (i.e. `>= -MAX_ERRNO && < 0`).
from_errno_unchecked(errno: crate::ffi::c_int) -> Error136 const unsafe fn from_errno_unchecked(errno: crate::ffi::c_int) -> Error {
137 // INVARIANT: The contract ensures the type invariant
138 // will hold.
139 // SAFETY: The caller guarantees `errno` is non-zero.
140 Error(unsafe { NonZeroI32::new_unchecked(errno) })
141 }
142
143 /// Returns the kernel error code.
to_errno(self) -> crate::ffi::c_int144 pub fn to_errno(self) -> crate::ffi::c_int {
145 self.0.get()
146 }
147
148 #[cfg(CONFIG_BLOCK)]
to_blk_status(self) -> bindings::blk_status_t149 pub(crate) fn to_blk_status(self) -> bindings::blk_status_t {
150 // SAFETY: `self.0` is a valid error due to its invariant.
151 unsafe { bindings::errno_to_blk_status(self.0.get()) }
152 }
153
154 /// Returns the error encoded as a pointer.
to_ptr<T>(self) -> *mut T155 pub fn to_ptr<T>(self) -> *mut T {
156 // SAFETY: `self.0` is a valid error due to its invariant.
157 unsafe { bindings::ERR_PTR(self.0.get() as crate::ffi::c_long).cast() }
158 }
159
160 /// Returns a string representing the error, if one exists.
161 #[cfg(not(any(test, testlib)))]
name(&self) -> Option<&'static CStr>162 pub fn name(&self) -> Option<&'static CStr> {
163 // SAFETY: Just an FFI call, there are no extra safety requirements.
164 let ptr = unsafe { bindings::errname(-self.0.get()) };
165 if ptr.is_null() {
166 None
167 } else {
168 // SAFETY: The string returned by `errname` is static and `NUL`-terminated.
169 Some(unsafe { CStr::from_char_ptr(ptr) })
170 }
171 }
172
173 /// Returns a string representing the error, if one exists.
174 ///
175 /// When `testlib` is configured, this always returns `None` to avoid the dependency on a
176 /// kernel function so that tests that use this (e.g., by calling [`Result::unwrap`]) can still
177 /// run in userspace.
178 #[cfg(any(test, testlib))]
name(&self) -> Option<&'static CStr>179 pub fn name(&self) -> Option<&'static CStr> {
180 None
181 }
182 }
183
184 impl fmt::Debug for Error {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result185 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
186 match self.name() {
187 // Print out number if no name can be found.
188 None => f.debug_tuple("Error").field(&-self.0).finish(),
189 Some(name) => f
190 .debug_tuple(
191 // SAFETY: These strings are ASCII-only.
192 unsafe { core::str::from_utf8_unchecked(name.to_bytes()) },
193 )
194 .finish(),
195 }
196 }
197 }
198
199 impl From<AllocError> for Error {
from(_: AllocError) -> Error200 fn from(_: AllocError) -> Error {
201 code::ENOMEM
202 }
203 }
204
205 impl From<TryFromIntError> for Error {
from(_: TryFromIntError) -> Error206 fn from(_: TryFromIntError) -> Error {
207 code::EINVAL
208 }
209 }
210
211 impl From<Utf8Error> for Error {
from(_: Utf8Error) -> Error212 fn from(_: Utf8Error) -> Error {
213 code::EINVAL
214 }
215 }
216
217 impl From<LayoutError> for Error {
from(_: LayoutError) -> Error218 fn from(_: LayoutError) -> Error {
219 code::ENOMEM
220 }
221 }
222
223 impl From<fmt::Error> for Error {
from(_: fmt::Error) -> Error224 fn from(_: fmt::Error) -> Error {
225 code::EINVAL
226 }
227 }
228
229 impl From<core::convert::Infallible> for Error {
from(e: core::convert::Infallible) -> Error230 fn from(e: core::convert::Infallible) -> Error {
231 match e {}
232 }
233 }
234
235 /// A [`Result`] with an [`Error`] error type.
236 ///
237 /// To be used as the return type for functions that may fail.
238 ///
239 /// # Error codes in C and Rust
240 ///
241 /// In C, it is common that functions indicate success or failure through
242 /// their return value; modifying or returning extra data through non-`const`
243 /// pointer parameters. In particular, in the kernel, functions that may fail
244 /// typically return an `int` that represents a generic error code. We model
245 /// those as [`Error`].
246 ///
247 /// In Rust, it is idiomatic to model functions that may fail as returning
248 /// a [`Result`]. Since in the kernel many functions return an error code,
249 /// [`Result`] is a type alias for a [`core::result::Result`] that uses
250 /// [`Error`] as its error type.
251 ///
252 /// Note that even if a function does not return anything when it succeeds,
253 /// it should still be modeled as returning a [`Result`] rather than
254 /// just an [`Error`].
255 ///
256 /// Calling a function that returns [`Result`] forces the caller to handle
257 /// the returned [`Result`].
258 ///
259 /// This can be done "manually" by using [`match`]. Using [`match`] to decode
260 /// the [`Result`] is similar to C where all the return value decoding and the
261 /// error handling is done explicitly by writing handling code for each
262 /// error to cover. Using [`match`] the error and success handling can be
263 /// implemented in all detail as required. For example (inspired by
264 /// [`samples/rust/rust_minimal.rs`]):
265 ///
266 /// ```
267 /// # #[allow(clippy::single_match)]
268 /// fn example() -> Result {
269 /// let mut numbers = KVec::new();
270 ///
271 /// match numbers.push(72, GFP_KERNEL) {
272 /// Err(e) => {
273 /// pr_err!("Error pushing 72: {e:?}");
274 /// return Err(e.into());
275 /// }
276 /// // Do nothing, continue.
277 /// Ok(()) => (),
278 /// }
279 ///
280 /// match numbers.push(108, GFP_KERNEL) {
281 /// Err(e) => {
282 /// pr_err!("Error pushing 108: {e:?}");
283 /// return Err(e.into());
284 /// }
285 /// // Do nothing, continue.
286 /// Ok(()) => (),
287 /// }
288 ///
289 /// match numbers.push(200, GFP_KERNEL) {
290 /// Err(e) => {
291 /// pr_err!("Error pushing 200: {e:?}");
292 /// return Err(e.into());
293 /// }
294 /// // Do nothing, continue.
295 /// Ok(()) => (),
296 /// }
297 ///
298 /// Ok(())
299 /// }
300 /// # example()?;
301 /// # Ok::<(), Error>(())
302 /// ```
303 ///
304 /// An alternative to be more concise is the [`if let`] syntax:
305 ///
306 /// ```
307 /// fn example() -> Result {
308 /// let mut numbers = KVec::new();
309 ///
310 /// if let Err(e) = numbers.push(72, GFP_KERNEL) {
311 /// pr_err!("Error pushing 72: {e:?}");
312 /// return Err(e.into());
313 /// }
314 ///
315 /// if let Err(e) = numbers.push(108, GFP_KERNEL) {
316 /// pr_err!("Error pushing 108: {e:?}");
317 /// return Err(e.into());
318 /// }
319 ///
320 /// if let Err(e) = numbers.push(200, GFP_KERNEL) {
321 /// pr_err!("Error pushing 200: {e:?}");
322 /// return Err(e.into());
323 /// }
324 ///
325 /// Ok(())
326 /// }
327 /// # example()?;
328 /// # Ok::<(), Error>(())
329 /// ```
330 ///
331 /// Instead of these verbose [`match`]/[`if let`], the [`?`] operator can
332 /// be used to handle the [`Result`]. Using the [`?`] operator is often
333 /// the best choice to handle [`Result`] in a non-verbose way as done in
334 /// [`samples/rust/rust_minimal.rs`]:
335 ///
336 /// ```
337 /// fn example() -> Result {
338 /// let mut numbers = KVec::new();
339 ///
340 /// numbers.push(72, GFP_KERNEL)?;
341 /// numbers.push(108, GFP_KERNEL)?;
342 /// numbers.push(200, GFP_KERNEL)?;
343 ///
344 /// Ok(())
345 /// }
346 /// # example()?;
347 /// # Ok::<(), Error>(())
348 /// ```
349 ///
350 /// Another possibility is to call [`unwrap()`](Result::unwrap) or
351 /// [`expect()`](Result::expect). However, use of these functions is
352 /// *heavily discouraged* in the kernel because they trigger a Rust
353 /// [`panic!`] if an error happens, which may destabilize the system or
354 /// entirely break it as a result -- just like the C [`BUG()`] macro.
355 /// Please see the documentation for the C macro [`BUG()`] for guidance
356 /// on when to use these functions.
357 ///
358 /// Alternatively, depending on the use case, using [`unwrap_or()`],
359 /// [`unwrap_or_else()`], [`unwrap_or_default()`] or [`unwrap_unchecked()`]
360 /// might be an option, as well.
361 ///
362 /// For even more details, please see the [Rust documentation].
363 ///
364 /// [`match`]: https://doc.rust-lang.org/reference/expressions/match-expr.html
365 /// [`samples/rust/rust_minimal.rs`]: srctree/samples/rust/rust_minimal.rs
366 /// [`if let`]: https://doc.rust-lang.org/reference/expressions/if-expr.html#if-let-expressions
367 /// [`?`]: https://doc.rust-lang.org/reference/expressions/operator-expr.html#the-question-mark-operator
368 /// [`unwrap()`]: Result::unwrap
369 /// [`expect()`]: Result::expect
370 /// [`BUG()`]: https://docs.kernel.org/process/deprecated.html#bug-and-bug-on
371 /// [`unwrap_or()`]: Result::unwrap_or
372 /// [`unwrap_or_else()`]: Result::unwrap_or_else
373 /// [`unwrap_or_default()`]: Result::unwrap_or_default
374 /// [`unwrap_unchecked()`]: Result::unwrap_unchecked
375 /// [Rust documentation]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html
376 pub type Result<T = (), E = Error> = core::result::Result<T, E>;
377
378 /// Converts an integer as returned by a C kernel function to an error if it's negative, and
379 /// `Ok(())` otherwise.
to_result(err: crate::ffi::c_int) -> Result380 pub fn to_result(err: crate::ffi::c_int) -> Result {
381 if err < 0 {
382 Err(Error::from_errno(err))
383 } else {
384 Ok(())
385 }
386 }
387
388 /// Transform a kernel "error pointer" to a normal pointer.
389 ///
390 /// Some kernel C API functions return an "error pointer" which optionally
391 /// embeds an `errno`. Callers are supposed to check the returned pointer
392 /// for errors. This function performs the check and converts the "error pointer"
393 /// to a normal pointer in an idiomatic fashion.
394 ///
395 /// # Examples
396 ///
397 /// ```ignore
398 /// # use kernel::from_err_ptr;
399 /// # use kernel::bindings;
400 /// fn devm_platform_ioremap_resource(
401 /// pdev: &mut PlatformDevice,
402 /// index: u32,
403 /// ) -> Result<*mut kernel::ffi::c_void> {
404 /// // SAFETY: `pdev` points to a valid platform device. There are no safety requirements
405 /// // on `index`.
406 /// from_err_ptr(unsafe { bindings::devm_platform_ioremap_resource(pdev.to_ptr(), index) })
407 /// }
408 /// ```
from_err_ptr<T>(ptr: *mut T) -> Result<*mut T>409 pub fn from_err_ptr<T>(ptr: *mut T) -> Result<*mut T> {
410 // CAST: Casting a pointer to `*const crate::ffi::c_void` is always valid.
411 let const_ptr: *const crate::ffi::c_void = ptr.cast();
412 // SAFETY: The FFI function does not deref the pointer.
413 if unsafe { bindings::IS_ERR(const_ptr) } {
414 // SAFETY: The FFI function does not deref the pointer.
415 let err = unsafe { bindings::PTR_ERR(const_ptr) };
416
417 #[allow(clippy::unnecessary_cast)]
418 // CAST: If `IS_ERR()` returns `true`,
419 // then `PTR_ERR()` is guaranteed to return a
420 // negative value greater-or-equal to `-bindings::MAX_ERRNO`,
421 // which always fits in an `i16`, as per the invariant above.
422 // And an `i16` always fits in an `i32`. So casting `err` to
423 // an `i32` can never overflow, and is always valid.
424 //
425 // SAFETY: `IS_ERR()` ensures `err` is a
426 // negative value greater-or-equal to `-bindings::MAX_ERRNO`.
427 return Err(unsafe { Error::from_errno_unchecked(err as crate::ffi::c_int) });
428 }
429 Ok(ptr)
430 }
431
432 /// Calls a closure returning a [`crate::error::Result<T>`] and converts the result to
433 /// a C integer result.
434 ///
435 /// This is useful when calling Rust functions that return [`crate::error::Result<T>`]
436 /// from inside `extern "C"` functions that need to return an integer error result.
437 ///
438 /// `T` should be convertible from an `i16` via `From<i16>`.
439 ///
440 /// # Examples
441 ///
442 /// ```ignore
443 /// # use kernel::from_result;
444 /// # use kernel::bindings;
445 /// unsafe extern "C" fn probe_callback(
446 /// pdev: *mut bindings::platform_device,
447 /// ) -> kernel::ffi::c_int {
448 /// from_result(|| {
449 /// let ptr = devm_alloc(pdev)?;
450 /// bindings::platform_set_drvdata(pdev, ptr);
451 /// Ok(0)
452 /// })
453 /// }
454 /// ```
from_result<T, F>(f: F) -> T where T: From<i16>, F: FnOnce() -> Result<T>,455 pub fn from_result<T, F>(f: F) -> T
456 where
457 T: From<i16>,
458 F: FnOnce() -> Result<T>,
459 {
460 match f() {
461 Ok(v) => v,
462 // NO-OVERFLOW: negative `errno`s are no smaller than `-bindings::MAX_ERRNO`,
463 // `-bindings::MAX_ERRNO` fits in an `i16` as per invariant above,
464 // therefore a negative `errno` always fits in an `i16` and will not overflow.
465 Err(e) => T::from(e.to_errno() as i16),
466 }
467 }
468
469 /// Error message for calling a default function of a [`#[vtable]`](macros::vtable) trait.
470 pub const VTABLE_DEFAULT_ERROR: &str =
471 "This function must not be called, see the #[vtable] documentation.";
472