1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpumask.h>
18 #include <linux/cpuset.h>
19 #include <linux/mutex.h>
20 #include <linux/memblock.h>
21 #include <linux/minmax.h>
22 #include <linux/sysfs.h>
23 #include <linux/slab.h>
24 #include <linux/sched/mm.h>
25 #include <linux/mmdebug.h>
26 #include <linux/sched/signal.h>
27 #include <linux/rmap.h>
28 #include <linux/string_choices.h>
29 #include <linux/string_helpers.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/jhash.h>
33 #include <linux/numa.h>
34 #include <linux/llist.h>
35 #include <linux/cma.h>
36 #include <linux/migrate.h>
37 #include <linux/nospec.h>
38 #include <linux/delayacct.h>
39 #include <linux/memory.h>
40 #include <linux/mm_inline.h>
41 #include <linux/padata.h>
42
43 #include <asm/page.h>
44 #include <asm/pgalloc.h>
45 #include <asm/tlb.h>
46 #include <asm/setup.h>
47
48 #include <linux/io.h>
49 #include <linux/hugetlb.h>
50 #include <linux/hugetlb_cgroup.h>
51 #include <linux/node.h>
52 #include <linux/page_owner.h>
53 #include "internal.h"
54 #include "hugetlb_vmemmap.h"
55 #include "hugetlb_cma.h"
56 #include <linux/page-isolation.h>
57
58 int hugetlb_max_hstate __read_mostly;
59 unsigned int default_hstate_idx;
60 struct hstate hstates[HUGE_MAX_HSTATE];
61
62 __initdata nodemask_t hugetlb_bootmem_nodes;
63 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
64 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata;
65
66 /*
67 * Due to ordering constraints across the init code for various
68 * architectures, hugetlb hstate cmdline parameters can't simply
69 * be early_param. early_param might call the setup function
70 * before valid hugetlb page sizes are determined, leading to
71 * incorrect rejection of valid hugepagesz= options.
72 *
73 * So, record the parameters early and consume them whenever the
74 * init code is ready for them, by calling hugetlb_parse_params().
75 */
76
77 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */
78 #define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1)
79 struct hugetlb_cmdline {
80 char *val;
81 int (*setup)(char *val);
82 };
83
84 /* for command line parsing */
85 static struct hstate * __initdata parsed_hstate;
86 static unsigned long __initdata default_hstate_max_huge_pages;
87 static bool __initdata parsed_valid_hugepagesz = true;
88 static bool __initdata parsed_default_hugepagesz;
89 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
90 static unsigned long hugepage_allocation_threads __initdata;
91
92 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata;
93 static int hstate_cmdline_index __initdata;
94 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata;
95 static int hugetlb_param_index __initdata;
96 static __init int hugetlb_add_param(char *s, int (*setup)(char *val));
97 static __init void hugetlb_parse_params(void);
98
99 #define hugetlb_early_param(str, func) \
100 static __init int func##args(char *s) \
101 { \
102 return hugetlb_add_param(s, func); \
103 } \
104 early_param(str, func##args)
105
106 /*
107 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
108 * free_huge_pages, and surplus_huge_pages.
109 */
110 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
111
112 /*
113 * Serializes faults on the same logical page. This is used to
114 * prevent spurious OOMs when the hugepage pool is fully utilized.
115 */
116 static int num_fault_mutexes __ro_after_init;
117 struct mutex *hugetlb_fault_mutex_table __ro_after_init;
118
119 /* Forward declaration */
120 static int hugetlb_acct_memory(struct hstate *h, long delta);
121 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
122 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
123 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
124 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
125 unsigned long start, unsigned long end, bool take_locks);
126 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
127
hugetlb_free_folio(struct folio * folio)128 static void hugetlb_free_folio(struct folio *folio)
129 {
130 if (folio_test_hugetlb_cma(folio)) {
131 hugetlb_cma_free_folio(folio);
132 return;
133 }
134
135 folio_put(folio);
136 }
137
subpool_is_free(struct hugepage_subpool * spool)138 static inline bool subpool_is_free(struct hugepage_subpool *spool)
139 {
140 if (spool->count)
141 return false;
142 if (spool->max_hpages != -1)
143 return spool->used_hpages == 0;
144 if (spool->min_hpages != -1)
145 return spool->rsv_hpages == spool->min_hpages;
146
147 return true;
148 }
149
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)150 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
151 unsigned long irq_flags)
152 {
153 spin_unlock_irqrestore(&spool->lock, irq_flags);
154
155 /* If no pages are used, and no other handles to the subpool
156 * remain, give up any reservations based on minimum size and
157 * free the subpool */
158 if (subpool_is_free(spool)) {
159 if (spool->min_hpages != -1)
160 hugetlb_acct_memory(spool->hstate,
161 -spool->min_hpages);
162 kfree(spool);
163 }
164 }
165
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)166 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
167 long min_hpages)
168 {
169 struct hugepage_subpool *spool;
170
171 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
172 if (!spool)
173 return NULL;
174
175 spin_lock_init(&spool->lock);
176 spool->count = 1;
177 spool->max_hpages = max_hpages;
178 spool->hstate = h;
179 spool->min_hpages = min_hpages;
180
181 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
182 kfree(spool);
183 return NULL;
184 }
185 spool->rsv_hpages = min_hpages;
186
187 return spool;
188 }
189
hugepage_put_subpool(struct hugepage_subpool * spool)190 void hugepage_put_subpool(struct hugepage_subpool *spool)
191 {
192 unsigned long flags;
193
194 spin_lock_irqsave(&spool->lock, flags);
195 BUG_ON(!spool->count);
196 spool->count--;
197 unlock_or_release_subpool(spool, flags);
198 }
199
200 /*
201 * Subpool accounting for allocating and reserving pages.
202 * Return -ENOMEM if there are not enough resources to satisfy the
203 * request. Otherwise, return the number of pages by which the
204 * global pools must be adjusted (upward). The returned value may
205 * only be different than the passed value (delta) in the case where
206 * a subpool minimum size must be maintained.
207 */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)208 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
209 long delta)
210 {
211 long ret = delta;
212
213 if (!spool)
214 return ret;
215
216 spin_lock_irq(&spool->lock);
217
218 if (spool->max_hpages != -1) { /* maximum size accounting */
219 if ((spool->used_hpages + delta) <= spool->max_hpages)
220 spool->used_hpages += delta;
221 else {
222 ret = -ENOMEM;
223 goto unlock_ret;
224 }
225 }
226
227 /* minimum size accounting */
228 if (spool->min_hpages != -1 && spool->rsv_hpages) {
229 if (delta > spool->rsv_hpages) {
230 /*
231 * Asking for more reserves than those already taken on
232 * behalf of subpool. Return difference.
233 */
234 ret = delta - spool->rsv_hpages;
235 spool->rsv_hpages = 0;
236 } else {
237 ret = 0; /* reserves already accounted for */
238 spool->rsv_hpages -= delta;
239 }
240 }
241
242 unlock_ret:
243 spin_unlock_irq(&spool->lock);
244 return ret;
245 }
246
247 /*
248 * Subpool accounting for freeing and unreserving pages.
249 * Return the number of global page reservations that must be dropped.
250 * The return value may only be different than the passed value (delta)
251 * in the case where a subpool minimum size must be maintained.
252 */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)253 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
254 long delta)
255 {
256 long ret = delta;
257 unsigned long flags;
258
259 if (!spool)
260 return delta;
261
262 spin_lock_irqsave(&spool->lock, flags);
263
264 if (spool->max_hpages != -1) /* maximum size accounting */
265 spool->used_hpages -= delta;
266
267 /* minimum size accounting */
268 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
269 if (spool->rsv_hpages + delta <= spool->min_hpages)
270 ret = 0;
271 else
272 ret = spool->rsv_hpages + delta - spool->min_hpages;
273
274 spool->rsv_hpages += delta;
275 if (spool->rsv_hpages > spool->min_hpages)
276 spool->rsv_hpages = spool->min_hpages;
277 }
278
279 /*
280 * If hugetlbfs_put_super couldn't free spool due to an outstanding
281 * quota reference, free it now.
282 */
283 unlock_or_release_subpool(spool, flags);
284
285 return ret;
286 }
287
subpool_vma(struct vm_area_struct * vma)288 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
289 {
290 return subpool_inode(file_inode(vma->vm_file));
291 }
292
293 /*
294 * hugetlb vma_lock helper routines
295 */
hugetlb_vma_lock_read(struct vm_area_struct * vma)296 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
297 {
298 if (__vma_shareable_lock(vma)) {
299 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
300
301 down_read(&vma_lock->rw_sema);
302 } else if (__vma_private_lock(vma)) {
303 struct resv_map *resv_map = vma_resv_map(vma);
304
305 down_read(&resv_map->rw_sema);
306 }
307 }
308
hugetlb_vma_unlock_read(struct vm_area_struct * vma)309 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
310 {
311 if (__vma_shareable_lock(vma)) {
312 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
313
314 up_read(&vma_lock->rw_sema);
315 } else if (__vma_private_lock(vma)) {
316 struct resv_map *resv_map = vma_resv_map(vma);
317
318 up_read(&resv_map->rw_sema);
319 }
320 }
321
hugetlb_vma_lock_write(struct vm_area_struct * vma)322 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
323 {
324 if (__vma_shareable_lock(vma)) {
325 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
326
327 down_write(&vma_lock->rw_sema);
328 } else if (__vma_private_lock(vma)) {
329 struct resv_map *resv_map = vma_resv_map(vma);
330
331 down_write(&resv_map->rw_sema);
332 }
333 }
334
hugetlb_vma_unlock_write(struct vm_area_struct * vma)335 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
336 {
337 if (__vma_shareable_lock(vma)) {
338 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
339
340 up_write(&vma_lock->rw_sema);
341 } else if (__vma_private_lock(vma)) {
342 struct resv_map *resv_map = vma_resv_map(vma);
343
344 up_write(&resv_map->rw_sema);
345 }
346 }
347
hugetlb_vma_trylock_write(struct vm_area_struct * vma)348 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
349 {
350
351 if (__vma_shareable_lock(vma)) {
352 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
353
354 return down_write_trylock(&vma_lock->rw_sema);
355 } else if (__vma_private_lock(vma)) {
356 struct resv_map *resv_map = vma_resv_map(vma);
357
358 return down_write_trylock(&resv_map->rw_sema);
359 }
360
361 return 1;
362 }
363
hugetlb_vma_assert_locked(struct vm_area_struct * vma)364 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
365 {
366 if (__vma_shareable_lock(vma)) {
367 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
368
369 lockdep_assert_held(&vma_lock->rw_sema);
370 } else if (__vma_private_lock(vma)) {
371 struct resv_map *resv_map = vma_resv_map(vma);
372
373 lockdep_assert_held(&resv_map->rw_sema);
374 }
375 }
376
hugetlb_vma_lock_release(struct kref * kref)377 void hugetlb_vma_lock_release(struct kref *kref)
378 {
379 struct hugetlb_vma_lock *vma_lock = container_of(kref,
380 struct hugetlb_vma_lock, refs);
381
382 kfree(vma_lock);
383 }
384
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)385 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
386 {
387 struct vm_area_struct *vma = vma_lock->vma;
388
389 /*
390 * vma_lock structure may or not be released as a result of put,
391 * it certainly will no longer be attached to vma so clear pointer.
392 * Semaphore synchronizes access to vma_lock->vma field.
393 */
394 vma_lock->vma = NULL;
395 vma->vm_private_data = NULL;
396 up_write(&vma_lock->rw_sema);
397 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
398 }
399
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)400 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
401 {
402 if (__vma_shareable_lock(vma)) {
403 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
404
405 __hugetlb_vma_unlock_write_put(vma_lock);
406 } else if (__vma_private_lock(vma)) {
407 struct resv_map *resv_map = vma_resv_map(vma);
408
409 /* no free for anon vmas, but still need to unlock */
410 up_write(&resv_map->rw_sema);
411 }
412 }
413
hugetlb_vma_lock_free(struct vm_area_struct * vma)414 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
415 {
416 /*
417 * Only present in sharable vmas.
418 */
419 if (!vma || !__vma_shareable_lock(vma))
420 return;
421
422 if (vma->vm_private_data) {
423 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
424
425 down_write(&vma_lock->rw_sema);
426 __hugetlb_vma_unlock_write_put(vma_lock);
427 }
428 }
429
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)430 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
431 {
432 struct hugetlb_vma_lock *vma_lock;
433
434 /* Only establish in (flags) sharable vmas */
435 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
436 return;
437
438 /* Should never get here with non-NULL vm_private_data */
439 if (vma->vm_private_data)
440 return;
441
442 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
443 if (!vma_lock) {
444 /*
445 * If we can not allocate structure, then vma can not
446 * participate in pmd sharing. This is only a possible
447 * performance enhancement and memory saving issue.
448 * However, the lock is also used to synchronize page
449 * faults with truncation. If the lock is not present,
450 * unlikely races could leave pages in a file past i_size
451 * until the file is removed. Warn in the unlikely case of
452 * allocation failure.
453 */
454 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
455 return;
456 }
457
458 kref_init(&vma_lock->refs);
459 init_rwsem(&vma_lock->rw_sema);
460 vma_lock->vma = vma;
461 vma->vm_private_data = vma_lock;
462 }
463
464 /* Helper that removes a struct file_region from the resv_map cache and returns
465 * it for use.
466 */
467 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)468 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
469 {
470 struct file_region *nrg;
471
472 VM_BUG_ON(resv->region_cache_count <= 0);
473
474 resv->region_cache_count--;
475 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
476 list_del(&nrg->link);
477
478 nrg->from = from;
479 nrg->to = to;
480
481 return nrg;
482 }
483
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)484 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
485 struct file_region *rg)
486 {
487 #ifdef CONFIG_CGROUP_HUGETLB
488 nrg->reservation_counter = rg->reservation_counter;
489 nrg->css = rg->css;
490 if (rg->css)
491 css_get(rg->css);
492 #endif
493 }
494
495 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)496 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
497 struct hstate *h,
498 struct resv_map *resv,
499 struct file_region *nrg)
500 {
501 #ifdef CONFIG_CGROUP_HUGETLB
502 if (h_cg) {
503 nrg->reservation_counter =
504 &h_cg->rsvd_hugepage[hstate_index(h)];
505 nrg->css = &h_cg->css;
506 /*
507 * The caller will hold exactly one h_cg->css reference for the
508 * whole contiguous reservation region. But this area might be
509 * scattered when there are already some file_regions reside in
510 * it. As a result, many file_regions may share only one css
511 * reference. In order to ensure that one file_region must hold
512 * exactly one h_cg->css reference, we should do css_get for
513 * each file_region and leave the reference held by caller
514 * untouched.
515 */
516 css_get(&h_cg->css);
517 if (!resv->pages_per_hpage)
518 resv->pages_per_hpage = pages_per_huge_page(h);
519 /* pages_per_hpage should be the same for all entries in
520 * a resv_map.
521 */
522 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
523 } else {
524 nrg->reservation_counter = NULL;
525 nrg->css = NULL;
526 }
527 #endif
528 }
529
put_uncharge_info(struct file_region * rg)530 static void put_uncharge_info(struct file_region *rg)
531 {
532 #ifdef CONFIG_CGROUP_HUGETLB
533 if (rg->css)
534 css_put(rg->css);
535 #endif
536 }
537
has_same_uncharge_info(struct file_region * rg,struct file_region * org)538 static bool has_same_uncharge_info(struct file_region *rg,
539 struct file_region *org)
540 {
541 #ifdef CONFIG_CGROUP_HUGETLB
542 return rg->reservation_counter == org->reservation_counter &&
543 rg->css == org->css;
544
545 #else
546 return true;
547 #endif
548 }
549
coalesce_file_region(struct resv_map * resv,struct file_region * rg)550 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
551 {
552 struct file_region *nrg, *prg;
553
554 prg = list_prev_entry(rg, link);
555 if (&prg->link != &resv->regions && prg->to == rg->from &&
556 has_same_uncharge_info(prg, rg)) {
557 prg->to = rg->to;
558
559 list_del(&rg->link);
560 put_uncharge_info(rg);
561 kfree(rg);
562
563 rg = prg;
564 }
565
566 nrg = list_next_entry(rg, link);
567 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
568 has_same_uncharge_info(nrg, rg)) {
569 nrg->from = rg->from;
570
571 list_del(&rg->link);
572 put_uncharge_info(rg);
573 kfree(rg);
574 }
575 }
576
577 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)578 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
579 long to, struct hstate *h, struct hugetlb_cgroup *cg,
580 long *regions_needed)
581 {
582 struct file_region *nrg;
583
584 if (!regions_needed) {
585 nrg = get_file_region_entry_from_cache(map, from, to);
586 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
587 list_add(&nrg->link, rg);
588 coalesce_file_region(map, nrg);
589 } else
590 *regions_needed += 1;
591
592 return to - from;
593 }
594
595 /*
596 * Must be called with resv->lock held.
597 *
598 * Calling this with regions_needed != NULL will count the number of pages
599 * to be added but will not modify the linked list. And regions_needed will
600 * indicate the number of file_regions needed in the cache to carry out to add
601 * the regions for this range.
602 */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)603 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
604 struct hugetlb_cgroup *h_cg,
605 struct hstate *h, long *regions_needed)
606 {
607 long add = 0;
608 struct list_head *head = &resv->regions;
609 long last_accounted_offset = f;
610 struct file_region *iter, *trg = NULL;
611 struct list_head *rg = NULL;
612
613 if (regions_needed)
614 *regions_needed = 0;
615
616 /* In this loop, we essentially handle an entry for the range
617 * [last_accounted_offset, iter->from), at every iteration, with some
618 * bounds checking.
619 */
620 list_for_each_entry_safe(iter, trg, head, link) {
621 /* Skip irrelevant regions that start before our range. */
622 if (iter->from < f) {
623 /* If this region ends after the last accounted offset,
624 * then we need to update last_accounted_offset.
625 */
626 if (iter->to > last_accounted_offset)
627 last_accounted_offset = iter->to;
628 continue;
629 }
630
631 /* When we find a region that starts beyond our range, we've
632 * finished.
633 */
634 if (iter->from >= t) {
635 rg = iter->link.prev;
636 break;
637 }
638
639 /* Add an entry for last_accounted_offset -> iter->from, and
640 * update last_accounted_offset.
641 */
642 if (iter->from > last_accounted_offset)
643 add += hugetlb_resv_map_add(resv, iter->link.prev,
644 last_accounted_offset,
645 iter->from, h, h_cg,
646 regions_needed);
647
648 last_accounted_offset = iter->to;
649 }
650
651 /* Handle the case where our range extends beyond
652 * last_accounted_offset.
653 */
654 if (!rg)
655 rg = head->prev;
656 if (last_accounted_offset < t)
657 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
658 t, h, h_cg, regions_needed);
659
660 return add;
661 }
662
663 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
664 */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)665 static int allocate_file_region_entries(struct resv_map *resv,
666 int regions_needed)
667 __must_hold(&resv->lock)
668 {
669 LIST_HEAD(allocated_regions);
670 int to_allocate = 0, i = 0;
671 struct file_region *trg = NULL, *rg = NULL;
672
673 VM_BUG_ON(regions_needed < 0);
674
675 /*
676 * Check for sufficient descriptors in the cache to accommodate
677 * the number of in progress add operations plus regions_needed.
678 *
679 * This is a while loop because when we drop the lock, some other call
680 * to region_add or region_del may have consumed some region_entries,
681 * so we keep looping here until we finally have enough entries for
682 * (adds_in_progress + regions_needed).
683 */
684 while (resv->region_cache_count <
685 (resv->adds_in_progress + regions_needed)) {
686 to_allocate = resv->adds_in_progress + regions_needed -
687 resv->region_cache_count;
688
689 /* At this point, we should have enough entries in the cache
690 * for all the existing adds_in_progress. We should only be
691 * needing to allocate for regions_needed.
692 */
693 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
694
695 spin_unlock(&resv->lock);
696 for (i = 0; i < to_allocate; i++) {
697 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
698 if (!trg)
699 goto out_of_memory;
700 list_add(&trg->link, &allocated_regions);
701 }
702
703 spin_lock(&resv->lock);
704
705 list_splice(&allocated_regions, &resv->region_cache);
706 resv->region_cache_count += to_allocate;
707 }
708
709 return 0;
710
711 out_of_memory:
712 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
713 list_del(&rg->link);
714 kfree(rg);
715 }
716 return -ENOMEM;
717 }
718
719 /*
720 * Add the huge page range represented by [f, t) to the reserve
721 * map. Regions will be taken from the cache to fill in this range.
722 * Sufficient regions should exist in the cache due to the previous
723 * call to region_chg with the same range, but in some cases the cache will not
724 * have sufficient entries due to races with other code doing region_add or
725 * region_del. The extra needed entries will be allocated.
726 *
727 * regions_needed is the out value provided by a previous call to region_chg.
728 *
729 * Return the number of new huge pages added to the map. This number is greater
730 * than or equal to zero. If file_region entries needed to be allocated for
731 * this operation and we were not able to allocate, it returns -ENOMEM.
732 * region_add of regions of length 1 never allocate file_regions and cannot
733 * fail; region_chg will always allocate at least 1 entry and a region_add for
734 * 1 page will only require at most 1 entry.
735 */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)736 static long region_add(struct resv_map *resv, long f, long t,
737 long in_regions_needed, struct hstate *h,
738 struct hugetlb_cgroup *h_cg)
739 {
740 long add = 0, actual_regions_needed = 0;
741
742 spin_lock(&resv->lock);
743 retry:
744
745 /* Count how many regions are actually needed to execute this add. */
746 add_reservation_in_range(resv, f, t, NULL, NULL,
747 &actual_regions_needed);
748
749 /*
750 * Check for sufficient descriptors in the cache to accommodate
751 * this add operation. Note that actual_regions_needed may be greater
752 * than in_regions_needed, as the resv_map may have been modified since
753 * the region_chg call. In this case, we need to make sure that we
754 * allocate extra entries, such that we have enough for all the
755 * existing adds_in_progress, plus the excess needed for this
756 * operation.
757 */
758 if (actual_regions_needed > in_regions_needed &&
759 resv->region_cache_count <
760 resv->adds_in_progress +
761 (actual_regions_needed - in_regions_needed)) {
762 /* region_add operation of range 1 should never need to
763 * allocate file_region entries.
764 */
765 VM_BUG_ON(t - f <= 1);
766
767 if (allocate_file_region_entries(
768 resv, actual_regions_needed - in_regions_needed)) {
769 return -ENOMEM;
770 }
771
772 goto retry;
773 }
774
775 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
776
777 resv->adds_in_progress -= in_regions_needed;
778
779 spin_unlock(&resv->lock);
780 return add;
781 }
782
783 /*
784 * Examine the existing reserve map and determine how many
785 * huge pages in the specified range [f, t) are NOT currently
786 * represented. This routine is called before a subsequent
787 * call to region_add that will actually modify the reserve
788 * map to add the specified range [f, t). region_chg does
789 * not change the number of huge pages represented by the
790 * map. A number of new file_region structures is added to the cache as a
791 * placeholder, for the subsequent region_add call to use. At least 1
792 * file_region structure is added.
793 *
794 * out_regions_needed is the number of regions added to the
795 * resv->adds_in_progress. This value needs to be provided to a follow up call
796 * to region_add or region_abort for proper accounting.
797 *
798 * Returns the number of huge pages that need to be added to the existing
799 * reservation map for the range [f, t). This number is greater or equal to
800 * zero. -ENOMEM is returned if a new file_region structure or cache entry
801 * is needed and can not be allocated.
802 */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)803 static long region_chg(struct resv_map *resv, long f, long t,
804 long *out_regions_needed)
805 {
806 long chg = 0;
807
808 spin_lock(&resv->lock);
809
810 /* Count how many hugepages in this range are NOT represented. */
811 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
812 out_regions_needed);
813
814 if (*out_regions_needed == 0)
815 *out_regions_needed = 1;
816
817 if (allocate_file_region_entries(resv, *out_regions_needed))
818 return -ENOMEM;
819
820 resv->adds_in_progress += *out_regions_needed;
821
822 spin_unlock(&resv->lock);
823 return chg;
824 }
825
826 /*
827 * Abort the in progress add operation. The adds_in_progress field
828 * of the resv_map keeps track of the operations in progress between
829 * calls to region_chg and region_add. Operations are sometimes
830 * aborted after the call to region_chg. In such cases, region_abort
831 * is called to decrement the adds_in_progress counter. regions_needed
832 * is the value returned by the region_chg call, it is used to decrement
833 * the adds_in_progress counter.
834 *
835 * NOTE: The range arguments [f, t) are not needed or used in this
836 * routine. They are kept to make reading the calling code easier as
837 * arguments will match the associated region_chg call.
838 */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)839 static void region_abort(struct resv_map *resv, long f, long t,
840 long regions_needed)
841 {
842 spin_lock(&resv->lock);
843 VM_BUG_ON(!resv->region_cache_count);
844 resv->adds_in_progress -= regions_needed;
845 spin_unlock(&resv->lock);
846 }
847
848 /*
849 * Delete the specified range [f, t) from the reserve map. If the
850 * t parameter is LONG_MAX, this indicates that ALL regions after f
851 * should be deleted. Locate the regions which intersect [f, t)
852 * and either trim, delete or split the existing regions.
853 *
854 * Returns the number of huge pages deleted from the reserve map.
855 * In the normal case, the return value is zero or more. In the
856 * case where a region must be split, a new region descriptor must
857 * be allocated. If the allocation fails, -ENOMEM will be returned.
858 * NOTE: If the parameter t == LONG_MAX, then we will never split
859 * a region and possibly return -ENOMEM. Callers specifying
860 * t == LONG_MAX do not need to check for -ENOMEM error.
861 */
region_del(struct resv_map * resv,long f,long t)862 static long region_del(struct resv_map *resv, long f, long t)
863 {
864 struct list_head *head = &resv->regions;
865 struct file_region *rg, *trg;
866 struct file_region *nrg = NULL;
867 long del = 0;
868
869 retry:
870 spin_lock(&resv->lock);
871 list_for_each_entry_safe(rg, trg, head, link) {
872 /*
873 * Skip regions before the range to be deleted. file_region
874 * ranges are normally of the form [from, to). However, there
875 * may be a "placeholder" entry in the map which is of the form
876 * (from, to) with from == to. Check for placeholder entries
877 * at the beginning of the range to be deleted.
878 */
879 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
880 continue;
881
882 if (rg->from >= t)
883 break;
884
885 if (f > rg->from && t < rg->to) { /* Must split region */
886 /*
887 * Check for an entry in the cache before dropping
888 * lock and attempting allocation.
889 */
890 if (!nrg &&
891 resv->region_cache_count > resv->adds_in_progress) {
892 nrg = list_first_entry(&resv->region_cache,
893 struct file_region,
894 link);
895 list_del(&nrg->link);
896 resv->region_cache_count--;
897 }
898
899 if (!nrg) {
900 spin_unlock(&resv->lock);
901 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
902 if (!nrg)
903 return -ENOMEM;
904 goto retry;
905 }
906
907 del += t - f;
908 hugetlb_cgroup_uncharge_file_region(
909 resv, rg, t - f, false);
910
911 /* New entry for end of split region */
912 nrg->from = t;
913 nrg->to = rg->to;
914
915 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
916
917 INIT_LIST_HEAD(&nrg->link);
918
919 /* Original entry is trimmed */
920 rg->to = f;
921
922 list_add(&nrg->link, &rg->link);
923 nrg = NULL;
924 break;
925 }
926
927 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
928 del += rg->to - rg->from;
929 hugetlb_cgroup_uncharge_file_region(resv, rg,
930 rg->to - rg->from, true);
931 list_del(&rg->link);
932 kfree(rg);
933 continue;
934 }
935
936 if (f <= rg->from) { /* Trim beginning of region */
937 hugetlb_cgroup_uncharge_file_region(resv, rg,
938 t - rg->from, false);
939
940 del += t - rg->from;
941 rg->from = t;
942 } else { /* Trim end of region */
943 hugetlb_cgroup_uncharge_file_region(resv, rg,
944 rg->to - f, false);
945
946 del += rg->to - f;
947 rg->to = f;
948 }
949 }
950
951 spin_unlock(&resv->lock);
952 kfree(nrg);
953 return del;
954 }
955
956 /*
957 * A rare out of memory error was encountered which prevented removal of
958 * the reserve map region for a page. The huge page itself was free'ed
959 * and removed from the page cache. This routine will adjust the subpool
960 * usage count, and the global reserve count if needed. By incrementing
961 * these counts, the reserve map entry which could not be deleted will
962 * appear as a "reserved" entry instead of simply dangling with incorrect
963 * counts.
964 */
hugetlb_fix_reserve_counts(struct inode * inode)965 void hugetlb_fix_reserve_counts(struct inode *inode)
966 {
967 struct hugepage_subpool *spool = subpool_inode(inode);
968 long rsv_adjust;
969 bool reserved = false;
970
971 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
972 if (rsv_adjust > 0) {
973 struct hstate *h = hstate_inode(inode);
974
975 if (!hugetlb_acct_memory(h, 1))
976 reserved = true;
977 } else if (!rsv_adjust) {
978 reserved = true;
979 }
980
981 if (!reserved)
982 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
983 }
984
985 /*
986 * Count and return the number of huge pages in the reserve map
987 * that intersect with the range [f, t).
988 */
region_count(struct resv_map * resv,long f,long t)989 static long region_count(struct resv_map *resv, long f, long t)
990 {
991 struct list_head *head = &resv->regions;
992 struct file_region *rg;
993 long chg = 0;
994
995 spin_lock(&resv->lock);
996 /* Locate each segment we overlap with, and count that overlap. */
997 list_for_each_entry(rg, head, link) {
998 long seg_from;
999 long seg_to;
1000
1001 if (rg->to <= f)
1002 continue;
1003 if (rg->from >= t)
1004 break;
1005
1006 seg_from = max(rg->from, f);
1007 seg_to = min(rg->to, t);
1008
1009 chg += seg_to - seg_from;
1010 }
1011 spin_unlock(&resv->lock);
1012
1013 return chg;
1014 }
1015
1016 /*
1017 * Convert the address within this vma to the page offset within
1018 * the mapping, huge page units here.
1019 */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)1020 static pgoff_t vma_hugecache_offset(struct hstate *h,
1021 struct vm_area_struct *vma, unsigned long address)
1022 {
1023 return ((address - vma->vm_start) >> huge_page_shift(h)) +
1024 (vma->vm_pgoff >> huge_page_order(h));
1025 }
1026
1027 /**
1028 * vma_kernel_pagesize - Page size granularity for this VMA.
1029 * @vma: The user mapping.
1030 *
1031 * Folios in this VMA will be aligned to, and at least the size of the
1032 * number of bytes returned by this function.
1033 *
1034 * Return: The default size of the folios allocated when backing a VMA.
1035 */
vma_kernel_pagesize(struct vm_area_struct * vma)1036 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1037 {
1038 if (vma->vm_ops && vma->vm_ops->pagesize)
1039 return vma->vm_ops->pagesize(vma);
1040 return PAGE_SIZE;
1041 }
1042 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1043
1044 /*
1045 * Return the page size being used by the MMU to back a VMA. In the majority
1046 * of cases, the page size used by the kernel matches the MMU size. On
1047 * architectures where it differs, an architecture-specific 'strong'
1048 * version of this symbol is required.
1049 */
vma_mmu_pagesize(struct vm_area_struct * vma)1050 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1051 {
1052 return vma_kernel_pagesize(vma);
1053 }
1054
1055 /*
1056 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1057 * bits of the reservation map pointer, which are always clear due to
1058 * alignment.
1059 */
1060 #define HPAGE_RESV_OWNER (1UL << 0)
1061 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1062 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1063
1064 /*
1065 * These helpers are used to track how many pages are reserved for
1066 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1067 * is guaranteed to have their future faults succeed.
1068 *
1069 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1070 * the reserve counters are updated with the hugetlb_lock held. It is safe
1071 * to reset the VMA at fork() time as it is not in use yet and there is no
1072 * chance of the global counters getting corrupted as a result of the values.
1073 *
1074 * The private mapping reservation is represented in a subtly different
1075 * manner to a shared mapping. A shared mapping has a region map associated
1076 * with the underlying file, this region map represents the backing file
1077 * pages which have ever had a reservation assigned which this persists even
1078 * after the page is instantiated. A private mapping has a region map
1079 * associated with the original mmap which is attached to all VMAs which
1080 * reference it, this region map represents those offsets which have consumed
1081 * reservation ie. where pages have been instantiated.
1082 */
get_vma_private_data(struct vm_area_struct * vma)1083 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1084 {
1085 return (unsigned long)vma->vm_private_data;
1086 }
1087
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1088 static void set_vma_private_data(struct vm_area_struct *vma,
1089 unsigned long value)
1090 {
1091 vma->vm_private_data = (void *)value;
1092 }
1093
1094 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1095 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1096 struct hugetlb_cgroup *h_cg,
1097 struct hstate *h)
1098 {
1099 #ifdef CONFIG_CGROUP_HUGETLB
1100 if (!h_cg || !h) {
1101 resv_map->reservation_counter = NULL;
1102 resv_map->pages_per_hpage = 0;
1103 resv_map->css = NULL;
1104 } else {
1105 resv_map->reservation_counter =
1106 &h_cg->rsvd_hugepage[hstate_index(h)];
1107 resv_map->pages_per_hpage = pages_per_huge_page(h);
1108 resv_map->css = &h_cg->css;
1109 }
1110 #endif
1111 }
1112
resv_map_alloc(void)1113 struct resv_map *resv_map_alloc(void)
1114 {
1115 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1116 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1117
1118 if (!resv_map || !rg) {
1119 kfree(resv_map);
1120 kfree(rg);
1121 return NULL;
1122 }
1123
1124 kref_init(&resv_map->refs);
1125 spin_lock_init(&resv_map->lock);
1126 INIT_LIST_HEAD(&resv_map->regions);
1127 init_rwsem(&resv_map->rw_sema);
1128
1129 resv_map->adds_in_progress = 0;
1130 /*
1131 * Initialize these to 0. On shared mappings, 0's here indicate these
1132 * fields don't do cgroup accounting. On private mappings, these will be
1133 * re-initialized to the proper values, to indicate that hugetlb cgroup
1134 * reservations are to be un-charged from here.
1135 */
1136 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1137
1138 INIT_LIST_HEAD(&resv_map->region_cache);
1139 list_add(&rg->link, &resv_map->region_cache);
1140 resv_map->region_cache_count = 1;
1141
1142 return resv_map;
1143 }
1144
resv_map_release(struct kref * ref)1145 void resv_map_release(struct kref *ref)
1146 {
1147 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1148 struct list_head *head = &resv_map->region_cache;
1149 struct file_region *rg, *trg;
1150
1151 /* Clear out any active regions before we release the map. */
1152 region_del(resv_map, 0, LONG_MAX);
1153
1154 /* ... and any entries left in the cache */
1155 list_for_each_entry_safe(rg, trg, head, link) {
1156 list_del(&rg->link);
1157 kfree(rg);
1158 }
1159
1160 VM_BUG_ON(resv_map->adds_in_progress);
1161
1162 kfree(resv_map);
1163 }
1164
inode_resv_map(struct inode * inode)1165 static inline struct resv_map *inode_resv_map(struct inode *inode)
1166 {
1167 /*
1168 * At inode evict time, i_mapping may not point to the original
1169 * address space within the inode. This original address space
1170 * contains the pointer to the resv_map. So, always use the
1171 * address space embedded within the inode.
1172 * The VERY common case is inode->mapping == &inode->i_data but,
1173 * this may not be true for device special inodes.
1174 */
1175 return (struct resv_map *)(&inode->i_data)->i_private_data;
1176 }
1177
vma_resv_map(struct vm_area_struct * vma)1178 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1179 {
1180 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1181 if (vma->vm_flags & VM_MAYSHARE) {
1182 struct address_space *mapping = vma->vm_file->f_mapping;
1183 struct inode *inode = mapping->host;
1184
1185 return inode_resv_map(inode);
1186
1187 } else {
1188 return (struct resv_map *)(get_vma_private_data(vma) &
1189 ~HPAGE_RESV_MASK);
1190 }
1191 }
1192
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)1193 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1194 {
1195 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1196 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1197
1198 set_vma_private_data(vma, (unsigned long)map);
1199 }
1200
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1201 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1202 {
1203 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1204 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1205
1206 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1207 }
1208
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1209 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1210 {
1211 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1212
1213 return (get_vma_private_data(vma) & flag) != 0;
1214 }
1215
__vma_private_lock(struct vm_area_struct * vma)1216 bool __vma_private_lock(struct vm_area_struct *vma)
1217 {
1218 return !(vma->vm_flags & VM_MAYSHARE) &&
1219 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1220 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1221 }
1222
hugetlb_dup_vma_private(struct vm_area_struct * vma)1223 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1224 {
1225 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1226 /*
1227 * Clear vm_private_data
1228 * - For shared mappings this is a per-vma semaphore that may be
1229 * allocated in a subsequent call to hugetlb_vm_op_open.
1230 * Before clearing, make sure pointer is not associated with vma
1231 * as this will leak the structure. This is the case when called
1232 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1233 * been called to allocate a new structure.
1234 * - For MAP_PRIVATE mappings, this is the reserve map which does
1235 * not apply to children. Faults generated by the children are
1236 * not guaranteed to succeed, even if read-only.
1237 */
1238 if (vma->vm_flags & VM_MAYSHARE) {
1239 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1240
1241 if (vma_lock && vma_lock->vma != vma)
1242 vma->vm_private_data = NULL;
1243 } else
1244 vma->vm_private_data = NULL;
1245 }
1246
1247 /*
1248 * Reset and decrement one ref on hugepage private reservation.
1249 * Called with mm->mmap_lock writer semaphore held.
1250 * This function should be only used by mremap and operate on
1251 * same sized vma. It should never come here with last ref on the
1252 * reservation.
1253 */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1254 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1255 {
1256 /*
1257 * Clear the old hugetlb private page reservation.
1258 * It has already been transferred to new_vma.
1259 *
1260 * During a mremap() operation of a hugetlb vma we call move_vma()
1261 * which copies vma into new_vma and unmaps vma. After the copy
1262 * operation both new_vma and vma share a reference to the resv_map
1263 * struct, and at that point vma is about to be unmapped. We don't
1264 * want to return the reservation to the pool at unmap of vma because
1265 * the reservation still lives on in new_vma, so simply decrement the
1266 * ref here and remove the resv_map reference from this vma.
1267 */
1268 struct resv_map *reservations = vma_resv_map(vma);
1269
1270 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1271 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1272 kref_put(&reservations->refs, resv_map_release);
1273 }
1274
1275 hugetlb_dup_vma_private(vma);
1276 }
1277
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1278 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1279 {
1280 int nid = folio_nid(folio);
1281
1282 lockdep_assert_held(&hugetlb_lock);
1283 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1284
1285 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1286 h->free_huge_pages++;
1287 h->free_huge_pages_node[nid]++;
1288 folio_set_hugetlb_freed(folio);
1289 }
1290
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1291 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1292 int nid)
1293 {
1294 struct folio *folio;
1295 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1296
1297 lockdep_assert_held(&hugetlb_lock);
1298 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1299 if (pin && !folio_is_longterm_pinnable(folio))
1300 continue;
1301
1302 if (folio_test_hwpoison(folio))
1303 continue;
1304
1305 if (is_migrate_isolate_page(&folio->page))
1306 continue;
1307
1308 list_move(&folio->lru, &h->hugepage_activelist);
1309 folio_ref_unfreeze(folio, 1);
1310 folio_clear_hugetlb_freed(folio);
1311 h->free_huge_pages--;
1312 h->free_huge_pages_node[nid]--;
1313 return folio;
1314 }
1315
1316 return NULL;
1317 }
1318
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1319 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1320 int nid, nodemask_t *nmask)
1321 {
1322 unsigned int cpuset_mems_cookie;
1323 struct zonelist *zonelist;
1324 struct zone *zone;
1325 struct zoneref *z;
1326 int node = NUMA_NO_NODE;
1327
1328 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1329 if (nid == NUMA_NO_NODE)
1330 nid = numa_node_id();
1331
1332 zonelist = node_zonelist(nid, gfp_mask);
1333
1334 retry_cpuset:
1335 cpuset_mems_cookie = read_mems_allowed_begin();
1336 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1337 struct folio *folio;
1338
1339 if (!cpuset_zone_allowed(zone, gfp_mask))
1340 continue;
1341 /*
1342 * no need to ask again on the same node. Pool is node rather than
1343 * zone aware
1344 */
1345 if (zone_to_nid(zone) == node)
1346 continue;
1347 node = zone_to_nid(zone);
1348
1349 folio = dequeue_hugetlb_folio_node_exact(h, node);
1350 if (folio)
1351 return folio;
1352 }
1353 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1354 goto retry_cpuset;
1355
1356 return NULL;
1357 }
1358
available_huge_pages(struct hstate * h)1359 static unsigned long available_huge_pages(struct hstate *h)
1360 {
1361 return h->free_huge_pages - h->resv_huge_pages;
1362 }
1363
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,long gbl_chg)1364 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1365 struct vm_area_struct *vma,
1366 unsigned long address, long gbl_chg)
1367 {
1368 struct folio *folio = NULL;
1369 struct mempolicy *mpol;
1370 gfp_t gfp_mask;
1371 nodemask_t *nodemask;
1372 int nid;
1373
1374 /*
1375 * gbl_chg==1 means the allocation requires a new page that was not
1376 * reserved before. Making sure there's at least one free page.
1377 */
1378 if (gbl_chg && !available_huge_pages(h))
1379 goto err;
1380
1381 gfp_mask = htlb_alloc_mask(h);
1382 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1383
1384 if (mpol_is_preferred_many(mpol)) {
1385 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1386 nid, nodemask);
1387
1388 /* Fallback to all nodes if page==NULL */
1389 nodemask = NULL;
1390 }
1391
1392 if (!folio)
1393 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1394 nid, nodemask);
1395
1396 mpol_cond_put(mpol);
1397 return folio;
1398
1399 err:
1400 return NULL;
1401 }
1402
1403 /*
1404 * common helper functions for hstate_next_node_to_{alloc|free}.
1405 * We may have allocated or freed a huge page based on a different
1406 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1407 * be outside of *nodes_allowed. Ensure that we use an allowed
1408 * node for alloc or free.
1409 */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1410 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1411 {
1412 nid = next_node_in(nid, *nodes_allowed);
1413 VM_BUG_ON(nid >= MAX_NUMNODES);
1414
1415 return nid;
1416 }
1417
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1418 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1419 {
1420 if (!node_isset(nid, *nodes_allowed))
1421 nid = next_node_allowed(nid, nodes_allowed);
1422 return nid;
1423 }
1424
1425 /*
1426 * returns the previously saved node ["this node"] from which to
1427 * allocate a persistent huge page for the pool and advance the
1428 * next node from which to allocate, handling wrap at end of node
1429 * mask.
1430 */
hstate_next_node_to_alloc(int * next_node,nodemask_t * nodes_allowed)1431 static int hstate_next_node_to_alloc(int *next_node,
1432 nodemask_t *nodes_allowed)
1433 {
1434 int nid;
1435
1436 VM_BUG_ON(!nodes_allowed);
1437
1438 nid = get_valid_node_allowed(*next_node, nodes_allowed);
1439 *next_node = next_node_allowed(nid, nodes_allowed);
1440
1441 return nid;
1442 }
1443
1444 /*
1445 * helper for remove_pool_hugetlb_folio() - return the previously saved
1446 * node ["this node"] from which to free a huge page. Advance the
1447 * next node id whether or not we find a free huge page to free so
1448 * that the next attempt to free addresses the next node.
1449 */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1450 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1451 {
1452 int nid;
1453
1454 VM_BUG_ON(!nodes_allowed);
1455
1456 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1457 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1458
1459 return nid;
1460 }
1461
1462 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \
1463 for (nr_nodes = nodes_weight(*mask); \
1464 nr_nodes > 0 && \
1465 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \
1466 nr_nodes--)
1467
1468 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1469 for (nr_nodes = nodes_weight(*mask); \
1470 nr_nodes > 0 && \
1471 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1472 nr_nodes--)
1473
1474 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1475 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1476 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1477 int nid, nodemask_t *nodemask)
1478 {
1479 struct folio *folio;
1480 int order = huge_page_order(h);
1481 bool retried = false;
1482
1483 if (nid == NUMA_NO_NODE)
1484 nid = numa_mem_id();
1485 retry:
1486 folio = hugetlb_cma_alloc_folio(h, gfp_mask, nid, nodemask);
1487 if (!folio) {
1488 if (hugetlb_cma_exclusive_alloc())
1489 return NULL;
1490
1491 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1492 if (!folio)
1493 return NULL;
1494 }
1495
1496 if (folio_ref_freeze(folio, 1))
1497 return folio;
1498
1499 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1500 hugetlb_free_folio(folio);
1501 if (!retried) {
1502 retried = true;
1503 goto retry;
1504 }
1505 return NULL;
1506 }
1507
1508 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1509 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1510 int nid, nodemask_t *nodemask)
1511 {
1512 return NULL;
1513 }
1514 #endif /* CONFIG_CONTIG_ALLOC */
1515
1516 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1517 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1518 int nid, nodemask_t *nodemask)
1519 {
1520 return NULL;
1521 }
1522 #endif
1523
1524 /*
1525 * Remove hugetlb folio from lists.
1526 * If vmemmap exists for the folio, clear the hugetlb flag so that the
1527 * folio appears as just a compound page. Otherwise, wait until after
1528 * allocating vmemmap to clear the flag.
1529 *
1530 * Must be called with hugetlb lock held.
1531 */
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1532 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1533 bool adjust_surplus)
1534 {
1535 int nid = folio_nid(folio);
1536
1537 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1538 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1539
1540 lockdep_assert_held(&hugetlb_lock);
1541 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1542 return;
1543
1544 list_del(&folio->lru);
1545
1546 if (folio_test_hugetlb_freed(folio)) {
1547 folio_clear_hugetlb_freed(folio);
1548 h->free_huge_pages--;
1549 h->free_huge_pages_node[nid]--;
1550 }
1551 if (adjust_surplus) {
1552 h->surplus_huge_pages--;
1553 h->surplus_huge_pages_node[nid]--;
1554 }
1555
1556 /*
1557 * We can only clear the hugetlb flag after allocating vmemmap
1558 * pages. Otherwise, someone (memory error handling) may try to write
1559 * to tail struct pages.
1560 */
1561 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1562 __folio_clear_hugetlb(folio);
1563
1564 h->nr_huge_pages--;
1565 h->nr_huge_pages_node[nid]--;
1566 }
1567
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1568 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1569 bool adjust_surplus)
1570 {
1571 int nid = folio_nid(folio);
1572
1573 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1574
1575 lockdep_assert_held(&hugetlb_lock);
1576
1577 INIT_LIST_HEAD(&folio->lru);
1578 h->nr_huge_pages++;
1579 h->nr_huge_pages_node[nid]++;
1580
1581 if (adjust_surplus) {
1582 h->surplus_huge_pages++;
1583 h->surplus_huge_pages_node[nid]++;
1584 }
1585
1586 __folio_set_hugetlb(folio);
1587 folio_change_private(folio, NULL);
1588 /*
1589 * We have to set hugetlb_vmemmap_optimized again as above
1590 * folio_change_private(folio, NULL) cleared it.
1591 */
1592 folio_set_hugetlb_vmemmap_optimized(folio);
1593
1594 arch_clear_hugetlb_flags(folio);
1595 enqueue_hugetlb_folio(h, folio);
1596 }
1597
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1598 static void __update_and_free_hugetlb_folio(struct hstate *h,
1599 struct folio *folio)
1600 {
1601 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1602
1603 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1604 return;
1605
1606 /*
1607 * If we don't know which subpages are hwpoisoned, we can't free
1608 * the hugepage, so it's leaked intentionally.
1609 */
1610 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1611 return;
1612
1613 /*
1614 * If folio is not vmemmap optimized (!clear_flag), then the folio
1615 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
1616 * can only be passed hugetlb pages and will BUG otherwise.
1617 */
1618 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1619 spin_lock_irq(&hugetlb_lock);
1620 /*
1621 * If we cannot allocate vmemmap pages, just refuse to free the
1622 * page and put the page back on the hugetlb free list and treat
1623 * as a surplus page.
1624 */
1625 add_hugetlb_folio(h, folio, true);
1626 spin_unlock_irq(&hugetlb_lock);
1627 return;
1628 }
1629
1630 /*
1631 * If vmemmap pages were allocated above, then we need to clear the
1632 * hugetlb flag under the hugetlb lock.
1633 */
1634 if (folio_test_hugetlb(folio)) {
1635 spin_lock_irq(&hugetlb_lock);
1636 __folio_clear_hugetlb(folio);
1637 spin_unlock_irq(&hugetlb_lock);
1638 }
1639
1640 /*
1641 * Move PageHWPoison flag from head page to the raw error pages,
1642 * which makes any healthy subpages reusable.
1643 */
1644 if (unlikely(folio_test_hwpoison(folio)))
1645 folio_clear_hugetlb_hwpoison(folio);
1646
1647 folio_ref_unfreeze(folio, 1);
1648
1649 hugetlb_free_folio(folio);
1650 }
1651
1652 /*
1653 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1654 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1655 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1656 * the vmemmap pages.
1657 *
1658 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1659 * freed and frees them one-by-one. As the page->mapping pointer is going
1660 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1661 * structure of a lockless linked list of huge pages to be freed.
1662 */
1663 static LLIST_HEAD(hpage_freelist);
1664
free_hpage_workfn(struct work_struct * work)1665 static void free_hpage_workfn(struct work_struct *work)
1666 {
1667 struct llist_node *node;
1668
1669 node = llist_del_all(&hpage_freelist);
1670
1671 while (node) {
1672 struct folio *folio;
1673 struct hstate *h;
1674
1675 folio = container_of((struct address_space **)node,
1676 struct folio, mapping);
1677 node = node->next;
1678 folio->mapping = NULL;
1679 /*
1680 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1681 * folio_hstate() is going to trigger because a previous call to
1682 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1683 * not use folio_hstate() directly.
1684 */
1685 h = size_to_hstate(folio_size(folio));
1686
1687 __update_and_free_hugetlb_folio(h, folio);
1688
1689 cond_resched();
1690 }
1691 }
1692 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1693
flush_free_hpage_work(struct hstate * h)1694 static inline void flush_free_hpage_work(struct hstate *h)
1695 {
1696 if (hugetlb_vmemmap_optimizable(h))
1697 flush_work(&free_hpage_work);
1698 }
1699
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1700 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1701 bool atomic)
1702 {
1703 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1704 __update_and_free_hugetlb_folio(h, folio);
1705 return;
1706 }
1707
1708 /*
1709 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1710 *
1711 * Only call schedule_work() if hpage_freelist is previously
1712 * empty. Otherwise, schedule_work() had been called but the workfn
1713 * hasn't retrieved the list yet.
1714 */
1715 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1716 schedule_work(&free_hpage_work);
1717 }
1718
bulk_vmemmap_restore_error(struct hstate * h,struct list_head * folio_list,struct list_head * non_hvo_folios)1719 static void bulk_vmemmap_restore_error(struct hstate *h,
1720 struct list_head *folio_list,
1721 struct list_head *non_hvo_folios)
1722 {
1723 struct folio *folio, *t_folio;
1724
1725 if (!list_empty(non_hvo_folios)) {
1726 /*
1727 * Free any restored hugetlb pages so that restore of the
1728 * entire list can be retried.
1729 * The idea is that in the common case of ENOMEM errors freeing
1730 * hugetlb pages with vmemmap we will free up memory so that we
1731 * can allocate vmemmap for more hugetlb pages.
1732 */
1733 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1734 list_del(&folio->lru);
1735 spin_lock_irq(&hugetlb_lock);
1736 __folio_clear_hugetlb(folio);
1737 spin_unlock_irq(&hugetlb_lock);
1738 update_and_free_hugetlb_folio(h, folio, false);
1739 cond_resched();
1740 }
1741 } else {
1742 /*
1743 * In the case where there are no folios which can be
1744 * immediately freed, we loop through the list trying to restore
1745 * vmemmap individually in the hope that someone elsewhere may
1746 * have done something to cause success (such as freeing some
1747 * memory). If unable to restore a hugetlb page, the hugetlb
1748 * page is made a surplus page and removed from the list.
1749 * If are able to restore vmemmap and free one hugetlb page, we
1750 * quit processing the list to retry the bulk operation.
1751 */
1752 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1753 if (hugetlb_vmemmap_restore_folio(h, folio)) {
1754 list_del(&folio->lru);
1755 spin_lock_irq(&hugetlb_lock);
1756 add_hugetlb_folio(h, folio, true);
1757 spin_unlock_irq(&hugetlb_lock);
1758 } else {
1759 list_del(&folio->lru);
1760 spin_lock_irq(&hugetlb_lock);
1761 __folio_clear_hugetlb(folio);
1762 spin_unlock_irq(&hugetlb_lock);
1763 update_and_free_hugetlb_folio(h, folio, false);
1764 cond_resched();
1765 break;
1766 }
1767 }
1768 }
1769
update_and_free_pages_bulk(struct hstate * h,struct list_head * folio_list)1770 static void update_and_free_pages_bulk(struct hstate *h,
1771 struct list_head *folio_list)
1772 {
1773 long ret;
1774 struct folio *folio, *t_folio;
1775 LIST_HEAD(non_hvo_folios);
1776
1777 /*
1778 * First allocate required vmemmmap (if necessary) for all folios.
1779 * Carefully handle errors and free up any available hugetlb pages
1780 * in an effort to make forward progress.
1781 */
1782 retry:
1783 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1784 if (ret < 0) {
1785 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1786 goto retry;
1787 }
1788
1789 /*
1790 * At this point, list should be empty, ret should be >= 0 and there
1791 * should only be pages on the non_hvo_folios list.
1792 * Do note that the non_hvo_folios list could be empty.
1793 * Without HVO enabled, ret will be 0 and there is no need to call
1794 * __folio_clear_hugetlb as this was done previously.
1795 */
1796 VM_WARN_ON(!list_empty(folio_list));
1797 VM_WARN_ON(ret < 0);
1798 if (!list_empty(&non_hvo_folios) && ret) {
1799 spin_lock_irq(&hugetlb_lock);
1800 list_for_each_entry(folio, &non_hvo_folios, lru)
1801 __folio_clear_hugetlb(folio);
1802 spin_unlock_irq(&hugetlb_lock);
1803 }
1804
1805 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1806 update_and_free_hugetlb_folio(h, folio, false);
1807 cond_resched();
1808 }
1809 }
1810
size_to_hstate(unsigned long size)1811 struct hstate *size_to_hstate(unsigned long size)
1812 {
1813 struct hstate *h;
1814
1815 for_each_hstate(h) {
1816 if (huge_page_size(h) == size)
1817 return h;
1818 }
1819 return NULL;
1820 }
1821
free_huge_folio(struct folio * folio)1822 void free_huge_folio(struct folio *folio)
1823 {
1824 /*
1825 * Can't pass hstate in here because it is called from the
1826 * generic mm code.
1827 */
1828 struct hstate *h = folio_hstate(folio);
1829 int nid = folio_nid(folio);
1830 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1831 bool restore_reserve;
1832 unsigned long flags;
1833
1834 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1835 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1836
1837 hugetlb_set_folio_subpool(folio, NULL);
1838 if (folio_test_anon(folio))
1839 __ClearPageAnonExclusive(&folio->page);
1840 folio->mapping = NULL;
1841 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1842 folio_clear_hugetlb_restore_reserve(folio);
1843
1844 /*
1845 * If HPageRestoreReserve was set on page, page allocation consumed a
1846 * reservation. If the page was associated with a subpool, there
1847 * would have been a page reserved in the subpool before allocation
1848 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1849 * reservation, do not call hugepage_subpool_put_pages() as this will
1850 * remove the reserved page from the subpool.
1851 */
1852 if (!restore_reserve) {
1853 /*
1854 * A return code of zero implies that the subpool will be
1855 * under its minimum size if the reservation is not restored
1856 * after page is free. Therefore, force restore_reserve
1857 * operation.
1858 */
1859 if (hugepage_subpool_put_pages(spool, 1) == 0)
1860 restore_reserve = true;
1861 }
1862
1863 spin_lock_irqsave(&hugetlb_lock, flags);
1864 folio_clear_hugetlb_migratable(folio);
1865 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1866 pages_per_huge_page(h), folio);
1867 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1868 pages_per_huge_page(h), folio);
1869 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
1870 mem_cgroup_uncharge(folio);
1871 if (restore_reserve)
1872 h->resv_huge_pages++;
1873
1874 if (folio_test_hugetlb_temporary(folio)) {
1875 remove_hugetlb_folio(h, folio, false);
1876 spin_unlock_irqrestore(&hugetlb_lock, flags);
1877 update_and_free_hugetlb_folio(h, folio, true);
1878 } else if (h->surplus_huge_pages_node[nid]) {
1879 /* remove the page from active list */
1880 remove_hugetlb_folio(h, folio, true);
1881 spin_unlock_irqrestore(&hugetlb_lock, flags);
1882 update_and_free_hugetlb_folio(h, folio, true);
1883 } else {
1884 arch_clear_hugetlb_flags(folio);
1885 enqueue_hugetlb_folio(h, folio);
1886 spin_unlock_irqrestore(&hugetlb_lock, flags);
1887 }
1888 }
1889
1890 /*
1891 * Must be called with the hugetlb lock held
1892 */
__prep_account_new_huge_page(struct hstate * h,int nid)1893 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1894 {
1895 lockdep_assert_held(&hugetlb_lock);
1896 h->nr_huge_pages++;
1897 h->nr_huge_pages_node[nid]++;
1898 }
1899
init_new_hugetlb_folio(struct hstate * h,struct folio * folio)1900 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1901 {
1902 __folio_set_hugetlb(folio);
1903 INIT_LIST_HEAD(&folio->lru);
1904 hugetlb_set_folio_subpool(folio, NULL);
1905 set_hugetlb_cgroup(folio, NULL);
1906 set_hugetlb_cgroup_rsvd(folio, NULL);
1907 }
1908
__prep_new_hugetlb_folio(struct hstate * h,struct folio * folio)1909 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1910 {
1911 init_new_hugetlb_folio(h, folio);
1912 hugetlb_vmemmap_optimize_folio(h, folio);
1913 }
1914
prep_new_hugetlb_folio(struct hstate * h,struct folio * folio,int nid)1915 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1916 {
1917 __prep_new_hugetlb_folio(h, folio);
1918 spin_lock_irq(&hugetlb_lock);
1919 __prep_account_new_huge_page(h, nid);
1920 spin_unlock_irq(&hugetlb_lock);
1921 }
1922
1923 /*
1924 * Find and lock address space (mapping) in write mode.
1925 *
1926 * Upon entry, the folio is locked which means that folio_mapping() is
1927 * stable. Due to locking order, we can only trylock_write. If we can
1928 * not get the lock, simply return NULL to caller.
1929 */
hugetlb_folio_mapping_lock_write(struct folio * folio)1930 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1931 {
1932 struct address_space *mapping = folio_mapping(folio);
1933
1934 if (!mapping)
1935 return mapping;
1936
1937 if (i_mmap_trylock_write(mapping))
1938 return mapping;
1939
1940 return NULL;
1941 }
1942
alloc_buddy_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1943 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
1944 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1945 nodemask_t *node_alloc_noretry)
1946 {
1947 int order = huge_page_order(h);
1948 struct folio *folio;
1949 bool alloc_try_hard = true;
1950
1951 /*
1952 * By default we always try hard to allocate the folio with
1953 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in
1954 * a loop (to adjust global huge page counts) and previous allocation
1955 * failed, do not continue to try hard on the same node. Use the
1956 * node_alloc_noretry bitmap to manage this state information.
1957 */
1958 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1959 alloc_try_hard = false;
1960 if (alloc_try_hard)
1961 gfp_mask |= __GFP_RETRY_MAYFAIL;
1962 if (nid == NUMA_NO_NODE)
1963 nid = numa_mem_id();
1964
1965 folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask);
1966
1967 /*
1968 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
1969 * folio this indicates an overall state change. Clear bit so
1970 * that we resume normal 'try hard' allocations.
1971 */
1972 if (node_alloc_noretry && folio && !alloc_try_hard)
1973 node_clear(nid, *node_alloc_noretry);
1974
1975 /*
1976 * If we tried hard to get a folio but failed, set bit so that
1977 * subsequent attempts will not try as hard until there is an
1978 * overall state change.
1979 */
1980 if (node_alloc_noretry && !folio && alloc_try_hard)
1981 node_set(nid, *node_alloc_noretry);
1982
1983 if (!folio) {
1984 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1985 return NULL;
1986 }
1987
1988 __count_vm_event(HTLB_BUDDY_PGALLOC);
1989 return folio;
1990 }
1991
only_alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1992 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
1993 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1994 nodemask_t *node_alloc_noretry)
1995 {
1996 struct folio *folio;
1997
1998 if (hstate_is_gigantic(h))
1999 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2000 else
2001 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2002 if (folio)
2003 init_new_hugetlb_folio(h, folio);
2004 return folio;
2005 }
2006
2007 /*
2008 * Common helper to allocate a fresh hugetlb page. All specific allocators
2009 * should use this function to get new hugetlb pages
2010 *
2011 * Note that returned page is 'frozen': ref count of head page and all tail
2012 * pages is zero.
2013 */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2014 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2015 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2016 {
2017 struct folio *folio;
2018
2019 if (hstate_is_gigantic(h))
2020 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2021 else
2022 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2023 if (!folio)
2024 return NULL;
2025
2026 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2027 return folio;
2028 }
2029
prep_and_add_allocated_folios(struct hstate * h,struct list_head * folio_list)2030 static void prep_and_add_allocated_folios(struct hstate *h,
2031 struct list_head *folio_list)
2032 {
2033 unsigned long flags;
2034 struct folio *folio, *tmp_f;
2035
2036 /* Send list for bulk vmemmap optimization processing */
2037 hugetlb_vmemmap_optimize_folios(h, folio_list);
2038
2039 /* Add all new pool pages to free lists in one lock cycle */
2040 spin_lock_irqsave(&hugetlb_lock, flags);
2041 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2042 __prep_account_new_huge_page(h, folio_nid(folio));
2043 enqueue_hugetlb_folio(h, folio);
2044 }
2045 spin_unlock_irqrestore(&hugetlb_lock, flags);
2046 }
2047
2048 /*
2049 * Allocates a fresh hugetlb page in a node interleaved manner. The page
2050 * will later be added to the appropriate hugetlb pool.
2051 */
alloc_pool_huge_folio(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry,int * next_node)2052 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2053 nodemask_t *nodes_allowed,
2054 nodemask_t *node_alloc_noretry,
2055 int *next_node)
2056 {
2057 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2058 int nr_nodes, node;
2059
2060 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2061 struct folio *folio;
2062
2063 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2064 nodes_allowed, node_alloc_noretry);
2065 if (folio)
2066 return folio;
2067 }
2068
2069 return NULL;
2070 }
2071
2072 /*
2073 * Remove huge page from pool from next node to free. Attempt to keep
2074 * persistent huge pages more or less balanced over allowed nodes.
2075 * This routine only 'removes' the hugetlb page. The caller must make
2076 * an additional call to free the page to low level allocators.
2077 * Called with hugetlb_lock locked.
2078 */
remove_pool_hugetlb_folio(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2079 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2080 nodemask_t *nodes_allowed, bool acct_surplus)
2081 {
2082 int nr_nodes, node;
2083 struct folio *folio = NULL;
2084
2085 lockdep_assert_held(&hugetlb_lock);
2086 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2087 /*
2088 * If we're returning unused surplus pages, only examine
2089 * nodes with surplus pages.
2090 */
2091 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2092 !list_empty(&h->hugepage_freelists[node])) {
2093 folio = list_entry(h->hugepage_freelists[node].next,
2094 struct folio, lru);
2095 remove_hugetlb_folio(h, folio, acct_surplus);
2096 break;
2097 }
2098 }
2099
2100 return folio;
2101 }
2102
2103 /*
2104 * Dissolve a given free hugetlb folio into free buddy pages. This function
2105 * does nothing for in-use hugetlb folios and non-hugetlb folios.
2106 * This function returns values like below:
2107 *
2108 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2109 * when the system is under memory pressure and the feature of
2110 * freeing unused vmemmap pages associated with each hugetlb page
2111 * is enabled.
2112 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2113 * (allocated or reserved.)
2114 * 0: successfully dissolved free hugepages or the page is not a
2115 * hugepage (considered as already dissolved)
2116 */
dissolve_free_hugetlb_folio(struct folio * folio)2117 int dissolve_free_hugetlb_folio(struct folio *folio)
2118 {
2119 int rc = -EBUSY;
2120
2121 retry:
2122 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2123 if (!folio_test_hugetlb(folio))
2124 return 0;
2125
2126 spin_lock_irq(&hugetlb_lock);
2127 if (!folio_test_hugetlb(folio)) {
2128 rc = 0;
2129 goto out;
2130 }
2131
2132 if (!folio_ref_count(folio)) {
2133 struct hstate *h = folio_hstate(folio);
2134 bool adjust_surplus = false;
2135
2136 if (!available_huge_pages(h))
2137 goto out;
2138
2139 /*
2140 * We should make sure that the page is already on the free list
2141 * when it is dissolved.
2142 */
2143 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2144 spin_unlock_irq(&hugetlb_lock);
2145 cond_resched();
2146
2147 /*
2148 * Theoretically, we should return -EBUSY when we
2149 * encounter this race. In fact, we have a chance
2150 * to successfully dissolve the page if we do a
2151 * retry. Because the race window is quite small.
2152 * If we seize this opportunity, it is an optimization
2153 * for increasing the success rate of dissolving page.
2154 */
2155 goto retry;
2156 }
2157
2158 if (h->surplus_huge_pages_node[folio_nid(folio)])
2159 adjust_surplus = true;
2160 remove_hugetlb_folio(h, folio, adjust_surplus);
2161 h->max_huge_pages--;
2162 spin_unlock_irq(&hugetlb_lock);
2163
2164 /*
2165 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2166 * before freeing the page. update_and_free_hugtlb_folio will fail to
2167 * free the page if it can not allocate required vmemmap. We
2168 * need to adjust max_huge_pages if the page is not freed.
2169 * Attempt to allocate vmemmmap here so that we can take
2170 * appropriate action on failure.
2171 *
2172 * The folio_test_hugetlb check here is because
2173 * remove_hugetlb_folio will clear hugetlb folio flag for
2174 * non-vmemmap optimized hugetlb folios.
2175 */
2176 if (folio_test_hugetlb(folio)) {
2177 rc = hugetlb_vmemmap_restore_folio(h, folio);
2178 if (rc) {
2179 spin_lock_irq(&hugetlb_lock);
2180 add_hugetlb_folio(h, folio, adjust_surplus);
2181 h->max_huge_pages++;
2182 goto out;
2183 }
2184 } else
2185 rc = 0;
2186
2187 update_and_free_hugetlb_folio(h, folio, false);
2188 return rc;
2189 }
2190 out:
2191 spin_unlock_irq(&hugetlb_lock);
2192 return rc;
2193 }
2194
2195 /*
2196 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2197 * make specified memory blocks removable from the system.
2198 * Note that this will dissolve a free gigantic hugepage completely, if any
2199 * part of it lies within the given range.
2200 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2201 * free hugetlb folios that were dissolved before that error are lost.
2202 */
dissolve_free_hugetlb_folios(unsigned long start_pfn,unsigned long end_pfn)2203 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2204 {
2205 unsigned long pfn;
2206 struct folio *folio;
2207 int rc = 0;
2208 unsigned int order;
2209 struct hstate *h;
2210
2211 if (!hugepages_supported())
2212 return rc;
2213
2214 order = huge_page_order(&default_hstate);
2215 for_each_hstate(h)
2216 order = min(order, huge_page_order(h));
2217
2218 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2219 folio = pfn_folio(pfn);
2220 rc = dissolve_free_hugetlb_folio(folio);
2221 if (rc)
2222 break;
2223 }
2224
2225 return rc;
2226 }
2227
2228 /*
2229 * Allocates a fresh surplus page from the page allocator.
2230 */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2231 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2232 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2233 {
2234 struct folio *folio = NULL;
2235
2236 if (hstate_is_gigantic(h))
2237 return NULL;
2238
2239 spin_lock_irq(&hugetlb_lock);
2240 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2241 goto out_unlock;
2242 spin_unlock_irq(&hugetlb_lock);
2243
2244 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2245 if (!folio)
2246 return NULL;
2247
2248 hugetlb_vmemmap_optimize_folio(h, folio);
2249
2250 spin_lock_irq(&hugetlb_lock);
2251 /*
2252 * nr_huge_pages needs to be adjusted within the same lock cycle
2253 * as surplus_pages, otherwise it might confuse
2254 * persistent_huge_pages() momentarily.
2255 */
2256 __prep_account_new_huge_page(h, folio_nid(folio));
2257
2258 /*
2259 * We could have raced with the pool size change.
2260 * Double check that and simply deallocate the new page
2261 * if we would end up overcommiting the surpluses. Abuse
2262 * temporary page to workaround the nasty free_huge_folio
2263 * codeflow
2264 */
2265 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2266 folio_set_hugetlb_temporary(folio);
2267 spin_unlock_irq(&hugetlb_lock);
2268 free_huge_folio(folio);
2269 return NULL;
2270 }
2271
2272 h->surplus_huge_pages++;
2273 h->surplus_huge_pages_node[folio_nid(folio)]++;
2274
2275 out_unlock:
2276 spin_unlock_irq(&hugetlb_lock);
2277
2278 return folio;
2279 }
2280
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2281 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2282 int nid, nodemask_t *nmask)
2283 {
2284 struct folio *folio;
2285
2286 if (hstate_is_gigantic(h))
2287 return NULL;
2288
2289 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2290 if (!folio)
2291 return NULL;
2292
2293 /* fresh huge pages are frozen */
2294 folio_ref_unfreeze(folio, 1);
2295 /*
2296 * We do not account these pages as surplus because they are only
2297 * temporary and will be released properly on the last reference
2298 */
2299 folio_set_hugetlb_temporary(folio);
2300
2301 return folio;
2302 }
2303
2304 /*
2305 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2306 */
2307 static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2308 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2309 struct vm_area_struct *vma, unsigned long addr)
2310 {
2311 struct folio *folio = NULL;
2312 struct mempolicy *mpol;
2313 gfp_t gfp_mask = htlb_alloc_mask(h);
2314 int nid;
2315 nodemask_t *nodemask;
2316
2317 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2318 if (mpol_is_preferred_many(mpol)) {
2319 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2320
2321 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2322
2323 /* Fallback to all nodes if page==NULL */
2324 nodemask = NULL;
2325 }
2326
2327 if (!folio)
2328 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2329 mpol_cond_put(mpol);
2330 return folio;
2331 }
2332
alloc_hugetlb_folio_reserve(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2333 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2334 nodemask_t *nmask, gfp_t gfp_mask)
2335 {
2336 struct folio *folio;
2337
2338 spin_lock_irq(&hugetlb_lock);
2339 if (!h->resv_huge_pages) {
2340 spin_unlock_irq(&hugetlb_lock);
2341 return NULL;
2342 }
2343
2344 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2345 nmask);
2346 if (folio)
2347 h->resv_huge_pages--;
2348
2349 spin_unlock_irq(&hugetlb_lock);
2350 return folio;
2351 }
2352
2353 /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask,bool allow_alloc_fallback)2354 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2355 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2356 {
2357 spin_lock_irq(&hugetlb_lock);
2358 if (available_huge_pages(h)) {
2359 struct folio *folio;
2360
2361 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2362 preferred_nid, nmask);
2363 if (folio) {
2364 spin_unlock_irq(&hugetlb_lock);
2365 return folio;
2366 }
2367 }
2368 spin_unlock_irq(&hugetlb_lock);
2369
2370 /* We cannot fallback to other nodes, as we could break the per-node pool. */
2371 if (!allow_alloc_fallback)
2372 gfp_mask |= __GFP_THISNODE;
2373
2374 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2375 }
2376
policy_mbind_nodemask(gfp_t gfp)2377 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2378 {
2379 #ifdef CONFIG_NUMA
2380 struct mempolicy *mpol = get_task_policy(current);
2381
2382 /*
2383 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2384 * (from policy_nodemask) specifically for hugetlb case
2385 */
2386 if (mpol->mode == MPOL_BIND &&
2387 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
2388 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2389 return &mpol->nodes;
2390 #endif
2391 return NULL;
2392 }
2393
2394 /*
2395 * Increase the hugetlb pool such that it can accommodate a reservation
2396 * of size 'delta'.
2397 */
gather_surplus_pages(struct hstate * h,long delta)2398 static int gather_surplus_pages(struct hstate *h, long delta)
2399 __must_hold(&hugetlb_lock)
2400 {
2401 LIST_HEAD(surplus_list);
2402 struct folio *folio, *tmp;
2403 int ret;
2404 long i;
2405 long needed, allocated;
2406 bool alloc_ok = true;
2407 nodemask_t *mbind_nodemask, alloc_nodemask;
2408
2409 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2410 if (mbind_nodemask)
2411 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed);
2412 else
2413 alloc_nodemask = cpuset_current_mems_allowed;
2414
2415 lockdep_assert_held(&hugetlb_lock);
2416 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2417 if (needed <= 0) {
2418 h->resv_huge_pages += delta;
2419 return 0;
2420 }
2421
2422 allocated = 0;
2423
2424 ret = -ENOMEM;
2425 retry:
2426 spin_unlock_irq(&hugetlb_lock);
2427 for (i = 0; i < needed; i++) {
2428 folio = NULL;
2429
2430 /*
2431 * It is okay to use NUMA_NO_NODE because we use numa_mem_id()
2432 * down the road to pick the current node if that is the case.
2433 */
2434 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2435 NUMA_NO_NODE, &alloc_nodemask);
2436 if (!folio) {
2437 alloc_ok = false;
2438 break;
2439 }
2440 list_add(&folio->lru, &surplus_list);
2441 cond_resched();
2442 }
2443 allocated += i;
2444
2445 /*
2446 * After retaking hugetlb_lock, we need to recalculate 'needed'
2447 * because either resv_huge_pages or free_huge_pages may have changed.
2448 */
2449 spin_lock_irq(&hugetlb_lock);
2450 needed = (h->resv_huge_pages + delta) -
2451 (h->free_huge_pages + allocated);
2452 if (needed > 0) {
2453 if (alloc_ok)
2454 goto retry;
2455 /*
2456 * We were not able to allocate enough pages to
2457 * satisfy the entire reservation so we free what
2458 * we've allocated so far.
2459 */
2460 goto free;
2461 }
2462 /*
2463 * The surplus_list now contains _at_least_ the number of extra pages
2464 * needed to accommodate the reservation. Add the appropriate number
2465 * of pages to the hugetlb pool and free the extras back to the buddy
2466 * allocator. Commit the entire reservation here to prevent another
2467 * process from stealing the pages as they are added to the pool but
2468 * before they are reserved.
2469 */
2470 needed += allocated;
2471 h->resv_huge_pages += delta;
2472 ret = 0;
2473
2474 /* Free the needed pages to the hugetlb pool */
2475 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2476 if ((--needed) < 0)
2477 break;
2478 /* Add the page to the hugetlb allocator */
2479 enqueue_hugetlb_folio(h, folio);
2480 }
2481 free:
2482 spin_unlock_irq(&hugetlb_lock);
2483
2484 /*
2485 * Free unnecessary surplus pages to the buddy allocator.
2486 * Pages have no ref count, call free_huge_folio directly.
2487 */
2488 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2489 free_huge_folio(folio);
2490 spin_lock_irq(&hugetlb_lock);
2491
2492 return ret;
2493 }
2494
2495 /*
2496 * This routine has two main purposes:
2497 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2498 * in unused_resv_pages. This corresponds to the prior adjustments made
2499 * to the associated reservation map.
2500 * 2) Free any unused surplus pages that may have been allocated to satisfy
2501 * the reservation. As many as unused_resv_pages may be freed.
2502 */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2503 static void return_unused_surplus_pages(struct hstate *h,
2504 unsigned long unused_resv_pages)
2505 {
2506 unsigned long nr_pages;
2507 LIST_HEAD(page_list);
2508
2509 lockdep_assert_held(&hugetlb_lock);
2510 /* Uncommit the reservation */
2511 h->resv_huge_pages -= unused_resv_pages;
2512
2513 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2514 goto out;
2515
2516 /*
2517 * Part (or even all) of the reservation could have been backed
2518 * by pre-allocated pages. Only free surplus pages.
2519 */
2520 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2521
2522 /*
2523 * We want to release as many surplus pages as possible, spread
2524 * evenly across all nodes with memory. Iterate across these nodes
2525 * until we can no longer free unreserved surplus pages. This occurs
2526 * when the nodes with surplus pages have no free pages.
2527 * remove_pool_hugetlb_folio() will balance the freed pages across the
2528 * on-line nodes with memory and will handle the hstate accounting.
2529 */
2530 while (nr_pages--) {
2531 struct folio *folio;
2532
2533 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2534 if (!folio)
2535 goto out;
2536
2537 list_add(&folio->lru, &page_list);
2538 }
2539
2540 out:
2541 spin_unlock_irq(&hugetlb_lock);
2542 update_and_free_pages_bulk(h, &page_list);
2543 spin_lock_irq(&hugetlb_lock);
2544 }
2545
2546
2547 /*
2548 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2549 * are used by the huge page allocation routines to manage reservations.
2550 *
2551 * vma_needs_reservation is called to determine if the huge page at addr
2552 * within the vma has an associated reservation. If a reservation is
2553 * needed, the value 1 is returned. The caller is then responsible for
2554 * managing the global reservation and subpool usage counts. After
2555 * the huge page has been allocated, vma_commit_reservation is called
2556 * to add the page to the reservation map. If the page allocation fails,
2557 * the reservation must be ended instead of committed. vma_end_reservation
2558 * is called in such cases.
2559 *
2560 * In the normal case, vma_commit_reservation returns the same value
2561 * as the preceding vma_needs_reservation call. The only time this
2562 * is not the case is if a reserve map was changed between calls. It
2563 * is the responsibility of the caller to notice the difference and
2564 * take appropriate action.
2565 *
2566 * vma_add_reservation is used in error paths where a reservation must
2567 * be restored when a newly allocated huge page must be freed. It is
2568 * to be called after calling vma_needs_reservation to determine if a
2569 * reservation exists.
2570 *
2571 * vma_del_reservation is used in error paths where an entry in the reserve
2572 * map was created during huge page allocation and must be removed. It is to
2573 * be called after calling vma_needs_reservation to determine if a reservation
2574 * exists.
2575 */
2576 enum vma_resv_mode {
2577 VMA_NEEDS_RESV,
2578 VMA_COMMIT_RESV,
2579 VMA_END_RESV,
2580 VMA_ADD_RESV,
2581 VMA_DEL_RESV,
2582 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2583 static long __vma_reservation_common(struct hstate *h,
2584 struct vm_area_struct *vma, unsigned long addr,
2585 enum vma_resv_mode mode)
2586 {
2587 struct resv_map *resv;
2588 pgoff_t idx;
2589 long ret;
2590 long dummy_out_regions_needed;
2591
2592 resv = vma_resv_map(vma);
2593 if (!resv)
2594 return 1;
2595
2596 idx = vma_hugecache_offset(h, vma, addr);
2597 switch (mode) {
2598 case VMA_NEEDS_RESV:
2599 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2600 /* We assume that vma_reservation_* routines always operate on
2601 * 1 page, and that adding to resv map a 1 page entry can only
2602 * ever require 1 region.
2603 */
2604 VM_BUG_ON(dummy_out_regions_needed != 1);
2605 break;
2606 case VMA_COMMIT_RESV:
2607 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2608 /* region_add calls of range 1 should never fail. */
2609 VM_BUG_ON(ret < 0);
2610 break;
2611 case VMA_END_RESV:
2612 region_abort(resv, idx, idx + 1, 1);
2613 ret = 0;
2614 break;
2615 case VMA_ADD_RESV:
2616 if (vma->vm_flags & VM_MAYSHARE) {
2617 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2618 /* region_add calls of range 1 should never fail. */
2619 VM_BUG_ON(ret < 0);
2620 } else {
2621 region_abort(resv, idx, idx + 1, 1);
2622 ret = region_del(resv, idx, idx + 1);
2623 }
2624 break;
2625 case VMA_DEL_RESV:
2626 if (vma->vm_flags & VM_MAYSHARE) {
2627 region_abort(resv, idx, idx + 1, 1);
2628 ret = region_del(resv, idx, idx + 1);
2629 } else {
2630 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2631 /* region_add calls of range 1 should never fail. */
2632 VM_BUG_ON(ret < 0);
2633 }
2634 break;
2635 default:
2636 BUG();
2637 }
2638
2639 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2640 return ret;
2641 /*
2642 * We know private mapping must have HPAGE_RESV_OWNER set.
2643 *
2644 * In most cases, reserves always exist for private mappings.
2645 * However, a file associated with mapping could have been
2646 * hole punched or truncated after reserves were consumed.
2647 * As subsequent fault on such a range will not use reserves.
2648 * Subtle - The reserve map for private mappings has the
2649 * opposite meaning than that of shared mappings. If NO
2650 * entry is in the reserve map, it means a reservation exists.
2651 * If an entry exists in the reserve map, it means the
2652 * reservation has already been consumed. As a result, the
2653 * return value of this routine is the opposite of the
2654 * value returned from reserve map manipulation routines above.
2655 */
2656 if (ret > 0)
2657 return 0;
2658 if (ret == 0)
2659 return 1;
2660 return ret;
2661 }
2662
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2663 static long vma_needs_reservation(struct hstate *h,
2664 struct vm_area_struct *vma, unsigned long addr)
2665 {
2666 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2667 }
2668
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2669 static long vma_commit_reservation(struct hstate *h,
2670 struct vm_area_struct *vma, unsigned long addr)
2671 {
2672 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2673 }
2674
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2675 static void vma_end_reservation(struct hstate *h,
2676 struct vm_area_struct *vma, unsigned long addr)
2677 {
2678 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2679 }
2680
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2681 static long vma_add_reservation(struct hstate *h,
2682 struct vm_area_struct *vma, unsigned long addr)
2683 {
2684 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2685 }
2686
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2687 static long vma_del_reservation(struct hstate *h,
2688 struct vm_area_struct *vma, unsigned long addr)
2689 {
2690 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2691 }
2692
2693 /*
2694 * This routine is called to restore reservation information on error paths.
2695 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2696 * and the hugetlb mutex should remain held when calling this routine.
2697 *
2698 * It handles two specific cases:
2699 * 1) A reservation was in place and the folio consumed the reservation.
2700 * hugetlb_restore_reserve is set in the folio.
2701 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2702 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2703 *
2704 * In case 1, free_huge_folio later in the error path will increment the
2705 * global reserve count. But, free_huge_folio does not have enough context
2706 * to adjust the reservation map. This case deals primarily with private
2707 * mappings. Adjust the reserve map here to be consistent with global
2708 * reserve count adjustments to be made by free_huge_folio. Make sure the
2709 * reserve map indicates there is a reservation present.
2710 *
2711 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2712 */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2713 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2714 unsigned long address, struct folio *folio)
2715 {
2716 long rc = vma_needs_reservation(h, vma, address);
2717
2718 if (folio_test_hugetlb_restore_reserve(folio)) {
2719 if (unlikely(rc < 0))
2720 /*
2721 * Rare out of memory condition in reserve map
2722 * manipulation. Clear hugetlb_restore_reserve so
2723 * that global reserve count will not be incremented
2724 * by free_huge_folio. This will make it appear
2725 * as though the reservation for this folio was
2726 * consumed. This may prevent the task from
2727 * faulting in the folio at a later time. This
2728 * is better than inconsistent global huge page
2729 * accounting of reserve counts.
2730 */
2731 folio_clear_hugetlb_restore_reserve(folio);
2732 else if (rc)
2733 (void)vma_add_reservation(h, vma, address);
2734 else
2735 vma_end_reservation(h, vma, address);
2736 } else {
2737 if (!rc) {
2738 /*
2739 * This indicates there is an entry in the reserve map
2740 * not added by alloc_hugetlb_folio. We know it was added
2741 * before the alloc_hugetlb_folio call, otherwise
2742 * hugetlb_restore_reserve would be set on the folio.
2743 * Remove the entry so that a subsequent allocation
2744 * does not consume a reservation.
2745 */
2746 rc = vma_del_reservation(h, vma, address);
2747 if (rc < 0)
2748 /*
2749 * VERY rare out of memory condition. Since
2750 * we can not delete the entry, set
2751 * hugetlb_restore_reserve so that the reserve
2752 * count will be incremented when the folio
2753 * is freed. This reserve will be consumed
2754 * on a subsequent allocation.
2755 */
2756 folio_set_hugetlb_restore_reserve(folio);
2757 } else if (rc < 0) {
2758 /*
2759 * Rare out of memory condition from
2760 * vma_needs_reservation call. Memory allocation is
2761 * only attempted if a new entry is needed. Therefore,
2762 * this implies there is not an entry in the
2763 * reserve map.
2764 *
2765 * For shared mappings, no entry in the map indicates
2766 * no reservation. We are done.
2767 */
2768 if (!(vma->vm_flags & VM_MAYSHARE))
2769 /*
2770 * For private mappings, no entry indicates
2771 * a reservation is present. Since we can
2772 * not add an entry, set hugetlb_restore_reserve
2773 * on the folio so reserve count will be
2774 * incremented when freed. This reserve will
2775 * be consumed on a subsequent allocation.
2776 */
2777 folio_set_hugetlb_restore_reserve(folio);
2778 } else
2779 /*
2780 * No reservation present, do nothing
2781 */
2782 vma_end_reservation(h, vma, address);
2783 }
2784 }
2785
2786 /*
2787 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2788 * the old one
2789 * @old_folio: Old folio to dissolve
2790 * @list: List to isolate the page in case we need to
2791 * Returns 0 on success, otherwise negated error.
2792 */
alloc_and_dissolve_hugetlb_folio(struct folio * old_folio,struct list_head * list)2793 static int alloc_and_dissolve_hugetlb_folio(struct folio *old_folio,
2794 struct list_head *list)
2795 {
2796 gfp_t gfp_mask;
2797 struct hstate *h;
2798 int nid = folio_nid(old_folio);
2799 struct folio *new_folio = NULL;
2800 int ret = 0;
2801
2802 retry:
2803 /*
2804 * The old_folio might have been dissolved from under our feet, so make sure
2805 * to carefully check the state under the lock.
2806 */
2807 spin_lock_irq(&hugetlb_lock);
2808 if (!folio_test_hugetlb(old_folio)) {
2809 /*
2810 * Freed from under us. Drop new_folio too.
2811 */
2812 goto free_new;
2813 } else if (folio_ref_count(old_folio)) {
2814 bool isolated;
2815
2816 /*
2817 * Someone has grabbed the folio, try to isolate it here.
2818 * Fail with -EBUSY if not possible.
2819 */
2820 spin_unlock_irq(&hugetlb_lock);
2821 isolated = folio_isolate_hugetlb(old_folio, list);
2822 ret = isolated ? 0 : -EBUSY;
2823 spin_lock_irq(&hugetlb_lock);
2824 goto free_new;
2825 } else if (!folio_test_hugetlb_freed(old_folio)) {
2826 /*
2827 * Folio's refcount is 0 but it has not been enqueued in the
2828 * freelist yet. Race window is small, so we can succeed here if
2829 * we retry.
2830 */
2831 spin_unlock_irq(&hugetlb_lock);
2832 cond_resched();
2833 goto retry;
2834 } else {
2835 h = folio_hstate(old_folio);
2836 if (!new_folio) {
2837 spin_unlock_irq(&hugetlb_lock);
2838 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2839 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2840 NULL, NULL);
2841 if (!new_folio)
2842 return -ENOMEM;
2843 __prep_new_hugetlb_folio(h, new_folio);
2844 goto retry;
2845 }
2846
2847 /*
2848 * Ok, old_folio is still a genuine free hugepage. Remove it from
2849 * the freelist and decrease the counters. These will be
2850 * incremented again when calling __prep_account_new_huge_page()
2851 * and enqueue_hugetlb_folio() for new_folio. The counters will
2852 * remain stable since this happens under the lock.
2853 */
2854 remove_hugetlb_folio(h, old_folio, false);
2855
2856 /*
2857 * Ref count on new_folio is already zero as it was dropped
2858 * earlier. It can be directly added to the pool free list.
2859 */
2860 __prep_account_new_huge_page(h, nid);
2861 enqueue_hugetlb_folio(h, new_folio);
2862
2863 /*
2864 * Folio has been replaced, we can safely free the old one.
2865 */
2866 spin_unlock_irq(&hugetlb_lock);
2867 update_and_free_hugetlb_folio(h, old_folio, false);
2868 }
2869
2870 return ret;
2871
2872 free_new:
2873 spin_unlock_irq(&hugetlb_lock);
2874 if (new_folio)
2875 update_and_free_hugetlb_folio(h, new_folio, false);
2876
2877 return ret;
2878 }
2879
isolate_or_dissolve_huge_folio(struct folio * folio,struct list_head * list)2880 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list)
2881 {
2882 int ret = -EBUSY;
2883
2884 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2885 if (!folio_test_hugetlb(folio))
2886 return 0;
2887
2888 /*
2889 * Fence off gigantic pages as there is a cyclic dependency between
2890 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2891 * of bailing out right away without further retrying.
2892 */
2893 if (folio_order(folio) > MAX_PAGE_ORDER)
2894 return -ENOMEM;
2895
2896 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list))
2897 ret = 0;
2898 else if (!folio_ref_count(folio))
2899 ret = alloc_and_dissolve_hugetlb_folio(folio, list);
2900
2901 return ret;
2902 }
2903
2904 /*
2905 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn
2906 * range with new folios.
2907 * @start_pfn: start pfn of the given pfn range
2908 * @end_pfn: end pfn of the given pfn range
2909 * Returns 0 on success, otherwise negated error.
2910 */
replace_free_hugepage_folios(unsigned long start_pfn,unsigned long end_pfn)2911 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn)
2912 {
2913 struct folio *folio;
2914 int ret = 0;
2915
2916 LIST_HEAD(isolate_list);
2917
2918 while (start_pfn < end_pfn) {
2919 folio = pfn_folio(start_pfn);
2920
2921 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2922 if (folio_test_hugetlb(folio) && !folio_ref_count(folio)) {
2923 ret = alloc_and_dissolve_hugetlb_folio(folio, &isolate_list);
2924 if (ret)
2925 break;
2926
2927 putback_movable_pages(&isolate_list);
2928 }
2929 start_pfn++;
2930 }
2931
2932 return ret;
2933 }
2934
wait_for_freed_hugetlb_folios(void)2935 void wait_for_freed_hugetlb_folios(void)
2936 {
2937 if (llist_empty(&hpage_freelist))
2938 return;
2939
2940 flush_work(&free_hpage_work);
2941 }
2942
2943 typedef enum {
2944 /*
2945 * For either 0/1: we checked the per-vma resv map, and one resv
2946 * count either can be reused (0), or an extra needed (1).
2947 */
2948 MAP_CHG_REUSE = 0,
2949 MAP_CHG_NEEDED = 1,
2950 /*
2951 * Cannot use per-vma resv count can be used, hence a new resv
2952 * count is enforced.
2953 *
2954 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except
2955 * that currently vma_needs_reservation() has an unwanted side
2956 * effect to either use end() or commit() to complete the
2957 * transaction. Hence it needs to differenciate from NEEDED.
2958 */
2959 MAP_CHG_ENFORCED = 2,
2960 } map_chg_state;
2961
2962 /*
2963 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW
2964 * faults of hugetlb private mappings on top of a non-page-cache folio (in
2965 * which case even if there's a private vma resv map it won't cover such
2966 * allocation). New call sites should (probably) never set it to true!!
2967 * When it's set, the allocation will bypass all vma level reservations.
2968 */
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,bool cow_from_owner)2969 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
2970 unsigned long addr, bool cow_from_owner)
2971 {
2972 struct hugepage_subpool *spool = subpool_vma(vma);
2973 struct hstate *h = hstate_vma(vma);
2974 struct folio *folio;
2975 long retval, gbl_chg, gbl_reserve;
2976 map_chg_state map_chg;
2977 int ret, idx;
2978 struct hugetlb_cgroup *h_cg = NULL;
2979 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
2980
2981 idx = hstate_index(h);
2982
2983 /* Whether we need a separate per-vma reservation? */
2984 if (cow_from_owner) {
2985 /*
2986 * Special case! Since it's a CoW on top of a reserved
2987 * page, the private resv map doesn't count. So it cannot
2988 * consume the per-vma resv map even if it's reserved.
2989 */
2990 map_chg = MAP_CHG_ENFORCED;
2991 } else {
2992 /*
2993 * Examine the region/reserve map to determine if the process
2994 * has a reservation for the page to be allocated. A return
2995 * code of zero indicates a reservation exists (no change).
2996 */
2997 retval = vma_needs_reservation(h, vma, addr);
2998 if (retval < 0)
2999 return ERR_PTR(-ENOMEM);
3000 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE;
3001 }
3002
3003 /*
3004 * Whether we need a separate global reservation?
3005 *
3006 * Processes that did not create the mapping will have no
3007 * reserves as indicated by the region/reserve map. Check
3008 * that the allocation will not exceed the subpool limit.
3009 * Or if it can get one from the pool reservation directly.
3010 */
3011 if (map_chg) {
3012 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3013 if (gbl_chg < 0)
3014 goto out_end_reservation;
3015 } else {
3016 /*
3017 * If we have the vma reservation ready, no need for extra
3018 * global reservation.
3019 */
3020 gbl_chg = 0;
3021 }
3022
3023 /*
3024 * If this allocation is not consuming a per-vma reservation,
3025 * charge the hugetlb cgroup now.
3026 */
3027 if (map_chg) {
3028 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3029 idx, pages_per_huge_page(h), &h_cg);
3030 if (ret)
3031 goto out_subpool_put;
3032 }
3033
3034 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3035 if (ret)
3036 goto out_uncharge_cgroup_reservation;
3037
3038 spin_lock_irq(&hugetlb_lock);
3039 /*
3040 * glb_chg is passed to indicate whether or not a page must be taken
3041 * from the global free pool (global change). gbl_chg == 0 indicates
3042 * a reservation exists for the allocation.
3043 */
3044 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
3045 if (!folio) {
3046 spin_unlock_irq(&hugetlb_lock);
3047 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3048 if (!folio)
3049 goto out_uncharge_cgroup;
3050 spin_lock_irq(&hugetlb_lock);
3051 list_add(&folio->lru, &h->hugepage_activelist);
3052 folio_ref_unfreeze(folio, 1);
3053 /* Fall through */
3054 }
3055
3056 /*
3057 * Either dequeued or buddy-allocated folio needs to add special
3058 * mark to the folio when it consumes a global reservation.
3059 */
3060 if (!gbl_chg) {
3061 folio_set_hugetlb_restore_reserve(folio);
3062 h->resv_huge_pages--;
3063 }
3064
3065 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3066 /* If allocation is not consuming a reservation, also store the
3067 * hugetlb_cgroup pointer on the page.
3068 */
3069 if (map_chg) {
3070 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3071 h_cg, folio);
3072 }
3073
3074 spin_unlock_irq(&hugetlb_lock);
3075
3076 hugetlb_set_folio_subpool(folio, spool);
3077
3078 if (map_chg != MAP_CHG_ENFORCED) {
3079 /* commit() is only needed if the map_chg is not enforced */
3080 retval = vma_commit_reservation(h, vma, addr);
3081 /*
3082 * Check for possible race conditions. When it happens..
3083 * The page was added to the reservation map between
3084 * vma_needs_reservation and vma_commit_reservation.
3085 * This indicates a race with hugetlb_reserve_pages.
3086 * Adjust for the subpool count incremented above AND
3087 * in hugetlb_reserve_pages for the same page. Also,
3088 * the reservation count added in hugetlb_reserve_pages
3089 * no longer applies.
3090 */
3091 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) {
3092 long rsv_adjust;
3093
3094 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3095 hugetlb_acct_memory(h, -rsv_adjust);
3096 if (map_chg) {
3097 spin_lock_irq(&hugetlb_lock);
3098 hugetlb_cgroup_uncharge_folio_rsvd(
3099 hstate_index(h), pages_per_huge_page(h),
3100 folio);
3101 spin_unlock_irq(&hugetlb_lock);
3102 }
3103 }
3104 }
3105
3106 ret = mem_cgroup_charge_hugetlb(folio, gfp);
3107 /*
3108 * Unconditionally increment NR_HUGETLB here. If it turns out that
3109 * mem_cgroup_charge_hugetlb failed, then immediately free the page and
3110 * decrement NR_HUGETLB.
3111 */
3112 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
3113
3114 if (ret == -ENOMEM) {
3115 free_huge_folio(folio);
3116 return ERR_PTR(-ENOMEM);
3117 }
3118
3119 return folio;
3120
3121 out_uncharge_cgroup:
3122 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3123 out_uncharge_cgroup_reservation:
3124 if (map_chg)
3125 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3126 h_cg);
3127 out_subpool_put:
3128 /*
3129 * put page to subpool iff the quota of subpool's rsv_hpages is used
3130 * during hugepage_subpool_get_pages.
3131 */
3132 if (map_chg && !gbl_chg) {
3133 gbl_reserve = hugepage_subpool_put_pages(spool, 1);
3134 hugetlb_acct_memory(h, -gbl_reserve);
3135 }
3136
3137
3138 out_end_reservation:
3139 if (map_chg != MAP_CHG_ENFORCED)
3140 vma_end_reservation(h, vma, addr);
3141 return ERR_PTR(-ENOSPC);
3142 }
3143
alloc_bootmem(struct hstate * h,int nid,bool node_exact)3144 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact)
3145 {
3146 struct huge_bootmem_page *m;
3147 int listnode = nid;
3148
3149 if (hugetlb_early_cma(h))
3150 m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact);
3151 else {
3152 if (node_exact)
3153 m = memblock_alloc_exact_nid_raw(huge_page_size(h),
3154 huge_page_size(h), 0,
3155 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3156 else {
3157 m = memblock_alloc_try_nid_raw(huge_page_size(h),
3158 huge_page_size(h), 0,
3159 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3160 /*
3161 * For pre-HVO to work correctly, pages need to be on
3162 * the list for the node they were actually allocated
3163 * from. That node may be different in the case of
3164 * fallback by memblock_alloc_try_nid_raw. So,
3165 * extract the actual node first.
3166 */
3167 if (m)
3168 listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m)));
3169 }
3170
3171 if (m) {
3172 m->flags = 0;
3173 m->cma = NULL;
3174 }
3175 }
3176
3177 if (m) {
3178 /*
3179 * Use the beginning of the huge page to store the
3180 * huge_bootmem_page struct (until gather_bootmem
3181 * puts them into the mem_map).
3182 *
3183 * Put them into a private list first because mem_map
3184 * is not up yet.
3185 */
3186 INIT_LIST_HEAD(&m->list);
3187 list_add(&m->list, &huge_boot_pages[listnode]);
3188 m->hstate = h;
3189 }
3190
3191 return m;
3192 }
3193
3194 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3195 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3196 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3197 {
3198 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3199 int nr_nodes, node = nid;
3200
3201 /* do node specific alloc */
3202 if (nid != NUMA_NO_NODE) {
3203 m = alloc_bootmem(h, node, true);
3204 if (!m)
3205 return 0;
3206 goto found;
3207 }
3208
3209 /* allocate from next node when distributing huge pages */
3210 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node,
3211 &hugetlb_bootmem_nodes) {
3212 m = alloc_bootmem(h, node, false);
3213 if (!m)
3214 return 0;
3215 goto found;
3216 }
3217
3218 found:
3219
3220 /*
3221 * Only initialize the head struct page in memmap_init_reserved_pages,
3222 * rest of the struct pages will be initialized by the HugeTLB
3223 * subsystem itself.
3224 * The head struct page is used to get folio information by the HugeTLB
3225 * subsystem like zone id and node id.
3226 */
3227 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3228 huge_page_size(h) - PAGE_SIZE);
3229
3230 return 1;
3231 }
3232
3233 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
hugetlb_folio_init_tail_vmemmap(struct folio * folio,unsigned long start_page_number,unsigned long end_page_number)3234 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3235 unsigned long start_page_number,
3236 unsigned long end_page_number)
3237 {
3238 enum zone_type zone = zone_idx(folio_zone(folio));
3239 int nid = folio_nid(folio);
3240 unsigned long head_pfn = folio_pfn(folio);
3241 unsigned long pfn, end_pfn = head_pfn + end_page_number;
3242 int ret;
3243
3244 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3245 struct page *page = pfn_to_page(pfn);
3246
3247 __init_single_page(page, pfn, zone, nid);
3248 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3249 ret = page_ref_freeze(page, 1);
3250 VM_BUG_ON(!ret);
3251 }
3252 }
3253
hugetlb_folio_init_vmemmap(struct folio * folio,struct hstate * h,unsigned long nr_pages)3254 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3255 struct hstate *h,
3256 unsigned long nr_pages)
3257 {
3258 int ret;
3259
3260 /* Prepare folio head */
3261 __folio_clear_reserved(folio);
3262 __folio_set_head(folio);
3263 ret = folio_ref_freeze(folio, 1);
3264 VM_BUG_ON(!ret);
3265 /* Initialize the necessary tail struct pages */
3266 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3267 prep_compound_head((struct page *)folio, huge_page_order(h));
3268 }
3269
hugetlb_bootmem_page_prehvo(struct huge_bootmem_page * m)3270 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m)
3271 {
3272 return m->flags & HUGE_BOOTMEM_HVO;
3273 }
3274
hugetlb_bootmem_page_earlycma(struct huge_bootmem_page * m)3275 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m)
3276 {
3277 return m->flags & HUGE_BOOTMEM_CMA;
3278 }
3279
3280 /*
3281 * memblock-allocated pageblocks might not have the migrate type set
3282 * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE)
3283 * here, or MIGRATE_CMA if this was a page allocated through an early CMA
3284 * reservation.
3285 *
3286 * In case of vmemmap optimized folios, the tail vmemmap pages are mapped
3287 * read-only, but that's ok - for sparse vmemmap this does not write to
3288 * the page structure.
3289 */
hugetlb_bootmem_init_migratetype(struct folio * folio,struct hstate * h)3290 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio,
3291 struct hstate *h)
3292 {
3293 unsigned long nr_pages = pages_per_huge_page(h), i;
3294
3295 WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio)));
3296
3297 for (i = 0; i < nr_pages; i += pageblock_nr_pages) {
3298 if (folio_test_hugetlb_cma(folio))
3299 init_cma_pageblock(folio_page(folio, i));
3300 else
3301 init_pageblock_migratetype(folio_page(folio, i),
3302 MIGRATE_MOVABLE, false);
3303 }
3304 }
3305
prep_and_add_bootmem_folios(struct hstate * h,struct list_head * folio_list)3306 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3307 struct list_head *folio_list)
3308 {
3309 unsigned long flags;
3310 struct folio *folio, *tmp_f;
3311
3312 /* Send list for bulk vmemmap optimization processing */
3313 hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list);
3314
3315 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3316 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3317 /*
3318 * If HVO fails, initialize all tail struct pages
3319 * We do not worry about potential long lock hold
3320 * time as this is early in boot and there should
3321 * be no contention.
3322 */
3323 hugetlb_folio_init_tail_vmemmap(folio,
3324 HUGETLB_VMEMMAP_RESERVE_PAGES,
3325 pages_per_huge_page(h));
3326 }
3327 hugetlb_bootmem_init_migratetype(folio, h);
3328 /* Subdivide locks to achieve better parallel performance */
3329 spin_lock_irqsave(&hugetlb_lock, flags);
3330 __prep_account_new_huge_page(h, folio_nid(folio));
3331 enqueue_hugetlb_folio(h, folio);
3332 spin_unlock_irqrestore(&hugetlb_lock, flags);
3333 }
3334 }
3335
hugetlb_bootmem_page_zones_valid(int nid,struct huge_bootmem_page * m)3336 bool __init hugetlb_bootmem_page_zones_valid(int nid,
3337 struct huge_bootmem_page *m)
3338 {
3339 unsigned long start_pfn;
3340 bool valid;
3341
3342 if (m->flags & HUGE_BOOTMEM_ZONES_VALID) {
3343 /*
3344 * Already validated, skip check.
3345 */
3346 return true;
3347 }
3348
3349 if (hugetlb_bootmem_page_earlycma(m)) {
3350 valid = cma_validate_zones(m->cma);
3351 goto out;
3352 }
3353
3354 start_pfn = virt_to_phys(m) >> PAGE_SHIFT;
3355
3356 valid = !pfn_range_intersects_zones(nid, start_pfn,
3357 pages_per_huge_page(m->hstate));
3358 out:
3359 if (!valid)
3360 hstate_boot_nrinvalid[hstate_index(m->hstate)]++;
3361
3362 return valid;
3363 }
3364
3365 /*
3366 * Free a bootmem page that was found to be invalid (intersecting with
3367 * multiple zones).
3368 *
3369 * Since it intersects with multiple zones, we can't just do a free
3370 * operation on all pages at once, but instead have to walk all
3371 * pages, freeing them one by one.
3372 */
hugetlb_bootmem_free_invalid_page(int nid,struct page * page,struct hstate * h)3373 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page,
3374 struct hstate *h)
3375 {
3376 unsigned long npages = pages_per_huge_page(h);
3377 unsigned long pfn;
3378
3379 while (npages--) {
3380 pfn = page_to_pfn(page);
3381 __init_page_from_nid(pfn, nid);
3382 free_reserved_page(page);
3383 page++;
3384 }
3385 }
3386
3387 /*
3388 * Put bootmem huge pages into the standard lists after mem_map is up.
3389 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3390 */
gather_bootmem_prealloc_node(unsigned long nid)3391 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3392 {
3393 LIST_HEAD(folio_list);
3394 struct huge_bootmem_page *m, *tm;
3395 struct hstate *h = NULL, *prev_h = NULL;
3396
3397 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
3398 struct page *page = virt_to_page(m);
3399 struct folio *folio = (void *)page;
3400
3401 h = m->hstate;
3402 if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
3403 /*
3404 * Can't use this page. Initialize the
3405 * page structures if that hasn't already
3406 * been done, and give them to the page
3407 * allocator.
3408 */
3409 hugetlb_bootmem_free_invalid_page(nid, page, h);
3410 continue;
3411 }
3412
3413 /*
3414 * It is possible to have multiple huge page sizes (hstates)
3415 * in this list. If so, process each size separately.
3416 */
3417 if (h != prev_h && prev_h != NULL)
3418 prep_and_add_bootmem_folios(prev_h, &folio_list);
3419 prev_h = h;
3420
3421 VM_BUG_ON(!hstate_is_gigantic(h));
3422 WARN_ON(folio_ref_count(folio) != 1);
3423
3424 hugetlb_folio_init_vmemmap(folio, h,
3425 HUGETLB_VMEMMAP_RESERVE_PAGES);
3426 init_new_hugetlb_folio(h, folio);
3427
3428 if (hugetlb_bootmem_page_prehvo(m))
3429 /*
3430 * If pre-HVO was done, just set the
3431 * flag, the HVO code will then skip
3432 * this folio.
3433 */
3434 folio_set_hugetlb_vmemmap_optimized(folio);
3435
3436 if (hugetlb_bootmem_page_earlycma(m))
3437 folio_set_hugetlb_cma(folio);
3438
3439 list_add(&folio->lru, &folio_list);
3440
3441 /*
3442 * We need to restore the 'stolen' pages to totalram_pages
3443 * in order to fix confusing memory reports from free(1) and
3444 * other side-effects, like CommitLimit going negative.
3445 *
3446 * For CMA pages, this is done in init_cma_pageblock
3447 * (via hugetlb_bootmem_init_migratetype), so skip it here.
3448 */
3449 if (!folio_test_hugetlb_cma(folio))
3450 adjust_managed_page_count(page, pages_per_huge_page(h));
3451 cond_resched();
3452 }
3453
3454 prep_and_add_bootmem_folios(h, &folio_list);
3455 }
3456
gather_bootmem_prealloc_parallel(unsigned long start,unsigned long end,void * arg)3457 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3458 unsigned long end, void *arg)
3459 {
3460 int nid;
3461
3462 for (nid = start; nid < end; nid++)
3463 gather_bootmem_prealloc_node(nid);
3464 }
3465
gather_bootmem_prealloc(void)3466 static void __init gather_bootmem_prealloc(void)
3467 {
3468 struct padata_mt_job job = {
3469 .thread_fn = gather_bootmem_prealloc_parallel,
3470 .fn_arg = NULL,
3471 .start = 0,
3472 .size = nr_node_ids,
3473 .align = 1,
3474 .min_chunk = 1,
3475 .max_threads = num_node_state(N_MEMORY),
3476 .numa_aware = true,
3477 };
3478
3479 padata_do_multithreaded(&job);
3480 }
3481
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3482 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3483 {
3484 unsigned long i;
3485 char buf[32];
3486 LIST_HEAD(folio_list);
3487
3488 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3489 if (hstate_is_gigantic(h)) {
3490 if (!alloc_bootmem_huge_page(h, nid))
3491 break;
3492 } else {
3493 struct folio *folio;
3494 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3495
3496 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3497 &node_states[N_MEMORY], NULL);
3498 if (!folio)
3499 break;
3500 list_add(&folio->lru, &folio_list);
3501 }
3502 cond_resched();
3503 }
3504
3505 if (!list_empty(&folio_list))
3506 prep_and_add_allocated_folios(h, &folio_list);
3507
3508 if (i == h->max_huge_pages_node[nid])
3509 return;
3510
3511 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3512 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3513 h->max_huge_pages_node[nid], buf, nid, i);
3514 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3515 h->max_huge_pages_node[nid] = i;
3516 }
3517
hugetlb_hstate_alloc_pages_specific_nodes(struct hstate * h)3518 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3519 {
3520 int i;
3521 bool node_specific_alloc = false;
3522
3523 for_each_online_node(i) {
3524 if (h->max_huge_pages_node[i] > 0) {
3525 hugetlb_hstate_alloc_pages_onenode(h, i);
3526 node_specific_alloc = true;
3527 }
3528 }
3529
3530 return node_specific_alloc;
3531 }
3532
hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated,struct hstate * h)3533 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3534 {
3535 if (allocated < h->max_huge_pages) {
3536 char buf[32];
3537
3538 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3539 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3540 h->max_huge_pages, buf, allocated);
3541 h->max_huge_pages = allocated;
3542 }
3543 }
3544
hugetlb_pages_alloc_boot_node(unsigned long start,unsigned long end,void * arg)3545 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3546 {
3547 struct hstate *h = (struct hstate *)arg;
3548 int i, num = end - start;
3549 nodemask_t node_alloc_noretry;
3550 LIST_HEAD(folio_list);
3551 int next_node = first_online_node;
3552
3553 /* Bit mask controlling how hard we retry per-node allocations.*/
3554 nodes_clear(node_alloc_noretry);
3555
3556 for (i = 0; i < num; ++i) {
3557 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3558 &node_alloc_noretry, &next_node);
3559 if (!folio)
3560 break;
3561
3562 list_move(&folio->lru, &folio_list);
3563 cond_resched();
3564 }
3565
3566 prep_and_add_allocated_folios(h, &folio_list);
3567 }
3568
hugetlb_gigantic_pages_alloc_boot(struct hstate * h)3569 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3570 {
3571 unsigned long i;
3572
3573 for (i = 0; i < h->max_huge_pages; ++i) {
3574 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3575 break;
3576 cond_resched();
3577 }
3578
3579 return i;
3580 }
3581
hugetlb_pages_alloc_boot(struct hstate * h)3582 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3583 {
3584 struct padata_mt_job job = {
3585 .fn_arg = h,
3586 .align = 1,
3587 .numa_aware = true
3588 };
3589
3590 unsigned long jiffies_start;
3591 unsigned long jiffies_end;
3592
3593 job.thread_fn = hugetlb_pages_alloc_boot_node;
3594 job.start = 0;
3595 job.size = h->max_huge_pages;
3596
3597 /*
3598 * job.max_threads is 25% of the available cpu threads by default.
3599 *
3600 * On large servers with terabytes of memory, huge page allocation
3601 * can consume a considerably amount of time.
3602 *
3603 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages.
3604 * 2MiB huge pages. Using more threads can significantly improve allocation time.
3605 *
3606 * +-----------------------+-------+-------+-------+-------+-------+
3607 * | threads | 8 | 16 | 32 | 64 | 128 |
3608 * +-----------------------+-------+-------+-------+-------+-------+
3609 * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s |
3610 * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s |
3611 * +-----------------------+-------+-------+-------+-------+-------+
3612 */
3613 if (hugepage_allocation_threads == 0) {
3614 hugepage_allocation_threads = num_online_cpus() / 4;
3615 hugepage_allocation_threads = max(hugepage_allocation_threads, 1);
3616 }
3617
3618 job.max_threads = hugepage_allocation_threads;
3619 job.min_chunk = h->max_huge_pages / hugepage_allocation_threads;
3620
3621 jiffies_start = jiffies;
3622 padata_do_multithreaded(&job);
3623 jiffies_end = jiffies;
3624
3625 pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n",
3626 jiffies_to_msecs(jiffies_end - jiffies_start),
3627 hugepage_allocation_threads);
3628
3629 return h->nr_huge_pages;
3630 }
3631
3632 /*
3633 * NOTE: this routine is called in different contexts for gigantic and
3634 * non-gigantic pages.
3635 * - For gigantic pages, this is called early in the boot process and
3636 * pages are allocated from memblock allocated or something similar.
3637 * Gigantic pages are actually added to pools later with the routine
3638 * gather_bootmem_prealloc.
3639 * - For non-gigantic pages, this is called later in the boot process after
3640 * all of mm is up and functional. Pages are allocated from buddy and
3641 * then added to hugetlb pools.
3642 */
hugetlb_hstate_alloc_pages(struct hstate * h)3643 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3644 {
3645 unsigned long allocated;
3646
3647 /*
3648 * Skip gigantic hugepages allocation if early CMA
3649 * reservations are not available.
3650 */
3651 if (hstate_is_gigantic(h) && hugetlb_cma_total_size() &&
3652 !hugetlb_early_cma(h)) {
3653 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3654 return;
3655 }
3656
3657 /* do node specific alloc */
3658 if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3659 return;
3660
3661 /* below will do all node balanced alloc */
3662 if (hstate_is_gigantic(h))
3663 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3664 else
3665 allocated = hugetlb_pages_alloc_boot(h);
3666
3667 hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3668 }
3669
hugetlb_init_hstates(void)3670 static void __init hugetlb_init_hstates(void)
3671 {
3672 struct hstate *h, *h2;
3673
3674 for_each_hstate(h) {
3675 /*
3676 * Always reset to first_memory_node here, even if
3677 * next_nid_to_alloc was set before - we can't
3678 * reference hugetlb_bootmem_nodes after init, and
3679 * first_memory_node is right for all further allocations.
3680 */
3681 h->next_nid_to_alloc = first_memory_node;
3682 h->next_nid_to_free = first_memory_node;
3683
3684 /* oversize hugepages were init'ed in early boot */
3685 if (!hstate_is_gigantic(h))
3686 hugetlb_hstate_alloc_pages(h);
3687
3688 /*
3689 * Set demote order for each hstate. Note that
3690 * h->demote_order is initially 0.
3691 * - We can not demote gigantic pages if runtime freeing
3692 * is not supported, so skip this.
3693 * - If CMA allocation is possible, we can not demote
3694 * HUGETLB_PAGE_ORDER or smaller size pages.
3695 */
3696 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3697 continue;
3698 if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER)
3699 continue;
3700 for_each_hstate(h2) {
3701 if (h2 == h)
3702 continue;
3703 if (h2->order < h->order &&
3704 h2->order > h->demote_order)
3705 h->demote_order = h2->order;
3706 }
3707 }
3708 }
3709
report_hugepages(void)3710 static void __init report_hugepages(void)
3711 {
3712 struct hstate *h;
3713 unsigned long nrinvalid;
3714
3715 for_each_hstate(h) {
3716 char buf[32];
3717
3718 nrinvalid = hstate_boot_nrinvalid[hstate_index(h)];
3719 h->max_huge_pages -= nrinvalid;
3720
3721 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3722 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3723 buf, h->nr_huge_pages);
3724 if (nrinvalid)
3725 pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n",
3726 buf, nrinvalid, str_plural(nrinvalid));
3727 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3728 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3729 }
3730 }
3731
3732 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3733 static void try_to_free_low(struct hstate *h, unsigned long count,
3734 nodemask_t *nodes_allowed)
3735 {
3736 int i;
3737 LIST_HEAD(page_list);
3738
3739 lockdep_assert_held(&hugetlb_lock);
3740 if (hstate_is_gigantic(h))
3741 return;
3742
3743 /*
3744 * Collect pages to be freed on a list, and free after dropping lock
3745 */
3746 for_each_node_mask(i, *nodes_allowed) {
3747 struct folio *folio, *next;
3748 struct list_head *freel = &h->hugepage_freelists[i];
3749 list_for_each_entry_safe(folio, next, freel, lru) {
3750 if (count >= h->nr_huge_pages)
3751 goto out;
3752 if (folio_test_highmem(folio))
3753 continue;
3754 remove_hugetlb_folio(h, folio, false);
3755 list_add(&folio->lru, &page_list);
3756 }
3757 }
3758
3759 out:
3760 spin_unlock_irq(&hugetlb_lock);
3761 update_and_free_pages_bulk(h, &page_list);
3762 spin_lock_irq(&hugetlb_lock);
3763 }
3764 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3765 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3766 nodemask_t *nodes_allowed)
3767 {
3768 }
3769 #endif
3770
3771 /*
3772 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3773 * balanced by operating on them in a round-robin fashion.
3774 * Returns 1 if an adjustment was made.
3775 */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3776 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3777 int delta)
3778 {
3779 int nr_nodes, node;
3780
3781 lockdep_assert_held(&hugetlb_lock);
3782 VM_BUG_ON(delta != -1 && delta != 1);
3783
3784 if (delta < 0) {
3785 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3786 if (h->surplus_huge_pages_node[node])
3787 goto found;
3788 }
3789 } else {
3790 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3791 if (h->surplus_huge_pages_node[node] <
3792 h->nr_huge_pages_node[node])
3793 goto found;
3794 }
3795 }
3796 return 0;
3797
3798 found:
3799 h->surplus_huge_pages += delta;
3800 h->surplus_huge_pages_node[node] += delta;
3801 return 1;
3802 }
3803
3804 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3805 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3806 nodemask_t *nodes_allowed)
3807 {
3808 unsigned long persistent_free_count;
3809 unsigned long min_count;
3810 unsigned long allocated;
3811 struct folio *folio;
3812 LIST_HEAD(page_list);
3813 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3814
3815 /*
3816 * Bit mask controlling how hard we retry per-node allocations.
3817 * If we can not allocate the bit mask, do not attempt to allocate
3818 * the requested huge pages.
3819 */
3820 if (node_alloc_noretry)
3821 nodes_clear(*node_alloc_noretry);
3822 else
3823 return -ENOMEM;
3824
3825 /*
3826 * resize_lock mutex prevents concurrent adjustments to number of
3827 * pages in hstate via the proc/sysfs interfaces.
3828 */
3829 mutex_lock(&h->resize_lock);
3830 flush_free_hpage_work(h);
3831 spin_lock_irq(&hugetlb_lock);
3832
3833 /*
3834 * Check for a node specific request.
3835 * Changing node specific huge page count may require a corresponding
3836 * change to the global count. In any case, the passed node mask
3837 * (nodes_allowed) will restrict alloc/free to the specified node.
3838 */
3839 if (nid != NUMA_NO_NODE) {
3840 unsigned long old_count = count;
3841
3842 count += persistent_huge_pages(h) -
3843 (h->nr_huge_pages_node[nid] -
3844 h->surplus_huge_pages_node[nid]);
3845 /*
3846 * User may have specified a large count value which caused the
3847 * above calculation to overflow. In this case, they wanted
3848 * to allocate as many huge pages as possible. Set count to
3849 * largest possible value to align with their intention.
3850 */
3851 if (count < old_count)
3852 count = ULONG_MAX;
3853 }
3854
3855 /*
3856 * Gigantic pages runtime allocation depend on the capability for large
3857 * page range allocation.
3858 * If the system does not provide this feature, return an error when
3859 * the user tries to allocate gigantic pages but let the user free the
3860 * boottime allocated gigantic pages.
3861 */
3862 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3863 if (count > persistent_huge_pages(h)) {
3864 spin_unlock_irq(&hugetlb_lock);
3865 mutex_unlock(&h->resize_lock);
3866 NODEMASK_FREE(node_alloc_noretry);
3867 return -EINVAL;
3868 }
3869 /* Fall through to decrease pool */
3870 }
3871
3872 /*
3873 * Increase the pool size
3874 * First take pages out of surplus state. Then make up the
3875 * remaining difference by allocating fresh huge pages.
3876 *
3877 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3878 * to convert a surplus huge page to a normal huge page. That is
3879 * not critical, though, it just means the overall size of the
3880 * pool might be one hugepage larger than it needs to be, but
3881 * within all the constraints specified by the sysctls.
3882 */
3883 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3884 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3885 break;
3886 }
3887
3888 allocated = 0;
3889 while (count > (persistent_huge_pages(h) + allocated)) {
3890 /*
3891 * If this allocation races such that we no longer need the
3892 * page, free_huge_folio will handle it by freeing the page
3893 * and reducing the surplus.
3894 */
3895 spin_unlock_irq(&hugetlb_lock);
3896
3897 /* yield cpu to avoid soft lockup */
3898 cond_resched();
3899
3900 folio = alloc_pool_huge_folio(h, nodes_allowed,
3901 node_alloc_noretry,
3902 &h->next_nid_to_alloc);
3903 if (!folio) {
3904 prep_and_add_allocated_folios(h, &page_list);
3905 spin_lock_irq(&hugetlb_lock);
3906 goto out;
3907 }
3908
3909 list_add(&folio->lru, &page_list);
3910 allocated++;
3911
3912 /* Bail for signals. Probably ctrl-c from user */
3913 if (signal_pending(current)) {
3914 prep_and_add_allocated_folios(h, &page_list);
3915 spin_lock_irq(&hugetlb_lock);
3916 goto out;
3917 }
3918
3919 spin_lock_irq(&hugetlb_lock);
3920 }
3921
3922 /* Add allocated pages to the pool */
3923 if (!list_empty(&page_list)) {
3924 spin_unlock_irq(&hugetlb_lock);
3925 prep_and_add_allocated_folios(h, &page_list);
3926 spin_lock_irq(&hugetlb_lock);
3927 }
3928
3929 /*
3930 * Decrease the pool size
3931 * First return free pages to the buddy allocator (being careful
3932 * to keep enough around to satisfy reservations). Then place
3933 * pages into surplus state as needed so the pool will shrink
3934 * to the desired size as pages become free.
3935 *
3936 * By placing pages into the surplus state independent of the
3937 * overcommit value, we are allowing the surplus pool size to
3938 * exceed overcommit. There are few sane options here. Since
3939 * alloc_surplus_hugetlb_folio() is checking the global counter,
3940 * though, we'll note that we're not allowed to exceed surplus
3941 * and won't grow the pool anywhere else. Not until one of the
3942 * sysctls are changed, or the surplus pages go out of use.
3943 *
3944 * min_count is the expected number of persistent pages, we
3945 * shouldn't calculate min_count by using
3946 * resv_huge_pages + persistent_huge_pages() - free_huge_pages,
3947 * because there may exist free surplus huge pages, and this will
3948 * lead to subtracting twice. Free surplus huge pages come from HVO
3949 * failing to restore vmemmap, see comments in the callers of
3950 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate
3951 * persistent free count first.
3952 */
3953 persistent_free_count = h->free_huge_pages;
3954 if (h->free_huge_pages > persistent_huge_pages(h)) {
3955 if (h->free_huge_pages > h->surplus_huge_pages)
3956 persistent_free_count -= h->surplus_huge_pages;
3957 else
3958 persistent_free_count = 0;
3959 }
3960 min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count;
3961 min_count = max(count, min_count);
3962 try_to_free_low(h, min_count, nodes_allowed);
3963
3964 /*
3965 * Collect pages to be removed on list without dropping lock
3966 */
3967 while (min_count < persistent_huge_pages(h)) {
3968 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3969 if (!folio)
3970 break;
3971
3972 list_add(&folio->lru, &page_list);
3973 }
3974 /* free the pages after dropping lock */
3975 spin_unlock_irq(&hugetlb_lock);
3976 update_and_free_pages_bulk(h, &page_list);
3977 flush_free_hpage_work(h);
3978 spin_lock_irq(&hugetlb_lock);
3979
3980 while (count < persistent_huge_pages(h)) {
3981 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3982 break;
3983 }
3984 out:
3985 h->max_huge_pages = persistent_huge_pages(h);
3986 spin_unlock_irq(&hugetlb_lock);
3987 mutex_unlock(&h->resize_lock);
3988
3989 NODEMASK_FREE(node_alloc_noretry);
3990
3991 return 0;
3992 }
3993
demote_free_hugetlb_folios(struct hstate * src,struct hstate * dst,struct list_head * src_list)3994 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
3995 struct list_head *src_list)
3996 {
3997 long rc;
3998 struct folio *folio, *next;
3999 LIST_HEAD(dst_list);
4000 LIST_HEAD(ret_list);
4001
4002 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
4003 list_splice_init(&ret_list, src_list);
4004
4005 /*
4006 * Taking target hstate mutex synchronizes with set_max_huge_pages.
4007 * Without the mutex, pages added to target hstate could be marked
4008 * as surplus.
4009 *
4010 * Note that we already hold src->resize_lock. To prevent deadlock,
4011 * use the convention of always taking larger size hstate mutex first.
4012 */
4013 mutex_lock(&dst->resize_lock);
4014
4015 list_for_each_entry_safe(folio, next, src_list, lru) {
4016 int i;
4017 bool cma;
4018
4019 if (folio_test_hugetlb_vmemmap_optimized(folio))
4020 continue;
4021
4022 cma = folio_test_hugetlb_cma(folio);
4023
4024 list_del(&folio->lru);
4025
4026 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
4027 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
4028
4029 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
4030 struct page *page = folio_page(folio, i);
4031 /* Careful: see __split_huge_page_tail() */
4032 struct folio *new_folio = (struct folio *)page;
4033
4034 clear_compound_head(page);
4035 prep_compound_page(page, dst->order);
4036
4037 new_folio->mapping = NULL;
4038 init_new_hugetlb_folio(dst, new_folio);
4039 /* Copy the CMA flag so that it is freed correctly */
4040 if (cma)
4041 folio_set_hugetlb_cma(new_folio);
4042 list_add(&new_folio->lru, &dst_list);
4043 }
4044 }
4045
4046 prep_and_add_allocated_folios(dst, &dst_list);
4047
4048 mutex_unlock(&dst->resize_lock);
4049
4050 return rc;
4051 }
4052
demote_pool_huge_page(struct hstate * src,nodemask_t * nodes_allowed,unsigned long nr_to_demote)4053 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
4054 unsigned long nr_to_demote)
4055 __must_hold(&hugetlb_lock)
4056 {
4057 int nr_nodes, node;
4058 struct hstate *dst;
4059 long rc = 0;
4060 long nr_demoted = 0;
4061
4062 lockdep_assert_held(&hugetlb_lock);
4063
4064 /* We should never get here if no demote order */
4065 if (!src->demote_order) {
4066 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4067 return -EINVAL; /* internal error */
4068 }
4069 dst = size_to_hstate(PAGE_SIZE << src->demote_order);
4070
4071 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
4072 LIST_HEAD(list);
4073 struct folio *folio, *next;
4074
4075 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
4076 if (folio_test_hwpoison(folio))
4077 continue;
4078
4079 remove_hugetlb_folio(src, folio, false);
4080 list_add(&folio->lru, &list);
4081
4082 if (++nr_demoted == nr_to_demote)
4083 break;
4084 }
4085
4086 spin_unlock_irq(&hugetlb_lock);
4087
4088 rc = demote_free_hugetlb_folios(src, dst, &list);
4089
4090 spin_lock_irq(&hugetlb_lock);
4091
4092 list_for_each_entry_safe(folio, next, &list, lru) {
4093 list_del(&folio->lru);
4094 add_hugetlb_folio(src, folio, false);
4095
4096 nr_demoted--;
4097 }
4098
4099 if (rc < 0 || nr_demoted == nr_to_demote)
4100 break;
4101 }
4102
4103 /*
4104 * Not absolutely necessary, but for consistency update max_huge_pages
4105 * based on pool changes for the demoted page.
4106 */
4107 src->max_huge_pages -= nr_demoted;
4108 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
4109
4110 if (rc < 0)
4111 return rc;
4112
4113 if (nr_demoted)
4114 return nr_demoted;
4115 /*
4116 * Only way to get here is if all pages on free lists are poisoned.
4117 * Return -EBUSY so that caller will not retry.
4118 */
4119 return -EBUSY;
4120 }
4121
4122 #define HSTATE_ATTR_RO(_name) \
4123 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4124
4125 #define HSTATE_ATTR_WO(_name) \
4126 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4127
4128 #define HSTATE_ATTR(_name) \
4129 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4130
4131 static struct kobject *hugepages_kobj;
4132 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4133
4134 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4135
kobj_to_hstate(struct kobject * kobj,int * nidp)4136 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4137 {
4138 int i;
4139
4140 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4141 if (hstate_kobjs[i] == kobj) {
4142 if (nidp)
4143 *nidp = NUMA_NO_NODE;
4144 return &hstates[i];
4145 }
4146
4147 return kobj_to_node_hstate(kobj, nidp);
4148 }
4149
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4150 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4151 struct kobj_attribute *attr, char *buf)
4152 {
4153 struct hstate *h;
4154 unsigned long nr_huge_pages;
4155 int nid;
4156
4157 h = kobj_to_hstate(kobj, &nid);
4158 if (nid == NUMA_NO_NODE)
4159 nr_huge_pages = h->nr_huge_pages;
4160 else
4161 nr_huge_pages = h->nr_huge_pages_node[nid];
4162
4163 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4164 }
4165
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)4166 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4167 struct hstate *h, int nid,
4168 unsigned long count, size_t len)
4169 {
4170 int err;
4171 nodemask_t nodes_allowed, *n_mask;
4172
4173 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4174 return -EINVAL;
4175
4176 if (nid == NUMA_NO_NODE) {
4177 /*
4178 * global hstate attribute
4179 */
4180 if (!(obey_mempolicy &&
4181 init_nodemask_of_mempolicy(&nodes_allowed)))
4182 n_mask = &node_states[N_MEMORY];
4183 else
4184 n_mask = &nodes_allowed;
4185 } else {
4186 /*
4187 * Node specific request. count adjustment happens in
4188 * set_max_huge_pages() after acquiring hugetlb_lock.
4189 */
4190 init_nodemask_of_node(&nodes_allowed, nid);
4191 n_mask = &nodes_allowed;
4192 }
4193
4194 err = set_max_huge_pages(h, count, nid, n_mask);
4195
4196 return err ? err : len;
4197 }
4198
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)4199 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4200 struct kobject *kobj, const char *buf,
4201 size_t len)
4202 {
4203 struct hstate *h;
4204 unsigned long count;
4205 int nid;
4206 int err;
4207
4208 err = kstrtoul(buf, 10, &count);
4209 if (err)
4210 return err;
4211
4212 h = kobj_to_hstate(kobj, &nid);
4213 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4214 }
4215
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4216 static ssize_t nr_hugepages_show(struct kobject *kobj,
4217 struct kobj_attribute *attr, char *buf)
4218 {
4219 return nr_hugepages_show_common(kobj, attr, buf);
4220 }
4221
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4222 static ssize_t nr_hugepages_store(struct kobject *kobj,
4223 struct kobj_attribute *attr, const char *buf, size_t len)
4224 {
4225 return nr_hugepages_store_common(false, kobj, buf, len);
4226 }
4227 HSTATE_ATTR(nr_hugepages);
4228
4229 #ifdef CONFIG_NUMA
4230
4231 /*
4232 * hstate attribute for optionally mempolicy-based constraint on persistent
4233 * huge page alloc/free.
4234 */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4235 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4236 struct kobj_attribute *attr,
4237 char *buf)
4238 {
4239 return nr_hugepages_show_common(kobj, attr, buf);
4240 }
4241
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4242 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4243 struct kobj_attribute *attr, const char *buf, size_t len)
4244 {
4245 return nr_hugepages_store_common(true, kobj, buf, len);
4246 }
4247 HSTATE_ATTR(nr_hugepages_mempolicy);
4248 #endif
4249
4250
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4251 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4252 struct kobj_attribute *attr, char *buf)
4253 {
4254 struct hstate *h = kobj_to_hstate(kobj, NULL);
4255 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4256 }
4257
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4258 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4259 struct kobj_attribute *attr, const char *buf, size_t count)
4260 {
4261 int err;
4262 unsigned long input;
4263 struct hstate *h = kobj_to_hstate(kobj, NULL);
4264
4265 if (hstate_is_gigantic(h))
4266 return -EINVAL;
4267
4268 err = kstrtoul(buf, 10, &input);
4269 if (err)
4270 return err;
4271
4272 spin_lock_irq(&hugetlb_lock);
4273 h->nr_overcommit_huge_pages = input;
4274 spin_unlock_irq(&hugetlb_lock);
4275
4276 return count;
4277 }
4278 HSTATE_ATTR(nr_overcommit_hugepages);
4279
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4280 static ssize_t free_hugepages_show(struct kobject *kobj,
4281 struct kobj_attribute *attr, char *buf)
4282 {
4283 struct hstate *h;
4284 unsigned long free_huge_pages;
4285 int nid;
4286
4287 h = kobj_to_hstate(kobj, &nid);
4288 if (nid == NUMA_NO_NODE)
4289 free_huge_pages = h->free_huge_pages;
4290 else
4291 free_huge_pages = h->free_huge_pages_node[nid];
4292
4293 return sysfs_emit(buf, "%lu\n", free_huge_pages);
4294 }
4295 HSTATE_ATTR_RO(free_hugepages);
4296
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4297 static ssize_t resv_hugepages_show(struct kobject *kobj,
4298 struct kobj_attribute *attr, char *buf)
4299 {
4300 struct hstate *h = kobj_to_hstate(kobj, NULL);
4301 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4302 }
4303 HSTATE_ATTR_RO(resv_hugepages);
4304
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4305 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4306 struct kobj_attribute *attr, char *buf)
4307 {
4308 struct hstate *h;
4309 unsigned long surplus_huge_pages;
4310 int nid;
4311
4312 h = kobj_to_hstate(kobj, &nid);
4313 if (nid == NUMA_NO_NODE)
4314 surplus_huge_pages = h->surplus_huge_pages;
4315 else
4316 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4317
4318 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4319 }
4320 HSTATE_ATTR_RO(surplus_hugepages);
4321
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4322 static ssize_t demote_store(struct kobject *kobj,
4323 struct kobj_attribute *attr, const char *buf, size_t len)
4324 {
4325 unsigned long nr_demote;
4326 unsigned long nr_available;
4327 nodemask_t nodes_allowed, *n_mask;
4328 struct hstate *h;
4329 int err;
4330 int nid;
4331
4332 err = kstrtoul(buf, 10, &nr_demote);
4333 if (err)
4334 return err;
4335 h = kobj_to_hstate(kobj, &nid);
4336
4337 if (nid != NUMA_NO_NODE) {
4338 init_nodemask_of_node(&nodes_allowed, nid);
4339 n_mask = &nodes_allowed;
4340 } else {
4341 n_mask = &node_states[N_MEMORY];
4342 }
4343
4344 /* Synchronize with other sysfs operations modifying huge pages */
4345 mutex_lock(&h->resize_lock);
4346 spin_lock_irq(&hugetlb_lock);
4347
4348 while (nr_demote) {
4349 long rc;
4350
4351 /*
4352 * Check for available pages to demote each time thorough the
4353 * loop as demote_pool_huge_page will drop hugetlb_lock.
4354 */
4355 if (nid != NUMA_NO_NODE)
4356 nr_available = h->free_huge_pages_node[nid];
4357 else
4358 nr_available = h->free_huge_pages;
4359 nr_available -= h->resv_huge_pages;
4360 if (!nr_available)
4361 break;
4362
4363 rc = demote_pool_huge_page(h, n_mask, nr_demote);
4364 if (rc < 0) {
4365 err = rc;
4366 break;
4367 }
4368
4369 nr_demote -= rc;
4370 }
4371
4372 spin_unlock_irq(&hugetlb_lock);
4373 mutex_unlock(&h->resize_lock);
4374
4375 if (err)
4376 return err;
4377 return len;
4378 }
4379 HSTATE_ATTR_WO(demote);
4380
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4381 static ssize_t demote_size_show(struct kobject *kobj,
4382 struct kobj_attribute *attr, char *buf)
4383 {
4384 struct hstate *h = kobj_to_hstate(kobj, NULL);
4385 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4386
4387 return sysfs_emit(buf, "%lukB\n", demote_size);
4388 }
4389
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4390 static ssize_t demote_size_store(struct kobject *kobj,
4391 struct kobj_attribute *attr,
4392 const char *buf, size_t count)
4393 {
4394 struct hstate *h, *demote_hstate;
4395 unsigned long demote_size;
4396 unsigned int demote_order;
4397
4398 demote_size = (unsigned long)memparse(buf, NULL);
4399
4400 demote_hstate = size_to_hstate(demote_size);
4401 if (!demote_hstate)
4402 return -EINVAL;
4403 demote_order = demote_hstate->order;
4404 if (demote_order < HUGETLB_PAGE_ORDER)
4405 return -EINVAL;
4406
4407 /* demote order must be smaller than hstate order */
4408 h = kobj_to_hstate(kobj, NULL);
4409 if (demote_order >= h->order)
4410 return -EINVAL;
4411
4412 /* resize_lock synchronizes access to demote size and writes */
4413 mutex_lock(&h->resize_lock);
4414 h->demote_order = demote_order;
4415 mutex_unlock(&h->resize_lock);
4416
4417 return count;
4418 }
4419 HSTATE_ATTR(demote_size);
4420
4421 static struct attribute *hstate_attrs[] = {
4422 &nr_hugepages_attr.attr,
4423 &nr_overcommit_hugepages_attr.attr,
4424 &free_hugepages_attr.attr,
4425 &resv_hugepages_attr.attr,
4426 &surplus_hugepages_attr.attr,
4427 #ifdef CONFIG_NUMA
4428 &nr_hugepages_mempolicy_attr.attr,
4429 #endif
4430 NULL,
4431 };
4432
4433 static const struct attribute_group hstate_attr_group = {
4434 .attrs = hstate_attrs,
4435 };
4436
4437 static struct attribute *hstate_demote_attrs[] = {
4438 &demote_size_attr.attr,
4439 &demote_attr.attr,
4440 NULL,
4441 };
4442
4443 static const struct attribute_group hstate_demote_attr_group = {
4444 .attrs = hstate_demote_attrs,
4445 };
4446
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)4447 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4448 struct kobject **hstate_kobjs,
4449 const struct attribute_group *hstate_attr_group)
4450 {
4451 int retval;
4452 int hi = hstate_index(h);
4453
4454 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4455 if (!hstate_kobjs[hi])
4456 return -ENOMEM;
4457
4458 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4459 if (retval) {
4460 kobject_put(hstate_kobjs[hi]);
4461 hstate_kobjs[hi] = NULL;
4462 return retval;
4463 }
4464
4465 if (h->demote_order) {
4466 retval = sysfs_create_group(hstate_kobjs[hi],
4467 &hstate_demote_attr_group);
4468 if (retval) {
4469 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4470 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4471 kobject_put(hstate_kobjs[hi]);
4472 hstate_kobjs[hi] = NULL;
4473 return retval;
4474 }
4475 }
4476
4477 return 0;
4478 }
4479
4480 #ifdef CONFIG_NUMA
4481 static bool hugetlb_sysfs_initialized __ro_after_init;
4482
4483 /*
4484 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4485 * with node devices in node_devices[] using a parallel array. The array
4486 * index of a node device or _hstate == node id.
4487 * This is here to avoid any static dependency of the node device driver, in
4488 * the base kernel, on the hugetlb module.
4489 */
4490 struct node_hstate {
4491 struct kobject *hugepages_kobj;
4492 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4493 };
4494 static struct node_hstate node_hstates[MAX_NUMNODES];
4495
4496 /*
4497 * A subset of global hstate attributes for node devices
4498 */
4499 static struct attribute *per_node_hstate_attrs[] = {
4500 &nr_hugepages_attr.attr,
4501 &free_hugepages_attr.attr,
4502 &surplus_hugepages_attr.attr,
4503 NULL,
4504 };
4505
4506 static const struct attribute_group per_node_hstate_attr_group = {
4507 .attrs = per_node_hstate_attrs,
4508 };
4509
4510 /*
4511 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4512 * Returns node id via non-NULL nidp.
4513 */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4514 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4515 {
4516 int nid;
4517
4518 for (nid = 0; nid < nr_node_ids; nid++) {
4519 struct node_hstate *nhs = &node_hstates[nid];
4520 int i;
4521 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4522 if (nhs->hstate_kobjs[i] == kobj) {
4523 if (nidp)
4524 *nidp = nid;
4525 return &hstates[i];
4526 }
4527 }
4528
4529 BUG();
4530 return NULL;
4531 }
4532
4533 /*
4534 * Unregister hstate attributes from a single node device.
4535 * No-op if no hstate attributes attached.
4536 */
hugetlb_unregister_node(struct node * node)4537 void hugetlb_unregister_node(struct node *node)
4538 {
4539 struct hstate *h;
4540 struct node_hstate *nhs = &node_hstates[node->dev.id];
4541
4542 if (!nhs->hugepages_kobj)
4543 return; /* no hstate attributes */
4544
4545 for_each_hstate(h) {
4546 int idx = hstate_index(h);
4547 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4548
4549 if (!hstate_kobj)
4550 continue;
4551 if (h->demote_order)
4552 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4553 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4554 kobject_put(hstate_kobj);
4555 nhs->hstate_kobjs[idx] = NULL;
4556 }
4557
4558 kobject_put(nhs->hugepages_kobj);
4559 nhs->hugepages_kobj = NULL;
4560 }
4561
4562
4563 /*
4564 * Register hstate attributes for a single node device.
4565 * No-op if attributes already registered.
4566 */
hugetlb_register_node(struct node * node)4567 void hugetlb_register_node(struct node *node)
4568 {
4569 struct hstate *h;
4570 struct node_hstate *nhs = &node_hstates[node->dev.id];
4571 int err;
4572
4573 if (!hugetlb_sysfs_initialized)
4574 return;
4575
4576 if (nhs->hugepages_kobj)
4577 return; /* already allocated */
4578
4579 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4580 &node->dev.kobj);
4581 if (!nhs->hugepages_kobj)
4582 return;
4583
4584 for_each_hstate(h) {
4585 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4586 nhs->hstate_kobjs,
4587 &per_node_hstate_attr_group);
4588 if (err) {
4589 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4590 h->name, node->dev.id);
4591 hugetlb_unregister_node(node);
4592 break;
4593 }
4594 }
4595 }
4596
4597 /*
4598 * hugetlb init time: register hstate attributes for all registered node
4599 * devices of nodes that have memory. All on-line nodes should have
4600 * registered their associated device by this time.
4601 */
hugetlb_register_all_nodes(void)4602 static void __init hugetlb_register_all_nodes(void)
4603 {
4604 int nid;
4605
4606 for_each_online_node(nid)
4607 hugetlb_register_node(node_devices[nid]);
4608 }
4609 #else /* !CONFIG_NUMA */
4610
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4611 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4612 {
4613 BUG();
4614 if (nidp)
4615 *nidp = -1;
4616 return NULL;
4617 }
4618
hugetlb_register_all_nodes(void)4619 static void hugetlb_register_all_nodes(void) { }
4620
4621 #endif
4622
hugetlb_sysfs_init(void)4623 static void __init hugetlb_sysfs_init(void)
4624 {
4625 struct hstate *h;
4626 int err;
4627
4628 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4629 if (!hugepages_kobj)
4630 return;
4631
4632 for_each_hstate(h) {
4633 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4634 hstate_kobjs, &hstate_attr_group);
4635 if (err)
4636 pr_err("HugeTLB: Unable to add hstate %s\n", h->name);
4637 }
4638
4639 #ifdef CONFIG_NUMA
4640 hugetlb_sysfs_initialized = true;
4641 #endif
4642 hugetlb_register_all_nodes();
4643 }
4644
4645 #ifdef CONFIG_SYSCTL
4646 static void hugetlb_sysctl_init(void);
4647 #else
hugetlb_sysctl_init(void)4648 static inline void hugetlb_sysctl_init(void) { }
4649 #endif
4650
hugetlb_init(void)4651 static int __init hugetlb_init(void)
4652 {
4653 int i;
4654
4655 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4656 __NR_HPAGEFLAGS);
4657
4658 if (!hugepages_supported()) {
4659 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4660 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4661 return 0;
4662 }
4663
4664 /*
4665 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4666 * architectures depend on setup being done here.
4667 */
4668 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4669 if (!parsed_default_hugepagesz) {
4670 /*
4671 * If we did not parse a default huge page size, set
4672 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4673 * number of huge pages for this default size was implicitly
4674 * specified, set that here as well.
4675 * Note that the implicit setting will overwrite an explicit
4676 * setting. A warning will be printed in this case.
4677 */
4678 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4679 if (default_hstate_max_huge_pages) {
4680 if (default_hstate.max_huge_pages) {
4681 char buf[32];
4682
4683 string_get_size(huge_page_size(&default_hstate),
4684 1, STRING_UNITS_2, buf, 32);
4685 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4686 default_hstate.max_huge_pages, buf);
4687 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4688 default_hstate_max_huge_pages);
4689 }
4690 default_hstate.max_huge_pages =
4691 default_hstate_max_huge_pages;
4692
4693 for_each_online_node(i)
4694 default_hstate.max_huge_pages_node[i] =
4695 default_hugepages_in_node[i];
4696 }
4697 }
4698
4699 hugetlb_cma_check();
4700 hugetlb_init_hstates();
4701 gather_bootmem_prealloc();
4702 report_hugepages();
4703
4704 hugetlb_sysfs_init();
4705 hugetlb_cgroup_file_init();
4706 hugetlb_sysctl_init();
4707
4708 #ifdef CONFIG_SMP
4709 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4710 #else
4711 num_fault_mutexes = 1;
4712 #endif
4713 hugetlb_fault_mutex_table =
4714 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4715 GFP_KERNEL);
4716 BUG_ON(!hugetlb_fault_mutex_table);
4717
4718 for (i = 0; i < num_fault_mutexes; i++)
4719 mutex_init(&hugetlb_fault_mutex_table[i]);
4720 return 0;
4721 }
4722 subsys_initcall(hugetlb_init);
4723
4724 /* Overwritten by architectures with more huge page sizes */
__init(weak)4725 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4726 {
4727 return size == HPAGE_SIZE;
4728 }
4729
hugetlb_add_hstate(unsigned int order)4730 void __init hugetlb_add_hstate(unsigned int order)
4731 {
4732 struct hstate *h;
4733 unsigned long i;
4734
4735 if (size_to_hstate(PAGE_SIZE << order)) {
4736 return;
4737 }
4738 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4739 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4740 h = &hstates[hugetlb_max_hstate++];
4741 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4742 h->order = order;
4743 h->mask = ~(huge_page_size(h) - 1);
4744 for (i = 0; i < MAX_NUMNODES; ++i)
4745 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4746 INIT_LIST_HEAD(&h->hugepage_activelist);
4747 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4748 huge_page_size(h)/SZ_1K);
4749
4750 parsed_hstate = h;
4751 }
4752
hugetlb_node_alloc_supported(void)4753 bool __init __weak hugetlb_node_alloc_supported(void)
4754 {
4755 return true;
4756 }
4757
hugepages_clear_pages_in_node(void)4758 static void __init hugepages_clear_pages_in_node(void)
4759 {
4760 if (!hugetlb_max_hstate) {
4761 default_hstate_max_huge_pages = 0;
4762 memset(default_hugepages_in_node, 0,
4763 sizeof(default_hugepages_in_node));
4764 } else {
4765 parsed_hstate->max_huge_pages = 0;
4766 memset(parsed_hstate->max_huge_pages_node, 0,
4767 sizeof(parsed_hstate->max_huge_pages_node));
4768 }
4769 }
4770
hugetlb_add_param(char * s,int (* setup)(char *))4771 static __init int hugetlb_add_param(char *s, int (*setup)(char *))
4772 {
4773 size_t len;
4774 char *p;
4775
4776 if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS)
4777 return -EINVAL;
4778
4779 len = strlen(s) + 1;
4780 if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf))
4781 return -EINVAL;
4782
4783 p = &hstate_cmdline_buf[hstate_cmdline_index];
4784 memcpy(p, s, len);
4785 hstate_cmdline_index += len;
4786
4787 hugetlb_params[hugetlb_param_index].val = p;
4788 hugetlb_params[hugetlb_param_index].setup = setup;
4789
4790 hugetlb_param_index++;
4791
4792 return 0;
4793 }
4794
hugetlb_parse_params(void)4795 static __init void hugetlb_parse_params(void)
4796 {
4797 int i;
4798 struct hugetlb_cmdline *hcp;
4799
4800 for (i = 0; i < hugetlb_param_index; i++) {
4801 hcp = &hugetlb_params[i];
4802
4803 hcp->setup(hcp->val);
4804 }
4805
4806 hugetlb_cma_validate_params();
4807 }
4808
4809 /*
4810 * hugepages command line processing
4811 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4812 * specification. If not, ignore the hugepages value. hugepages can also
4813 * be the first huge page command line option in which case it implicitly
4814 * specifies the number of huge pages for the default size.
4815 */
hugepages_setup(char * s)4816 static int __init hugepages_setup(char *s)
4817 {
4818 unsigned long *mhp;
4819 static unsigned long *last_mhp;
4820 int node = NUMA_NO_NODE;
4821 int count;
4822 unsigned long tmp;
4823 char *p = s;
4824
4825 if (!parsed_valid_hugepagesz) {
4826 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4827 parsed_valid_hugepagesz = true;
4828 return -EINVAL;
4829 }
4830
4831 /*
4832 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4833 * yet, so this hugepages= parameter goes to the "default hstate".
4834 * Otherwise, it goes with the previously parsed hugepagesz or
4835 * default_hugepagesz.
4836 */
4837 else if (!hugetlb_max_hstate)
4838 mhp = &default_hstate_max_huge_pages;
4839 else
4840 mhp = &parsed_hstate->max_huge_pages;
4841
4842 if (mhp == last_mhp) {
4843 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4844 return 1;
4845 }
4846
4847 while (*p) {
4848 count = 0;
4849 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4850 goto invalid;
4851 /* Parameter is node format */
4852 if (p[count] == ':') {
4853 if (!hugetlb_node_alloc_supported()) {
4854 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4855 return 1;
4856 }
4857 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4858 goto invalid;
4859 node = array_index_nospec(tmp, MAX_NUMNODES);
4860 p += count + 1;
4861 /* Parse hugepages */
4862 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4863 goto invalid;
4864 if (!hugetlb_max_hstate)
4865 default_hugepages_in_node[node] = tmp;
4866 else
4867 parsed_hstate->max_huge_pages_node[node] = tmp;
4868 *mhp += tmp;
4869 /* Go to parse next node*/
4870 if (p[count] == ',')
4871 p += count + 1;
4872 else
4873 break;
4874 } else {
4875 if (p != s)
4876 goto invalid;
4877 *mhp = tmp;
4878 break;
4879 }
4880 }
4881
4882 last_mhp = mhp;
4883
4884 return 0;
4885
4886 invalid:
4887 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4888 hugepages_clear_pages_in_node();
4889 return -EINVAL;
4890 }
4891 hugetlb_early_param("hugepages", hugepages_setup);
4892
4893 /*
4894 * hugepagesz command line processing
4895 * A specific huge page size can only be specified once with hugepagesz.
4896 * hugepagesz is followed by hugepages on the command line. The global
4897 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4898 * hugepagesz argument was valid.
4899 */
hugepagesz_setup(char * s)4900 static int __init hugepagesz_setup(char *s)
4901 {
4902 unsigned long size;
4903 struct hstate *h;
4904
4905 parsed_valid_hugepagesz = false;
4906 size = (unsigned long)memparse(s, NULL);
4907
4908 if (!arch_hugetlb_valid_size(size)) {
4909 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4910 return -EINVAL;
4911 }
4912
4913 h = size_to_hstate(size);
4914 if (h) {
4915 /*
4916 * hstate for this size already exists. This is normally
4917 * an error, but is allowed if the existing hstate is the
4918 * default hstate. More specifically, it is only allowed if
4919 * the number of huge pages for the default hstate was not
4920 * previously specified.
4921 */
4922 if (!parsed_default_hugepagesz || h != &default_hstate ||
4923 default_hstate.max_huge_pages) {
4924 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4925 return -EINVAL;
4926 }
4927
4928 /*
4929 * No need to call hugetlb_add_hstate() as hstate already
4930 * exists. But, do set parsed_hstate so that a following
4931 * hugepages= parameter will be applied to this hstate.
4932 */
4933 parsed_hstate = h;
4934 parsed_valid_hugepagesz = true;
4935 return 0;
4936 }
4937
4938 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4939 parsed_valid_hugepagesz = true;
4940 return 0;
4941 }
4942 hugetlb_early_param("hugepagesz", hugepagesz_setup);
4943
4944 /*
4945 * default_hugepagesz command line input
4946 * Only one instance of default_hugepagesz allowed on command line.
4947 */
default_hugepagesz_setup(char * s)4948 static int __init default_hugepagesz_setup(char *s)
4949 {
4950 unsigned long size;
4951 int i;
4952
4953 parsed_valid_hugepagesz = false;
4954 if (parsed_default_hugepagesz) {
4955 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4956 return -EINVAL;
4957 }
4958
4959 size = (unsigned long)memparse(s, NULL);
4960
4961 if (!arch_hugetlb_valid_size(size)) {
4962 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4963 return -EINVAL;
4964 }
4965
4966 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4967 parsed_valid_hugepagesz = true;
4968 parsed_default_hugepagesz = true;
4969 default_hstate_idx = hstate_index(size_to_hstate(size));
4970
4971 /*
4972 * The number of default huge pages (for this size) could have been
4973 * specified as the first hugetlb parameter: hugepages=X. If so,
4974 * then default_hstate_max_huge_pages is set. If the default huge
4975 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4976 * allocated here from bootmem allocator.
4977 */
4978 if (default_hstate_max_huge_pages) {
4979 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4980 /*
4981 * Since this is an early parameter, we can't check
4982 * NUMA node state yet, so loop through MAX_NUMNODES.
4983 */
4984 for (i = 0; i < MAX_NUMNODES; i++) {
4985 if (default_hugepages_in_node[i] != 0)
4986 default_hstate.max_huge_pages_node[i] =
4987 default_hugepages_in_node[i];
4988 }
4989 default_hstate_max_huge_pages = 0;
4990 }
4991
4992 return 0;
4993 }
4994 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup);
4995
hugetlb_bootmem_set_nodes(void)4996 void __init hugetlb_bootmem_set_nodes(void)
4997 {
4998 int i, nid;
4999 unsigned long start_pfn, end_pfn;
5000
5001 if (!nodes_empty(hugetlb_bootmem_nodes))
5002 return;
5003
5004 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5005 if (end_pfn > start_pfn)
5006 node_set(nid, hugetlb_bootmem_nodes);
5007 }
5008 }
5009
5010 static bool __hugetlb_bootmem_allocated __initdata;
5011
hugetlb_bootmem_allocated(void)5012 bool __init hugetlb_bootmem_allocated(void)
5013 {
5014 return __hugetlb_bootmem_allocated;
5015 }
5016
hugetlb_bootmem_alloc(void)5017 void __init hugetlb_bootmem_alloc(void)
5018 {
5019 struct hstate *h;
5020 int i;
5021
5022 if (__hugetlb_bootmem_allocated)
5023 return;
5024
5025 hugetlb_bootmem_set_nodes();
5026
5027 for (i = 0; i < MAX_NUMNODES; i++)
5028 INIT_LIST_HEAD(&huge_boot_pages[i]);
5029
5030 hugetlb_parse_params();
5031
5032 for_each_hstate(h) {
5033 h->next_nid_to_alloc = first_online_node;
5034
5035 if (hstate_is_gigantic(h))
5036 hugetlb_hstate_alloc_pages(h);
5037 }
5038
5039 __hugetlb_bootmem_allocated = true;
5040 }
5041
5042 /*
5043 * hugepage_alloc_threads command line parsing.
5044 *
5045 * When set, use this specific number of threads for the boot
5046 * allocation of hugepages.
5047 */
hugepage_alloc_threads_setup(char * s)5048 static int __init hugepage_alloc_threads_setup(char *s)
5049 {
5050 unsigned long allocation_threads;
5051
5052 if (kstrtoul(s, 0, &allocation_threads) != 0)
5053 return 1;
5054
5055 if (allocation_threads == 0)
5056 return 1;
5057
5058 hugepage_allocation_threads = allocation_threads;
5059
5060 return 1;
5061 }
5062 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup);
5063
allowed_mems_nr(struct hstate * h)5064 static unsigned int allowed_mems_nr(struct hstate *h)
5065 {
5066 int node;
5067 unsigned int nr = 0;
5068 nodemask_t *mbind_nodemask;
5069 unsigned int *array = h->free_huge_pages_node;
5070 gfp_t gfp_mask = htlb_alloc_mask(h);
5071
5072 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
5073 for_each_node_mask(node, cpuset_current_mems_allowed) {
5074 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
5075 nr += array[node];
5076 }
5077
5078 return nr;
5079 }
5080
5081 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)5082 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
5083 void *buffer, size_t *length,
5084 loff_t *ppos, unsigned long *out)
5085 {
5086 struct ctl_table dup_table;
5087
5088 /*
5089 * In order to avoid races with __do_proc_doulongvec_minmax(), we
5090 * can duplicate the @table and alter the duplicate of it.
5091 */
5092 dup_table = *table;
5093 dup_table.data = out;
5094
5095 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
5096 }
5097
hugetlb_sysctl_handler_common(bool obey_mempolicy,const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5098 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
5099 const struct ctl_table *table, int write,
5100 void *buffer, size_t *length, loff_t *ppos)
5101 {
5102 struct hstate *h = &default_hstate;
5103 unsigned long tmp = h->max_huge_pages;
5104 int ret;
5105
5106 if (!hugepages_supported())
5107 return -EOPNOTSUPP;
5108
5109 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5110 &tmp);
5111 if (ret)
5112 goto out;
5113
5114 if (write)
5115 ret = __nr_hugepages_store_common(obey_mempolicy, h,
5116 NUMA_NO_NODE, tmp, *length);
5117 out:
5118 return ret;
5119 }
5120
hugetlb_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5121 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
5122 void *buffer, size_t *length, loff_t *ppos)
5123 {
5124
5125 return hugetlb_sysctl_handler_common(false, table, write,
5126 buffer, length, ppos);
5127 }
5128
5129 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5130 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
5131 void *buffer, size_t *length, loff_t *ppos)
5132 {
5133 return hugetlb_sysctl_handler_common(true, table, write,
5134 buffer, length, ppos);
5135 }
5136 #endif /* CONFIG_NUMA */
5137
hugetlb_overcommit_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5138 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
5139 void *buffer, size_t *length, loff_t *ppos)
5140 {
5141 struct hstate *h = &default_hstate;
5142 unsigned long tmp;
5143 int ret;
5144
5145 if (!hugepages_supported())
5146 return -EOPNOTSUPP;
5147
5148 tmp = h->nr_overcommit_huge_pages;
5149
5150 if (write && hstate_is_gigantic(h))
5151 return -EINVAL;
5152
5153 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5154 &tmp);
5155 if (ret)
5156 goto out;
5157
5158 if (write) {
5159 spin_lock_irq(&hugetlb_lock);
5160 h->nr_overcommit_huge_pages = tmp;
5161 spin_unlock_irq(&hugetlb_lock);
5162 }
5163 out:
5164 return ret;
5165 }
5166
5167 static const struct ctl_table hugetlb_table[] = {
5168 {
5169 .procname = "nr_hugepages",
5170 .data = NULL,
5171 .maxlen = sizeof(unsigned long),
5172 .mode = 0644,
5173 .proc_handler = hugetlb_sysctl_handler,
5174 },
5175 #ifdef CONFIG_NUMA
5176 {
5177 .procname = "nr_hugepages_mempolicy",
5178 .data = NULL,
5179 .maxlen = sizeof(unsigned long),
5180 .mode = 0644,
5181 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
5182 },
5183 #endif
5184 {
5185 .procname = "hugetlb_shm_group",
5186 .data = &sysctl_hugetlb_shm_group,
5187 .maxlen = sizeof(gid_t),
5188 .mode = 0644,
5189 .proc_handler = proc_dointvec,
5190 },
5191 {
5192 .procname = "nr_overcommit_hugepages",
5193 .data = NULL,
5194 .maxlen = sizeof(unsigned long),
5195 .mode = 0644,
5196 .proc_handler = hugetlb_overcommit_handler,
5197 },
5198 };
5199
hugetlb_sysctl_init(void)5200 static void __init hugetlb_sysctl_init(void)
5201 {
5202 register_sysctl_init("vm", hugetlb_table);
5203 }
5204 #endif /* CONFIG_SYSCTL */
5205
hugetlb_report_meminfo(struct seq_file * m)5206 void hugetlb_report_meminfo(struct seq_file *m)
5207 {
5208 struct hstate *h;
5209 unsigned long total = 0;
5210
5211 if (!hugepages_supported())
5212 return;
5213
5214 for_each_hstate(h) {
5215 unsigned long count = h->nr_huge_pages;
5216
5217 total += huge_page_size(h) * count;
5218
5219 if (h == &default_hstate)
5220 seq_printf(m,
5221 "HugePages_Total: %5lu\n"
5222 "HugePages_Free: %5lu\n"
5223 "HugePages_Rsvd: %5lu\n"
5224 "HugePages_Surp: %5lu\n"
5225 "Hugepagesize: %8lu kB\n",
5226 count,
5227 h->free_huge_pages,
5228 h->resv_huge_pages,
5229 h->surplus_huge_pages,
5230 huge_page_size(h) / SZ_1K);
5231 }
5232
5233 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
5234 }
5235
hugetlb_report_node_meminfo(char * buf,int len,int nid)5236 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5237 {
5238 struct hstate *h = &default_hstate;
5239
5240 if (!hugepages_supported())
5241 return 0;
5242
5243 return sysfs_emit_at(buf, len,
5244 "Node %d HugePages_Total: %5u\n"
5245 "Node %d HugePages_Free: %5u\n"
5246 "Node %d HugePages_Surp: %5u\n",
5247 nid, h->nr_huge_pages_node[nid],
5248 nid, h->free_huge_pages_node[nid],
5249 nid, h->surplus_huge_pages_node[nid]);
5250 }
5251
hugetlb_show_meminfo_node(int nid)5252 void hugetlb_show_meminfo_node(int nid)
5253 {
5254 struct hstate *h;
5255
5256 if (!hugepages_supported())
5257 return;
5258
5259 for_each_hstate(h)
5260 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5261 nid,
5262 h->nr_huge_pages_node[nid],
5263 h->free_huge_pages_node[nid],
5264 h->surplus_huge_pages_node[nid],
5265 huge_page_size(h) / SZ_1K);
5266 }
5267
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)5268 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5269 {
5270 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5271 K(atomic_long_read(&mm->hugetlb_usage)));
5272 }
5273
5274 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)5275 unsigned long hugetlb_total_pages(void)
5276 {
5277 struct hstate *h;
5278 unsigned long nr_total_pages = 0;
5279
5280 for_each_hstate(h)
5281 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5282 return nr_total_pages;
5283 }
5284
hugetlb_acct_memory(struct hstate * h,long delta)5285 static int hugetlb_acct_memory(struct hstate *h, long delta)
5286 {
5287 int ret = -ENOMEM;
5288
5289 if (!delta)
5290 return 0;
5291
5292 spin_lock_irq(&hugetlb_lock);
5293 /*
5294 * When cpuset is configured, it breaks the strict hugetlb page
5295 * reservation as the accounting is done on a global variable. Such
5296 * reservation is completely rubbish in the presence of cpuset because
5297 * the reservation is not checked against page availability for the
5298 * current cpuset. Application can still potentially OOM'ed by kernel
5299 * with lack of free htlb page in cpuset that the task is in.
5300 * Attempt to enforce strict accounting with cpuset is almost
5301 * impossible (or too ugly) because cpuset is too fluid that
5302 * task or memory node can be dynamically moved between cpusets.
5303 *
5304 * The change of semantics for shared hugetlb mapping with cpuset is
5305 * undesirable. However, in order to preserve some of the semantics,
5306 * we fall back to check against current free page availability as
5307 * a best attempt and hopefully to minimize the impact of changing
5308 * semantics that cpuset has.
5309 *
5310 * Apart from cpuset, we also have memory policy mechanism that
5311 * also determines from which node the kernel will allocate memory
5312 * in a NUMA system. So similar to cpuset, we also should consider
5313 * the memory policy of the current task. Similar to the description
5314 * above.
5315 */
5316 if (delta > 0) {
5317 if (gather_surplus_pages(h, delta) < 0)
5318 goto out;
5319
5320 if (delta > allowed_mems_nr(h)) {
5321 return_unused_surplus_pages(h, delta);
5322 goto out;
5323 }
5324 }
5325
5326 ret = 0;
5327 if (delta < 0)
5328 return_unused_surplus_pages(h, (unsigned long) -delta);
5329
5330 out:
5331 spin_unlock_irq(&hugetlb_lock);
5332 return ret;
5333 }
5334
hugetlb_vm_op_open(struct vm_area_struct * vma)5335 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5336 {
5337 struct resv_map *resv = vma_resv_map(vma);
5338
5339 /*
5340 * HPAGE_RESV_OWNER indicates a private mapping.
5341 * This new VMA should share its siblings reservation map if present.
5342 * The VMA will only ever have a valid reservation map pointer where
5343 * it is being copied for another still existing VMA. As that VMA
5344 * has a reference to the reservation map it cannot disappear until
5345 * after this open call completes. It is therefore safe to take a
5346 * new reference here without additional locking.
5347 */
5348 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5349 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5350 kref_get(&resv->refs);
5351 }
5352
5353 /*
5354 * vma_lock structure for sharable mappings is vma specific.
5355 * Clear old pointer (if copied via vm_area_dup) and allocate
5356 * new structure. Before clearing, make sure vma_lock is not
5357 * for this vma.
5358 */
5359 if (vma->vm_flags & VM_MAYSHARE) {
5360 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5361
5362 if (vma_lock) {
5363 if (vma_lock->vma != vma) {
5364 vma->vm_private_data = NULL;
5365 hugetlb_vma_lock_alloc(vma);
5366 } else
5367 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5368 } else
5369 hugetlb_vma_lock_alloc(vma);
5370 }
5371 }
5372
hugetlb_vm_op_close(struct vm_area_struct * vma)5373 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5374 {
5375 struct hstate *h = hstate_vma(vma);
5376 struct resv_map *resv;
5377 struct hugepage_subpool *spool = subpool_vma(vma);
5378 unsigned long reserve, start, end;
5379 long gbl_reserve;
5380
5381 hugetlb_vma_lock_free(vma);
5382
5383 resv = vma_resv_map(vma);
5384 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5385 return;
5386
5387 start = vma_hugecache_offset(h, vma, vma->vm_start);
5388 end = vma_hugecache_offset(h, vma, vma->vm_end);
5389
5390 reserve = (end - start) - region_count(resv, start, end);
5391 hugetlb_cgroup_uncharge_counter(resv, start, end);
5392 if (reserve) {
5393 /*
5394 * Decrement reserve counts. The global reserve count may be
5395 * adjusted if the subpool has a minimum size.
5396 */
5397 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5398 hugetlb_acct_memory(h, -gbl_reserve);
5399 }
5400
5401 kref_put(&resv->refs, resv_map_release);
5402 }
5403
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)5404 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5405 {
5406 if (addr & ~(huge_page_mask(hstate_vma(vma))))
5407 return -EINVAL;
5408 return 0;
5409 }
5410
hugetlb_split(struct vm_area_struct * vma,unsigned long addr)5411 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr)
5412 {
5413 /*
5414 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5415 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5416 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5417 * This function is called in the middle of a VMA split operation, with
5418 * MM, VMA and rmap all write-locked to prevent concurrent page table
5419 * walks (except hardware and gup_fast()).
5420 */
5421 vma_assert_write_locked(vma);
5422 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5423
5424 if (addr & ~PUD_MASK) {
5425 unsigned long floor = addr & PUD_MASK;
5426 unsigned long ceil = floor + PUD_SIZE;
5427
5428 if (floor >= vma->vm_start && ceil <= vma->vm_end) {
5429 /*
5430 * Locking:
5431 * Use take_locks=false here.
5432 * The file rmap lock is already held.
5433 * The hugetlb VMA lock can't be taken when we already
5434 * hold the file rmap lock, and we don't need it because
5435 * its purpose is to synchronize against concurrent page
5436 * table walks, which are not possible thanks to the
5437 * locks held by our caller.
5438 */
5439 hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false);
5440 }
5441 }
5442 }
5443
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)5444 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5445 {
5446 return huge_page_size(hstate_vma(vma));
5447 }
5448
5449 /*
5450 * We cannot handle pagefaults against hugetlb pages at all. They cause
5451 * handle_mm_fault() to try to instantiate regular-sized pages in the
5452 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
5453 * this far.
5454 */
hugetlb_vm_op_fault(struct vm_fault * vmf)5455 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5456 {
5457 BUG();
5458 return 0;
5459 }
5460
5461 /*
5462 * When a new function is introduced to vm_operations_struct and added
5463 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5464 * This is because under System V memory model, mappings created via
5465 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5466 * their original vm_ops are overwritten with shm_vm_ops.
5467 */
5468 const struct vm_operations_struct hugetlb_vm_ops = {
5469 .fault = hugetlb_vm_op_fault,
5470 .open = hugetlb_vm_op_open,
5471 .close = hugetlb_vm_op_close,
5472 .may_split = hugetlb_vm_op_split,
5473 .pagesize = hugetlb_vm_op_pagesize,
5474 };
5475
make_huge_pte(struct vm_area_struct * vma,struct folio * folio,bool try_mkwrite)5476 static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio,
5477 bool try_mkwrite)
5478 {
5479 pte_t entry = folio_mk_pte(folio, vma->vm_page_prot);
5480 unsigned int shift = huge_page_shift(hstate_vma(vma));
5481
5482 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) {
5483 entry = pte_mkwrite_novma(pte_mkdirty(entry));
5484 } else {
5485 entry = pte_wrprotect(entry);
5486 }
5487 entry = pte_mkyoung(entry);
5488 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5489
5490 return entry;
5491 }
5492
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5493 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5494 unsigned long address, pte_t *ptep)
5495 {
5496 pte_t entry;
5497
5498 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5499 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5500 update_mmu_cache(vma, address, ptep);
5501 }
5502
set_huge_ptep_maybe_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5503 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma,
5504 unsigned long address, pte_t *ptep)
5505 {
5506 if (vma->vm_flags & VM_WRITE)
5507 set_huge_ptep_writable(vma, address, ptep);
5508 }
5509
is_hugetlb_entry_migration(pte_t pte)5510 bool is_hugetlb_entry_migration(pte_t pte)
5511 {
5512 swp_entry_t swp;
5513
5514 if (huge_pte_none(pte) || pte_present(pte))
5515 return false;
5516 swp = pte_to_swp_entry(pte);
5517 if (is_migration_entry(swp))
5518 return true;
5519 else
5520 return false;
5521 }
5522
is_hugetlb_entry_hwpoisoned(pte_t pte)5523 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5524 {
5525 swp_entry_t swp;
5526
5527 if (huge_pte_none(pte) || pte_present(pte))
5528 return false;
5529 swp = pte_to_swp_entry(pte);
5530 if (is_hwpoison_entry(swp))
5531 return true;
5532 else
5533 return false;
5534 }
5535
5536 static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)5537 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5538 struct folio *new_folio, pte_t old, unsigned long sz)
5539 {
5540 pte_t newpte = make_huge_pte(vma, new_folio, true);
5541
5542 __folio_mark_uptodate(new_folio);
5543 hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5544 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5545 newpte = huge_pte_mkuffd_wp(newpte);
5546 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5547 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5548 folio_set_hugetlb_migratable(new_folio);
5549 }
5550
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)5551 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5552 struct vm_area_struct *dst_vma,
5553 struct vm_area_struct *src_vma)
5554 {
5555 pte_t *src_pte, *dst_pte, entry;
5556 struct folio *pte_folio;
5557 unsigned long addr;
5558 bool cow = is_cow_mapping(src_vma->vm_flags);
5559 struct hstate *h = hstate_vma(src_vma);
5560 unsigned long sz = huge_page_size(h);
5561 unsigned long npages = pages_per_huge_page(h);
5562 struct mmu_notifier_range range;
5563 unsigned long last_addr_mask;
5564 int ret = 0;
5565
5566 if (cow) {
5567 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5568 src_vma->vm_start,
5569 src_vma->vm_end);
5570 mmu_notifier_invalidate_range_start(&range);
5571 vma_assert_write_locked(src_vma);
5572 raw_write_seqcount_begin(&src->write_protect_seq);
5573 } else {
5574 /*
5575 * For shared mappings the vma lock must be held before
5576 * calling hugetlb_walk() in the src vma. Otherwise, the
5577 * returned ptep could go away if part of a shared pmd and
5578 * another thread calls huge_pmd_unshare.
5579 */
5580 hugetlb_vma_lock_read(src_vma);
5581 }
5582
5583 last_addr_mask = hugetlb_mask_last_page(h);
5584 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5585 spinlock_t *src_ptl, *dst_ptl;
5586 src_pte = hugetlb_walk(src_vma, addr, sz);
5587 if (!src_pte) {
5588 addr |= last_addr_mask;
5589 continue;
5590 }
5591 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5592 if (!dst_pte) {
5593 ret = -ENOMEM;
5594 break;
5595 }
5596
5597 /*
5598 * If the pagetables are shared don't copy or take references.
5599 *
5600 * dst_pte == src_pte is the common case of src/dest sharing.
5601 * However, src could have 'unshared' and dst shares with
5602 * another vma. So page_count of ptep page is checked instead
5603 * to reliably determine whether pte is shared.
5604 */
5605 if (page_count(virt_to_page(dst_pte)) > 1) {
5606 addr |= last_addr_mask;
5607 continue;
5608 }
5609
5610 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5611 src_ptl = huge_pte_lockptr(h, src, src_pte);
5612 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5613 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5614 again:
5615 if (huge_pte_none(entry)) {
5616 /*
5617 * Skip if src entry none.
5618 */
5619 ;
5620 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5621 if (!userfaultfd_wp(dst_vma))
5622 entry = huge_pte_clear_uffd_wp(entry);
5623 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5624 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5625 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5626 bool uffd_wp = pte_swp_uffd_wp(entry);
5627
5628 if (!is_readable_migration_entry(swp_entry) && cow) {
5629 /*
5630 * COW mappings require pages in both
5631 * parent and child to be set to read.
5632 */
5633 swp_entry = make_readable_migration_entry(
5634 swp_offset(swp_entry));
5635 entry = swp_entry_to_pte(swp_entry);
5636 if (userfaultfd_wp(src_vma) && uffd_wp)
5637 entry = pte_swp_mkuffd_wp(entry);
5638 set_huge_pte_at(src, addr, src_pte, entry, sz);
5639 }
5640 if (!userfaultfd_wp(dst_vma))
5641 entry = huge_pte_clear_uffd_wp(entry);
5642 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5643 } else if (unlikely(is_pte_marker(entry))) {
5644 pte_marker marker = copy_pte_marker(
5645 pte_to_swp_entry(entry), dst_vma);
5646
5647 if (marker)
5648 set_huge_pte_at(dst, addr, dst_pte,
5649 make_pte_marker(marker), sz);
5650 } else {
5651 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5652 pte_folio = page_folio(pte_page(entry));
5653 folio_get(pte_folio);
5654
5655 /*
5656 * Failing to duplicate the anon rmap is a rare case
5657 * where we see pinned hugetlb pages while they're
5658 * prone to COW. We need to do the COW earlier during
5659 * fork.
5660 *
5661 * When pre-allocating the page or copying data, we
5662 * need to be without the pgtable locks since we could
5663 * sleep during the process.
5664 */
5665 if (!folio_test_anon(pte_folio)) {
5666 hugetlb_add_file_rmap(pte_folio);
5667 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5668 pte_t src_pte_old = entry;
5669 struct folio *new_folio;
5670
5671 spin_unlock(src_ptl);
5672 spin_unlock(dst_ptl);
5673 /* Do not use reserve as it's private owned */
5674 new_folio = alloc_hugetlb_folio(dst_vma, addr, false);
5675 if (IS_ERR(new_folio)) {
5676 folio_put(pte_folio);
5677 ret = PTR_ERR(new_folio);
5678 break;
5679 }
5680 ret = copy_user_large_folio(new_folio, pte_folio,
5681 addr, dst_vma);
5682 folio_put(pte_folio);
5683 if (ret) {
5684 folio_put(new_folio);
5685 break;
5686 }
5687
5688 /* Install the new hugetlb folio if src pte stable */
5689 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5690 src_ptl = huge_pte_lockptr(h, src, src_pte);
5691 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5692 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5693 if (!pte_same(src_pte_old, entry)) {
5694 restore_reserve_on_error(h, dst_vma, addr,
5695 new_folio);
5696 folio_put(new_folio);
5697 /* huge_ptep of dst_pte won't change as in child */
5698 goto again;
5699 }
5700 hugetlb_install_folio(dst_vma, dst_pte, addr,
5701 new_folio, src_pte_old, sz);
5702 spin_unlock(src_ptl);
5703 spin_unlock(dst_ptl);
5704 continue;
5705 }
5706
5707 if (cow) {
5708 /*
5709 * No need to notify as we are downgrading page
5710 * table protection not changing it to point
5711 * to a new page.
5712 *
5713 * See Documentation/mm/mmu_notifier.rst
5714 */
5715 huge_ptep_set_wrprotect(src, addr, src_pte);
5716 entry = huge_pte_wrprotect(entry);
5717 }
5718
5719 if (!userfaultfd_wp(dst_vma))
5720 entry = huge_pte_clear_uffd_wp(entry);
5721
5722 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5723 hugetlb_count_add(npages, dst);
5724 }
5725 spin_unlock(src_ptl);
5726 spin_unlock(dst_ptl);
5727 }
5728
5729 if (cow) {
5730 raw_write_seqcount_end(&src->write_protect_seq);
5731 mmu_notifier_invalidate_range_end(&range);
5732 } else {
5733 hugetlb_vma_unlock_read(src_vma);
5734 }
5735
5736 return ret;
5737 }
5738
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5739 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5740 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5741 unsigned long sz)
5742 {
5743 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
5744 struct hstate *h = hstate_vma(vma);
5745 struct mm_struct *mm = vma->vm_mm;
5746 spinlock_t *src_ptl, *dst_ptl;
5747 pte_t pte;
5748
5749 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5750 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5751
5752 /*
5753 * We don't have to worry about the ordering of src and dst ptlocks
5754 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5755 */
5756 if (src_ptl != dst_ptl)
5757 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5758
5759 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
5760
5761 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
5762 huge_pte_clear(mm, new_addr, dst_pte, sz);
5763 else {
5764 if (need_clear_uffd_wp) {
5765 if (pte_present(pte))
5766 pte = huge_pte_clear_uffd_wp(pte);
5767 else if (is_swap_pte(pte))
5768 pte = pte_swp_clear_uffd_wp(pte);
5769 }
5770 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5771 }
5772
5773 if (src_ptl != dst_ptl)
5774 spin_unlock(src_ptl);
5775 spin_unlock(dst_ptl);
5776 }
5777
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5778 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5779 struct vm_area_struct *new_vma,
5780 unsigned long old_addr, unsigned long new_addr,
5781 unsigned long len)
5782 {
5783 struct hstate *h = hstate_vma(vma);
5784 struct address_space *mapping = vma->vm_file->f_mapping;
5785 unsigned long sz = huge_page_size(h);
5786 struct mm_struct *mm = vma->vm_mm;
5787 unsigned long old_end = old_addr + len;
5788 unsigned long last_addr_mask;
5789 pte_t *src_pte, *dst_pte;
5790 struct mmu_notifier_range range;
5791 bool shared_pmd = false;
5792
5793 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5794 old_end);
5795 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5796 /*
5797 * In case of shared PMDs, we should cover the maximum possible
5798 * range.
5799 */
5800 flush_cache_range(vma, range.start, range.end);
5801
5802 mmu_notifier_invalidate_range_start(&range);
5803 last_addr_mask = hugetlb_mask_last_page(h);
5804 /* Prevent race with file truncation */
5805 hugetlb_vma_lock_write(vma);
5806 i_mmap_lock_write(mapping);
5807 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5808 src_pte = hugetlb_walk(vma, old_addr, sz);
5809 if (!src_pte) {
5810 old_addr |= last_addr_mask;
5811 new_addr |= last_addr_mask;
5812 continue;
5813 }
5814 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5815 continue;
5816
5817 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5818 shared_pmd = true;
5819 old_addr |= last_addr_mask;
5820 new_addr |= last_addr_mask;
5821 continue;
5822 }
5823
5824 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5825 if (!dst_pte)
5826 break;
5827
5828 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5829 }
5830
5831 if (shared_pmd)
5832 flush_hugetlb_tlb_range(vma, range.start, range.end);
5833 else
5834 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5835 mmu_notifier_invalidate_range_end(&range);
5836 i_mmap_unlock_write(mapping);
5837 hugetlb_vma_unlock_write(vma);
5838
5839 return len + old_addr - old_end;
5840 }
5841
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)5842 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5843 unsigned long start, unsigned long end,
5844 struct folio *folio, zap_flags_t zap_flags)
5845 {
5846 struct mm_struct *mm = vma->vm_mm;
5847 const bool folio_provided = !!folio;
5848 unsigned long address;
5849 pte_t *ptep;
5850 pte_t pte;
5851 spinlock_t *ptl;
5852 struct hstate *h = hstate_vma(vma);
5853 unsigned long sz = huge_page_size(h);
5854 bool adjust_reservation = false;
5855 unsigned long last_addr_mask;
5856 bool force_flush = false;
5857
5858 WARN_ON(!is_vm_hugetlb_page(vma));
5859 BUG_ON(start & ~huge_page_mask(h));
5860 BUG_ON(end & ~huge_page_mask(h));
5861
5862 /*
5863 * This is a hugetlb vma, all the pte entries should point
5864 * to huge page.
5865 */
5866 tlb_change_page_size(tlb, sz);
5867 tlb_start_vma(tlb, vma);
5868
5869 last_addr_mask = hugetlb_mask_last_page(h);
5870 address = start;
5871 for (; address < end; address += sz) {
5872 ptep = hugetlb_walk(vma, address, sz);
5873 if (!ptep) {
5874 address |= last_addr_mask;
5875 continue;
5876 }
5877
5878 ptl = huge_pte_lock(h, mm, ptep);
5879 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5880 spin_unlock(ptl);
5881 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5882 force_flush = true;
5883 address |= last_addr_mask;
5884 continue;
5885 }
5886
5887 pte = huge_ptep_get(mm, address, ptep);
5888 if (huge_pte_none(pte)) {
5889 spin_unlock(ptl);
5890 continue;
5891 }
5892
5893 /*
5894 * Migrating hugepage or HWPoisoned hugepage is already
5895 * unmapped and its refcount is dropped, so just clear pte here.
5896 */
5897 if (unlikely(!pte_present(pte))) {
5898 /*
5899 * If the pte was wr-protected by uffd-wp in any of the
5900 * swap forms, meanwhile the caller does not want to
5901 * drop the uffd-wp bit in this zap, then replace the
5902 * pte with a marker.
5903 */
5904 if (pte_swp_uffd_wp_any(pte) &&
5905 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5906 set_huge_pte_at(mm, address, ptep,
5907 make_pte_marker(PTE_MARKER_UFFD_WP),
5908 sz);
5909 else
5910 huge_pte_clear(mm, address, ptep, sz);
5911 spin_unlock(ptl);
5912 continue;
5913 }
5914
5915 /*
5916 * If a folio is supplied, it is because a specific
5917 * folio is being unmapped, not a range. Ensure the folio we
5918 * are about to unmap is the actual folio of interest.
5919 */
5920 if (folio_provided) {
5921 if (folio != page_folio(pte_page(pte))) {
5922 spin_unlock(ptl);
5923 continue;
5924 }
5925 /*
5926 * Mark the VMA as having unmapped its page so that
5927 * future faults in this VMA will fail rather than
5928 * looking like data was lost
5929 */
5930 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5931 } else {
5932 folio = page_folio(pte_page(pte));
5933 }
5934
5935 pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
5936 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5937 if (huge_pte_dirty(pte))
5938 folio_mark_dirty(folio);
5939 /* Leave a uffd-wp pte marker if needed */
5940 if (huge_pte_uffd_wp(pte) &&
5941 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5942 set_huge_pte_at(mm, address, ptep,
5943 make_pte_marker(PTE_MARKER_UFFD_WP),
5944 sz);
5945 hugetlb_count_sub(pages_per_huge_page(h), mm);
5946 hugetlb_remove_rmap(folio);
5947
5948 /*
5949 * Restore the reservation for anonymous page, otherwise the
5950 * backing page could be stolen by someone.
5951 * If there we are freeing a surplus, do not set the restore
5952 * reservation bit.
5953 */
5954 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5955 folio_test_anon(folio)) {
5956 folio_set_hugetlb_restore_reserve(folio);
5957 /* Reservation to be adjusted after the spin lock */
5958 adjust_reservation = true;
5959 }
5960
5961 spin_unlock(ptl);
5962
5963 /*
5964 * Adjust the reservation for the region that will have the
5965 * reserve restored. Keep in mind that vma_needs_reservation() changes
5966 * resv->adds_in_progress if it succeeds. If this is not done,
5967 * do_exit() will not see it, and will keep the reservation
5968 * forever.
5969 */
5970 if (adjust_reservation) {
5971 int rc = vma_needs_reservation(h, vma, address);
5972
5973 if (rc < 0)
5974 /* Pressumably allocate_file_region_entries failed
5975 * to allocate a file_region struct. Clear
5976 * hugetlb_restore_reserve so that global reserve
5977 * count will not be incremented by free_huge_folio.
5978 * Act as if we consumed the reservation.
5979 */
5980 folio_clear_hugetlb_restore_reserve(folio);
5981 else if (rc)
5982 vma_add_reservation(h, vma, address);
5983 }
5984
5985 tlb_remove_page_size(tlb, folio_page(folio, 0),
5986 folio_size(folio));
5987 /*
5988 * If we were instructed to unmap a specific folio, we're done.
5989 */
5990 if (folio_provided)
5991 break;
5992 }
5993 tlb_end_vma(tlb, vma);
5994
5995 /*
5996 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5997 * could defer the flush until now, since by holding i_mmap_rwsem we
5998 * guaranteed that the last refernece would not be dropped. But we must
5999 * do the flushing before we return, as otherwise i_mmap_rwsem will be
6000 * dropped and the last reference to the shared PMDs page might be
6001 * dropped as well.
6002 *
6003 * In theory we could defer the freeing of the PMD pages as well, but
6004 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
6005 * detect sharing, so we cannot defer the release of the page either.
6006 * Instead, do flush now.
6007 */
6008 if (force_flush)
6009 tlb_flush_mmu_tlbonly(tlb);
6010 }
6011
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)6012 void __hugetlb_zap_begin(struct vm_area_struct *vma,
6013 unsigned long *start, unsigned long *end)
6014 {
6015 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
6016 return;
6017
6018 adjust_range_if_pmd_sharing_possible(vma, start, end);
6019 hugetlb_vma_lock_write(vma);
6020 if (vma->vm_file)
6021 i_mmap_lock_write(vma->vm_file->f_mapping);
6022 }
6023
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)6024 void __hugetlb_zap_end(struct vm_area_struct *vma,
6025 struct zap_details *details)
6026 {
6027 zap_flags_t zap_flags = details ? details->zap_flags : 0;
6028
6029 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
6030 return;
6031
6032 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
6033 /*
6034 * Unlock and free the vma lock before releasing i_mmap_rwsem.
6035 * When the vma_lock is freed, this makes the vma ineligible
6036 * for pmd sharing. And, i_mmap_rwsem is required to set up
6037 * pmd sharing. This is important as page tables for this
6038 * unmapped range will be asynchrously deleted. If the page
6039 * tables are shared, there will be issues when accessed by
6040 * someone else.
6041 */
6042 __hugetlb_vma_unlock_write_free(vma);
6043 } else {
6044 hugetlb_vma_unlock_write(vma);
6045 }
6046
6047 if (vma->vm_file)
6048 i_mmap_unlock_write(vma->vm_file->f_mapping);
6049 }
6050
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)6051 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
6052 unsigned long end, struct folio *folio,
6053 zap_flags_t zap_flags)
6054 {
6055 struct mmu_notifier_range range;
6056 struct mmu_gather tlb;
6057
6058 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
6059 start, end);
6060 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6061 mmu_notifier_invalidate_range_start(&range);
6062 tlb_gather_mmu(&tlb, vma->vm_mm);
6063
6064 __unmap_hugepage_range(&tlb, vma, start, end,
6065 folio, zap_flags);
6066
6067 mmu_notifier_invalidate_range_end(&range);
6068 tlb_finish_mmu(&tlb);
6069 }
6070
6071 /*
6072 * This is called when the original mapper is failing to COW a MAP_PRIVATE
6073 * mapping it owns the reserve page for. The intention is to unmap the page
6074 * from other VMAs and let the children be SIGKILLed if they are faulting the
6075 * same region.
6076 */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct folio * folio,unsigned long address)6077 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
6078 struct folio *folio, unsigned long address)
6079 {
6080 struct hstate *h = hstate_vma(vma);
6081 struct vm_area_struct *iter_vma;
6082 struct address_space *mapping;
6083 pgoff_t pgoff;
6084
6085 /*
6086 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
6087 * from page cache lookup which is in HPAGE_SIZE units.
6088 */
6089 address = address & huge_page_mask(h);
6090 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
6091 vma->vm_pgoff;
6092 mapping = vma->vm_file->f_mapping;
6093
6094 /*
6095 * Take the mapping lock for the duration of the table walk. As
6096 * this mapping should be shared between all the VMAs,
6097 * __unmap_hugepage_range() is called as the lock is already held
6098 */
6099 i_mmap_lock_write(mapping);
6100 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
6101 /* Do not unmap the current VMA */
6102 if (iter_vma == vma)
6103 continue;
6104
6105 /*
6106 * Shared VMAs have their own reserves and do not affect
6107 * MAP_PRIVATE accounting but it is possible that a shared
6108 * VMA is using the same page so check and skip such VMAs.
6109 */
6110 if (iter_vma->vm_flags & VM_MAYSHARE)
6111 continue;
6112
6113 /*
6114 * Unmap the page from other VMAs without their own reserves.
6115 * They get marked to be SIGKILLed if they fault in these
6116 * areas. This is because a future no-page fault on this VMA
6117 * could insert a zeroed page instead of the data existing
6118 * from the time of fork. This would look like data corruption
6119 */
6120 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
6121 unmap_hugepage_range(iter_vma, address,
6122 address + huge_page_size(h),
6123 folio, 0);
6124 }
6125 i_mmap_unlock_write(mapping);
6126 }
6127
6128 /*
6129 * hugetlb_wp() should be called with page lock of the original hugepage held.
6130 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
6131 * cannot race with other handlers or page migration.
6132 * Keep the pte_same checks anyway to make transition from the mutex easier.
6133 */
hugetlb_wp(struct vm_fault * vmf)6134 static vm_fault_t hugetlb_wp(struct vm_fault *vmf)
6135 {
6136 struct vm_area_struct *vma = vmf->vma;
6137 struct mm_struct *mm = vma->vm_mm;
6138 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
6139 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
6140 struct hstate *h = hstate_vma(vma);
6141 struct folio *old_folio;
6142 struct folio *new_folio;
6143 bool cow_from_owner = 0;
6144 vm_fault_t ret = 0;
6145 struct mmu_notifier_range range;
6146
6147 /*
6148 * Never handle CoW for uffd-wp protected pages. It should be only
6149 * handled when the uffd-wp protection is removed.
6150 *
6151 * Note that only the CoW optimization path (in hugetlb_no_page())
6152 * can trigger this, because hugetlb_fault() will always resolve
6153 * uffd-wp bit first.
6154 */
6155 if (!unshare && huge_pte_uffd_wp(pte))
6156 return 0;
6157
6158 /* Let's take out MAP_SHARED mappings first. */
6159 if (vma->vm_flags & VM_MAYSHARE) {
6160 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
6161 return 0;
6162 }
6163
6164 old_folio = page_folio(pte_page(pte));
6165
6166 delayacct_wpcopy_start();
6167
6168 retry_avoidcopy:
6169 /*
6170 * If no-one else is actually using this page, we're the exclusive
6171 * owner and can reuse this page.
6172 *
6173 * Note that we don't rely on the (safer) folio refcount here, because
6174 * copying the hugetlb folio when there are unexpected (temporary)
6175 * folio references could harm simple fork()+exit() users when
6176 * we run out of free hugetlb folios: we would have to kill processes
6177 * in scenarios that used to work. As a side effect, there can still
6178 * be leaks between processes, for example, with FOLL_GET users.
6179 */
6180 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
6181 if (!PageAnonExclusive(&old_folio->page)) {
6182 folio_move_anon_rmap(old_folio, vma);
6183 SetPageAnonExclusive(&old_folio->page);
6184 }
6185 if (likely(!unshare))
6186 set_huge_ptep_maybe_writable(vma, vmf->address,
6187 vmf->pte);
6188
6189 delayacct_wpcopy_end();
6190 return 0;
6191 }
6192 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
6193 PageAnonExclusive(&old_folio->page), &old_folio->page);
6194
6195 /*
6196 * If the process that created a MAP_PRIVATE mapping is about to perform
6197 * a COW due to a shared page count, attempt to satisfy the allocation
6198 * without using the existing reserves.
6199 * In order to determine where this is a COW on a MAP_PRIVATE mapping it
6200 * is enough to check whether the old_folio is anonymous. This means that
6201 * the reserve for this address was consumed. If reserves were used, a
6202 * partial faulted mapping at the fime of fork() could consume its reserves
6203 * on COW instead of the full address range.
6204 */
6205 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
6206 folio_test_anon(old_folio))
6207 cow_from_owner = true;
6208
6209 folio_get(old_folio);
6210
6211 /*
6212 * Drop page table lock as buddy allocator may be called. It will
6213 * be acquired again before returning to the caller, as expected.
6214 */
6215 spin_unlock(vmf->ptl);
6216 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner);
6217
6218 if (IS_ERR(new_folio)) {
6219 /*
6220 * If a process owning a MAP_PRIVATE mapping fails to COW,
6221 * it is due to references held by a child and an insufficient
6222 * huge page pool. To guarantee the original mappers
6223 * reliability, unmap the page from child processes. The child
6224 * may get SIGKILLed if it later faults.
6225 */
6226 if (cow_from_owner) {
6227 struct address_space *mapping = vma->vm_file->f_mapping;
6228 pgoff_t idx;
6229 u32 hash;
6230
6231 folio_put(old_folio);
6232 /*
6233 * Drop hugetlb_fault_mutex and vma_lock before
6234 * unmapping. unmapping needs to hold vma_lock
6235 * in write mode. Dropping vma_lock in read mode
6236 * here is OK as COW mappings do not interact with
6237 * PMD sharing.
6238 *
6239 * Reacquire both after unmap operation.
6240 */
6241 idx = vma_hugecache_offset(h, vma, vmf->address);
6242 hash = hugetlb_fault_mutex_hash(mapping, idx);
6243 hugetlb_vma_unlock_read(vma);
6244 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6245
6246 unmap_ref_private(mm, vma, old_folio, vmf->address);
6247
6248 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6249 hugetlb_vma_lock_read(vma);
6250 spin_lock(vmf->ptl);
6251 vmf->pte = hugetlb_walk(vma, vmf->address,
6252 huge_page_size(h));
6253 if (likely(vmf->pte &&
6254 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
6255 goto retry_avoidcopy;
6256 /*
6257 * race occurs while re-acquiring page table
6258 * lock, and our job is done.
6259 */
6260 delayacct_wpcopy_end();
6261 return 0;
6262 }
6263
6264 ret = vmf_error(PTR_ERR(new_folio));
6265 goto out_release_old;
6266 }
6267
6268 /*
6269 * When the original hugepage is shared one, it does not have
6270 * anon_vma prepared.
6271 */
6272 ret = __vmf_anon_prepare(vmf);
6273 if (unlikely(ret))
6274 goto out_release_all;
6275
6276 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
6277 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
6278 goto out_release_all;
6279 }
6280 __folio_mark_uptodate(new_folio);
6281
6282 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6283 vmf->address + huge_page_size(h));
6284 mmu_notifier_invalidate_range_start(&range);
6285
6286 /*
6287 * Retake the page table lock to check for racing updates
6288 * before the page tables are altered
6289 */
6290 spin_lock(vmf->ptl);
6291 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6292 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
6293 pte_t newpte = make_huge_pte(vma, new_folio, !unshare);
6294
6295 /* Break COW or unshare */
6296 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
6297 hugetlb_remove_rmap(old_folio);
6298 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
6299 if (huge_pte_uffd_wp(pte))
6300 newpte = huge_pte_mkuffd_wp(newpte);
6301 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6302 huge_page_size(h));
6303 folio_set_hugetlb_migratable(new_folio);
6304 /* Make the old page be freed below */
6305 new_folio = old_folio;
6306 }
6307 spin_unlock(vmf->ptl);
6308 mmu_notifier_invalidate_range_end(&range);
6309 out_release_all:
6310 /*
6311 * No restore in case of successful pagetable update (Break COW or
6312 * unshare)
6313 */
6314 if (new_folio != old_folio)
6315 restore_reserve_on_error(h, vma, vmf->address, new_folio);
6316 folio_put(new_folio);
6317 out_release_old:
6318 folio_put(old_folio);
6319
6320 spin_lock(vmf->ptl); /* Caller expects lock to be held */
6321
6322 delayacct_wpcopy_end();
6323 return ret;
6324 }
6325
6326 /*
6327 * Return whether there is a pagecache page to back given address within VMA.
6328 */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6329 bool hugetlbfs_pagecache_present(struct hstate *h,
6330 struct vm_area_struct *vma, unsigned long address)
6331 {
6332 struct address_space *mapping = vma->vm_file->f_mapping;
6333 pgoff_t idx = linear_page_index(vma, address);
6334 struct folio *folio;
6335
6336 folio = filemap_get_folio(mapping, idx);
6337 if (IS_ERR(folio))
6338 return false;
6339 folio_put(folio);
6340 return true;
6341 }
6342
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)6343 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6344 pgoff_t idx)
6345 {
6346 struct inode *inode = mapping->host;
6347 struct hstate *h = hstate_inode(inode);
6348 int err;
6349
6350 idx <<= huge_page_order(h);
6351 __folio_set_locked(folio);
6352 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6353
6354 if (unlikely(err)) {
6355 __folio_clear_locked(folio);
6356 return err;
6357 }
6358 folio_clear_hugetlb_restore_reserve(folio);
6359
6360 /*
6361 * mark folio dirty so that it will not be removed from cache/file
6362 * by non-hugetlbfs specific code paths.
6363 */
6364 folio_mark_dirty(folio);
6365
6366 spin_lock(&inode->i_lock);
6367 inode->i_blocks += blocks_per_huge_page(h);
6368 spin_unlock(&inode->i_lock);
6369 return 0;
6370 }
6371
hugetlb_handle_userfault(struct vm_fault * vmf,struct address_space * mapping,unsigned long reason)6372 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6373 struct address_space *mapping,
6374 unsigned long reason)
6375 {
6376 u32 hash;
6377
6378 /*
6379 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6380 * userfault. Also mmap_lock could be dropped due to handling
6381 * userfault, any vma operation should be careful from here.
6382 */
6383 hugetlb_vma_unlock_read(vmf->vma);
6384 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6385 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6386 return handle_userfault(vmf, reason);
6387 }
6388
6389 /*
6390 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
6391 * false if pte changed or is changing.
6392 */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t old_pte)6393 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6394 pte_t *ptep, pte_t old_pte)
6395 {
6396 spinlock_t *ptl;
6397 bool same;
6398
6399 ptl = huge_pte_lock(h, mm, ptep);
6400 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6401 spin_unlock(ptl);
6402
6403 return same;
6404 }
6405
hugetlb_no_page(struct address_space * mapping,struct vm_fault * vmf)6406 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6407 struct vm_fault *vmf)
6408 {
6409 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6410 bool new_folio, new_anon_folio = false;
6411 struct vm_area_struct *vma = vmf->vma;
6412 struct mm_struct *mm = vma->vm_mm;
6413 struct hstate *h = hstate_vma(vma);
6414 vm_fault_t ret = VM_FAULT_SIGBUS;
6415 bool folio_locked = true;
6416 struct folio *folio;
6417 unsigned long size;
6418 pte_t new_pte;
6419
6420 /*
6421 * Currently, we are forced to kill the process in the event the
6422 * original mapper has unmapped pages from the child due to a failed
6423 * COW/unsharing. Warn that such a situation has occurred as it may not
6424 * be obvious.
6425 */
6426 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6427 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6428 current->pid);
6429 goto out;
6430 }
6431
6432 /*
6433 * Use page lock to guard against racing truncation
6434 * before we get page_table_lock.
6435 */
6436 new_folio = false;
6437 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6438 if (IS_ERR(folio)) {
6439 size = i_size_read(mapping->host) >> huge_page_shift(h);
6440 if (vmf->pgoff >= size)
6441 goto out;
6442 /* Check for page in userfault range */
6443 if (userfaultfd_missing(vma)) {
6444 /*
6445 * Since hugetlb_no_page() was examining pte
6446 * without pgtable lock, we need to re-test under
6447 * lock because the pte may not be stable and could
6448 * have changed from under us. Try to detect
6449 * either changed or during-changing ptes and retry
6450 * properly when needed.
6451 *
6452 * Note that userfaultfd is actually fine with
6453 * false positives (e.g. caused by pte changed),
6454 * but not wrong logical events (e.g. caused by
6455 * reading a pte during changing). The latter can
6456 * confuse the userspace, so the strictness is very
6457 * much preferred. E.g., MISSING event should
6458 * never happen on the page after UFFDIO_COPY has
6459 * correctly installed the page and returned.
6460 */
6461 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6462 ret = 0;
6463 goto out;
6464 }
6465
6466 return hugetlb_handle_userfault(vmf, mapping,
6467 VM_UFFD_MISSING);
6468 }
6469
6470 if (!(vma->vm_flags & VM_MAYSHARE)) {
6471 ret = __vmf_anon_prepare(vmf);
6472 if (unlikely(ret))
6473 goto out;
6474 }
6475
6476 folio = alloc_hugetlb_folio(vma, vmf->address, false);
6477 if (IS_ERR(folio)) {
6478 /*
6479 * Returning error will result in faulting task being
6480 * sent SIGBUS. The hugetlb fault mutex prevents two
6481 * tasks from racing to fault in the same page which
6482 * could result in false unable to allocate errors.
6483 * Page migration does not take the fault mutex, but
6484 * does a clear then write of pte's under page table
6485 * lock. Page fault code could race with migration,
6486 * notice the clear pte and try to allocate a page
6487 * here. Before returning error, get ptl and make
6488 * sure there really is no pte entry.
6489 */
6490 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6491 ret = vmf_error(PTR_ERR(folio));
6492 else
6493 ret = 0;
6494 goto out;
6495 }
6496 folio_zero_user(folio, vmf->real_address);
6497 __folio_mark_uptodate(folio);
6498 new_folio = true;
6499
6500 if (vma->vm_flags & VM_MAYSHARE) {
6501 int err = hugetlb_add_to_page_cache(folio, mapping,
6502 vmf->pgoff);
6503 if (err) {
6504 /*
6505 * err can't be -EEXIST which implies someone
6506 * else consumed the reservation since hugetlb
6507 * fault mutex is held when add a hugetlb page
6508 * to the page cache. So it's safe to call
6509 * restore_reserve_on_error() here.
6510 */
6511 restore_reserve_on_error(h, vma, vmf->address,
6512 folio);
6513 folio_put(folio);
6514 ret = VM_FAULT_SIGBUS;
6515 goto out;
6516 }
6517 } else {
6518 new_anon_folio = true;
6519 folio_lock(folio);
6520 }
6521 } else {
6522 /*
6523 * If memory error occurs between mmap() and fault, some process
6524 * don't have hwpoisoned swap entry for errored virtual address.
6525 * So we need to block hugepage fault by PG_hwpoison bit check.
6526 */
6527 if (unlikely(folio_test_hwpoison(folio))) {
6528 ret = VM_FAULT_HWPOISON_LARGE |
6529 VM_FAULT_SET_HINDEX(hstate_index(h));
6530 goto backout_unlocked;
6531 }
6532
6533 /* Check for page in userfault range. */
6534 if (userfaultfd_minor(vma)) {
6535 folio_unlock(folio);
6536 folio_put(folio);
6537 /* See comment in userfaultfd_missing() block above */
6538 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6539 ret = 0;
6540 goto out;
6541 }
6542 return hugetlb_handle_userfault(vmf, mapping,
6543 VM_UFFD_MINOR);
6544 }
6545 }
6546
6547 /*
6548 * If we are going to COW a private mapping later, we examine the
6549 * pending reservations for this page now. This will ensure that
6550 * any allocations necessary to record that reservation occur outside
6551 * the spinlock.
6552 */
6553 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6554 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6555 ret = VM_FAULT_OOM;
6556 goto backout_unlocked;
6557 }
6558 /* Just decrements count, does not deallocate */
6559 vma_end_reservation(h, vma, vmf->address);
6560 }
6561
6562 vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6563 ret = 0;
6564 /* If pte changed from under us, retry */
6565 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6566 goto backout;
6567
6568 if (new_anon_folio)
6569 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6570 else
6571 hugetlb_add_file_rmap(folio);
6572 new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED);
6573 /*
6574 * If this pte was previously wr-protected, keep it wr-protected even
6575 * if populated.
6576 */
6577 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6578 new_pte = huge_pte_mkuffd_wp(new_pte);
6579 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6580
6581 hugetlb_count_add(pages_per_huge_page(h), mm);
6582 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6583 /*
6584 * No need to keep file folios locked. See comment in
6585 * hugetlb_fault().
6586 */
6587 if (!new_anon_folio) {
6588 folio_locked = false;
6589 folio_unlock(folio);
6590 }
6591 /* Optimization, do the COW without a second fault */
6592 ret = hugetlb_wp(vmf);
6593 }
6594
6595 spin_unlock(vmf->ptl);
6596
6597 /*
6598 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6599 * found in the pagecache may not have hugetlb_migratable if they have
6600 * been isolated for migration.
6601 */
6602 if (new_folio)
6603 folio_set_hugetlb_migratable(folio);
6604
6605 if (folio_locked)
6606 folio_unlock(folio);
6607 out:
6608 hugetlb_vma_unlock_read(vma);
6609
6610 /*
6611 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6612 * the only way ret can be set to VM_FAULT_RETRY.
6613 */
6614 if (unlikely(ret & VM_FAULT_RETRY))
6615 vma_end_read(vma);
6616
6617 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6618 return ret;
6619
6620 backout:
6621 spin_unlock(vmf->ptl);
6622 backout_unlocked:
6623 /* We only need to restore reservations for private mappings */
6624 if (new_anon_folio)
6625 restore_reserve_on_error(h, vma, vmf->address, folio);
6626
6627 folio_unlock(folio);
6628 folio_put(folio);
6629 goto out;
6630 }
6631
6632 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6633 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6634 {
6635 unsigned long key[2];
6636 u32 hash;
6637
6638 key[0] = (unsigned long) mapping;
6639 key[1] = idx;
6640
6641 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6642
6643 return hash & (num_fault_mutexes - 1);
6644 }
6645 #else
6646 /*
6647 * For uniprocessor systems we always use a single mutex, so just
6648 * return 0 and avoid the hashing overhead.
6649 */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6650 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6651 {
6652 return 0;
6653 }
6654 #endif
6655
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)6656 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6657 unsigned long address, unsigned int flags)
6658 {
6659 vm_fault_t ret;
6660 u32 hash;
6661 struct folio *folio = NULL;
6662 struct hstate *h = hstate_vma(vma);
6663 struct address_space *mapping;
6664 bool need_wait_lock = false;
6665 struct vm_fault vmf = {
6666 .vma = vma,
6667 .address = address & huge_page_mask(h),
6668 .real_address = address,
6669 .flags = flags,
6670 .pgoff = vma_hugecache_offset(h, vma,
6671 address & huge_page_mask(h)),
6672 /* TODO: Track hugetlb faults using vm_fault */
6673
6674 /*
6675 * Some fields may not be initialized, be careful as it may
6676 * be hard to debug if called functions make assumptions
6677 */
6678 };
6679
6680 /*
6681 * Serialize hugepage allocation and instantiation, so that we don't
6682 * get spurious allocation failures if two CPUs race to instantiate
6683 * the same page in the page cache.
6684 */
6685 mapping = vma->vm_file->f_mapping;
6686 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6687 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6688
6689 /*
6690 * Acquire vma lock before calling huge_pte_alloc and hold
6691 * until finished with vmf.pte. This prevents huge_pmd_unshare from
6692 * being called elsewhere and making the vmf.pte no longer valid.
6693 */
6694 hugetlb_vma_lock_read(vma);
6695 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6696 if (!vmf.pte) {
6697 hugetlb_vma_unlock_read(vma);
6698 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6699 return VM_FAULT_OOM;
6700 }
6701
6702 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6703 if (huge_pte_none_mostly(vmf.orig_pte)) {
6704 if (is_pte_marker(vmf.orig_pte)) {
6705 pte_marker marker =
6706 pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6707
6708 if (marker & PTE_MARKER_POISONED) {
6709 ret = VM_FAULT_HWPOISON_LARGE |
6710 VM_FAULT_SET_HINDEX(hstate_index(h));
6711 goto out_mutex;
6712 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6713 /* This isn't supported in hugetlb. */
6714 ret = VM_FAULT_SIGSEGV;
6715 goto out_mutex;
6716 }
6717 }
6718
6719 /*
6720 * Other PTE markers should be handled the same way as none PTE.
6721 *
6722 * hugetlb_no_page will drop vma lock and hugetlb fault
6723 * mutex internally, which make us return immediately.
6724 */
6725 return hugetlb_no_page(mapping, &vmf);
6726 }
6727
6728 ret = 0;
6729
6730 /* Not present, either a migration or a hwpoisoned entry */
6731 if (!pte_present(vmf.orig_pte)) {
6732 if (is_hugetlb_entry_migration(vmf.orig_pte)) {
6733 /*
6734 * Release the hugetlb fault lock now, but retain
6735 * the vma lock, because it is needed to guard the
6736 * huge_pte_lockptr() later in
6737 * migration_entry_wait_huge(). The vma lock will
6738 * be released there.
6739 */
6740 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6741 migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6742 return 0;
6743 } else if (is_hugetlb_entry_hwpoisoned(vmf.orig_pte))
6744 ret = VM_FAULT_HWPOISON_LARGE |
6745 VM_FAULT_SET_HINDEX(hstate_index(h));
6746 goto out_mutex;
6747 }
6748
6749 /*
6750 * If we are going to COW/unshare the mapping later, we examine the
6751 * pending reservations for this page now. This will ensure that any
6752 * allocations necessary to record that reservation occur outside the
6753 * spinlock.
6754 */
6755 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6756 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6757 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6758 ret = VM_FAULT_OOM;
6759 goto out_mutex;
6760 }
6761 /* Just decrements count, does not deallocate */
6762 vma_end_reservation(h, vma, vmf.address);
6763 }
6764
6765 vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6766
6767 /* Check for a racing update before calling hugetlb_wp() */
6768 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6769 goto out_ptl;
6770
6771 /* Handle userfault-wp first, before trying to lock more pages */
6772 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6773 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6774 if (!userfaultfd_wp_async(vma)) {
6775 spin_unlock(vmf.ptl);
6776 hugetlb_vma_unlock_read(vma);
6777 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6778 return handle_userfault(&vmf, VM_UFFD_WP);
6779 }
6780
6781 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6782 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6783 huge_page_size(hstate_vma(vma)));
6784 /* Fallthrough to CoW */
6785 }
6786
6787 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6788 if (!huge_pte_write(vmf.orig_pte)) {
6789 /*
6790 * Anonymous folios need to be lock since hugetlb_wp()
6791 * checks whether we can re-use the folio exclusively
6792 * for us in case we are the only user of it.
6793 */
6794 folio = page_folio(pte_page(vmf.orig_pte));
6795 if (folio_test_anon(folio) && !folio_trylock(folio)) {
6796 need_wait_lock = true;
6797 goto out_ptl;
6798 }
6799 folio_get(folio);
6800 ret = hugetlb_wp(&vmf);
6801 if (folio_test_anon(folio))
6802 folio_unlock(folio);
6803 folio_put(folio);
6804 goto out_ptl;
6805 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6806 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6807 }
6808 }
6809 vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6810 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6811 flags & FAULT_FLAG_WRITE))
6812 update_mmu_cache(vma, vmf.address, vmf.pte);
6813 out_ptl:
6814 spin_unlock(vmf.ptl);
6815 out_mutex:
6816 hugetlb_vma_unlock_read(vma);
6817
6818 /*
6819 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6820 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6821 */
6822 if (unlikely(ret & VM_FAULT_RETRY))
6823 vma_end_read(vma);
6824
6825 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6826 /*
6827 * hugetlb_wp drops all the locks, but the folio lock, before trying to
6828 * unmap the folio from other processes. During that window, if another
6829 * process mapping that folio faults in, it will take the mutex and then
6830 * it will wait on folio_lock, causing an ABBA deadlock.
6831 * Use trylock instead and bail out if we fail.
6832 *
6833 * Ideally, we should hold a refcount on the folio we wait for, but we do
6834 * not want to use the folio after it becomes unlocked, but rather just
6835 * wait for it to become unlocked, so hopefully next fault successes on
6836 * the trylock.
6837 */
6838 if (need_wait_lock)
6839 folio_wait_locked(folio);
6840 return ret;
6841 }
6842
6843 #ifdef CONFIG_USERFAULTFD
6844 /*
6845 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6846 */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6847 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6848 struct vm_area_struct *vma, unsigned long address)
6849 {
6850 struct mempolicy *mpol;
6851 nodemask_t *nodemask;
6852 struct folio *folio;
6853 gfp_t gfp_mask;
6854 int node;
6855
6856 gfp_mask = htlb_alloc_mask(h);
6857 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6858 /*
6859 * This is used to allocate a temporary hugetlb to hold the copied
6860 * content, which will then be copied again to the final hugetlb
6861 * consuming a reservation. Set the alloc_fallback to false to indicate
6862 * that breaking the per-node hugetlb pool is not allowed in this case.
6863 */
6864 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6865 mpol_cond_put(mpol);
6866
6867 return folio;
6868 }
6869
6870 /*
6871 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6872 * with modifications for hugetlb pages.
6873 */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6874 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6875 struct vm_area_struct *dst_vma,
6876 unsigned long dst_addr,
6877 unsigned long src_addr,
6878 uffd_flags_t flags,
6879 struct folio **foliop)
6880 {
6881 struct mm_struct *dst_mm = dst_vma->vm_mm;
6882 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6883 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6884 struct hstate *h = hstate_vma(dst_vma);
6885 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6886 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6887 unsigned long size = huge_page_size(h);
6888 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6889 pte_t _dst_pte;
6890 spinlock_t *ptl;
6891 int ret = -ENOMEM;
6892 struct folio *folio;
6893 bool folio_in_pagecache = false;
6894
6895 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6896 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6897
6898 /* Don't overwrite any existing PTEs (even markers) */
6899 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6900 spin_unlock(ptl);
6901 return -EEXIST;
6902 }
6903
6904 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6905 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6906
6907 /* No need to invalidate - it was non-present before */
6908 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6909
6910 spin_unlock(ptl);
6911 return 0;
6912 }
6913
6914 if (is_continue) {
6915 ret = -EFAULT;
6916 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6917 if (IS_ERR(folio))
6918 goto out;
6919 folio_in_pagecache = true;
6920 } else if (!*foliop) {
6921 /* If a folio already exists, then it's UFFDIO_COPY for
6922 * a non-missing case. Return -EEXIST.
6923 */
6924 if (vm_shared &&
6925 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6926 ret = -EEXIST;
6927 goto out;
6928 }
6929
6930 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6931 if (IS_ERR(folio)) {
6932 ret = -ENOMEM;
6933 goto out;
6934 }
6935
6936 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6937 false);
6938
6939 /* fallback to copy_from_user outside mmap_lock */
6940 if (unlikely(ret)) {
6941 ret = -ENOENT;
6942 /* Free the allocated folio which may have
6943 * consumed a reservation.
6944 */
6945 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6946 folio_put(folio);
6947
6948 /* Allocate a temporary folio to hold the copied
6949 * contents.
6950 */
6951 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6952 if (!folio) {
6953 ret = -ENOMEM;
6954 goto out;
6955 }
6956 *foliop = folio;
6957 /* Set the outparam foliop and return to the caller to
6958 * copy the contents outside the lock. Don't free the
6959 * folio.
6960 */
6961 goto out;
6962 }
6963 } else {
6964 if (vm_shared &&
6965 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6966 folio_put(*foliop);
6967 ret = -EEXIST;
6968 *foliop = NULL;
6969 goto out;
6970 }
6971
6972 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6973 if (IS_ERR(folio)) {
6974 folio_put(*foliop);
6975 ret = -ENOMEM;
6976 *foliop = NULL;
6977 goto out;
6978 }
6979 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6980 folio_put(*foliop);
6981 *foliop = NULL;
6982 if (ret) {
6983 folio_put(folio);
6984 goto out;
6985 }
6986 }
6987
6988 /*
6989 * If we just allocated a new page, we need a memory barrier to ensure
6990 * that preceding stores to the page become visible before the
6991 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6992 * is what we need.
6993 *
6994 * In the case where we have not allocated a new page (is_continue),
6995 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6996 * an earlier smp_wmb() to ensure that prior stores will be visible
6997 * before the set_pte_at() write.
6998 */
6999 if (!is_continue)
7000 __folio_mark_uptodate(folio);
7001 else
7002 WARN_ON_ONCE(!folio_test_uptodate(folio));
7003
7004 /* Add shared, newly allocated pages to the page cache. */
7005 if (vm_shared && !is_continue) {
7006 ret = -EFAULT;
7007 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
7008 goto out_release_nounlock;
7009
7010 /*
7011 * Serialization between remove_inode_hugepages() and
7012 * hugetlb_add_to_page_cache() below happens through the
7013 * hugetlb_fault_mutex_table that here must be hold by
7014 * the caller.
7015 */
7016 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
7017 if (ret)
7018 goto out_release_nounlock;
7019 folio_in_pagecache = true;
7020 }
7021
7022 ptl = huge_pte_lock(h, dst_mm, dst_pte);
7023
7024 ret = -EIO;
7025 if (folio_test_hwpoison(folio))
7026 goto out_release_unlock;
7027
7028 /*
7029 * We allow to overwrite a pte marker: consider when both MISSING|WP
7030 * registered, we firstly wr-protect a none pte which has no page cache
7031 * page backing it, then access the page.
7032 */
7033 ret = -EEXIST;
7034 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
7035 goto out_release_unlock;
7036
7037 if (folio_in_pagecache)
7038 hugetlb_add_file_rmap(folio);
7039 else
7040 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
7041
7042 /*
7043 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
7044 * with wp flag set, don't set pte write bit.
7045 */
7046 _dst_pte = make_huge_pte(dst_vma, folio,
7047 !wp_enabled && !(is_continue && !vm_shared));
7048 /*
7049 * Always mark UFFDIO_COPY page dirty; note that this may not be
7050 * extremely important for hugetlbfs for now since swapping is not
7051 * supported, but we should still be clear in that this page cannot be
7052 * thrown away at will, even if write bit not set.
7053 */
7054 _dst_pte = huge_pte_mkdirty(_dst_pte);
7055 _dst_pte = pte_mkyoung(_dst_pte);
7056
7057 if (wp_enabled)
7058 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
7059
7060 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
7061
7062 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
7063
7064 /* No need to invalidate - it was non-present before */
7065 update_mmu_cache(dst_vma, dst_addr, dst_pte);
7066
7067 spin_unlock(ptl);
7068 if (!is_continue)
7069 folio_set_hugetlb_migratable(folio);
7070 if (vm_shared || is_continue)
7071 folio_unlock(folio);
7072 ret = 0;
7073 out:
7074 return ret;
7075 out_release_unlock:
7076 spin_unlock(ptl);
7077 if (vm_shared || is_continue)
7078 folio_unlock(folio);
7079 out_release_nounlock:
7080 if (!folio_in_pagecache)
7081 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
7082 folio_put(folio);
7083 goto out;
7084 }
7085 #endif /* CONFIG_USERFAULTFD */
7086
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)7087 long hugetlb_change_protection(struct vm_area_struct *vma,
7088 unsigned long address, unsigned long end,
7089 pgprot_t newprot, unsigned long cp_flags)
7090 {
7091 struct mm_struct *mm = vma->vm_mm;
7092 unsigned long start = address;
7093 pte_t *ptep;
7094 pte_t pte;
7095 struct hstate *h = hstate_vma(vma);
7096 long pages = 0, psize = huge_page_size(h);
7097 bool shared_pmd = false;
7098 struct mmu_notifier_range range;
7099 unsigned long last_addr_mask;
7100 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
7101 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
7102
7103 /*
7104 * In the case of shared PMDs, the area to flush could be beyond
7105 * start/end. Set range.start/range.end to cover the maximum possible
7106 * range if PMD sharing is possible.
7107 */
7108 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
7109 0, mm, start, end);
7110 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
7111
7112 BUG_ON(address >= end);
7113 flush_cache_range(vma, range.start, range.end);
7114
7115 mmu_notifier_invalidate_range_start(&range);
7116 hugetlb_vma_lock_write(vma);
7117 i_mmap_lock_write(vma->vm_file->f_mapping);
7118 last_addr_mask = hugetlb_mask_last_page(h);
7119 for (; address < end; address += psize) {
7120 spinlock_t *ptl;
7121 ptep = hugetlb_walk(vma, address, psize);
7122 if (!ptep) {
7123 if (!uffd_wp) {
7124 address |= last_addr_mask;
7125 continue;
7126 }
7127 /*
7128 * Userfaultfd wr-protect requires pgtable
7129 * pre-allocations to install pte markers.
7130 */
7131 ptep = huge_pte_alloc(mm, vma, address, psize);
7132 if (!ptep) {
7133 pages = -ENOMEM;
7134 break;
7135 }
7136 }
7137 ptl = huge_pte_lock(h, mm, ptep);
7138 if (huge_pmd_unshare(mm, vma, address, ptep)) {
7139 /*
7140 * When uffd-wp is enabled on the vma, unshare
7141 * shouldn't happen at all. Warn about it if it
7142 * happened due to some reason.
7143 */
7144 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7145 pages++;
7146 spin_unlock(ptl);
7147 shared_pmd = true;
7148 address |= last_addr_mask;
7149 continue;
7150 }
7151 pte = huge_ptep_get(mm, address, ptep);
7152 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
7153 /* Nothing to do. */
7154 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
7155 swp_entry_t entry = pte_to_swp_entry(pte);
7156 struct folio *folio = pfn_swap_entry_folio(entry);
7157 pte_t newpte = pte;
7158
7159 if (is_writable_migration_entry(entry)) {
7160 if (folio_test_anon(folio))
7161 entry = make_readable_exclusive_migration_entry(
7162 swp_offset(entry));
7163 else
7164 entry = make_readable_migration_entry(
7165 swp_offset(entry));
7166 newpte = swp_entry_to_pte(entry);
7167 pages++;
7168 }
7169
7170 if (uffd_wp)
7171 newpte = pte_swp_mkuffd_wp(newpte);
7172 else if (uffd_wp_resolve)
7173 newpte = pte_swp_clear_uffd_wp(newpte);
7174 if (!pte_same(pte, newpte))
7175 set_huge_pte_at(mm, address, ptep, newpte, psize);
7176 } else if (unlikely(is_pte_marker(pte))) {
7177 /*
7178 * Do nothing on a poison marker; page is
7179 * corrupted, permissons do not apply. Here
7180 * pte_marker_uffd_wp()==true implies !poison
7181 * because they're mutual exclusive.
7182 */
7183 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
7184 /* Safe to modify directly (non-present->none). */
7185 huge_pte_clear(mm, address, ptep, psize);
7186 } else if (!huge_pte_none(pte)) {
7187 pte_t old_pte;
7188 unsigned int shift = huge_page_shift(hstate_vma(vma));
7189
7190 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
7191 pte = huge_pte_modify(old_pte, newprot);
7192 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
7193 if (uffd_wp)
7194 pte = huge_pte_mkuffd_wp(pte);
7195 else if (uffd_wp_resolve)
7196 pte = huge_pte_clear_uffd_wp(pte);
7197 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7198 pages++;
7199 } else {
7200 /* None pte */
7201 if (unlikely(uffd_wp))
7202 /* Safe to modify directly (none->non-present). */
7203 set_huge_pte_at(mm, address, ptep,
7204 make_pte_marker(PTE_MARKER_UFFD_WP),
7205 psize);
7206 }
7207 spin_unlock(ptl);
7208 }
7209 /*
7210 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7211 * may have cleared our pud entry and done put_page on the page table:
7212 * once we release i_mmap_rwsem, another task can do the final put_page
7213 * and that page table be reused and filled with junk. If we actually
7214 * did unshare a page of pmds, flush the range corresponding to the pud.
7215 */
7216 if (shared_pmd)
7217 flush_hugetlb_tlb_range(vma, range.start, range.end);
7218 else
7219 flush_hugetlb_tlb_range(vma, start, end);
7220 /*
7221 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7222 * downgrading page table protection not changing it to point to a new
7223 * page.
7224 *
7225 * See Documentation/mm/mmu_notifier.rst
7226 */
7227 i_mmap_unlock_write(vma->vm_file->f_mapping);
7228 hugetlb_vma_unlock_write(vma);
7229 mmu_notifier_invalidate_range_end(&range);
7230
7231 return pages > 0 ? (pages << h->order) : pages;
7232 }
7233
7234 /*
7235 * Update the reservation map for the range [from, to].
7236 *
7237 * Returns the number of entries that would be added to the reservation map
7238 * associated with the range [from, to]. This number is greater or equal to
7239 * zero. -EINVAL or -ENOMEM is returned in case of any errors.
7240 */
7241
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)7242 long hugetlb_reserve_pages(struct inode *inode,
7243 long from, long to,
7244 struct vm_area_struct *vma,
7245 vm_flags_t vm_flags)
7246 {
7247 long chg = -1, add = -1, spool_resv, gbl_resv;
7248 struct hstate *h = hstate_inode(inode);
7249 struct hugepage_subpool *spool = subpool_inode(inode);
7250 struct resv_map *resv_map;
7251 struct hugetlb_cgroup *h_cg = NULL;
7252 long gbl_reserve, regions_needed = 0;
7253
7254 /* This should never happen */
7255 if (from > to) {
7256 VM_WARN(1, "%s called with a negative range\n", __func__);
7257 return -EINVAL;
7258 }
7259
7260 /*
7261 * vma specific semaphore used for pmd sharing and fault/truncation
7262 * synchronization
7263 */
7264 hugetlb_vma_lock_alloc(vma);
7265
7266 /*
7267 * Only apply hugepage reservation if asked. At fault time, an
7268 * attempt will be made for VM_NORESERVE to allocate a page
7269 * without using reserves
7270 */
7271 if (vm_flags & VM_NORESERVE)
7272 return 0;
7273
7274 /*
7275 * Shared mappings base their reservation on the number of pages that
7276 * are already allocated on behalf of the file. Private mappings need
7277 * to reserve the full area even if read-only as mprotect() may be
7278 * called to make the mapping read-write. Assume !vma is a shm mapping
7279 */
7280 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7281 /*
7282 * resv_map can not be NULL as hugetlb_reserve_pages is only
7283 * called for inodes for which resv_maps were created (see
7284 * hugetlbfs_get_inode).
7285 */
7286 resv_map = inode_resv_map(inode);
7287
7288 chg = region_chg(resv_map, from, to, ®ions_needed);
7289 } else {
7290 /* Private mapping. */
7291 resv_map = resv_map_alloc();
7292 if (!resv_map)
7293 goto out_err;
7294
7295 chg = to - from;
7296
7297 set_vma_resv_map(vma, resv_map);
7298 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7299 }
7300
7301 if (chg < 0)
7302 goto out_err;
7303
7304 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7305 chg * pages_per_huge_page(h), &h_cg) < 0)
7306 goto out_err;
7307
7308 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7309 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7310 * of the resv_map.
7311 */
7312 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7313 }
7314
7315 /*
7316 * There must be enough pages in the subpool for the mapping. If
7317 * the subpool has a minimum size, there may be some global
7318 * reservations already in place (gbl_reserve).
7319 */
7320 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7321 if (gbl_reserve < 0)
7322 goto out_uncharge_cgroup;
7323
7324 /*
7325 * Check enough hugepages are available for the reservation.
7326 * Hand the pages back to the subpool if there are not
7327 */
7328 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7329 goto out_put_pages;
7330
7331 /*
7332 * Account for the reservations made. Shared mappings record regions
7333 * that have reservations as they are shared by multiple VMAs.
7334 * When the last VMA disappears, the region map says how much
7335 * the reservation was and the page cache tells how much of
7336 * the reservation was consumed. Private mappings are per-VMA and
7337 * only the consumed reservations are tracked. When the VMA
7338 * disappears, the original reservation is the VMA size and the
7339 * consumed reservations are stored in the map. Hence, nothing
7340 * else has to be done for private mappings here
7341 */
7342 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7343 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7344
7345 if (unlikely(add < 0)) {
7346 hugetlb_acct_memory(h, -gbl_reserve);
7347 goto out_put_pages;
7348 } else if (unlikely(chg > add)) {
7349 /*
7350 * pages in this range were added to the reserve
7351 * map between region_chg and region_add. This
7352 * indicates a race with alloc_hugetlb_folio. Adjust
7353 * the subpool and reserve counts modified above
7354 * based on the difference.
7355 */
7356 long rsv_adjust;
7357
7358 /*
7359 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7360 * reference to h_cg->css. See comment below for detail.
7361 */
7362 hugetlb_cgroup_uncharge_cgroup_rsvd(
7363 hstate_index(h),
7364 (chg - add) * pages_per_huge_page(h), h_cg);
7365
7366 rsv_adjust = hugepage_subpool_put_pages(spool,
7367 chg - add);
7368 hugetlb_acct_memory(h, -rsv_adjust);
7369 } else if (h_cg) {
7370 /*
7371 * The file_regions will hold their own reference to
7372 * h_cg->css. So we should release the reference held
7373 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7374 * done.
7375 */
7376 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7377 }
7378 }
7379 return chg;
7380
7381 out_put_pages:
7382 spool_resv = chg - gbl_reserve;
7383 if (spool_resv) {
7384 /* put sub pool's reservation back, chg - gbl_reserve */
7385 gbl_resv = hugepage_subpool_put_pages(spool, spool_resv);
7386 /*
7387 * subpool's reserved pages can not be put back due to race,
7388 * return to hstate.
7389 */
7390 hugetlb_acct_memory(h, -gbl_resv);
7391 }
7392 out_uncharge_cgroup:
7393 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7394 chg * pages_per_huge_page(h), h_cg);
7395 out_err:
7396 hugetlb_vma_lock_free(vma);
7397 if (!vma || vma->vm_flags & VM_MAYSHARE)
7398 /* Only call region_abort if the region_chg succeeded but the
7399 * region_add failed or didn't run.
7400 */
7401 if (chg >= 0 && add < 0)
7402 region_abort(resv_map, from, to, regions_needed);
7403 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7404 kref_put(&resv_map->refs, resv_map_release);
7405 set_vma_resv_map(vma, NULL);
7406 }
7407 return chg < 0 ? chg : add < 0 ? add : -EINVAL;
7408 }
7409
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)7410 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7411 long freed)
7412 {
7413 struct hstate *h = hstate_inode(inode);
7414 struct resv_map *resv_map = inode_resv_map(inode);
7415 long chg = 0;
7416 struct hugepage_subpool *spool = subpool_inode(inode);
7417 long gbl_reserve;
7418
7419 /*
7420 * Since this routine can be called in the evict inode path for all
7421 * hugetlbfs inodes, resv_map could be NULL.
7422 */
7423 if (resv_map) {
7424 chg = region_del(resv_map, start, end);
7425 /*
7426 * region_del() can fail in the rare case where a region
7427 * must be split and another region descriptor can not be
7428 * allocated. If end == LONG_MAX, it will not fail.
7429 */
7430 if (chg < 0)
7431 return chg;
7432 }
7433
7434 spin_lock(&inode->i_lock);
7435 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7436 spin_unlock(&inode->i_lock);
7437
7438 /*
7439 * If the subpool has a minimum size, the number of global
7440 * reservations to be released may be adjusted.
7441 *
7442 * Note that !resv_map implies freed == 0. So (chg - freed)
7443 * won't go negative.
7444 */
7445 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7446 hugetlb_acct_memory(h, -gbl_reserve);
7447
7448 return 0;
7449 }
7450
7451 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)7452 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7453 struct vm_area_struct *vma,
7454 unsigned long addr, pgoff_t idx)
7455 {
7456 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7457 svma->vm_start;
7458 unsigned long sbase = saddr & PUD_MASK;
7459 unsigned long s_end = sbase + PUD_SIZE;
7460
7461 /* Allow segments to share if only one is marked locked */
7462 vm_flags_t vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7463 vm_flags_t svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7464
7465 /*
7466 * match the virtual addresses, permission and the alignment of the
7467 * page table page.
7468 *
7469 * Also, vma_lock (vm_private_data) is required for sharing.
7470 */
7471 if (pmd_index(addr) != pmd_index(saddr) ||
7472 vm_flags != svm_flags ||
7473 !range_in_vma(svma, sbase, s_end) ||
7474 !svma->vm_private_data)
7475 return 0;
7476
7477 return saddr;
7478 }
7479
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7480 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7481 {
7482 unsigned long start = addr & PUD_MASK;
7483 unsigned long end = start + PUD_SIZE;
7484
7485 #ifdef CONFIG_USERFAULTFD
7486 if (uffd_disable_huge_pmd_share(vma))
7487 return false;
7488 #endif
7489 /*
7490 * check on proper vm_flags and page table alignment
7491 */
7492 if (!(vma->vm_flags & VM_MAYSHARE))
7493 return false;
7494 if (!vma->vm_private_data) /* vma lock required for sharing */
7495 return false;
7496 if (!range_in_vma(vma, start, end))
7497 return false;
7498 return true;
7499 }
7500
7501 /*
7502 * Determine if start,end range within vma could be mapped by shared pmd.
7503 * If yes, adjust start and end to cover range associated with possible
7504 * shared pmd mappings.
7505 */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7506 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7507 unsigned long *start, unsigned long *end)
7508 {
7509 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7510 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7511
7512 /*
7513 * vma needs to span at least one aligned PUD size, and the range
7514 * must be at least partially within in.
7515 */
7516 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7517 (*end <= v_start) || (*start >= v_end))
7518 return;
7519
7520 /* Extend the range to be PUD aligned for a worst case scenario */
7521 if (*start > v_start)
7522 *start = ALIGN_DOWN(*start, PUD_SIZE);
7523
7524 if (*end < v_end)
7525 *end = ALIGN(*end, PUD_SIZE);
7526 }
7527
7528 /*
7529 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7530 * and returns the corresponding pte. While this is not necessary for the
7531 * !shared pmd case because we can allocate the pmd later as well, it makes the
7532 * code much cleaner. pmd allocation is essential for the shared case because
7533 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7534 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7535 * bad pmd for sharing.
7536 */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7537 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7538 unsigned long addr, pud_t *pud)
7539 {
7540 struct address_space *mapping = vma->vm_file->f_mapping;
7541 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7542 vma->vm_pgoff;
7543 struct vm_area_struct *svma;
7544 unsigned long saddr;
7545 pte_t *spte = NULL;
7546 pte_t *pte;
7547
7548 i_mmap_lock_read(mapping);
7549 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7550 if (svma == vma)
7551 continue;
7552
7553 saddr = page_table_shareable(svma, vma, addr, idx);
7554 if (saddr) {
7555 spte = hugetlb_walk(svma, saddr,
7556 vma_mmu_pagesize(svma));
7557 if (spte) {
7558 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
7559 break;
7560 }
7561 }
7562 }
7563
7564 if (!spte)
7565 goto out;
7566
7567 spin_lock(&mm->page_table_lock);
7568 if (pud_none(*pud)) {
7569 pud_populate(mm, pud,
7570 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7571 mm_inc_nr_pmds(mm);
7572 } else {
7573 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
7574 }
7575 spin_unlock(&mm->page_table_lock);
7576 out:
7577 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7578 i_mmap_unlock_read(mapping);
7579 return pte;
7580 }
7581
7582 /*
7583 * unmap huge page backed by shared pte.
7584 *
7585 * Called with page table lock held.
7586 *
7587 * returns: 1 successfully unmapped a shared pte page
7588 * 0 the underlying pte page is not shared, or it is the last user
7589 */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7590 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7591 unsigned long addr, pte_t *ptep)
7592 {
7593 unsigned long sz = huge_page_size(hstate_vma(vma));
7594 pgd_t *pgd = pgd_offset(mm, addr);
7595 p4d_t *p4d = p4d_offset(pgd, addr);
7596 pud_t *pud = pud_offset(p4d, addr);
7597
7598 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7599 hugetlb_vma_assert_locked(vma);
7600 if (sz != PMD_SIZE)
7601 return 0;
7602 if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep)))
7603 return 0;
7604
7605 pud_clear(pud);
7606 /*
7607 * Once our caller drops the rmap lock, some other process might be
7608 * using this page table as a normal, non-hugetlb page table.
7609 * Wait for pending gup_fast() in other threads to finish before letting
7610 * that happen.
7611 */
7612 tlb_remove_table_sync_one();
7613 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
7614 mm_dec_nr_pmds(mm);
7615 return 1;
7616 }
7617
7618 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7619
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7620 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7621 unsigned long addr, pud_t *pud)
7622 {
7623 return NULL;
7624 }
7625
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7626 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7627 unsigned long addr, pte_t *ptep)
7628 {
7629 return 0;
7630 }
7631
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7632 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7633 unsigned long *start, unsigned long *end)
7634 {
7635 }
7636
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7637 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7638 {
7639 return false;
7640 }
7641 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7642
7643 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7644 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7645 unsigned long addr, unsigned long sz)
7646 {
7647 pgd_t *pgd;
7648 p4d_t *p4d;
7649 pud_t *pud;
7650 pte_t *pte = NULL;
7651
7652 pgd = pgd_offset(mm, addr);
7653 p4d = p4d_alloc(mm, pgd, addr);
7654 if (!p4d)
7655 return NULL;
7656 pud = pud_alloc(mm, p4d, addr);
7657 if (pud) {
7658 if (sz == PUD_SIZE) {
7659 pte = (pte_t *)pud;
7660 } else {
7661 BUG_ON(sz != PMD_SIZE);
7662 if (want_pmd_share(vma, addr) && pud_none(*pud))
7663 pte = huge_pmd_share(mm, vma, addr, pud);
7664 else
7665 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7666 }
7667 }
7668
7669 if (pte) {
7670 pte_t pteval = ptep_get_lockless(pte);
7671
7672 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7673 }
7674
7675 return pte;
7676 }
7677
7678 /*
7679 * huge_pte_offset() - Walk the page table to resolve the hugepage
7680 * entry at address @addr
7681 *
7682 * Return: Pointer to page table entry (PUD or PMD) for
7683 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7684 * size @sz doesn't match the hugepage size at this level of the page
7685 * table.
7686 */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7687 pte_t *huge_pte_offset(struct mm_struct *mm,
7688 unsigned long addr, unsigned long sz)
7689 {
7690 pgd_t *pgd;
7691 p4d_t *p4d;
7692 pud_t *pud;
7693 pmd_t *pmd;
7694
7695 pgd = pgd_offset(mm, addr);
7696 if (!pgd_present(*pgd))
7697 return NULL;
7698 p4d = p4d_offset(pgd, addr);
7699 if (!p4d_present(*p4d))
7700 return NULL;
7701
7702 pud = pud_offset(p4d, addr);
7703 if (sz == PUD_SIZE)
7704 /* must be pud huge, non-present or none */
7705 return (pte_t *)pud;
7706 if (!pud_present(*pud))
7707 return NULL;
7708 /* must have a valid entry and size to go further */
7709
7710 pmd = pmd_offset(pud, addr);
7711 /* must be pmd huge, non-present or none */
7712 return (pte_t *)pmd;
7713 }
7714
7715 /*
7716 * Return a mask that can be used to update an address to the last huge
7717 * page in a page table page mapping size. Used to skip non-present
7718 * page table entries when linearly scanning address ranges. Architectures
7719 * with unique huge page to page table relationships can define their own
7720 * version of this routine.
7721 */
hugetlb_mask_last_page(struct hstate * h)7722 unsigned long hugetlb_mask_last_page(struct hstate *h)
7723 {
7724 unsigned long hp_size = huge_page_size(h);
7725
7726 if (hp_size == PUD_SIZE)
7727 return P4D_SIZE - PUD_SIZE;
7728 else if (hp_size == PMD_SIZE)
7729 return PUD_SIZE - PMD_SIZE;
7730 else
7731 return 0UL;
7732 }
7733
7734 #else
7735
7736 /* See description above. Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7737 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7738 {
7739 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7740 if (huge_page_size(h) == PMD_SIZE)
7741 return PUD_SIZE - PMD_SIZE;
7742 #endif
7743 return 0UL;
7744 }
7745
7746 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7747
7748 /**
7749 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio
7750 * @folio: the folio to isolate
7751 * @list: the list to add the folio to on success
7752 *
7753 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as
7754 * isolated/non-migratable, and moving it from the active list to the
7755 * given list.
7756 *
7757 * Isolation will fail if @folio is not an allocated hugetlb folio, or if
7758 * it is already isolated/non-migratable.
7759 *
7760 * On success, an additional folio reference is taken that must be dropped
7761 * using folio_putback_hugetlb() to undo the isolation.
7762 *
7763 * Return: True if isolation worked, otherwise False.
7764 */
folio_isolate_hugetlb(struct folio * folio,struct list_head * list)7765 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
7766 {
7767 bool ret = true;
7768
7769 spin_lock_irq(&hugetlb_lock);
7770 if (!folio_test_hugetlb(folio) ||
7771 !folio_test_hugetlb_migratable(folio) ||
7772 !folio_try_get(folio)) {
7773 ret = false;
7774 goto unlock;
7775 }
7776 folio_clear_hugetlb_migratable(folio);
7777 list_move_tail(&folio->lru, list);
7778 unlock:
7779 spin_unlock_irq(&hugetlb_lock);
7780 return ret;
7781 }
7782
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7783 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7784 {
7785 int ret = 0;
7786
7787 *hugetlb = false;
7788 spin_lock_irq(&hugetlb_lock);
7789 if (folio_test_hugetlb(folio)) {
7790 *hugetlb = true;
7791 if (folio_test_hugetlb_freed(folio))
7792 ret = 0;
7793 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7794 ret = folio_try_get(folio);
7795 else
7796 ret = -EBUSY;
7797 }
7798 spin_unlock_irq(&hugetlb_lock);
7799 return ret;
7800 }
7801
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7802 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7803 bool *migratable_cleared)
7804 {
7805 int ret;
7806
7807 spin_lock_irq(&hugetlb_lock);
7808 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7809 spin_unlock_irq(&hugetlb_lock);
7810 return ret;
7811 }
7812
7813 /**
7814 * folio_putback_hugetlb - unisolate a hugetlb folio
7815 * @folio: the isolated hugetlb folio
7816 *
7817 * Putback/un-isolate the hugetlb folio that was previous isolated using
7818 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it
7819 * back onto the active list.
7820 *
7821 * Will drop the additional folio reference obtained through
7822 * folio_isolate_hugetlb().
7823 */
folio_putback_hugetlb(struct folio * folio)7824 void folio_putback_hugetlb(struct folio *folio)
7825 {
7826 spin_lock_irq(&hugetlb_lock);
7827 folio_set_hugetlb_migratable(folio);
7828 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7829 spin_unlock_irq(&hugetlb_lock);
7830 folio_put(folio);
7831 }
7832
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7833 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7834 {
7835 struct hstate *h = folio_hstate(old_folio);
7836
7837 hugetlb_cgroup_migrate(old_folio, new_folio);
7838 folio_set_owner_migrate_reason(new_folio, reason);
7839
7840 /*
7841 * transfer temporary state of the new hugetlb folio. This is
7842 * reverse to other transitions because the newpage is going to
7843 * be final while the old one will be freed so it takes over
7844 * the temporary status.
7845 *
7846 * Also note that we have to transfer the per-node surplus state
7847 * here as well otherwise the global surplus count will not match
7848 * the per-node's.
7849 */
7850 if (folio_test_hugetlb_temporary(new_folio)) {
7851 int old_nid = folio_nid(old_folio);
7852 int new_nid = folio_nid(new_folio);
7853
7854 folio_set_hugetlb_temporary(old_folio);
7855 folio_clear_hugetlb_temporary(new_folio);
7856
7857
7858 /*
7859 * There is no need to transfer the per-node surplus state
7860 * when we do not cross the node.
7861 */
7862 if (new_nid == old_nid)
7863 return;
7864 spin_lock_irq(&hugetlb_lock);
7865 if (h->surplus_huge_pages_node[old_nid]) {
7866 h->surplus_huge_pages_node[old_nid]--;
7867 h->surplus_huge_pages_node[new_nid]++;
7868 }
7869 spin_unlock_irq(&hugetlb_lock);
7870 }
7871
7872 /*
7873 * Our old folio is isolated and has "migratable" cleared until it
7874 * is putback. As migration succeeded, set the new folio "migratable"
7875 * and add it to the active list.
7876 */
7877 spin_lock_irq(&hugetlb_lock);
7878 folio_set_hugetlb_migratable(new_folio);
7879 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist);
7880 spin_unlock_irq(&hugetlb_lock);
7881 }
7882
7883 /*
7884 * If @take_locks is false, the caller must ensure that no concurrent page table
7885 * access can happen (except for gup_fast() and hardware page walks).
7886 * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like
7887 * concurrent page fault handling) and the file rmap lock.
7888 */
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool take_locks)7889 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7890 unsigned long start,
7891 unsigned long end,
7892 bool take_locks)
7893 {
7894 struct hstate *h = hstate_vma(vma);
7895 unsigned long sz = huge_page_size(h);
7896 struct mm_struct *mm = vma->vm_mm;
7897 struct mmu_notifier_range range;
7898 unsigned long address;
7899 spinlock_t *ptl;
7900 pte_t *ptep;
7901
7902 if (!(vma->vm_flags & VM_MAYSHARE))
7903 return;
7904
7905 if (start >= end)
7906 return;
7907
7908 flush_cache_range(vma, start, end);
7909 /*
7910 * No need to call adjust_range_if_pmd_sharing_possible(), because
7911 * we have already done the PUD_SIZE alignment.
7912 */
7913 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7914 start, end);
7915 mmu_notifier_invalidate_range_start(&range);
7916 if (take_locks) {
7917 hugetlb_vma_lock_write(vma);
7918 i_mmap_lock_write(vma->vm_file->f_mapping);
7919 } else {
7920 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7921 }
7922 for (address = start; address < end; address += PUD_SIZE) {
7923 ptep = hugetlb_walk(vma, address, sz);
7924 if (!ptep)
7925 continue;
7926 ptl = huge_pte_lock(h, mm, ptep);
7927 huge_pmd_unshare(mm, vma, address, ptep);
7928 spin_unlock(ptl);
7929 }
7930 flush_hugetlb_tlb_range(vma, start, end);
7931 if (take_locks) {
7932 i_mmap_unlock_write(vma->vm_file->f_mapping);
7933 hugetlb_vma_unlock_write(vma);
7934 }
7935 /*
7936 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7937 * Documentation/mm/mmu_notifier.rst.
7938 */
7939 mmu_notifier_invalidate_range_end(&range);
7940 }
7941
7942 /*
7943 * This function will unconditionally remove all the shared pmd pgtable entries
7944 * within the specific vma for a hugetlbfs memory range.
7945 */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7946 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7947 {
7948 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7949 ALIGN_DOWN(vma->vm_end, PUD_SIZE),
7950 /* take_locks = */ true);
7951 }
7952
7953 /*
7954 * For hugetlb, mremap() is an odd edge case - while the VMA copying is
7955 * performed, we permit both the old and new VMAs to reference the same
7956 * reservation.
7957 *
7958 * We fix this up after the operation succeeds, or if a newly allocated VMA
7959 * is closed as a result of a failure to allocate memory.
7960 */
fixup_hugetlb_reservations(struct vm_area_struct * vma)7961 void fixup_hugetlb_reservations(struct vm_area_struct *vma)
7962 {
7963 if (is_vm_hugetlb_page(vma))
7964 clear_vma_resv_huge_pages(vma);
7965 }
7966