xref: /linux/arch/mips/kernel/traps.c (revision 805ba04cb7ccfc7d72e834ebd796e043142156ba)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41 #include <linux/string_choices.h>
42 
43 #include <asm/addrspace.h>
44 #include <asm/bootinfo.h>
45 #include <asm/branch.h>
46 #include <asm/break.h>
47 #include <asm/cop2.h>
48 #include <asm/cpu.h>
49 #include <asm/cpu-type.h>
50 #include <asm/dsp.h>
51 #include <asm/fpu.h>
52 #include <asm/fpu_emulator.h>
53 #include <asm/idle.h>
54 #include <asm/isa-rev.h>
55 #include <asm/mips-cps.h>
56 #include <asm/mips-r2-to-r6-emul.h>
57 #include <asm/mipsregs.h>
58 #include <asm/mipsmtregs.h>
59 #include <asm/module.h>
60 #include <asm/msa.h>
61 #include <asm/ptrace.h>
62 #include <asm/regdef.h>
63 #include <asm/sections.h>
64 #include <asm/siginfo.h>
65 #include <asm/tlbdebug.h>
66 #include <asm/traps.h>
67 #include <linux/uaccess.h>
68 #include <asm/watch.h>
69 #include <asm/mmu_context.h>
70 #include <asm/types.h>
71 #include <asm/stacktrace.h>
72 #include <asm/tlbex.h>
73 #include <asm/uasm.h>
74 
75 #include <asm/mach-loongson64/cpucfg-emul.h>
76 
77 #include "access-helper.h"
78 
79 extern void check_wait(void);
80 extern asmlinkage void rollback_handle_int(void);
81 extern asmlinkage void handle_int(void);
82 extern asmlinkage void handle_adel(void);
83 extern asmlinkage void handle_ades(void);
84 extern asmlinkage void handle_ibe(void);
85 extern asmlinkage void handle_dbe(void);
86 extern asmlinkage void handle_sys(void);
87 extern asmlinkage void handle_bp(void);
88 extern asmlinkage void handle_ri(void);
89 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
90 extern asmlinkage void handle_ri_rdhwr(void);
91 extern asmlinkage void handle_cpu(void);
92 extern asmlinkage void handle_ov(void);
93 extern asmlinkage void handle_tr(void);
94 extern asmlinkage void handle_msa_fpe(void);
95 extern asmlinkage void handle_fpe(void);
96 extern asmlinkage void handle_ftlb(void);
97 extern asmlinkage void handle_gsexc(void);
98 extern asmlinkage void handle_msa(void);
99 extern asmlinkage void handle_mdmx(void);
100 extern asmlinkage void handle_watch(void);
101 extern asmlinkage void handle_mt(void);
102 extern asmlinkage void handle_dsp(void);
103 extern asmlinkage void handle_mcheck(void);
104 extern asmlinkage void handle_reserved(void);
105 extern void tlb_do_page_fault_0(void);
106 
107 void (*board_be_init)(void);
108 static int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
109 void (*board_nmi_handler_setup)(void);
110 void (*board_ejtag_handler_setup)(void);
111 void (*board_bind_eic_interrupt)(int irq, int regset);
112 void (*board_ebase_setup)(void);
113 void(*board_cache_error_setup)(void);
114 
115 void mips_set_be_handler(int (*handler)(struct pt_regs *regs, int is_fixup))
116 {
117 	board_be_handler = handler;
118 }
119 EXPORT_SYMBOL_GPL(mips_set_be_handler);
120 
121 static void show_raw_backtrace(unsigned long reg29, const char *loglvl,
122 			       bool user)
123 {
124 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
125 	unsigned long addr;
126 
127 	printk("%sCall Trace:", loglvl);
128 #ifdef CONFIG_KALLSYMS
129 	printk("%s\n", loglvl);
130 #endif
131 	while (!kstack_end(sp)) {
132 		if (__get_addr(&addr, sp++, user)) {
133 			printk("%s (Bad stack address)", loglvl);
134 			break;
135 		}
136 		if (__kernel_text_address(addr))
137 			print_ip_sym(loglvl, addr);
138 	}
139 	printk("%s\n", loglvl);
140 }
141 
142 #ifdef CONFIG_KALLSYMS
143 int raw_show_trace;
144 static int __init set_raw_show_trace(char *str)
145 {
146 	raw_show_trace = 1;
147 	return 1;
148 }
149 __setup("raw_show_trace", set_raw_show_trace);
150 #endif
151 
152 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
153 			   const char *loglvl, bool user)
154 {
155 	unsigned long sp = regs->regs[29];
156 	unsigned long ra = regs->regs[31];
157 	unsigned long pc = regs->cp0_epc;
158 
159 	if (!task)
160 		task = current;
161 
162 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
163 		show_raw_backtrace(sp, loglvl, user);
164 		return;
165 	}
166 	printk("%sCall Trace:\n", loglvl);
167 	do {
168 		print_ip_sym(loglvl, pc);
169 		pc = unwind_stack(task, &sp, pc, &ra);
170 	} while (pc);
171 	pr_cont("\n");
172 }
173 
174 /*
175  * This routine abuses get_user()/put_user() to reference pointers
176  * with at least a bit of error checking ...
177  */
178 static void show_stacktrace(struct task_struct *task,
179 	const struct pt_regs *regs, const char *loglvl, bool user)
180 {
181 	const int field = 2 * sizeof(unsigned long);
182 	unsigned long stackdata;
183 	int i;
184 	unsigned long *sp = (unsigned long *)regs->regs[29];
185 
186 	printk("%sStack :", loglvl);
187 	i = 0;
188 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
189 		if (i && ((i % (64 / field)) == 0)) {
190 			pr_cont("\n");
191 			printk("%s       ", loglvl);
192 		}
193 		if (i > 39) {
194 			pr_cont(" ...");
195 			break;
196 		}
197 
198 		if (__get_addr(&stackdata, sp++, user)) {
199 			pr_cont(" (Bad stack address)");
200 			break;
201 		}
202 
203 		pr_cont(" %0*lx", field, stackdata);
204 		i++;
205 	}
206 	pr_cont("\n");
207 	show_backtrace(task, regs, loglvl, user);
208 }
209 
210 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
211 {
212 	struct pt_regs regs;
213 
214 	regs.cp0_status = KSU_KERNEL;
215 	if (sp) {
216 		regs.regs[29] = (unsigned long)sp;
217 		regs.regs[31] = 0;
218 		regs.cp0_epc = 0;
219 	} else {
220 		if (task && task != current) {
221 			regs.regs[29] = task->thread.reg29;
222 			regs.regs[31] = 0;
223 			regs.cp0_epc = task->thread.reg31;
224 		} else {
225 			prepare_frametrace(&regs);
226 		}
227 	}
228 	show_stacktrace(task, &regs, loglvl, false);
229 }
230 
231 static void show_code(void *pc, bool user)
232 {
233 	long i;
234 	unsigned short *pc16 = NULL;
235 
236 	printk("Code:");
237 
238 	if ((unsigned long)pc & 1)
239 		pc16 = (u16 *)((unsigned long)pc & ~1);
240 
241 	for(i = -3 ; i < 6 ; i++) {
242 		if (pc16) {
243 			u16 insn16;
244 
245 			if (__get_inst16(&insn16, pc16 + i, user))
246 				goto bad_address;
247 
248 			pr_cont("%c%04x%c", (i?' ':'<'), insn16, (i?' ':'>'));
249 		} else {
250 			u32 insn32;
251 
252 			if (__get_inst32(&insn32, (u32 *)pc + i, user))
253 				goto bad_address;
254 
255 			pr_cont("%c%08x%c", (i?' ':'<'), insn32, (i?' ':'>'));
256 		}
257 	}
258 	pr_cont("\n");
259 	return;
260 
261 bad_address:
262 	pr_cont(" (Bad address in epc)\n\n");
263 }
264 
265 static void __show_regs(const struct pt_regs *regs)
266 {
267 	const int field = 2 * sizeof(unsigned long);
268 	unsigned int cause = regs->cp0_cause;
269 	unsigned int exccode;
270 	int i;
271 
272 	show_regs_print_info(KERN_DEFAULT);
273 
274 	/*
275 	 * Saved main processor registers
276 	 */
277 	for (i = 0; i < 32; ) {
278 		if ((i % 4) == 0)
279 			printk("$%2d   :", i);
280 		if (i == 0)
281 			pr_cont(" %0*lx", field, 0UL);
282 		else if (i == 26 || i == 27)
283 			pr_cont(" %*s", field, "");
284 		else
285 			pr_cont(" %0*lx", field, regs->regs[i]);
286 
287 		i++;
288 		if ((i % 4) == 0)
289 			pr_cont("\n");
290 	}
291 
292 #ifdef CONFIG_CPU_HAS_SMARTMIPS
293 	printk("Acx    : %0*lx\n", field, regs->acx);
294 #endif
295 	if (MIPS_ISA_REV < 6) {
296 		printk("Hi    : %0*lx\n", field, regs->hi);
297 		printk("Lo    : %0*lx\n", field, regs->lo);
298 	}
299 
300 	/*
301 	 * Saved cp0 registers
302 	 */
303 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
304 	       (void *) regs->cp0_epc);
305 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
306 	       (void *) regs->regs[31]);
307 
308 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
309 
310 	if (cpu_has_3kex) {
311 		if (regs->cp0_status & ST0_KUO)
312 			pr_cont("KUo ");
313 		if (regs->cp0_status & ST0_IEO)
314 			pr_cont("IEo ");
315 		if (regs->cp0_status & ST0_KUP)
316 			pr_cont("KUp ");
317 		if (regs->cp0_status & ST0_IEP)
318 			pr_cont("IEp ");
319 		if (regs->cp0_status & ST0_KUC)
320 			pr_cont("KUc ");
321 		if (regs->cp0_status & ST0_IEC)
322 			pr_cont("IEc ");
323 	} else if (cpu_has_4kex) {
324 		if (regs->cp0_status & ST0_KX)
325 			pr_cont("KX ");
326 		if (regs->cp0_status & ST0_SX)
327 			pr_cont("SX ");
328 		if (regs->cp0_status & ST0_UX)
329 			pr_cont("UX ");
330 		switch (regs->cp0_status & ST0_KSU) {
331 		case KSU_USER:
332 			pr_cont("USER ");
333 			break;
334 		case KSU_SUPERVISOR:
335 			pr_cont("SUPERVISOR ");
336 			break;
337 		case KSU_KERNEL:
338 			pr_cont("KERNEL ");
339 			break;
340 		default:
341 			pr_cont("BAD_MODE ");
342 			break;
343 		}
344 		if (regs->cp0_status & ST0_ERL)
345 			pr_cont("ERL ");
346 		if (regs->cp0_status & ST0_EXL)
347 			pr_cont("EXL ");
348 		if (regs->cp0_status & ST0_IE)
349 			pr_cont("IE ");
350 	}
351 	pr_cont("\n");
352 
353 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
354 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
355 
356 	if (1 <= exccode && exccode <= 5)
357 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
358 
359 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
360 	       cpu_name_string());
361 }
362 
363 /*
364  * FIXME: really the generic show_regs should take a const pointer argument.
365  */
366 void show_regs(struct pt_regs *regs)
367 {
368 	__show_regs(regs);
369 	dump_stack();
370 }
371 
372 void show_registers(struct pt_regs *regs)
373 {
374 	const int field = 2 * sizeof(unsigned long);
375 
376 	__show_regs(regs);
377 	print_modules();
378 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
379 	       current->comm, current->pid, current_thread_info(), current,
380 	      field, current_thread_info()->tp_value);
381 	if (cpu_has_userlocal) {
382 		unsigned long tls;
383 
384 		tls = read_c0_userlocal();
385 		if (tls != current_thread_info()->tp_value)
386 			printk("*HwTLS: %0*lx\n", field, tls);
387 	}
388 
389 	show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs));
390 	show_code((void *)regs->cp0_epc, user_mode(regs));
391 	printk("\n");
392 }
393 
394 static DEFINE_RAW_SPINLOCK(die_lock);
395 
396 void __noreturn die(const char *str, struct pt_regs *regs)
397 {
398 	static int die_counter;
399 	int sig = SIGSEGV;
400 
401 	oops_enter();
402 
403 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
404 		       SIGSEGV) == NOTIFY_STOP)
405 		sig = 0;
406 
407 	console_verbose();
408 	raw_spin_lock_irq(&die_lock);
409 	bust_spinlocks(1);
410 
411 	printk("%s[#%d]:\n", str, ++die_counter);
412 	show_registers(regs);
413 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
414 	raw_spin_unlock_irq(&die_lock);
415 
416 	oops_exit();
417 
418 	if (in_interrupt())
419 		panic("Fatal exception in interrupt");
420 
421 	if (panic_on_oops)
422 		panic("Fatal exception");
423 
424 	if (regs && kexec_should_crash(current))
425 		crash_kexec(regs);
426 
427 	make_task_dead(sig);
428 }
429 
430 extern struct exception_table_entry __start___dbe_table[];
431 extern struct exception_table_entry __stop___dbe_table[];
432 
433 __asm__(
434 "	.section	__dbe_table, \"a\"\n"
435 "	.previous			\n");
436 
437 /* Given an address, look for it in the exception tables. */
438 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
439 {
440 	const struct exception_table_entry *e;
441 
442 	e = search_extable(__start___dbe_table,
443 			   __stop___dbe_table - __start___dbe_table, addr);
444 	if (!e)
445 		e = search_module_dbetables(addr);
446 	return e;
447 }
448 
449 asmlinkage void do_be(struct pt_regs *regs)
450 {
451 	const int field = 2 * sizeof(unsigned long);
452 	const struct exception_table_entry *fixup = NULL;
453 	int data = regs->cp0_cause & 4;
454 	int action = MIPS_BE_FATAL;
455 	enum ctx_state prev_state;
456 
457 	prev_state = exception_enter();
458 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
459 	if (data && !user_mode(regs))
460 		fixup = search_dbe_tables(exception_epc(regs));
461 
462 	if (fixup)
463 		action = MIPS_BE_FIXUP;
464 
465 	if (board_be_handler)
466 		action = board_be_handler(regs, fixup != NULL);
467 	else
468 		mips_cm_error_report();
469 
470 	switch (action) {
471 	case MIPS_BE_DISCARD:
472 		goto out;
473 	case MIPS_BE_FIXUP:
474 		if (fixup) {
475 			regs->cp0_epc = fixup->nextinsn;
476 			goto out;
477 		}
478 		break;
479 	default:
480 		break;
481 	}
482 
483 	/*
484 	 * Assume it would be too dangerous to continue ...
485 	 */
486 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
487 	       data ? "Data" : "Instruction",
488 	       field, regs->cp0_epc, field, regs->regs[31]);
489 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
490 		       SIGBUS) == NOTIFY_STOP)
491 		goto out;
492 
493 	die_if_kernel("Oops", regs);
494 	force_sig(SIGBUS);
495 
496 out:
497 	exception_exit(prev_state);
498 }
499 
500 /*
501  * ll/sc, rdhwr, sync emulation
502  */
503 
504 #define OPCODE 0xfc000000
505 #define BASE   0x03e00000
506 #define RT     0x001f0000
507 #define OFFSET 0x0000ffff
508 #define LL     0xc0000000
509 #define SC     0xe0000000
510 #define SPEC0  0x00000000
511 #define SPEC3  0x7c000000
512 #define RD     0x0000f800
513 #define FUNC   0x0000003f
514 #define SYNC   0x0000000f
515 #define RDHWR  0x0000003b
516 
517 /*  microMIPS definitions   */
518 #define MM_POOL32A_FUNC 0xfc00ffff
519 #define MM_RDHWR        0x00006b3c
520 #define MM_RS           0x001f0000
521 #define MM_RT           0x03e00000
522 
523 /*
524  * The ll_bit is cleared by r*_switch.S
525  */
526 
527 unsigned int ll_bit;
528 struct task_struct *ll_task;
529 
530 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
531 {
532 	unsigned long value, __user *vaddr;
533 	long offset;
534 
535 	/*
536 	 * analyse the ll instruction that just caused a ri exception
537 	 * and put the referenced address to addr.
538 	 */
539 
540 	/* sign extend offset */
541 	offset = opcode & OFFSET;
542 	offset <<= 16;
543 	offset >>= 16;
544 
545 	vaddr = (unsigned long __user *)
546 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
547 
548 	if ((unsigned long)vaddr & 3)
549 		return SIGBUS;
550 	if (get_user(value, vaddr))
551 		return SIGSEGV;
552 
553 	preempt_disable();
554 
555 	if (ll_task == NULL || ll_task == current) {
556 		ll_bit = 1;
557 	} else {
558 		ll_bit = 0;
559 	}
560 	ll_task = current;
561 
562 	preempt_enable();
563 
564 	regs->regs[(opcode & RT) >> 16] = value;
565 
566 	return 0;
567 }
568 
569 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
570 {
571 	unsigned long __user *vaddr;
572 	unsigned long reg;
573 	long offset;
574 
575 	/*
576 	 * analyse the sc instruction that just caused a ri exception
577 	 * and put the referenced address to addr.
578 	 */
579 
580 	/* sign extend offset */
581 	offset = opcode & OFFSET;
582 	offset <<= 16;
583 	offset >>= 16;
584 
585 	vaddr = (unsigned long __user *)
586 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
587 	reg = (opcode & RT) >> 16;
588 
589 	if ((unsigned long)vaddr & 3)
590 		return SIGBUS;
591 
592 	preempt_disable();
593 
594 	if (ll_bit == 0 || ll_task != current) {
595 		regs->regs[reg] = 0;
596 		preempt_enable();
597 		return 0;
598 	}
599 
600 	preempt_enable();
601 
602 	if (put_user(regs->regs[reg], vaddr))
603 		return SIGSEGV;
604 
605 	regs->regs[reg] = 1;
606 
607 	return 0;
608 }
609 
610 /*
611  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
612  * opcodes are supposed to result in coprocessor unusable exceptions if
613  * executed on ll/sc-less processors.  That's the theory.  In practice a
614  * few processors such as NEC's VR4100 throw reserved instruction exceptions
615  * instead, so we're doing the emulation thing in both exception handlers.
616  */
617 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
618 {
619 	if ((opcode & OPCODE) == LL) {
620 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
621 				1, regs, 0);
622 		return simulate_ll(regs, opcode);
623 	}
624 	if ((opcode & OPCODE) == SC) {
625 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
626 				1, regs, 0);
627 		return simulate_sc(regs, opcode);
628 	}
629 
630 	return -1;			/* Must be something else ... */
631 }
632 
633 /*
634  * Simulate trapping 'rdhwr' instructions to provide user accessible
635  * registers not implemented in hardware.
636  */
637 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
638 {
639 	struct thread_info *ti = task_thread_info(current);
640 
641 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
642 			1, regs, 0);
643 	switch (rd) {
644 	case MIPS_HWR_CPUNUM:		/* CPU number */
645 		regs->regs[rt] = smp_processor_id();
646 		return 0;
647 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
648 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
649 				     current_cpu_data.icache.linesz);
650 		return 0;
651 	case MIPS_HWR_CC:		/* Read count register */
652 		regs->regs[rt] = read_c0_count();
653 		return 0;
654 	case MIPS_HWR_CCRES:		/* Count register resolution */
655 		switch (current_cpu_type()) {
656 		case CPU_20KC:
657 		case CPU_25KF:
658 			regs->regs[rt] = 1;
659 			break;
660 		default:
661 			regs->regs[rt] = 2;
662 		}
663 		return 0;
664 	case MIPS_HWR_ULR:		/* Read UserLocal register */
665 		regs->regs[rt] = ti->tp_value;
666 		return 0;
667 	default:
668 		return -1;
669 	}
670 }
671 
672 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
673 {
674 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
675 		int rd = (opcode & RD) >> 11;
676 		int rt = (opcode & RT) >> 16;
677 
678 		simulate_rdhwr(regs, rd, rt);
679 		return 0;
680 	}
681 
682 	/* Not ours.  */
683 	return -1;
684 }
685 
686 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
687 {
688 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
689 		int rd = (opcode & MM_RS) >> 16;
690 		int rt = (opcode & MM_RT) >> 21;
691 		simulate_rdhwr(regs, rd, rt);
692 		return 0;
693 	}
694 
695 	/* Not ours.  */
696 	return -1;
697 }
698 
699 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
700 {
701 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
702 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
703 				1, regs, 0);
704 		return 0;
705 	}
706 
707 	return -1;			/* Must be something else ... */
708 }
709 
710 /*
711  * Loongson-3 CSR instructions emulation
712  */
713 
714 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
715 
716 #define LWC2             0xc8000000
717 #define RS               BASE
718 #define CSR_OPCODE2      0x00000118
719 #define CSR_OPCODE2_MASK 0x000007ff
720 #define CSR_FUNC_MASK    RT
721 #define CSR_FUNC_CPUCFG  0x8
722 
723 static int simulate_loongson3_cpucfg(struct pt_regs *regs,
724 				     unsigned int opcode)
725 {
726 	int op = opcode & OPCODE;
727 	int op2 = opcode & CSR_OPCODE2_MASK;
728 	int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
729 
730 	if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
731 		int rd = (opcode & RD) >> 11;
732 		int rs = (opcode & RS) >> 21;
733 		__u64 sel = regs->regs[rs];
734 
735 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
736 
737 		/* Do not emulate on unsupported core models. */
738 		preempt_disable();
739 		if (!loongson3_cpucfg_emulation_enabled(&current_cpu_data)) {
740 			preempt_enable();
741 			return -1;
742 		}
743 		regs->regs[rd] = loongson3_cpucfg_read_synthesized(
744 			&current_cpu_data, sel);
745 		preempt_enable();
746 		return 0;
747 	}
748 
749 	/* Not ours.  */
750 	return -1;
751 }
752 #endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
753 
754 asmlinkage void do_ov(struct pt_regs *regs)
755 {
756 	enum ctx_state prev_state;
757 
758 	prev_state = exception_enter();
759 	die_if_kernel("Integer overflow", regs);
760 
761 	force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
762 	exception_exit(prev_state);
763 }
764 
765 #ifdef CONFIG_MIPS_FP_SUPPORT
766 
767 /*
768  * Send SIGFPE according to FCSR Cause bits, which must have already
769  * been masked against Enable bits.  This is impotant as Inexact can
770  * happen together with Overflow or Underflow, and `ptrace' can set
771  * any bits.
772  */
773 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
774 		     struct task_struct *tsk)
775 {
776 	int si_code = FPE_FLTUNK;
777 
778 	if (fcr31 & FPU_CSR_INV_X)
779 		si_code = FPE_FLTINV;
780 	else if (fcr31 & FPU_CSR_DIV_X)
781 		si_code = FPE_FLTDIV;
782 	else if (fcr31 & FPU_CSR_OVF_X)
783 		si_code = FPE_FLTOVF;
784 	else if (fcr31 & FPU_CSR_UDF_X)
785 		si_code = FPE_FLTUND;
786 	else if (fcr31 & FPU_CSR_INE_X)
787 		si_code = FPE_FLTRES;
788 
789 	force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
790 }
791 
792 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
793 {
794 	int si_code;
795 
796 	switch (sig) {
797 	case 0:
798 		return 0;
799 
800 	case SIGFPE:
801 		force_fcr31_sig(fcr31, fault_addr, current);
802 		return 1;
803 
804 	case SIGBUS:
805 		force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
806 		return 1;
807 
808 	case SIGSEGV:
809 		mmap_read_lock(current->mm);
810 		if (vma_lookup(current->mm, (unsigned long)fault_addr))
811 			si_code = SEGV_ACCERR;
812 		else
813 			si_code = SEGV_MAPERR;
814 		mmap_read_unlock(current->mm);
815 		force_sig_fault(SIGSEGV, si_code, fault_addr);
816 		return 1;
817 
818 	default:
819 		force_sig(sig);
820 		return 1;
821 	}
822 }
823 
824 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
825 		       unsigned long old_epc, unsigned long old_ra)
826 {
827 	union mips_instruction inst = { .word = opcode };
828 	void __user *fault_addr;
829 	unsigned long fcr31;
830 	int sig;
831 
832 	/* If it's obviously not an FP instruction, skip it */
833 	switch (inst.i_format.opcode) {
834 	case cop1_op:
835 	case cop1x_op:
836 	case lwc1_op:
837 	case ldc1_op:
838 	case swc1_op:
839 	case sdc1_op:
840 		break;
841 
842 	default:
843 		return -1;
844 	}
845 
846 	/*
847 	 * do_ri skipped over the instruction via compute_return_epc, undo
848 	 * that for the FPU emulator.
849 	 */
850 	regs->cp0_epc = old_epc;
851 	regs->regs[31] = old_ra;
852 
853 	/* Run the emulator */
854 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
855 				       &fault_addr);
856 
857 	/*
858 	 * We can't allow the emulated instruction to leave any
859 	 * enabled Cause bits set in $fcr31.
860 	 */
861 	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
862 	current->thread.fpu.fcr31 &= ~fcr31;
863 
864 	/* Restore the hardware register state */
865 	own_fpu(1);
866 
867 	/* Send a signal if required.  */
868 	process_fpemu_return(sig, fault_addr, fcr31);
869 
870 	return 0;
871 }
872 
873 /*
874  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
875  */
876 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
877 {
878 	enum ctx_state prev_state;
879 	void __user *fault_addr;
880 	int sig;
881 
882 	prev_state = exception_enter();
883 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
884 		       SIGFPE) == NOTIFY_STOP)
885 		goto out;
886 
887 	/* Clear FCSR.Cause before enabling interrupts */
888 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
889 	local_irq_enable();
890 
891 	die_if_kernel("FP exception in kernel code", regs);
892 
893 	if (fcr31 & FPU_CSR_UNI_X) {
894 		/*
895 		 * Unimplemented operation exception.  If we've got the full
896 		 * software emulator on-board, let's use it...
897 		 *
898 		 * Force FPU to dump state into task/thread context.  We're
899 		 * moving a lot of data here for what is probably a single
900 		 * instruction, but the alternative is to pre-decode the FP
901 		 * register operands before invoking the emulator, which seems
902 		 * a bit extreme for what should be an infrequent event.
903 		 */
904 
905 		/* Run the emulator */
906 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
907 					       &fault_addr);
908 
909 		/*
910 		 * We can't allow the emulated instruction to leave any
911 		 * enabled Cause bits set in $fcr31.
912 		 */
913 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
914 		current->thread.fpu.fcr31 &= ~fcr31;
915 
916 		/* Restore the hardware register state */
917 		own_fpu(1);	/* Using the FPU again.	 */
918 	} else {
919 		sig = SIGFPE;
920 		fault_addr = (void __user *) regs->cp0_epc;
921 	}
922 
923 	/* Send a signal if required.  */
924 	process_fpemu_return(sig, fault_addr, fcr31);
925 
926 out:
927 	exception_exit(prev_state);
928 }
929 
930 /*
931  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
932  * emulated more than some threshold number of instructions, force migration to
933  * a "CPU" that has FP support.
934  */
935 static void mt_ase_fp_affinity(void)
936 {
937 #ifdef CONFIG_MIPS_MT_FPAFF
938 	if (mt_fpemul_threshold > 0 &&
939 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
940 		/*
941 		 * If there's no FPU present, or if the application has already
942 		 * restricted the allowed set to exclude any CPUs with FPUs,
943 		 * we'll skip the procedure.
944 		 */
945 		if (cpumask_intersects(&current->cpus_mask, &mt_fpu_cpumask)) {
946 			cpumask_t tmask;
947 
948 			current->thread.user_cpus_allowed
949 				= current->cpus_mask;
950 			cpumask_and(&tmask, &current->cpus_mask,
951 				    &mt_fpu_cpumask);
952 			set_cpus_allowed_ptr(current, &tmask);
953 			set_thread_flag(TIF_FPUBOUND);
954 		}
955 	}
956 #endif /* CONFIG_MIPS_MT_FPAFF */
957 }
958 
959 #else /* !CONFIG_MIPS_FP_SUPPORT */
960 
961 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
962 		       unsigned long old_epc, unsigned long old_ra)
963 {
964 	return -1;
965 }
966 
967 #endif /* !CONFIG_MIPS_FP_SUPPORT */
968 
969 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
970 	const char *str)
971 {
972 	char b[40];
973 
974 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
975 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
976 			 SIGTRAP) == NOTIFY_STOP)
977 		return;
978 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
979 
980 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
981 		       SIGTRAP) == NOTIFY_STOP)
982 		return;
983 
984 	/*
985 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
986 	 * insns, even for trap and break codes that indicate arithmetic
987 	 * failures.  Weird ...
988 	 * But should we continue the brokenness???  --macro
989 	 */
990 	switch (code) {
991 	case BRK_OVERFLOW:
992 	case BRK_DIVZERO:
993 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
994 		die_if_kernel(b, regs);
995 		force_sig_fault(SIGFPE,
996 				code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
997 				(void __user *) regs->cp0_epc);
998 		break;
999 	case BRK_BUG:
1000 		die_if_kernel("Kernel bug detected", regs);
1001 		force_sig(SIGTRAP);
1002 		break;
1003 	case BRK_MEMU:
1004 		/*
1005 		 * This breakpoint code is used by the FPU emulator to retake
1006 		 * control of the CPU after executing the instruction from the
1007 		 * delay slot of an emulated branch.
1008 		 *
1009 		 * Terminate if exception was recognized as a delay slot return
1010 		 * otherwise handle as normal.
1011 		 */
1012 		if (do_dsemulret(regs))
1013 			return;
1014 
1015 		die_if_kernel("Math emu break/trap", regs);
1016 		force_sig(SIGTRAP);
1017 		break;
1018 	default:
1019 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1020 		die_if_kernel(b, regs);
1021 		if (si_code) {
1022 			force_sig_fault(SIGTRAP, si_code, NULL);
1023 		} else {
1024 			force_sig(SIGTRAP);
1025 		}
1026 	}
1027 }
1028 
1029 asmlinkage void do_bp(struct pt_regs *regs)
1030 {
1031 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1032 	unsigned int opcode, bcode;
1033 	enum ctx_state prev_state;
1034 	bool user = user_mode(regs);
1035 
1036 	prev_state = exception_enter();
1037 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1038 	if (get_isa16_mode(regs->cp0_epc)) {
1039 		u16 instr[2];
1040 
1041 		if (__get_inst16(&instr[0], (u16 *)epc, user))
1042 			goto out_sigsegv;
1043 
1044 		if (!cpu_has_mmips) {
1045 			/* MIPS16e mode */
1046 			bcode = (instr[0] >> 5) & 0x3f;
1047 		} else if (mm_insn_16bit(instr[0])) {
1048 			/* 16-bit microMIPS BREAK */
1049 			bcode = instr[0] & 0xf;
1050 		} else {
1051 			/* 32-bit microMIPS BREAK */
1052 			if (__get_inst16(&instr[1], (u16 *)(epc + 2), user))
1053 				goto out_sigsegv;
1054 			opcode = (instr[0] << 16) | instr[1];
1055 			bcode = (opcode >> 6) & ((1 << 20) - 1);
1056 		}
1057 	} else {
1058 		if (__get_inst32(&opcode, (u32 *)epc, user))
1059 			goto out_sigsegv;
1060 		bcode = (opcode >> 6) & ((1 << 20) - 1);
1061 	}
1062 
1063 	/*
1064 	 * There is the ancient bug in the MIPS assemblers that the break
1065 	 * code starts left to bit 16 instead to bit 6 in the opcode.
1066 	 * Gas is bug-compatible, but not always, grrr...
1067 	 * We handle both cases with a simple heuristics.  --macro
1068 	 */
1069 	if (bcode >= (1 << 10))
1070 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1071 
1072 	/*
1073 	 * notify the kprobe handlers, if instruction is likely to
1074 	 * pertain to them.
1075 	 */
1076 	switch (bcode) {
1077 	case BRK_UPROBE:
1078 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1079 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1080 			goto out;
1081 		else
1082 			break;
1083 	case BRK_UPROBE_XOL:
1084 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1085 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1086 			goto out;
1087 		else
1088 			break;
1089 	case BRK_KPROBE_BP:
1090 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1091 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1092 			goto out;
1093 		else
1094 			break;
1095 	case BRK_KPROBE_SSTEPBP:
1096 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1097 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1098 			goto out;
1099 		else
1100 			break;
1101 	default:
1102 		break;
1103 	}
1104 
1105 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1106 
1107 out:
1108 	exception_exit(prev_state);
1109 	return;
1110 
1111 out_sigsegv:
1112 	force_sig(SIGSEGV);
1113 	goto out;
1114 }
1115 
1116 asmlinkage void do_tr(struct pt_regs *regs)
1117 {
1118 	u32 opcode, tcode = 0;
1119 	enum ctx_state prev_state;
1120 	u16 instr[2];
1121 	bool user = user_mode(regs);
1122 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1123 
1124 	prev_state = exception_enter();
1125 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1126 	if (get_isa16_mode(regs->cp0_epc)) {
1127 		if (__get_inst16(&instr[0], (u16 *)(epc + 0), user) ||
1128 		    __get_inst16(&instr[1], (u16 *)(epc + 2), user))
1129 			goto out_sigsegv;
1130 		opcode = (instr[0] << 16) | instr[1];
1131 		/* Immediate versions don't provide a code.  */
1132 		if (!(opcode & OPCODE))
1133 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1134 	} else {
1135 		if (__get_inst32(&opcode, (u32 *)epc, user))
1136 			goto out_sigsegv;
1137 		/* Immediate versions don't provide a code.  */
1138 		if (!(opcode & OPCODE))
1139 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1140 	}
1141 
1142 	do_trap_or_bp(regs, tcode, 0, "Trap");
1143 
1144 out:
1145 	exception_exit(prev_state);
1146 	return;
1147 
1148 out_sigsegv:
1149 	force_sig(SIGSEGV);
1150 	goto out;
1151 }
1152 
1153 asmlinkage void do_ri(struct pt_regs *regs)
1154 {
1155 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1156 	unsigned long old_epc = regs->cp0_epc;
1157 	unsigned long old31 = regs->regs[31];
1158 	enum ctx_state prev_state;
1159 	unsigned int opcode = 0;
1160 	int status = -1;
1161 
1162 	/*
1163 	 * Avoid any kernel code. Just emulate the R2 instruction
1164 	 * as quickly as possible.
1165 	 */
1166 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1167 	    likely(user_mode(regs)) &&
1168 	    likely(get_user(opcode, epc) >= 0)) {
1169 		unsigned long fcr31 = 0;
1170 
1171 		status = mipsr2_decoder(regs, opcode, &fcr31);
1172 		switch (status) {
1173 		case 0:
1174 		case SIGEMT:
1175 			return;
1176 		case SIGILL:
1177 			goto no_r2_instr;
1178 		default:
1179 			process_fpemu_return(status,
1180 					     &current->thread.cp0_baduaddr,
1181 					     fcr31);
1182 			return;
1183 		}
1184 	}
1185 
1186 no_r2_instr:
1187 
1188 	prev_state = exception_enter();
1189 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1190 
1191 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1192 		       SIGILL) == NOTIFY_STOP)
1193 		goto out;
1194 
1195 	die_if_kernel("Reserved instruction in kernel code", regs);
1196 
1197 	if (unlikely(compute_return_epc(regs) < 0))
1198 		goto out;
1199 
1200 	if (!get_isa16_mode(regs->cp0_epc)) {
1201 		if (unlikely(get_user(opcode, epc) < 0))
1202 			status = SIGSEGV;
1203 
1204 		if (!cpu_has_llsc && status < 0)
1205 			status = simulate_llsc(regs, opcode);
1206 
1207 		if (status < 0)
1208 			status = simulate_rdhwr_normal(regs, opcode);
1209 
1210 		if (status < 0)
1211 			status = simulate_sync(regs, opcode);
1212 
1213 		if (status < 0)
1214 			status = simulate_fp(regs, opcode, old_epc, old31);
1215 
1216 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1217 		if (status < 0)
1218 			status = simulate_loongson3_cpucfg(regs, opcode);
1219 #endif
1220 	} else if (cpu_has_mmips) {
1221 		unsigned short mmop[2] = { 0 };
1222 
1223 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1224 			status = SIGSEGV;
1225 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1226 			status = SIGSEGV;
1227 		opcode = mmop[0];
1228 		opcode = (opcode << 16) | mmop[1];
1229 
1230 		if (status < 0)
1231 			status = simulate_rdhwr_mm(regs, opcode);
1232 	}
1233 
1234 	if (status < 0)
1235 		status = SIGILL;
1236 
1237 	if (unlikely(status > 0)) {
1238 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1239 		regs->regs[31] = old31;
1240 		force_sig(status);
1241 	}
1242 
1243 out:
1244 	exception_exit(prev_state);
1245 }
1246 
1247 /*
1248  * No lock; only written during early bootup by CPU 0.
1249  */
1250 static RAW_NOTIFIER_HEAD(cu2_chain);
1251 
1252 int __ref register_cu2_notifier(struct notifier_block *nb)
1253 {
1254 	return raw_notifier_chain_register(&cu2_chain, nb);
1255 }
1256 
1257 int cu2_notifier_call_chain(unsigned long val, void *v)
1258 {
1259 	return raw_notifier_call_chain(&cu2_chain, val, v);
1260 }
1261 
1262 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1263 	void *data)
1264 {
1265 	struct pt_regs *regs = data;
1266 
1267 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1268 			      "instruction", regs);
1269 	force_sig(SIGILL);
1270 
1271 	return NOTIFY_OK;
1272 }
1273 
1274 #ifdef CONFIG_MIPS_FP_SUPPORT
1275 
1276 static int enable_restore_fp_context(int msa)
1277 {
1278 	int err, was_fpu_owner, prior_msa;
1279 	bool first_fp;
1280 
1281 	/* Initialize context if it hasn't been used already */
1282 	first_fp = init_fp_ctx(current);
1283 
1284 	if (first_fp) {
1285 		preempt_disable();
1286 		err = own_fpu_inatomic(1);
1287 		if (msa && !err) {
1288 			enable_msa();
1289 			/*
1290 			 * with MSA enabled, userspace can see MSACSR
1291 			 * and MSA regs, but the values in them are from
1292 			 * other task before current task, restore them
1293 			 * from saved fp/msa context
1294 			 */
1295 			write_msa_csr(current->thread.fpu.msacsr);
1296 			/*
1297 			 * own_fpu_inatomic(1) just restore low 64bit,
1298 			 * fix the high 64bit
1299 			 */
1300 			init_msa_upper();
1301 			set_thread_flag(TIF_USEDMSA);
1302 			set_thread_flag(TIF_MSA_CTX_LIVE);
1303 		}
1304 		preempt_enable();
1305 		return err;
1306 	}
1307 
1308 	/*
1309 	 * This task has formerly used the FP context.
1310 	 *
1311 	 * If this thread has no live MSA vector context then we can simply
1312 	 * restore the scalar FP context. If it has live MSA vector context
1313 	 * (that is, it has or may have used MSA since last performing a
1314 	 * function call) then we'll need to restore the vector context. This
1315 	 * applies even if we're currently only executing a scalar FP
1316 	 * instruction. This is because if we were to later execute an MSA
1317 	 * instruction then we'd either have to:
1318 	 *
1319 	 *  - Restore the vector context & clobber any registers modified by
1320 	 *    scalar FP instructions between now & then.
1321 	 *
1322 	 * or
1323 	 *
1324 	 *  - Not restore the vector context & lose the most significant bits
1325 	 *    of all vector registers.
1326 	 *
1327 	 * Neither of those options is acceptable. We cannot restore the least
1328 	 * significant bits of the registers now & only restore the most
1329 	 * significant bits later because the most significant bits of any
1330 	 * vector registers whose aliased FP register is modified now will have
1331 	 * been zeroed. We'd have no way to know that when restoring the vector
1332 	 * context & thus may load an outdated value for the most significant
1333 	 * bits of a vector register.
1334 	 */
1335 	if (!msa && !thread_msa_context_live())
1336 		return own_fpu(1);
1337 
1338 	/*
1339 	 * This task is using or has previously used MSA. Thus we require
1340 	 * that Status.FR == 1.
1341 	 */
1342 	preempt_disable();
1343 	was_fpu_owner = is_fpu_owner();
1344 	err = own_fpu_inatomic(0);
1345 	if (err)
1346 		goto out;
1347 
1348 	enable_msa();
1349 	write_msa_csr(current->thread.fpu.msacsr);
1350 	set_thread_flag(TIF_USEDMSA);
1351 
1352 	/*
1353 	 * If this is the first time that the task is using MSA and it has
1354 	 * previously used scalar FP in this time slice then we already nave
1355 	 * FP context which we shouldn't clobber. We do however need to clear
1356 	 * the upper 64b of each vector register so that this task has no
1357 	 * opportunity to see data left behind by another.
1358 	 */
1359 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1360 	if (!prior_msa && was_fpu_owner) {
1361 		init_msa_upper();
1362 
1363 		goto out;
1364 	}
1365 
1366 	if (!prior_msa) {
1367 		/*
1368 		 * Restore the least significant 64b of each vector register
1369 		 * from the existing scalar FP context.
1370 		 */
1371 		_restore_fp(current);
1372 
1373 		/*
1374 		 * The task has not formerly used MSA, so clear the upper 64b
1375 		 * of each vector register such that it cannot see data left
1376 		 * behind by another task.
1377 		 */
1378 		init_msa_upper();
1379 	} else {
1380 		/* We need to restore the vector context. */
1381 		restore_msa(current);
1382 
1383 		/* Restore the scalar FP control & status register */
1384 		if (!was_fpu_owner)
1385 			write_32bit_cp1_register(CP1_STATUS,
1386 						 current->thread.fpu.fcr31);
1387 	}
1388 
1389 out:
1390 	preempt_enable();
1391 
1392 	return 0;
1393 }
1394 
1395 #else /* !CONFIG_MIPS_FP_SUPPORT */
1396 
1397 static int enable_restore_fp_context(int msa)
1398 {
1399 	return SIGILL;
1400 }
1401 
1402 #endif /* CONFIG_MIPS_FP_SUPPORT */
1403 
1404 asmlinkage void do_cpu(struct pt_regs *regs)
1405 {
1406 	enum ctx_state prev_state;
1407 	unsigned int __user *epc;
1408 	unsigned long old_epc, old31;
1409 	unsigned int opcode;
1410 	unsigned int cpid;
1411 	int status;
1412 
1413 	prev_state = exception_enter();
1414 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1415 
1416 	if (cpid != 2)
1417 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1418 
1419 	switch (cpid) {
1420 	case 0:
1421 		epc = (unsigned int __user *)exception_epc(regs);
1422 		old_epc = regs->cp0_epc;
1423 		old31 = regs->regs[31];
1424 		opcode = 0;
1425 		status = -1;
1426 
1427 		if (unlikely(compute_return_epc(regs) < 0))
1428 			break;
1429 
1430 		if (!get_isa16_mode(regs->cp0_epc)) {
1431 			if (unlikely(get_user(opcode, epc) < 0))
1432 				status = SIGSEGV;
1433 
1434 			if (!cpu_has_llsc && status < 0)
1435 				status = simulate_llsc(regs, opcode);
1436 		}
1437 
1438 		if (status < 0)
1439 			status = SIGILL;
1440 
1441 		if (unlikely(status > 0)) {
1442 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1443 			regs->regs[31] = old31;
1444 			force_sig(status);
1445 		}
1446 
1447 		break;
1448 
1449 #ifdef CONFIG_MIPS_FP_SUPPORT
1450 	case 3:
1451 		/*
1452 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1453 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1454 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1455 		 * up the space has been reused for COP1X instructions, that
1456 		 * are enabled by the CP0.Status.CU1 bit and consequently
1457 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1458 		 * exceptions.  Some FPU-less processors that implement one
1459 		 * of these ISAs however use this code erroneously for COP1X
1460 		 * instructions.  Therefore we redirect this trap to the FP
1461 		 * emulator too.
1462 		 */
1463 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1464 			force_sig(SIGILL);
1465 			break;
1466 		}
1467 		fallthrough;
1468 	case 1: {
1469 		void __user *fault_addr;
1470 		unsigned long fcr31;
1471 		int err, sig;
1472 
1473 		err = enable_restore_fp_context(0);
1474 
1475 		if (raw_cpu_has_fpu && !err)
1476 			break;
1477 
1478 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1479 					       &fault_addr);
1480 
1481 		/*
1482 		 * We can't allow the emulated instruction to leave
1483 		 * any enabled Cause bits set in $fcr31.
1484 		 */
1485 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1486 		current->thread.fpu.fcr31 &= ~fcr31;
1487 
1488 		/* Send a signal if required.  */
1489 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1490 			mt_ase_fp_affinity();
1491 
1492 		break;
1493 	}
1494 #else /* CONFIG_MIPS_FP_SUPPORT */
1495 	case 1:
1496 	case 3:
1497 		force_sig(SIGILL);
1498 		break;
1499 #endif /* CONFIG_MIPS_FP_SUPPORT */
1500 
1501 	case 2:
1502 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1503 		break;
1504 	}
1505 
1506 	exception_exit(prev_state);
1507 }
1508 
1509 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1510 {
1511 	enum ctx_state prev_state;
1512 
1513 	prev_state = exception_enter();
1514 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1515 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1516 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1517 		goto out;
1518 
1519 	/* Clear MSACSR.Cause before enabling interrupts */
1520 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1521 	local_irq_enable();
1522 
1523 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1524 	force_sig(SIGFPE);
1525 out:
1526 	exception_exit(prev_state);
1527 }
1528 
1529 asmlinkage void do_msa(struct pt_regs *regs)
1530 {
1531 	enum ctx_state prev_state;
1532 	int err;
1533 
1534 	prev_state = exception_enter();
1535 
1536 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1537 		force_sig(SIGILL);
1538 		goto out;
1539 	}
1540 
1541 	die_if_kernel("do_msa invoked from kernel context!", regs);
1542 
1543 	err = enable_restore_fp_context(1);
1544 	if (err)
1545 		force_sig(SIGILL);
1546 out:
1547 	exception_exit(prev_state);
1548 }
1549 
1550 asmlinkage void do_mdmx(struct pt_regs *regs)
1551 {
1552 	enum ctx_state prev_state;
1553 
1554 	prev_state = exception_enter();
1555 	force_sig(SIGILL);
1556 	exception_exit(prev_state);
1557 }
1558 
1559 /*
1560  * Called with interrupts disabled.
1561  */
1562 asmlinkage void do_watch(struct pt_regs *regs)
1563 {
1564 	enum ctx_state prev_state;
1565 
1566 	prev_state = exception_enter();
1567 	/*
1568 	 * Clear WP (bit 22) bit of cause register so we don't loop
1569 	 * forever.
1570 	 */
1571 	clear_c0_cause(CAUSEF_WP);
1572 
1573 	/*
1574 	 * If the current thread has the watch registers loaded, save
1575 	 * their values and send SIGTRAP.  Otherwise another thread
1576 	 * left the registers set, clear them and continue.
1577 	 */
1578 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1579 		mips_read_watch_registers();
1580 		local_irq_enable();
1581 		force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1582 	} else {
1583 		mips_clear_watch_registers();
1584 		local_irq_enable();
1585 	}
1586 	exception_exit(prev_state);
1587 }
1588 
1589 asmlinkage void do_mcheck(struct pt_regs *regs)
1590 {
1591 	int multi_match = regs->cp0_status & ST0_TS;
1592 	enum ctx_state prev_state;
1593 
1594 	prev_state = exception_enter();
1595 	show_regs(regs);
1596 
1597 	if (multi_match) {
1598 		dump_tlb_regs();
1599 		pr_info("\n");
1600 		dump_tlb_all();
1601 	}
1602 
1603 	show_code((void *)regs->cp0_epc, user_mode(regs));
1604 
1605 	/*
1606 	 * Some chips may have other causes of machine check (e.g. SB1
1607 	 * graduation timer)
1608 	 */
1609 	panic("Caught Machine Check exception - %scaused by multiple "
1610 	      "matching entries in the TLB.",
1611 	      (multi_match) ? "" : "not ");
1612 }
1613 
1614 asmlinkage void do_mt(struct pt_regs *regs)
1615 {
1616 	int subcode;
1617 
1618 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1619 			>> VPECONTROL_EXCPT_SHIFT;
1620 	switch (subcode) {
1621 	case 0:
1622 		printk(KERN_DEBUG "Thread Underflow\n");
1623 		break;
1624 	case 1:
1625 		printk(KERN_DEBUG "Thread Overflow\n");
1626 		break;
1627 	case 2:
1628 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1629 		break;
1630 	case 3:
1631 		printk(KERN_DEBUG "Gating Storage Exception\n");
1632 		break;
1633 	case 4:
1634 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1635 		break;
1636 	case 5:
1637 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1638 		break;
1639 	default:
1640 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1641 			subcode);
1642 		break;
1643 	}
1644 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1645 
1646 	force_sig(SIGILL);
1647 }
1648 
1649 
1650 asmlinkage void do_dsp(struct pt_regs *regs)
1651 {
1652 	if (cpu_has_dsp)
1653 		panic("Unexpected DSP exception");
1654 
1655 	force_sig(SIGILL);
1656 }
1657 
1658 asmlinkage void do_reserved(struct pt_regs *regs)
1659 {
1660 	/*
1661 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1662 	 * caused by a new unknown cpu type or after another deadly
1663 	 * hard/software error.
1664 	 */
1665 	show_regs(regs);
1666 	panic("Caught reserved exception %ld - should not happen.",
1667 	      (regs->cp0_cause & 0x7f) >> 2);
1668 }
1669 
1670 static int __initdata l1parity = 1;
1671 static int __init nol1parity(char *s)
1672 {
1673 	l1parity = 0;
1674 	return 1;
1675 }
1676 __setup("nol1par", nol1parity);
1677 static int __initdata l2parity = 1;
1678 static int __init nol2parity(char *s)
1679 {
1680 	l2parity = 0;
1681 	return 1;
1682 }
1683 __setup("nol2par", nol2parity);
1684 
1685 /*
1686  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1687  * it different ways.
1688  */
1689 static inline __init void parity_protection_init(void)
1690 {
1691 #define ERRCTL_PE	0x80000000
1692 #define ERRCTL_L2P	0x00800000
1693 
1694 	if (mips_cm_revision() >= CM_REV_CM3) {
1695 		ulong gcr_ectl, cp0_ectl;
1696 
1697 		/*
1698 		 * With CM3 systems we need to ensure that the L1 & L2
1699 		 * parity enables are set to the same value, since this
1700 		 * is presumed by the hardware engineers.
1701 		 *
1702 		 * If the user disabled either of L1 or L2 ECC checking,
1703 		 * disable both.
1704 		 */
1705 		l1parity &= l2parity;
1706 		l2parity &= l1parity;
1707 
1708 		/* Probe L1 ECC support */
1709 		cp0_ectl = read_c0_errctl();
1710 		write_c0_errctl(cp0_ectl | ERRCTL_PE);
1711 		back_to_back_c0_hazard();
1712 		cp0_ectl = read_c0_errctl();
1713 
1714 		/* Probe L2 ECC support */
1715 		gcr_ectl = read_gcr_err_control();
1716 
1717 		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1718 		    !(cp0_ectl & ERRCTL_PE)) {
1719 			/*
1720 			 * One of L1 or L2 ECC checking isn't supported,
1721 			 * so we cannot enable either.
1722 			 */
1723 			l1parity = l2parity = 0;
1724 		}
1725 
1726 		/* Configure L1 ECC checking */
1727 		if (l1parity)
1728 			cp0_ectl |= ERRCTL_PE;
1729 		else
1730 			cp0_ectl &= ~ERRCTL_PE;
1731 		write_c0_errctl(cp0_ectl);
1732 		back_to_back_c0_hazard();
1733 		WARN_ON(!!(read_c0_errctl() & ERRCTL_PE) != l1parity);
1734 
1735 		/* Configure L2 ECC checking */
1736 		if (l2parity)
1737 			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1738 		else
1739 			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1740 		write_gcr_err_control(gcr_ectl);
1741 		gcr_ectl = read_gcr_err_control();
1742 		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1743 		WARN_ON(!!gcr_ectl != l2parity);
1744 
1745 		pr_info("Cache parity protection %s\n",
1746 			str_enabled_disabled(l1parity));
1747 		return;
1748 	}
1749 
1750 	switch (current_cpu_type()) {
1751 	case CPU_24K:
1752 	case CPU_34K:
1753 	case CPU_74K:
1754 	case CPU_1004K:
1755 	case CPU_1074K:
1756 	case CPU_INTERAPTIV:
1757 	case CPU_PROAPTIV:
1758 	case CPU_P5600:
1759 	case CPU_QEMU_GENERIC:
1760 	case CPU_P6600:
1761 		{
1762 			unsigned long errctl;
1763 			unsigned int l1parity_present, l2parity_present;
1764 
1765 			errctl = read_c0_errctl();
1766 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1767 
1768 			/* probe L1 parity support */
1769 			write_c0_errctl(errctl | ERRCTL_PE);
1770 			back_to_back_c0_hazard();
1771 			l1parity_present = (read_c0_errctl() & ERRCTL_PE);
1772 
1773 			/* probe L2 parity support */
1774 			write_c0_errctl(errctl|ERRCTL_L2P);
1775 			back_to_back_c0_hazard();
1776 			l2parity_present = (read_c0_errctl() & ERRCTL_L2P);
1777 
1778 			if (l1parity_present && l2parity_present) {
1779 				if (l1parity)
1780 					errctl |= ERRCTL_PE;
1781 				if (l1parity ^ l2parity)
1782 					errctl |= ERRCTL_L2P;
1783 			} else if (l1parity_present) {
1784 				if (l1parity)
1785 					errctl |= ERRCTL_PE;
1786 			} else if (l2parity_present) {
1787 				if (l2parity)
1788 					errctl |= ERRCTL_L2P;
1789 			} else {
1790 				/* No parity available */
1791 			}
1792 
1793 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1794 
1795 			write_c0_errctl(errctl);
1796 			back_to_back_c0_hazard();
1797 			errctl = read_c0_errctl();
1798 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1799 
1800 			if (l1parity_present)
1801 				pr_info("Cache parity protection %s\n",
1802 					str_enabled_disabled(errctl & ERRCTL_PE));
1803 
1804 			if (l2parity_present) {
1805 				if (l1parity_present && l1parity)
1806 					errctl ^= ERRCTL_L2P;
1807 				pr_info("L2 cache parity protection %s\n",
1808 					str_enabled_disabled(errctl & ERRCTL_L2P));
1809 			}
1810 		}
1811 		break;
1812 
1813 	case CPU_5KC:
1814 	case CPU_5KE:
1815 	case CPU_LOONGSON32:
1816 		write_c0_errctl(0x80000000);
1817 		back_to_back_c0_hazard();
1818 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1819 		pr_info("Cache parity protection %s\n",
1820 			str_enabled_disabled(read_c0_errctl() & 0x80000000));
1821 		break;
1822 	case CPU_20KC:
1823 	case CPU_25KF:
1824 		/* Clear the DE bit (bit 16) in the c0_status register. */
1825 		printk(KERN_INFO "Enable cache parity protection for "
1826 		       "MIPS 20KC/25KF CPUs.\n");
1827 		clear_c0_status(ST0_DE);
1828 		break;
1829 	default:
1830 		break;
1831 	}
1832 }
1833 
1834 asmlinkage void cache_parity_error(void)
1835 {
1836 	const int field = 2 * sizeof(unsigned long);
1837 	unsigned int reg_val;
1838 
1839 	/* For the moment, report the problem and hang. */
1840 	printk("Cache error exception:\n");
1841 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1842 	reg_val = read_c0_cacheerr();
1843 	printk("c0_cacheerr == %08x\n", reg_val);
1844 
1845 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1846 	       reg_val & (1<<30) ? "secondary" : "primary",
1847 	       reg_val & (1<<31) ? "data" : "insn");
1848 	if ((cpu_has_mips_r2_r6) &&
1849 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1850 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1851 			reg_val & (1<<29) ? "ED " : "",
1852 			reg_val & (1<<28) ? "ET " : "",
1853 			reg_val & (1<<27) ? "ES " : "",
1854 			reg_val & (1<<26) ? "EE " : "",
1855 			reg_val & (1<<25) ? "EB " : "",
1856 			reg_val & (1<<24) ? "EI " : "",
1857 			reg_val & (1<<23) ? "E1 " : "",
1858 			reg_val & (1<<22) ? "E0 " : "");
1859 	} else {
1860 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1861 			reg_val & (1<<29) ? "ED " : "",
1862 			reg_val & (1<<28) ? "ET " : "",
1863 			reg_val & (1<<26) ? "EE " : "",
1864 			reg_val & (1<<25) ? "EB " : "",
1865 			reg_val & (1<<24) ? "EI " : "",
1866 			reg_val & (1<<23) ? "E1 " : "",
1867 			reg_val & (1<<22) ? "E0 " : "");
1868 	}
1869 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1870 
1871 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1872 	if (reg_val & (1<<22))
1873 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1874 
1875 	if (reg_val & (1<<23))
1876 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1877 #endif
1878 
1879 	panic("Can't handle the cache error!");
1880 }
1881 
1882 asmlinkage void do_ftlb(void)
1883 {
1884 	const int field = 2 * sizeof(unsigned long);
1885 	unsigned int reg_val;
1886 
1887 	/* For the moment, report the problem and hang. */
1888 	if ((cpu_has_mips_r2_r6) &&
1889 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1890 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1891 		pr_err("FTLB error exception, cp0_errctl=0x%08x:\n",
1892 		       read_c0_errctl());
1893 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1894 		reg_val = read_c0_cacheerr();
1895 		pr_err("c0_cacheerr == %08x\n", reg_val);
1896 
1897 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1898 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1899 		} else {
1900 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1901 			       reg_val & (1<<30) ? "secondary" : "primary",
1902 			       reg_val & (1<<31) ? "data" : "insn");
1903 		}
1904 	} else {
1905 		pr_err("FTLB error exception\n");
1906 	}
1907 	/* Just print the cacheerr bits for now */
1908 	cache_parity_error();
1909 }
1910 
1911 asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1912 {
1913 	u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1914 			LOONGSON_DIAG1_EXCCODE_SHIFT;
1915 	enum ctx_state prev_state;
1916 
1917 	prev_state = exception_enter();
1918 
1919 	switch (exccode) {
1920 	case 0x08:
1921 		/* Undocumented exception, will trigger on certain
1922 		 * also-undocumented instructions accessible from userspace.
1923 		 * Processor state is not otherwise corrupted, but currently
1924 		 * we don't know how to proceed. Maybe there is some
1925 		 * undocumented control flag to enable the instructions?
1926 		 */
1927 		force_sig(SIGILL);
1928 		break;
1929 
1930 	default:
1931 		/* None of the other exceptions, documented or not, have
1932 		 * further details given; none are encountered in the wild
1933 		 * either. Panic in case some of them turn out to be fatal.
1934 		 */
1935 		show_regs(regs);
1936 		panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1937 	}
1938 
1939 	exception_exit(prev_state);
1940 }
1941 
1942 /*
1943  * SDBBP EJTAG debug exception handler.
1944  * We skip the instruction and return to the next instruction.
1945  */
1946 void ejtag_exception_handler(struct pt_regs *regs)
1947 {
1948 	const int field = 2 * sizeof(unsigned long);
1949 	unsigned long depc, old_epc, old_ra;
1950 	unsigned int debug;
1951 
1952 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1953 	depc = read_c0_depc();
1954 	debug = read_c0_debug();
1955 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1956 	if (debug & 0x80000000) {
1957 		/*
1958 		 * In branch delay slot.
1959 		 * We cheat a little bit here and use EPC to calculate the
1960 		 * debug return address (DEPC). EPC is restored after the
1961 		 * calculation.
1962 		 */
1963 		old_epc = regs->cp0_epc;
1964 		old_ra = regs->regs[31];
1965 		regs->cp0_epc = depc;
1966 		compute_return_epc(regs);
1967 		depc = regs->cp0_epc;
1968 		regs->cp0_epc = old_epc;
1969 		regs->regs[31] = old_ra;
1970 	} else
1971 		depc += 4;
1972 	write_c0_depc(depc);
1973 
1974 #if 0
1975 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1976 	write_c0_debug(debug | 0x100);
1977 #endif
1978 }
1979 
1980 /*
1981  * NMI exception handler.
1982  * No lock; only written during early bootup by CPU 0.
1983  */
1984 static RAW_NOTIFIER_HEAD(nmi_chain);
1985 
1986 int register_nmi_notifier(struct notifier_block *nb)
1987 {
1988 	return raw_notifier_chain_register(&nmi_chain, nb);
1989 }
1990 
1991 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1992 {
1993 	char str[100];
1994 
1995 	nmi_enter();
1996 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1997 	bust_spinlocks(1);
1998 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1999 		 smp_processor_id(), regs->cp0_epc);
2000 	regs->cp0_epc = read_c0_errorepc();
2001 	die(str, regs);
2002 	nmi_exit();
2003 }
2004 
2005 unsigned long ebase;
2006 EXPORT_SYMBOL_GPL(ebase);
2007 unsigned long exception_handlers[32];
2008 unsigned long vi_handlers[64];
2009 
2010 void reserve_exception_space(phys_addr_t addr, unsigned long size)
2011 {
2012 	/*
2013 	 * reserve exception space on CPUs other than CPU0
2014 	 * is too late, since memblock is unavailable when APs
2015 	 * up
2016 	 */
2017 	if (smp_processor_id() == 0)
2018 		memblock_reserve(addr, size);
2019 }
2020 
2021 void __init *set_except_vector(int n, void *addr)
2022 {
2023 	unsigned long handler = (unsigned long) addr;
2024 	unsigned long old_handler;
2025 
2026 #ifdef CONFIG_CPU_MICROMIPS
2027 	/*
2028 	 * Only the TLB handlers are cache aligned with an even
2029 	 * address. All other handlers are on an odd address and
2030 	 * require no modification. Otherwise, MIPS32 mode will
2031 	 * be entered when handling any TLB exceptions. That
2032 	 * would be bad...since we must stay in microMIPS mode.
2033 	 */
2034 	if (!(handler & 0x1))
2035 		handler |= 1;
2036 #endif
2037 	old_handler = xchg(&exception_handlers[n], handler);
2038 
2039 	if (n == 0 && cpu_has_divec) {
2040 #ifdef CONFIG_CPU_MICROMIPS
2041 		unsigned long jump_mask = ~((1 << 27) - 1);
2042 #else
2043 		unsigned long jump_mask = ~((1 << 28) - 1);
2044 #endif
2045 		u32 *buf = (u32 *)(ebase + 0x200);
2046 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2047 			uasm_i_j(&buf, handler & ~jump_mask);
2048 			uasm_i_nop(&buf);
2049 		} else {
2050 			UASM_i_LA(&buf, GPR_K0, handler);
2051 			uasm_i_jr(&buf, GPR_K0);
2052 			uasm_i_nop(&buf);
2053 		}
2054 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2055 	}
2056 	return (void *)old_handler;
2057 }
2058 
2059 static void do_default_vi(void)
2060 {
2061 	show_regs(get_irq_regs());
2062 	panic("Caught unexpected vectored interrupt.");
2063 }
2064 
2065 void *set_vi_handler(int n, vi_handler_t addr)
2066 {
2067 	extern const u8 except_vec_vi[];
2068 	extern const u8 except_vec_vi_ori[], except_vec_vi_end[];
2069 	extern const u8 rollback_except_vec_vi[];
2070 	unsigned long handler;
2071 	unsigned long old_handler = vi_handlers[n];
2072 	int srssets = current_cpu_data.srsets;
2073 	u16 *h;
2074 	unsigned char *b;
2075 	const u8 *vec_start;
2076 	int ori_offset;
2077 	int handler_len;
2078 
2079 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
2080 
2081 	if (addr == NULL) {
2082 		handler = (unsigned long) do_default_vi;
2083 	} else
2084 		handler = (unsigned long) addr;
2085 	vi_handlers[n] = handler;
2086 
2087 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2088 
2089 	if (cpu_has_veic) {
2090 		if (board_bind_eic_interrupt)
2091 			board_bind_eic_interrupt(n, 0);
2092 	} else if (cpu_has_vint) {
2093 		/* SRSMap is only defined if shadow sets are implemented */
2094 		if (srssets > 1)
2095 			change_c0_srsmap(0xf << n*4, 0 << n*4);
2096 	}
2097 
2098 	vec_start = using_rollback_handler() ? rollback_except_vec_vi :
2099 					       except_vec_vi;
2100 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2101 	ori_offset = except_vec_vi_ori - vec_start + 2;
2102 #else
2103 	ori_offset = except_vec_vi_ori - vec_start;
2104 #endif
2105 	handler_len = except_vec_vi_end - vec_start;
2106 
2107 	if (handler_len > VECTORSPACING) {
2108 		/*
2109 		 * Sigh... panicing won't help as the console
2110 		 * is probably not configured :(
2111 		 */
2112 		panic("VECTORSPACING too small");
2113 	}
2114 
2115 	set_handler(((unsigned long)b - ebase), vec_start,
2116 #ifdef CONFIG_CPU_MICROMIPS
2117 			(handler_len - 1));
2118 #else
2119 			handler_len);
2120 #endif
2121 	/* insert offset into vi_handlers[] */
2122 	h = (u16 *)(b + ori_offset);
2123 	*h = n * sizeof(handler);
2124 	local_flush_icache_range((unsigned long)b,
2125 				 (unsigned long)(b+handler_len));
2126 
2127 	return (void *)old_handler;
2128 }
2129 
2130 /*
2131  * Timer interrupt
2132  */
2133 int cp0_compare_irq;
2134 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2135 int cp0_compare_irq_shift;
2136 
2137 /*
2138  * Performance counter IRQ or -1 if shared with timer
2139  */
2140 int cp0_perfcount_irq;
2141 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2142 
2143 /*
2144  * Fast debug channel IRQ or -1 if not present
2145  */
2146 int cp0_fdc_irq;
2147 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2148 
2149 static int noulri;
2150 
2151 static int __init ulri_disable(char *s)
2152 {
2153 	pr_info("Disabling ulri\n");
2154 	noulri = 1;
2155 
2156 	return 1;
2157 }
2158 __setup("noulri", ulri_disable);
2159 
2160 /* configure STATUS register */
2161 static void configure_status(void)
2162 {
2163 	/*
2164 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2165 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2166 	 * flag that some firmware may have left set and the TS bit (for
2167 	 * IP27).  Set XX for ISA IV code to work.
2168 	 */
2169 	unsigned int status_set = ST0_KERNEL_CUMASK;
2170 #ifdef CONFIG_64BIT
2171 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2172 #endif
2173 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2174 		status_set |= ST0_XX;
2175 	if (cpu_has_dsp)
2176 		status_set |= ST0_MX;
2177 
2178 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2179 			 status_set);
2180 	back_to_back_c0_hazard();
2181 }
2182 
2183 unsigned int hwrena;
2184 EXPORT_SYMBOL_GPL(hwrena);
2185 
2186 /* configure HWRENA register */
2187 static void configure_hwrena(void)
2188 {
2189 	hwrena = cpu_hwrena_impl_bits;
2190 
2191 	if (cpu_has_mips_r2_r6)
2192 		hwrena |= MIPS_HWRENA_CPUNUM |
2193 			  MIPS_HWRENA_SYNCISTEP |
2194 			  MIPS_HWRENA_CC |
2195 			  MIPS_HWRENA_CCRES;
2196 
2197 	if (!noulri && cpu_has_userlocal)
2198 		hwrena |= MIPS_HWRENA_ULR;
2199 
2200 	if (hwrena)
2201 		write_c0_hwrena(hwrena);
2202 }
2203 
2204 static void configure_exception_vector(void)
2205 {
2206 	if (cpu_has_mips_r2_r6) {
2207 		unsigned long sr = set_c0_status(ST0_BEV);
2208 		/* If available, use WG to set top bits of EBASE */
2209 		if (cpu_has_ebase_wg) {
2210 #ifdef CONFIG_64BIT
2211 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2212 #else
2213 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2214 #endif
2215 		}
2216 		write_c0_ebase(ebase);
2217 		write_c0_status(sr);
2218 	}
2219 	if (cpu_has_veic || cpu_has_vint) {
2220 		/* Setting vector spacing enables EI/VI mode  */
2221 		change_c0_intctl(0x3e0, VECTORSPACING);
2222 	}
2223 	if (cpu_has_divec) {
2224 		if (cpu_has_mipsmt) {
2225 			unsigned int vpflags = dvpe();
2226 			set_c0_cause(CAUSEF_IV);
2227 			evpe(vpflags);
2228 		} else
2229 			set_c0_cause(CAUSEF_IV);
2230 	}
2231 }
2232 
2233 void per_cpu_trap_init(bool is_boot_cpu)
2234 {
2235 	unsigned int cpu = smp_processor_id();
2236 
2237 	configure_status();
2238 	configure_hwrena();
2239 
2240 	configure_exception_vector();
2241 
2242 	/*
2243 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2244 	 *
2245 	 *  o read IntCtl.IPTI to determine the timer interrupt
2246 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2247 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2248 	 */
2249 	if (cpu_has_mips_r2_r6) {
2250 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2251 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2252 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2253 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2254 		if (!cp0_fdc_irq)
2255 			cp0_fdc_irq = -1;
2256 
2257 	} else {
2258 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2259 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2260 		cp0_perfcount_irq = -1;
2261 		cp0_fdc_irq = -1;
2262 	}
2263 
2264 	if (cpu_has_mmid)
2265 		cpu_data[cpu].asid_cache = 0;
2266 	else if (!cpu_data[cpu].asid_cache)
2267 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2268 
2269 	mmgrab(&init_mm);
2270 	current->active_mm = &init_mm;
2271 	BUG_ON(current->mm);
2272 	enter_lazy_tlb(&init_mm, current);
2273 
2274 	/* Boot CPU's cache setup in setup_arch(). */
2275 	if (!is_boot_cpu)
2276 		cpu_cache_init();
2277 	tlb_init();
2278 	TLBMISS_HANDLER_SETUP();
2279 }
2280 
2281 /* Install CPU exception handler */
2282 void set_handler(unsigned long offset, const void *addr, unsigned long size)
2283 {
2284 #ifdef CONFIG_CPU_MICROMIPS
2285 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2286 #else
2287 	memcpy((void *)(ebase + offset), addr, size);
2288 #endif
2289 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2290 }
2291 
2292 static const char panic_null_cerr[] =
2293 	"Trying to set NULL cache error exception handler\n";
2294 
2295 /*
2296  * Install uncached CPU exception handler.
2297  * This is suitable only for the cache error exception which is the only
2298  * exception handler that is being run uncached.
2299  */
2300 void set_uncached_handler(unsigned long offset, void *addr,
2301 	unsigned long size)
2302 {
2303 	unsigned long uncached_ebase = CKSEG1ADDR_OR_64BIT(__pa(ebase));
2304 
2305 	if (!addr)
2306 		panic(panic_null_cerr);
2307 
2308 	memcpy((void *)(uncached_ebase + offset), addr, size);
2309 }
2310 
2311 static int __initdata rdhwr_noopt;
2312 static int __init set_rdhwr_noopt(char *str)
2313 {
2314 	rdhwr_noopt = 1;
2315 	return 1;
2316 }
2317 
2318 __setup("rdhwr_noopt", set_rdhwr_noopt);
2319 
2320 void __init trap_init(void)
2321 {
2322 	extern char except_vec3_generic;
2323 	extern char except_vec4;
2324 	extern char except_vec3_r4000;
2325 	unsigned long i, vec_size;
2326 	phys_addr_t ebase_pa;
2327 
2328 	check_wait();
2329 
2330 	if (!cpu_has_mips_r2_r6) {
2331 		ebase = CAC_BASE;
2332 		vec_size = 0x400;
2333 	} else {
2334 		if (cpu_has_veic || cpu_has_vint)
2335 			vec_size = 0x200 + VECTORSPACING*64;
2336 		else
2337 			vec_size = PAGE_SIZE;
2338 
2339 		ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2340 		if (!ebase_pa)
2341 			panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2342 			      __func__, vec_size, 1 << fls(vec_size));
2343 
2344 		/*
2345 		 * Try to ensure ebase resides in KSeg0 if possible.
2346 		 *
2347 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2348 		 * hitting a poorly defined exception base for Cache Errors.
2349 		 * The allocation is likely to be in the low 512MB of physical,
2350 		 * in which case we should be able to convert to KSeg0.
2351 		 *
2352 		 * EVA is special though as it allows segments to be rearranged
2353 		 * and to become uncached during cache error handling.
2354 		 */
2355 		if (!IS_ENABLED(CONFIG_EVA) && ebase_pa < 0x20000000)
2356 			ebase = CKSEG0ADDR(ebase_pa);
2357 		else
2358 			ebase = (unsigned long)phys_to_virt(ebase_pa);
2359 		if (ebase_pa >= 0x20000000)
2360 			pr_warn("ebase(%pa) should better be in KSeg0",
2361 				&ebase_pa);
2362 	}
2363 
2364 	if (cpu_has_mmips) {
2365 		unsigned int config3 = read_c0_config3();
2366 
2367 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2368 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2369 		else
2370 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2371 	}
2372 
2373 	if (board_ebase_setup)
2374 		board_ebase_setup();
2375 	per_cpu_trap_init(true);
2376 	memblock_set_bottom_up(false);
2377 
2378 	/*
2379 	 * Copy the generic exception handlers to their final destination.
2380 	 * This will be overridden later as suitable for a particular
2381 	 * configuration.
2382 	 */
2383 	set_handler(0x180, &except_vec3_generic, 0x80);
2384 
2385 	/*
2386 	 * Setup default vectors
2387 	 */
2388 	for (i = 0; i <= 31; i++)
2389 		set_except_vector(i, handle_reserved);
2390 
2391 	/*
2392 	 * Copy the EJTAG debug exception vector handler code to its final
2393 	 * destination.
2394 	 */
2395 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2396 		board_ejtag_handler_setup();
2397 
2398 	/*
2399 	 * Only some CPUs have the watch exceptions.
2400 	 */
2401 	if (cpu_has_watch)
2402 		set_except_vector(EXCCODE_WATCH, handle_watch);
2403 
2404 	/*
2405 	 * Initialise interrupt handlers
2406 	 */
2407 	if (cpu_has_veic || cpu_has_vint) {
2408 		int nvec = cpu_has_veic ? 64 : 8;
2409 		for (i = 0; i < nvec; i++)
2410 			set_vi_handler(i, NULL);
2411 	}
2412 	else if (cpu_has_divec)
2413 		set_handler(0x200, &except_vec4, 0x8);
2414 
2415 	/*
2416 	 * Some CPUs can enable/disable for cache parity detection, but does
2417 	 * it different ways.
2418 	 */
2419 	parity_protection_init();
2420 
2421 	/*
2422 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2423 	 * by external hardware.  Therefore these two exceptions
2424 	 * may have board specific handlers.
2425 	 */
2426 	if (board_be_init)
2427 		board_be_init();
2428 
2429 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2430 					rollback_handle_int : handle_int);
2431 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2432 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2433 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2434 
2435 	set_except_vector(EXCCODE_ADEL, handle_adel);
2436 	set_except_vector(EXCCODE_ADES, handle_ades);
2437 
2438 	set_except_vector(EXCCODE_IBE, handle_ibe);
2439 	set_except_vector(EXCCODE_DBE, handle_dbe);
2440 
2441 	set_except_vector(EXCCODE_SYS, handle_sys);
2442 	set_except_vector(EXCCODE_BP, handle_bp);
2443 
2444 	if (rdhwr_noopt)
2445 		set_except_vector(EXCCODE_RI, handle_ri);
2446 	else {
2447 		if (cpu_has_vtag_icache)
2448 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2449 		else if (current_cpu_type() == CPU_LOONGSON64)
2450 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2451 		else
2452 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2453 	}
2454 
2455 	set_except_vector(EXCCODE_CPU, handle_cpu);
2456 	set_except_vector(EXCCODE_OV, handle_ov);
2457 	set_except_vector(EXCCODE_TR, handle_tr);
2458 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2459 
2460 	if (board_nmi_handler_setup)
2461 		board_nmi_handler_setup();
2462 
2463 	if (cpu_has_fpu && !cpu_has_nofpuex)
2464 		set_except_vector(EXCCODE_FPE, handle_fpe);
2465 
2466 	if (cpu_has_ftlbparex)
2467 		set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2468 
2469 	if (cpu_has_gsexcex)
2470 		set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2471 
2472 	if (cpu_has_rixiex) {
2473 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2474 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2475 	}
2476 
2477 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2478 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2479 
2480 	if (cpu_has_mcheck)
2481 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2482 
2483 	if (cpu_has_mipsmt)
2484 		set_except_vector(EXCCODE_THREAD, handle_mt);
2485 
2486 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2487 
2488 	if (board_cache_error_setup)
2489 		board_cache_error_setup();
2490 
2491 	if (cpu_has_vce)
2492 		/* Special exception: R4[04]00 uses also the divec space. */
2493 		set_handler(0x180, &except_vec3_r4000, 0x100);
2494 	else if (cpu_has_4kex)
2495 		set_handler(0x180, &except_vec3_generic, 0x80);
2496 	else
2497 		set_handler(0x080, &except_vec3_generic, 0x80);
2498 
2499 	local_flush_icache_range(ebase, ebase + vec_size);
2500 
2501 	sort_extable(__start___dbe_table, __stop___dbe_table);
2502 
2503 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2504 }
2505 
2506 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2507 			    void *v)
2508 {
2509 	switch (cmd) {
2510 	case CPU_PM_ENTER_FAILED:
2511 	case CPU_PM_EXIT:
2512 		configure_status();
2513 		configure_hwrena();
2514 		configure_exception_vector();
2515 
2516 		/* Restore register with CPU number for TLB handlers */
2517 		TLBMISS_HANDLER_RESTORE();
2518 
2519 		break;
2520 	}
2521 
2522 	return NOTIFY_OK;
2523 }
2524 
2525 static struct notifier_block trap_pm_notifier_block = {
2526 	.notifier_call = trap_pm_notifier,
2527 };
2528 
2529 static int __init trap_pm_init(void)
2530 {
2531 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2532 }
2533 arch_initcall(trap_pm_init);
2534