xref: /linux/drivers/mmc/core/block.c (revision dd463c51a327d341d3ece63dd50e1a0f8f09c468)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block driver for media (i.e., flash cards)
4  *
5  * Copyright 2002 Hewlett-Packard Company
6  * Copyright 2005-2008 Pierre Ossman
7  *
8  * Use consistent with the GNU GPL is permitted,
9  * provided that this copyright notice is
10  * preserved in its entirety in all copies and derived works.
11  *
12  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14  * FITNESS FOR ANY PARTICULAR PURPOSE.
15  *
16  * Many thanks to Alessandro Rubini and Jonathan Corbet!
17  *
18  * Author:  Andrew Christian
19  *          28 May 2002
20  */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string.h>
37 #include <linux/string_helpers.h>
38 #include <linux/delay.h>
39 #include <linux/capability.h>
40 #include <linux/compat.h>
41 #include <linux/pm_runtime.h>
42 #include <linux/idr.h>
43 #include <linux/debugfs.h>
44 #include <linux/rpmb.h>
45 
46 #include <linux/mmc/ioctl.h>
47 #include <linux/mmc/card.h>
48 #include <linux/mmc/host.h>
49 #include <linux/mmc/mmc.h>
50 #include <linux/mmc/sd.h>
51 
52 #include <linux/uaccess.h>
53 #include <linux/unaligned.h>
54 
55 #include "queue.h"
56 #include "block.h"
57 #include "core.h"
58 #include "card.h"
59 #include "crypto.h"
60 #include "host.h"
61 #include "bus.h"
62 #include "mmc_ops.h"
63 #include "quirks.h"
64 #include "sd_ops.h"
65 
66 MODULE_ALIAS("mmc:block");
67 #ifdef MODULE_PARAM_PREFIX
68 #undef MODULE_PARAM_PREFIX
69 #endif
70 #define MODULE_PARAM_PREFIX "mmcblk."
71 
72 /*
73  * Set a 10 second timeout for polling write request busy state. Note, mmc core
74  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
75  * second software timer to timeout the whole request, so 10 seconds should be
76  * ample.
77  */
78 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
79 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
80 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
81 
82 #define RPMB_FRAME_SIZE        sizeof(struct rpmb_frame)
83 #define CHECK_SIZE_NEQ(val) ((val) != sizeof(struct rpmb_frame))
84 #define CHECK_SIZE_ALIGNED(val) IS_ALIGNED((val), sizeof(struct rpmb_frame))
85 
86 static DEFINE_MUTEX(block_mutex);
87 
88 /*
89  * The defaults come from config options but can be overriden by module
90  * or bootarg options.
91  */
92 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
93 
94 /*
95  * We've only got one major, so number of mmcblk devices is
96  * limited to (1 << 20) / number of minors per device.  It is also
97  * limited by the MAX_DEVICES below.
98  */
99 static int max_devices;
100 
101 #define MAX_DEVICES 256
102 
103 static DEFINE_IDA(mmc_blk_ida);
104 static DEFINE_IDA(mmc_rpmb_ida);
105 
106 struct mmc_blk_busy_data {
107 	struct mmc_card *card;
108 	u32 status;
109 };
110 
111 /*
112  * There is one mmc_blk_data per slot.
113  */
114 struct mmc_blk_data {
115 	struct device	*parent;
116 	struct gendisk	*disk;
117 	struct mmc_queue queue;
118 	struct list_head part;
119 	struct list_head rpmbs;
120 
121 	unsigned int	flags;
122 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
123 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
124 
125 	struct kref	kref;
126 	unsigned int	read_only;
127 	unsigned int	part_type;
128 	unsigned int	reset_done;
129 #define MMC_BLK_READ		BIT(0)
130 #define MMC_BLK_WRITE		BIT(1)
131 #define MMC_BLK_DISCARD		BIT(2)
132 #define MMC_BLK_SECDISCARD	BIT(3)
133 #define MMC_BLK_CQE_RECOVERY	BIT(4)
134 #define MMC_BLK_TRIM		BIT(5)
135 
136 	/*
137 	 * Only set in main mmc_blk_data associated
138 	 * with mmc_card with dev_set_drvdata, and keeps
139 	 * track of the current selected device partition.
140 	 */
141 	unsigned int	part_curr;
142 #define MMC_BLK_PART_INVALID	UINT_MAX	/* Unknown partition active */
143 	int	area_type;
144 
145 	/* debugfs files (only in main mmc_blk_data) */
146 	struct dentry *status_dentry;
147 	struct dentry *ext_csd_dentry;
148 };
149 
150 /* Device type for RPMB character devices */
151 static dev_t mmc_rpmb_devt;
152 
153 /* Bus type for RPMB character devices */
154 static const struct bus_type mmc_rpmb_bus_type = {
155 	.name = "mmc_rpmb",
156 };
157 
158 /**
159  * struct mmc_rpmb_data - special RPMB device type for these areas
160  * @dev: the device for the RPMB area
161  * @chrdev: character device for the RPMB area
162  * @id: unique device ID number
163  * @part_index: partition index (0 on first)
164  * @md: parent MMC block device
165  * @rdev: registered RPMB device
166  * @node: list item, so we can put this device on a list
167  */
168 struct mmc_rpmb_data {
169 	struct device dev;
170 	struct cdev chrdev;
171 	int id;
172 	unsigned int part_index;
173 	struct mmc_blk_data *md;
174 	struct rpmb_dev *rdev;
175 	struct list_head node;
176 };
177 
178 static DEFINE_MUTEX(open_lock);
179 
180 module_param(perdev_minors, int, 0444);
181 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
182 
183 static inline int mmc_blk_part_switch(struct mmc_card *card,
184 				      unsigned int part_type);
185 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
186 			       struct mmc_card *card,
187 			       int recovery_mode,
188 			       struct mmc_queue *mq);
189 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
190 static int mmc_spi_err_check(struct mmc_card *card);
191 static int mmc_blk_busy_cb(void *cb_data, bool *busy);
192 
193 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
194 {
195 	struct mmc_blk_data *md;
196 
197 	mutex_lock(&open_lock);
198 	md = disk->private_data;
199 	if (md && !kref_get_unless_zero(&md->kref))
200 		md = NULL;
201 	mutex_unlock(&open_lock);
202 
203 	return md;
204 }
205 
206 static inline int mmc_get_devidx(struct gendisk *disk)
207 {
208 	int devidx = disk->first_minor / perdev_minors;
209 	return devidx;
210 }
211 
212 static void mmc_blk_kref_release(struct kref *ref)
213 {
214 	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
215 	int devidx;
216 
217 	devidx = mmc_get_devidx(md->disk);
218 	ida_free(&mmc_blk_ida, devidx);
219 
220 	mutex_lock(&open_lock);
221 	md->disk->private_data = NULL;
222 	mutex_unlock(&open_lock);
223 
224 	put_disk(md->disk);
225 	kfree(md);
226 }
227 
228 static void mmc_blk_put(struct mmc_blk_data *md)
229 {
230 	kref_put(&md->kref, mmc_blk_kref_release);
231 }
232 
233 static ssize_t power_ro_lock_show(struct device *dev,
234 		struct device_attribute *attr, char *buf)
235 {
236 	int ret;
237 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
238 	struct mmc_card *card = md->queue.card;
239 	int locked = 0;
240 
241 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
242 		locked = 2;
243 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
244 		locked = 1;
245 
246 	ret = sysfs_emit(buf, "%d\n", locked);
247 
248 	mmc_blk_put(md);
249 
250 	return ret;
251 }
252 
253 static ssize_t power_ro_lock_store(struct device *dev,
254 		struct device_attribute *attr, const char *buf, size_t count)
255 {
256 	int ret;
257 	struct mmc_blk_data *md, *part_md;
258 	struct mmc_queue *mq;
259 	struct request *req;
260 	unsigned long set;
261 
262 	if (kstrtoul(buf, 0, &set))
263 		return -EINVAL;
264 
265 	if (set != 1)
266 		return count;
267 
268 	md = mmc_blk_get(dev_to_disk(dev));
269 	mq = &md->queue;
270 
271 	/* Dispatch locking to the block layer */
272 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
273 	if (IS_ERR(req)) {
274 		count = PTR_ERR(req);
275 		goto out_put;
276 	}
277 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
278 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
279 	blk_execute_rq(req, false);
280 	ret = req_to_mmc_queue_req(req)->drv_op_result;
281 	blk_mq_free_request(req);
282 
283 	if (!ret) {
284 		pr_info("%s: Locking boot partition ro until next power on\n",
285 			md->disk->disk_name);
286 		set_disk_ro(md->disk, 1);
287 
288 		list_for_each_entry(part_md, &md->part, part)
289 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
290 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
291 				set_disk_ro(part_md->disk, 1);
292 			}
293 	}
294 out_put:
295 	mmc_blk_put(md);
296 	return count;
297 }
298 
299 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
300 		power_ro_lock_show, power_ro_lock_store);
301 
302 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
303 			     char *buf)
304 {
305 	int ret;
306 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
307 
308 	ret = sysfs_emit(buf, "%d\n",
309 			 get_disk_ro(dev_to_disk(dev)) ^
310 			 md->read_only);
311 	mmc_blk_put(md);
312 	return ret;
313 }
314 
315 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
316 			      const char *buf, size_t count)
317 {
318 	int ret;
319 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
320 	unsigned long set;
321 
322 	if (kstrtoul(buf, 0, &set)) {
323 		ret = -EINVAL;
324 		goto out;
325 	}
326 
327 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
328 	ret = count;
329 out:
330 	mmc_blk_put(md);
331 	return ret;
332 }
333 
334 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
335 
336 static struct attribute *mmc_disk_attrs[] = {
337 	&dev_attr_force_ro.attr,
338 	&dev_attr_ro_lock_until_next_power_on.attr,
339 	NULL,
340 };
341 
342 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
343 		struct attribute *a, int n)
344 {
345 	struct device *dev = kobj_to_dev(kobj);
346 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
347 	umode_t mode = a->mode;
348 
349 	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
350 	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
351 	    md->queue.card->ext_csd.boot_ro_lockable) {
352 		mode = 0444;
353 		if (!(md->queue.card->ext_csd.boot_ro_lock &
354 				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
355 			mode |= 0200;
356 	}
357 
358 	mmc_blk_put(md);
359 	return mode;
360 }
361 
362 static const struct attribute_group mmc_disk_attr_group = {
363 	.is_visible	= mmc_disk_attrs_is_visible,
364 	.attrs		= mmc_disk_attrs,
365 };
366 
367 static const struct attribute_group *mmc_disk_attr_groups[] = {
368 	&mmc_disk_attr_group,
369 	NULL,
370 };
371 
372 static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
373 {
374 	struct mmc_blk_data *md = mmc_blk_get(disk);
375 	int ret = -ENXIO;
376 
377 	mutex_lock(&block_mutex);
378 	if (md) {
379 		ret = 0;
380 		if ((mode & BLK_OPEN_WRITE) && md->read_only) {
381 			mmc_blk_put(md);
382 			ret = -EROFS;
383 		}
384 	}
385 	mutex_unlock(&block_mutex);
386 
387 	return ret;
388 }
389 
390 static void mmc_blk_release(struct gendisk *disk)
391 {
392 	struct mmc_blk_data *md = disk->private_data;
393 
394 	mutex_lock(&block_mutex);
395 	mmc_blk_put(md);
396 	mutex_unlock(&block_mutex);
397 }
398 
399 static int
400 mmc_blk_getgeo(struct gendisk *disk, struct hd_geometry *geo)
401 {
402 	geo->cylinders = get_capacity(disk) / (4 * 16);
403 	geo->heads = 4;
404 	geo->sectors = 16;
405 	return 0;
406 }
407 
408 struct mmc_blk_ioc_data {
409 	struct mmc_ioc_cmd ic;
410 	unsigned char *buf;
411 	u64 buf_bytes;
412 	unsigned int flags;
413 #define MMC_BLK_IOC_DROP	BIT(0)	/* drop this mrq */
414 #define MMC_BLK_IOC_SBC	BIT(1)	/* use mrq.sbc */
415 
416 	struct mmc_rpmb_data *rpmb;
417 };
418 
419 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
420 	struct mmc_ioc_cmd __user *user)
421 {
422 	struct mmc_blk_ioc_data *idata;
423 	int err;
424 
425 	idata = kzalloc(sizeof(*idata), GFP_KERNEL);
426 	if (!idata) {
427 		err = -ENOMEM;
428 		goto out;
429 	}
430 
431 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
432 		err = -EFAULT;
433 		goto idata_err;
434 	}
435 
436 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
437 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
438 		err = -EOVERFLOW;
439 		goto idata_err;
440 	}
441 
442 	if (!idata->buf_bytes) {
443 		idata->buf = NULL;
444 		return idata;
445 	}
446 
447 	idata->buf = memdup_user((void __user *)(unsigned long)
448 				 idata->ic.data_ptr, idata->buf_bytes);
449 	if (IS_ERR(idata->buf)) {
450 		err = PTR_ERR(idata->buf);
451 		goto idata_err;
452 	}
453 
454 	return idata;
455 
456 idata_err:
457 	kfree(idata);
458 out:
459 	return ERR_PTR(err);
460 }
461 
462 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
463 				      struct mmc_blk_ioc_data *idata)
464 {
465 	struct mmc_ioc_cmd *ic = &idata->ic;
466 
467 	if (copy_to_user(&(ic_ptr->response), ic->response,
468 			 sizeof(ic->response)))
469 		return -EFAULT;
470 
471 	if (!idata->ic.write_flag) {
472 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
473 				 idata->buf, idata->buf_bytes))
474 			return -EFAULT;
475 	}
476 
477 	return 0;
478 }
479 
480 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
481 			       struct mmc_blk_ioc_data **idatas, int i)
482 {
483 	struct mmc_command cmd = {}, sbc = {};
484 	struct mmc_data data = {};
485 	struct mmc_request mrq = {};
486 	struct scatterlist sg;
487 	bool r1b_resp;
488 	unsigned int busy_timeout_ms;
489 	int err;
490 	unsigned int target_part;
491 	struct mmc_blk_ioc_data *idata = idatas[i];
492 	struct mmc_blk_ioc_data *prev_idata = NULL;
493 
494 	if (!card || !md || !idata)
495 		return -EINVAL;
496 
497 	if (idata->flags & MMC_BLK_IOC_DROP)
498 		return 0;
499 
500 	if (idata->flags & MMC_BLK_IOC_SBC && i > 0)
501 		prev_idata = idatas[i - 1];
502 
503 	/*
504 	 * The RPMB accesses comes in from the character device, so we
505 	 * need to target these explicitly. Else we just target the
506 	 * partition type for the block device the ioctl() was issued
507 	 * on.
508 	 */
509 	if (idata->rpmb) {
510 		/* Support multiple RPMB partitions */
511 		target_part = idata->rpmb->part_index;
512 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
513 	} else {
514 		target_part = md->part_type;
515 	}
516 
517 	cmd.opcode = idata->ic.opcode;
518 	cmd.arg = idata->ic.arg;
519 	cmd.flags = idata->ic.flags;
520 
521 	if (idata->buf_bytes) {
522 		data.sg = &sg;
523 		data.sg_len = 1;
524 		data.blksz = idata->ic.blksz;
525 		data.blocks = idata->ic.blocks;
526 
527 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
528 
529 		if (idata->ic.write_flag)
530 			data.flags = MMC_DATA_WRITE;
531 		else
532 			data.flags = MMC_DATA_READ;
533 
534 		/* data.flags must already be set before doing this. */
535 		mmc_set_data_timeout(&data, card);
536 
537 		/* Allow overriding the timeout_ns for empirical tuning. */
538 		if (idata->ic.data_timeout_ns)
539 			data.timeout_ns = idata->ic.data_timeout_ns;
540 
541 		mrq.data = &data;
542 	}
543 
544 	mrq.cmd = &cmd;
545 
546 	err = mmc_blk_part_switch(card, target_part);
547 	if (err)
548 		return err;
549 
550 	if (idata->ic.is_acmd) {
551 		err = mmc_app_cmd(card->host, card);
552 		if (err)
553 			return err;
554 	}
555 
556 	if (idata->rpmb || prev_idata) {
557 		sbc.opcode = MMC_SET_BLOCK_COUNT;
558 		/*
559 		 * We don't do any blockcount validation because the max size
560 		 * may be increased by a future standard. We just copy the
561 		 * 'Reliable Write' bit here.
562 		 */
563 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
564 		if (prev_idata)
565 			sbc.arg = prev_idata->ic.arg;
566 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
567 		mrq.sbc = &sbc;
568 	}
569 
570 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
571 	    (cmd.opcode == MMC_SWITCH))
572 		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
573 
574 	/* If it's an R1B response we need some more preparations. */
575 	busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
576 	r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
577 	if (r1b_resp)
578 		mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms);
579 
580 	mmc_wait_for_req(card->host, &mrq);
581 	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
582 
583 	if (prev_idata) {
584 		memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
585 		if (sbc.error) {
586 			dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
587 							__func__, sbc.error);
588 			return sbc.error;
589 		}
590 	}
591 
592 	if (cmd.error) {
593 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
594 						__func__, cmd.error);
595 		return cmd.error;
596 	}
597 	if (data.error) {
598 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
599 						__func__, data.error);
600 		return data.error;
601 	}
602 
603 	/*
604 	 * Make sure the cache of the PARTITION_CONFIG register and
605 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
606 	 * changed it successfully.
607 	 */
608 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
609 	    (cmd.opcode == MMC_SWITCH)) {
610 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
611 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
612 
613 		/*
614 		 * Update cache so the next mmc_blk_part_switch call operates
615 		 * on up-to-date data.
616 		 */
617 		card->ext_csd.part_config = value;
618 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
619 	}
620 
621 	/*
622 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
623 	 * will get turned back on if the card is re-initialized, e.g.
624 	 * suspend/resume or hw reset in recovery.
625 	 */
626 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
627 	    (cmd.opcode == MMC_SWITCH)) {
628 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
629 
630 		card->ext_csd.cache_ctrl = value;
631 	}
632 
633 	/*
634 	 * According to the SD specs, some commands require a delay after
635 	 * issuing the command.
636 	 */
637 	if (idata->ic.postsleep_min_us)
638 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
639 
640 	if (mmc_host_is_spi(card->host)) {
641 		if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
642 			return mmc_spi_err_check(card);
643 		return err;
644 	}
645 
646 	/*
647 	 * Ensure RPMB, writes and R1B responses are completed by polling with
648 	 * CMD13. Note that, usually we don't need to poll when using HW busy
649 	 * detection, but here it's needed since some commands may indicate the
650 	 * error through the R1 status bits.
651 	 */
652 	if (idata->rpmb || idata->ic.write_flag || r1b_resp) {
653 		struct mmc_blk_busy_data cb_data = {
654 			.card = card,
655 		};
656 
657 		err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms,
658 					  &mmc_blk_busy_cb, &cb_data);
659 
660 		idata->ic.response[0] = cb_data.status;
661 	}
662 
663 	return err;
664 }
665 
666 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
667 			     struct mmc_ioc_cmd __user *ic_ptr,
668 			     struct mmc_rpmb_data *rpmb)
669 {
670 	struct mmc_blk_ioc_data *idata;
671 	struct mmc_blk_ioc_data *idatas[1];
672 	struct mmc_queue *mq;
673 	struct mmc_card *card;
674 	int err = 0, ioc_err = 0;
675 	struct request *req;
676 
677 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
678 	if (IS_ERR(idata))
679 		return PTR_ERR(idata);
680 	/* This will be NULL on non-RPMB ioctl():s */
681 	idata->rpmb = rpmb;
682 
683 	card = md->queue.card;
684 	if (IS_ERR(card)) {
685 		err = PTR_ERR(card);
686 		goto cmd_done;
687 	}
688 
689 	/*
690 	 * Dispatch the ioctl() into the block request queue.
691 	 */
692 	mq = &md->queue;
693 	req = blk_mq_alloc_request(mq->queue,
694 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
695 	if (IS_ERR(req)) {
696 		err = PTR_ERR(req);
697 		goto cmd_done;
698 	}
699 	idatas[0] = idata;
700 	req_to_mmc_queue_req(req)->drv_op =
701 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
702 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
703 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
704 	req_to_mmc_queue_req(req)->ioc_count = 1;
705 	blk_execute_rq(req, false);
706 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
707 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
708 	blk_mq_free_request(req);
709 
710 cmd_done:
711 	kfree(idata->buf);
712 	kfree(idata);
713 	return ioc_err ? ioc_err : err;
714 }
715 
716 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
717 				   struct mmc_ioc_multi_cmd __user *user,
718 				   struct mmc_rpmb_data *rpmb)
719 {
720 	struct mmc_blk_ioc_data **idata = NULL;
721 	struct mmc_ioc_cmd __user *cmds = user->cmds;
722 	struct mmc_card *card;
723 	struct mmc_queue *mq;
724 	int err = 0, ioc_err = 0;
725 	__u64 num_of_cmds;
726 	unsigned int i, n;
727 	struct request *req;
728 
729 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
730 			   sizeof(num_of_cmds)))
731 		return -EFAULT;
732 
733 	if (!num_of_cmds)
734 		return 0;
735 
736 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
737 		return -EINVAL;
738 
739 	n = num_of_cmds;
740 	idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
741 	if (!idata)
742 		return -ENOMEM;
743 
744 	for (i = 0; i < n; i++) {
745 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
746 		if (IS_ERR(idata[i])) {
747 			err = PTR_ERR(idata[i]);
748 			n = i;
749 			goto cmd_err;
750 		}
751 		/* This will be NULL on non-RPMB ioctl():s */
752 		idata[i]->rpmb = rpmb;
753 	}
754 
755 	card = md->queue.card;
756 	if (IS_ERR(card)) {
757 		err = PTR_ERR(card);
758 		goto cmd_err;
759 	}
760 
761 
762 	/*
763 	 * Dispatch the ioctl()s into the block request queue.
764 	 */
765 	mq = &md->queue;
766 	req = blk_mq_alloc_request(mq->queue,
767 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
768 	if (IS_ERR(req)) {
769 		err = PTR_ERR(req);
770 		goto cmd_err;
771 	}
772 	req_to_mmc_queue_req(req)->drv_op =
773 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
774 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
775 	req_to_mmc_queue_req(req)->drv_op_data = idata;
776 	req_to_mmc_queue_req(req)->ioc_count = n;
777 	blk_execute_rq(req, false);
778 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
779 
780 	/* copy to user if data and response */
781 	for (i = 0; i < n && !err; i++)
782 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
783 
784 	blk_mq_free_request(req);
785 
786 cmd_err:
787 	for (i = 0; i < n; i++) {
788 		kfree(idata[i]->buf);
789 		kfree(idata[i]);
790 	}
791 	kfree(idata);
792 	return ioc_err ? ioc_err : err;
793 }
794 
795 static int mmc_blk_check_blkdev(struct block_device *bdev)
796 {
797 	/*
798 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
799 	 * whole block device, not on a partition.  This prevents overspray
800 	 * between sibling partitions.
801 	 */
802 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
803 		return -EPERM;
804 	return 0;
805 }
806 
807 static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
808 	unsigned int cmd, unsigned long arg)
809 {
810 	struct mmc_blk_data *md;
811 	int ret;
812 
813 	switch (cmd) {
814 	case MMC_IOC_CMD:
815 		ret = mmc_blk_check_blkdev(bdev);
816 		if (ret)
817 			return ret;
818 		md = mmc_blk_get(bdev->bd_disk);
819 		if (!md)
820 			return -EINVAL;
821 		ret = mmc_blk_ioctl_cmd(md,
822 					(struct mmc_ioc_cmd __user *)arg,
823 					NULL);
824 		mmc_blk_put(md);
825 		return ret;
826 	case MMC_IOC_MULTI_CMD:
827 		ret = mmc_blk_check_blkdev(bdev);
828 		if (ret)
829 			return ret;
830 		md = mmc_blk_get(bdev->bd_disk);
831 		if (!md)
832 			return -EINVAL;
833 		ret = mmc_blk_ioctl_multi_cmd(md,
834 					(struct mmc_ioc_multi_cmd __user *)arg,
835 					NULL);
836 		mmc_blk_put(md);
837 		return ret;
838 	default:
839 		return -EINVAL;
840 	}
841 }
842 
843 #ifdef CONFIG_COMPAT
844 static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
845 	unsigned int cmd, unsigned long arg)
846 {
847 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
848 }
849 #endif
850 
851 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
852 					  sector_t *sector)
853 {
854 	struct mmc_blk_data *md;
855 	int ret;
856 
857 	md = mmc_blk_get(disk);
858 	if (!md)
859 		return -EINVAL;
860 
861 	if (md->queue.card)
862 		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
863 	else
864 		ret = -ENODEV;
865 
866 	mmc_blk_put(md);
867 
868 	return ret;
869 }
870 
871 static const struct block_device_operations mmc_bdops = {
872 	.open			= mmc_blk_open,
873 	.release		= mmc_blk_release,
874 	.getgeo			= mmc_blk_getgeo,
875 	.owner			= THIS_MODULE,
876 	.ioctl			= mmc_blk_ioctl,
877 #ifdef CONFIG_COMPAT
878 	.compat_ioctl		= mmc_blk_compat_ioctl,
879 #endif
880 	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
881 };
882 
883 static int mmc_blk_part_switch_pre(struct mmc_card *card,
884 				   unsigned int part_type)
885 {
886 	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
887 	const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
888 	int ret = 0;
889 
890 	if ((part_type & mask) == rpmb) {
891 		if (card->ext_csd.cmdq_en) {
892 			ret = mmc_cmdq_disable(card);
893 			if (ret)
894 				return ret;
895 		}
896 		mmc_retune_pause(card->host);
897 	}
898 
899 	return ret;
900 }
901 
902 static int mmc_blk_part_switch_post(struct mmc_card *card,
903 				    unsigned int part_type)
904 {
905 	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
906 	const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
907 	int ret = 0;
908 
909 	if ((part_type & mask) == rpmb) {
910 		mmc_retune_unpause(card->host);
911 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
912 			ret = mmc_cmdq_enable(card);
913 	}
914 
915 	return ret;
916 }
917 
918 static inline int mmc_blk_part_switch(struct mmc_card *card,
919 				      unsigned int part_type)
920 {
921 	int ret = 0;
922 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
923 
924 	if (main_md->part_curr == part_type)
925 		return 0;
926 
927 	if (mmc_card_mmc(card)) {
928 		u8 part_config = card->ext_csd.part_config;
929 
930 		ret = mmc_blk_part_switch_pre(card, part_type);
931 		if (ret)
932 			return ret;
933 
934 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
935 		part_config |= part_type;
936 
937 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
938 				 EXT_CSD_PART_CONFIG, part_config,
939 				 card->ext_csd.part_time);
940 		if (ret) {
941 			mmc_blk_part_switch_post(card, part_type);
942 			return ret;
943 		}
944 
945 		card->ext_csd.part_config = part_config;
946 
947 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
948 	}
949 
950 	main_md->part_curr = part_type;
951 	return ret;
952 }
953 
954 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
955 {
956 	int err;
957 	u32 result;
958 	__be32 *blocks;
959 	u8 resp_sz = mmc_card_ult_capacity(card) ? 8 : 4;
960 
961 	struct mmc_request mrq = {};
962 	struct mmc_command cmd = {};
963 	struct mmc_data data = {};
964 	struct scatterlist sg;
965 
966 	err = mmc_app_cmd(card->host, card);
967 	if (err)
968 		return err;
969 
970 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
971 	cmd.arg = 0;
972 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
973 
974 	data.blksz = resp_sz;
975 	data.blocks = 1;
976 	data.flags = MMC_DATA_READ;
977 	data.sg = &sg;
978 	data.sg_len = 1;
979 	mmc_set_data_timeout(&data, card);
980 
981 	mrq.cmd = &cmd;
982 	mrq.data = &data;
983 
984 	blocks = kmalloc(resp_sz, GFP_NOIO);
985 	if (!blocks)
986 		return -ENOMEM;
987 
988 	sg_init_one(&sg, blocks, resp_sz);
989 
990 	mmc_wait_for_req(card->host, &mrq);
991 
992 	if (mmc_card_ult_capacity(card)) {
993 		/*
994 		 * Normally, ACMD22 returns the number of written sectors as
995 		 * u32. SDUC, however, returns it as u64.  This is not a
996 		 * superfluous requirement, because SDUC writes may exceed 2TB.
997 		 * For Linux mmc however, the previously write operation could
998 		 * not be more than the block layer limits, thus just make room
999 		 * for a u64 and cast the response back to u32.
1000 		 */
1001 		result = clamp_val(get_unaligned_be64(blocks), 0, UINT_MAX);
1002 	} else {
1003 		result = ntohl(*blocks);
1004 	}
1005 	kfree(blocks);
1006 
1007 	if (cmd.error || data.error)
1008 		return -EIO;
1009 
1010 	*written_blocks = result;
1011 
1012 	return 0;
1013 }
1014 
1015 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
1016 {
1017 	if (host->actual_clock)
1018 		return host->actual_clock / 1000;
1019 
1020 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
1021 	if (host->ios.clock)
1022 		return host->ios.clock / 2000;
1023 
1024 	/* How can there be no clock */
1025 	WARN_ON_ONCE(1);
1026 	return 100; /* 100 kHz is minimum possible value */
1027 }
1028 
1029 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
1030 					    struct mmc_data *data)
1031 {
1032 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
1033 	unsigned int khz;
1034 
1035 	if (data->timeout_clks) {
1036 		khz = mmc_blk_clock_khz(host);
1037 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
1038 	}
1039 
1040 	return ms;
1041 }
1042 
1043 /*
1044  * Attempts to reset the card and get back to the requested partition.
1045  * Therefore any error here must result in cancelling the block layer
1046  * request, it must not be reattempted without going through the mmc_blk
1047  * partition sanity checks.
1048  */
1049 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1050 			 int type)
1051 {
1052 	int err;
1053 	struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1054 
1055 	if (md->reset_done & type)
1056 		return -EEXIST;
1057 
1058 	md->reset_done |= type;
1059 	err = mmc_hw_reset(host->card);
1060 	/*
1061 	 * A successful reset will leave the card in the main partition, but
1062 	 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1063 	 * in that case.
1064 	 */
1065 	main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1066 	if (err)
1067 		return err;
1068 	/* Ensure we switch back to the correct partition */
1069 	if (mmc_blk_part_switch(host->card, md->part_type))
1070 		/*
1071 		 * We have failed to get back into the correct
1072 		 * partition, so we need to abort the whole request.
1073 		 */
1074 		return -ENODEV;
1075 	return 0;
1076 }
1077 
1078 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1079 {
1080 	md->reset_done &= ~type;
1081 }
1082 
1083 static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1084 {
1085 	struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1086 	int i;
1087 
1088 	for (i = 1; i < mq_rq->ioc_count; i++) {
1089 		if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1090 		    mmc_op_multi(idata[i]->ic.opcode)) {
1091 			idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1092 			idata[i]->flags |= MMC_BLK_IOC_SBC;
1093 		}
1094 	}
1095 }
1096 
1097 /*
1098  * The non-block commands come back from the block layer after it queued it and
1099  * processed it with all other requests and then they get issued in this
1100  * function.
1101  */
1102 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1103 {
1104 	struct mmc_queue_req *mq_rq;
1105 	struct mmc_card *card = mq->card;
1106 	struct mmc_blk_data *md = mq->blkdata;
1107 	struct mmc_blk_ioc_data **idata;
1108 	bool rpmb_ioctl;
1109 	u8 **ext_csd;
1110 	u32 status;
1111 	int ret;
1112 	int i;
1113 
1114 	mq_rq = req_to_mmc_queue_req(req);
1115 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1116 
1117 	switch (mq_rq->drv_op) {
1118 	case MMC_DRV_OP_IOCTL:
1119 		if (card->ext_csd.cmdq_en) {
1120 			ret = mmc_cmdq_disable(card);
1121 			if (ret)
1122 				break;
1123 		}
1124 
1125 		mmc_blk_check_sbc(mq_rq);
1126 
1127 		fallthrough;
1128 	case MMC_DRV_OP_IOCTL_RPMB:
1129 		idata = mq_rq->drv_op_data;
1130 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1131 			ret = __mmc_blk_ioctl_cmd(card, md, idata, i);
1132 			if (ret)
1133 				break;
1134 		}
1135 		/* Always switch back to main area after RPMB access */
1136 		if (rpmb_ioctl)
1137 			mmc_blk_part_switch(card, 0);
1138 		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1139 			mmc_cmdq_enable(card);
1140 		break;
1141 	case MMC_DRV_OP_BOOT_WP:
1142 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1143 				 card->ext_csd.boot_ro_lock |
1144 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1145 				 card->ext_csd.part_time);
1146 		if (ret)
1147 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1148 			       md->disk->disk_name, ret);
1149 		else
1150 			card->ext_csd.boot_ro_lock |=
1151 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1152 		break;
1153 	case MMC_DRV_OP_GET_CARD_STATUS:
1154 		ret = mmc_send_status(card, &status);
1155 		if (!ret)
1156 			ret = status;
1157 		break;
1158 	case MMC_DRV_OP_GET_EXT_CSD:
1159 		ext_csd = mq_rq->drv_op_data;
1160 		ret = mmc_get_ext_csd(card, ext_csd);
1161 		break;
1162 	default:
1163 		pr_err("%s: unknown driver specific operation\n",
1164 		       md->disk->disk_name);
1165 		ret = -EINVAL;
1166 		break;
1167 	}
1168 	mq_rq->drv_op_result = ret;
1169 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1170 }
1171 
1172 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1173 				   int type, unsigned int erase_arg)
1174 {
1175 	struct mmc_blk_data *md = mq->blkdata;
1176 	struct mmc_card *card = md->queue.card;
1177 	unsigned int nr;
1178 	sector_t from;
1179 	int err = 0;
1180 	blk_status_t status = BLK_STS_OK;
1181 
1182 	if (!mmc_card_can_erase(card)) {
1183 		status = BLK_STS_NOTSUPP;
1184 		goto fail;
1185 	}
1186 
1187 	from = blk_rq_pos(req);
1188 	nr = blk_rq_sectors(req);
1189 
1190 	do {
1191 		err = 0;
1192 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1193 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1194 					 INAND_CMD38_ARG_EXT_CSD,
1195 					 erase_arg == MMC_TRIM_ARG ?
1196 					 INAND_CMD38_ARG_TRIM :
1197 					 INAND_CMD38_ARG_ERASE,
1198 					 card->ext_csd.generic_cmd6_time);
1199 		}
1200 		if (!err)
1201 			err = mmc_erase(card, from, nr, erase_arg);
1202 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1203 	if (err)
1204 		status = BLK_STS_IOERR;
1205 	else
1206 		mmc_blk_reset_success(md, type);
1207 fail:
1208 	blk_mq_end_request(req, status);
1209 }
1210 
1211 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1212 {
1213 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1214 }
1215 
1216 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1217 {
1218 	struct mmc_blk_data *md = mq->blkdata;
1219 	struct mmc_card *card = md->queue.card;
1220 	unsigned int arg = card->erase_arg;
1221 
1222 	if (mmc_card_broken_sd_discard(card))
1223 		arg = SD_ERASE_ARG;
1224 
1225 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1226 }
1227 
1228 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1229 				       struct request *req)
1230 {
1231 	struct mmc_blk_data *md = mq->blkdata;
1232 	struct mmc_card *card = md->queue.card;
1233 	unsigned int nr, arg;
1234 	sector_t from;
1235 	int err = 0, type = MMC_BLK_SECDISCARD;
1236 	blk_status_t status = BLK_STS_OK;
1237 
1238 	if (!(mmc_card_can_secure_erase_trim(card))) {
1239 		status = BLK_STS_NOTSUPP;
1240 		goto out;
1241 	}
1242 
1243 	from = blk_rq_pos(req);
1244 	nr = blk_rq_sectors(req);
1245 
1246 	if (mmc_card_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1247 		arg = MMC_SECURE_TRIM1_ARG;
1248 	else
1249 		arg = MMC_SECURE_ERASE_ARG;
1250 
1251 retry:
1252 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1253 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1254 				 INAND_CMD38_ARG_EXT_CSD,
1255 				 arg == MMC_SECURE_TRIM1_ARG ?
1256 				 INAND_CMD38_ARG_SECTRIM1 :
1257 				 INAND_CMD38_ARG_SECERASE,
1258 				 card->ext_csd.generic_cmd6_time);
1259 		if (err)
1260 			goto out_retry;
1261 	}
1262 
1263 	err = mmc_erase(card, from, nr, arg);
1264 	if (err == -EIO)
1265 		goto out_retry;
1266 	if (err) {
1267 		status = BLK_STS_IOERR;
1268 		goto out;
1269 	}
1270 
1271 	if (arg == MMC_SECURE_TRIM1_ARG) {
1272 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1273 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1274 					 INAND_CMD38_ARG_EXT_CSD,
1275 					 INAND_CMD38_ARG_SECTRIM2,
1276 					 card->ext_csd.generic_cmd6_time);
1277 			if (err)
1278 				goto out_retry;
1279 		}
1280 
1281 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1282 		if (err == -EIO)
1283 			goto out_retry;
1284 		if (err) {
1285 			status = BLK_STS_IOERR;
1286 			goto out;
1287 		}
1288 	}
1289 
1290 out_retry:
1291 	if (err && !mmc_blk_reset(md, card->host, type))
1292 		goto retry;
1293 	if (!err)
1294 		mmc_blk_reset_success(md, type);
1295 out:
1296 	blk_mq_end_request(req, status);
1297 }
1298 
1299 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1300 {
1301 	struct mmc_blk_data *md = mq->blkdata;
1302 	struct mmc_card *card = md->queue.card;
1303 	int ret = 0;
1304 
1305 	ret = mmc_flush_cache(card->host);
1306 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1307 }
1308 
1309 /*
1310  * Reformat current write as a reliable write, supporting
1311  * both legacy and the enhanced reliable write MMC cards.
1312  * In each transfer we'll handle only as much as a single
1313  * reliable write can handle, thus finish the request in
1314  * partial completions.
1315  */
1316 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1317 				    struct mmc_card *card,
1318 				    struct request *req)
1319 {
1320 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1321 		/* Legacy mode imposes restrictions on transfers. */
1322 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1323 			brq->data.blocks = 1;
1324 
1325 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1326 			brq->data.blocks = card->ext_csd.rel_sectors;
1327 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1328 			brq->data.blocks = 1;
1329 	}
1330 }
1331 
1332 #define CMD_ERRORS_EXCL_OOR						\
1333 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1334 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1335 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1336 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1337 	 R1_CC_ERROR |		/* Card controller error */		\
1338 	 R1_ERROR)		/* General/unknown error */
1339 
1340 #define CMD_ERRORS							\
1341 	(CMD_ERRORS_EXCL_OOR |						\
1342 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1343 
1344 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1345 {
1346 	u32 val;
1347 
1348 	/*
1349 	 * Per the SD specification(physical layer version 4.10)[1],
1350 	 * section 4.3.3, it explicitly states that "When the last
1351 	 * block of user area is read using CMD18, the host should
1352 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1353 	 * is correct". And JESD84-B51 for eMMC also has a similar
1354 	 * statement on section 6.8.3.
1355 	 *
1356 	 * Multiple block read/write could be done by either predefined
1357 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1358 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1359 	 *
1360 	 * However the spec[1] doesn't tell us whether we should also
1361 	 * ignore that for predefined method. But per the spec[1], section
1362 	 * 4.15 Set Block Count Command, it says"If illegal block count
1363 	 * is set, out of range error will be indicated during read/write
1364 	 * operation (For example, data transfer is stopped at user area
1365 	 * boundary)." In another word, we could expect a out of range error
1366 	 * in the response for the following CMD18/25. And if argument of
1367 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1368 	 * we could also expect to get a -ETIMEDOUT or any error number from
1369 	 * the host drivers due to missing data response(for write)/data(for
1370 	 * read), as the cards will stop the data transfer by itself per the
1371 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1372 	 */
1373 
1374 	if (!brq->stop.error) {
1375 		bool oor_with_open_end;
1376 		/* If there is no error yet, check R1 response */
1377 
1378 		val = brq->stop.resp[0] & CMD_ERRORS;
1379 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1380 
1381 		if (val && !oor_with_open_end)
1382 			brq->stop.error = -EIO;
1383 	}
1384 }
1385 
1386 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1387 			      int recovery_mode, bool *do_rel_wr_p,
1388 			      bool *do_data_tag_p)
1389 {
1390 	struct mmc_blk_data *md = mq->blkdata;
1391 	struct mmc_card *card = md->queue.card;
1392 	struct mmc_blk_request *brq = &mqrq->brq;
1393 	struct request *req = mmc_queue_req_to_req(mqrq);
1394 	bool do_rel_wr, do_data_tag;
1395 
1396 	/*
1397 	 * Reliable writes are used to implement Forced Unit Access and
1398 	 * are supported only on MMCs.
1399 	 */
1400 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1401 		    rq_data_dir(req) == WRITE &&
1402 		    (md->flags & MMC_BLK_REL_WR);
1403 
1404 	memset(brq, 0, sizeof(struct mmc_blk_request));
1405 
1406 	mmc_crypto_prepare_req(mqrq);
1407 
1408 	brq->mrq.data = &brq->data;
1409 	brq->mrq.tag = req->tag;
1410 
1411 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1412 	brq->stop.arg = 0;
1413 
1414 	if (rq_data_dir(req) == READ) {
1415 		brq->data.flags = MMC_DATA_READ;
1416 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1417 	} else {
1418 		brq->data.flags = MMC_DATA_WRITE;
1419 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1420 	}
1421 
1422 	brq->data.blksz = 512;
1423 	brq->data.blocks = blk_rq_sectors(req);
1424 	brq->data.blk_addr = blk_rq_pos(req);
1425 
1426 	/*
1427 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1428 	 * The eMMC will give "high" priority tasks priority over "simple"
1429 	 * priority tasks. Here we always set "simple" priority by not setting
1430 	 * MMC_DATA_PRIO.
1431 	 */
1432 
1433 	/*
1434 	 * The block layer doesn't support all sector count
1435 	 * restrictions, so we need to be prepared for too big
1436 	 * requests.
1437 	 */
1438 	if (brq->data.blocks > card->host->max_blk_count)
1439 		brq->data.blocks = card->host->max_blk_count;
1440 
1441 	if (brq->data.blocks > 1) {
1442 		/*
1443 		 * Some SD cards in SPI mode return a CRC error or even lock up
1444 		 * completely when trying to read the last block using a
1445 		 * multiblock read command.
1446 		 */
1447 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1448 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1449 		     get_capacity(md->disk)))
1450 			brq->data.blocks--;
1451 
1452 		/*
1453 		 * After a read error, we redo the request one (native) sector
1454 		 * at a time in order to accurately determine which
1455 		 * sectors can be read successfully.
1456 		 */
1457 		if (recovery_mode)
1458 			brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1459 
1460 		/*
1461 		 * Some controllers have HW issues while operating
1462 		 * in multiple I/O mode
1463 		 */
1464 		if (card->host->ops->multi_io_quirk)
1465 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1466 						(rq_data_dir(req) == READ) ?
1467 						MMC_DATA_READ : MMC_DATA_WRITE,
1468 						brq->data.blocks);
1469 	}
1470 
1471 	if (do_rel_wr) {
1472 		mmc_apply_rel_rw(brq, card, req);
1473 		brq->data.flags |= MMC_DATA_REL_WR;
1474 	}
1475 
1476 	/*
1477 	 * Data tag is used only during writing meta data to speed
1478 	 * up write and any subsequent read of this meta data
1479 	 */
1480 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1481 		      (req->cmd_flags & REQ_META) &&
1482 		      (rq_data_dir(req) == WRITE) &&
1483 		      ((brq->data.blocks * brq->data.blksz) >=
1484 		       card->ext_csd.data_tag_unit_size);
1485 
1486 	if (do_data_tag)
1487 		brq->data.flags |= MMC_DATA_DAT_TAG;
1488 
1489 	mmc_set_data_timeout(&brq->data, card);
1490 
1491 	brq->data.sg = mqrq->sg;
1492 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1493 
1494 	/*
1495 	 * Adjust the sg list so it is the same size as the
1496 	 * request.
1497 	 */
1498 	if (brq->data.blocks != blk_rq_sectors(req)) {
1499 		int i, data_size = brq->data.blocks << 9;
1500 		struct scatterlist *sg;
1501 
1502 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1503 			data_size -= sg->length;
1504 			if (data_size <= 0) {
1505 				sg->length += data_size;
1506 				i++;
1507 				break;
1508 			}
1509 		}
1510 		brq->data.sg_len = i;
1511 	}
1512 
1513 	if (do_rel_wr_p)
1514 		*do_rel_wr_p = do_rel_wr;
1515 
1516 	if (do_data_tag_p)
1517 		*do_data_tag_p = do_data_tag;
1518 }
1519 
1520 #define MMC_CQE_RETRIES 2
1521 
1522 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1523 {
1524 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1525 	struct mmc_request *mrq = &mqrq->brq.mrq;
1526 	struct request_queue *q = req->q;
1527 	struct mmc_host *host = mq->card->host;
1528 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1529 	unsigned long flags;
1530 	bool put_card;
1531 	int err;
1532 
1533 	mmc_cqe_post_req(host, mrq);
1534 
1535 	if (mrq->cmd && mrq->cmd->error)
1536 		err = mrq->cmd->error;
1537 	else if (mrq->data && mrq->data->error)
1538 		err = mrq->data->error;
1539 	else
1540 		err = 0;
1541 
1542 	if (err) {
1543 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1544 			blk_mq_requeue_request(req, true);
1545 		else
1546 			blk_mq_end_request(req, BLK_STS_IOERR);
1547 	} else if (mrq->data) {
1548 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1549 			blk_mq_requeue_request(req, true);
1550 		else
1551 			__blk_mq_end_request(req, BLK_STS_OK);
1552 	} else if (mq->in_recovery) {
1553 		blk_mq_requeue_request(req, true);
1554 	} else {
1555 		blk_mq_end_request(req, BLK_STS_OK);
1556 	}
1557 
1558 	spin_lock_irqsave(&mq->lock, flags);
1559 
1560 	mq->in_flight[issue_type] -= 1;
1561 
1562 	put_card = (mmc_tot_in_flight(mq) == 0);
1563 
1564 	mmc_cqe_check_busy(mq);
1565 
1566 	spin_unlock_irqrestore(&mq->lock, flags);
1567 
1568 	if (!mq->cqe_busy)
1569 		blk_mq_run_hw_queues(q, true);
1570 
1571 	if (put_card)
1572 		mmc_put_card(mq->card, &mq->ctx);
1573 }
1574 
1575 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1576 {
1577 	struct mmc_card *card = mq->card;
1578 	struct mmc_host *host = card->host;
1579 	int err;
1580 
1581 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1582 
1583 	err = mmc_cqe_recovery(host);
1584 	if (err)
1585 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1586 	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1587 
1588 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1589 }
1590 
1591 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1592 {
1593 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1594 						  brq.mrq);
1595 	struct request *req = mmc_queue_req_to_req(mqrq);
1596 	struct request_queue *q = req->q;
1597 	struct mmc_queue *mq = q->queuedata;
1598 
1599 	/*
1600 	 * Block layer timeouts race with completions which means the normal
1601 	 * completion path cannot be used during recovery.
1602 	 */
1603 	if (mq->in_recovery)
1604 		mmc_blk_cqe_complete_rq(mq, req);
1605 	else if (likely(!blk_should_fake_timeout(req->q)))
1606 		blk_mq_complete_request(req);
1607 }
1608 
1609 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1610 {
1611 	mrq->done		= mmc_blk_cqe_req_done;
1612 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1613 
1614 	return mmc_cqe_start_req(host, mrq);
1615 }
1616 
1617 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1618 						 struct request *req)
1619 {
1620 	struct mmc_blk_request *brq = &mqrq->brq;
1621 
1622 	memset(brq, 0, sizeof(*brq));
1623 
1624 	brq->mrq.cmd = &brq->cmd;
1625 	brq->mrq.tag = req->tag;
1626 
1627 	return &brq->mrq;
1628 }
1629 
1630 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1631 {
1632 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1633 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1634 
1635 	mrq->cmd->opcode = MMC_SWITCH;
1636 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1637 			(EXT_CSD_FLUSH_CACHE << 16) |
1638 			(1 << 8) |
1639 			EXT_CSD_CMD_SET_NORMAL;
1640 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1641 
1642 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1643 }
1644 
1645 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1646 {
1647 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1648 	struct mmc_host *host = mq->card->host;
1649 	int err;
1650 
1651 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1652 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1653 	mmc_pre_req(host, &mqrq->brq.mrq);
1654 
1655 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1656 	if (err)
1657 		mmc_post_req(host, &mqrq->brq.mrq, err);
1658 
1659 	return err;
1660 }
1661 
1662 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1663 {
1664 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1665 	struct mmc_host *host = mq->card->host;
1666 
1667 	if (host->hsq_enabled)
1668 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1669 
1670 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1671 
1672 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1673 }
1674 
1675 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1676 			       struct mmc_card *card,
1677 			       int recovery_mode,
1678 			       struct mmc_queue *mq)
1679 {
1680 	u32 readcmd, writecmd;
1681 	struct mmc_blk_request *brq = &mqrq->brq;
1682 	struct request *req = mmc_queue_req_to_req(mqrq);
1683 	struct mmc_blk_data *md = mq->blkdata;
1684 	bool do_rel_wr, do_data_tag;
1685 
1686 	mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1687 
1688 	brq->mrq.cmd = &brq->cmd;
1689 
1690 	brq->cmd.arg = blk_rq_pos(req);
1691 	if (!mmc_card_blockaddr(card))
1692 		brq->cmd.arg <<= 9;
1693 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1694 
1695 	if (brq->data.blocks > 1 || do_rel_wr) {
1696 		/* SPI multiblock writes terminate using a special
1697 		 * token, not a STOP_TRANSMISSION request.
1698 		 */
1699 		if (!mmc_host_is_spi(card->host) ||
1700 		    rq_data_dir(req) == READ)
1701 			brq->mrq.stop = &brq->stop;
1702 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1703 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1704 	} else {
1705 		brq->mrq.stop = NULL;
1706 		readcmd = MMC_READ_SINGLE_BLOCK;
1707 		writecmd = MMC_WRITE_BLOCK;
1708 	}
1709 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1710 
1711 	/*
1712 	 * Pre-defined multi-block transfers are preferable to
1713 	 * open ended-ones (and necessary for reliable writes).
1714 	 * However, it is not sufficient to just send CMD23,
1715 	 * and avoid the final CMD12, as on an error condition
1716 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1717 	 * with Auto-CMD23 enhancements provided by some
1718 	 * hosts, means that the complexity of dealing
1719 	 * with this is best left to the host. If CMD23 is
1720 	 * supported by card and host, we'll fill sbc in and let
1721 	 * the host deal with handling it correctly. This means
1722 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1723 	 * change of behavior will be observed.
1724 	 *
1725 	 * N.B: Some MMC cards experience perf degradation.
1726 	 * We'll avoid using CMD23-bounded multiblock writes for
1727 	 * these, while retaining features like reliable writes.
1728 	 */
1729 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1730 	    (do_rel_wr || !mmc_card_blk_no_cmd23(card) || do_data_tag)) {
1731 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1732 		brq->sbc.arg = brq->data.blocks |
1733 			(do_rel_wr ? (1 << 31) : 0) |
1734 			(do_data_tag ? (1 << 29) : 0);
1735 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1736 		brq->mrq.sbc = &brq->sbc;
1737 	}
1738 
1739 	if (mmc_card_ult_capacity(card)) {
1740 		brq->cmd.ext_addr = blk_rq_pos(req) >> 32;
1741 		brq->cmd.has_ext_addr = true;
1742 	}
1743 }
1744 
1745 #define MMC_MAX_RETRIES		5
1746 #define MMC_DATA_RETRIES	2
1747 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1748 
1749 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1750 {
1751 	struct mmc_command cmd = {
1752 		.opcode = MMC_STOP_TRANSMISSION,
1753 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1754 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1755 		.busy_timeout = timeout,
1756 	};
1757 
1758 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1759 }
1760 
1761 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1762 {
1763 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1764 	struct mmc_blk_request *brq = &mqrq->brq;
1765 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1766 	int err;
1767 
1768 	mmc_retune_hold_now(card->host);
1769 
1770 	mmc_blk_send_stop(card, timeout);
1771 
1772 	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1773 
1774 	mmc_retune_release(card->host);
1775 
1776 	return err;
1777 }
1778 
1779 #define MMC_READ_SINGLE_RETRIES	2
1780 
1781 /* Single (native) sector read during recovery */
1782 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1783 {
1784 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1785 	struct mmc_request *mrq = &mqrq->brq.mrq;
1786 	struct mmc_card *card = mq->card;
1787 	struct mmc_host *host = card->host;
1788 	blk_status_t error = BLK_STS_OK;
1789 	size_t bytes_per_read = queue_physical_block_size(mq->queue);
1790 
1791 	do {
1792 		u32 status;
1793 		int err;
1794 		int retries = 0;
1795 
1796 		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1797 			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1798 
1799 			mmc_wait_for_req(host, mrq);
1800 
1801 			err = mmc_send_status(card, &status);
1802 			if (err)
1803 				goto error_exit;
1804 
1805 			if (!mmc_host_is_spi(host) &&
1806 			    !mmc_ready_for_data(status)) {
1807 				err = mmc_blk_fix_state(card, req);
1808 				if (err)
1809 					goto error_exit;
1810 			}
1811 
1812 			if (!mrq->cmd->error)
1813 				break;
1814 		}
1815 
1816 		if (mrq->cmd->error ||
1817 		    mrq->data->error ||
1818 		    (!mmc_host_is_spi(host) &&
1819 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1820 			error = BLK_STS_IOERR;
1821 		else
1822 			error = BLK_STS_OK;
1823 
1824 	} while (blk_update_request(req, error, bytes_per_read));
1825 
1826 	return;
1827 
1828 error_exit:
1829 	mrq->data->bytes_xfered = 0;
1830 	blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1831 	/* Let it try the remaining request again */
1832 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1833 		mqrq->retries = MMC_MAX_RETRIES - 1;
1834 }
1835 
1836 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1837 {
1838 	return !!brq->mrq.sbc;
1839 }
1840 
1841 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1842 {
1843 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1844 }
1845 
1846 /*
1847  * Check for errors the host controller driver might not have seen such as
1848  * response mode errors or invalid card state.
1849  */
1850 static bool mmc_blk_status_error(struct request *req, u32 status)
1851 {
1852 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1853 	struct mmc_blk_request *brq = &mqrq->brq;
1854 	struct mmc_queue *mq = req->q->queuedata;
1855 	u32 stop_err_bits;
1856 
1857 	if (mmc_host_is_spi(mq->card->host))
1858 		return false;
1859 
1860 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1861 
1862 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1863 	       brq->stop.resp[0] & stop_err_bits ||
1864 	       status            & stop_err_bits ||
1865 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1866 }
1867 
1868 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1869 {
1870 	return !brq->sbc.error && !brq->cmd.error &&
1871 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1872 }
1873 
1874 /*
1875  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1876  * policy:
1877  * 1. A request that has transferred at least some data is considered
1878  * successful and will be requeued if there is remaining data to
1879  * transfer.
1880  * 2. Otherwise the number of retries is incremented and the request
1881  * will be requeued if there are remaining retries.
1882  * 3. Otherwise the request will be errored out.
1883  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1884  * mqrq->retries. So there are only 4 possible actions here:
1885  *	1. do not accept the bytes_xfered value i.e. set it to zero
1886  *	2. change mqrq->retries to determine the number of retries
1887  *	3. try to reset the card
1888  *	4. read one sector at a time
1889  */
1890 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1891 {
1892 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1893 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1894 	struct mmc_blk_request *brq = &mqrq->brq;
1895 	struct mmc_blk_data *md = mq->blkdata;
1896 	struct mmc_card *card = mq->card;
1897 	u32 status;
1898 	u32 blocks;
1899 	int err;
1900 
1901 	/*
1902 	 * Some errors the host driver might not have seen. Set the number of
1903 	 * bytes transferred to zero in that case.
1904 	 */
1905 	err = __mmc_send_status(card, &status, 0);
1906 	if (err || mmc_blk_status_error(req, status))
1907 		brq->data.bytes_xfered = 0;
1908 
1909 	mmc_retune_release(card->host);
1910 
1911 	/*
1912 	 * Try again to get the status. This also provides an opportunity for
1913 	 * re-tuning.
1914 	 */
1915 	if (err)
1916 		err = __mmc_send_status(card, &status, 0);
1917 
1918 	/*
1919 	 * Nothing more to do after the number of bytes transferred has been
1920 	 * updated and there is no card.
1921 	 */
1922 	if (err && mmc_detect_card_removed(card->host))
1923 		return;
1924 
1925 	/* Try to get back to "tran" state */
1926 	if (!mmc_host_is_spi(mq->card->host) &&
1927 	    (err || !mmc_ready_for_data(status)))
1928 		err = mmc_blk_fix_state(mq->card, req);
1929 
1930 	/*
1931 	 * Special case for SD cards where the card might record the number of
1932 	 * blocks written.
1933 	 */
1934 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1935 	    rq_data_dir(req) == WRITE) {
1936 		if (mmc_sd_num_wr_blocks(card, &blocks))
1937 			brq->data.bytes_xfered = 0;
1938 		else
1939 			brq->data.bytes_xfered = blocks << 9;
1940 	}
1941 
1942 	/* Reset if the card is in a bad state */
1943 	if (!mmc_host_is_spi(mq->card->host) &&
1944 	    err && mmc_blk_reset(md, card->host, type)) {
1945 		pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1946 		mqrq->retries = MMC_NO_RETRIES;
1947 		return;
1948 	}
1949 
1950 	/*
1951 	 * If anything was done, just return and if there is anything remaining
1952 	 * on the request it will get requeued.
1953 	 */
1954 	if (brq->data.bytes_xfered)
1955 		return;
1956 
1957 	/* Reset before last retry */
1958 	if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1959 	    mmc_blk_reset(md, card->host, type))
1960 		return;
1961 
1962 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1963 	if (brq->sbc.error || brq->cmd.error)
1964 		return;
1965 
1966 	/* Reduce the remaining retries for data errors */
1967 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1968 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1969 		return;
1970 	}
1971 
1972 	if (rq_data_dir(req) == READ && brq->data.blocks >
1973 			queue_physical_block_size(mq->queue) >> 9) {
1974 		/* Read one (native) sector at a time */
1975 		mmc_blk_read_single(mq, req);
1976 		return;
1977 	}
1978 }
1979 
1980 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1981 {
1982 	mmc_blk_eval_resp_error(brq);
1983 
1984 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1985 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1986 }
1987 
1988 static int mmc_spi_err_check(struct mmc_card *card)
1989 {
1990 	u32 status = 0;
1991 	int err;
1992 
1993 	/*
1994 	 * SPI does not have a TRAN state we have to wait on, instead the
1995 	 * card is ready again when it no longer holds the line LOW.
1996 	 * We still have to ensure two things here before we know the write
1997 	 * was successful:
1998 	 * 1. The card has not disconnected during busy and we actually read our
1999 	 * own pull-up, thinking it was still connected, so ensure it
2000 	 * still responds.
2001 	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
2002 	 * just reconnected card after being disconnected during busy.
2003 	 */
2004 	err = __mmc_send_status(card, &status, 0);
2005 	if (err)
2006 		return err;
2007 	/* All R1 and R2 bits of SPI are errors in our case */
2008 	if (status)
2009 		return -EIO;
2010 	return 0;
2011 }
2012 
2013 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
2014 {
2015 	struct mmc_blk_busy_data *data = cb_data;
2016 	u32 status = 0;
2017 	int err;
2018 
2019 	err = mmc_send_status(data->card, &status);
2020 	if (err)
2021 		return err;
2022 
2023 	/* Accumulate response error bits. */
2024 	data->status |= status;
2025 
2026 	*busy = !mmc_ready_for_data(status);
2027 	return 0;
2028 }
2029 
2030 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
2031 {
2032 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2033 	struct mmc_blk_busy_data cb_data;
2034 	int err;
2035 
2036 	if (rq_data_dir(req) == READ)
2037 		return 0;
2038 
2039 	if (mmc_host_is_spi(card->host)) {
2040 		err = mmc_spi_err_check(card);
2041 		if (err)
2042 			mqrq->brq.data.bytes_xfered = 0;
2043 		return err;
2044 	}
2045 
2046 	cb_data.card = card;
2047 	cb_data.status = 0;
2048 	err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
2049 				  &mmc_blk_busy_cb, &cb_data);
2050 
2051 	/*
2052 	 * Do not assume data transferred correctly if there are any error bits
2053 	 * set.
2054 	 */
2055 	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
2056 		mqrq->brq.data.bytes_xfered = 0;
2057 		err = err ? err : -EIO;
2058 	}
2059 
2060 	/* Copy the exception bit so it will be seen later on */
2061 	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
2062 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
2063 
2064 	return err;
2065 }
2066 
2067 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
2068 					    struct request *req)
2069 {
2070 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2071 
2072 	mmc_blk_reset_success(mq->blkdata, type);
2073 }
2074 
2075 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2076 {
2077 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2078 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2079 
2080 	if (nr_bytes) {
2081 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2082 			blk_mq_requeue_request(req, true);
2083 		else
2084 			__blk_mq_end_request(req, BLK_STS_OK);
2085 	} else if (!blk_rq_bytes(req)) {
2086 		__blk_mq_end_request(req, BLK_STS_IOERR);
2087 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2088 		blk_mq_requeue_request(req, true);
2089 	} else {
2090 		if (mmc_card_removed(mq->card))
2091 			req->rq_flags |= RQF_QUIET;
2092 		blk_mq_end_request(req, BLK_STS_IOERR);
2093 	}
2094 }
2095 
2096 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2097 					struct mmc_queue_req *mqrq)
2098 {
2099 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2100 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2101 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2102 }
2103 
2104 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2105 				 struct mmc_queue_req *mqrq)
2106 {
2107 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2108 		mmc_run_bkops(mq->card);
2109 }
2110 
2111 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2112 {
2113 	struct mmc_queue_req *mqrq =
2114 		container_of(mrq, struct mmc_queue_req, brq.mrq);
2115 	struct request *req = mmc_queue_req_to_req(mqrq);
2116 	struct request_queue *q = req->q;
2117 	struct mmc_queue *mq = q->queuedata;
2118 	struct mmc_host *host = mq->card->host;
2119 	unsigned long flags;
2120 
2121 	if (mmc_blk_rq_error(&mqrq->brq) ||
2122 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2123 		spin_lock_irqsave(&mq->lock, flags);
2124 		mq->recovery_needed = true;
2125 		mq->recovery_req = req;
2126 		spin_unlock_irqrestore(&mq->lock, flags);
2127 
2128 		host->cqe_ops->cqe_recovery_start(host);
2129 
2130 		schedule_work(&mq->recovery_work);
2131 		return;
2132 	}
2133 
2134 	mmc_blk_rw_reset_success(mq, req);
2135 
2136 	/*
2137 	 * Block layer timeouts race with completions which means the normal
2138 	 * completion path cannot be used during recovery.
2139 	 */
2140 	if (mq->in_recovery)
2141 		mmc_blk_cqe_complete_rq(mq, req);
2142 	else if (likely(!blk_should_fake_timeout(req->q)))
2143 		blk_mq_complete_request(req);
2144 }
2145 
2146 void mmc_blk_mq_complete(struct request *req)
2147 {
2148 	struct mmc_queue *mq = req->q->queuedata;
2149 	struct mmc_host *host = mq->card->host;
2150 
2151 	if (host->cqe_enabled)
2152 		mmc_blk_cqe_complete_rq(mq, req);
2153 	else if (likely(!blk_should_fake_timeout(req->q)))
2154 		mmc_blk_mq_complete_rq(mq, req);
2155 }
2156 
2157 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2158 				       struct request *req)
2159 {
2160 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2161 	struct mmc_host *host = mq->card->host;
2162 
2163 	if (mmc_blk_rq_error(&mqrq->brq) ||
2164 	    mmc_blk_card_busy(mq->card, req)) {
2165 		mmc_blk_mq_rw_recovery(mq, req);
2166 	} else {
2167 		mmc_blk_rw_reset_success(mq, req);
2168 		mmc_retune_release(host);
2169 	}
2170 
2171 	mmc_blk_urgent_bkops(mq, mqrq);
2172 }
2173 
2174 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2175 {
2176 	unsigned long flags;
2177 	bool put_card;
2178 
2179 	spin_lock_irqsave(&mq->lock, flags);
2180 
2181 	mq->in_flight[issue_type] -= 1;
2182 
2183 	put_card = (mmc_tot_in_flight(mq) == 0);
2184 
2185 	spin_unlock_irqrestore(&mq->lock, flags);
2186 
2187 	if (put_card)
2188 		mmc_put_card(mq->card, &mq->ctx);
2189 }
2190 
2191 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2192 				bool can_sleep)
2193 {
2194 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2195 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2196 	struct mmc_request *mrq = &mqrq->brq.mrq;
2197 	struct mmc_host *host = mq->card->host;
2198 
2199 	mmc_post_req(host, mrq, 0);
2200 
2201 	/*
2202 	 * Block layer timeouts race with completions which means the normal
2203 	 * completion path cannot be used during recovery.
2204 	 */
2205 	if (mq->in_recovery) {
2206 		mmc_blk_mq_complete_rq(mq, req);
2207 	} else if (likely(!blk_should_fake_timeout(req->q))) {
2208 		if (can_sleep)
2209 			blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2210 		else
2211 			blk_mq_complete_request(req);
2212 	}
2213 
2214 	mmc_blk_mq_dec_in_flight(mq, issue_type);
2215 }
2216 
2217 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2218 {
2219 	struct request *req = mq->recovery_req;
2220 	struct mmc_host *host = mq->card->host;
2221 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2222 
2223 	mq->recovery_req = NULL;
2224 	mq->rw_wait = false;
2225 
2226 	if (mmc_blk_rq_error(&mqrq->brq)) {
2227 		mmc_retune_hold_now(host);
2228 		mmc_blk_mq_rw_recovery(mq, req);
2229 	}
2230 
2231 	mmc_blk_urgent_bkops(mq, mqrq);
2232 
2233 	mmc_blk_mq_post_req(mq, req, true);
2234 }
2235 
2236 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2237 					 struct request **prev_req)
2238 {
2239 	if (mmc_host_can_done_complete(mq->card->host))
2240 		return;
2241 
2242 	mutex_lock(&mq->complete_lock);
2243 
2244 	if (!mq->complete_req)
2245 		goto out_unlock;
2246 
2247 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2248 
2249 	if (prev_req)
2250 		*prev_req = mq->complete_req;
2251 	else
2252 		mmc_blk_mq_post_req(mq, mq->complete_req, true);
2253 
2254 	mq->complete_req = NULL;
2255 
2256 out_unlock:
2257 	mutex_unlock(&mq->complete_lock);
2258 }
2259 
2260 void mmc_blk_mq_complete_work(struct work_struct *work)
2261 {
2262 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2263 					    complete_work);
2264 
2265 	mmc_blk_mq_complete_prev_req(mq, NULL);
2266 }
2267 
2268 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2269 {
2270 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2271 						  brq.mrq);
2272 	struct request *req = mmc_queue_req_to_req(mqrq);
2273 	struct request_queue *q = req->q;
2274 	struct mmc_queue *mq = q->queuedata;
2275 	struct mmc_host *host = mq->card->host;
2276 	unsigned long flags;
2277 
2278 	if (!mmc_host_can_done_complete(host)) {
2279 		bool waiting;
2280 
2281 		/*
2282 		 * We cannot complete the request in this context, so record
2283 		 * that there is a request to complete, and that a following
2284 		 * request does not need to wait (although it does need to
2285 		 * complete complete_req first).
2286 		 */
2287 		spin_lock_irqsave(&mq->lock, flags);
2288 		mq->complete_req = req;
2289 		mq->rw_wait = false;
2290 		waiting = mq->waiting;
2291 		spin_unlock_irqrestore(&mq->lock, flags);
2292 
2293 		/*
2294 		 * If 'waiting' then the waiting task will complete this
2295 		 * request, otherwise queue a work to do it. Note that
2296 		 * complete_work may still race with the dispatch of a following
2297 		 * request.
2298 		 */
2299 		if (waiting)
2300 			wake_up(&mq->wait);
2301 		else
2302 			queue_work(mq->card->complete_wq, &mq->complete_work);
2303 
2304 		return;
2305 	}
2306 
2307 	/* Take the recovery path for errors or urgent background operations */
2308 	if (mmc_blk_rq_error(&mqrq->brq) ||
2309 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2310 		spin_lock_irqsave(&mq->lock, flags);
2311 		mq->recovery_needed = true;
2312 		mq->recovery_req = req;
2313 		spin_unlock_irqrestore(&mq->lock, flags);
2314 		wake_up(&mq->wait);
2315 		schedule_work(&mq->recovery_work);
2316 		return;
2317 	}
2318 
2319 	mmc_blk_rw_reset_success(mq, req);
2320 
2321 	mq->rw_wait = false;
2322 	wake_up(&mq->wait);
2323 
2324 	/* context unknown */
2325 	mmc_blk_mq_post_req(mq, req, false);
2326 }
2327 
2328 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2329 {
2330 	unsigned long flags;
2331 	bool done;
2332 
2333 	/*
2334 	 * Wait while there is another request in progress, but not if recovery
2335 	 * is needed. Also indicate whether there is a request waiting to start.
2336 	 */
2337 	spin_lock_irqsave(&mq->lock, flags);
2338 	if (mq->recovery_needed) {
2339 		*err = -EBUSY;
2340 		done = true;
2341 	} else {
2342 		done = !mq->rw_wait;
2343 	}
2344 	mq->waiting = !done;
2345 	spin_unlock_irqrestore(&mq->lock, flags);
2346 
2347 	return done;
2348 }
2349 
2350 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2351 {
2352 	int err = 0;
2353 
2354 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2355 
2356 	/* Always complete the previous request if there is one */
2357 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2358 
2359 	return err;
2360 }
2361 
2362 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2363 				  struct request *req)
2364 {
2365 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2366 	struct mmc_host *host = mq->card->host;
2367 	struct request *prev_req = NULL;
2368 	int err = 0;
2369 
2370 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2371 
2372 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2373 
2374 	mmc_pre_req(host, &mqrq->brq.mrq);
2375 
2376 	err = mmc_blk_rw_wait(mq, &prev_req);
2377 	if (err)
2378 		goto out_post_req;
2379 
2380 	mq->rw_wait = true;
2381 
2382 	err = mmc_start_request(host, &mqrq->brq.mrq);
2383 
2384 	if (prev_req)
2385 		mmc_blk_mq_post_req(mq, prev_req, true);
2386 
2387 	if (err)
2388 		mq->rw_wait = false;
2389 
2390 	/* Release re-tuning here where there is no synchronization required */
2391 	if (err || mmc_host_can_done_complete(host))
2392 		mmc_retune_release(host);
2393 
2394 out_post_req:
2395 	if (err)
2396 		mmc_post_req(host, &mqrq->brq.mrq, err);
2397 
2398 	return err;
2399 }
2400 
2401 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2402 {
2403 	if (host->cqe_enabled)
2404 		return host->cqe_ops->cqe_wait_for_idle(host);
2405 
2406 	return mmc_blk_rw_wait(mq, NULL);
2407 }
2408 
2409 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2410 {
2411 	struct mmc_blk_data *md = mq->blkdata;
2412 	struct mmc_card *card = md->queue.card;
2413 	struct mmc_host *host = card->host;
2414 	int ret;
2415 
2416 	ret = mmc_blk_part_switch(card, md->part_type);
2417 	if (ret)
2418 		return MMC_REQ_FAILED_TO_START;
2419 
2420 	switch (mmc_issue_type(mq, req)) {
2421 	case MMC_ISSUE_SYNC:
2422 		ret = mmc_blk_wait_for_idle(mq, host);
2423 		if (ret)
2424 			return MMC_REQ_BUSY;
2425 		switch (req_op(req)) {
2426 		case REQ_OP_DRV_IN:
2427 		case REQ_OP_DRV_OUT:
2428 			mmc_blk_issue_drv_op(mq, req);
2429 			break;
2430 		case REQ_OP_DISCARD:
2431 			mmc_blk_issue_discard_rq(mq, req);
2432 			break;
2433 		case REQ_OP_SECURE_ERASE:
2434 			mmc_blk_issue_secdiscard_rq(mq, req);
2435 			break;
2436 		case REQ_OP_WRITE_ZEROES:
2437 			mmc_blk_issue_trim_rq(mq, req);
2438 			break;
2439 		case REQ_OP_FLUSH:
2440 			mmc_blk_issue_flush(mq, req);
2441 			break;
2442 		default:
2443 			WARN_ON_ONCE(1);
2444 			return MMC_REQ_FAILED_TO_START;
2445 		}
2446 		return MMC_REQ_FINISHED;
2447 	case MMC_ISSUE_DCMD:
2448 	case MMC_ISSUE_ASYNC:
2449 		switch (req_op(req)) {
2450 		case REQ_OP_FLUSH:
2451 			if (!mmc_cache_enabled(host)) {
2452 				blk_mq_end_request(req, BLK_STS_OK);
2453 				return MMC_REQ_FINISHED;
2454 			}
2455 			ret = mmc_blk_cqe_issue_flush(mq, req);
2456 			break;
2457 		case REQ_OP_WRITE:
2458 			card->written_flag = true;
2459 			fallthrough;
2460 		case REQ_OP_READ:
2461 			if (host->cqe_enabled)
2462 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2463 			else
2464 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2465 			break;
2466 		default:
2467 			WARN_ON_ONCE(1);
2468 			ret = -EINVAL;
2469 		}
2470 		if (!ret)
2471 			return MMC_REQ_STARTED;
2472 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2473 	default:
2474 		WARN_ON_ONCE(1);
2475 		return MMC_REQ_FAILED_TO_START;
2476 	}
2477 }
2478 
2479 static inline int mmc_blk_readonly(struct mmc_card *card)
2480 {
2481 	return mmc_card_readonly(card) ||
2482 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2483 }
2484 
2485 /*
2486  * Search for a declared partitions node for the disk in mmc-card related node.
2487  *
2488  * This is to permit support for partition table defined in DT in special case
2489  * where a partition table is not written in the disk and is expected to be
2490  * passed from the running system.
2491  *
2492  * For the user disk, "partitions" node is searched.
2493  * For the special HW disk, "partitions-" node with the appended name is used
2494  * following this conversion table (to adhere to JEDEC naming)
2495  * - boot0 -> partitions-boot1
2496  * - boot1 -> partitions-boot2
2497  * - gp0 -> partitions-gp1
2498  * - gp1 -> partitions-gp2
2499  * - gp2 -> partitions-gp3
2500  * - gp3 -> partitions-gp4
2501  */
2502 static struct fwnode_handle *mmc_blk_get_partitions_node(struct device *mmc_dev,
2503 							 const char *subname)
2504 {
2505 	const char *node_name = "partitions";
2506 
2507 	if (subname) {
2508 		mmc_dev = mmc_dev->parent;
2509 
2510 		/*
2511 		 * Check if we are allocating a BOOT disk boot0/1 disk.
2512 		 * In DT we use the JEDEC naming boot1/2.
2513 		 */
2514 		if (!strcmp(subname, "boot0"))
2515 			node_name = "partitions-boot1";
2516 		if (!strcmp(subname, "boot1"))
2517 			node_name = "partitions-boot2";
2518 		/*
2519 		 * Check if we are allocating a GP disk gp0/1/2/3 disk.
2520 		 * In DT we use the JEDEC naming gp1/2/3/4.
2521 		 */
2522 		if (!strcmp(subname, "gp0"))
2523 			node_name = "partitions-gp1";
2524 		if (!strcmp(subname, "gp1"))
2525 			node_name = "partitions-gp2";
2526 		if (!strcmp(subname, "gp2"))
2527 			node_name = "partitions-gp3";
2528 		if (!strcmp(subname, "gp3"))
2529 			node_name = "partitions-gp4";
2530 	}
2531 
2532 	return device_get_named_child_node(mmc_dev, node_name);
2533 }
2534 
2535 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2536 					      struct device *parent,
2537 					      sector_t size,
2538 					      bool default_ro,
2539 					      const char *subname,
2540 					      int area_type,
2541 					      unsigned int part_type)
2542 {
2543 	struct fwnode_handle *disk_fwnode;
2544 	struct mmc_blk_data *md;
2545 	int devidx, ret;
2546 	char cap_str[10];
2547 	unsigned int features = 0;
2548 
2549 	devidx = ida_alloc_max(&mmc_blk_ida, max_devices - 1, GFP_KERNEL);
2550 	if (devidx < 0) {
2551 		/*
2552 		 * We get -ENOSPC because there are no more any available
2553 		 * devidx. The reason may be that, either userspace haven't yet
2554 		 * unmounted the partitions, which postpones mmc_blk_release()
2555 		 * from being called, or the device has more partitions than
2556 		 * what we support.
2557 		 */
2558 		if (devidx == -ENOSPC)
2559 			dev_err(mmc_dev(card->host),
2560 				"no more device IDs available\n");
2561 
2562 		return ERR_PTR(devidx);
2563 	}
2564 
2565 	md = kzalloc(sizeof(*md), GFP_KERNEL);
2566 	if (!md) {
2567 		ret = -ENOMEM;
2568 		goto out;
2569 	}
2570 
2571 	md->area_type = area_type;
2572 
2573 	/*
2574 	 * Set the read-only status based on the supported commands
2575 	 * and the write protect switch.
2576 	 */
2577 	md->read_only = mmc_blk_readonly(card);
2578 
2579 	if (mmc_host_can_cmd23(card->host) && mmc_card_can_cmd23(card))
2580 		md->flags |= MMC_BLK_CMD23;
2581 
2582 	if (md->flags & MMC_BLK_CMD23 &&
2583 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2584 	     card->ext_csd.rel_sectors)) {
2585 		md->flags |= MMC_BLK_REL_WR;
2586 		features |= (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2587 	} else if (mmc_cache_enabled(card->host)) {
2588 		features |= BLK_FEAT_WRITE_CACHE;
2589 	}
2590 
2591 	md->disk = mmc_init_queue(&md->queue, card, features);
2592 	if (IS_ERR(md->disk)) {
2593 		ret = PTR_ERR(md->disk);
2594 		goto err_kfree;
2595 	}
2596 
2597 	INIT_LIST_HEAD(&md->part);
2598 	INIT_LIST_HEAD(&md->rpmbs);
2599 	kref_init(&md->kref);
2600 
2601 	md->queue.blkdata = md;
2602 	md->part_type = part_type;
2603 
2604 	md->disk->major	= MMC_BLOCK_MAJOR;
2605 	md->disk->minors = perdev_minors;
2606 	md->disk->first_minor = devidx * perdev_minors;
2607 	md->disk->fops = &mmc_bdops;
2608 	md->disk->private_data = md;
2609 	md->parent = parent;
2610 	set_disk_ro(md->disk, md->read_only || default_ro);
2611 	if (area_type & MMC_BLK_DATA_AREA_RPMB)
2612 		md->disk->flags |= GENHD_FL_NO_PART;
2613 
2614 	/*
2615 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2616 	 *
2617 	 * - be set for removable media with permanent block devices
2618 	 * - be unset for removable block devices with permanent media
2619 	 *
2620 	 * Since MMC block devices clearly fall under the second
2621 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2622 	 * should use the block device creation/destruction hotplug
2623 	 * messages to tell when the card is present.
2624 	 */
2625 
2626 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2627 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2628 
2629 	set_capacity(md->disk, size);
2630 
2631 	string_get_size((u64)size, 512, STRING_UNITS_2,
2632 			cap_str, sizeof(cap_str));
2633 	pr_info("%s: %s %s %s%s\n",
2634 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2635 		cap_str, md->read_only ? " (ro)" : "");
2636 
2637 	/* used in ->open, must be set before add_disk: */
2638 	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2639 		dev_set_drvdata(&card->dev, md);
2640 	disk_fwnode = mmc_blk_get_partitions_node(parent, subname);
2641 	ret = add_disk_fwnode(md->parent, md->disk, mmc_disk_attr_groups,
2642 			      disk_fwnode);
2643 	if (ret)
2644 		goto err_put_disk;
2645 	return md;
2646 
2647  err_put_disk:
2648 	put_disk(md->disk);
2649 	blk_mq_free_tag_set(&md->queue.tag_set);
2650  err_kfree:
2651 	kfree(md);
2652  out:
2653 	ida_free(&mmc_blk_ida, devidx);
2654 	return ERR_PTR(ret);
2655 }
2656 
2657 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2658 {
2659 	sector_t size;
2660 
2661 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2662 		/*
2663 		 * The EXT_CSD sector count is in number or 512 byte
2664 		 * sectors.
2665 		 */
2666 		size = card->ext_csd.sectors;
2667 	} else {
2668 		/*
2669 		 * The CSD capacity field is in units of read_blkbits.
2670 		 * set_capacity takes units of 512 bytes.
2671 		 */
2672 		size = (typeof(sector_t))card->csd.capacity
2673 			<< (card->csd.read_blkbits - 9);
2674 	}
2675 
2676 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2677 					MMC_BLK_DATA_AREA_MAIN, 0);
2678 }
2679 
2680 static int mmc_blk_alloc_part(struct mmc_card *card,
2681 			      struct mmc_blk_data *md,
2682 			      unsigned int part_type,
2683 			      sector_t size,
2684 			      bool default_ro,
2685 			      const char *subname,
2686 			      int area_type)
2687 {
2688 	struct mmc_blk_data *part_md;
2689 
2690 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2691 				    subname, area_type, part_type);
2692 	if (IS_ERR(part_md))
2693 		return PTR_ERR(part_md);
2694 	list_add(&part_md->part, &md->part);
2695 
2696 	return 0;
2697 }
2698 
2699 /**
2700  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2701  * @filp: the character device file
2702  * @cmd: the ioctl() command
2703  * @arg: the argument from userspace
2704  *
2705  * This will essentially just redirect the ioctl()s coming in over to
2706  * the main block device spawning the RPMB character device.
2707  */
2708 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2709 			   unsigned long arg)
2710 {
2711 	struct mmc_rpmb_data *rpmb = filp->private_data;
2712 	int ret;
2713 
2714 	switch (cmd) {
2715 	case MMC_IOC_CMD:
2716 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2717 					(struct mmc_ioc_cmd __user *)arg,
2718 					rpmb);
2719 		break;
2720 	case MMC_IOC_MULTI_CMD:
2721 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2722 					(struct mmc_ioc_multi_cmd __user *)arg,
2723 					rpmb);
2724 		break;
2725 	default:
2726 		ret = -EINVAL;
2727 		break;
2728 	}
2729 
2730 	return ret;
2731 }
2732 
2733 #ifdef CONFIG_COMPAT
2734 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2735 			      unsigned long arg)
2736 {
2737 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2738 }
2739 #endif
2740 
2741 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2742 {
2743 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2744 						  struct mmc_rpmb_data, chrdev);
2745 
2746 	get_device(&rpmb->dev);
2747 	filp->private_data = rpmb;
2748 
2749 	return nonseekable_open(inode, filp);
2750 }
2751 
2752 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2753 {
2754 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2755 						  struct mmc_rpmb_data, chrdev);
2756 
2757 	put_device(&rpmb->dev);
2758 
2759 	return 0;
2760 }
2761 
2762 static const struct file_operations mmc_rpmb_fileops = {
2763 	.release = mmc_rpmb_chrdev_release,
2764 	.open = mmc_rpmb_chrdev_open,
2765 	.owner = THIS_MODULE,
2766 	.unlocked_ioctl = mmc_rpmb_ioctl,
2767 #ifdef CONFIG_COMPAT
2768 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2769 #endif
2770 };
2771 
2772 static void mmc_blk_rpmb_device_release(struct device *dev)
2773 {
2774 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2775 
2776 	rpmb_dev_unregister(rpmb->rdev);
2777 	mmc_blk_put(rpmb->md);
2778 	ida_free(&mmc_rpmb_ida, rpmb->id);
2779 	kfree(rpmb);
2780 }
2781 
2782 static void free_idata(struct mmc_blk_ioc_data **idata, unsigned int cmd_count)
2783 {
2784 	unsigned int n;
2785 
2786 	for (n = 0; n < cmd_count; n++)
2787 		kfree(idata[n]);
2788 	kfree(idata);
2789 }
2790 
2791 static struct mmc_blk_ioc_data **alloc_idata(struct mmc_rpmb_data *rpmb,
2792 					     unsigned int cmd_count)
2793 {
2794 	struct mmc_blk_ioc_data **idata;
2795 	unsigned int n;
2796 
2797 	idata = kcalloc(cmd_count, sizeof(*idata), GFP_KERNEL);
2798 	if (!idata)
2799 		return NULL;
2800 
2801 	for (n = 0; n < cmd_count; n++) {
2802 		idata[n] = kcalloc(1, sizeof(**idata), GFP_KERNEL);
2803 		if (!idata[n]) {
2804 			free_idata(idata, n);
2805 			return NULL;
2806 		}
2807 		idata[n]->rpmb = rpmb;
2808 	}
2809 
2810 	return idata;
2811 }
2812 
2813 static void set_idata(struct mmc_blk_ioc_data *idata, u32 opcode,
2814 		      int write_flag, u8 *buf, unsigned int buf_bytes)
2815 {
2816 	/*
2817 	 * The size of an RPMB frame must match what's expected by the
2818 	 * hardware.
2819 	 */
2820 	static_assert(!CHECK_SIZE_NEQ(512), "RPMB frame size must be 512 bytes");
2821 
2822 	idata->ic.opcode = opcode;
2823 	idata->ic.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
2824 	idata->ic.write_flag = write_flag;
2825 	idata->ic.blksz = RPMB_FRAME_SIZE;
2826 	idata->ic.blocks = buf_bytes /  idata->ic.blksz;
2827 	idata->buf = buf;
2828 	idata->buf_bytes = buf_bytes;
2829 }
2830 
2831 static int mmc_route_rpmb_frames(struct device *dev, u8 *req,
2832 				 unsigned int req_len, u8 *resp,
2833 				 unsigned int resp_len)
2834 {
2835 	struct rpmb_frame *frm = (struct rpmb_frame *)req;
2836 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2837 	struct mmc_blk_data *md = rpmb->md;
2838 	struct mmc_blk_ioc_data **idata;
2839 	struct mmc_queue_req *mq_rq;
2840 	unsigned int cmd_count;
2841 	struct request *rq;
2842 	u16 req_type;
2843 	bool write;
2844 	int ret;
2845 
2846 	if (IS_ERR(md->queue.card))
2847 		return PTR_ERR(md->queue.card);
2848 
2849 	if (req_len < RPMB_FRAME_SIZE)
2850 		return -EINVAL;
2851 
2852 	req_type = be16_to_cpu(frm->req_resp);
2853 	switch (req_type) {
2854 	case RPMB_PROGRAM_KEY:
2855 		if (CHECK_SIZE_NEQ(req_len) || CHECK_SIZE_NEQ(resp_len))
2856 			return -EINVAL;
2857 		write = true;
2858 		break;
2859 	case RPMB_GET_WRITE_COUNTER:
2860 		if (CHECK_SIZE_NEQ(req_len) || CHECK_SIZE_NEQ(resp_len))
2861 			return -EINVAL;
2862 		write = false;
2863 		break;
2864 	case RPMB_WRITE_DATA:
2865 		if (!CHECK_SIZE_ALIGNED(req_len) || CHECK_SIZE_NEQ(resp_len))
2866 			return -EINVAL;
2867 		write = true;
2868 		break;
2869 	case RPMB_READ_DATA:
2870 		if (CHECK_SIZE_NEQ(req_len) || !CHECK_SIZE_ALIGNED(resp_len))
2871 			return -EINVAL;
2872 		write = false;
2873 		break;
2874 	default:
2875 		return -EINVAL;
2876 	}
2877 
2878 	/* Write operations require 3 commands, read operations require 2 */
2879 	cmd_count = write ? 3 : 2;
2880 
2881 	idata = alloc_idata(rpmb, cmd_count);
2882 	if (!idata)
2883 		return -ENOMEM;
2884 
2885 	if (write) {
2886 		struct rpmb_frame *resp_frm = (struct rpmb_frame *)resp;
2887 
2888 		/* Send write request frame(s) */
2889 		set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK,
2890 			  1 | MMC_CMD23_ARG_REL_WR, req, req_len);
2891 
2892 		/* Send result request frame */
2893 		memset(resp_frm, 0, RPMB_FRAME_SIZE);
2894 		resp_frm->req_resp = cpu_to_be16(RPMB_RESULT_READ);
2895 		set_idata(idata[1], MMC_WRITE_MULTIPLE_BLOCK, 1, resp,
2896 			  resp_len);
2897 
2898 		/* Read response frame */
2899 		set_idata(idata[2], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len);
2900 	} else {
2901 		/* Send write request frame(s) */
2902 		set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK, 1, req, req_len);
2903 
2904 		/* Read response frame */
2905 		set_idata(idata[1], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len);
2906 	}
2907 
2908 	rq = blk_mq_alloc_request(md->queue.queue, REQ_OP_DRV_OUT, 0);
2909 	if (IS_ERR(rq)) {
2910 		ret = PTR_ERR(rq);
2911 		goto out;
2912 	}
2913 
2914 	mq_rq = req_to_mmc_queue_req(rq);
2915 	mq_rq->drv_op = MMC_DRV_OP_IOCTL_RPMB;
2916 	mq_rq->drv_op_result = -EIO;
2917 	mq_rq->drv_op_data = idata;
2918 	mq_rq->ioc_count = cmd_count;
2919 	blk_execute_rq(rq, false);
2920 	ret = req_to_mmc_queue_req(rq)->drv_op_result;
2921 
2922 	blk_mq_free_request(rq);
2923 
2924 out:
2925 	free_idata(idata, cmd_count);
2926 	return ret;
2927 }
2928 
2929 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2930 				   struct mmc_blk_data *md,
2931 				   unsigned int part_index,
2932 				   sector_t size,
2933 				   const char *subname)
2934 {
2935 	int devidx, ret;
2936 	char rpmb_name[DISK_NAME_LEN];
2937 	char cap_str[10];
2938 	struct mmc_rpmb_data *rpmb;
2939 
2940 	/* This creates the minor number for the RPMB char device */
2941 	devidx = ida_alloc_max(&mmc_rpmb_ida, max_devices - 1, GFP_KERNEL);
2942 	if (devidx < 0)
2943 		return devidx;
2944 
2945 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2946 	if (!rpmb) {
2947 		ida_free(&mmc_rpmb_ida, devidx);
2948 		return -ENOMEM;
2949 	}
2950 
2951 	snprintf(rpmb_name, sizeof(rpmb_name),
2952 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2953 
2954 	rpmb->id = devidx;
2955 	rpmb->part_index = part_index;
2956 	rpmb->dev.init_name = rpmb_name;
2957 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2958 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2959 	rpmb->dev.parent = &card->dev;
2960 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2961 	device_initialize(&rpmb->dev);
2962 	dev_set_drvdata(&rpmb->dev, rpmb);
2963 	mmc_blk_get(md->disk);
2964 	rpmb->md = md;
2965 
2966 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2967 	rpmb->chrdev.owner = THIS_MODULE;
2968 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2969 	if (ret) {
2970 		pr_err("%s: could not add character device\n", rpmb_name);
2971 		goto out_put_device;
2972 	}
2973 
2974 	list_add(&rpmb->node, &md->rpmbs);
2975 
2976 	string_get_size((u64)size, 512, STRING_UNITS_2,
2977 			cap_str, sizeof(cap_str));
2978 
2979 	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2980 		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2981 		MAJOR(mmc_rpmb_devt), rpmb->id);
2982 
2983 	return 0;
2984 
2985 out_put_device:
2986 	put_device(&rpmb->dev);
2987 	return ret;
2988 }
2989 
2990 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2991 
2992 {
2993 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2994 	put_device(&rpmb->dev);
2995 }
2996 
2997 /* MMC Physical partitions consist of two boot partitions and
2998  * up to four general purpose partitions.
2999  * For each partition enabled in EXT_CSD a block device will be allocatedi
3000  * to provide access to the partition.
3001  */
3002 
3003 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
3004 {
3005 	int idx, ret;
3006 
3007 	if (!mmc_card_mmc(card))
3008 		return 0;
3009 
3010 	for (idx = 0; idx < card->nr_parts; idx++) {
3011 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
3012 			/*
3013 			 * RPMB partitions does not provide block access, they
3014 			 * are only accessed using ioctl():s. Thus create
3015 			 * special RPMB block devices that do not have a
3016 			 * backing block queue for these.
3017 			 */
3018 			ret = mmc_blk_alloc_rpmb_part(card, md,
3019 				card->part[idx].part_cfg,
3020 				card->part[idx].size >> 9,
3021 				card->part[idx].name);
3022 			if (ret)
3023 				return ret;
3024 		} else if (card->part[idx].size) {
3025 			ret = mmc_blk_alloc_part(card, md,
3026 				card->part[idx].part_cfg,
3027 				card->part[idx].size >> 9,
3028 				card->part[idx].force_ro,
3029 				card->part[idx].name,
3030 				card->part[idx].area_type);
3031 			if (ret)
3032 				return ret;
3033 		}
3034 	}
3035 
3036 	return 0;
3037 }
3038 
3039 static void mmc_blk_remove_req(struct mmc_blk_data *md)
3040 {
3041 	/*
3042 	 * Flush remaining requests and free queues. It is freeing the queue
3043 	 * that stops new requests from being accepted.
3044 	 */
3045 	del_gendisk(md->disk);
3046 	mmc_cleanup_queue(&md->queue);
3047 	mmc_blk_put(md);
3048 }
3049 
3050 static void mmc_blk_remove_parts(struct mmc_card *card,
3051 				 struct mmc_blk_data *md)
3052 {
3053 	struct list_head *pos, *q;
3054 	struct mmc_blk_data *part_md;
3055 	struct mmc_rpmb_data *rpmb;
3056 
3057 	/* Remove RPMB partitions */
3058 	list_for_each_safe(pos, q, &md->rpmbs) {
3059 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
3060 		list_del(pos);
3061 		mmc_blk_remove_rpmb_part(rpmb);
3062 	}
3063 	/* Remove block partitions */
3064 	list_for_each_safe(pos, q, &md->part) {
3065 		part_md = list_entry(pos, struct mmc_blk_data, part);
3066 		list_del(pos);
3067 		mmc_blk_remove_req(part_md);
3068 	}
3069 }
3070 
3071 #ifdef CONFIG_DEBUG_FS
3072 
3073 static int mmc_dbg_card_status_get(void *data, u64 *val)
3074 {
3075 	struct mmc_card *card = data;
3076 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3077 	struct mmc_queue *mq = &md->queue;
3078 	struct request *req;
3079 	int ret;
3080 
3081 	/* Ask the block layer about the card status */
3082 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
3083 	if (IS_ERR(req))
3084 		return PTR_ERR(req);
3085 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
3086 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
3087 	blk_execute_rq(req, false);
3088 	ret = req_to_mmc_queue_req(req)->drv_op_result;
3089 	if (ret >= 0) {
3090 		*val = ret;
3091 		ret = 0;
3092 	}
3093 	blk_mq_free_request(req);
3094 
3095 	return ret;
3096 }
3097 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
3098 			 NULL, "%08llx\n");
3099 
3100 /* That is two digits * 512 + 1 for newline */
3101 #define EXT_CSD_STR_LEN 1025
3102 
3103 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
3104 {
3105 	struct mmc_card *card = inode->i_private;
3106 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3107 	struct mmc_queue *mq = &md->queue;
3108 	struct request *req;
3109 	char *buf;
3110 	ssize_t n = 0;
3111 	u8 *ext_csd;
3112 	int err, i;
3113 
3114 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
3115 	if (!buf)
3116 		return -ENOMEM;
3117 
3118 	/* Ask the block layer for the EXT CSD */
3119 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
3120 	if (IS_ERR(req)) {
3121 		err = PTR_ERR(req);
3122 		goto out_free;
3123 	}
3124 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
3125 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
3126 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
3127 	blk_execute_rq(req, false);
3128 	err = req_to_mmc_queue_req(req)->drv_op_result;
3129 	blk_mq_free_request(req);
3130 	if (err) {
3131 		pr_err("FAILED %d\n", err);
3132 		goto out_free;
3133 	}
3134 
3135 	for (i = 0; i < 512; i++)
3136 		n += sprintf(buf + n, "%02x", ext_csd[i]);
3137 	n += sprintf(buf + n, "\n");
3138 
3139 	if (n != EXT_CSD_STR_LEN) {
3140 		err = -EINVAL;
3141 		kfree(ext_csd);
3142 		goto out_free;
3143 	}
3144 
3145 	filp->private_data = buf;
3146 	kfree(ext_csd);
3147 	return 0;
3148 
3149 out_free:
3150 	kfree(buf);
3151 	return err;
3152 }
3153 
3154 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
3155 				size_t cnt, loff_t *ppos)
3156 {
3157 	char *buf = filp->private_data;
3158 
3159 	return simple_read_from_buffer(ubuf, cnt, ppos,
3160 				       buf, EXT_CSD_STR_LEN);
3161 }
3162 
3163 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
3164 {
3165 	kfree(file->private_data);
3166 	return 0;
3167 }
3168 
3169 static const struct file_operations mmc_dbg_ext_csd_fops = {
3170 	.open		= mmc_ext_csd_open,
3171 	.read		= mmc_ext_csd_read,
3172 	.release	= mmc_ext_csd_release,
3173 	.llseek		= default_llseek,
3174 };
3175 
3176 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
3177 {
3178 	struct dentry *root;
3179 
3180 	if (!card->debugfs_root)
3181 		return;
3182 
3183 	root = card->debugfs_root;
3184 
3185 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
3186 		md->status_dentry =
3187 			debugfs_create_file_unsafe("status", 0400, root,
3188 						   card,
3189 						   &mmc_dbg_card_status_fops);
3190 	}
3191 
3192 	if (mmc_card_mmc(card)) {
3193 		md->ext_csd_dentry =
3194 			debugfs_create_file("ext_csd", 0400, root, card,
3195 					    &mmc_dbg_ext_csd_fops);
3196 	}
3197 }
3198 
3199 static void mmc_blk_remove_debugfs(struct mmc_card *card,
3200 				   struct mmc_blk_data *md)
3201 {
3202 	if (!card->debugfs_root)
3203 		return;
3204 
3205 	debugfs_remove(md->status_dentry);
3206 	md->status_dentry = NULL;
3207 
3208 	debugfs_remove(md->ext_csd_dentry);
3209 	md->ext_csd_dentry = NULL;
3210 }
3211 
3212 #else
3213 
3214 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
3215 {
3216 }
3217 
3218 static void mmc_blk_remove_debugfs(struct mmc_card *card,
3219 				   struct mmc_blk_data *md)
3220 {
3221 }
3222 
3223 #endif /* CONFIG_DEBUG_FS */
3224 
3225 static void mmc_blk_rpmb_add(struct mmc_card *card)
3226 {
3227 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3228 	struct mmc_rpmb_data *rpmb;
3229 	struct rpmb_dev *rdev;
3230 	unsigned int n;
3231 	u32 cid[4];
3232 	struct rpmb_descr descr = {
3233 		.type = RPMB_TYPE_EMMC,
3234 		.route_frames = mmc_route_rpmb_frames,
3235 		.reliable_wr_count = card->ext_csd.enhanced_rpmb_supported ?
3236 				     2 : 32,
3237 		.capacity = card->ext_csd.raw_rpmb_size_mult,
3238 		.dev_id = (void *)cid,
3239 		.dev_id_len = sizeof(cid),
3240 	};
3241 
3242 	/*
3243 	 * Provice CID as an octet array. The CID needs to be interpreted
3244 	 * when used as input to derive the RPMB key since some fields
3245 	 * will change due to firmware updates.
3246 	 */
3247 	for (n = 0; n < 4; n++)
3248 		cid[n] = be32_to_cpu((__force __be32)card->raw_cid[n]);
3249 
3250 	list_for_each_entry(rpmb, &md->rpmbs, node) {
3251 		rdev = rpmb_dev_register(&rpmb->dev, &descr);
3252 		if (IS_ERR(rdev)) {
3253 			pr_warn("%s: could not register RPMB device\n",
3254 				dev_name(&rpmb->dev));
3255 			continue;
3256 		}
3257 		rpmb->rdev = rdev;
3258 	}
3259 }
3260 
3261 static int mmc_blk_probe(struct mmc_card *card)
3262 {
3263 	struct mmc_blk_data *md;
3264 	int ret = 0;
3265 
3266 	/*
3267 	 * Check that the card supports the command class(es) we need.
3268 	 */
3269 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
3270 		return -ENODEV;
3271 
3272 	mmc_fixup_device(card, mmc_blk_fixups);
3273 
3274 	card->complete_wq = alloc_workqueue("mmc_complete",
3275 					WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_PERCPU,
3276 					0);
3277 	if (!card->complete_wq) {
3278 		pr_err("Failed to create mmc completion workqueue");
3279 		return -ENOMEM;
3280 	}
3281 
3282 	md = mmc_blk_alloc(card);
3283 	if (IS_ERR(md)) {
3284 		ret = PTR_ERR(md);
3285 		goto out_free;
3286 	}
3287 
3288 	ret = mmc_blk_alloc_parts(card, md);
3289 	if (ret)
3290 		goto out;
3291 
3292 	/* Add two debugfs entries */
3293 	mmc_blk_add_debugfs(card, md);
3294 
3295 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
3296 	pm_runtime_use_autosuspend(&card->dev);
3297 
3298 	/*
3299 	 * Don't enable runtime PM for SD-combo cards here. Leave that
3300 	 * decision to be taken during the SDIO init sequence instead.
3301 	 */
3302 	if (!mmc_card_sd_combo(card)) {
3303 		pm_runtime_set_active(&card->dev);
3304 		pm_runtime_enable(&card->dev);
3305 	}
3306 
3307 	mmc_blk_rpmb_add(card);
3308 
3309 	return 0;
3310 
3311 out:
3312 	mmc_blk_remove_parts(card, md);
3313 	mmc_blk_remove_req(md);
3314 out_free:
3315 	destroy_workqueue(card->complete_wq);
3316 	return ret;
3317 }
3318 
3319 static void mmc_blk_remove(struct mmc_card *card)
3320 {
3321 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3322 
3323 	mmc_blk_remove_debugfs(card, md);
3324 	mmc_blk_remove_parts(card, md);
3325 	pm_runtime_get_sync(&card->dev);
3326 	if (md->part_curr != md->part_type) {
3327 		mmc_claim_host(card->host);
3328 		mmc_blk_part_switch(card, md->part_type);
3329 		mmc_release_host(card->host);
3330 	}
3331 	if (!mmc_card_sd_combo(card))
3332 		pm_runtime_disable(&card->dev);
3333 	pm_runtime_put_noidle(&card->dev);
3334 	mmc_blk_remove_req(md);
3335 	destroy_workqueue(card->complete_wq);
3336 }
3337 
3338 static int _mmc_blk_suspend(struct mmc_card *card)
3339 {
3340 	struct mmc_blk_data *part_md;
3341 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3342 
3343 	if (md) {
3344 		mmc_queue_suspend(&md->queue);
3345 		list_for_each_entry(part_md, &md->part, part) {
3346 			mmc_queue_suspend(&part_md->queue);
3347 		}
3348 	}
3349 	return 0;
3350 }
3351 
3352 static void mmc_blk_shutdown(struct mmc_card *card)
3353 {
3354 	_mmc_blk_suspend(card);
3355 }
3356 
3357 #ifdef CONFIG_PM_SLEEP
3358 static int mmc_blk_suspend(struct device *dev)
3359 {
3360 	struct mmc_card *card = mmc_dev_to_card(dev);
3361 
3362 	return _mmc_blk_suspend(card);
3363 }
3364 
3365 static int mmc_blk_resume(struct device *dev)
3366 {
3367 	struct mmc_blk_data *part_md;
3368 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3369 
3370 	if (md) {
3371 		/*
3372 		 * Resume involves the card going into idle state,
3373 		 * so current partition is always the main one.
3374 		 */
3375 		md->part_curr = md->part_type;
3376 		mmc_queue_resume(&md->queue);
3377 		list_for_each_entry(part_md, &md->part, part) {
3378 			mmc_queue_resume(&part_md->queue);
3379 		}
3380 	}
3381 	return 0;
3382 }
3383 #endif
3384 
3385 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3386 
3387 static struct mmc_driver mmc_driver = {
3388 	.drv		= {
3389 		.name	= "mmcblk",
3390 		.pm	= &mmc_blk_pm_ops,
3391 	},
3392 	.probe		= mmc_blk_probe,
3393 	.remove		= mmc_blk_remove,
3394 	.shutdown	= mmc_blk_shutdown,
3395 };
3396 
3397 static int __init mmc_blk_init(void)
3398 {
3399 	int res;
3400 
3401 	res  = bus_register(&mmc_rpmb_bus_type);
3402 	if (res < 0) {
3403 		pr_err("mmcblk: could not register RPMB bus type\n");
3404 		return res;
3405 	}
3406 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3407 	if (res < 0) {
3408 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3409 		goto out_bus_unreg;
3410 	}
3411 
3412 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3413 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3414 
3415 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3416 
3417 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3418 	if (res)
3419 		goto out_chrdev_unreg;
3420 
3421 	res = mmc_register_driver(&mmc_driver);
3422 	if (res)
3423 		goto out_blkdev_unreg;
3424 
3425 	return 0;
3426 
3427 out_blkdev_unreg:
3428 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3429 out_chrdev_unreg:
3430 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3431 out_bus_unreg:
3432 	bus_unregister(&mmc_rpmb_bus_type);
3433 	return res;
3434 }
3435 
3436 static void __exit mmc_blk_exit(void)
3437 {
3438 	mmc_unregister_driver(&mmc_driver);
3439 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3440 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3441 	bus_unregister(&mmc_rpmb_bus_type);
3442 }
3443 
3444 module_init(mmc_blk_init);
3445 module_exit(mmc_blk_exit);
3446 
3447 MODULE_LICENSE("GPL");
3448 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3449