1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/rtnetlink.h>
55 #include <linux/sched.h>
56 #include <linux/seq_file.h>
57 #include <linux/sockios.h>
58 #include <linux/vmalloc.h>
59 #include <linux/workqueue.h>
60 #include <net/neighbour.h>
61 #include <net/netevent.h>
62 #include <net/addrconf.h>
63 #include <net/bonding.h>
64 #include <linux/uaccess.h>
65 #include <linux/crash_dump.h>
66 #include <net/udp_tunnel.h>
67 #include <net/xfrm.h>
68 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
69 #include <net/tls.h>
70 #endif
71
72 #include "cxgb4.h"
73 #include "cxgb4_filter.h"
74 #include "t4_regs.h"
75 #include "t4_values.h"
76 #include "t4_msg.h"
77 #include "t4fw_api.h"
78 #include "t4fw_version.h"
79 #include "cxgb4_dcb.h"
80 #include "srq.h"
81 #include "cxgb4_debugfs.h"
82 #include "clip_tbl.h"
83 #include "l2t.h"
84 #include "smt.h"
85 #include "sched.h"
86 #include "cxgb4_tc_u32.h"
87 #include "cxgb4_tc_flower.h"
88 #include "cxgb4_tc_mqprio.h"
89 #include "cxgb4_tc_matchall.h"
90 #include "cxgb4_ptp.h"
91 #include "cxgb4_cudbg.h"
92
93 char cxgb4_driver_name[] = KBUILD_MODNAME;
94
95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
96
97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
98 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
99 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
100
101 /* Macros needed to support the PCI Device ID Table ...
102 */
103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
104 static const struct pci_device_id cxgb4_pci_tbl[] = {
105 #define CXGB4_UNIFIED_PF 0x4
106
107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
108
109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
110 * called for both.
111 */
112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
113
114 #define CH_PCI_ID_TABLE_ENTRY(devid) \
115 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
116
117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
118 { 0, } \
119 }
120
121 #include "t4_pci_id_tbl.h"
122
123 #define FW4_FNAME "cxgb4/t4fw.bin"
124 #define FW5_FNAME "cxgb4/t5fw.bin"
125 #define FW6_FNAME "cxgb4/t6fw.bin"
126 #define FW4_CFNAME "cxgb4/t4-config.txt"
127 #define FW5_CFNAME "cxgb4/t5-config.txt"
128 #define FW6_CFNAME "cxgb4/t6-config.txt"
129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
131 #define PHY_AQ1202_DEVICEID 0x4409
132 #define PHY_BCM84834_DEVICEID 0x4486
133
134 MODULE_DESCRIPTION(DRV_DESC);
135 MODULE_AUTHOR("Chelsio Communications");
136 MODULE_LICENSE("Dual BSD/GPL");
137 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
138 MODULE_FIRMWARE(FW4_FNAME);
139 MODULE_FIRMWARE(FW5_FNAME);
140 MODULE_FIRMWARE(FW6_FNAME);
141
142 /*
143 * The driver uses the best interrupt scheme available on a platform in the
144 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
145 * of these schemes the driver may consider as follows:
146 *
147 * msi = 2: choose from among all three options
148 * msi = 1: only consider MSI and INTx interrupts
149 * msi = 0: force INTx interrupts
150 */
151 static int msi = 2;
152
153 module_param(msi, int, 0644);
154 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
155
156 /*
157 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
158 * offset by 2 bytes in order to have the IP headers line up on 4-byte
159 * boundaries. This is a requirement for many architectures which will throw
160 * a machine check fault if an attempt is made to access one of the 4-byte IP
161 * header fields on a non-4-byte boundary. And it's a major performance issue
162 * even on some architectures which allow it like some implementations of the
163 * x86 ISA. However, some architectures don't mind this and for some very
164 * edge-case performance sensitive applications (like forwarding large volumes
165 * of small packets), setting this DMA offset to 0 will decrease the number of
166 * PCI-E Bus transfers enough to measurably affect performance.
167 */
168 static int rx_dma_offset = 2;
169
170 /* TX Queue select used to determine what algorithm to use for selecting TX
171 * queue. Select between the kernel provided function (select_queue=0) or user
172 * cxgb_select_queue function (select_queue=1)
173 *
174 * Default: select_queue=0
175 */
176 static int select_queue;
177 module_param(select_queue, int, 0644);
178 MODULE_PARM_DESC(select_queue,
179 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
180
181 static struct dentry *cxgb4_debugfs_root;
182
183 LIST_HEAD(adapter_list);
184 DEFINE_MUTEX(uld_mutex);
185 LIST_HEAD(uld_list);
186
187 static int cfg_queues(struct adapter *adap);
188
link_report(struct net_device * dev)189 static void link_report(struct net_device *dev)
190 {
191 if (!netif_carrier_ok(dev))
192 netdev_info(dev, "link down\n");
193 else {
194 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
195
196 const char *s;
197 const struct port_info *p = netdev_priv(dev);
198
199 switch (p->link_cfg.speed) {
200 case 100:
201 s = "100Mbps";
202 break;
203 case 1000:
204 s = "1Gbps";
205 break;
206 case 10000:
207 s = "10Gbps";
208 break;
209 case 25000:
210 s = "25Gbps";
211 break;
212 case 40000:
213 s = "40Gbps";
214 break;
215 case 50000:
216 s = "50Gbps";
217 break;
218 case 100000:
219 s = "100Gbps";
220 break;
221 default:
222 pr_info("%s: unsupported speed: %d\n",
223 dev->name, p->link_cfg.speed);
224 return;
225 }
226
227 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
228 fc[p->link_cfg.fc]);
229 }
230 }
231
232 #ifdef CONFIG_CHELSIO_T4_DCB
233 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
dcb_tx_queue_prio_enable(struct net_device * dev,int enable)234 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
235 {
236 struct port_info *pi = netdev_priv(dev);
237 struct adapter *adap = pi->adapter;
238 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
239 int i;
240
241 /* We use a simple mapping of Port TX Queue Index to DCB
242 * Priority when we're enabling DCB.
243 */
244 for (i = 0; i < pi->nqsets; i++, txq++) {
245 u32 name, value;
246 int err;
247
248 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
249 FW_PARAMS_PARAM_X_V(
250 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
251 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
252 value = enable ? i : 0xffffffff;
253
254 /* Since we can be called while atomic (from "interrupt
255 * level") we need to issue the Set Parameters Commannd
256 * without sleeping (timeout < 0).
257 */
258 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
259 &name, &value,
260 -FW_CMD_MAX_TIMEOUT);
261
262 if (err)
263 dev_err(adap->pdev_dev,
264 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
265 enable ? "set" : "unset", pi->port_id, i, -err);
266 else
267 txq->dcb_prio = enable ? value : 0;
268 }
269 }
270
cxgb4_dcb_enabled(const struct net_device * dev)271 int cxgb4_dcb_enabled(const struct net_device *dev)
272 {
273 struct port_info *pi = netdev_priv(dev);
274
275 if (!pi->dcb.enabled)
276 return 0;
277
278 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
279 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
280 }
281 #endif /* CONFIG_CHELSIO_T4_DCB */
282
t4_os_link_changed(struct adapter * adapter,int port_id,int link_stat)283 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
284 {
285 struct net_device *dev = adapter->port[port_id];
286
287 /* Skip changes from disabled ports. */
288 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
289 if (link_stat)
290 netif_carrier_on(dev);
291 else {
292 #ifdef CONFIG_CHELSIO_T4_DCB
293 if (cxgb4_dcb_enabled(dev)) {
294 cxgb4_dcb_reset(dev);
295 dcb_tx_queue_prio_enable(dev, false);
296 }
297 #endif /* CONFIG_CHELSIO_T4_DCB */
298 netif_carrier_off(dev);
299 }
300
301 link_report(dev);
302 }
303 }
304
t4_os_portmod_changed(struct adapter * adap,int port_id)305 void t4_os_portmod_changed(struct adapter *adap, int port_id)
306 {
307 static const char *mod_str[] = {
308 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
309 };
310
311 struct net_device *dev = adap->port[port_id];
312 struct port_info *pi = netdev_priv(dev);
313
314 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
315 netdev_info(dev, "port module unplugged\n");
316 else if (pi->mod_type < ARRAY_SIZE(mod_str))
317 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
318 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
319 netdev_info(dev, "%s: unsupported port module inserted\n",
320 dev->name);
321 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
322 netdev_info(dev, "%s: unknown port module inserted\n",
323 dev->name);
324 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
325 netdev_info(dev, "%s: transceiver module error\n", dev->name);
326 else
327 netdev_info(dev, "%s: unknown module type %d inserted\n",
328 dev->name, pi->mod_type);
329
330 /* If the interface is running, then we'll need any "sticky" Link
331 * Parameters redone with a new Transceiver Module.
332 */
333 pi->link_cfg.redo_l1cfg = netif_running(dev);
334 }
335
336 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
337 module_param(dbfifo_int_thresh, int, 0644);
338 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
339
340 /*
341 * usecs to sleep while draining the dbfifo
342 */
343 static int dbfifo_drain_delay = 1000;
344 module_param(dbfifo_drain_delay, int, 0644);
345 MODULE_PARM_DESC(dbfifo_drain_delay,
346 "usecs to sleep while draining the dbfifo");
347
cxgb4_set_addr_hash(struct port_info * pi)348 static inline int cxgb4_set_addr_hash(struct port_info *pi)
349 {
350 struct adapter *adap = pi->adapter;
351 u64 vec = 0;
352 bool ucast = false;
353 struct hash_mac_addr *entry;
354
355 /* Calculate the hash vector for the updated list and program it */
356 list_for_each_entry(entry, &adap->mac_hlist, list) {
357 ucast |= is_unicast_ether_addr(entry->addr);
358 vec |= (1ULL << hash_mac_addr(entry->addr));
359 }
360 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
361 vec, false);
362 }
363
cxgb4_mac_sync(struct net_device * netdev,const u8 * mac_addr)364 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
365 {
366 struct port_info *pi = netdev_priv(netdev);
367 struct adapter *adap = pi->adapter;
368 int ret;
369 u64 mhash = 0;
370 u64 uhash = 0;
371 /* idx stores the index of allocated filters,
372 * its size should be modified based on the number of
373 * MAC addresses that we allocate filters for
374 */
375
376 u16 idx[1] = {};
377 bool free = false;
378 bool ucast = is_unicast_ether_addr(mac_addr);
379 const u8 *maclist[1] = {mac_addr};
380 struct hash_mac_addr *new_entry;
381
382 ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
383 idx, ucast ? &uhash : &mhash, false);
384 if (ret < 0)
385 goto out;
386 /* if hash != 0, then add the addr to hash addr list
387 * so on the end we will calculate the hash for the
388 * list and program it
389 */
390 if (uhash || mhash) {
391 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
392 if (!new_entry)
393 return -ENOMEM;
394 ether_addr_copy(new_entry->addr, mac_addr);
395 list_add_tail(&new_entry->list, &adap->mac_hlist);
396 ret = cxgb4_set_addr_hash(pi);
397 }
398 out:
399 return ret < 0 ? ret : 0;
400 }
401
cxgb4_mac_unsync(struct net_device * netdev,const u8 * mac_addr)402 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
403 {
404 struct port_info *pi = netdev_priv(netdev);
405 struct adapter *adap = pi->adapter;
406 int ret;
407 const u8 *maclist[1] = {mac_addr};
408 struct hash_mac_addr *entry, *tmp;
409
410 /* If the MAC address to be removed is in the hash addr
411 * list, delete it from the list and update hash vector
412 */
413 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
414 if (ether_addr_equal(entry->addr, mac_addr)) {
415 list_del(&entry->list);
416 kfree(entry);
417 return cxgb4_set_addr_hash(pi);
418 }
419 }
420
421 ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
422 return ret < 0 ? -EINVAL : 0;
423 }
424
425 /*
426 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
427 * If @mtu is -1 it is left unchanged.
428 */
set_rxmode(struct net_device * dev,int mtu,bool sleep_ok)429 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
430 {
431 struct port_info *pi = netdev_priv(dev);
432 struct adapter *adapter = pi->adapter;
433
434 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
435 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
436
437 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, pi->viid_mirror,
438 mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
439 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
440 sleep_ok);
441 }
442
443 /**
444 * cxgb4_change_mac - Update match filter for a MAC address.
445 * @pi: the port_info
446 * @viid: the VI id
447 * @tcam_idx: TCAM index of existing filter for old value of MAC address,
448 * or -1
449 * @addr: the new MAC address value
450 * @persist: whether a new MAC allocation should be persistent
451 * @smt_idx: the destination to store the new SMT index.
452 *
453 * Modifies an MPS filter and sets it to the new MAC address if
454 * @tcam_idx >= 0, or adds the MAC address to a new filter if
455 * @tcam_idx < 0. In the latter case the address is added persistently
456 * if @persist is %true.
457 * Addresses are programmed to hash region, if tcam runs out of entries.
458 *
459 */
cxgb4_change_mac(struct port_info * pi,unsigned int viid,int * tcam_idx,const u8 * addr,bool persist,u8 * smt_idx)460 int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
461 int *tcam_idx, const u8 *addr, bool persist,
462 u8 *smt_idx)
463 {
464 struct adapter *adapter = pi->adapter;
465 struct hash_mac_addr *entry, *new_entry;
466 int ret;
467
468 ret = t4_change_mac(adapter, adapter->mbox, viid,
469 *tcam_idx, addr, persist, smt_idx);
470 /* We ran out of TCAM entries. try programming hash region. */
471 if (ret == -ENOMEM) {
472 /* If the MAC address to be updated is in the hash addr
473 * list, update it from the list
474 */
475 list_for_each_entry(entry, &adapter->mac_hlist, list) {
476 if (entry->iface_mac) {
477 ether_addr_copy(entry->addr, addr);
478 goto set_hash;
479 }
480 }
481 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
482 if (!new_entry)
483 return -ENOMEM;
484 ether_addr_copy(new_entry->addr, addr);
485 new_entry->iface_mac = true;
486 list_add_tail(&new_entry->list, &adapter->mac_hlist);
487 set_hash:
488 ret = cxgb4_set_addr_hash(pi);
489 } else if (ret >= 0) {
490 *tcam_idx = ret;
491 ret = 0;
492 }
493
494 return ret;
495 }
496
497 /*
498 * link_start - enable a port
499 * @dev: the port to enable
500 *
501 * Performs the MAC and PHY actions needed to enable a port.
502 */
link_start(struct net_device * dev)503 static int link_start(struct net_device *dev)
504 {
505 struct port_info *pi = netdev_priv(dev);
506 unsigned int mb = pi->adapter->mbox;
507 int ret;
508
509 /*
510 * We do not set address filters and promiscuity here, the stack does
511 * that step explicitly.
512 */
513 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, pi->viid_mirror,
514 dev->mtu, -1, -1, -1,
515 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
516 if (ret == 0)
517 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
518 dev->dev_addr, true, &pi->smt_idx);
519 if (ret == 0)
520 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
521 &pi->link_cfg);
522 if (ret == 0) {
523 local_bh_disable();
524 ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
525 true, CXGB4_DCB_ENABLED);
526 local_bh_enable();
527 }
528
529 return ret;
530 }
531
532 #ifdef CONFIG_CHELSIO_T4_DCB
533 /* Handle a Data Center Bridging update message from the firmware. */
dcb_rpl(struct adapter * adap,const struct fw_port_cmd * pcmd)534 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
535 {
536 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
537 struct net_device *dev = adap->port[adap->chan_map[port]];
538 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
539 int new_dcb_enabled;
540
541 cxgb4_dcb_handle_fw_update(adap, pcmd);
542 new_dcb_enabled = cxgb4_dcb_enabled(dev);
543
544 /* If the DCB has become enabled or disabled on the port then we're
545 * going to need to set up/tear down DCB Priority parameters for the
546 * TX Queues associated with the port.
547 */
548 if (new_dcb_enabled != old_dcb_enabled)
549 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
550 }
551 #endif /* CONFIG_CHELSIO_T4_DCB */
552
553 /* Response queue handler for the FW event queue.
554 */
fwevtq_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * gl)555 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
556 const struct pkt_gl *gl)
557 {
558 u8 opcode = ((const struct rss_header *)rsp)->opcode;
559
560 rsp++; /* skip RSS header */
561
562 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
563 */
564 if (unlikely(opcode == CPL_FW4_MSG &&
565 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
566 rsp++;
567 opcode = ((const struct rss_header *)rsp)->opcode;
568 rsp++;
569 if (opcode != CPL_SGE_EGR_UPDATE) {
570 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
571 , opcode);
572 goto out;
573 }
574 }
575
576 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
577 const struct cpl_sge_egr_update *p = (void *)rsp;
578 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
579 struct sge_txq *txq;
580
581 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
582 txq->restarts++;
583 if (txq->q_type == CXGB4_TXQ_ETH) {
584 struct sge_eth_txq *eq;
585
586 eq = container_of(txq, struct sge_eth_txq, q);
587 t4_sge_eth_txq_egress_update(q->adap, eq, -1);
588 } else {
589 struct sge_uld_txq *oq;
590
591 oq = container_of(txq, struct sge_uld_txq, q);
592 tasklet_schedule(&oq->qresume_tsk);
593 }
594 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
595 const struct cpl_fw6_msg *p = (void *)rsp;
596
597 #ifdef CONFIG_CHELSIO_T4_DCB
598 const struct fw_port_cmd *pcmd = (const void *)p->data;
599 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
600 unsigned int action =
601 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
602
603 if (cmd == FW_PORT_CMD &&
604 (action == FW_PORT_ACTION_GET_PORT_INFO ||
605 action == FW_PORT_ACTION_GET_PORT_INFO32)) {
606 int port = FW_PORT_CMD_PORTID_G(
607 be32_to_cpu(pcmd->op_to_portid));
608 struct net_device *dev;
609 int dcbxdis, state_input;
610
611 dev = q->adap->port[q->adap->chan_map[port]];
612 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
613 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
614 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
615 & FW_PORT_CMD_DCBXDIS32_F));
616 state_input = (dcbxdis
617 ? CXGB4_DCB_INPUT_FW_DISABLED
618 : CXGB4_DCB_INPUT_FW_ENABLED);
619
620 cxgb4_dcb_state_fsm(dev, state_input);
621 }
622
623 if (cmd == FW_PORT_CMD &&
624 action == FW_PORT_ACTION_L2_DCB_CFG)
625 dcb_rpl(q->adap, pcmd);
626 else
627 #endif
628 if (p->type == 0)
629 t4_handle_fw_rpl(q->adap, p->data);
630 } else if (opcode == CPL_L2T_WRITE_RPL) {
631 const struct cpl_l2t_write_rpl *p = (void *)rsp;
632
633 do_l2t_write_rpl(q->adap, p);
634 } else if (opcode == CPL_SMT_WRITE_RPL) {
635 const struct cpl_smt_write_rpl *p = (void *)rsp;
636
637 do_smt_write_rpl(q->adap, p);
638 } else if (opcode == CPL_SET_TCB_RPL) {
639 const struct cpl_set_tcb_rpl *p = (void *)rsp;
640
641 filter_rpl(q->adap, p);
642 } else if (opcode == CPL_ACT_OPEN_RPL) {
643 const struct cpl_act_open_rpl *p = (void *)rsp;
644
645 hash_filter_rpl(q->adap, p);
646 } else if (opcode == CPL_ABORT_RPL_RSS) {
647 const struct cpl_abort_rpl_rss *p = (void *)rsp;
648
649 hash_del_filter_rpl(q->adap, p);
650 } else if (opcode == CPL_SRQ_TABLE_RPL) {
651 const struct cpl_srq_table_rpl *p = (void *)rsp;
652
653 do_srq_table_rpl(q->adap, p);
654 } else
655 dev_err(q->adap->pdev_dev,
656 "unexpected CPL %#x on FW event queue\n", opcode);
657 out:
658 return 0;
659 }
660
disable_msi(struct adapter * adapter)661 static void disable_msi(struct adapter *adapter)
662 {
663 if (adapter->flags & CXGB4_USING_MSIX) {
664 pci_disable_msix(adapter->pdev);
665 adapter->flags &= ~CXGB4_USING_MSIX;
666 } else if (adapter->flags & CXGB4_USING_MSI) {
667 pci_disable_msi(adapter->pdev);
668 adapter->flags &= ~CXGB4_USING_MSI;
669 }
670 }
671
672 /*
673 * Interrupt handler for non-data events used with MSI-X.
674 */
t4_nondata_intr(int irq,void * cookie)675 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
676 {
677 struct adapter *adap = cookie;
678 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
679
680 if (v & PFSW_F) {
681 adap->swintr = 1;
682 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
683 }
684 if (adap->flags & CXGB4_MASTER_PF)
685 t4_slow_intr_handler(adap);
686 return IRQ_HANDLED;
687 }
688
cxgb4_set_msix_aff(struct adapter * adap,unsigned short vec,cpumask_var_t * aff_mask,int idx)689 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
690 cpumask_var_t *aff_mask, int idx)
691 {
692 int rv;
693
694 if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
695 dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
696 return -ENOMEM;
697 }
698
699 cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
700 *aff_mask);
701
702 rv = irq_set_affinity_hint(vec, *aff_mask);
703 if (rv)
704 dev_warn(adap->pdev_dev,
705 "irq_set_affinity_hint %u failed %d\n",
706 vec, rv);
707
708 return 0;
709 }
710
cxgb4_clear_msix_aff(unsigned short vec,cpumask_var_t aff_mask)711 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
712 {
713 irq_set_affinity_hint(vec, NULL);
714 free_cpumask_var(aff_mask);
715 }
716
request_msix_queue_irqs(struct adapter * adap)717 static int request_msix_queue_irqs(struct adapter *adap)
718 {
719 struct sge *s = &adap->sge;
720 struct msix_info *minfo;
721 int err, ethqidx;
722
723 if (s->fwevtq_msix_idx < 0)
724 return -ENOMEM;
725
726 err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
727 t4_sge_intr_msix, 0,
728 adap->msix_info[s->fwevtq_msix_idx].desc,
729 &s->fw_evtq);
730 if (err)
731 return err;
732
733 for_each_ethrxq(s, ethqidx) {
734 minfo = s->ethrxq[ethqidx].msix;
735 err = request_irq(minfo->vec,
736 t4_sge_intr_msix, 0,
737 minfo->desc,
738 &s->ethrxq[ethqidx].rspq);
739 if (err)
740 goto unwind;
741
742 cxgb4_set_msix_aff(adap, minfo->vec,
743 &minfo->aff_mask, ethqidx);
744 }
745 return 0;
746
747 unwind:
748 while (--ethqidx >= 0) {
749 minfo = s->ethrxq[ethqidx].msix;
750 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
751 free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
752 }
753 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
754 return err;
755 }
756
free_msix_queue_irqs(struct adapter * adap)757 static void free_msix_queue_irqs(struct adapter *adap)
758 {
759 struct sge *s = &adap->sge;
760 struct msix_info *minfo;
761 int i;
762
763 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
764 for_each_ethrxq(s, i) {
765 minfo = s->ethrxq[i].msix;
766 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
767 free_irq(minfo->vec, &s->ethrxq[i].rspq);
768 }
769 }
770
setup_ppod_edram(struct adapter * adap)771 static int setup_ppod_edram(struct adapter *adap)
772 {
773 unsigned int param, val;
774 int ret;
775
776 /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
777 * if firmware supports ppod edram feature or not. If firmware
778 * returns 1, then driver can enable this feature by sending
779 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
780 * enable ppod edram feature.
781 */
782 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
783 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
784
785 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
786 if (ret < 0) {
787 dev_warn(adap->pdev_dev,
788 "querying PPOD_EDRAM support failed: %d\n",
789 ret);
790 return -1;
791 }
792
793 if (val != 1)
794 return -1;
795
796 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
797 if (ret < 0) {
798 dev_err(adap->pdev_dev,
799 "setting PPOD_EDRAM failed: %d\n", ret);
800 return -1;
801 }
802 return 0;
803 }
804
adap_config_hpfilter(struct adapter * adapter)805 static void adap_config_hpfilter(struct adapter *adapter)
806 {
807 u32 param, val = 0;
808 int ret;
809
810 /* Enable HP filter region. Older fw will fail this request and
811 * it is fine.
812 */
813 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
814 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
815 1, ¶m, &val);
816
817 /* An error means FW doesn't know about HP filter support,
818 * it's not a problem, don't return an error.
819 */
820 if (ret < 0)
821 dev_err(adapter->pdev_dev,
822 "HP filter region isn't supported by FW\n");
823 }
824
cxgb4_config_rss(const struct port_info * pi,u16 * rss,u16 rss_size,u16 viid)825 static int cxgb4_config_rss(const struct port_info *pi, u16 *rss,
826 u16 rss_size, u16 viid)
827 {
828 struct adapter *adap = pi->adapter;
829 int ret;
830
831 ret = t4_config_rss_range(adap, adap->mbox, viid, 0, rss_size, rss,
832 rss_size);
833 if (ret)
834 return ret;
835
836 /* If Tunnel All Lookup isn't specified in the global RSS
837 * Configuration, then we need to specify a default Ingress
838 * Queue for any ingress packets which aren't hashed. We'll
839 * use our first ingress queue ...
840 */
841 return t4_config_vi_rss(adap, adap->mbox, viid,
842 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
843 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
844 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
845 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
846 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
847 rss[0]);
848 }
849
850 /**
851 * cxgb4_write_rss - write the RSS table for a given port
852 * @pi: the port
853 * @queues: array of queue indices for RSS
854 *
855 * Sets up the portion of the HW RSS table for the port's VI to distribute
856 * packets to the Rx queues in @queues.
857 * Should never be called before setting up sge eth rx queues
858 */
cxgb4_write_rss(const struct port_info * pi,const u16 * queues)859 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
860 {
861 struct adapter *adapter = pi->adapter;
862 const struct sge_eth_rxq *rxq;
863 int i, err;
864 u16 *rss;
865
866 rxq = &adapter->sge.ethrxq[pi->first_qset];
867 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
868 if (!rss)
869 return -ENOMEM;
870
871 /* map the queue indices to queue ids */
872 for (i = 0; i < pi->rss_size; i++, queues++)
873 rss[i] = rxq[*queues].rspq.abs_id;
874
875 err = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid);
876 kfree(rss);
877 return err;
878 }
879
880 /**
881 * setup_rss - configure RSS
882 * @adap: the adapter
883 *
884 * Sets up RSS for each port.
885 */
setup_rss(struct adapter * adap)886 static int setup_rss(struct adapter *adap)
887 {
888 int i, j, err;
889
890 for_each_port(adap, i) {
891 const struct port_info *pi = adap2pinfo(adap, i);
892
893 /* Fill default values with equal distribution */
894 for (j = 0; j < pi->rss_size; j++)
895 pi->rss[j] = j % pi->nqsets;
896
897 err = cxgb4_write_rss(pi, pi->rss);
898 if (err)
899 return err;
900 }
901 return 0;
902 }
903
904 /*
905 * Return the channel of the ingress queue with the given qid.
906 */
rxq_to_chan(const struct sge * p,unsigned int qid)907 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
908 {
909 qid -= p->ingr_start;
910 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
911 }
912
cxgb4_quiesce_rx(struct sge_rspq * q)913 void cxgb4_quiesce_rx(struct sge_rspq *q)
914 {
915 if (q->handler)
916 napi_disable(&q->napi);
917 }
918
919 /*
920 * Wait until all NAPI handlers are descheduled.
921 */
quiesce_rx(struct adapter * adap)922 static void quiesce_rx(struct adapter *adap)
923 {
924 int i;
925
926 for (i = 0; i < adap->sge.ingr_sz; i++) {
927 struct sge_rspq *q = adap->sge.ingr_map[i];
928
929 if (!q)
930 continue;
931
932 cxgb4_quiesce_rx(q);
933 }
934 }
935
936 /* Disable interrupt and napi handler */
disable_interrupts(struct adapter * adap)937 static void disable_interrupts(struct adapter *adap)
938 {
939 struct sge *s = &adap->sge;
940
941 if (adap->flags & CXGB4_FULL_INIT_DONE) {
942 t4_intr_disable(adap);
943 if (adap->flags & CXGB4_USING_MSIX) {
944 free_msix_queue_irqs(adap);
945 free_irq(adap->msix_info[s->nd_msix_idx].vec,
946 adap);
947 } else {
948 free_irq(adap->pdev->irq, adap);
949 }
950 quiesce_rx(adap);
951 }
952 }
953
cxgb4_enable_rx(struct adapter * adap,struct sge_rspq * q)954 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
955 {
956 if (q->handler)
957 napi_enable(&q->napi);
958
959 /* 0-increment GTS to start the timer and enable interrupts */
960 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
961 SEINTARM_V(q->intr_params) |
962 INGRESSQID_V(q->cntxt_id));
963 }
964
965 /*
966 * Enable NAPI scheduling and interrupt generation for all Rx queues.
967 */
enable_rx(struct adapter * adap)968 static void enable_rx(struct adapter *adap)
969 {
970 int i;
971
972 for (i = 0; i < adap->sge.ingr_sz; i++) {
973 struct sge_rspq *q = adap->sge.ingr_map[i];
974
975 if (!q)
976 continue;
977
978 cxgb4_enable_rx(adap, q);
979 }
980 }
981
setup_non_data_intr(struct adapter * adap)982 static int setup_non_data_intr(struct adapter *adap)
983 {
984 int msix;
985
986 adap->sge.nd_msix_idx = -1;
987 if (!(adap->flags & CXGB4_USING_MSIX))
988 return 0;
989
990 /* Request MSI-X vector for non-data interrupt */
991 msix = cxgb4_get_msix_idx_from_bmap(adap);
992 if (msix < 0)
993 return -ENOMEM;
994
995 snprintf(adap->msix_info[msix].desc,
996 sizeof(adap->msix_info[msix].desc),
997 "%s", adap->port[0]->name);
998
999 adap->sge.nd_msix_idx = msix;
1000 return 0;
1001 }
1002
setup_fw_sge_queues(struct adapter * adap)1003 static int setup_fw_sge_queues(struct adapter *adap)
1004 {
1005 struct sge *s = &adap->sge;
1006 int msix, err = 0;
1007
1008 bitmap_zero(s->starving_fl, s->egr_sz);
1009 bitmap_zero(s->txq_maperr, s->egr_sz);
1010
1011 if (adap->flags & CXGB4_USING_MSIX) {
1012 s->fwevtq_msix_idx = -1;
1013 msix = cxgb4_get_msix_idx_from_bmap(adap);
1014 if (msix < 0)
1015 return -ENOMEM;
1016
1017 snprintf(adap->msix_info[msix].desc,
1018 sizeof(adap->msix_info[msix].desc),
1019 "%s-FWeventq", adap->port[0]->name);
1020 } else {
1021 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1022 NULL, NULL, NULL, -1);
1023 if (err)
1024 return err;
1025 msix = -((int)s->intrq.abs_id + 1);
1026 }
1027
1028 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1029 msix, NULL, fwevtq_handler, NULL, -1);
1030 if (err && msix >= 0)
1031 cxgb4_free_msix_idx_in_bmap(adap, msix);
1032
1033 s->fwevtq_msix_idx = msix;
1034 return err;
1035 }
1036
1037 /**
1038 * setup_sge_queues - configure SGE Tx/Rx/response queues
1039 * @adap: the adapter
1040 *
1041 * Determines how many sets of SGE queues to use and initializes them.
1042 * We support multiple queue sets per port if we have MSI-X, otherwise
1043 * just one queue set per port.
1044 */
setup_sge_queues(struct adapter * adap)1045 static int setup_sge_queues(struct adapter *adap)
1046 {
1047 struct sge_uld_rxq_info *rxq_info = NULL;
1048 struct sge *s = &adap->sge;
1049 unsigned int cmplqid = 0;
1050 int err, i, j, msix = 0;
1051
1052 if (is_uld(adap))
1053 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
1054
1055 if (!(adap->flags & CXGB4_USING_MSIX))
1056 msix = -((int)s->intrq.abs_id + 1);
1057
1058 for_each_port(adap, i) {
1059 struct net_device *dev = adap->port[i];
1060 struct port_info *pi = netdev_priv(dev);
1061 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1062 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1063
1064 for (j = 0; j < pi->nqsets; j++, q++) {
1065 if (msix >= 0) {
1066 msix = cxgb4_get_msix_idx_from_bmap(adap);
1067 if (msix < 0) {
1068 err = msix;
1069 goto freeout;
1070 }
1071
1072 snprintf(adap->msix_info[msix].desc,
1073 sizeof(adap->msix_info[msix].desc),
1074 "%s-Rx%d", dev->name, j);
1075 q->msix = &adap->msix_info[msix];
1076 }
1077
1078 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1079 msix, &q->fl,
1080 t4_ethrx_handler,
1081 NULL,
1082 t4_get_tp_ch_map(adap,
1083 pi->tx_chan));
1084 if (err)
1085 goto freeout;
1086 q->rspq.idx = j;
1087 memset(&q->stats, 0, sizeof(q->stats));
1088 }
1089
1090 q = &s->ethrxq[pi->first_qset];
1091 for (j = 0; j < pi->nqsets; j++, t++, q++) {
1092 err = t4_sge_alloc_eth_txq(adap, t, dev,
1093 netdev_get_tx_queue(dev, j),
1094 q->rspq.cntxt_id,
1095 !!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1096 if (err)
1097 goto freeout;
1098 }
1099 }
1100
1101 for_each_port(adap, i) {
1102 /* Note that cmplqid below is 0 if we don't
1103 * have RDMA queues, and that's the right value.
1104 */
1105 if (rxq_info)
1106 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
1107
1108 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1109 s->fw_evtq.cntxt_id, cmplqid);
1110 if (err)
1111 goto freeout;
1112 }
1113
1114 if (!is_t4(adap->params.chip)) {
1115 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1116 netdev_get_tx_queue(adap->port[0], 0)
1117 , s->fw_evtq.cntxt_id, false);
1118 if (err)
1119 goto freeout;
1120 }
1121
1122 t4_write_reg(adap, is_t4(adap->params.chip) ?
1123 MPS_TRC_RSS_CONTROL_A :
1124 MPS_T5_TRC_RSS_CONTROL_A,
1125 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1126 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1127 return 0;
1128 freeout:
1129 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1130 t4_free_sge_resources(adap);
1131 return err;
1132 }
1133
cxgb_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)1134 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1135 struct net_device *sb_dev)
1136 {
1137 int txq;
1138
1139 #ifdef CONFIG_CHELSIO_T4_DCB
1140 /* If a Data Center Bridging has been successfully negotiated on this
1141 * link then we'll use the skb's priority to map it to a TX Queue.
1142 * The skb's priority is determined via the VLAN Tag Priority Code
1143 * Point field.
1144 */
1145 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1146 u16 vlan_tci;
1147 int err;
1148
1149 err = vlan_get_tag(skb, &vlan_tci);
1150 if (unlikely(err)) {
1151 if (net_ratelimit())
1152 netdev_warn(dev,
1153 "TX Packet without VLAN Tag on DCB Link\n");
1154 txq = 0;
1155 } else {
1156 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1157 #ifdef CONFIG_CHELSIO_T4_FCOE
1158 if (skb->protocol == htons(ETH_P_FCOE))
1159 txq = skb->priority & 0x7;
1160 #endif /* CONFIG_CHELSIO_T4_FCOE */
1161 }
1162 return txq;
1163 }
1164 #endif /* CONFIG_CHELSIO_T4_DCB */
1165
1166 if (dev->num_tc) {
1167 struct port_info *pi = netdev2pinfo(dev);
1168 u8 ver, proto;
1169
1170 ver = ip_hdr(skb)->version;
1171 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
1172 ip_hdr(skb)->protocol;
1173
1174 /* Send unsupported traffic pattern to normal NIC queues. */
1175 txq = netdev_pick_tx(dev, skb, sb_dev);
1176 if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
1177 skb->encapsulation ||
1178 tls_is_skb_tx_device_offloaded(skb) ||
1179 (proto != IPPROTO_TCP && proto != IPPROTO_UDP))
1180 txq = txq % pi->nqsets;
1181
1182 return txq;
1183 }
1184
1185 if (select_queue) {
1186 txq = (skb_rx_queue_recorded(skb)
1187 ? skb_get_rx_queue(skb)
1188 : smp_processor_id());
1189
1190 while (unlikely(txq >= dev->real_num_tx_queues))
1191 txq -= dev->real_num_tx_queues;
1192
1193 return txq;
1194 }
1195
1196 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1197 }
1198
closest_timer(const struct sge * s,int time)1199 static int closest_timer(const struct sge *s, int time)
1200 {
1201 int i, delta, match = 0, min_delta = INT_MAX;
1202
1203 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1204 delta = time - s->timer_val[i];
1205 if (delta < 0)
1206 delta = -delta;
1207 if (delta < min_delta) {
1208 min_delta = delta;
1209 match = i;
1210 }
1211 }
1212 return match;
1213 }
1214
closest_thres(const struct sge * s,int thres)1215 static int closest_thres(const struct sge *s, int thres)
1216 {
1217 int i, delta, match = 0, min_delta = INT_MAX;
1218
1219 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1220 delta = thres - s->counter_val[i];
1221 if (delta < 0)
1222 delta = -delta;
1223 if (delta < min_delta) {
1224 min_delta = delta;
1225 match = i;
1226 }
1227 }
1228 return match;
1229 }
1230
1231 /**
1232 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1233 * @q: the Rx queue
1234 * @us: the hold-off time in us, or 0 to disable timer
1235 * @cnt: the hold-off packet count, or 0 to disable counter
1236 *
1237 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1238 * one of the two needs to be enabled for the queue to generate interrupts.
1239 */
cxgb4_set_rspq_intr_params(struct sge_rspq * q,unsigned int us,unsigned int cnt)1240 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1241 unsigned int us, unsigned int cnt)
1242 {
1243 struct adapter *adap = q->adap;
1244
1245 if ((us | cnt) == 0)
1246 cnt = 1;
1247
1248 if (cnt) {
1249 int err;
1250 u32 v, new_idx;
1251
1252 new_idx = closest_thres(&adap->sge, cnt);
1253 if (q->desc && q->pktcnt_idx != new_idx) {
1254 /* the queue has already been created, update it */
1255 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1256 FW_PARAMS_PARAM_X_V(
1257 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1258 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1259 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1260 &v, &new_idx);
1261 if (err)
1262 return err;
1263 }
1264 q->pktcnt_idx = new_idx;
1265 }
1266
1267 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1268 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1269 return 0;
1270 }
1271
cxgb_set_features(struct net_device * dev,netdev_features_t features)1272 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1273 {
1274 netdev_features_t changed = dev->features ^ features;
1275 const struct port_info *pi = netdev_priv(dev);
1276 int err;
1277
1278 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1279 return 0;
1280
1281 err = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
1282 pi->viid_mirror, -1, -1, -1, -1,
1283 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1284 if (unlikely(err))
1285 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1286 return err;
1287 }
1288
setup_debugfs(struct adapter * adap)1289 static int setup_debugfs(struct adapter *adap)
1290 {
1291 if (IS_ERR_OR_NULL(adap->debugfs_root))
1292 return -1;
1293
1294 #ifdef CONFIG_DEBUG_FS
1295 t4_setup_debugfs(adap);
1296 #endif
1297 return 0;
1298 }
1299
cxgb4_port_mirror_free_rxq(struct adapter * adap,struct sge_eth_rxq * mirror_rxq)1300 static void cxgb4_port_mirror_free_rxq(struct adapter *adap,
1301 struct sge_eth_rxq *mirror_rxq)
1302 {
1303 if ((adap->flags & CXGB4_FULL_INIT_DONE) &&
1304 !(adap->flags & CXGB4_SHUTTING_DOWN))
1305 cxgb4_quiesce_rx(&mirror_rxq->rspq);
1306
1307 if (adap->flags & CXGB4_USING_MSIX) {
1308 cxgb4_clear_msix_aff(mirror_rxq->msix->vec,
1309 mirror_rxq->msix->aff_mask);
1310 free_irq(mirror_rxq->msix->vec, &mirror_rxq->rspq);
1311 cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1312 }
1313
1314 free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1315 }
1316
cxgb4_port_mirror_alloc_queues(struct net_device * dev)1317 static int cxgb4_port_mirror_alloc_queues(struct net_device *dev)
1318 {
1319 struct port_info *pi = netdev2pinfo(dev);
1320 struct adapter *adap = netdev2adap(dev);
1321 struct sge_eth_rxq *mirror_rxq;
1322 struct sge *s = &adap->sge;
1323 int ret = 0, msix = 0;
1324 u16 i, rxqid;
1325 u16 *rss;
1326
1327 if (!pi->vi_mirror_count)
1328 return 0;
1329
1330 if (s->mirror_rxq[pi->port_id])
1331 return 0;
1332
1333 mirror_rxq = kcalloc(pi->nmirrorqsets, sizeof(*mirror_rxq), GFP_KERNEL);
1334 if (!mirror_rxq)
1335 return -ENOMEM;
1336
1337 s->mirror_rxq[pi->port_id] = mirror_rxq;
1338
1339 if (!(adap->flags & CXGB4_USING_MSIX))
1340 msix = -((int)adap->sge.intrq.abs_id + 1);
1341
1342 for (i = 0, rxqid = 0; i < pi->nmirrorqsets; i++, rxqid++) {
1343 mirror_rxq = &s->mirror_rxq[pi->port_id][i];
1344
1345 /* Allocate Mirror Rxqs */
1346 if (msix >= 0) {
1347 msix = cxgb4_get_msix_idx_from_bmap(adap);
1348 if (msix < 0) {
1349 ret = msix;
1350 goto out_free_queues;
1351 }
1352
1353 mirror_rxq->msix = &adap->msix_info[msix];
1354 snprintf(mirror_rxq->msix->desc,
1355 sizeof(mirror_rxq->msix->desc),
1356 "%s-mirrorrxq%d", dev->name, i);
1357 }
1358
1359 init_rspq(adap, &mirror_rxq->rspq,
1360 CXGB4_MIRROR_RXQ_DEFAULT_INTR_USEC,
1361 CXGB4_MIRROR_RXQ_DEFAULT_PKT_CNT,
1362 CXGB4_MIRROR_RXQ_DEFAULT_DESC_NUM,
1363 CXGB4_MIRROR_RXQ_DEFAULT_DESC_SIZE);
1364
1365 mirror_rxq->fl.size = CXGB4_MIRROR_FLQ_DEFAULT_DESC_NUM;
1366
1367 ret = t4_sge_alloc_rxq(adap, &mirror_rxq->rspq, false,
1368 dev, msix, &mirror_rxq->fl,
1369 t4_ethrx_handler, NULL, 0);
1370 if (ret)
1371 goto out_free_msix_idx;
1372
1373 /* Setup MSI-X vectors for Mirror Rxqs */
1374 if (adap->flags & CXGB4_USING_MSIX) {
1375 ret = request_irq(mirror_rxq->msix->vec,
1376 t4_sge_intr_msix, 0,
1377 mirror_rxq->msix->desc,
1378 &mirror_rxq->rspq);
1379 if (ret)
1380 goto out_free_rxq;
1381
1382 cxgb4_set_msix_aff(adap, mirror_rxq->msix->vec,
1383 &mirror_rxq->msix->aff_mask, i);
1384 }
1385
1386 /* Start NAPI for Mirror Rxqs */
1387 cxgb4_enable_rx(adap, &mirror_rxq->rspq);
1388 }
1389
1390 /* Setup RSS for Mirror Rxqs */
1391 rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
1392 if (!rss) {
1393 ret = -ENOMEM;
1394 goto out_free_queues;
1395 }
1396
1397 mirror_rxq = &s->mirror_rxq[pi->port_id][0];
1398 for (i = 0; i < pi->rss_size; i++)
1399 rss[i] = mirror_rxq[i % pi->nmirrorqsets].rspq.abs_id;
1400
1401 ret = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid_mirror);
1402 kfree(rss);
1403 if (ret)
1404 goto out_free_queues;
1405
1406 return 0;
1407
1408 out_free_rxq:
1409 free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1410
1411 out_free_msix_idx:
1412 cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1413
1414 out_free_queues:
1415 while (rxqid-- > 0)
1416 cxgb4_port_mirror_free_rxq(adap,
1417 &s->mirror_rxq[pi->port_id][rxqid]);
1418
1419 kfree(s->mirror_rxq[pi->port_id]);
1420 s->mirror_rxq[pi->port_id] = NULL;
1421 return ret;
1422 }
1423
cxgb4_port_mirror_free_queues(struct net_device * dev)1424 static void cxgb4_port_mirror_free_queues(struct net_device *dev)
1425 {
1426 struct port_info *pi = netdev2pinfo(dev);
1427 struct adapter *adap = netdev2adap(dev);
1428 struct sge *s = &adap->sge;
1429 u16 i;
1430
1431 if (!pi->vi_mirror_count)
1432 return;
1433
1434 if (!s->mirror_rxq[pi->port_id])
1435 return;
1436
1437 for (i = 0; i < pi->nmirrorqsets; i++)
1438 cxgb4_port_mirror_free_rxq(adap,
1439 &s->mirror_rxq[pi->port_id][i]);
1440
1441 kfree(s->mirror_rxq[pi->port_id]);
1442 s->mirror_rxq[pi->port_id] = NULL;
1443 }
1444
cxgb4_port_mirror_start(struct net_device * dev)1445 static int cxgb4_port_mirror_start(struct net_device *dev)
1446 {
1447 struct port_info *pi = netdev2pinfo(dev);
1448 struct adapter *adap = netdev2adap(dev);
1449 int ret, idx = -1;
1450
1451 if (!pi->vi_mirror_count)
1452 return 0;
1453
1454 /* Mirror VIs can be created dynamically after stack had
1455 * already setup Rx modes like MTU, promisc, allmulti, etc.
1456 * on main VI. So, parse what the stack had setup on the
1457 * main VI and update the same on the mirror VI.
1458 */
1459 ret = t4_set_rxmode(adap, adap->mbox, pi->viid, pi->viid_mirror,
1460 dev->mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
1461 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1,
1462 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
1463 if (ret) {
1464 dev_err(adap->pdev_dev,
1465 "Failed start up Rx mode for Mirror VI 0x%x, ret: %d\n",
1466 pi->viid_mirror, ret);
1467 return ret;
1468 }
1469
1470 /* Enable replication bit for the device's MAC address
1471 * in MPS TCAM, so that the packets for the main VI are
1472 * replicated to mirror VI.
1473 */
1474 ret = cxgb4_update_mac_filt(pi, pi->viid_mirror, &idx,
1475 dev->dev_addr, true, NULL);
1476 if (ret) {
1477 dev_err(adap->pdev_dev,
1478 "Failed updating MAC filter for Mirror VI 0x%x, ret: %d\n",
1479 pi->viid_mirror, ret);
1480 return ret;
1481 }
1482
1483 /* Enabling a Virtual Interface can result in an interrupt
1484 * during the processing of the VI Enable command and, in some
1485 * paths, result in an attempt to issue another command in the
1486 * interrupt context. Thus, we disable interrupts during the
1487 * course of the VI Enable command ...
1488 */
1489 local_bh_disable();
1490 ret = t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, true, true,
1491 false);
1492 local_bh_enable();
1493 if (ret)
1494 dev_err(adap->pdev_dev,
1495 "Failed starting Mirror VI 0x%x, ret: %d\n",
1496 pi->viid_mirror, ret);
1497
1498 return ret;
1499 }
1500
cxgb4_port_mirror_stop(struct net_device * dev)1501 static void cxgb4_port_mirror_stop(struct net_device *dev)
1502 {
1503 struct port_info *pi = netdev2pinfo(dev);
1504 struct adapter *adap = netdev2adap(dev);
1505
1506 if (!pi->vi_mirror_count)
1507 return;
1508
1509 t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, false, false,
1510 false);
1511 }
1512
cxgb4_port_mirror_alloc(struct net_device * dev)1513 int cxgb4_port_mirror_alloc(struct net_device *dev)
1514 {
1515 struct port_info *pi = netdev2pinfo(dev);
1516 struct adapter *adap = netdev2adap(dev);
1517 int ret = 0;
1518
1519 if (!pi->nmirrorqsets)
1520 return -EOPNOTSUPP;
1521
1522 mutex_lock(&pi->vi_mirror_mutex);
1523 if (pi->viid_mirror) {
1524 pi->vi_mirror_count++;
1525 goto out_unlock;
1526 }
1527
1528 ret = t4_init_port_mirror(pi, adap->mbox, pi->port_id, adap->pf, 0,
1529 &pi->viid_mirror);
1530 if (ret)
1531 goto out_unlock;
1532
1533 pi->vi_mirror_count = 1;
1534
1535 if (adap->flags & CXGB4_FULL_INIT_DONE) {
1536 ret = cxgb4_port_mirror_alloc_queues(dev);
1537 if (ret)
1538 goto out_free_vi;
1539
1540 ret = cxgb4_port_mirror_start(dev);
1541 if (ret)
1542 goto out_free_queues;
1543 }
1544
1545 mutex_unlock(&pi->vi_mirror_mutex);
1546 return 0;
1547
1548 out_free_queues:
1549 cxgb4_port_mirror_free_queues(dev);
1550
1551 out_free_vi:
1552 pi->vi_mirror_count = 0;
1553 t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1554 pi->viid_mirror = 0;
1555
1556 out_unlock:
1557 mutex_unlock(&pi->vi_mirror_mutex);
1558 return ret;
1559 }
1560
cxgb4_port_mirror_free(struct net_device * dev)1561 void cxgb4_port_mirror_free(struct net_device *dev)
1562 {
1563 struct port_info *pi = netdev2pinfo(dev);
1564 struct adapter *adap = netdev2adap(dev);
1565
1566 mutex_lock(&pi->vi_mirror_mutex);
1567 if (!pi->viid_mirror)
1568 goto out_unlock;
1569
1570 if (pi->vi_mirror_count > 1) {
1571 pi->vi_mirror_count--;
1572 goto out_unlock;
1573 }
1574
1575 cxgb4_port_mirror_stop(dev);
1576 cxgb4_port_mirror_free_queues(dev);
1577
1578 pi->vi_mirror_count = 0;
1579 t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1580 pi->viid_mirror = 0;
1581
1582 out_unlock:
1583 mutex_unlock(&pi->vi_mirror_mutex);
1584 }
1585
1586 /*
1587 * upper-layer driver support
1588 */
1589
1590 /*
1591 * Allocate an active-open TID and set it to the supplied value.
1592 */
cxgb4_alloc_atid(struct tid_info * t,void * data)1593 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1594 {
1595 int atid = -1;
1596
1597 spin_lock_bh(&t->atid_lock);
1598 if (t->afree) {
1599 union aopen_entry *p = t->afree;
1600
1601 atid = (p - t->atid_tab) + t->atid_base;
1602 t->afree = p->next;
1603 p->data = data;
1604 t->atids_in_use++;
1605 }
1606 spin_unlock_bh(&t->atid_lock);
1607 return atid;
1608 }
1609 EXPORT_SYMBOL(cxgb4_alloc_atid);
1610
1611 /*
1612 * Release an active-open TID.
1613 */
cxgb4_free_atid(struct tid_info * t,unsigned int atid)1614 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1615 {
1616 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1617
1618 spin_lock_bh(&t->atid_lock);
1619 p->next = t->afree;
1620 t->afree = p;
1621 t->atids_in_use--;
1622 spin_unlock_bh(&t->atid_lock);
1623 }
1624 EXPORT_SYMBOL(cxgb4_free_atid);
1625
1626 /*
1627 * Allocate a server TID and set it to the supplied value.
1628 */
cxgb4_alloc_stid(struct tid_info * t,int family,void * data)1629 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1630 {
1631 int stid;
1632
1633 spin_lock_bh(&t->stid_lock);
1634 if (family == PF_INET) {
1635 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1636 if (stid < t->nstids)
1637 __set_bit(stid, t->stid_bmap);
1638 else
1639 stid = -1;
1640 } else {
1641 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1642 if (stid < 0)
1643 stid = -1;
1644 }
1645 if (stid >= 0) {
1646 t->stid_tab[stid].data = data;
1647 stid += t->stid_base;
1648 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1649 * This is equivalent to 4 TIDs. With CLIP enabled it
1650 * needs 2 TIDs.
1651 */
1652 if (family == PF_INET6) {
1653 t->stids_in_use += 2;
1654 t->v6_stids_in_use += 2;
1655 } else {
1656 t->stids_in_use++;
1657 }
1658 }
1659 spin_unlock_bh(&t->stid_lock);
1660 return stid;
1661 }
1662 EXPORT_SYMBOL(cxgb4_alloc_stid);
1663
1664 /* Allocate a server filter TID and set it to the supplied value.
1665 */
cxgb4_alloc_sftid(struct tid_info * t,int family,void * data)1666 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1667 {
1668 int stid;
1669
1670 spin_lock_bh(&t->stid_lock);
1671 if (family == PF_INET) {
1672 stid = find_next_zero_bit(t->stid_bmap,
1673 t->nstids + t->nsftids, t->nstids);
1674 if (stid < (t->nstids + t->nsftids))
1675 __set_bit(stid, t->stid_bmap);
1676 else
1677 stid = -1;
1678 } else {
1679 stid = -1;
1680 }
1681 if (stid >= 0) {
1682 t->stid_tab[stid].data = data;
1683 stid -= t->nstids;
1684 stid += t->sftid_base;
1685 t->sftids_in_use++;
1686 }
1687 spin_unlock_bh(&t->stid_lock);
1688 return stid;
1689 }
1690 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1691
1692 /* Release a server TID.
1693 */
cxgb4_free_stid(struct tid_info * t,unsigned int stid,int family)1694 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1695 {
1696 /* Is it a server filter TID? */
1697 if (t->nsftids && (stid >= t->sftid_base)) {
1698 stid -= t->sftid_base;
1699 stid += t->nstids;
1700 } else {
1701 stid -= t->stid_base;
1702 }
1703
1704 spin_lock_bh(&t->stid_lock);
1705 if (family == PF_INET)
1706 __clear_bit(stid, t->stid_bmap);
1707 else
1708 bitmap_release_region(t->stid_bmap, stid, 1);
1709 t->stid_tab[stid].data = NULL;
1710 if (stid < t->nstids) {
1711 if (family == PF_INET6) {
1712 t->stids_in_use -= 2;
1713 t->v6_stids_in_use -= 2;
1714 } else {
1715 t->stids_in_use--;
1716 }
1717 } else {
1718 t->sftids_in_use--;
1719 }
1720
1721 spin_unlock_bh(&t->stid_lock);
1722 }
1723 EXPORT_SYMBOL(cxgb4_free_stid);
1724
1725 /*
1726 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1727 */
mk_tid_release(struct sk_buff * skb,unsigned int chan,unsigned int tid)1728 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1729 unsigned int tid)
1730 {
1731 struct cpl_tid_release *req;
1732
1733 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1734 req = __skb_put(skb, sizeof(*req));
1735 INIT_TP_WR(req, tid);
1736 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1737 }
1738
1739 /*
1740 * Queue a TID release request and if necessary schedule a work queue to
1741 * process it.
1742 */
cxgb4_queue_tid_release(struct tid_info * t,unsigned int chan,unsigned int tid)1743 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1744 unsigned int tid)
1745 {
1746 struct adapter *adap = container_of(t, struct adapter, tids);
1747 void **p = &t->tid_tab[tid - t->tid_base];
1748
1749 spin_lock_bh(&adap->tid_release_lock);
1750 *p = adap->tid_release_head;
1751 /* Low 2 bits encode the Tx channel number */
1752 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1753 if (!adap->tid_release_task_busy) {
1754 adap->tid_release_task_busy = true;
1755 queue_work(adap->workq, &adap->tid_release_task);
1756 }
1757 spin_unlock_bh(&adap->tid_release_lock);
1758 }
1759
1760 /*
1761 * Process the list of pending TID release requests.
1762 */
process_tid_release_list(struct work_struct * work)1763 static void process_tid_release_list(struct work_struct *work)
1764 {
1765 struct sk_buff *skb;
1766 struct adapter *adap;
1767
1768 adap = container_of(work, struct adapter, tid_release_task);
1769
1770 spin_lock_bh(&adap->tid_release_lock);
1771 while (adap->tid_release_head) {
1772 void **p = adap->tid_release_head;
1773 unsigned int chan = (uintptr_t)p & 3;
1774 p = (void *)p - chan;
1775
1776 adap->tid_release_head = *p;
1777 *p = NULL;
1778 spin_unlock_bh(&adap->tid_release_lock);
1779
1780 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1781 GFP_KERNEL)))
1782 schedule_timeout_uninterruptible(1);
1783
1784 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1785 t4_ofld_send(adap, skb);
1786 spin_lock_bh(&adap->tid_release_lock);
1787 }
1788 adap->tid_release_task_busy = false;
1789 spin_unlock_bh(&adap->tid_release_lock);
1790 }
1791
1792 /*
1793 * Release a TID and inform HW. If we are unable to allocate the release
1794 * message we defer to a work queue.
1795 */
cxgb4_remove_tid(struct tid_info * t,unsigned int chan,unsigned int tid,unsigned short family)1796 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1797 unsigned short family)
1798 {
1799 struct adapter *adap = container_of(t, struct adapter, tids);
1800 struct sk_buff *skb;
1801
1802 if (tid_out_of_range(&adap->tids, tid)) {
1803 dev_err(adap->pdev_dev, "tid %d out of range\n", tid);
1804 return;
1805 }
1806
1807 if (t->tid_tab[tid - adap->tids.tid_base]) {
1808 t->tid_tab[tid - adap->tids.tid_base] = NULL;
1809 atomic_dec(&t->conns_in_use);
1810 if (t->hash_base && (tid >= t->hash_base)) {
1811 if (family == AF_INET6)
1812 atomic_sub(2, &t->hash_tids_in_use);
1813 else
1814 atomic_dec(&t->hash_tids_in_use);
1815 } else {
1816 if (family == AF_INET6)
1817 atomic_sub(2, &t->tids_in_use);
1818 else
1819 atomic_dec(&t->tids_in_use);
1820 }
1821 }
1822
1823 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1824 if (likely(skb)) {
1825 mk_tid_release(skb, chan, tid);
1826 t4_ofld_send(adap, skb);
1827 } else
1828 cxgb4_queue_tid_release(t, chan, tid);
1829 }
1830 EXPORT_SYMBOL(cxgb4_remove_tid);
1831
1832 /*
1833 * Allocate and initialize the TID tables. Returns 0 on success.
1834 */
tid_init(struct tid_info * t)1835 static int tid_init(struct tid_info *t)
1836 {
1837 struct adapter *adap = container_of(t, struct adapter, tids);
1838 unsigned int max_ftids = t->nftids + t->nsftids;
1839 unsigned int natids = t->natids;
1840 unsigned int hpftid_bmap_size;
1841 unsigned int eotid_bmap_size;
1842 unsigned int stid_bmap_size;
1843 unsigned int ftid_bmap_size;
1844 size_t size;
1845
1846 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1847 ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1848 hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
1849 eotid_bmap_size = BITS_TO_LONGS(t->neotids);
1850 size = t->ntids * sizeof(*t->tid_tab) +
1851 natids * sizeof(*t->atid_tab) +
1852 t->nstids * sizeof(*t->stid_tab) +
1853 t->nsftids * sizeof(*t->stid_tab) +
1854 stid_bmap_size * sizeof(long) +
1855 t->nhpftids * sizeof(*t->hpftid_tab) +
1856 hpftid_bmap_size * sizeof(long) +
1857 max_ftids * sizeof(*t->ftid_tab) +
1858 ftid_bmap_size * sizeof(long) +
1859 t->neotids * sizeof(*t->eotid_tab) +
1860 eotid_bmap_size * sizeof(long);
1861
1862 t->tid_tab = kvzalloc(size, GFP_KERNEL);
1863 if (!t->tid_tab)
1864 return -ENOMEM;
1865
1866 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1867 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1868 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1869 t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1870 t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
1871 t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
1872 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1873 t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
1874 t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
1875 spin_lock_init(&t->stid_lock);
1876 spin_lock_init(&t->atid_lock);
1877 spin_lock_init(&t->ftid_lock);
1878
1879 t->stids_in_use = 0;
1880 t->v6_stids_in_use = 0;
1881 t->sftids_in_use = 0;
1882 t->afree = NULL;
1883 t->atids_in_use = 0;
1884 atomic_set(&t->tids_in_use, 0);
1885 atomic_set(&t->conns_in_use, 0);
1886 atomic_set(&t->hash_tids_in_use, 0);
1887 atomic_set(&t->eotids_in_use, 0);
1888
1889 /* Setup the free list for atid_tab and clear the stid bitmap. */
1890 if (natids) {
1891 while (--natids)
1892 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1893 t->afree = t->atid_tab;
1894 }
1895
1896 if (is_offload(adap)) {
1897 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1898 /* Reserve stid 0 for T4/T5 adapters */
1899 if (!t->stid_base &&
1900 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1901 __set_bit(0, t->stid_bmap);
1902
1903 if (t->neotids)
1904 bitmap_zero(t->eotid_bmap, t->neotids);
1905 }
1906
1907 if (t->nhpftids)
1908 bitmap_zero(t->hpftid_bmap, t->nhpftids);
1909 bitmap_zero(t->ftid_bmap, t->nftids);
1910 return 0;
1911 }
1912
1913 /**
1914 * cxgb4_create_server - create an IP server
1915 * @dev: the device
1916 * @stid: the server TID
1917 * @sip: local IP address to bind server to
1918 * @sport: the server's TCP port
1919 * @vlan: the VLAN header information
1920 * @queue: queue to direct messages from this server to
1921 *
1922 * Create an IP server for the given port and address.
1923 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1924 */
cxgb4_create_server(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue)1925 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1926 __be32 sip, __be16 sport, __be16 vlan,
1927 unsigned int queue)
1928 {
1929 unsigned int chan;
1930 struct sk_buff *skb;
1931 struct adapter *adap;
1932 struct cpl_pass_open_req *req;
1933 int ret;
1934
1935 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1936 if (!skb)
1937 return -ENOMEM;
1938
1939 adap = netdev2adap(dev);
1940 req = __skb_put(skb, sizeof(*req));
1941 INIT_TP_WR(req, 0);
1942 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1943 req->local_port = sport;
1944 req->peer_port = htons(0);
1945 req->local_ip = sip;
1946 req->peer_ip = htonl(0);
1947 chan = rxq_to_chan(&adap->sge, queue);
1948 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1949 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1950 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1951 ret = t4_mgmt_tx(adap, skb);
1952 return net_xmit_eval(ret);
1953 }
1954 EXPORT_SYMBOL(cxgb4_create_server);
1955
1956 /* cxgb4_create_server6 - create an IPv6 server
1957 * @dev: the device
1958 * @stid: the server TID
1959 * @sip: local IPv6 address to bind server to
1960 * @sport: the server's TCP port
1961 * @queue: queue to direct messages from this server to
1962 *
1963 * Create an IPv6 server for the given port and address.
1964 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1965 */
cxgb4_create_server6(const struct net_device * dev,unsigned int stid,const struct in6_addr * sip,__be16 sport,unsigned int queue)1966 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1967 const struct in6_addr *sip, __be16 sport,
1968 unsigned int queue)
1969 {
1970 unsigned int chan;
1971 struct sk_buff *skb;
1972 struct adapter *adap;
1973 struct cpl_pass_open_req6 *req;
1974 int ret;
1975
1976 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1977 if (!skb)
1978 return -ENOMEM;
1979
1980 adap = netdev2adap(dev);
1981 req = __skb_put(skb, sizeof(*req));
1982 INIT_TP_WR(req, 0);
1983 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1984 req->local_port = sport;
1985 req->peer_port = htons(0);
1986 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1987 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1988 req->peer_ip_hi = cpu_to_be64(0);
1989 req->peer_ip_lo = cpu_to_be64(0);
1990 chan = rxq_to_chan(&adap->sge, queue);
1991 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1992 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1993 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1994 ret = t4_mgmt_tx(adap, skb);
1995 return net_xmit_eval(ret);
1996 }
1997 EXPORT_SYMBOL(cxgb4_create_server6);
1998
cxgb4_remove_server(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)1999 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
2000 unsigned int queue, bool ipv6)
2001 {
2002 struct sk_buff *skb;
2003 struct adapter *adap;
2004 struct cpl_close_listsvr_req *req;
2005 int ret;
2006
2007 adap = netdev2adap(dev);
2008
2009 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2010 if (!skb)
2011 return -ENOMEM;
2012
2013 req = __skb_put(skb, sizeof(*req));
2014 INIT_TP_WR(req, 0);
2015 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
2016 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
2017 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
2018 ret = t4_mgmt_tx(adap, skb);
2019 return net_xmit_eval(ret);
2020 }
2021 EXPORT_SYMBOL(cxgb4_remove_server);
2022
2023 /**
2024 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2025 * @mtus: the HW MTU table
2026 * @mtu: the target MTU
2027 * @idx: index of selected entry in the MTU table
2028 *
2029 * Returns the index and the value in the HW MTU table that is closest to
2030 * but does not exceed @mtu, unless @mtu is smaller than any value in the
2031 * table, in which case that smallest available value is selected.
2032 */
cxgb4_best_mtu(const unsigned short * mtus,unsigned short mtu,unsigned int * idx)2033 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2034 unsigned int *idx)
2035 {
2036 unsigned int i = 0;
2037
2038 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2039 ++i;
2040 if (idx)
2041 *idx = i;
2042 return mtus[i];
2043 }
2044 EXPORT_SYMBOL(cxgb4_best_mtu);
2045
2046 /**
2047 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
2048 * @mtus: the HW MTU table
2049 * @header_size: Header Size
2050 * @data_size_max: maximum Data Segment Size
2051 * @data_size_align: desired Data Segment Size Alignment (2^N)
2052 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
2053 *
2054 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
2055 * MTU Table based solely on a Maximum MTU parameter, we break that
2056 * parameter up into a Header Size and Maximum Data Segment Size, and
2057 * provide a desired Data Segment Size Alignment. If we find an MTU in
2058 * the Hardware MTU Table which will result in a Data Segment Size with
2059 * the requested alignment _and_ that MTU isn't "too far" from the
2060 * closest MTU, then we'll return that rather than the closest MTU.
2061 */
cxgb4_best_aligned_mtu(const unsigned short * mtus,unsigned short header_size,unsigned short data_size_max,unsigned short data_size_align,unsigned int * mtu_idxp)2062 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
2063 unsigned short header_size,
2064 unsigned short data_size_max,
2065 unsigned short data_size_align,
2066 unsigned int *mtu_idxp)
2067 {
2068 unsigned short max_mtu = header_size + data_size_max;
2069 unsigned short data_size_align_mask = data_size_align - 1;
2070 int mtu_idx, aligned_mtu_idx;
2071
2072 /* Scan the MTU Table till we find an MTU which is larger than our
2073 * Maximum MTU or we reach the end of the table. Along the way,
2074 * record the last MTU found, if any, which will result in a Data
2075 * Segment Length matching the requested alignment.
2076 */
2077 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
2078 unsigned short data_size = mtus[mtu_idx] - header_size;
2079
2080 /* If this MTU minus the Header Size would result in a
2081 * Data Segment Size of the desired alignment, remember it.
2082 */
2083 if ((data_size & data_size_align_mask) == 0)
2084 aligned_mtu_idx = mtu_idx;
2085
2086 /* If we're not at the end of the Hardware MTU Table and the
2087 * next element is larger than our Maximum MTU, drop out of
2088 * the loop.
2089 */
2090 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
2091 break;
2092 }
2093
2094 /* If we fell out of the loop because we ran to the end of the table,
2095 * then we just have to use the last [largest] entry.
2096 */
2097 if (mtu_idx == NMTUS)
2098 mtu_idx--;
2099
2100 /* If we found an MTU which resulted in the requested Data Segment
2101 * Length alignment and that's "not far" from the largest MTU which is
2102 * less than or equal to the maximum MTU, then use that.
2103 */
2104 if (aligned_mtu_idx >= 0 &&
2105 mtu_idx - aligned_mtu_idx <= 1)
2106 mtu_idx = aligned_mtu_idx;
2107
2108 /* If the caller has passed in an MTU Index pointer, pass the
2109 * MTU Index back. Return the MTU value.
2110 */
2111 if (mtu_idxp)
2112 *mtu_idxp = mtu_idx;
2113 return mtus[mtu_idx];
2114 }
2115 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
2116
2117 /**
2118 * cxgb4_port_chan - get the HW channel of a port
2119 * @dev: the net device for the port
2120 *
2121 * Return the HW Tx channel of the given port.
2122 */
cxgb4_port_chan(const struct net_device * dev)2123 unsigned int cxgb4_port_chan(const struct net_device *dev)
2124 {
2125 return netdev2pinfo(dev)->tx_chan;
2126 }
2127 EXPORT_SYMBOL(cxgb4_port_chan);
2128
2129 /**
2130 * cxgb4_port_e2cchan - get the HW c-channel of a port
2131 * @dev: the net device for the port
2132 *
2133 * Return the HW RX c-channel of the given port.
2134 */
cxgb4_port_e2cchan(const struct net_device * dev)2135 unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
2136 {
2137 return netdev2pinfo(dev)->rx_cchan;
2138 }
2139 EXPORT_SYMBOL(cxgb4_port_e2cchan);
2140
cxgb4_dbfifo_count(const struct net_device * dev,int lpfifo)2141 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2142 {
2143 struct adapter *adap = netdev2adap(dev);
2144 u32 v1, v2, lp_count, hp_count;
2145
2146 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2147 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2148 if (is_t4(adap->params.chip)) {
2149 lp_count = LP_COUNT_G(v1);
2150 hp_count = HP_COUNT_G(v1);
2151 } else {
2152 lp_count = LP_COUNT_T5_G(v1);
2153 hp_count = HP_COUNT_T5_G(v2);
2154 }
2155 return lpfifo ? lp_count : hp_count;
2156 }
2157 EXPORT_SYMBOL(cxgb4_dbfifo_count);
2158
2159 /**
2160 * cxgb4_port_viid - get the VI id of a port
2161 * @dev: the net device for the port
2162 *
2163 * Return the VI id of the given port.
2164 */
cxgb4_port_viid(const struct net_device * dev)2165 unsigned int cxgb4_port_viid(const struct net_device *dev)
2166 {
2167 return netdev2pinfo(dev)->viid;
2168 }
2169 EXPORT_SYMBOL(cxgb4_port_viid);
2170
2171 /**
2172 * cxgb4_port_idx - get the index of a port
2173 * @dev: the net device for the port
2174 *
2175 * Return the index of the given port.
2176 */
cxgb4_port_idx(const struct net_device * dev)2177 unsigned int cxgb4_port_idx(const struct net_device *dev)
2178 {
2179 return netdev2pinfo(dev)->port_id;
2180 }
2181 EXPORT_SYMBOL(cxgb4_port_idx);
2182
cxgb4_get_tcp_stats(struct pci_dev * pdev,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6)2183 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2184 struct tp_tcp_stats *v6)
2185 {
2186 struct adapter *adap = pci_get_drvdata(pdev);
2187
2188 spin_lock(&adap->stats_lock);
2189 t4_tp_get_tcp_stats(adap, v4, v6, false);
2190 spin_unlock(&adap->stats_lock);
2191 }
2192 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2193
cxgb4_flush_eq_cache(struct net_device * dev)2194 int cxgb4_flush_eq_cache(struct net_device *dev)
2195 {
2196 struct adapter *adap = netdev2adap(dev);
2197
2198 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
2199 }
2200 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2201
read_eq_indices(struct adapter * adap,u16 qid,u16 * pidx,u16 * cidx)2202 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2203 {
2204 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2205 __be64 indices;
2206 int ret;
2207
2208 spin_lock(&adap->win0_lock);
2209 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2210 sizeof(indices), (__be32 *)&indices,
2211 T4_MEMORY_READ);
2212 spin_unlock(&adap->win0_lock);
2213 if (!ret) {
2214 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2215 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2216 }
2217 return ret;
2218 }
2219
cxgb4_sync_txq_pidx(struct net_device * dev,u16 qid,u16 pidx,u16 size)2220 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2221 u16 size)
2222 {
2223 struct adapter *adap = netdev2adap(dev);
2224 u16 hw_pidx, hw_cidx;
2225 int ret;
2226
2227 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2228 if (ret)
2229 goto out;
2230
2231 if (pidx != hw_pidx) {
2232 u16 delta;
2233 u32 val;
2234
2235 if (pidx >= hw_pidx)
2236 delta = pidx - hw_pidx;
2237 else
2238 delta = size - hw_pidx + pidx;
2239
2240 if (is_t4(adap->params.chip))
2241 val = PIDX_V(delta);
2242 else
2243 val = PIDX_T5_V(delta);
2244 wmb();
2245 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2246 QID_V(qid) | val);
2247 }
2248 out:
2249 return ret;
2250 }
2251 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2252
cxgb4_read_tpte(struct net_device * dev,u32 stag,__be32 * tpte)2253 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2254 {
2255 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2256 u32 edc0_end, edc1_end, mc0_end, mc1_end;
2257 u32 offset, memtype, memaddr;
2258 struct adapter *adap;
2259 u32 hma_size = 0;
2260 int ret;
2261
2262 adap = netdev2adap(dev);
2263
2264 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2265
2266 /* Figure out where the offset lands in the Memory Type/Address scheme.
2267 * This code assumes that the memory is laid out starting at offset 0
2268 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2269 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
2270 * MC0, and some have both MC0 and MC1.
2271 */
2272 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2273 edc0_size = EDRAM0_SIZE_G(size) << 20;
2274 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2275 edc1_size = EDRAM1_SIZE_G(size) << 20;
2276 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2277 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2278
2279 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
2280 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2281 hma_size = EXT_MEM1_SIZE_G(size) << 20;
2282 }
2283 edc0_end = edc0_size;
2284 edc1_end = edc0_end + edc1_size;
2285 mc0_end = edc1_end + mc0_size;
2286
2287 if (offset < edc0_end) {
2288 memtype = MEM_EDC0;
2289 memaddr = offset;
2290 } else if (offset < edc1_end) {
2291 memtype = MEM_EDC1;
2292 memaddr = offset - edc0_end;
2293 } else {
2294 if (hma_size && (offset < (edc1_end + hma_size))) {
2295 memtype = MEM_HMA;
2296 memaddr = offset - edc1_end;
2297 } else if (offset < mc0_end) {
2298 memtype = MEM_MC0;
2299 memaddr = offset - edc1_end;
2300 } else if (is_t5(adap->params.chip)) {
2301 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2302 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2303 mc1_end = mc0_end + mc1_size;
2304 if (offset < mc1_end) {
2305 memtype = MEM_MC1;
2306 memaddr = offset - mc0_end;
2307 } else {
2308 /* offset beyond the end of any memory */
2309 goto err;
2310 }
2311 } else {
2312 /* T4/T6 only has a single memory channel */
2313 goto err;
2314 }
2315 }
2316
2317 spin_lock(&adap->win0_lock);
2318 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2319 spin_unlock(&adap->win0_lock);
2320 return ret;
2321
2322 err:
2323 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2324 stag, offset);
2325 return -EINVAL;
2326 }
2327 EXPORT_SYMBOL(cxgb4_read_tpte);
2328
cxgb4_read_sge_timestamp(struct net_device * dev)2329 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2330 {
2331 u32 hi, lo;
2332 struct adapter *adap;
2333
2334 adap = netdev2adap(dev);
2335 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2336 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2337
2338 return ((u64)hi << 32) | (u64)lo;
2339 }
2340 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2341
cxgb4_bar2_sge_qregs(struct net_device * dev,unsigned int qid,enum cxgb4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)2342 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2343 unsigned int qid,
2344 enum cxgb4_bar2_qtype qtype,
2345 int user,
2346 u64 *pbar2_qoffset,
2347 unsigned int *pbar2_qid)
2348 {
2349 return t4_bar2_sge_qregs(netdev2adap(dev),
2350 qid,
2351 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2352 ? T4_BAR2_QTYPE_EGRESS
2353 : T4_BAR2_QTYPE_INGRESS),
2354 user,
2355 pbar2_qoffset,
2356 pbar2_qid);
2357 }
2358 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2359
2360 static struct pci_driver cxgb4_driver;
2361
check_neigh_update(struct neighbour * neigh)2362 static void check_neigh_update(struct neighbour *neigh)
2363 {
2364 const struct device *parent;
2365 const struct net_device *netdev = neigh->dev;
2366
2367 if (is_vlan_dev(netdev))
2368 netdev = vlan_dev_real_dev(netdev);
2369 parent = netdev->dev.parent;
2370 if (parent && parent->driver == &cxgb4_driver.driver)
2371 t4_l2t_update(dev_get_drvdata(parent), neigh);
2372 }
2373
netevent_cb(struct notifier_block * nb,unsigned long event,void * data)2374 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2375 void *data)
2376 {
2377 switch (event) {
2378 case NETEVENT_NEIGH_UPDATE:
2379 check_neigh_update(data);
2380 break;
2381 case NETEVENT_REDIRECT:
2382 default:
2383 break;
2384 }
2385 return 0;
2386 }
2387
2388 static bool netevent_registered;
2389 static struct notifier_block cxgb4_netevent_nb = {
2390 .notifier_call = netevent_cb
2391 };
2392
drain_db_fifo(struct adapter * adap,int usecs)2393 static void drain_db_fifo(struct adapter *adap, int usecs)
2394 {
2395 u32 v1, v2, lp_count, hp_count;
2396
2397 do {
2398 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2399 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2400 if (is_t4(adap->params.chip)) {
2401 lp_count = LP_COUNT_G(v1);
2402 hp_count = HP_COUNT_G(v1);
2403 } else {
2404 lp_count = LP_COUNT_T5_G(v1);
2405 hp_count = HP_COUNT_T5_G(v2);
2406 }
2407
2408 if (lp_count == 0 && hp_count == 0)
2409 break;
2410 set_current_state(TASK_UNINTERRUPTIBLE);
2411 schedule_timeout(usecs_to_jiffies(usecs));
2412 } while (1);
2413 }
2414
disable_txq_db(struct sge_txq * q)2415 static void disable_txq_db(struct sge_txq *q)
2416 {
2417 unsigned long flags;
2418
2419 spin_lock_irqsave(&q->db_lock, flags);
2420 q->db_disabled = 1;
2421 spin_unlock_irqrestore(&q->db_lock, flags);
2422 }
2423
enable_txq_db(struct adapter * adap,struct sge_txq * q)2424 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2425 {
2426 spin_lock_irq(&q->db_lock);
2427 if (q->db_pidx_inc) {
2428 /* Make sure that all writes to the TX descriptors
2429 * are committed before we tell HW about them.
2430 */
2431 wmb();
2432 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2433 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2434 q->db_pidx_inc = 0;
2435 }
2436 q->db_disabled = 0;
2437 spin_unlock_irq(&q->db_lock);
2438 }
2439
disable_dbs(struct adapter * adap)2440 static void disable_dbs(struct adapter *adap)
2441 {
2442 int i;
2443
2444 for_each_ethrxq(&adap->sge, i)
2445 disable_txq_db(&adap->sge.ethtxq[i].q);
2446 if (is_offload(adap)) {
2447 struct sge_uld_txq_info *txq_info =
2448 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2449
2450 if (txq_info) {
2451 for_each_ofldtxq(&adap->sge, i) {
2452 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2453
2454 disable_txq_db(&txq->q);
2455 }
2456 }
2457 }
2458 for_each_port(adap, i)
2459 disable_txq_db(&adap->sge.ctrlq[i].q);
2460 }
2461
enable_dbs(struct adapter * adap)2462 static void enable_dbs(struct adapter *adap)
2463 {
2464 int i;
2465
2466 for_each_ethrxq(&adap->sge, i)
2467 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2468 if (is_offload(adap)) {
2469 struct sge_uld_txq_info *txq_info =
2470 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2471
2472 if (txq_info) {
2473 for_each_ofldtxq(&adap->sge, i) {
2474 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2475
2476 enable_txq_db(adap, &txq->q);
2477 }
2478 }
2479 }
2480 for_each_port(adap, i)
2481 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2482 }
2483
notify_rdma_uld(struct adapter * adap,enum cxgb4_control cmd)2484 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2485 {
2486 enum cxgb4_uld type = CXGB4_ULD_RDMA;
2487
2488 if (adap->uld && adap->uld[type].handle)
2489 adap->uld[type].control(adap->uld[type].handle, cmd);
2490 }
2491
process_db_full(struct work_struct * work)2492 static void process_db_full(struct work_struct *work)
2493 {
2494 struct adapter *adap;
2495
2496 adap = container_of(work, struct adapter, db_full_task);
2497
2498 drain_db_fifo(adap, dbfifo_drain_delay);
2499 enable_dbs(adap);
2500 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2501 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2502 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2503 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2504 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2505 else
2506 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2507 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2508 }
2509
sync_txq_pidx(struct adapter * adap,struct sge_txq * q)2510 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2511 {
2512 u16 hw_pidx, hw_cidx;
2513 int ret;
2514
2515 spin_lock_irq(&q->db_lock);
2516 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2517 if (ret)
2518 goto out;
2519 if (q->db_pidx != hw_pidx) {
2520 u16 delta;
2521 u32 val;
2522
2523 if (q->db_pidx >= hw_pidx)
2524 delta = q->db_pidx - hw_pidx;
2525 else
2526 delta = q->size - hw_pidx + q->db_pidx;
2527
2528 if (is_t4(adap->params.chip))
2529 val = PIDX_V(delta);
2530 else
2531 val = PIDX_T5_V(delta);
2532 wmb();
2533 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2534 QID_V(q->cntxt_id) | val);
2535 }
2536 out:
2537 q->db_disabled = 0;
2538 q->db_pidx_inc = 0;
2539 spin_unlock_irq(&q->db_lock);
2540 if (ret)
2541 CH_WARN(adap, "DB drop recovery failed.\n");
2542 }
2543
recover_all_queues(struct adapter * adap)2544 static void recover_all_queues(struct adapter *adap)
2545 {
2546 int i;
2547
2548 for_each_ethrxq(&adap->sge, i)
2549 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2550 if (is_offload(adap)) {
2551 struct sge_uld_txq_info *txq_info =
2552 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2553 if (txq_info) {
2554 for_each_ofldtxq(&adap->sge, i) {
2555 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2556
2557 sync_txq_pidx(adap, &txq->q);
2558 }
2559 }
2560 }
2561 for_each_port(adap, i)
2562 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2563 }
2564
process_db_drop(struct work_struct * work)2565 static void process_db_drop(struct work_struct *work)
2566 {
2567 struct adapter *adap;
2568
2569 adap = container_of(work, struct adapter, db_drop_task);
2570
2571 if (is_t4(adap->params.chip)) {
2572 drain_db_fifo(adap, dbfifo_drain_delay);
2573 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2574 drain_db_fifo(adap, dbfifo_drain_delay);
2575 recover_all_queues(adap);
2576 drain_db_fifo(adap, dbfifo_drain_delay);
2577 enable_dbs(adap);
2578 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2579 } else if (is_t5(adap->params.chip)) {
2580 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2581 u16 qid = (dropped_db >> 15) & 0x1ffff;
2582 u16 pidx_inc = dropped_db & 0x1fff;
2583 u64 bar2_qoffset;
2584 unsigned int bar2_qid;
2585 int ret;
2586
2587 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2588 0, &bar2_qoffset, &bar2_qid);
2589 if (ret)
2590 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2591 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2592 else
2593 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2594 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2595
2596 /* Re-enable BAR2 WC */
2597 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2598 }
2599
2600 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2601 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2602 }
2603
t4_db_full(struct adapter * adap)2604 void t4_db_full(struct adapter *adap)
2605 {
2606 if (is_t4(adap->params.chip)) {
2607 disable_dbs(adap);
2608 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2609 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2610 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2611 queue_work(adap->workq, &adap->db_full_task);
2612 }
2613 }
2614
t4_db_dropped(struct adapter * adap)2615 void t4_db_dropped(struct adapter *adap)
2616 {
2617 if (is_t4(adap->params.chip)) {
2618 disable_dbs(adap);
2619 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2620 }
2621 queue_work(adap->workq, &adap->db_drop_task);
2622 }
2623
t4_register_netevent_notifier(void)2624 void t4_register_netevent_notifier(void)
2625 {
2626 if (!netevent_registered) {
2627 register_netevent_notifier(&cxgb4_netevent_nb);
2628 netevent_registered = true;
2629 }
2630 }
2631
detach_ulds(struct adapter * adap)2632 static void detach_ulds(struct adapter *adap)
2633 {
2634 unsigned int i;
2635
2636 if (!is_uld(adap))
2637 return;
2638
2639 mutex_lock(&uld_mutex);
2640 list_del(&adap->list_node);
2641
2642 for (i = 0; i < CXGB4_ULD_MAX; i++)
2643 if (adap->uld && adap->uld[i].handle)
2644 adap->uld[i].state_change(adap->uld[i].handle,
2645 CXGB4_STATE_DETACH);
2646
2647 if (netevent_registered && list_empty(&adapter_list)) {
2648 unregister_netevent_notifier(&cxgb4_netevent_nb);
2649 netevent_registered = false;
2650 }
2651 mutex_unlock(&uld_mutex);
2652 }
2653
notify_ulds(struct adapter * adap,enum cxgb4_state new_state)2654 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2655 {
2656 unsigned int i;
2657
2658 mutex_lock(&uld_mutex);
2659 for (i = 0; i < CXGB4_ULD_MAX; i++)
2660 if (adap->uld && adap->uld[i].handle)
2661 adap->uld[i].state_change(adap->uld[i].handle,
2662 new_state);
2663 mutex_unlock(&uld_mutex);
2664 }
2665
2666 #if IS_ENABLED(CONFIG_IPV6)
cxgb4_inet6addr_handler(struct notifier_block * this,unsigned long event,void * data)2667 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2668 unsigned long event, void *data)
2669 {
2670 struct inet6_ifaddr *ifa = data;
2671 struct net_device *event_dev = ifa->idev->dev;
2672 const struct device *parent = NULL;
2673 #if IS_ENABLED(CONFIG_BONDING)
2674 struct adapter *adap;
2675 #endif
2676 if (is_vlan_dev(event_dev))
2677 event_dev = vlan_dev_real_dev(event_dev);
2678 #if IS_ENABLED(CONFIG_BONDING)
2679 if (event_dev->flags & IFF_MASTER) {
2680 list_for_each_entry(adap, &adapter_list, list_node) {
2681 switch (event) {
2682 case NETDEV_UP:
2683 cxgb4_clip_get(adap->port[0],
2684 (const u32 *)ifa, 1);
2685 break;
2686 case NETDEV_DOWN:
2687 cxgb4_clip_release(adap->port[0],
2688 (const u32 *)ifa, 1);
2689 break;
2690 default:
2691 break;
2692 }
2693 }
2694 return NOTIFY_OK;
2695 }
2696 #endif
2697
2698 if (event_dev)
2699 parent = event_dev->dev.parent;
2700
2701 if (parent && parent->driver == &cxgb4_driver.driver) {
2702 switch (event) {
2703 case NETDEV_UP:
2704 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2705 break;
2706 case NETDEV_DOWN:
2707 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2708 break;
2709 default:
2710 break;
2711 }
2712 }
2713 return NOTIFY_OK;
2714 }
2715
2716 static bool inet6addr_registered;
2717 static struct notifier_block cxgb4_inet6addr_notifier = {
2718 .notifier_call = cxgb4_inet6addr_handler
2719 };
2720
update_clip(const struct adapter * adap)2721 static void update_clip(const struct adapter *adap)
2722 {
2723 int i;
2724 struct net_device *dev;
2725 int ret;
2726
2727 rcu_read_lock();
2728
2729 for (i = 0; i < MAX_NPORTS; i++) {
2730 dev = adap->port[i];
2731 ret = 0;
2732
2733 if (dev)
2734 ret = cxgb4_update_root_dev_clip(dev);
2735
2736 if (ret < 0)
2737 break;
2738 }
2739 rcu_read_unlock();
2740 }
2741 #endif /* IS_ENABLED(CONFIG_IPV6) */
2742
2743 /**
2744 * cxgb_up - enable the adapter
2745 * @adap: adapter being enabled
2746 *
2747 * Called when the first port is enabled, this function performs the
2748 * actions necessary to make an adapter operational, such as completing
2749 * the initialization of HW modules, and enabling interrupts.
2750 *
2751 * Must be called with the rtnl lock held.
2752 */
cxgb_up(struct adapter * adap)2753 static int cxgb_up(struct adapter *adap)
2754 {
2755 struct sge *s = &adap->sge;
2756 int err;
2757
2758 mutex_lock(&uld_mutex);
2759 err = setup_sge_queues(adap);
2760 if (err)
2761 goto rel_lock;
2762 err = setup_rss(adap);
2763 if (err)
2764 goto freeq;
2765
2766 if (adap->flags & CXGB4_USING_MSIX) {
2767 if (s->nd_msix_idx < 0) {
2768 err = -ENOMEM;
2769 goto irq_err;
2770 }
2771
2772 err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
2773 t4_nondata_intr, 0,
2774 adap->msix_info[s->nd_msix_idx].desc, adap);
2775 if (err)
2776 goto irq_err;
2777
2778 err = request_msix_queue_irqs(adap);
2779 if (err)
2780 goto irq_err_free_nd_msix;
2781 } else {
2782 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2783 (adap->flags & CXGB4_USING_MSI) ? 0
2784 : IRQF_SHARED,
2785 adap->port[0]->name, adap);
2786 if (err)
2787 goto irq_err;
2788 }
2789
2790 enable_rx(adap);
2791 t4_sge_start(adap);
2792 t4_intr_enable(adap);
2793 adap->flags |= CXGB4_FULL_INIT_DONE;
2794 mutex_unlock(&uld_mutex);
2795
2796 notify_ulds(adap, CXGB4_STATE_UP);
2797 #if IS_ENABLED(CONFIG_IPV6)
2798 update_clip(adap);
2799 #endif
2800 return err;
2801
2802 irq_err_free_nd_msix:
2803 free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
2804 irq_err:
2805 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2806 freeq:
2807 t4_free_sge_resources(adap);
2808 rel_lock:
2809 mutex_unlock(&uld_mutex);
2810 return err;
2811 }
2812
cxgb_down(struct adapter * adapter)2813 static void cxgb_down(struct adapter *adapter)
2814 {
2815 cancel_work_sync(&adapter->tid_release_task);
2816 cancel_work_sync(&adapter->db_full_task);
2817 cancel_work_sync(&adapter->db_drop_task);
2818 adapter->tid_release_task_busy = false;
2819 adapter->tid_release_head = NULL;
2820
2821 t4_sge_stop(adapter);
2822 t4_free_sge_resources(adapter);
2823
2824 adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2825 }
2826
2827 /*
2828 * net_device operations
2829 */
cxgb_open(struct net_device * dev)2830 static int cxgb_open(struct net_device *dev)
2831 {
2832 struct port_info *pi = netdev_priv(dev);
2833 struct adapter *adapter = pi->adapter;
2834 int err;
2835
2836 netif_carrier_off(dev);
2837
2838 if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2839 err = cxgb_up(adapter);
2840 if (err < 0)
2841 return err;
2842 }
2843
2844 /* It's possible that the basic port information could have
2845 * changed since we first read it.
2846 */
2847 err = t4_update_port_info(pi);
2848 if (err < 0)
2849 return err;
2850
2851 err = link_start(dev);
2852 if (err)
2853 return err;
2854
2855 if (pi->nmirrorqsets) {
2856 mutex_lock(&pi->vi_mirror_mutex);
2857 err = cxgb4_port_mirror_alloc_queues(dev);
2858 if (err)
2859 goto out_unlock;
2860
2861 err = cxgb4_port_mirror_start(dev);
2862 if (err)
2863 goto out_free_queues;
2864 mutex_unlock(&pi->vi_mirror_mutex);
2865 }
2866
2867 netif_tx_start_all_queues(dev);
2868 return 0;
2869
2870 out_free_queues:
2871 cxgb4_port_mirror_free_queues(dev);
2872
2873 out_unlock:
2874 mutex_unlock(&pi->vi_mirror_mutex);
2875 return err;
2876 }
2877
cxgb_close(struct net_device * dev)2878 static int cxgb_close(struct net_device *dev)
2879 {
2880 struct port_info *pi = netdev_priv(dev);
2881 struct adapter *adapter = pi->adapter;
2882 int ret;
2883
2884 netif_tx_stop_all_queues(dev);
2885 netif_carrier_off(dev);
2886 ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2887 false, false, false);
2888 #ifdef CONFIG_CHELSIO_T4_DCB
2889 cxgb4_dcb_reset(dev);
2890 dcb_tx_queue_prio_enable(dev, false);
2891 #endif
2892 if (ret)
2893 return ret;
2894
2895 if (pi->nmirrorqsets) {
2896 mutex_lock(&pi->vi_mirror_mutex);
2897 cxgb4_port_mirror_stop(dev);
2898 cxgb4_port_mirror_free_queues(dev);
2899 mutex_unlock(&pi->vi_mirror_mutex);
2900 }
2901
2902 return 0;
2903 }
2904
cxgb4_create_server_filter(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue,unsigned char port,unsigned char mask)2905 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2906 __be32 sip, __be16 sport, __be16 vlan,
2907 unsigned int queue, unsigned char port, unsigned char mask)
2908 {
2909 int ret;
2910 struct filter_entry *f;
2911 struct adapter *adap;
2912 int i;
2913 u8 *val;
2914
2915 adap = netdev2adap(dev);
2916
2917 /* Adjust stid to correct filter index */
2918 stid -= adap->tids.sftid_base;
2919 stid += adap->tids.nftids;
2920
2921 /* Check to make sure the filter requested is writable ...
2922 */
2923 f = &adap->tids.ftid_tab[stid];
2924 ret = writable_filter(f);
2925 if (ret)
2926 return ret;
2927
2928 /* Clear out any old resources being used by the filter before
2929 * we start constructing the new filter.
2930 */
2931 if (f->valid)
2932 clear_filter(adap, f);
2933
2934 /* Clear out filter specifications */
2935 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2936 f->fs.val.lport = be16_to_cpu(sport);
2937 f->fs.mask.lport = ~0;
2938 val = (u8 *)&sip;
2939 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2940 for (i = 0; i < 4; i++) {
2941 f->fs.val.lip[i] = val[i];
2942 f->fs.mask.lip[i] = ~0;
2943 }
2944 if (adap->params.tp.vlan_pri_map & PORT_F) {
2945 f->fs.val.iport = port;
2946 f->fs.mask.iport = mask;
2947 }
2948 }
2949
2950 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2951 f->fs.val.proto = IPPROTO_TCP;
2952 f->fs.mask.proto = ~0;
2953 }
2954
2955 f->fs.dirsteer = 1;
2956 f->fs.iq = queue;
2957 /* Mark filter as locked */
2958 f->locked = 1;
2959 f->fs.rpttid = 1;
2960
2961 /* Save the actual tid. We need this to get the corresponding
2962 * filter entry structure in filter_rpl.
2963 */
2964 f->tid = stid + adap->tids.ftid_base;
2965 ret = set_filter_wr(adap, stid);
2966 if (ret) {
2967 clear_filter(adap, f);
2968 return ret;
2969 }
2970
2971 return 0;
2972 }
2973 EXPORT_SYMBOL(cxgb4_create_server_filter);
2974
cxgb4_remove_server_filter(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)2975 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2976 unsigned int queue, bool ipv6)
2977 {
2978 struct filter_entry *f;
2979 struct adapter *adap;
2980
2981 adap = netdev2adap(dev);
2982
2983 /* Adjust stid to correct filter index */
2984 stid -= adap->tids.sftid_base;
2985 stid += adap->tids.nftids;
2986
2987 f = &adap->tids.ftid_tab[stid];
2988 /* Unlock the filter */
2989 f->locked = 0;
2990
2991 return delete_filter(adap, stid);
2992 }
2993 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2994
cxgb_get_stats(struct net_device * dev,struct rtnl_link_stats64 * ns)2995 static void cxgb_get_stats(struct net_device *dev,
2996 struct rtnl_link_stats64 *ns)
2997 {
2998 struct port_stats stats;
2999 struct port_info *p = netdev_priv(dev);
3000 struct adapter *adapter = p->adapter;
3001
3002 /* Block retrieving statistics during EEH error
3003 * recovery. Otherwise, the recovery might fail
3004 * and the PCI device will be removed permanently
3005 */
3006 spin_lock(&adapter->stats_lock);
3007 if (!netif_device_present(dev)) {
3008 spin_unlock(&adapter->stats_lock);
3009 return;
3010 }
3011 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
3012 &p->stats_base);
3013 spin_unlock(&adapter->stats_lock);
3014
3015 ns->tx_bytes = stats.tx_octets;
3016 ns->tx_packets = stats.tx_frames;
3017 ns->rx_bytes = stats.rx_octets;
3018 ns->rx_packets = stats.rx_frames;
3019 ns->multicast = stats.rx_mcast_frames;
3020
3021 /* detailed rx_errors */
3022 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
3023 stats.rx_runt;
3024 ns->rx_over_errors = 0;
3025 ns->rx_crc_errors = stats.rx_fcs_err;
3026 ns->rx_frame_errors = stats.rx_symbol_err;
3027 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 +
3028 stats.rx_ovflow2 + stats.rx_ovflow3 +
3029 stats.rx_trunc0 + stats.rx_trunc1 +
3030 stats.rx_trunc2 + stats.rx_trunc3;
3031 ns->rx_missed_errors = 0;
3032
3033 /* detailed tx_errors */
3034 ns->tx_aborted_errors = 0;
3035 ns->tx_carrier_errors = 0;
3036 ns->tx_fifo_errors = 0;
3037 ns->tx_heartbeat_errors = 0;
3038 ns->tx_window_errors = 0;
3039
3040 ns->tx_errors = stats.tx_error_frames;
3041 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3042 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
3043 }
3044
cxgb_ioctl(struct net_device * dev,struct ifreq * req,int cmd)3045 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3046 {
3047 unsigned int mbox;
3048 int ret = 0, prtad, devad;
3049 struct port_info *pi = netdev_priv(dev);
3050 struct adapter *adapter = pi->adapter;
3051 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3052
3053 switch (cmd) {
3054 case SIOCGMIIPHY:
3055 if (pi->mdio_addr < 0)
3056 return -EOPNOTSUPP;
3057 data->phy_id = pi->mdio_addr;
3058 break;
3059 case SIOCGMIIREG:
3060 case SIOCSMIIREG:
3061 if (mdio_phy_id_is_c45(data->phy_id)) {
3062 prtad = mdio_phy_id_prtad(data->phy_id);
3063 devad = mdio_phy_id_devad(data->phy_id);
3064 } else if (data->phy_id < 32) {
3065 prtad = data->phy_id;
3066 devad = 0;
3067 data->reg_num &= 0x1f;
3068 } else
3069 return -EINVAL;
3070
3071 mbox = pi->adapter->pf;
3072 if (cmd == SIOCGMIIREG)
3073 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3074 data->reg_num, &data->val_out);
3075 else
3076 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3077 data->reg_num, data->val_in);
3078 break;
3079 case SIOCGHWTSTAMP:
3080 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3081 sizeof(pi->tstamp_config)) ?
3082 -EFAULT : 0;
3083 case SIOCSHWTSTAMP:
3084 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3085 sizeof(pi->tstamp_config)))
3086 return -EFAULT;
3087
3088 if (!is_t4(adapter->params.chip)) {
3089 switch (pi->tstamp_config.tx_type) {
3090 case HWTSTAMP_TX_OFF:
3091 case HWTSTAMP_TX_ON:
3092 break;
3093 default:
3094 return -ERANGE;
3095 }
3096
3097 switch (pi->tstamp_config.rx_filter) {
3098 case HWTSTAMP_FILTER_NONE:
3099 pi->rxtstamp = false;
3100 break;
3101 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3102 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3103 cxgb4_ptprx_timestamping(pi, pi->port_id,
3104 PTP_TS_L4);
3105 break;
3106 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3107 cxgb4_ptprx_timestamping(pi, pi->port_id,
3108 PTP_TS_L2_L4);
3109 break;
3110 case HWTSTAMP_FILTER_ALL:
3111 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3112 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3113 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3114 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3115 pi->rxtstamp = true;
3116 break;
3117 default:
3118 pi->tstamp_config.rx_filter =
3119 HWTSTAMP_FILTER_NONE;
3120 return -ERANGE;
3121 }
3122
3123 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
3124 (pi->tstamp_config.rx_filter ==
3125 HWTSTAMP_FILTER_NONE)) {
3126 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
3127 pi->ptp_enable = false;
3128 }
3129
3130 if (pi->tstamp_config.rx_filter !=
3131 HWTSTAMP_FILTER_NONE) {
3132 if (cxgb4_ptp_redirect_rx_packet(adapter,
3133 pi) >= 0)
3134 pi->ptp_enable = true;
3135 }
3136 } else {
3137 /* For T4 Adapters */
3138 switch (pi->tstamp_config.rx_filter) {
3139 case HWTSTAMP_FILTER_NONE:
3140 pi->rxtstamp = false;
3141 break;
3142 case HWTSTAMP_FILTER_ALL:
3143 pi->rxtstamp = true;
3144 break;
3145 default:
3146 pi->tstamp_config.rx_filter =
3147 HWTSTAMP_FILTER_NONE;
3148 return -ERANGE;
3149 }
3150 }
3151 return copy_to_user(req->ifr_data, &pi->tstamp_config,
3152 sizeof(pi->tstamp_config)) ?
3153 -EFAULT : 0;
3154 default:
3155 return -EOPNOTSUPP;
3156 }
3157 return ret;
3158 }
3159
cxgb_set_rxmode(struct net_device * dev)3160 static void cxgb_set_rxmode(struct net_device *dev)
3161 {
3162 /* unfortunately we can't return errors to the stack */
3163 set_rxmode(dev, -1, false);
3164 }
3165
cxgb_change_mtu(struct net_device * dev,int new_mtu)3166 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3167 {
3168 struct port_info *pi = netdev_priv(dev);
3169 int ret;
3170
3171 ret = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
3172 pi->viid_mirror, new_mtu, -1, -1, -1, -1, true);
3173 if (!ret)
3174 WRITE_ONCE(dev->mtu, new_mtu);
3175 return ret;
3176 }
3177
3178 #ifdef CONFIG_PCI_IOV
cxgb4_mgmt_open(struct net_device * dev)3179 static int cxgb4_mgmt_open(struct net_device *dev)
3180 {
3181 /* Turn carrier off since we don't have to transmit anything on this
3182 * interface.
3183 */
3184 netif_carrier_off(dev);
3185 return 0;
3186 }
3187
3188 /* Fill MAC address that will be assigned by the FW */
cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter * adap)3189 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
3190 {
3191 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
3192 unsigned int i, vf, nvfs;
3193 u16 a, b;
3194 int err;
3195 u8 *na;
3196
3197 err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
3198 if (err)
3199 return;
3200
3201 na = adap->params.vpd.na;
3202 for (i = 0; i < ETH_ALEN; i++)
3203 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
3204 hex2val(na[2 * i + 1]));
3205
3206 a = (hw_addr[0] << 8) | hw_addr[1];
3207 b = (hw_addr[1] << 8) | hw_addr[2];
3208 a ^= b;
3209 a |= 0x0200; /* locally assigned Ethernet MAC address */
3210 a &= ~0x0100; /* not a multicast Ethernet MAC address */
3211 macaddr[0] = a >> 8;
3212 macaddr[1] = a & 0xff;
3213
3214 for (i = 2; i < 5; i++)
3215 macaddr[i] = hw_addr[i + 1];
3216
3217 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
3218 vf < nvfs; vf++) {
3219 macaddr[5] = adap->pf * nvfs + vf;
3220 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
3221 }
3222 }
3223
cxgb4_mgmt_set_vf_mac(struct net_device * dev,int vf,u8 * mac)3224 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
3225 {
3226 struct port_info *pi = netdev_priv(dev);
3227 struct adapter *adap = pi->adapter;
3228 int ret;
3229
3230 /* verify MAC addr is valid */
3231 if (!is_valid_ether_addr(mac)) {
3232 dev_err(pi->adapter->pdev_dev,
3233 "Invalid Ethernet address %pM for VF %d\n",
3234 mac, vf);
3235 return -EINVAL;
3236 }
3237
3238 dev_info(pi->adapter->pdev_dev,
3239 "Setting MAC %pM on VF %d\n", mac, vf);
3240 ret = t4_set_vf_mac_acl(adap, vf + 1, pi->lport, 1, mac);
3241 if (!ret)
3242 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
3243 return ret;
3244 }
3245
cxgb4_mgmt_get_vf_config(struct net_device * dev,int vf,struct ifla_vf_info * ivi)3246 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
3247 int vf, struct ifla_vf_info *ivi)
3248 {
3249 struct port_info *pi = netdev_priv(dev);
3250 struct adapter *adap = pi->adapter;
3251 struct vf_info *vfinfo;
3252
3253 if (vf >= adap->num_vfs)
3254 return -EINVAL;
3255 vfinfo = &adap->vfinfo[vf];
3256
3257 ivi->vf = vf;
3258 ivi->max_tx_rate = vfinfo->tx_rate;
3259 ivi->min_tx_rate = 0;
3260 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
3261 ivi->vlan = vfinfo->vlan;
3262 ivi->linkstate = vfinfo->link_state;
3263 return 0;
3264 }
3265
cxgb4_mgmt_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)3266 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
3267 struct netdev_phys_item_id *ppid)
3268 {
3269 struct port_info *pi = netdev_priv(dev);
3270 unsigned int phy_port_id;
3271
3272 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
3273 ppid->id_len = sizeof(phy_port_id);
3274 memcpy(ppid->id, &phy_port_id, ppid->id_len);
3275 return 0;
3276 }
3277
cxgb4_mgmt_set_vf_rate(struct net_device * dev,int vf,int min_tx_rate,int max_tx_rate)3278 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
3279 int min_tx_rate, int max_tx_rate)
3280 {
3281 struct port_info *pi = netdev_priv(dev);
3282 struct adapter *adap = pi->adapter;
3283 unsigned int link_ok, speed, mtu;
3284 u32 fw_pfvf, fw_class;
3285 int class_id = vf;
3286 int ret;
3287 u16 pktsize;
3288
3289 if (vf >= adap->num_vfs)
3290 return -EINVAL;
3291
3292 if (min_tx_rate) {
3293 dev_err(adap->pdev_dev,
3294 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
3295 min_tx_rate, vf);
3296 return -EINVAL;
3297 }
3298
3299 if (max_tx_rate == 0) {
3300 /* unbind VF to to any Traffic Class */
3301 fw_pfvf =
3302 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3303 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3304 fw_class = 0xffffffff;
3305 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3306 &fw_pfvf, &fw_class);
3307 if (ret) {
3308 dev_err(adap->pdev_dev,
3309 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
3310 ret, adap->pf, vf);
3311 return -EINVAL;
3312 }
3313 dev_info(adap->pdev_dev,
3314 "PF %d VF %d is unbound from TX Rate Limiting\n",
3315 adap->pf, vf);
3316 adap->vfinfo[vf].tx_rate = 0;
3317 return 0;
3318 }
3319
3320 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
3321 if (ret != FW_SUCCESS) {
3322 dev_err(adap->pdev_dev,
3323 "Failed to get link information for VF %d\n", vf);
3324 return -EINVAL;
3325 }
3326
3327 if (!link_ok) {
3328 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
3329 return -EINVAL;
3330 }
3331
3332 if (max_tx_rate > speed) {
3333 dev_err(adap->pdev_dev,
3334 "Max tx rate %d for VF %d can't be > link-speed %u",
3335 max_tx_rate, vf, speed);
3336 return -EINVAL;
3337 }
3338
3339 pktsize = mtu;
3340 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
3341 pktsize = pktsize - sizeof(struct ethhdr) - 4;
3342 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
3343 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
3344 /* configure Traffic Class for rate-limiting */
3345 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
3346 SCHED_CLASS_LEVEL_CL_RL,
3347 SCHED_CLASS_MODE_CLASS,
3348 SCHED_CLASS_RATEUNIT_BITS,
3349 SCHED_CLASS_RATEMODE_ABS,
3350 pi->tx_chan, class_id, 0,
3351 max_tx_rate * 1000, 0, pktsize, 0);
3352 if (ret) {
3353 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
3354 ret);
3355 return -EINVAL;
3356 }
3357 dev_info(adap->pdev_dev,
3358 "Class %d with MSS %u configured with rate %u\n",
3359 class_id, pktsize, max_tx_rate);
3360
3361 /* bind VF to configured Traffic Class */
3362 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3363 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3364 fw_class = class_id;
3365 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
3366 &fw_class);
3367 if (ret) {
3368 dev_err(adap->pdev_dev,
3369 "Err %d in binding PF %d VF %d to Traffic Class %d\n",
3370 ret, adap->pf, vf, class_id);
3371 return -EINVAL;
3372 }
3373 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
3374 adap->pf, vf, class_id);
3375 adap->vfinfo[vf].tx_rate = max_tx_rate;
3376 return 0;
3377 }
3378
cxgb4_mgmt_set_vf_vlan(struct net_device * dev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)3379 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
3380 u16 vlan, u8 qos, __be16 vlan_proto)
3381 {
3382 struct port_info *pi = netdev_priv(dev);
3383 struct adapter *adap = pi->adapter;
3384 int ret;
3385
3386 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
3387 return -EINVAL;
3388
3389 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
3390 return -EPROTONOSUPPORT;
3391
3392 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
3393 if (!ret) {
3394 adap->vfinfo[vf].vlan = vlan;
3395 return 0;
3396 }
3397
3398 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
3399 ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
3400 return ret;
3401 }
3402
cxgb4_mgmt_set_vf_link_state(struct net_device * dev,int vf,int link)3403 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
3404 int link)
3405 {
3406 struct port_info *pi = netdev_priv(dev);
3407 struct adapter *adap = pi->adapter;
3408 u32 param, val;
3409 int ret = 0;
3410
3411 if (vf >= adap->num_vfs)
3412 return -EINVAL;
3413
3414 switch (link) {
3415 case IFLA_VF_LINK_STATE_AUTO:
3416 val = FW_VF_LINK_STATE_AUTO;
3417 break;
3418
3419 case IFLA_VF_LINK_STATE_ENABLE:
3420 val = FW_VF_LINK_STATE_ENABLE;
3421 break;
3422
3423 case IFLA_VF_LINK_STATE_DISABLE:
3424 val = FW_VF_LINK_STATE_DISABLE;
3425 break;
3426
3427 default:
3428 return -EINVAL;
3429 }
3430
3431 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3432 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3433 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3434 ¶m, &val);
3435 if (ret) {
3436 dev_err(adap->pdev_dev,
3437 "Error %d in setting PF %d VF %d link state\n",
3438 ret, adap->pf, vf);
3439 return -EINVAL;
3440 }
3441
3442 adap->vfinfo[vf].link_state = link;
3443 return ret;
3444 }
3445 #endif /* CONFIG_PCI_IOV */
3446
cxgb_set_mac_addr(struct net_device * dev,void * p)3447 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3448 {
3449 int ret;
3450 struct sockaddr *addr = p;
3451 struct port_info *pi = netdev_priv(dev);
3452
3453 if (!is_valid_ether_addr(addr->sa_data))
3454 return -EADDRNOTAVAIL;
3455
3456 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3457 addr->sa_data, true, &pi->smt_idx);
3458 if (ret < 0)
3459 return ret;
3460
3461 eth_hw_addr_set(dev, addr->sa_data);
3462 return 0;
3463 }
3464
3465 #ifdef CONFIG_NET_POLL_CONTROLLER
cxgb_netpoll(struct net_device * dev)3466 static void cxgb_netpoll(struct net_device *dev)
3467 {
3468 struct port_info *pi = netdev_priv(dev);
3469 struct adapter *adap = pi->adapter;
3470
3471 if (adap->flags & CXGB4_USING_MSIX) {
3472 int i;
3473 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3474
3475 for (i = pi->nqsets; i; i--, rx++)
3476 t4_sge_intr_msix(0, &rx->rspq);
3477 } else
3478 t4_intr_handler(adap)(0, adap);
3479 }
3480 #endif
3481
cxgb_set_tx_maxrate(struct net_device * dev,int index,u32 rate)3482 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3483 {
3484 struct port_info *pi = netdev_priv(dev);
3485 struct adapter *adap = pi->adapter;
3486 struct ch_sched_queue qe = { 0 };
3487 struct ch_sched_params p = { 0 };
3488 struct sched_class *e;
3489 u32 req_rate;
3490 int err = 0;
3491
3492 if (!can_sched(dev))
3493 return -ENOTSUPP;
3494
3495 if (index < 0 || index > pi->nqsets - 1)
3496 return -EINVAL;
3497
3498 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3499 dev_err(adap->pdev_dev,
3500 "Failed to rate limit on queue %d. Link Down?\n",
3501 index);
3502 return -EINVAL;
3503 }
3504
3505 qe.queue = index;
3506 e = cxgb4_sched_queue_lookup(dev, &qe);
3507 if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
3508 dev_err(adap->pdev_dev,
3509 "Queue %u already bound to class %u of type: %u\n",
3510 index, e->idx, e->info.u.params.level);
3511 return -EBUSY;
3512 }
3513
3514 /* Convert from Mbps to Kbps */
3515 req_rate = rate * 1000;
3516
3517 /* Max rate is 100 Gbps */
3518 if (req_rate > SCHED_MAX_RATE_KBPS) {
3519 dev_err(adap->pdev_dev,
3520 "Invalid rate %u Mbps, Max rate is %u Mbps\n",
3521 rate, SCHED_MAX_RATE_KBPS / 1000);
3522 return -ERANGE;
3523 }
3524
3525 /* First unbind the queue from any existing class */
3526 memset(&qe, 0, sizeof(qe));
3527 qe.queue = index;
3528 qe.class = SCHED_CLS_NONE;
3529
3530 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3531 if (err) {
3532 dev_err(adap->pdev_dev,
3533 "Unbinding Queue %d on port %d fail. Err: %d\n",
3534 index, pi->port_id, err);
3535 return err;
3536 }
3537
3538 /* Queue already unbound */
3539 if (!req_rate)
3540 return 0;
3541
3542 /* Fetch any available unused or matching scheduling class */
3543 p.type = SCHED_CLASS_TYPE_PACKET;
3544 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL;
3545 p.u.params.mode = SCHED_CLASS_MODE_CLASS;
3546 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3547 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3548 p.u.params.channel = pi->tx_chan;
3549 p.u.params.class = SCHED_CLS_NONE;
3550 p.u.params.minrate = 0;
3551 p.u.params.maxrate = req_rate;
3552 p.u.params.weight = 0;
3553 p.u.params.pktsize = dev->mtu;
3554
3555 e = cxgb4_sched_class_alloc(dev, &p);
3556 if (!e)
3557 return -ENOMEM;
3558
3559 /* Bind the queue to a scheduling class */
3560 memset(&qe, 0, sizeof(qe));
3561 qe.queue = index;
3562 qe.class = e->idx;
3563
3564 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3565 if (err)
3566 dev_err(adap->pdev_dev,
3567 "Queue rate limiting failed. Err: %d\n", err);
3568 return err;
3569 }
3570
cxgb_setup_tc_flower(struct net_device * dev,struct flow_cls_offload * cls_flower)3571 static int cxgb_setup_tc_flower(struct net_device *dev,
3572 struct flow_cls_offload *cls_flower)
3573 {
3574 switch (cls_flower->command) {
3575 case FLOW_CLS_REPLACE:
3576 return cxgb4_tc_flower_replace(dev, cls_flower);
3577 case FLOW_CLS_DESTROY:
3578 return cxgb4_tc_flower_destroy(dev, cls_flower);
3579 case FLOW_CLS_STATS:
3580 return cxgb4_tc_flower_stats(dev, cls_flower);
3581 default:
3582 return -EOPNOTSUPP;
3583 }
3584 }
3585
cxgb_setup_tc_cls_u32(struct net_device * dev,struct tc_cls_u32_offload * cls_u32)3586 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3587 struct tc_cls_u32_offload *cls_u32)
3588 {
3589 switch (cls_u32->command) {
3590 case TC_CLSU32_NEW_KNODE:
3591 case TC_CLSU32_REPLACE_KNODE:
3592 return cxgb4_config_knode(dev, cls_u32);
3593 case TC_CLSU32_DELETE_KNODE:
3594 return cxgb4_delete_knode(dev, cls_u32);
3595 default:
3596 return -EOPNOTSUPP;
3597 }
3598 }
3599
cxgb_setup_tc_matchall(struct net_device * dev,struct tc_cls_matchall_offload * cls_matchall,bool ingress)3600 static int cxgb_setup_tc_matchall(struct net_device *dev,
3601 struct tc_cls_matchall_offload *cls_matchall,
3602 bool ingress)
3603 {
3604 struct adapter *adap = netdev2adap(dev);
3605
3606 if (!adap->tc_matchall)
3607 return -ENOMEM;
3608
3609 switch (cls_matchall->command) {
3610 case TC_CLSMATCHALL_REPLACE:
3611 return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
3612 case TC_CLSMATCHALL_DESTROY:
3613 return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
3614 case TC_CLSMATCHALL_STATS:
3615 if (ingress)
3616 return cxgb4_tc_matchall_stats(dev, cls_matchall);
3617 break;
3618 default:
3619 break;
3620 }
3621
3622 return -EOPNOTSUPP;
3623 }
3624
cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3625 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
3626 void *type_data, void *cb_priv)
3627 {
3628 struct net_device *dev = cb_priv;
3629 struct port_info *pi = netdev2pinfo(dev);
3630 struct adapter *adap = netdev2adap(dev);
3631
3632 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3633 dev_err(adap->pdev_dev,
3634 "Failed to setup tc on port %d. Link Down?\n",
3635 pi->port_id);
3636 return -EINVAL;
3637 }
3638
3639 if (!tc_cls_can_offload_and_chain0(dev, type_data))
3640 return -EOPNOTSUPP;
3641
3642 switch (type) {
3643 case TC_SETUP_CLSU32:
3644 return cxgb_setup_tc_cls_u32(dev, type_data);
3645 case TC_SETUP_CLSFLOWER:
3646 return cxgb_setup_tc_flower(dev, type_data);
3647 case TC_SETUP_CLSMATCHALL:
3648 return cxgb_setup_tc_matchall(dev, type_data, true);
3649 default:
3650 return -EOPNOTSUPP;
3651 }
3652 }
3653
cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3654 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
3655 void *type_data, void *cb_priv)
3656 {
3657 struct net_device *dev = cb_priv;
3658 struct port_info *pi = netdev2pinfo(dev);
3659 struct adapter *adap = netdev2adap(dev);
3660
3661 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3662 dev_err(adap->pdev_dev,
3663 "Failed to setup tc on port %d. Link Down?\n",
3664 pi->port_id);
3665 return -EINVAL;
3666 }
3667
3668 if (!tc_cls_can_offload_and_chain0(dev, type_data))
3669 return -EOPNOTSUPP;
3670
3671 switch (type) {
3672 case TC_SETUP_CLSMATCHALL:
3673 return cxgb_setup_tc_matchall(dev, type_data, false);
3674 default:
3675 break;
3676 }
3677
3678 return -EOPNOTSUPP;
3679 }
3680
cxgb_setup_tc_mqprio(struct net_device * dev,struct tc_mqprio_qopt_offload * mqprio)3681 static int cxgb_setup_tc_mqprio(struct net_device *dev,
3682 struct tc_mqprio_qopt_offload *mqprio)
3683 {
3684 struct adapter *adap = netdev2adap(dev);
3685
3686 if (!is_ethofld(adap) || !adap->tc_mqprio)
3687 return -ENOMEM;
3688
3689 return cxgb4_setup_tc_mqprio(dev, mqprio);
3690 }
3691
3692 static LIST_HEAD(cxgb_block_cb_list);
3693
cxgb_setup_tc_block(struct net_device * dev,struct flow_block_offload * f)3694 static int cxgb_setup_tc_block(struct net_device *dev,
3695 struct flow_block_offload *f)
3696 {
3697 struct port_info *pi = netdev_priv(dev);
3698 flow_setup_cb_t *cb;
3699 bool ingress_only;
3700
3701 pi->tc_block_shared = f->block_shared;
3702 if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
3703 cb = cxgb_setup_tc_block_egress_cb;
3704 ingress_only = false;
3705 } else {
3706 cb = cxgb_setup_tc_block_ingress_cb;
3707 ingress_only = true;
3708 }
3709
3710 return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
3711 cb, pi, dev, ingress_only);
3712 }
3713
cxgb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)3714 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3715 void *type_data)
3716 {
3717 switch (type) {
3718 case TC_SETUP_QDISC_MQPRIO:
3719 return cxgb_setup_tc_mqprio(dev, type_data);
3720 case TC_SETUP_BLOCK:
3721 return cxgb_setup_tc_block(dev, type_data);
3722 default:
3723 return -EOPNOTSUPP;
3724 }
3725 }
3726
cxgb_udp_tunnel_unset_port(struct net_device * netdev,unsigned int table,unsigned int entry,struct udp_tunnel_info * ti)3727 static int cxgb_udp_tunnel_unset_port(struct net_device *netdev,
3728 unsigned int table, unsigned int entry,
3729 struct udp_tunnel_info *ti)
3730 {
3731 struct port_info *pi = netdev_priv(netdev);
3732 struct adapter *adapter = pi->adapter;
3733 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3734 int ret = 0, i;
3735
3736 switch (ti->type) {
3737 case UDP_TUNNEL_TYPE_VXLAN:
3738 adapter->vxlan_port = 0;
3739 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3740 break;
3741 case UDP_TUNNEL_TYPE_GENEVE:
3742 adapter->geneve_port = 0;
3743 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3744 break;
3745 default:
3746 return -EINVAL;
3747 }
3748
3749 /* Matchall mac entries can be deleted only after all tunnel ports
3750 * are brought down or removed.
3751 */
3752 if (!adapter->rawf_cnt)
3753 return 0;
3754 for_each_port(adapter, i) {
3755 pi = adap2pinfo(adapter, i);
3756 ret = t4_free_raw_mac_filt(adapter, pi->viid,
3757 match_all_mac, match_all_mac,
3758 adapter->rawf_start + pi->port_id,
3759 1, pi->port_id, false);
3760 if (ret < 0) {
3761 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3762 i);
3763 return ret;
3764 }
3765 }
3766
3767 return 0;
3768 }
3769
cxgb_udp_tunnel_set_port(struct net_device * netdev,unsigned int table,unsigned int entry,struct udp_tunnel_info * ti)3770 static int cxgb_udp_tunnel_set_port(struct net_device *netdev,
3771 unsigned int table, unsigned int entry,
3772 struct udp_tunnel_info *ti)
3773 {
3774 struct port_info *pi = netdev_priv(netdev);
3775 struct adapter *adapter = pi->adapter;
3776 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3777 int i, ret;
3778
3779 switch (ti->type) {
3780 case UDP_TUNNEL_TYPE_VXLAN:
3781 adapter->vxlan_port = ti->port;
3782 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3783 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3784 break;
3785 case UDP_TUNNEL_TYPE_GENEVE:
3786 adapter->geneve_port = ti->port;
3787 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3788 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3789 break;
3790 default:
3791 return -EINVAL;
3792 }
3793
3794 /* Create a 'match all' mac filter entry for inner mac,
3795 * if raw mac interface is supported. Once the linux kernel provides
3796 * driver entry points for adding/deleting the inner mac addresses,
3797 * we will remove this 'match all' entry and fallback to adding
3798 * exact match filters.
3799 */
3800 for_each_port(adapter, i) {
3801 pi = adap2pinfo(adapter, i);
3802
3803 ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3804 match_all_mac,
3805 match_all_mac,
3806 adapter->rawf_start + pi->port_id,
3807 1, pi->port_id, false);
3808 if (ret < 0) {
3809 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3810 be16_to_cpu(ti->port));
3811 return ret;
3812 }
3813 }
3814
3815 return 0;
3816 }
3817
3818 static const struct udp_tunnel_nic_info cxgb_udp_tunnels = {
3819 .set_port = cxgb_udp_tunnel_set_port,
3820 .unset_port = cxgb_udp_tunnel_unset_port,
3821 .tables = {
3822 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, },
3823 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
3824 },
3825 };
3826
cxgb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3827 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3828 struct net_device *dev,
3829 netdev_features_t features)
3830 {
3831 struct port_info *pi = netdev_priv(dev);
3832 struct adapter *adapter = pi->adapter;
3833
3834 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3835 return features;
3836
3837 /* Check if hw supports offload for this packet */
3838 if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3839 return features;
3840
3841 /* Offload is not supported for this encapsulated packet */
3842 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3843 }
3844
cxgb_fix_features(struct net_device * dev,netdev_features_t features)3845 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3846 netdev_features_t features)
3847 {
3848 /* Disable GRO, if RX_CSUM is disabled */
3849 if (!(features & NETIF_F_RXCSUM))
3850 features &= ~NETIF_F_GRO;
3851
3852 return features;
3853 }
3854
3855 static const struct net_device_ops cxgb4_netdev_ops = {
3856 .ndo_open = cxgb_open,
3857 .ndo_stop = cxgb_close,
3858 .ndo_start_xmit = t4_start_xmit,
3859 .ndo_select_queue = cxgb_select_queue,
3860 .ndo_get_stats64 = cxgb_get_stats,
3861 .ndo_set_rx_mode = cxgb_set_rxmode,
3862 .ndo_set_mac_address = cxgb_set_mac_addr,
3863 .ndo_set_features = cxgb_set_features,
3864 .ndo_validate_addr = eth_validate_addr,
3865 .ndo_eth_ioctl = cxgb_ioctl,
3866 .ndo_change_mtu = cxgb_change_mtu,
3867 #ifdef CONFIG_NET_POLL_CONTROLLER
3868 .ndo_poll_controller = cxgb_netpoll,
3869 #endif
3870 #ifdef CONFIG_CHELSIO_T4_FCOE
3871 .ndo_fcoe_enable = cxgb_fcoe_enable,
3872 .ndo_fcoe_disable = cxgb_fcoe_disable,
3873 #endif /* CONFIG_CHELSIO_T4_FCOE */
3874 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate,
3875 .ndo_setup_tc = cxgb_setup_tc,
3876 .ndo_features_check = cxgb_features_check,
3877 .ndo_fix_features = cxgb_fix_features,
3878 };
3879
3880 #ifdef CONFIG_PCI_IOV
3881 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3882 .ndo_open = cxgb4_mgmt_open,
3883 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac,
3884 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config,
3885 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate,
3886 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id,
3887 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan,
3888 .ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state,
3889 };
3890
cxgb4_mgmt_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)3891 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3892 struct ethtool_drvinfo *info)
3893 {
3894 struct adapter *adapter = netdev2adap(dev);
3895
3896 strscpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3897 strscpy(info->bus_info, pci_name(adapter->pdev),
3898 sizeof(info->bus_info));
3899 }
3900
3901 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3902 .get_drvinfo = cxgb4_mgmt_get_drvinfo,
3903 };
3904 #endif
3905
notify_fatal_err(struct work_struct * work)3906 static void notify_fatal_err(struct work_struct *work)
3907 {
3908 struct adapter *adap;
3909
3910 adap = container_of(work, struct adapter, fatal_err_notify_task);
3911 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3912 }
3913
t4_fatal_err(struct adapter * adap)3914 void t4_fatal_err(struct adapter *adap)
3915 {
3916 int port;
3917
3918 if (pci_channel_offline(adap->pdev))
3919 return;
3920
3921 /* Disable the SGE since ULDs are going to free resources that
3922 * could be exposed to the adapter. RDMA MWs for example...
3923 */
3924 t4_shutdown_adapter(adap);
3925 for_each_port(adap, port) {
3926 struct net_device *dev = adap->port[port];
3927
3928 /* If we get here in very early initialization the network
3929 * devices may not have been set up yet.
3930 */
3931 if (!dev)
3932 continue;
3933
3934 netif_tx_stop_all_queues(dev);
3935 netif_carrier_off(dev);
3936 }
3937 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3938 queue_work(adap->workq, &adap->fatal_err_notify_task);
3939 }
3940
setup_memwin(struct adapter * adap)3941 static void setup_memwin(struct adapter *adap)
3942 {
3943 u32 nic_win_base = t4_get_util_window(adap);
3944
3945 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3946 }
3947
setup_memwin_rdma(struct adapter * adap)3948 static void setup_memwin_rdma(struct adapter *adap)
3949 {
3950 if (adap->vres.ocq.size) {
3951 u32 start;
3952 unsigned int sz_kb;
3953
3954 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3955 start &= PCI_BASE_ADDRESS_MEM_MASK;
3956 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3957 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3958 t4_write_reg(adap,
3959 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3960 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3961 t4_write_reg(adap,
3962 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3963 adap->vres.ocq.start);
3964 t4_read_reg(adap,
3965 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3966 }
3967 }
3968
3969 /* HMA Definitions */
3970
3971 /* The maximum number of address that can be send in a single FW cmd */
3972 #define HMA_MAX_ADDR_IN_CMD 5
3973
3974 #define HMA_PAGE_SIZE PAGE_SIZE
3975
3976 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */
3977
3978 #define HMA_PAGE_ORDER \
3979 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \
3980 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3981
3982 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3983 * configuration(in units of MB).
3984 */
3985 #define HMA_MIN_TOTAL_SIZE 1
3986 #define HMA_MAX_TOTAL_SIZE \
3987 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \
3988 HMA_MAX_NO_FW_ADDRESS) >> 20)
3989
adap_free_hma_mem(struct adapter * adapter)3990 static void adap_free_hma_mem(struct adapter *adapter)
3991 {
3992 struct scatterlist *iter;
3993 struct page *page;
3994 int i;
3995
3996 if (!adapter->hma.sgt)
3997 return;
3998
3999 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
4000 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
4001 adapter->hma.sgt->nents, DMA_BIDIRECTIONAL);
4002 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
4003 }
4004
4005 for_each_sg(adapter->hma.sgt->sgl, iter,
4006 adapter->hma.sgt->orig_nents, i) {
4007 page = sg_page(iter);
4008 if (page)
4009 __free_pages(page, HMA_PAGE_ORDER);
4010 }
4011
4012 kfree(adapter->hma.phy_addr);
4013 sg_free_table(adapter->hma.sgt);
4014 kfree(adapter->hma.sgt);
4015 adapter->hma.sgt = NULL;
4016 }
4017
adap_config_hma(struct adapter * adapter)4018 static int adap_config_hma(struct adapter *adapter)
4019 {
4020 struct scatterlist *sgl, *iter;
4021 struct sg_table *sgt;
4022 struct page *newpage;
4023 unsigned int i, j, k;
4024 u32 param, hma_size;
4025 unsigned int ncmds;
4026 size_t page_size;
4027 u32 page_order;
4028 int node, ret;
4029
4030 /* HMA is supported only for T6+ cards.
4031 * Avoid initializing HMA in kdump kernels.
4032 */
4033 if (is_kdump_kernel() ||
4034 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
4035 return 0;
4036
4037 /* Get the HMA region size required by fw */
4038 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4039 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
4040 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
4041 1, ¶m, &hma_size);
4042 /* An error means card has its own memory or HMA is not supported by
4043 * the firmware. Return without any errors.
4044 */
4045 if (ret || !hma_size)
4046 return 0;
4047
4048 if (hma_size < HMA_MIN_TOTAL_SIZE ||
4049 hma_size > HMA_MAX_TOTAL_SIZE) {
4050 dev_err(adapter->pdev_dev,
4051 "HMA size %uMB beyond bounds(%u-%lu)MB\n",
4052 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
4053 return -EINVAL;
4054 }
4055
4056 page_size = HMA_PAGE_SIZE;
4057 page_order = HMA_PAGE_ORDER;
4058 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
4059 if (unlikely(!adapter->hma.sgt)) {
4060 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
4061 return -ENOMEM;
4062 }
4063 sgt = adapter->hma.sgt;
4064 /* FW returned value will be in MB's
4065 */
4066 sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
4067 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
4068 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
4069 kfree(adapter->hma.sgt);
4070 adapter->hma.sgt = NULL;
4071 return -ENOMEM;
4072 }
4073
4074 sgl = adapter->hma.sgt->sgl;
4075 node = dev_to_node(adapter->pdev_dev);
4076 for_each_sg(sgl, iter, sgt->orig_nents, i) {
4077 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
4078 __GFP_ZERO, page_order);
4079 if (!newpage) {
4080 dev_err(adapter->pdev_dev,
4081 "Not enough memory for HMA page allocation\n");
4082 ret = -ENOMEM;
4083 goto free_hma;
4084 }
4085 sg_set_page(iter, newpage, page_size << page_order, 0);
4086 }
4087
4088 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
4089 DMA_BIDIRECTIONAL);
4090 if (!sgt->nents) {
4091 dev_err(adapter->pdev_dev,
4092 "Not enough memory for HMA DMA mapping");
4093 ret = -ENOMEM;
4094 goto free_hma;
4095 }
4096 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
4097
4098 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
4099 GFP_KERNEL);
4100 if (unlikely(!adapter->hma.phy_addr))
4101 goto free_hma;
4102
4103 for_each_sg(sgl, iter, sgt->nents, i) {
4104 newpage = sg_page(iter);
4105 adapter->hma.phy_addr[i] = sg_dma_address(iter);
4106 }
4107
4108 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
4109 /* Pass on the addresses to firmware */
4110 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
4111 struct fw_hma_cmd hma_cmd;
4112 u8 naddr = HMA_MAX_ADDR_IN_CMD;
4113 u8 soc = 0, eoc = 0;
4114 u8 hma_mode = 1; /* Presently we support only Page table mode */
4115
4116 soc = (i == 0) ? 1 : 0;
4117 eoc = (i == ncmds - 1) ? 1 : 0;
4118
4119 /* For last cmd, set naddr corresponding to remaining
4120 * addresses
4121 */
4122 if (i == ncmds - 1) {
4123 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
4124 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
4125 }
4126 memset(&hma_cmd, 0, sizeof(hma_cmd));
4127 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
4128 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4129 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
4130
4131 hma_cmd.mode_to_pcie_params =
4132 htonl(FW_HMA_CMD_MODE_V(hma_mode) |
4133 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
4134
4135 /* HMA cmd size specified in MB's */
4136 hma_cmd.naddr_size =
4137 htonl(FW_HMA_CMD_SIZE_V(hma_size) |
4138 FW_HMA_CMD_NADDR_V(naddr));
4139
4140 /* Total Page size specified in units of 4K */
4141 hma_cmd.addr_size_pkd =
4142 htonl(FW_HMA_CMD_ADDR_SIZE_V
4143 ((page_size << page_order) >> 12));
4144
4145 /* Fill the 5 addresses */
4146 for (j = 0; j < naddr; j++) {
4147 hma_cmd.phy_address[j] =
4148 cpu_to_be64(adapter->hma.phy_addr[j + k]);
4149 }
4150 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
4151 sizeof(hma_cmd), &hma_cmd);
4152 if (ret) {
4153 dev_err(adapter->pdev_dev,
4154 "HMA FW command failed with err %d\n", ret);
4155 goto free_hma;
4156 }
4157 }
4158
4159 if (!ret)
4160 dev_info(adapter->pdev_dev,
4161 "Reserved %uMB host memory for HMA\n", hma_size);
4162 return ret;
4163
4164 free_hma:
4165 adap_free_hma_mem(adapter);
4166 return ret;
4167 }
4168
adap_init1(struct adapter * adap,struct fw_caps_config_cmd * c)4169 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4170 {
4171 u32 v;
4172 int ret;
4173
4174 /* Now that we've successfully configured and initialized the adapter
4175 * can ask the Firmware what resources it has provisioned for us.
4176 */
4177 ret = t4_get_pfres(adap);
4178 if (ret) {
4179 dev_err(adap->pdev_dev,
4180 "Unable to retrieve resource provisioning information\n");
4181 return ret;
4182 }
4183
4184 /* get device capabilities */
4185 memset(c, 0, sizeof(*c));
4186 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4187 FW_CMD_REQUEST_F | FW_CMD_READ_F);
4188 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4189 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
4190 if (ret < 0)
4191 return ret;
4192
4193 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4194 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4195 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
4196 if (ret < 0)
4197 return ret;
4198
4199 ret = t4_config_glbl_rss(adap, adap->pf,
4200 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4201 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
4202 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
4203 if (ret < 0)
4204 return ret;
4205
4206 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
4207 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
4208 FW_CMD_CAP_PF);
4209 if (ret < 0)
4210 return ret;
4211
4212 t4_sge_init(adap);
4213
4214 /* tweak some settings */
4215 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
4216 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
4217 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
4218 v = t4_read_reg(adap, TP_PIO_DATA_A);
4219 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
4220
4221 /* first 4 Tx modulation queues point to consecutive Tx channels */
4222 adap->params.tp.tx_modq_map = 0xE4;
4223 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
4224 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
4225
4226 /* associate each Tx modulation queue with consecutive Tx channels */
4227 v = 0x84218421;
4228 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4229 &v, 1, TP_TX_SCHED_HDR_A);
4230 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4231 &v, 1, TP_TX_SCHED_FIFO_A);
4232 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4233 &v, 1, TP_TX_SCHED_PCMD_A);
4234
4235 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4236 if (is_offload(adap)) {
4237 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
4238 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4239 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4240 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4241 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4242 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
4243 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4244 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4245 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4246 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4247 }
4248
4249 /* get basic stuff going */
4250 return t4_early_init(adap, adap->pf);
4251 }
4252
4253 /*
4254 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
4255 */
4256 #define MAX_ATIDS 8192U
4257
4258 /*
4259 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4260 *
4261 * If the firmware we're dealing with has Configuration File support, then
4262 * we use that to perform all configuration
4263 */
4264
4265 /*
4266 * Tweak configuration based on module parameters, etc. Most of these have
4267 * defaults assigned to them by Firmware Configuration Files (if we're using
4268 * them) but need to be explicitly set if we're using hard-coded
4269 * initialization. But even in the case of using Firmware Configuration
4270 * Files, we'd like to expose the ability to change these via module
4271 * parameters so these are essentially common tweaks/settings for
4272 * Configuration Files and hard-coded initialization ...
4273 */
adap_init0_tweaks(struct adapter * adapter)4274 static int adap_init0_tweaks(struct adapter *adapter)
4275 {
4276 /*
4277 * Fix up various Host-Dependent Parameters like Page Size, Cache
4278 * Line Size, etc. The firmware default is for a 4KB Page Size and
4279 * 64B Cache Line Size ...
4280 */
4281 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4282
4283 /*
4284 * Process module parameters which affect early initialization.
4285 */
4286 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4287 dev_err(&adapter->pdev->dev,
4288 "Ignoring illegal rx_dma_offset=%d, using 2\n",
4289 rx_dma_offset);
4290 rx_dma_offset = 2;
4291 }
4292 t4_set_reg_field(adapter, SGE_CONTROL_A,
4293 PKTSHIFT_V(PKTSHIFT_M),
4294 PKTSHIFT_V(rx_dma_offset));
4295
4296 /*
4297 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4298 * adds the pseudo header itself.
4299 */
4300 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
4301 CSUM_HAS_PSEUDO_HDR_F, 0);
4302
4303 return 0;
4304 }
4305
4306 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
4307 * unto themselves and they contain their own firmware to perform their
4308 * tasks ...
4309 */
phy_aq1202_version(const u8 * phy_fw_data,size_t phy_fw_size)4310 static int phy_aq1202_version(const u8 *phy_fw_data,
4311 size_t phy_fw_size)
4312 {
4313 int offset;
4314
4315 /* At offset 0x8 you're looking for the primary image's
4316 * starting offset which is 3 Bytes wide
4317 *
4318 * At offset 0xa of the primary image, you look for the offset
4319 * of the DRAM segment which is 3 Bytes wide.
4320 *
4321 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
4322 * wide
4323 */
4324 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
4325 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
4326 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
4327
4328 offset = le24(phy_fw_data + 0x8) << 12;
4329 offset = le24(phy_fw_data + offset + 0xa);
4330 return be16(phy_fw_data + offset + 0x27e);
4331
4332 #undef be16
4333 #undef le16
4334 #undef le24
4335 }
4336
4337 static struct info_10gbt_phy_fw {
4338 unsigned int phy_fw_id; /* PCI Device ID */
4339 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
4340 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
4341 int phy_flash; /* Has FLASH for PHY Firmware */
4342 } phy_info_array[] = {
4343 {
4344 PHY_AQ1202_DEVICEID,
4345 PHY_AQ1202_FIRMWARE,
4346 phy_aq1202_version,
4347 1,
4348 },
4349 {
4350 PHY_BCM84834_DEVICEID,
4351 PHY_BCM84834_FIRMWARE,
4352 NULL,
4353 0,
4354 },
4355 { 0, NULL, NULL },
4356 };
4357
find_phy_info(int devid)4358 static struct info_10gbt_phy_fw *find_phy_info(int devid)
4359 {
4360 int i;
4361
4362 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
4363 if (phy_info_array[i].phy_fw_id == devid)
4364 return &phy_info_array[i];
4365 }
4366 return NULL;
4367 }
4368
4369 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
4370 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
4371 * we return a negative error number. If we transfer new firmware we return 1
4372 * (from t4_load_phy_fw()). If we don't do anything we return 0.
4373 */
adap_init0_phy(struct adapter * adap)4374 static int adap_init0_phy(struct adapter *adap)
4375 {
4376 const struct firmware *phyf;
4377 int ret;
4378 struct info_10gbt_phy_fw *phy_info;
4379
4380 /* Use the device ID to determine which PHY file to flash.
4381 */
4382 phy_info = find_phy_info(adap->pdev->device);
4383 if (!phy_info) {
4384 dev_warn(adap->pdev_dev,
4385 "No PHY Firmware file found for this PHY\n");
4386 return -EOPNOTSUPP;
4387 }
4388
4389 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
4390 * use that. The adapter firmware provides us with a memory buffer
4391 * where we can load a PHY firmware file from the host if we want to
4392 * override the PHY firmware File in flash.
4393 */
4394 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
4395 adap->pdev_dev);
4396 if (ret < 0) {
4397 /* For adapters without FLASH attached to PHY for their
4398 * firmware, it's obviously a fatal error if we can't get the
4399 * firmware to the adapter. For adapters with PHY firmware
4400 * FLASH storage, it's worth a warning if we can't find the
4401 * PHY Firmware but we'll neuter the error ...
4402 */
4403 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
4404 "/lib/firmware/%s, error %d\n",
4405 phy_info->phy_fw_file, -ret);
4406 if (phy_info->phy_flash) {
4407 int cur_phy_fw_ver = 0;
4408
4409 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
4410 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
4411 "FLASH copy, version %#x\n", cur_phy_fw_ver);
4412 ret = 0;
4413 }
4414
4415 return ret;
4416 }
4417
4418 /* Load PHY Firmware onto adapter.
4419 */
4420 ret = t4_load_phy_fw(adap, MEMWIN_NIC, phy_info->phy_fw_version,
4421 (u8 *)phyf->data, phyf->size);
4422 if (ret < 0)
4423 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
4424 -ret);
4425 else if (ret > 0) {
4426 int new_phy_fw_ver = 0;
4427
4428 if (phy_info->phy_fw_version)
4429 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
4430 phyf->size);
4431 dev_info(adap->pdev_dev, "Successfully transferred PHY "
4432 "Firmware /lib/firmware/%s, version %#x\n",
4433 phy_info->phy_fw_file, new_phy_fw_ver);
4434 }
4435
4436 release_firmware(phyf);
4437
4438 return ret;
4439 }
4440
4441 /*
4442 * Attempt to initialize the adapter via a Firmware Configuration File.
4443 */
adap_init0_config(struct adapter * adapter,int reset)4444 static int adap_init0_config(struct adapter *adapter, int reset)
4445 {
4446 char *fw_config_file, fw_config_file_path[256];
4447 u32 finiver, finicsum, cfcsum, param, val;
4448 struct fw_caps_config_cmd caps_cmd;
4449 unsigned long mtype = 0, maddr = 0;
4450 const struct firmware *cf;
4451 char *config_name = NULL;
4452 int config_issued = 0;
4453 int ret;
4454
4455 /*
4456 * Reset device if necessary.
4457 */
4458 if (reset) {
4459 ret = t4_fw_reset(adapter, adapter->mbox,
4460 PIORSTMODE_F | PIORST_F);
4461 if (ret < 0)
4462 goto bye;
4463 }
4464
4465 /* If this is a 10Gb/s-BT adapter make sure the chip-external
4466 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
4467 * to be performed after any global adapter RESET above since some
4468 * PHYs only have local RAM copies of the PHY firmware.
4469 */
4470 if (is_10gbt_device(adapter->pdev->device)) {
4471 ret = adap_init0_phy(adapter);
4472 if (ret < 0)
4473 goto bye;
4474 }
4475 /*
4476 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4477 * then use that. Otherwise, use the configuration file stored
4478 * in the adapter flash ...
4479 */
4480 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4481 case CHELSIO_T4:
4482 fw_config_file = FW4_CFNAME;
4483 break;
4484 case CHELSIO_T5:
4485 fw_config_file = FW5_CFNAME;
4486 break;
4487 case CHELSIO_T6:
4488 fw_config_file = FW6_CFNAME;
4489 break;
4490 default:
4491 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4492 adapter->pdev->device);
4493 ret = -EINVAL;
4494 goto bye;
4495 }
4496
4497 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4498 if (ret < 0) {
4499 config_name = "On FLASH";
4500 mtype = FW_MEMTYPE_CF_FLASH;
4501 maddr = t4_flash_cfg_addr(adapter);
4502 } else {
4503 u32 params[7], val[7];
4504
4505 sprintf(fw_config_file_path,
4506 "/lib/firmware/%s", fw_config_file);
4507 config_name = fw_config_file_path;
4508
4509 if (cf->size >= FLASH_CFG_MAX_SIZE)
4510 ret = -ENOMEM;
4511 else {
4512 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4513 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4514 ret = t4_query_params(adapter, adapter->mbox,
4515 adapter->pf, 0, 1, params, val);
4516 if (ret == 0) {
4517 /*
4518 * For t4_memory_rw() below addresses and
4519 * sizes have to be in terms of multiples of 4
4520 * bytes. So, if the Configuration File isn't
4521 * a multiple of 4 bytes in length we'll have
4522 * to write that out separately since we can't
4523 * guarantee that the bytes following the
4524 * residual byte in the buffer returned by
4525 * request_firmware() are zeroed out ...
4526 */
4527 size_t resid = cf->size & 0x3;
4528 size_t size = cf->size & ~0x3;
4529 __be32 *data = (__be32 *)cf->data;
4530
4531 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4532 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4533
4534 spin_lock(&adapter->win0_lock);
4535 ret = t4_memory_rw(adapter, 0, mtype, maddr,
4536 size, data, T4_MEMORY_WRITE);
4537 if (ret == 0 && resid != 0) {
4538 union {
4539 __be32 word;
4540 char buf[4];
4541 } last;
4542 int i;
4543
4544 last.word = data[size >> 2];
4545 for (i = resid; i < 4; i++)
4546 last.buf[i] = 0;
4547 ret = t4_memory_rw(adapter, 0, mtype,
4548 maddr + size,
4549 4, &last.word,
4550 T4_MEMORY_WRITE);
4551 }
4552 spin_unlock(&adapter->win0_lock);
4553 }
4554 }
4555
4556 release_firmware(cf);
4557 if (ret)
4558 goto bye;
4559 }
4560
4561 val = 0;
4562
4563 /* Ofld + Hash filter is supported. Older fw will fail this request and
4564 * it is fine.
4565 */
4566 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4567 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4568 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4569 1, ¶m, &val);
4570
4571 /* FW doesn't know about Hash filter + ofld support,
4572 * it's not a problem, don't return an error.
4573 */
4574 if (ret < 0) {
4575 dev_warn(adapter->pdev_dev,
4576 "Hash filter with ofld is not supported by FW\n");
4577 }
4578
4579 /*
4580 * Issue a Capability Configuration command to the firmware to get it
4581 * to parse the Configuration File. We don't use t4_fw_config_file()
4582 * because we want the ability to modify various features after we've
4583 * processed the configuration file ...
4584 */
4585 memset(&caps_cmd, 0, sizeof(caps_cmd));
4586 caps_cmd.op_to_write =
4587 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4588 FW_CMD_REQUEST_F |
4589 FW_CMD_READ_F);
4590 caps_cmd.cfvalid_to_len16 =
4591 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4592 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4593 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4594 FW_LEN16(caps_cmd));
4595 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4596 &caps_cmd);
4597
4598 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4599 * Configuration File in FLASH), our last gasp effort is to use the
4600 * Firmware Configuration File which is embedded in the firmware. A
4601 * very few early versions of the firmware didn't have one embedded
4602 * but we can ignore those.
4603 */
4604 if (ret == -ENOENT) {
4605 memset(&caps_cmd, 0, sizeof(caps_cmd));
4606 caps_cmd.op_to_write =
4607 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4608 FW_CMD_REQUEST_F |
4609 FW_CMD_READ_F);
4610 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4611 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4612 sizeof(caps_cmd), &caps_cmd);
4613 config_name = "Firmware Default";
4614 }
4615
4616 config_issued = 1;
4617 if (ret < 0)
4618 goto bye;
4619
4620 finiver = ntohl(caps_cmd.finiver);
4621 finicsum = ntohl(caps_cmd.finicsum);
4622 cfcsum = ntohl(caps_cmd.cfcsum);
4623 if (finicsum != cfcsum)
4624 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4625 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4626 finicsum, cfcsum);
4627
4628 /*
4629 * And now tell the firmware to use the configuration we just loaded.
4630 */
4631 caps_cmd.op_to_write =
4632 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4633 FW_CMD_REQUEST_F |
4634 FW_CMD_WRITE_F);
4635 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4636 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4637 NULL);
4638 if (ret < 0)
4639 goto bye;
4640
4641 /*
4642 * Tweak configuration based on system architecture, module
4643 * parameters, etc.
4644 */
4645 ret = adap_init0_tweaks(adapter);
4646 if (ret < 0)
4647 goto bye;
4648
4649 /* We will proceed even if HMA init fails. */
4650 ret = adap_config_hma(adapter);
4651 if (ret)
4652 dev_err(adapter->pdev_dev,
4653 "HMA configuration failed with error %d\n", ret);
4654
4655 if (is_t6(adapter->params.chip)) {
4656 adap_config_hpfilter(adapter);
4657 ret = setup_ppod_edram(adapter);
4658 if (!ret)
4659 dev_info(adapter->pdev_dev, "Successfully enabled "
4660 "ppod edram feature\n");
4661 }
4662
4663 /*
4664 * And finally tell the firmware to initialize itself using the
4665 * parameters from the Configuration File.
4666 */
4667 ret = t4_fw_initialize(adapter, adapter->mbox);
4668 if (ret < 0)
4669 goto bye;
4670
4671 /* Emit Firmware Configuration File information and return
4672 * successfully.
4673 */
4674 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4675 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4676 config_name, finiver, cfcsum);
4677 return 0;
4678
4679 /*
4680 * Something bad happened. Return the error ... (If the "error"
4681 * is that there's no Configuration File on the adapter we don't
4682 * want to issue a warning since this is fairly common.)
4683 */
4684 bye:
4685 if (config_issued && ret != -ENOENT)
4686 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4687 config_name, -ret);
4688 return ret;
4689 }
4690
4691 static struct fw_info fw_info_array[] = {
4692 {
4693 .chip = CHELSIO_T4,
4694 .fs_name = FW4_CFNAME,
4695 .fw_mod_name = FW4_FNAME,
4696 .fw_hdr = {
4697 .chip = FW_HDR_CHIP_T4,
4698 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4699 .intfver_nic = FW_INTFVER(T4, NIC),
4700 .intfver_vnic = FW_INTFVER(T4, VNIC),
4701 .intfver_ri = FW_INTFVER(T4, RI),
4702 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4703 .intfver_fcoe = FW_INTFVER(T4, FCOE),
4704 },
4705 }, {
4706 .chip = CHELSIO_T5,
4707 .fs_name = FW5_CFNAME,
4708 .fw_mod_name = FW5_FNAME,
4709 .fw_hdr = {
4710 .chip = FW_HDR_CHIP_T5,
4711 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4712 .intfver_nic = FW_INTFVER(T5, NIC),
4713 .intfver_vnic = FW_INTFVER(T5, VNIC),
4714 .intfver_ri = FW_INTFVER(T5, RI),
4715 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4716 .intfver_fcoe = FW_INTFVER(T5, FCOE),
4717 },
4718 }, {
4719 .chip = CHELSIO_T6,
4720 .fs_name = FW6_CFNAME,
4721 .fw_mod_name = FW6_FNAME,
4722 .fw_hdr = {
4723 .chip = FW_HDR_CHIP_T6,
4724 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4725 .intfver_nic = FW_INTFVER(T6, NIC),
4726 .intfver_vnic = FW_INTFVER(T6, VNIC),
4727 .intfver_ofld = FW_INTFVER(T6, OFLD),
4728 .intfver_ri = FW_INTFVER(T6, RI),
4729 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4730 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4731 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4732 .intfver_fcoe = FW_INTFVER(T6, FCOE),
4733 },
4734 }
4735
4736 };
4737
find_fw_info(int chip)4738 static struct fw_info *find_fw_info(int chip)
4739 {
4740 int i;
4741
4742 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4743 if (fw_info_array[i].chip == chip)
4744 return &fw_info_array[i];
4745 }
4746 return NULL;
4747 }
4748
4749 /*
4750 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4751 */
adap_init0(struct adapter * adap,int vpd_skip)4752 static int adap_init0(struct adapter *adap, int vpd_skip)
4753 {
4754 struct fw_caps_config_cmd caps_cmd;
4755 u32 params[7], val[7];
4756 enum dev_state state;
4757 u32 v, port_vec;
4758 int reset = 1;
4759 int ret;
4760
4761 /* Grab Firmware Device Log parameters as early as possible so we have
4762 * access to it for debugging, etc.
4763 */
4764 ret = t4_init_devlog_params(adap);
4765 if (ret < 0)
4766 return ret;
4767
4768 /* Contact FW, advertising Master capability */
4769 ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4770 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4771 if (ret < 0) {
4772 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4773 ret);
4774 return ret;
4775 }
4776 if (ret == adap->mbox)
4777 adap->flags |= CXGB4_MASTER_PF;
4778
4779 /*
4780 * If we're the Master PF Driver and the device is uninitialized,
4781 * then let's consider upgrading the firmware ... (We always want
4782 * to check the firmware version number in order to A. get it for
4783 * later reporting and B. to warn if the currently loaded firmware
4784 * is excessively mismatched relative to the driver.)
4785 */
4786
4787 t4_get_version_info(adap);
4788 ret = t4_check_fw_version(adap);
4789 /* If firmware is too old (not supported by driver) force an update. */
4790 if (ret)
4791 state = DEV_STATE_UNINIT;
4792 if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4793 struct fw_info *fw_info;
4794 struct fw_hdr *card_fw;
4795 const struct firmware *fw;
4796 const u8 *fw_data = NULL;
4797 unsigned int fw_size = 0;
4798
4799 /* This is the firmware whose headers the driver was compiled
4800 * against
4801 */
4802 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4803 if (fw_info == NULL) {
4804 dev_err(adap->pdev_dev,
4805 "unable to get firmware info for chip %d.\n",
4806 CHELSIO_CHIP_VERSION(adap->params.chip));
4807 return -EINVAL;
4808 }
4809
4810 /* allocate memory to read the header of the firmware on the
4811 * card
4812 */
4813 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4814 if (!card_fw) {
4815 ret = -ENOMEM;
4816 goto bye;
4817 }
4818
4819 /* Get FW from from /lib/firmware/ */
4820 ret = request_firmware(&fw, fw_info->fw_mod_name,
4821 adap->pdev_dev);
4822 if (ret < 0) {
4823 dev_err(adap->pdev_dev,
4824 "unable to load firmware image %s, error %d\n",
4825 fw_info->fw_mod_name, ret);
4826 } else {
4827 fw_data = fw->data;
4828 fw_size = fw->size;
4829 }
4830
4831 /* upgrade FW logic */
4832 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4833 state, &reset);
4834
4835 /* Cleaning up */
4836 release_firmware(fw);
4837 kvfree(card_fw);
4838
4839 if (ret < 0)
4840 goto bye;
4841 }
4842
4843 /* If the firmware is initialized already, emit a simply note to that
4844 * effect. Otherwise, it's time to try initializing the adapter.
4845 */
4846 if (state == DEV_STATE_INIT) {
4847 ret = adap_config_hma(adap);
4848 if (ret)
4849 dev_err(adap->pdev_dev,
4850 "HMA configuration failed with error %d\n",
4851 ret);
4852 dev_info(adap->pdev_dev, "Coming up as %s: "\
4853 "Adapter already initialized\n",
4854 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4855 } else {
4856 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4857 "Initializing adapter\n");
4858
4859 /* Find out whether we're dealing with a version of the
4860 * firmware which has configuration file support.
4861 */
4862 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4863 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4864 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4865 params, val);
4866
4867 /* If the firmware doesn't support Configuration Files,
4868 * return an error.
4869 */
4870 if (ret < 0) {
4871 dev_err(adap->pdev_dev, "firmware doesn't support "
4872 "Firmware Configuration Files\n");
4873 goto bye;
4874 }
4875
4876 /* The firmware provides us with a memory buffer where we can
4877 * load a Configuration File from the host if we want to
4878 * override the Configuration File in flash.
4879 */
4880 ret = adap_init0_config(adap, reset);
4881 if (ret == -ENOENT) {
4882 dev_err(adap->pdev_dev, "no Configuration File "
4883 "present on adapter.\n");
4884 goto bye;
4885 }
4886 if (ret < 0) {
4887 dev_err(adap->pdev_dev, "could not initialize "
4888 "adapter, error %d\n", -ret);
4889 goto bye;
4890 }
4891 }
4892
4893 /* Now that we've successfully configured and initialized the adapter
4894 * (or found it already initialized), we can ask the Firmware what
4895 * resources it has provisioned for us.
4896 */
4897 ret = t4_get_pfres(adap);
4898 if (ret) {
4899 dev_err(adap->pdev_dev,
4900 "Unable to retrieve resource provisioning information\n");
4901 goto bye;
4902 }
4903
4904 /* Grab VPD parameters. This should be done after we establish a
4905 * connection to the firmware since some of the VPD parameters
4906 * (notably the Core Clock frequency) are retrieved via requests to
4907 * the firmware. On the other hand, we need these fairly early on
4908 * so we do this right after getting ahold of the firmware.
4909 *
4910 * We need to do this after initializing the adapter because someone
4911 * could have FLASHed a new VPD which won't be read by the firmware
4912 * until we do the RESET ...
4913 */
4914 if (!vpd_skip) {
4915 ret = t4_get_vpd_params(adap, &adap->params.vpd);
4916 if (ret < 0)
4917 goto bye;
4918 }
4919
4920 /* Find out what ports are available to us. Note that we need to do
4921 * this before calling adap_init0_no_config() since it needs nports
4922 * and portvec ...
4923 */
4924 v =
4925 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4926 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4927 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4928 if (ret < 0)
4929 goto bye;
4930
4931 adap->params.nports = hweight32(port_vec);
4932 adap->params.portvec = port_vec;
4933
4934 /* Give the SGE code a chance to pull in anything that it needs ...
4935 * Note that this must be called after we retrieve our VPD parameters
4936 * in order to know how to convert core ticks to seconds, etc.
4937 */
4938 ret = t4_sge_init(adap);
4939 if (ret < 0)
4940 goto bye;
4941
4942 /* Grab the SGE Doorbell Queue Timer values. If successful, that
4943 * indicates that the Firmware and Hardware support this.
4944 */
4945 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4946 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4947 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4948 1, params, val);
4949
4950 if (!ret) {
4951 adap->sge.dbqtimer_tick = val[0];
4952 ret = t4_read_sge_dbqtimers(adap,
4953 ARRAY_SIZE(adap->sge.dbqtimer_val),
4954 adap->sge.dbqtimer_val);
4955 }
4956
4957 if (!ret)
4958 adap->flags |= CXGB4_SGE_DBQ_TIMER;
4959
4960 if (is_bypass_device(adap->pdev->device))
4961 adap->params.bypass = 1;
4962
4963 /*
4964 * Grab some of our basic fundamental operating parameters.
4965 */
4966 params[0] = FW_PARAM_PFVF(EQ_START);
4967 params[1] = FW_PARAM_PFVF(L2T_START);
4968 params[2] = FW_PARAM_PFVF(L2T_END);
4969 params[3] = FW_PARAM_PFVF(FILTER_START);
4970 params[4] = FW_PARAM_PFVF(FILTER_END);
4971 params[5] = FW_PARAM_PFVF(IQFLINT_START);
4972 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4973 if (ret < 0)
4974 goto bye;
4975 adap->sge.egr_start = val[0];
4976 adap->l2t_start = val[1];
4977 adap->l2t_end = val[2];
4978 adap->tids.ftid_base = val[3];
4979 adap->tids.nftids = val[4] - val[3] + 1;
4980 adap->sge.ingr_start = val[5];
4981
4982 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4983 params[0] = FW_PARAM_PFVF(HPFILTER_START);
4984 params[1] = FW_PARAM_PFVF(HPFILTER_END);
4985 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4986 params, val);
4987 if (ret < 0)
4988 goto bye;
4989
4990 adap->tids.hpftid_base = val[0];
4991 adap->tids.nhpftids = val[1] - val[0] + 1;
4992
4993 /* Read the raw mps entries. In T6, the last 2 tcam entries
4994 * are reserved for raw mac addresses (rawf = 2, one per port).
4995 */
4996 params[0] = FW_PARAM_PFVF(RAWF_START);
4997 params[1] = FW_PARAM_PFVF(RAWF_END);
4998 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4999 params, val);
5000 if (ret == 0) {
5001 adap->rawf_start = val[0];
5002 adap->rawf_cnt = val[1] - val[0] + 1;
5003 }
5004
5005 adap->tids.tid_base =
5006 t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
5007 }
5008
5009 /* qids (ingress/egress) returned from firmware can be anywhere
5010 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
5011 * Hence driver needs to allocate memory for this range to
5012 * store the queue info. Get the highest IQFLINT/EQ index returned
5013 * in FW_EQ_*_CMD.alloc command.
5014 */
5015 params[0] = FW_PARAM_PFVF(EQ_END);
5016 params[1] = FW_PARAM_PFVF(IQFLINT_END);
5017 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5018 if (ret < 0)
5019 goto bye;
5020 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
5021 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
5022
5023 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
5024 sizeof(*adap->sge.egr_map), GFP_KERNEL);
5025 if (!adap->sge.egr_map) {
5026 ret = -ENOMEM;
5027 goto bye;
5028 }
5029
5030 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
5031 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
5032 if (!adap->sge.ingr_map) {
5033 ret = -ENOMEM;
5034 goto bye;
5035 }
5036
5037 /* Allocate the memory for the vaious egress queue bitmaps
5038 * ie starving_fl, txq_maperr and blocked_fl.
5039 */
5040 adap->sge.starving_fl = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5041 if (!adap->sge.starving_fl) {
5042 ret = -ENOMEM;
5043 goto bye;
5044 }
5045
5046 adap->sge.txq_maperr = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5047 if (!adap->sge.txq_maperr) {
5048 ret = -ENOMEM;
5049 goto bye;
5050 }
5051
5052 #ifdef CONFIG_DEBUG_FS
5053 adap->sge.blocked_fl = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL);
5054 if (!adap->sge.blocked_fl) {
5055 ret = -ENOMEM;
5056 goto bye;
5057 }
5058 #endif
5059
5060 params[0] = FW_PARAM_PFVF(CLIP_START);
5061 params[1] = FW_PARAM_PFVF(CLIP_END);
5062 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5063 if (ret < 0)
5064 goto bye;
5065 adap->clipt_start = val[0];
5066 adap->clipt_end = val[1];
5067
5068 /* Get the supported number of traffic classes */
5069 params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5070 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5071 if (ret < 0) {
5072 /* We couldn't retrieve the number of Traffic Classes
5073 * supported by the hardware/firmware. So we hard
5074 * code it here.
5075 */
5076 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
5077 } else {
5078 adap->params.nsched_cls = val[0];
5079 }
5080
5081 /* query params related to active filter region */
5082 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5083 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5084 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5085 /* If Active filter size is set we enable establishing
5086 * offload connection through firmware work request
5087 */
5088 if ((val[0] != val[1]) && (ret >= 0)) {
5089 adap->flags |= CXGB4_FW_OFLD_CONN;
5090 adap->tids.aftid_base = val[0];
5091 adap->tids.aftid_end = val[1];
5092 }
5093
5094 /* If we're running on newer firmware, let it know that we're
5095 * prepared to deal with encapsulated CPL messages. Older
5096 * firmware won't understand this and we'll just get
5097 * unencapsulated messages ...
5098 */
5099 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5100 val[0] = 1;
5101 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5102
5103 /*
5104 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5105 * capability. Earlier versions of the firmware didn't have the
5106 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5107 * permission to use ULPTX MEMWRITE DSGL.
5108 */
5109 if (is_t4(adap->params.chip)) {
5110 adap->params.ulptx_memwrite_dsgl = false;
5111 } else {
5112 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5113 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5114 1, params, val);
5115 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5116 }
5117
5118 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
5119 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5120 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5121 1, params, val);
5122 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
5123
5124 /* See if FW supports FW_FILTER2 work request */
5125 if (is_t4(adap->params.chip)) {
5126 adap->params.filter2_wr_support = false;
5127 } else {
5128 params[0] = FW_PARAM_DEV(FILTER2_WR);
5129 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5130 1, params, val);
5131 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
5132 }
5133
5134 /* Check if FW supports returning vin and smt index.
5135 * If this is not supported, driver will interpret
5136 * these values from viid.
5137 */
5138 params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5139 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5140 1, params, val);
5141 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
5142
5143 /*
5144 * Get device capabilities so we can determine what resources we need
5145 * to manage.
5146 */
5147 memset(&caps_cmd, 0, sizeof(caps_cmd));
5148 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5149 FW_CMD_REQUEST_F | FW_CMD_READ_F);
5150 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5151 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5152 &caps_cmd);
5153 if (ret < 0)
5154 goto bye;
5155
5156 /* hash filter has some mandatory register settings to be tested and for
5157 * that it needs to test whether offload is enabled or not, hence
5158 * checking and setting it here.
5159 */
5160 if (caps_cmd.ofldcaps)
5161 adap->params.offload = 1;
5162
5163 if (caps_cmd.ofldcaps ||
5164 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
5165 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
5166 /* query offload-related parameters */
5167 params[0] = FW_PARAM_DEV(NTID);
5168 params[1] = FW_PARAM_PFVF(SERVER_START);
5169 params[2] = FW_PARAM_PFVF(SERVER_END);
5170 params[3] = FW_PARAM_PFVF(TDDP_START);
5171 params[4] = FW_PARAM_PFVF(TDDP_END);
5172 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5173 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5174 params, val);
5175 if (ret < 0)
5176 goto bye;
5177 adap->tids.ntids = val[0];
5178 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5179 adap->tids.stid_base = val[1];
5180 adap->tids.nstids = val[2] - val[1] + 1;
5181 /*
5182 * Setup server filter region. Divide the available filter
5183 * region into two parts. Regular filters get 1/3rd and server
5184 * filters get 2/3rd part. This is only enabled if workarond
5185 * path is enabled.
5186 * 1. For regular filters.
5187 * 2. Server filter: This are special filters which are used
5188 * to redirect SYN packets to offload queue.
5189 */
5190 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
5191 adap->tids.sftid_base = adap->tids.ftid_base +
5192 DIV_ROUND_UP(adap->tids.nftids, 3);
5193 adap->tids.nsftids = adap->tids.nftids -
5194 DIV_ROUND_UP(adap->tids.nftids, 3);
5195 adap->tids.nftids = adap->tids.sftid_base -
5196 adap->tids.ftid_base;
5197 }
5198 adap->vres.ddp.start = val[3];
5199 adap->vres.ddp.size = val[4] - val[3] + 1;
5200 adap->params.ofldq_wr_cred = val[5];
5201
5202 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5203 init_hash_filter(adap);
5204 } else {
5205 adap->num_ofld_uld += 1;
5206 }
5207
5208 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
5209 params[0] = FW_PARAM_PFVF(ETHOFLD_START);
5210 params[1] = FW_PARAM_PFVF(ETHOFLD_END);
5211 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5212 params, val);
5213 if (!ret) {
5214 adap->tids.eotid_base = val[0];
5215 adap->tids.neotids = min_t(u32, MAX_ATIDS,
5216 val[1] - val[0] + 1);
5217 adap->params.ethofld = 1;
5218 }
5219 }
5220 }
5221 if (caps_cmd.rdmacaps) {
5222 params[0] = FW_PARAM_PFVF(STAG_START);
5223 params[1] = FW_PARAM_PFVF(STAG_END);
5224 params[2] = FW_PARAM_PFVF(RQ_START);
5225 params[3] = FW_PARAM_PFVF(RQ_END);
5226 params[4] = FW_PARAM_PFVF(PBL_START);
5227 params[5] = FW_PARAM_PFVF(PBL_END);
5228 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5229 params, val);
5230 if (ret < 0)
5231 goto bye;
5232 adap->vres.stag.start = val[0];
5233 adap->vres.stag.size = val[1] - val[0] + 1;
5234 adap->vres.rq.start = val[2];
5235 adap->vres.rq.size = val[3] - val[2] + 1;
5236 adap->vres.pbl.start = val[4];
5237 adap->vres.pbl.size = val[5] - val[4] + 1;
5238
5239 params[0] = FW_PARAM_PFVF(SRQ_START);
5240 params[1] = FW_PARAM_PFVF(SRQ_END);
5241 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5242 params, val);
5243 if (!ret) {
5244 adap->vres.srq.start = val[0];
5245 adap->vres.srq.size = val[1] - val[0] + 1;
5246 }
5247 if (adap->vres.srq.size) {
5248 adap->srq = t4_init_srq(adap->vres.srq.size);
5249 if (!adap->srq)
5250 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
5251 }
5252
5253 params[0] = FW_PARAM_PFVF(SQRQ_START);
5254 params[1] = FW_PARAM_PFVF(SQRQ_END);
5255 params[2] = FW_PARAM_PFVF(CQ_START);
5256 params[3] = FW_PARAM_PFVF(CQ_END);
5257 params[4] = FW_PARAM_PFVF(OCQ_START);
5258 params[5] = FW_PARAM_PFVF(OCQ_END);
5259 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
5260 val);
5261 if (ret < 0)
5262 goto bye;
5263 adap->vres.qp.start = val[0];
5264 adap->vres.qp.size = val[1] - val[0] + 1;
5265 adap->vres.cq.start = val[2];
5266 adap->vres.cq.size = val[3] - val[2] + 1;
5267 adap->vres.ocq.start = val[4];
5268 adap->vres.ocq.size = val[5] - val[4] + 1;
5269
5270 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5271 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5272 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5273 val);
5274 if (ret < 0) {
5275 adap->params.max_ordird_qp = 8;
5276 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5277 ret = 0;
5278 } else {
5279 adap->params.max_ordird_qp = val[0];
5280 adap->params.max_ird_adapter = val[1];
5281 }
5282 dev_info(adap->pdev_dev,
5283 "max_ordird_qp %d max_ird_adapter %d\n",
5284 adap->params.max_ordird_qp,
5285 adap->params.max_ird_adapter);
5286
5287 /* Enable write_with_immediate if FW supports it */
5288 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
5289 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5290 val);
5291 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
5292
5293 /* Enable write_cmpl if FW supports it */
5294 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
5295 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5296 val);
5297 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
5298 adap->num_ofld_uld += 2;
5299 }
5300 if (caps_cmd.iscsicaps) {
5301 params[0] = FW_PARAM_PFVF(ISCSI_START);
5302 params[1] = FW_PARAM_PFVF(ISCSI_END);
5303 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5304 params, val);
5305 if (ret < 0)
5306 goto bye;
5307 adap->vres.iscsi.start = val[0];
5308 adap->vres.iscsi.size = val[1] - val[0] + 1;
5309 if (is_t6(adap->params.chip)) {
5310 params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
5311 params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
5312 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5313 params, val);
5314 if (!ret) {
5315 adap->vres.ppod_edram.start = val[0];
5316 adap->vres.ppod_edram.size =
5317 val[1] - val[0] + 1;
5318
5319 dev_info(adap->pdev_dev,
5320 "ppod edram start 0x%x end 0x%x size 0x%x\n",
5321 val[0], val[1],
5322 adap->vres.ppod_edram.size);
5323 }
5324 }
5325 /* LIO target and cxgb4i initiaitor */
5326 adap->num_ofld_uld += 2;
5327 }
5328 if (caps_cmd.cryptocaps) {
5329 if (ntohs(caps_cmd.cryptocaps) &
5330 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
5331 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
5332 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5333 2, params, val);
5334 if (ret < 0) {
5335 if (ret != -EINVAL)
5336 goto bye;
5337 } else {
5338 adap->vres.ncrypto_fc = val[0];
5339 }
5340 adap->num_ofld_uld += 1;
5341 }
5342 if (ntohs(caps_cmd.cryptocaps) &
5343 FW_CAPS_CONFIG_TLS_INLINE) {
5344 params[0] = FW_PARAM_PFVF(TLS_START);
5345 params[1] = FW_PARAM_PFVF(TLS_END);
5346 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5347 2, params, val);
5348 if (ret < 0)
5349 goto bye;
5350 adap->vres.key.start = val[0];
5351 adap->vres.key.size = val[1] - val[0] + 1;
5352 adap->num_uld += 1;
5353 }
5354 adap->params.crypto = ntohs(caps_cmd.cryptocaps);
5355 }
5356
5357 /* The MTU/MSS Table is initialized by now, so load their values. If
5358 * we're initializing the adapter, then we'll make any modifications
5359 * we want to the MTU/MSS Table and also initialize the congestion
5360 * parameters.
5361 */
5362 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5363 if (state != DEV_STATE_INIT) {
5364 int i;
5365
5366 /* The default MTU Table contains values 1492 and 1500.
5367 * However, for TCP, it's better to have two values which are
5368 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5369 * This allows us to have a TCP Data Payload which is a
5370 * multiple of 8 regardless of what combination of TCP Options
5371 * are in use (always a multiple of 4 bytes) which is
5372 * important for performance reasons. For instance, if no
5373 * options are in use, then we have a 20-byte IP header and a
5374 * 20-byte TCP header. In this case, a 1500-byte MSS would
5375 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5376 * which is not a multiple of 8. So using an MSS of 1488 in
5377 * this case results in a TCP Data Payload of 1448 bytes which
5378 * is a multiple of 8. On the other hand, if 12-byte TCP Time
5379 * Stamps have been negotiated, then an MTU of 1500 bytes
5380 * results in a TCP Data Payload of 1448 bytes which, as
5381 * above, is a multiple of 8 bytes ...
5382 */
5383 for (i = 0; i < NMTUS; i++)
5384 if (adap->params.mtus[i] == 1492) {
5385 adap->params.mtus[i] = 1488;
5386 break;
5387 }
5388
5389 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5390 adap->params.b_wnd);
5391 }
5392 t4_init_sge_params(adap);
5393 adap->flags |= CXGB4_FW_OK;
5394 t4_init_tp_params(adap, true);
5395 return 0;
5396
5397 /*
5398 * Something bad happened. If a command timed out or failed with EIO
5399 * FW does not operate within its spec or something catastrophic
5400 * happened to HW/FW, stop issuing commands.
5401 */
5402 bye:
5403 adap_free_hma_mem(adap);
5404 kfree(adap->sge.egr_map);
5405 kfree(adap->sge.ingr_map);
5406 bitmap_free(adap->sge.starving_fl);
5407 bitmap_free(adap->sge.txq_maperr);
5408 #ifdef CONFIG_DEBUG_FS
5409 bitmap_free(adap->sge.blocked_fl);
5410 #endif
5411 if (ret != -ETIMEDOUT && ret != -EIO)
5412 t4_fw_bye(adap, adap->mbox);
5413 return ret;
5414 }
5415
5416 /* EEH callbacks */
5417
eeh_err_detected(struct pci_dev * pdev,pci_channel_state_t state)5418 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5419 pci_channel_state_t state)
5420 {
5421 int i;
5422 struct adapter *adap = pci_get_drvdata(pdev);
5423
5424 if (!adap)
5425 goto out;
5426
5427 rtnl_lock();
5428 adap->flags &= ~CXGB4_FW_OK;
5429 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5430 spin_lock(&adap->stats_lock);
5431 for_each_port(adap, i) {
5432 struct net_device *dev = adap->port[i];
5433 if (dev) {
5434 netif_device_detach(dev);
5435 netif_carrier_off(dev);
5436 }
5437 }
5438 spin_unlock(&adap->stats_lock);
5439 disable_interrupts(adap);
5440 if (adap->flags & CXGB4_FULL_INIT_DONE)
5441 cxgb_down(adap);
5442 rtnl_unlock();
5443 if ((adap->flags & CXGB4_DEV_ENABLED)) {
5444 pci_disable_device(pdev);
5445 adap->flags &= ~CXGB4_DEV_ENABLED;
5446 }
5447 out: return state == pci_channel_io_perm_failure ?
5448 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5449 }
5450
eeh_slot_reset(struct pci_dev * pdev)5451 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5452 {
5453 int i, ret;
5454 struct fw_caps_config_cmd c;
5455 struct adapter *adap = pci_get_drvdata(pdev);
5456
5457 if (!adap) {
5458 pci_restore_state(pdev);
5459 pci_save_state(pdev);
5460 return PCI_ERS_RESULT_RECOVERED;
5461 }
5462
5463 if (!(adap->flags & CXGB4_DEV_ENABLED)) {
5464 if (pci_enable_device(pdev)) {
5465 dev_err(&pdev->dev, "Cannot reenable PCI "
5466 "device after reset\n");
5467 return PCI_ERS_RESULT_DISCONNECT;
5468 }
5469 adap->flags |= CXGB4_DEV_ENABLED;
5470 }
5471
5472 pci_set_master(pdev);
5473 pci_restore_state(pdev);
5474 pci_save_state(pdev);
5475
5476 if (t4_wait_dev_ready(adap->regs) < 0)
5477 return PCI_ERS_RESULT_DISCONNECT;
5478 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
5479 return PCI_ERS_RESULT_DISCONNECT;
5480 adap->flags |= CXGB4_FW_OK;
5481 if (adap_init1(adap, &c))
5482 return PCI_ERS_RESULT_DISCONNECT;
5483
5484 for_each_port(adap, i) {
5485 struct port_info *pi = adap2pinfo(adap, i);
5486 u8 vivld = 0, vin = 0;
5487
5488 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5489 NULL, NULL, &vivld, &vin);
5490 if (ret < 0)
5491 return PCI_ERS_RESULT_DISCONNECT;
5492 pi->viid = ret;
5493 pi->xact_addr_filt = -1;
5494 /* If fw supports returning the VIN as part of FW_VI_CMD,
5495 * save the returned values.
5496 */
5497 if (adap->params.viid_smt_extn_support) {
5498 pi->vivld = vivld;
5499 pi->vin = vin;
5500 } else {
5501 /* Retrieve the values from VIID */
5502 pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5503 pi->vin = FW_VIID_VIN_G(pi->viid);
5504 }
5505 }
5506
5507 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5508 adap->params.b_wnd);
5509 setup_memwin(adap);
5510 if (cxgb_up(adap))
5511 return PCI_ERS_RESULT_DISCONNECT;
5512 return PCI_ERS_RESULT_RECOVERED;
5513 }
5514
eeh_resume(struct pci_dev * pdev)5515 static void eeh_resume(struct pci_dev *pdev)
5516 {
5517 int i;
5518 struct adapter *adap = pci_get_drvdata(pdev);
5519
5520 if (!adap)
5521 return;
5522
5523 rtnl_lock();
5524 for_each_port(adap, i) {
5525 struct net_device *dev = adap->port[i];
5526 if (dev) {
5527 if (netif_running(dev)) {
5528 link_start(dev);
5529 cxgb_set_rxmode(dev);
5530 }
5531 netif_device_attach(dev);
5532 }
5533 }
5534 rtnl_unlock();
5535 }
5536
eeh_reset_prepare(struct pci_dev * pdev)5537 static void eeh_reset_prepare(struct pci_dev *pdev)
5538 {
5539 struct adapter *adapter = pci_get_drvdata(pdev);
5540 int i;
5541
5542 if (adapter->pf != 4)
5543 return;
5544
5545 adapter->flags &= ~CXGB4_FW_OK;
5546
5547 notify_ulds(adapter, CXGB4_STATE_DOWN);
5548
5549 for_each_port(adapter, i)
5550 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5551 cxgb_close(adapter->port[i]);
5552
5553 disable_interrupts(adapter);
5554 cxgb4_free_mps_ref_entries(adapter);
5555
5556 adap_free_hma_mem(adapter);
5557
5558 if (adapter->flags & CXGB4_FULL_INIT_DONE)
5559 cxgb_down(adapter);
5560 }
5561
eeh_reset_done(struct pci_dev * pdev)5562 static void eeh_reset_done(struct pci_dev *pdev)
5563 {
5564 struct adapter *adapter = pci_get_drvdata(pdev);
5565 int err, i;
5566
5567 if (adapter->pf != 4)
5568 return;
5569
5570 err = t4_wait_dev_ready(adapter->regs);
5571 if (err < 0) {
5572 dev_err(adapter->pdev_dev,
5573 "Device not ready, err %d", err);
5574 return;
5575 }
5576
5577 setup_memwin(adapter);
5578
5579 err = adap_init0(adapter, 1);
5580 if (err) {
5581 dev_err(adapter->pdev_dev,
5582 "Adapter init failed, err %d", err);
5583 return;
5584 }
5585
5586 setup_memwin_rdma(adapter);
5587
5588 if (adapter->flags & CXGB4_FW_OK) {
5589 err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
5590 if (err) {
5591 dev_err(adapter->pdev_dev,
5592 "Port init failed, err %d", err);
5593 return;
5594 }
5595 }
5596
5597 err = cfg_queues(adapter);
5598 if (err) {
5599 dev_err(adapter->pdev_dev,
5600 "Config queues failed, err %d", err);
5601 return;
5602 }
5603
5604 cxgb4_init_mps_ref_entries(adapter);
5605
5606 err = setup_fw_sge_queues(adapter);
5607 if (err) {
5608 dev_err(adapter->pdev_dev,
5609 "FW sge queue allocation failed, err %d", err);
5610 return;
5611 }
5612
5613 for_each_port(adapter, i)
5614 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5615 cxgb_open(adapter->port[i]);
5616 }
5617
5618 static const struct pci_error_handlers cxgb4_eeh = {
5619 .error_detected = eeh_err_detected,
5620 .slot_reset = eeh_slot_reset,
5621 .resume = eeh_resume,
5622 .reset_prepare = eeh_reset_prepare,
5623 .reset_done = eeh_reset_done,
5624 };
5625
5626 /* Return true if the Link Configuration supports "High Speeds" (those greater
5627 * than 1Gb/s).
5628 */
is_x_10g_port(const struct link_config * lc)5629 static inline bool is_x_10g_port(const struct link_config *lc)
5630 {
5631 unsigned int speeds, high_speeds;
5632
5633 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5634 high_speeds = speeds &
5635 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5636
5637 return high_speeds != 0;
5638 }
5639
5640 /* Perform default configuration of DMA queues depending on the number and type
5641 * of ports we found and the number of available CPUs. Most settings can be
5642 * modified by the admin prior to actual use.
5643 */
cfg_queues(struct adapter * adap)5644 static int cfg_queues(struct adapter *adap)
5645 {
5646 u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
5647 u32 ncpus = num_online_cpus();
5648 u32 niqflint, neq, num_ulds;
5649 struct sge *s = &adap->sge;
5650 u32 i, n10g = 0, qidx = 0;
5651 u32 q10g = 0, q1g;
5652
5653 /* Reduce memory usage in kdump environment, disable all offload. */
5654 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5655 adap->params.offload = 0;
5656 adap->params.crypto = 0;
5657 adap->params.ethofld = 0;
5658 }
5659
5660 /* Calculate the number of Ethernet Queue Sets available based on
5661 * resources provisioned for us. We always have an Asynchronous
5662 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy
5663 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5664 * Ingress Queue. Meanwhile, we need two Egress Queues for each
5665 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5666 *
5667 * Note that we should also take into account all of the various
5668 * Offload Queues. But, in any situation where we're operating in
5669 * a Resource Constrained Provisioning environment, doing any Offload
5670 * at all is problematic ...
5671 */
5672 niqflint = adap->params.pfres.niqflint - 1;
5673 if (!(adap->flags & CXGB4_USING_MSIX))
5674 niqflint--;
5675 neq = adap->params.pfres.neq / 2;
5676 avail_qsets = min(niqflint, neq);
5677
5678 if (avail_qsets < adap->params.nports) {
5679 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5680 avail_qsets, adap->params.nports);
5681 return -ENOMEM;
5682 }
5683
5684 /* Count the number of 10Gb/s or better ports */
5685 for_each_port(adap, i)
5686 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5687
5688 avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
5689
5690 /* We default to 1 queue per non-10G port and up to # of cores queues
5691 * per 10G port.
5692 */
5693 if (n10g)
5694 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5695
5696 #ifdef CONFIG_CHELSIO_T4_DCB
5697 /* For Data Center Bridging support we need to be able to support up
5698 * to 8 Traffic Priorities; each of which will be assigned to its
5699 * own TX Queue in order to prevent Head-Of-Line Blocking.
5700 */
5701 q1g = 8;
5702 if (adap->params.nports * 8 > avail_eth_qsets) {
5703 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5704 avail_eth_qsets, adap->params.nports * 8);
5705 return -ENOMEM;
5706 }
5707
5708 if (adap->params.nports * ncpus < avail_eth_qsets)
5709 q10g = max(8U, ncpus);
5710 else
5711 q10g = max(8U, q10g);
5712
5713 while ((q10g * n10g) >
5714 (avail_eth_qsets - (adap->params.nports - n10g) * q1g))
5715 q10g--;
5716
5717 #else /* !CONFIG_CHELSIO_T4_DCB */
5718 q1g = 1;
5719 q10g = min(q10g, ncpus);
5720 #endif /* !CONFIG_CHELSIO_T4_DCB */
5721 if (is_kdump_kernel()) {
5722 q10g = 1;
5723 q1g = 1;
5724 }
5725
5726 for_each_port(adap, i) {
5727 struct port_info *pi = adap2pinfo(adap, i);
5728
5729 pi->first_qset = qidx;
5730 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g;
5731 qidx += pi->nqsets;
5732 }
5733
5734 s->ethqsets = qidx;
5735 s->max_ethqsets = qidx; /* MSI-X may lower it later */
5736 avail_qsets -= qidx;
5737
5738 if (is_uld(adap)) {
5739 /* For offload we use 1 queue/channel if all ports are up to 1G,
5740 * otherwise we divide all available queues amongst the channels
5741 * capped by the number of available cores.
5742 */
5743 num_ulds = adap->num_uld + adap->num_ofld_uld;
5744 i = min_t(u32, MAX_OFLD_QSETS, ncpus);
5745 avail_uld_qsets = roundup(i, adap->params.nports);
5746 if (avail_qsets < num_ulds * adap->params.nports) {
5747 adap->params.offload = 0;
5748 adap->params.crypto = 0;
5749 s->ofldqsets = 0;
5750 } else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
5751 s->ofldqsets = adap->params.nports;
5752 } else {
5753 s->ofldqsets = avail_uld_qsets;
5754 }
5755
5756 avail_qsets -= num_ulds * s->ofldqsets;
5757 }
5758
5759 /* ETHOFLD Queues used for QoS offload should follow same
5760 * allocation scheme as normal Ethernet Queues.
5761 */
5762 if (is_ethofld(adap)) {
5763 if (avail_qsets < s->max_ethqsets) {
5764 adap->params.ethofld = 0;
5765 s->eoqsets = 0;
5766 } else {
5767 s->eoqsets = s->max_ethqsets;
5768 }
5769 avail_qsets -= s->eoqsets;
5770 }
5771
5772 /* Mirror queues must follow same scheme as normal Ethernet
5773 * Queues, when there are enough queues available. Otherwise,
5774 * allocate at least 1 queue per port. If even 1 queue is not
5775 * available, then disable mirror queues support.
5776 */
5777 if (avail_qsets >= s->max_ethqsets)
5778 s->mirrorqsets = s->max_ethqsets;
5779 else if (avail_qsets >= adap->params.nports)
5780 s->mirrorqsets = adap->params.nports;
5781 else
5782 s->mirrorqsets = 0;
5783 avail_qsets -= s->mirrorqsets;
5784
5785 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5786 struct sge_eth_rxq *r = &s->ethrxq[i];
5787
5788 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5789 r->fl.size = 72;
5790 }
5791
5792 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5793 s->ethtxq[i].q.size = 1024;
5794
5795 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5796 s->ctrlq[i].q.size = 512;
5797
5798 if (!is_t4(adap->params.chip))
5799 s->ptptxq.q.size = 8;
5800
5801 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5802 init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5803
5804 return 0;
5805 }
5806
5807 /*
5808 * Reduce the number of Ethernet queues across all ports to at most n.
5809 * n provides at least one queue per port.
5810 */
reduce_ethqs(struct adapter * adap,int n)5811 static void reduce_ethqs(struct adapter *adap, int n)
5812 {
5813 int i;
5814 struct port_info *pi;
5815
5816 while (n < adap->sge.ethqsets)
5817 for_each_port(adap, i) {
5818 pi = adap2pinfo(adap, i);
5819 if (pi->nqsets > 1) {
5820 pi->nqsets--;
5821 adap->sge.ethqsets--;
5822 if (adap->sge.ethqsets <= n)
5823 break;
5824 }
5825 }
5826
5827 n = 0;
5828 for_each_port(adap, i) {
5829 pi = adap2pinfo(adap, i);
5830 pi->first_qset = n;
5831 n += pi->nqsets;
5832 }
5833 }
5834
alloc_msix_info(struct adapter * adap,u32 num_vec)5835 static int alloc_msix_info(struct adapter *adap, u32 num_vec)
5836 {
5837 struct msix_info *msix_info;
5838
5839 msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
5840 if (!msix_info)
5841 return -ENOMEM;
5842
5843 adap->msix_bmap.msix_bmap = bitmap_zalloc(num_vec, GFP_KERNEL);
5844 if (!adap->msix_bmap.msix_bmap) {
5845 kfree(msix_info);
5846 return -ENOMEM;
5847 }
5848
5849 spin_lock_init(&adap->msix_bmap.lock);
5850 adap->msix_bmap.mapsize = num_vec;
5851
5852 adap->msix_info = msix_info;
5853 return 0;
5854 }
5855
free_msix_info(struct adapter * adap)5856 static void free_msix_info(struct adapter *adap)
5857 {
5858 bitmap_free(adap->msix_bmap.msix_bmap);
5859 kfree(adap->msix_info);
5860 }
5861
cxgb4_get_msix_idx_from_bmap(struct adapter * adap)5862 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
5863 {
5864 struct msix_bmap *bmap = &adap->msix_bmap;
5865 unsigned int msix_idx;
5866 unsigned long flags;
5867
5868 spin_lock_irqsave(&bmap->lock, flags);
5869 msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
5870 if (msix_idx < bmap->mapsize) {
5871 __set_bit(msix_idx, bmap->msix_bmap);
5872 } else {
5873 spin_unlock_irqrestore(&bmap->lock, flags);
5874 return -ENOSPC;
5875 }
5876
5877 spin_unlock_irqrestore(&bmap->lock, flags);
5878 return msix_idx;
5879 }
5880
cxgb4_free_msix_idx_in_bmap(struct adapter * adap,unsigned int msix_idx)5881 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
5882 unsigned int msix_idx)
5883 {
5884 struct msix_bmap *bmap = &adap->msix_bmap;
5885 unsigned long flags;
5886
5887 spin_lock_irqsave(&bmap->lock, flags);
5888 __clear_bit(msix_idx, bmap->msix_bmap);
5889 spin_unlock_irqrestore(&bmap->lock, flags);
5890 }
5891
5892 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5893 #define EXTRA_VECS 2
5894
enable_msix(struct adapter * adap)5895 static int enable_msix(struct adapter *adap)
5896 {
5897 u32 eth_need, uld_need = 0, ethofld_need = 0, mirror_need = 0;
5898 u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0, mirrorqsets = 0;
5899 u8 num_uld = 0, nchan = adap->params.nports;
5900 u32 i, want, need, num_vec;
5901 struct sge *s = &adap->sge;
5902 struct msix_entry *entries;
5903 struct port_info *pi;
5904 int allocated, ret;
5905
5906 want = s->max_ethqsets;
5907 #ifdef CONFIG_CHELSIO_T4_DCB
5908 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5909 * each port.
5910 */
5911 need = 8 * nchan;
5912 #else
5913 need = nchan;
5914 #endif
5915 eth_need = need;
5916 if (is_uld(adap)) {
5917 num_uld = adap->num_ofld_uld + adap->num_uld;
5918 want += num_uld * s->ofldqsets;
5919 uld_need = num_uld * nchan;
5920 need += uld_need;
5921 }
5922
5923 if (is_ethofld(adap)) {
5924 want += s->eoqsets;
5925 ethofld_need = eth_need;
5926 need += ethofld_need;
5927 }
5928
5929 if (s->mirrorqsets) {
5930 want += s->mirrorqsets;
5931 mirror_need = nchan;
5932 need += mirror_need;
5933 }
5934
5935 want += EXTRA_VECS;
5936 need += EXTRA_VECS;
5937
5938 entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
5939 if (!entries)
5940 return -ENOMEM;
5941
5942 for (i = 0; i < want; i++)
5943 entries[i].entry = i;
5944
5945 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5946 if (allocated < 0) {
5947 /* Disable offload and attempt to get vectors for NIC
5948 * only mode.
5949 */
5950 want = s->max_ethqsets + EXTRA_VECS;
5951 need = eth_need + EXTRA_VECS;
5952 allocated = pci_enable_msix_range(adap->pdev, entries,
5953 need, want);
5954 if (allocated < 0) {
5955 dev_info(adap->pdev_dev,
5956 "Disabling MSI-X due to insufficient MSI-X vectors\n");
5957 ret = allocated;
5958 goto out_free;
5959 }
5960
5961 dev_info(adap->pdev_dev,
5962 "Disabling offload due to insufficient MSI-X vectors\n");
5963 adap->params.offload = 0;
5964 adap->params.crypto = 0;
5965 adap->params.ethofld = 0;
5966 s->ofldqsets = 0;
5967 s->eoqsets = 0;
5968 s->mirrorqsets = 0;
5969 uld_need = 0;
5970 ethofld_need = 0;
5971 mirror_need = 0;
5972 }
5973
5974 num_vec = allocated;
5975 if (num_vec < want) {
5976 /* Distribute available vectors to the various queue groups.
5977 * Every group gets its minimum requirement and NIC gets top
5978 * priority for leftovers.
5979 */
5980 ethqsets = eth_need;
5981 if (is_uld(adap))
5982 ofldqsets = nchan;
5983 if (is_ethofld(adap))
5984 eoqsets = ethofld_need;
5985 if (s->mirrorqsets)
5986 mirrorqsets = mirror_need;
5987
5988 num_vec -= need;
5989 while (num_vec) {
5990 if (num_vec < eth_need + ethofld_need ||
5991 ethqsets > s->max_ethqsets)
5992 break;
5993
5994 for_each_port(adap, i) {
5995 pi = adap2pinfo(adap, i);
5996 if (pi->nqsets < 2)
5997 continue;
5998
5999 ethqsets++;
6000 num_vec--;
6001 if (ethofld_need) {
6002 eoqsets++;
6003 num_vec--;
6004 }
6005 }
6006 }
6007
6008 if (is_uld(adap)) {
6009 while (num_vec) {
6010 if (num_vec < uld_need ||
6011 ofldqsets > s->ofldqsets)
6012 break;
6013
6014 ofldqsets++;
6015 num_vec -= uld_need;
6016 }
6017 }
6018
6019 if (s->mirrorqsets) {
6020 while (num_vec) {
6021 if (num_vec < mirror_need ||
6022 mirrorqsets > s->mirrorqsets)
6023 break;
6024
6025 mirrorqsets++;
6026 num_vec -= mirror_need;
6027 }
6028 }
6029 } else {
6030 ethqsets = s->max_ethqsets;
6031 if (is_uld(adap))
6032 ofldqsets = s->ofldqsets;
6033 if (is_ethofld(adap))
6034 eoqsets = s->eoqsets;
6035 if (s->mirrorqsets)
6036 mirrorqsets = s->mirrorqsets;
6037 }
6038
6039 if (ethqsets < s->max_ethqsets) {
6040 s->max_ethqsets = ethqsets;
6041 reduce_ethqs(adap, ethqsets);
6042 }
6043
6044 if (is_uld(adap)) {
6045 s->ofldqsets = ofldqsets;
6046 s->nqs_per_uld = s->ofldqsets;
6047 }
6048
6049 if (is_ethofld(adap))
6050 s->eoqsets = eoqsets;
6051
6052 if (s->mirrorqsets) {
6053 s->mirrorqsets = mirrorqsets;
6054 for_each_port(adap, i) {
6055 pi = adap2pinfo(adap, i);
6056 pi->nmirrorqsets = s->mirrorqsets / nchan;
6057 mutex_init(&pi->vi_mirror_mutex);
6058 }
6059 }
6060
6061 /* map for msix */
6062 ret = alloc_msix_info(adap, allocated);
6063 if (ret)
6064 goto out_disable_msix;
6065
6066 for (i = 0; i < allocated; i++) {
6067 adap->msix_info[i].vec = entries[i].vector;
6068 adap->msix_info[i].idx = i;
6069 }
6070
6071 dev_info(adap->pdev_dev,
6072 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d mirrorqsets %d\n",
6073 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld,
6074 s->mirrorqsets);
6075
6076 kfree(entries);
6077 return 0;
6078
6079 out_disable_msix:
6080 pci_disable_msix(adap->pdev);
6081
6082 out_free:
6083 kfree(entries);
6084 return ret;
6085 }
6086
6087 #undef EXTRA_VECS
6088
init_rss(struct adapter * adap)6089 static int init_rss(struct adapter *adap)
6090 {
6091 unsigned int i;
6092 int err;
6093
6094 err = t4_init_rss_mode(adap, adap->mbox);
6095 if (err)
6096 return err;
6097
6098 for_each_port(adap, i) {
6099 struct port_info *pi = adap2pinfo(adap, i);
6100
6101 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6102 if (!pi->rss)
6103 return -ENOMEM;
6104 }
6105 return 0;
6106 }
6107
6108 /* Dump basic information about the adapter */
print_adapter_info(struct adapter * adapter)6109 static void print_adapter_info(struct adapter *adapter)
6110 {
6111 /* Hardware/Firmware/etc. Version/Revision IDs */
6112 t4_dump_version_info(adapter);
6113
6114 /* Software/Hardware configuration */
6115 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
6116 is_offload(adapter) ? "R" : "",
6117 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
6118 (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
6119 is_offload(adapter) ? "Offload" : "non-Offload");
6120 }
6121
print_port_info(const struct net_device * dev)6122 static void print_port_info(const struct net_device *dev)
6123 {
6124 char buf[80];
6125 char *bufp = buf;
6126 const struct port_info *pi = netdev_priv(dev);
6127 const struct adapter *adap = pi->adapter;
6128
6129 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
6130 bufp += sprintf(bufp, "100M/");
6131 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
6132 bufp += sprintf(bufp, "1G/");
6133 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
6134 bufp += sprintf(bufp, "10G/");
6135 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
6136 bufp += sprintf(bufp, "25G/");
6137 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
6138 bufp += sprintf(bufp, "40G/");
6139 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
6140 bufp += sprintf(bufp, "50G/");
6141 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
6142 bufp += sprintf(bufp, "100G/");
6143 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
6144 bufp += sprintf(bufp, "200G/");
6145 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
6146 bufp += sprintf(bufp, "400G/");
6147 if (bufp != buf)
6148 --bufp;
6149 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6150
6151 netdev_info(dev, "Chelsio %s %s\n", adap->params.vpd.id, buf);
6152 }
6153
6154 /*
6155 * Free the following resources:
6156 * - memory used for tables
6157 * - MSI/MSI-X
6158 * - net devices
6159 * - resources FW is holding for us
6160 */
free_some_resources(struct adapter * adapter)6161 static void free_some_resources(struct adapter *adapter)
6162 {
6163 unsigned int i;
6164
6165 kvfree(adapter->smt);
6166 kvfree(adapter->l2t);
6167 kvfree(adapter->srq);
6168 t4_cleanup_sched(adapter);
6169 kvfree(adapter->tids.tid_tab);
6170 cxgb4_cleanup_tc_matchall(adapter);
6171 cxgb4_cleanup_tc_mqprio(adapter);
6172 cxgb4_cleanup_tc_flower(adapter);
6173 cxgb4_cleanup_tc_u32(adapter);
6174 cxgb4_cleanup_ethtool_filters(adapter);
6175 kfree(adapter->sge.egr_map);
6176 kfree(adapter->sge.ingr_map);
6177 bitmap_free(adapter->sge.starving_fl);
6178 bitmap_free(adapter->sge.txq_maperr);
6179 #ifdef CONFIG_DEBUG_FS
6180 bitmap_free(adapter->sge.blocked_fl);
6181 #endif
6182 disable_msi(adapter);
6183
6184 for_each_port(adapter, i)
6185 if (adapter->port[i]) {
6186 struct port_info *pi = adap2pinfo(adapter, i);
6187
6188 if (pi->viid != 0)
6189 t4_free_vi(adapter, adapter->mbox, adapter->pf,
6190 0, pi->viid);
6191 kfree(adap2pinfo(adapter, i)->rss);
6192 free_netdev(adapter->port[i]);
6193 }
6194 if (adapter->flags & CXGB4_FW_OK)
6195 t4_fw_bye(adapter, adapter->pf);
6196 }
6197
6198 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
6199 NETIF_F_GSO_UDP_L4)
6200 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6201 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6202 #define SEGMENT_SIZE 128
6203
t4_get_chip_type(struct adapter * adap,int ver)6204 static int t4_get_chip_type(struct adapter *adap, int ver)
6205 {
6206 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
6207
6208 switch (ver) {
6209 case CHELSIO_T4:
6210 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
6211 case CHELSIO_T5:
6212 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
6213 case CHELSIO_T6:
6214 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
6215 default:
6216 break;
6217 }
6218 return -EINVAL;
6219 }
6220
6221 #ifdef CONFIG_PCI_IOV
cxgb4_mgmt_setup(struct net_device * dev)6222 static void cxgb4_mgmt_setup(struct net_device *dev)
6223 {
6224 dev->type = ARPHRD_NONE;
6225 dev->mtu = 0;
6226 dev->hard_header_len = 0;
6227 dev->addr_len = 0;
6228 dev->tx_queue_len = 0;
6229 dev->flags |= IFF_NOARP;
6230 dev->priv_flags |= IFF_NO_QUEUE;
6231
6232 /* Initialize the device structure. */
6233 dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
6234 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
6235 }
6236
cxgb4_iov_configure(struct pci_dev * pdev,int num_vfs)6237 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
6238 {
6239 struct adapter *adap = pci_get_drvdata(pdev);
6240 int err = 0;
6241 int current_vfs = pci_num_vf(pdev);
6242 u32 pcie_fw;
6243
6244 pcie_fw = readl(adap->regs + PCIE_FW_A);
6245 /* Check if fw is initialized */
6246 if (!(pcie_fw & PCIE_FW_INIT_F)) {
6247 dev_warn(&pdev->dev, "Device not initialized\n");
6248 return -EOPNOTSUPP;
6249 }
6250
6251 /* If any of the VF's is already assigned to Guest OS, then
6252 * SRIOV for the same cannot be modified
6253 */
6254 if (current_vfs && pci_vfs_assigned(pdev)) {
6255 dev_err(&pdev->dev,
6256 "Cannot modify SR-IOV while VFs are assigned\n");
6257 return current_vfs;
6258 }
6259 /* Note that the upper-level code ensures that we're never called with
6260 * a non-zero "num_vfs" when we already have VFs instantiated. But
6261 * it never hurts to code defensively.
6262 */
6263 if (num_vfs != 0 && current_vfs != 0)
6264 return -EBUSY;
6265
6266 /* Nothing to do for no change. */
6267 if (num_vfs == current_vfs)
6268 return num_vfs;
6269
6270 /* Disable SRIOV when zero is passed. */
6271 if (!num_vfs) {
6272 pci_disable_sriov(pdev);
6273 /* free VF Management Interface */
6274 unregister_netdev(adap->port[0]);
6275 free_netdev(adap->port[0]);
6276 adap->port[0] = NULL;
6277
6278 /* free VF resources */
6279 adap->num_vfs = 0;
6280 kfree(adap->vfinfo);
6281 adap->vfinfo = NULL;
6282 return 0;
6283 }
6284
6285 if (!current_vfs) {
6286 struct fw_pfvf_cmd port_cmd, port_rpl;
6287 struct net_device *netdev;
6288 unsigned int pmask, port;
6289 struct pci_dev *pbridge;
6290 struct port_info *pi;
6291 char name[IFNAMSIZ];
6292 u32 devcap2;
6293 u16 flags;
6294
6295 /* If we want to instantiate Virtual Functions, then our
6296 * parent bridge's PCI-E needs to support Alternative Routing
6297 * ID (ARI) because our VFs will show up at function offset 8
6298 * and above.
6299 */
6300 pbridge = pdev->bus->self;
6301 pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
6302 pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
6303
6304 if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
6305 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
6306 /* Our parent bridge does not support ARI so issue a
6307 * warning and skip instantiating the VFs. They
6308 * won't be reachable.
6309 */
6310 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
6311 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
6312 PCI_FUNC(pbridge->devfn));
6313 return -ENOTSUPP;
6314 }
6315 memset(&port_cmd, 0, sizeof(port_cmd));
6316 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
6317 FW_CMD_REQUEST_F |
6318 FW_CMD_READ_F |
6319 FW_PFVF_CMD_PFN_V(adap->pf) |
6320 FW_PFVF_CMD_VFN_V(0));
6321 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
6322 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
6323 &port_rpl);
6324 if (err)
6325 return err;
6326 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
6327 port = ffs(pmask) - 1;
6328 /* Allocate VF Management Interface. */
6329 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
6330 adap->pf);
6331 netdev = alloc_netdev(sizeof(struct port_info),
6332 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
6333 if (!netdev)
6334 return -ENOMEM;
6335
6336 pi = netdev_priv(netdev);
6337 pi->adapter = adap;
6338 pi->lport = port;
6339 pi->tx_chan = port;
6340 SET_NETDEV_DEV(netdev, &pdev->dev);
6341
6342 adap->port[0] = netdev;
6343 pi->port_id = 0;
6344
6345 err = register_netdev(adap->port[0]);
6346 if (err) {
6347 pr_info("Unable to register VF mgmt netdev %s\n", name);
6348 free_netdev(adap->port[0]);
6349 adap->port[0] = NULL;
6350 return err;
6351 }
6352 /* Allocate and set up VF Information. */
6353 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
6354 sizeof(struct vf_info), GFP_KERNEL);
6355 if (!adap->vfinfo) {
6356 unregister_netdev(adap->port[0]);
6357 free_netdev(adap->port[0]);
6358 adap->port[0] = NULL;
6359 return -ENOMEM;
6360 }
6361 cxgb4_mgmt_fill_vf_station_mac_addr(adap);
6362 }
6363 /* Instantiate the requested number of VFs. */
6364 err = pci_enable_sriov(pdev, num_vfs);
6365 if (err) {
6366 pr_info("Unable to instantiate %d VFs\n", num_vfs);
6367 if (!current_vfs) {
6368 unregister_netdev(adap->port[0]);
6369 free_netdev(adap->port[0]);
6370 adap->port[0] = NULL;
6371 kfree(adap->vfinfo);
6372 adap->vfinfo = NULL;
6373 }
6374 return err;
6375 }
6376
6377 adap->num_vfs = num_vfs;
6378 return num_vfs;
6379 }
6380 #endif /* CONFIG_PCI_IOV */
6381
6382 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) || IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6383
chcr_offload_state(struct adapter * adap,enum cxgb4_netdev_tls_ops op_val)6384 static int chcr_offload_state(struct adapter *adap,
6385 enum cxgb4_netdev_tls_ops op_val)
6386 {
6387 switch (op_val) {
6388 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6389 case CXGB4_TLSDEV_OPS:
6390 if (!adap->uld[CXGB4_ULD_KTLS].handle) {
6391 dev_dbg(adap->pdev_dev, "ch_ktls driver is not loaded\n");
6392 return -EOPNOTSUPP;
6393 }
6394 if (!adap->uld[CXGB4_ULD_KTLS].tlsdev_ops) {
6395 dev_dbg(adap->pdev_dev,
6396 "ch_ktls driver has no registered tlsdev_ops\n");
6397 return -EOPNOTSUPP;
6398 }
6399 break;
6400 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6401 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6402 case CXGB4_XFRMDEV_OPS:
6403 if (!adap->uld[CXGB4_ULD_IPSEC].handle) {
6404 dev_dbg(adap->pdev_dev, "chipsec driver is not loaded\n");
6405 return -EOPNOTSUPP;
6406 }
6407 if (!adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops) {
6408 dev_dbg(adap->pdev_dev,
6409 "chipsec driver has no registered xfrmdev_ops\n");
6410 return -EOPNOTSUPP;
6411 }
6412 break;
6413 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6414 default:
6415 dev_dbg(adap->pdev_dev,
6416 "driver has no support for offload %d\n", op_val);
6417 return -EOPNOTSUPP;
6418 }
6419
6420 return 0;
6421 }
6422
6423 #endif /* CONFIG_CHELSIO_TLS_DEVICE || CONFIG_CHELSIO_IPSEC_INLINE */
6424
6425 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6426
cxgb4_ktls_dev_add(struct net_device * netdev,struct sock * sk,enum tls_offload_ctx_dir direction,struct tls_crypto_info * crypto_info,u32 tcp_sn)6427 static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk,
6428 enum tls_offload_ctx_dir direction,
6429 struct tls_crypto_info *crypto_info,
6430 u32 tcp_sn)
6431 {
6432 struct adapter *adap = netdev2adap(netdev);
6433 int ret;
6434
6435 mutex_lock(&uld_mutex);
6436 ret = chcr_offload_state(adap, CXGB4_TLSDEV_OPS);
6437 if (ret)
6438 goto out_unlock;
6439
6440 ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE);
6441 if (ret)
6442 goto out_unlock;
6443
6444 ret = adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_add(netdev, sk,
6445 direction,
6446 crypto_info,
6447 tcp_sn);
6448 /* if there is a failure, clear the refcount */
6449 if (ret)
6450 cxgb4_set_ktls_feature(adap,
6451 FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6452 out_unlock:
6453 mutex_unlock(&uld_mutex);
6454 return ret;
6455 }
6456
cxgb4_ktls_dev_del(struct net_device * netdev,struct tls_context * tls_ctx,enum tls_offload_ctx_dir direction)6457 static void cxgb4_ktls_dev_del(struct net_device *netdev,
6458 struct tls_context *tls_ctx,
6459 enum tls_offload_ctx_dir direction)
6460 {
6461 struct adapter *adap = netdev2adap(netdev);
6462
6463 mutex_lock(&uld_mutex);
6464 if (chcr_offload_state(adap, CXGB4_TLSDEV_OPS))
6465 goto out_unlock;
6466
6467 adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_del(netdev, tls_ctx,
6468 direction);
6469
6470 out_unlock:
6471 cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6472 mutex_unlock(&uld_mutex);
6473 }
6474
6475 static const struct tlsdev_ops cxgb4_ktls_ops = {
6476 .tls_dev_add = cxgb4_ktls_dev_add,
6477 .tls_dev_del = cxgb4_ktls_dev_del,
6478 };
6479 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6480
6481 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6482
cxgb4_xfrm_add_state(struct xfrm_state * x,struct netlink_ext_ack * extack)6483 static int cxgb4_xfrm_add_state(struct xfrm_state *x,
6484 struct netlink_ext_ack *extack)
6485 {
6486 struct adapter *adap = netdev2adap(x->xso.dev);
6487 int ret;
6488
6489 if (!mutex_trylock(&uld_mutex)) {
6490 NL_SET_ERR_MSG_MOD(extack, "crypto uld critical resource is under use");
6491 return -EBUSY;
6492 }
6493 ret = chcr_offload_state(adap, CXGB4_XFRMDEV_OPS);
6494 if (ret)
6495 goto out_unlock;
6496
6497 ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_add(x, extack);
6498
6499 out_unlock:
6500 mutex_unlock(&uld_mutex);
6501
6502 return ret;
6503 }
6504
cxgb4_xfrm_del_state(struct xfrm_state * x)6505 static void cxgb4_xfrm_del_state(struct xfrm_state *x)
6506 {
6507 struct adapter *adap = netdev2adap(x->xso.dev);
6508
6509 if (!mutex_trylock(&uld_mutex)) {
6510 dev_dbg(adap->pdev_dev,
6511 "crypto uld critical resource is under use\n");
6512 return;
6513 }
6514 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6515 goto out_unlock;
6516
6517 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_delete(x);
6518
6519 out_unlock:
6520 mutex_unlock(&uld_mutex);
6521 }
6522
cxgb4_xfrm_free_state(struct xfrm_state * x)6523 static void cxgb4_xfrm_free_state(struct xfrm_state *x)
6524 {
6525 struct adapter *adap = netdev2adap(x->xso.dev);
6526
6527 if (!mutex_trylock(&uld_mutex)) {
6528 dev_dbg(adap->pdev_dev,
6529 "crypto uld critical resource is under use\n");
6530 return;
6531 }
6532 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6533 goto out_unlock;
6534
6535 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_free(x);
6536
6537 out_unlock:
6538 mutex_unlock(&uld_mutex);
6539 }
6540
cxgb4_ipsec_offload_ok(struct sk_buff * skb,struct xfrm_state * x)6541 static bool cxgb4_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x)
6542 {
6543 struct adapter *adap = netdev2adap(x->xso.dev);
6544 bool ret = false;
6545
6546 if (!mutex_trylock(&uld_mutex)) {
6547 dev_dbg(adap->pdev_dev,
6548 "crypto uld critical resource is under use\n");
6549 return ret;
6550 }
6551 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6552 goto out_unlock;
6553
6554 ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_offload_ok(skb, x);
6555
6556 out_unlock:
6557 mutex_unlock(&uld_mutex);
6558 return ret;
6559 }
6560
cxgb4_advance_esn_state(struct xfrm_state * x)6561 static void cxgb4_advance_esn_state(struct xfrm_state *x)
6562 {
6563 struct adapter *adap = netdev2adap(x->xso.dev);
6564
6565 if (!mutex_trylock(&uld_mutex)) {
6566 dev_dbg(adap->pdev_dev,
6567 "crypto uld critical resource is under use\n");
6568 return;
6569 }
6570 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6571 goto out_unlock;
6572
6573 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_advance_esn(x);
6574
6575 out_unlock:
6576 mutex_unlock(&uld_mutex);
6577 }
6578
6579 static const struct xfrmdev_ops cxgb4_xfrmdev_ops = {
6580 .xdo_dev_state_add = cxgb4_xfrm_add_state,
6581 .xdo_dev_state_delete = cxgb4_xfrm_del_state,
6582 .xdo_dev_state_free = cxgb4_xfrm_free_state,
6583 .xdo_dev_offload_ok = cxgb4_ipsec_offload_ok,
6584 .xdo_dev_state_advance_esn = cxgb4_advance_esn_state,
6585 };
6586
6587 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6588
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)6589 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6590 {
6591 struct net_device *netdev;
6592 struct adapter *adapter;
6593 static int adap_idx = 1;
6594 int s_qpp, qpp, num_seg;
6595 struct port_info *pi;
6596 enum chip_type chip;
6597 void __iomem *regs;
6598 int func, chip_ver;
6599 u16 device_id;
6600 int i, err;
6601 u32 whoami;
6602
6603 err = pci_request_regions(pdev, KBUILD_MODNAME);
6604 if (err) {
6605 /* Just info, some other driver may have claimed the device. */
6606 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6607 return err;
6608 }
6609
6610 err = pci_enable_device(pdev);
6611 if (err) {
6612 dev_err(&pdev->dev, "cannot enable PCI device\n");
6613 goto out_release_regions;
6614 }
6615
6616 regs = pci_ioremap_bar(pdev, 0);
6617 if (!regs) {
6618 dev_err(&pdev->dev, "cannot map device registers\n");
6619 err = -ENOMEM;
6620 goto out_disable_device;
6621 }
6622
6623 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6624 if (!adapter) {
6625 err = -ENOMEM;
6626 goto out_unmap_bar0;
6627 }
6628
6629 adapter->regs = regs;
6630 err = t4_wait_dev_ready(regs);
6631 if (err < 0)
6632 goto out_free_adapter;
6633
6634 /* We control everything through one PF */
6635 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
6636 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
6637 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
6638 if ((int)chip < 0) {
6639 dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
6640 err = chip;
6641 goto out_free_adapter;
6642 }
6643 chip_ver = CHELSIO_CHIP_VERSION(chip);
6644 func = chip_ver <= CHELSIO_T5 ?
6645 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
6646
6647 adapter->pdev = pdev;
6648 adapter->pdev_dev = &pdev->dev;
6649 adapter->name = pci_name(pdev);
6650 adapter->mbox = func;
6651 adapter->pf = func;
6652 adapter->params.chip = chip;
6653 adapter->adap_idx = adap_idx;
6654 adapter->msg_enable = DFLT_MSG_ENABLE;
6655 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
6656 (sizeof(struct mbox_cmd) *
6657 T4_OS_LOG_MBOX_CMDS),
6658 GFP_KERNEL);
6659 if (!adapter->mbox_log) {
6660 err = -ENOMEM;
6661 goto out_free_adapter;
6662 }
6663 spin_lock_init(&adapter->mbox_lock);
6664 INIT_LIST_HEAD(&adapter->mlist.list);
6665 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
6666 pci_set_drvdata(pdev, adapter);
6667
6668 if (func != ent->driver_data) {
6669 pci_disable_device(pdev);
6670 pci_save_state(pdev); /* to restore SR-IOV later */
6671 return 0;
6672 }
6673
6674 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6675 if (err) {
6676 dev_err(&pdev->dev, "no usable DMA configuration\n");
6677 goto out_free_adapter;
6678 }
6679
6680 pci_set_master(pdev);
6681 pci_save_state(pdev);
6682 adap_idx++;
6683 adapter->workq = create_singlethread_workqueue("cxgb4");
6684 if (!adapter->workq) {
6685 err = -ENOMEM;
6686 goto out_free_adapter;
6687 }
6688
6689 /* PCI device has been enabled */
6690 adapter->flags |= CXGB4_DEV_ENABLED;
6691 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6692
6693 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
6694 * Ingress Packet Data to Free List Buffers in order to allow for
6695 * chipset performance optimizations between the Root Complex and
6696 * Memory Controllers. (Messages to the associated Ingress Queue
6697 * notifying new Packet Placement in the Free Lists Buffers will be
6698 * send without the Relaxed Ordering Attribute thus guaranteeing that
6699 * all preceding PCIe Transaction Layer Packets will be processed
6700 * first.) But some Root Complexes have various issues with Upstream
6701 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
6702 * The PCIe devices which under the Root Complexes will be cleared the
6703 * Relaxed Ordering bit in the configuration space, So we check our
6704 * PCIe configuration space to see if it's flagged with advice against
6705 * using Relaxed Ordering.
6706 */
6707 if (!pcie_relaxed_ordering_enabled(pdev))
6708 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
6709
6710 spin_lock_init(&adapter->stats_lock);
6711 spin_lock_init(&adapter->tid_release_lock);
6712 spin_lock_init(&adapter->win0_lock);
6713
6714 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6715 INIT_WORK(&adapter->db_full_task, process_db_full);
6716 INIT_WORK(&adapter->db_drop_task, process_db_drop);
6717 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
6718
6719 err = t4_prep_adapter(adapter);
6720 if (err)
6721 goto out_free_adapter;
6722
6723 if (is_kdump_kernel()) {
6724 /* Collect hardware state and append to /proc/vmcore */
6725 err = cxgb4_cudbg_vmcore_add_dump(adapter);
6726 if (err) {
6727 dev_warn(adapter->pdev_dev,
6728 "Fail collecting vmcore device dump, err: %d. Continuing\n",
6729 err);
6730 err = 0;
6731 }
6732 }
6733
6734 if (!is_t4(adapter->params.chip)) {
6735 s_qpp = (QUEUESPERPAGEPF0_S +
6736 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
6737 adapter->pf);
6738 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
6739 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
6740 num_seg = PAGE_SIZE / SEGMENT_SIZE;
6741
6742 /* Each segment size is 128B. Write coalescing is enabled only
6743 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6744 * queue is less no of segments that can be accommodated in
6745 * a page size.
6746 */
6747 if (qpp > num_seg) {
6748 dev_err(&pdev->dev,
6749 "Incorrect number of egress queues per page\n");
6750 err = -EINVAL;
6751 goto out_free_adapter;
6752 }
6753 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6754 pci_resource_len(pdev, 2));
6755 if (!adapter->bar2) {
6756 dev_err(&pdev->dev, "cannot map device bar2 region\n");
6757 err = -ENOMEM;
6758 goto out_free_adapter;
6759 }
6760 }
6761
6762 setup_memwin(adapter);
6763 err = adap_init0(adapter, 0);
6764 if (err)
6765 goto out_unmap_bar;
6766
6767 setup_memwin_rdma(adapter);
6768
6769 /* configure SGE_STAT_CFG_A to read WC stats */
6770 if (!is_t4(adapter->params.chip))
6771 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
6772 (is_t5(adapter->params.chip) ? STATMODE_V(0) :
6773 T6_STATMODE_V(0)));
6774
6775 /* Initialize hash mac addr list */
6776 INIT_LIST_HEAD(&adapter->mac_hlist);
6777
6778 for_each_port(adapter, i) {
6779 /* For supporting MQPRIO Offload, need some extra
6780 * queues for each ETHOFLD TIDs. Keep it equal to
6781 * MAX_ATIDs for now. Once we connect to firmware
6782 * later and query the EOTID params, we'll come to
6783 * know the actual # of EOTIDs supported.
6784 */
6785 netdev = alloc_etherdev_mq(sizeof(struct port_info),
6786 MAX_ETH_QSETS + MAX_ATIDS);
6787 if (!netdev) {
6788 err = -ENOMEM;
6789 goto out_free_dev;
6790 }
6791
6792 SET_NETDEV_DEV(netdev, &pdev->dev);
6793
6794 adapter->port[i] = netdev;
6795 pi = netdev_priv(netdev);
6796 pi->adapter = adapter;
6797 pi->xact_addr_filt = -1;
6798 pi->port_id = i;
6799 netdev->irq = pdev->irq;
6800
6801 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6802 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6803 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
6804 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
6805 NETIF_F_HW_TC | NETIF_F_NTUPLE | NETIF_F_HIGHDMA;
6806
6807 if (chip_ver > CHELSIO_T5) {
6808 netdev->hw_enc_features |= NETIF_F_IP_CSUM |
6809 NETIF_F_IPV6_CSUM |
6810 NETIF_F_RXCSUM |
6811 NETIF_F_GSO_UDP_TUNNEL |
6812 NETIF_F_GSO_UDP_TUNNEL_CSUM |
6813 NETIF_F_TSO | NETIF_F_TSO6;
6814
6815 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
6816 NETIF_F_GSO_UDP_TUNNEL_CSUM |
6817 NETIF_F_HW_TLS_RECORD;
6818
6819 if (adapter->rawf_cnt)
6820 netdev->udp_tunnel_nic_info = &cxgb_udp_tunnels;
6821 }
6822
6823 netdev->features |= netdev->hw_features;
6824 netdev->vlan_features = netdev->features & VLAN_FEAT;
6825 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6826 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) {
6827 netdev->hw_features |= NETIF_F_HW_TLS_TX;
6828 netdev->tlsdev_ops = &cxgb4_ktls_ops;
6829 /* initialize the refcount */
6830 refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0);
6831 }
6832 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6833 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6834 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_IPSEC_INLINE) {
6835 netdev->hw_enc_features |= NETIF_F_HW_ESP;
6836 netdev->features |= NETIF_F_HW_ESP;
6837 netdev->xfrmdev_ops = &cxgb4_xfrmdev_ops;
6838 }
6839 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6840
6841 netdev->priv_flags |= IFF_UNICAST_FLT;
6842
6843 /* MTU range: 81 - 9600 */
6844 netdev->min_mtu = 81; /* accommodate SACK */
6845 netdev->max_mtu = MAX_MTU;
6846
6847 netdev->netdev_ops = &cxgb4_netdev_ops;
6848 #ifdef CONFIG_CHELSIO_T4_DCB
6849 netdev->dcbnl_ops = &cxgb4_dcb_ops;
6850 cxgb4_dcb_state_init(netdev);
6851 cxgb4_dcb_version_init(netdev);
6852 #endif
6853 cxgb4_set_ethtool_ops(netdev);
6854 }
6855
6856 cxgb4_init_ethtool_dump(adapter);
6857
6858 pci_set_drvdata(pdev, adapter);
6859
6860 if (adapter->flags & CXGB4_FW_OK) {
6861 err = t4_port_init(adapter, func, func, 0);
6862 if (err)
6863 goto out_free_dev;
6864 } else if (adapter->params.nports == 1) {
6865 /* If we don't have a connection to the firmware -- possibly
6866 * because of an error -- grab the raw VPD parameters so we
6867 * can set the proper MAC Address on the debug network
6868 * interface that we've created.
6869 */
6870 u8 hw_addr[ETH_ALEN];
6871 u8 *na = adapter->params.vpd.na;
6872
6873 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
6874 if (!err) {
6875 for (i = 0; i < ETH_ALEN; i++)
6876 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
6877 hex2val(na[2 * i + 1]));
6878 t4_set_hw_addr(adapter, 0, hw_addr);
6879 }
6880 }
6881
6882 if (!(adapter->flags & CXGB4_FW_OK))
6883 goto fw_attach_fail;
6884
6885 /* Configure queues and allocate tables now, they can be needed as
6886 * soon as the first register_netdev completes.
6887 */
6888 err = cfg_queues(adapter);
6889 if (err)
6890 goto out_free_dev;
6891
6892 adapter->smt = t4_init_smt();
6893 if (!adapter->smt) {
6894 /* We tolerate a lack of SMT, giving up some functionality */
6895 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
6896 }
6897
6898 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
6899 if (!adapter->l2t) {
6900 /* We tolerate a lack of L2T, giving up some functionality */
6901 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6902 adapter->params.offload = 0;
6903 }
6904
6905 #if IS_ENABLED(CONFIG_IPV6)
6906 if (chip_ver <= CHELSIO_T5 &&
6907 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
6908 /* CLIP functionality is not present in hardware,
6909 * hence disable all offload features
6910 */
6911 dev_warn(&pdev->dev,
6912 "CLIP not enabled in hardware, continuing\n");
6913 adapter->params.offload = 0;
6914 } else {
6915 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
6916 adapter->clipt_end);
6917 if (!adapter->clipt) {
6918 /* We tolerate a lack of clip_table, giving up
6919 * some functionality
6920 */
6921 dev_warn(&pdev->dev,
6922 "could not allocate Clip table, continuing\n");
6923 adapter->params.offload = 0;
6924 }
6925 }
6926 #endif
6927
6928 for_each_port(adapter, i) {
6929 pi = adap2pinfo(adapter, i);
6930 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
6931 if (!pi->sched_tbl)
6932 dev_warn(&pdev->dev,
6933 "could not activate scheduling on port %d\n",
6934 i);
6935 }
6936
6937 if (is_offload(adapter) || is_hashfilter(adapter)) {
6938 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6939 u32 v;
6940
6941 v = t4_read_reg(adapter, LE_DB_HASH_CONFIG_A);
6942 if (chip_ver <= CHELSIO_T5) {
6943 adapter->tids.nhash = 1 << HASHTIDSIZE_G(v);
6944 v = t4_read_reg(adapter, LE_DB_TID_HASHBASE_A);
6945 adapter->tids.hash_base = v / 4;
6946 } else {
6947 adapter->tids.nhash = HASHTBLSIZE_G(v) << 3;
6948 v = t4_read_reg(adapter,
6949 T6_LE_DB_HASH_TID_BASE_A);
6950 adapter->tids.hash_base = v;
6951 }
6952 }
6953 }
6954
6955 if (tid_init(&adapter->tids) < 0) {
6956 dev_warn(&pdev->dev, "could not allocate TID table, "
6957 "continuing\n");
6958 adapter->params.offload = 0;
6959 } else {
6960 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6961 if (!adapter->tc_u32)
6962 dev_warn(&pdev->dev,
6963 "could not offload tc u32, continuing\n");
6964
6965 if (cxgb4_init_tc_flower(adapter))
6966 dev_warn(&pdev->dev,
6967 "could not offload tc flower, continuing\n");
6968
6969 if (cxgb4_init_tc_mqprio(adapter))
6970 dev_warn(&pdev->dev,
6971 "could not offload tc mqprio, continuing\n");
6972
6973 if (cxgb4_init_tc_matchall(adapter))
6974 dev_warn(&pdev->dev,
6975 "could not offload tc matchall, continuing\n");
6976 if (cxgb4_init_ethtool_filters(adapter))
6977 dev_warn(&pdev->dev,
6978 "could not initialize ethtool filters, continuing\n");
6979 }
6980
6981 /* See what interrupts we'll be using */
6982 if (msi > 1 && enable_msix(adapter) == 0)
6983 adapter->flags |= CXGB4_USING_MSIX;
6984 else if (msi > 0 && pci_enable_msi(pdev) == 0) {
6985 adapter->flags |= CXGB4_USING_MSI;
6986 if (msi > 1)
6987 free_msix_info(adapter);
6988 }
6989
6990 /* check for PCI Express bandwidth capabiltites */
6991 pcie_print_link_status(pdev);
6992
6993 cxgb4_init_mps_ref_entries(adapter);
6994
6995 err = init_rss(adapter);
6996 if (err)
6997 goto out_free_dev;
6998
6999 err = setup_non_data_intr(adapter);
7000 if (err) {
7001 dev_err(adapter->pdev_dev,
7002 "Non Data interrupt allocation failed, err: %d\n", err);
7003 goto out_free_dev;
7004 }
7005
7006 err = setup_fw_sge_queues(adapter);
7007 if (err) {
7008 dev_err(adapter->pdev_dev,
7009 "FW sge queue allocation failed, err %d", err);
7010 goto out_free_dev;
7011 }
7012
7013 fw_attach_fail:
7014 /*
7015 * The card is now ready to go. If any errors occur during device
7016 * registration we do not fail the whole card but rather proceed only
7017 * with the ports we manage to register successfully. However we must
7018 * register at least one net device.
7019 */
7020 for_each_port(adapter, i) {
7021 pi = adap2pinfo(adapter, i);
7022 adapter->port[i]->dev_port = pi->lport;
7023 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
7024 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
7025
7026 netif_carrier_off(adapter->port[i]);
7027
7028 err = register_netdev(adapter->port[i]);
7029 if (err)
7030 break;
7031 adapter->chan_map[pi->tx_chan] = i;
7032 print_port_info(adapter->port[i]);
7033 }
7034 if (i == 0) {
7035 dev_err(&pdev->dev, "could not register any net devices\n");
7036 goto out_free_dev;
7037 }
7038 if (err) {
7039 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
7040 err = 0;
7041 }
7042
7043 if (cxgb4_debugfs_root) {
7044 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
7045 cxgb4_debugfs_root);
7046 setup_debugfs(adapter);
7047 }
7048
7049 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7050 pdev->needs_freset = 1;
7051
7052 if (is_uld(adapter))
7053 cxgb4_uld_enable(adapter);
7054
7055 if (!is_t4(adapter->params.chip))
7056 cxgb4_ptp_init(adapter);
7057
7058 if (IS_REACHABLE(CONFIG_THERMAL) &&
7059 !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
7060 cxgb4_thermal_init(adapter);
7061
7062 print_adapter_info(adapter);
7063 return 0;
7064
7065 out_free_dev:
7066 t4_free_sge_resources(adapter);
7067 free_some_resources(adapter);
7068 if (adapter->flags & CXGB4_USING_MSIX)
7069 free_msix_info(adapter);
7070 if (adapter->num_uld || adapter->num_ofld_uld)
7071 t4_uld_mem_free(adapter);
7072 out_unmap_bar:
7073 if (!is_t4(adapter->params.chip))
7074 iounmap(adapter->bar2);
7075 out_free_adapter:
7076 if (adapter->workq)
7077 destroy_workqueue(adapter->workq);
7078
7079 kfree(adapter->mbox_log);
7080 kfree(adapter);
7081 out_unmap_bar0:
7082 iounmap(regs);
7083 out_disable_device:
7084 pci_disable_device(pdev);
7085 out_release_regions:
7086 pci_release_regions(pdev);
7087 return err;
7088 }
7089
remove_one(struct pci_dev * pdev)7090 static void remove_one(struct pci_dev *pdev)
7091 {
7092 struct adapter *adapter = pci_get_drvdata(pdev);
7093 struct hash_mac_addr *entry, *tmp;
7094
7095 if (!adapter) {
7096 pci_release_regions(pdev);
7097 return;
7098 }
7099
7100 /* If we allocated filters, free up state associated with any
7101 * valid filters ...
7102 */
7103 clear_all_filters(adapter);
7104
7105 adapter->flags |= CXGB4_SHUTTING_DOWN;
7106
7107 if (adapter->pf == 4) {
7108 int i;
7109
7110 /* Tear down per-adapter Work Queue first since it can contain
7111 * references to our adapter data structure.
7112 */
7113 destroy_workqueue(adapter->workq);
7114
7115 detach_ulds(adapter);
7116
7117 for_each_port(adapter, i)
7118 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7119 unregister_netdev(adapter->port[i]);
7120
7121 t4_uld_clean_up(adapter);
7122
7123 adap_free_hma_mem(adapter);
7124
7125 disable_interrupts(adapter);
7126
7127 cxgb4_free_mps_ref_entries(adapter);
7128
7129 debugfs_remove_recursive(adapter->debugfs_root);
7130
7131 if (!is_t4(adapter->params.chip))
7132 cxgb4_ptp_stop(adapter);
7133 if (IS_REACHABLE(CONFIG_THERMAL))
7134 cxgb4_thermal_remove(adapter);
7135
7136 if (adapter->flags & CXGB4_FULL_INIT_DONE)
7137 cxgb_down(adapter);
7138
7139 if (adapter->flags & CXGB4_USING_MSIX)
7140 free_msix_info(adapter);
7141 if (adapter->num_uld || adapter->num_ofld_uld)
7142 t4_uld_mem_free(adapter);
7143 free_some_resources(adapter);
7144 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
7145 list) {
7146 list_del(&entry->list);
7147 kfree(entry);
7148 }
7149
7150 #if IS_ENABLED(CONFIG_IPV6)
7151 t4_cleanup_clip_tbl(adapter);
7152 #endif
7153 if (!is_t4(adapter->params.chip))
7154 iounmap(adapter->bar2);
7155 }
7156 #ifdef CONFIG_PCI_IOV
7157 else {
7158 cxgb4_iov_configure(adapter->pdev, 0);
7159 }
7160 #endif
7161 iounmap(adapter->regs);
7162 if ((adapter->flags & CXGB4_DEV_ENABLED)) {
7163 pci_disable_device(pdev);
7164 adapter->flags &= ~CXGB4_DEV_ENABLED;
7165 }
7166 pci_release_regions(pdev);
7167 kfree(adapter->mbox_log);
7168 synchronize_rcu();
7169 kfree(adapter);
7170 }
7171
7172 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
7173 * delivery. This is essentially a stripped down version of the PCI remove()
7174 * function where we do the minimal amount of work necessary to shutdown any
7175 * further activity.
7176 */
shutdown_one(struct pci_dev * pdev)7177 static void shutdown_one(struct pci_dev *pdev)
7178 {
7179 struct adapter *adapter = pci_get_drvdata(pdev);
7180
7181 /* As with remove_one() above (see extended comment), we only want do
7182 * do cleanup on PCI Devices which went all the way through init_one()
7183 * ...
7184 */
7185 if (!adapter) {
7186 pci_release_regions(pdev);
7187 return;
7188 }
7189
7190 adapter->flags |= CXGB4_SHUTTING_DOWN;
7191
7192 if (adapter->pf == 4) {
7193 int i;
7194
7195 for_each_port(adapter, i)
7196 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7197 cxgb_close(adapter->port[i]);
7198
7199 rtnl_lock();
7200 cxgb4_mqprio_stop_offload(adapter);
7201 rtnl_unlock();
7202
7203 if (is_uld(adapter)) {
7204 detach_ulds(adapter);
7205 t4_uld_clean_up(adapter);
7206 }
7207
7208 disable_interrupts(adapter);
7209 disable_msi(adapter);
7210
7211 t4_sge_stop(adapter);
7212 if (adapter->flags & CXGB4_FW_OK)
7213 t4_fw_bye(adapter, adapter->mbox);
7214 }
7215 }
7216
7217 static struct pci_driver cxgb4_driver = {
7218 .name = KBUILD_MODNAME,
7219 .id_table = cxgb4_pci_tbl,
7220 .probe = init_one,
7221 .remove = remove_one,
7222 .shutdown = shutdown_one,
7223 #ifdef CONFIG_PCI_IOV
7224 .sriov_configure = cxgb4_iov_configure,
7225 #endif
7226 .err_handler = &cxgb4_eeh,
7227 };
7228
cxgb4_init_module(void)7229 static int __init cxgb4_init_module(void)
7230 {
7231 int ret;
7232
7233 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
7234
7235 ret = pci_register_driver(&cxgb4_driver);
7236 if (ret < 0)
7237 goto err_pci;
7238
7239 #if IS_ENABLED(CONFIG_IPV6)
7240 if (!inet6addr_registered) {
7241 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7242 if (ret)
7243 pci_unregister_driver(&cxgb4_driver);
7244 else
7245 inet6addr_registered = true;
7246 }
7247 #endif
7248
7249 if (ret == 0)
7250 return ret;
7251
7252 err_pci:
7253 debugfs_remove(cxgb4_debugfs_root);
7254
7255 return ret;
7256 }
7257
cxgb4_cleanup_module(void)7258 static void __exit cxgb4_cleanup_module(void)
7259 {
7260 #if IS_ENABLED(CONFIG_IPV6)
7261 if (inet6addr_registered) {
7262 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7263 inet6addr_registered = false;
7264 }
7265 #endif
7266 pci_unregister_driver(&cxgb4_driver);
7267 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
7268 }
7269
7270 module_init(cxgb4_init_module);
7271 module_exit(cxgb4_cleanup_module);
7272