1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* ethtool support for e1000 */
5
6 #include <linux/netdevice.h>
7 #include <linux/interrupt.h>
8 #include <linux/ethtool.h>
9 #include <linux/pci.h>
10 #include <linux/slab.h>
11 #include <linux/delay.h>
12 #include <linux/vmalloc.h>
13 #include <linux/pm_runtime.h>
14
15 #include "e1000.h"
16
17 enum { NETDEV_STATS, E1000_STATS };
18
19 struct e1000_stats {
20 char stat_string[ETH_GSTRING_LEN];
21 int type;
22 int sizeof_stat;
23 int stat_offset;
24 };
25
26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = {
27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED BIT(0)
28 "s0ix-enabled",
29 };
30
31 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings)
32
33 #define E1000_STAT(str, m) { \
34 .stat_string = str, \
35 .type = E1000_STATS, \
36 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
37 .stat_offset = offsetof(struct e1000_adapter, m) }
38 #define E1000_NETDEV_STAT(str, m) { \
39 .stat_string = str, \
40 .type = NETDEV_STATS, \
41 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
42 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
43
44 static const struct e1000_stats e1000_gstrings_stats[] = {
45 E1000_STAT("rx_packets", stats.gprc),
46 E1000_STAT("tx_packets", stats.gptc),
47 E1000_STAT("rx_bytes", stats.gorc),
48 E1000_STAT("tx_bytes", stats.gotc),
49 E1000_STAT("rx_broadcast", stats.bprc),
50 E1000_STAT("tx_broadcast", stats.bptc),
51 E1000_STAT("rx_multicast", stats.mprc),
52 E1000_STAT("tx_multicast", stats.mptc),
53 E1000_NETDEV_STAT("rx_errors", rx_errors),
54 E1000_NETDEV_STAT("tx_errors", tx_errors),
55 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
56 E1000_STAT("multicast", stats.mprc),
57 E1000_STAT("collisions", stats.colc),
58 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
59 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
60 E1000_STAT("rx_crc_errors", stats.crcerrs),
61 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
62 E1000_STAT("rx_no_buffer_count", stats.rnbc),
63 E1000_STAT("rx_missed_errors", stats.mpc),
64 E1000_STAT("tx_aborted_errors", stats.ecol),
65 E1000_STAT("tx_carrier_errors", stats.tncrs),
66 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
67 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
68 E1000_STAT("tx_window_errors", stats.latecol),
69 E1000_STAT("tx_abort_late_coll", stats.latecol),
70 E1000_STAT("tx_deferred_ok", stats.dc),
71 E1000_STAT("tx_single_coll_ok", stats.scc),
72 E1000_STAT("tx_multi_coll_ok", stats.mcc),
73 E1000_STAT("tx_timeout_count", tx_timeout_count),
74 E1000_STAT("tx_restart_queue", restart_queue),
75 E1000_STAT("rx_long_length_errors", stats.roc),
76 E1000_STAT("rx_short_length_errors", stats.ruc),
77 E1000_STAT("rx_align_errors", stats.algnerrc),
78 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
79 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
80 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
81 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
82 E1000_STAT("tx_flow_control_xon", stats.xontxc),
83 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
84 E1000_STAT("rx_csum_offload_good", hw_csum_good),
85 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
86 E1000_STAT("rx_header_split", rx_hdr_split),
87 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
88 E1000_STAT("tx_smbus", stats.mgptc),
89 E1000_STAT("rx_smbus", stats.mgprc),
90 E1000_STAT("dropped_smbus", stats.mgpdc),
91 E1000_STAT("rx_dma_failed", rx_dma_failed),
92 E1000_STAT("tx_dma_failed", tx_dma_failed),
93 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
95 E1000_STAT("corr_ecc_errors", corr_errors),
96 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
98 };
99
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 "Register test (offline)", "Eeprom test (offline)",
104 "Interrupt test (offline)", "Loopback test (offline)",
105 "Link test (on/offline)"
106 };
107
108 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109
e1000_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * cmd)110 static int e1000_get_link_ksettings(struct net_device *netdev,
111 struct ethtool_link_ksettings *cmd)
112 {
113 u32 speed, supported, advertising, lp_advertising, lpa_t;
114 struct e1000_adapter *adapter = netdev_priv(netdev);
115 struct e1000_hw *hw = &adapter->hw;
116
117 if (hw->phy.media_type == e1000_media_type_copper) {
118 supported = (SUPPORTED_10baseT_Half |
119 SUPPORTED_10baseT_Full |
120 SUPPORTED_100baseT_Half |
121 SUPPORTED_100baseT_Full |
122 SUPPORTED_1000baseT_Full |
123 SUPPORTED_Asym_Pause |
124 SUPPORTED_Autoneg |
125 SUPPORTED_Pause |
126 SUPPORTED_TP);
127 if (hw->phy.type == e1000_phy_ife)
128 supported &= ~SUPPORTED_1000baseT_Full;
129 advertising = ADVERTISED_TP;
130
131 if (hw->mac.autoneg == 1) {
132 advertising |= ADVERTISED_Autoneg;
133 /* the e1000 autoneg seems to match ethtool nicely */
134 advertising |= hw->phy.autoneg_advertised;
135 }
136
137 cmd->base.port = PORT_TP;
138 cmd->base.phy_address = hw->phy.addr;
139 } else {
140 supported = (SUPPORTED_1000baseT_Full |
141 SUPPORTED_FIBRE |
142 SUPPORTED_Autoneg);
143
144 advertising = (ADVERTISED_1000baseT_Full |
145 ADVERTISED_FIBRE |
146 ADVERTISED_Autoneg);
147
148 cmd->base.port = PORT_FIBRE;
149 }
150
151 speed = SPEED_UNKNOWN;
152 cmd->base.duplex = DUPLEX_UNKNOWN;
153
154 if (netif_running(netdev)) {
155 if (netif_carrier_ok(netdev)) {
156 speed = adapter->link_speed;
157 cmd->base.duplex = adapter->link_duplex - 1;
158 }
159 } else {
160 u32 status = er32(STATUS);
161
162 if (status & E1000_STATUS_LU) {
163 if (status & E1000_STATUS_SPEED_1000)
164 speed = SPEED_1000;
165 else if (status & E1000_STATUS_SPEED_100)
166 speed = SPEED_100;
167 else
168 speed = SPEED_10;
169
170 if (status & E1000_STATUS_FD)
171 cmd->base.duplex = DUPLEX_FULL;
172 else
173 cmd->base.duplex = DUPLEX_HALF;
174 }
175 }
176
177 cmd->base.speed = speed;
178 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
179 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
180
181 /* MDI-X => 2; MDI =>1; Invalid =>0 */
182 if ((hw->phy.media_type == e1000_media_type_copper) &&
183 netif_carrier_ok(netdev))
184 cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
185 ETH_TP_MDI_X : ETH_TP_MDI;
186 else
187 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
188
189 if (hw->phy.mdix == AUTO_ALL_MODES)
190 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
191 else
192 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
193
194 if (hw->phy.media_type != e1000_media_type_copper)
195 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
196
197 lpa_t = mii_stat1000_to_ethtool_lpa_t(adapter->phy_regs.stat1000);
198 lp_advertising = lpa_t |
199 mii_lpa_to_ethtool_lpa_t(adapter->phy_regs.lpa);
200
201 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
202 supported);
203 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
204 advertising);
205 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
206 lp_advertising);
207
208 return 0;
209 }
210
e1000_set_spd_dplx(struct e1000_adapter * adapter,u32 spd,u8 dplx)211 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
212 {
213 struct e1000_mac_info *mac = &adapter->hw.mac;
214
215 mac->autoneg = 0;
216
217 /* Make sure dplx is at most 1 bit and lsb of speed is not set
218 * for the switch() below to work
219 */
220 if ((spd & 1) || (dplx & ~1))
221 goto err_inval;
222
223 /* Fiber NICs only allow 1000 gbps Full duplex */
224 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
225 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
226 goto err_inval;
227 }
228
229 switch (spd + dplx) {
230 case SPEED_10 + DUPLEX_HALF:
231 mac->forced_speed_duplex = ADVERTISE_10_HALF;
232 break;
233 case SPEED_10 + DUPLEX_FULL:
234 mac->forced_speed_duplex = ADVERTISE_10_FULL;
235 break;
236 case SPEED_100 + DUPLEX_HALF:
237 mac->forced_speed_duplex = ADVERTISE_100_HALF;
238 break;
239 case SPEED_100 + DUPLEX_FULL:
240 mac->forced_speed_duplex = ADVERTISE_100_FULL;
241 break;
242 case SPEED_1000 + DUPLEX_FULL:
243 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
244 mac->autoneg = 1;
245 adapter->hw.phy.autoneg_advertised =
246 ADVERTISE_1000_FULL;
247 } else {
248 mac->forced_speed_duplex = ADVERTISE_1000_FULL;
249 }
250 break;
251 case SPEED_1000 + DUPLEX_HALF: /* not supported */
252 default:
253 goto err_inval;
254 }
255
256 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
257 adapter->hw.phy.mdix = AUTO_ALL_MODES;
258
259 return 0;
260
261 err_inval:
262 e_err("Unsupported Speed/Duplex configuration\n");
263 return -EINVAL;
264 }
265
e1000_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * cmd)266 static int e1000_set_link_ksettings(struct net_device *netdev,
267 const struct ethtool_link_ksettings *cmd)
268 {
269 struct e1000_adapter *adapter = netdev_priv(netdev);
270 struct e1000_hw *hw = &adapter->hw;
271 int ret_val = 0;
272 u32 advertising;
273
274 ethtool_convert_link_mode_to_legacy_u32(&advertising,
275 cmd->link_modes.advertising);
276
277 /* When SoL/IDER sessions are active, autoneg/speed/duplex
278 * cannot be changed
279 */
280 if (hw->phy.ops.check_reset_block &&
281 hw->phy.ops.check_reset_block(hw)) {
282 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
283 return -EINVAL;
284 }
285
286 /* MDI setting is only allowed when autoneg enabled because
287 * some hardware doesn't allow MDI setting when speed or
288 * duplex is forced.
289 */
290 if (cmd->base.eth_tp_mdix_ctrl) {
291 if (hw->phy.media_type != e1000_media_type_copper)
292 return -EOPNOTSUPP;
293
294 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
295 (cmd->base.autoneg != AUTONEG_ENABLE)) {
296 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
297 return -EINVAL;
298 }
299 }
300
301 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
302 usleep_range(1000, 2000);
303
304 if (cmd->base.autoneg == AUTONEG_ENABLE) {
305 hw->mac.autoneg = 1;
306 if (hw->phy.media_type == e1000_media_type_fiber)
307 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
308 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
309 else
310 hw->phy.autoneg_advertised = advertising |
311 ADVERTISED_TP | ADVERTISED_Autoneg;
312 advertising = hw->phy.autoneg_advertised;
313 if (adapter->fc_autoneg)
314 hw->fc.requested_mode = e1000_fc_default;
315 } else {
316 u32 speed = cmd->base.speed;
317 /* calling this overrides forced MDI setting */
318 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
319 ret_val = -EINVAL;
320 goto out;
321 }
322 }
323
324 /* MDI-X => 2; MDI => 1; Auto => 3 */
325 if (cmd->base.eth_tp_mdix_ctrl) {
326 /* fix up the value for auto (3 => 0) as zero is mapped
327 * internally to auto
328 */
329 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
330 hw->phy.mdix = AUTO_ALL_MODES;
331 else
332 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
333 }
334
335 /* reset the link */
336 if (netif_running(adapter->netdev)) {
337 e1000e_down(adapter, true);
338 e1000e_up(adapter);
339 } else {
340 e1000e_reset(adapter);
341 }
342
343 out:
344 clear_bit(__E1000_RESETTING, &adapter->state);
345 return ret_val;
346 }
347
e1000_get_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)348 static void e1000_get_pauseparam(struct net_device *netdev,
349 struct ethtool_pauseparam *pause)
350 {
351 struct e1000_adapter *adapter = netdev_priv(netdev);
352 struct e1000_hw *hw = &adapter->hw;
353
354 pause->autoneg =
355 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
356
357 if (hw->fc.current_mode == e1000_fc_rx_pause) {
358 pause->rx_pause = 1;
359 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
360 pause->tx_pause = 1;
361 } else if (hw->fc.current_mode == e1000_fc_full) {
362 pause->rx_pause = 1;
363 pause->tx_pause = 1;
364 }
365 }
366
e1000_set_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)367 static int e1000_set_pauseparam(struct net_device *netdev,
368 struct ethtool_pauseparam *pause)
369 {
370 struct e1000_adapter *adapter = netdev_priv(netdev);
371 struct e1000_hw *hw = &adapter->hw;
372 int retval = 0;
373
374 adapter->fc_autoneg = pause->autoneg;
375
376 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
377 usleep_range(1000, 2000);
378
379 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
380 hw->fc.requested_mode = e1000_fc_default;
381 if (netif_running(adapter->netdev)) {
382 e1000e_down(adapter, true);
383 e1000e_up(adapter);
384 } else {
385 e1000e_reset(adapter);
386 }
387 } else {
388 if (pause->rx_pause && pause->tx_pause)
389 hw->fc.requested_mode = e1000_fc_full;
390 else if (pause->rx_pause && !pause->tx_pause)
391 hw->fc.requested_mode = e1000_fc_rx_pause;
392 else if (!pause->rx_pause && pause->tx_pause)
393 hw->fc.requested_mode = e1000_fc_tx_pause;
394 else if (!pause->rx_pause && !pause->tx_pause)
395 hw->fc.requested_mode = e1000_fc_none;
396
397 hw->fc.current_mode = hw->fc.requested_mode;
398
399 if (hw->phy.media_type == e1000_media_type_fiber) {
400 retval = hw->mac.ops.setup_link(hw);
401 /* implicit goto out */
402 } else {
403 retval = e1000e_force_mac_fc(hw);
404 if (retval)
405 goto out;
406 e1000e_set_fc_watermarks(hw);
407 }
408 }
409
410 out:
411 clear_bit(__E1000_RESETTING, &adapter->state);
412 return retval;
413 }
414
e1000_get_msglevel(struct net_device * netdev)415 static u32 e1000_get_msglevel(struct net_device *netdev)
416 {
417 struct e1000_adapter *adapter = netdev_priv(netdev);
418 return adapter->msg_enable;
419 }
420
e1000_set_msglevel(struct net_device * netdev,u32 data)421 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
422 {
423 struct e1000_adapter *adapter = netdev_priv(netdev);
424 adapter->msg_enable = data;
425 }
426
e1000_get_regs_len(struct net_device __always_unused * netdev)427 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
428 {
429 #define E1000_REGS_LEN 32 /* overestimate */
430 return E1000_REGS_LEN * sizeof(u32);
431 }
432
e1000_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)433 static void e1000_get_regs(struct net_device *netdev,
434 struct ethtool_regs *regs, void *p)
435 {
436 struct e1000_adapter *adapter = netdev_priv(netdev);
437 struct e1000_hw *hw = &adapter->hw;
438 u32 *regs_buff = p;
439 u16 phy_data;
440
441 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
442
443 regs->version = (1u << 24) |
444 (adapter->pdev->revision << 16) |
445 adapter->pdev->device;
446
447 regs_buff[0] = er32(CTRL);
448 regs_buff[1] = er32(STATUS);
449
450 regs_buff[2] = er32(RCTL);
451 regs_buff[3] = er32(RDLEN(0));
452 regs_buff[4] = er32(RDH(0));
453 regs_buff[5] = er32(RDT(0));
454 regs_buff[6] = er32(RDTR);
455
456 regs_buff[7] = er32(TCTL);
457 regs_buff[8] = er32(TDLEN(0));
458 regs_buff[9] = er32(TDH(0));
459 regs_buff[10] = er32(TDT(0));
460 regs_buff[11] = er32(TIDV);
461
462 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
463
464 /* ethtool doesn't use anything past this point, so all this
465 * code is likely legacy junk for apps that may or may not exist
466 */
467 if (hw->phy.type == e1000_phy_m88) {
468 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
469 regs_buff[13] = (u32)phy_data; /* cable length */
470 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
471 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
472 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
473 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
474 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
475 regs_buff[18] = regs_buff[13]; /* cable polarity */
476 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
477 regs_buff[20] = regs_buff[17]; /* polarity correction */
478 /* phy receive errors */
479 regs_buff[22] = adapter->phy_stats.receive_errors;
480 regs_buff[23] = regs_buff[13]; /* mdix mode */
481 }
482 regs_buff[21] = 0; /* was idle_errors */
483 e1e_rphy(hw, MII_STAT1000, &phy_data);
484 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
485 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
486 }
487
e1000_get_eeprom_len(struct net_device * netdev)488 static int e1000_get_eeprom_len(struct net_device *netdev)
489 {
490 struct e1000_adapter *adapter = netdev_priv(netdev);
491 return adapter->hw.nvm.word_size * 2;
492 }
493
e1000_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)494 static int e1000_get_eeprom(struct net_device *netdev,
495 struct ethtool_eeprom *eeprom, u8 *bytes)
496 {
497 struct e1000_adapter *adapter = netdev_priv(netdev);
498 struct e1000_hw *hw = &adapter->hw;
499 u16 *eeprom_buff;
500 int first_word;
501 int last_word;
502 int ret_val = 0;
503 u16 i;
504
505 if (eeprom->len == 0)
506 return -EINVAL;
507
508 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
509
510 first_word = eeprom->offset >> 1;
511 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
512
513 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
514 GFP_KERNEL);
515 if (!eeprom_buff)
516 return -ENOMEM;
517
518 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
519 ret_val = e1000_read_nvm(hw, first_word,
520 last_word - first_word + 1,
521 eeprom_buff);
522 } else {
523 for (i = 0; i < last_word - first_word + 1; i++) {
524 ret_val = e1000_read_nvm(hw, first_word + i, 1,
525 &eeprom_buff[i]);
526 if (ret_val)
527 break;
528 }
529 }
530
531 if (ret_val) {
532 /* a read error occurred, throw away the result */
533 memset(eeprom_buff, 0xff, sizeof(u16) *
534 (last_word - first_word + 1));
535 } else {
536 /* Device's eeprom is always little-endian, word addressable */
537 for (i = 0; i < last_word - first_word + 1; i++)
538 le16_to_cpus(&eeprom_buff[i]);
539 }
540
541 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
542 kfree(eeprom_buff);
543
544 return ret_val;
545 }
546
e1000_set_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)547 static int e1000_set_eeprom(struct net_device *netdev,
548 struct ethtool_eeprom *eeprom, u8 *bytes)
549 {
550 struct e1000_adapter *adapter = netdev_priv(netdev);
551 struct e1000_hw *hw = &adapter->hw;
552 size_t total_len, max_len;
553 u16 *eeprom_buff;
554 int ret_val = 0;
555 int first_word;
556 int last_word;
557 void *ptr;
558 u16 i;
559
560 if (eeprom->len == 0)
561 return -EOPNOTSUPP;
562
563 if (eeprom->magic !=
564 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
565 return -EFAULT;
566
567 if (adapter->flags & FLAG_READ_ONLY_NVM)
568 return -EINVAL;
569
570 max_len = hw->nvm.word_size * 2;
571
572 if (check_add_overflow(eeprom->offset, eeprom->len, &total_len) ||
573 total_len > max_len)
574 return -EFBIG;
575
576 first_word = eeprom->offset >> 1;
577 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
578 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
579 if (!eeprom_buff)
580 return -ENOMEM;
581
582 ptr = (void *)eeprom_buff;
583
584 if (eeprom->offset & 1) {
585 /* need read/modify/write of first changed EEPROM word */
586 /* only the second byte of the word is being modified */
587 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
588 ptr++;
589 }
590 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
591 /* need read/modify/write of last changed EEPROM word */
592 /* only the first byte of the word is being modified */
593 ret_val = e1000_read_nvm(hw, last_word, 1,
594 &eeprom_buff[last_word - first_word]);
595
596 if (ret_val)
597 goto out;
598
599 /* Device's eeprom is always little-endian, word addressable */
600 for (i = 0; i < last_word - first_word + 1; i++)
601 le16_to_cpus(&eeprom_buff[i]);
602
603 memcpy(ptr, bytes, eeprom->len);
604
605 for (i = 0; i < last_word - first_word + 1; i++)
606 cpu_to_le16s(&eeprom_buff[i]);
607
608 ret_val = e1000_write_nvm(hw, first_word,
609 last_word - first_word + 1, eeprom_buff);
610
611 if (ret_val)
612 goto out;
613
614 /* Update the checksum over the first part of the EEPROM if needed
615 * and flush shadow RAM for applicable controllers
616 */
617 if ((first_word <= NVM_CHECKSUM_REG) ||
618 (hw->mac.type == e1000_82583) ||
619 (hw->mac.type == e1000_82574) ||
620 (hw->mac.type == e1000_82573))
621 ret_val = e1000e_update_nvm_checksum(hw);
622
623 out:
624 kfree(eeprom_buff);
625 return ret_val;
626 }
627
e1000_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)628 static void e1000_get_drvinfo(struct net_device *netdev,
629 struct ethtool_drvinfo *drvinfo)
630 {
631 struct e1000_adapter *adapter = netdev_priv(netdev);
632
633 strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
634
635 /* EEPROM image version # is reported as firmware version # for
636 * PCI-E controllers
637 */
638 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
639 "%d.%d-%d",
640 FIELD_GET(0xF000, adapter->eeprom_vers),
641 FIELD_GET(0x0FF0, adapter->eeprom_vers),
642 (adapter->eeprom_vers & 0x000F));
643
644 strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
645 sizeof(drvinfo->bus_info));
646 }
647
e1000_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)648 static void e1000_get_ringparam(struct net_device *netdev,
649 struct ethtool_ringparam *ring,
650 struct kernel_ethtool_ringparam *kernel_ring,
651 struct netlink_ext_ack *extack)
652 {
653 struct e1000_adapter *adapter = netdev_priv(netdev);
654
655 ring->rx_max_pending = E1000_MAX_RXD;
656 ring->tx_max_pending = E1000_MAX_TXD;
657 ring->rx_pending = adapter->rx_ring_count;
658 ring->tx_pending = adapter->tx_ring_count;
659 }
660
e1000_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)661 static int e1000_set_ringparam(struct net_device *netdev,
662 struct ethtool_ringparam *ring,
663 struct kernel_ethtool_ringparam *kernel_ring,
664 struct netlink_ext_ack *extack)
665 {
666 struct e1000_adapter *adapter = netdev_priv(netdev);
667 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
668 int err = 0, size = sizeof(struct e1000_ring);
669 bool set_tx = false, set_rx = false;
670 u16 new_rx_count, new_tx_count;
671
672 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
673 return -EINVAL;
674
675 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
676 E1000_MAX_RXD);
677 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
678
679 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
680 E1000_MAX_TXD);
681 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
682
683 if ((new_tx_count == adapter->tx_ring_count) &&
684 (new_rx_count == adapter->rx_ring_count))
685 /* nothing to do */
686 return 0;
687
688 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
689 usleep_range(1000, 2000);
690
691 if (!netif_running(adapter->netdev)) {
692 /* Set counts now and allocate resources during open() */
693 adapter->tx_ring->count = new_tx_count;
694 adapter->rx_ring->count = new_rx_count;
695 adapter->tx_ring_count = new_tx_count;
696 adapter->rx_ring_count = new_rx_count;
697 goto clear_reset;
698 }
699
700 set_tx = (new_tx_count != adapter->tx_ring_count);
701 set_rx = (new_rx_count != adapter->rx_ring_count);
702
703 /* Allocate temporary storage for ring updates */
704 if (set_tx) {
705 temp_tx = vmalloc(size);
706 if (!temp_tx) {
707 err = -ENOMEM;
708 goto free_temp;
709 }
710 }
711 if (set_rx) {
712 temp_rx = vmalloc(size);
713 if (!temp_rx) {
714 err = -ENOMEM;
715 goto free_temp;
716 }
717 }
718
719 e1000e_down(adapter, true);
720
721 /* We can't just free everything and then setup again, because the
722 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
723 * structs. First, attempt to allocate new resources...
724 */
725 if (set_tx) {
726 memcpy(temp_tx, adapter->tx_ring, size);
727 temp_tx->count = new_tx_count;
728 err = e1000e_setup_tx_resources(temp_tx);
729 if (err)
730 goto err_setup;
731 }
732 if (set_rx) {
733 memcpy(temp_rx, adapter->rx_ring, size);
734 temp_rx->count = new_rx_count;
735 err = e1000e_setup_rx_resources(temp_rx);
736 if (err)
737 goto err_setup_rx;
738 }
739
740 /* ...then free the old resources and copy back any new ring data */
741 if (set_tx) {
742 e1000e_free_tx_resources(adapter->tx_ring);
743 memcpy(adapter->tx_ring, temp_tx, size);
744 adapter->tx_ring_count = new_tx_count;
745 }
746 if (set_rx) {
747 e1000e_free_rx_resources(adapter->rx_ring);
748 memcpy(adapter->rx_ring, temp_rx, size);
749 adapter->rx_ring_count = new_rx_count;
750 }
751
752 err_setup_rx:
753 if (err && set_tx)
754 e1000e_free_tx_resources(temp_tx);
755 err_setup:
756 e1000e_up(adapter);
757 free_temp:
758 vfree(temp_tx);
759 vfree(temp_rx);
760 clear_reset:
761 clear_bit(__E1000_RESETTING, &adapter->state);
762 return err;
763 }
764
reg_pattern_test(struct e1000_adapter * adapter,u64 * data,int reg,int offset,u32 mask,u32 write)765 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
766 int reg, int offset, u32 mask, u32 write)
767 {
768 u32 pat, val;
769 static const u32 test[] = {
770 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
771 };
772 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
773 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
774 (test[pat] & write));
775 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
776 if (val != (test[pat] & write & mask)) {
777 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
778 reg + (offset << 2), val,
779 (test[pat] & write & mask));
780 *data = reg;
781 return true;
782 }
783 }
784 return false;
785 }
786
reg_set_and_check(struct e1000_adapter * adapter,u64 * data,int reg,u32 mask,u32 write)787 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
788 int reg, u32 mask, u32 write)
789 {
790 u32 val;
791
792 __ew32(&adapter->hw, reg, write & mask);
793 val = __er32(&adapter->hw, reg);
794 if ((write & mask) != (val & mask)) {
795 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
796 reg, (val & mask), (write & mask));
797 *data = reg;
798 return true;
799 }
800 return false;
801 }
802
803 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
804 do { \
805 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
806 return 1; \
807 } while (0)
808 #define REG_PATTERN_TEST(reg, mask, write) \
809 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
810
811 #define REG_SET_AND_CHECK(reg, mask, write) \
812 do { \
813 if (reg_set_and_check(adapter, data, reg, mask, write)) \
814 return 1; \
815 } while (0)
816
e1000_reg_test(struct e1000_adapter * adapter,u64 * data)817 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
818 {
819 struct e1000_hw *hw = &adapter->hw;
820 struct e1000_mac_info *mac = &adapter->hw.mac;
821 u32 value;
822 u32 before;
823 u32 after;
824 u32 i;
825 u32 toggle;
826 u32 mask;
827 u32 wlock_mac = 0;
828
829 /* The status register is Read Only, so a write should fail.
830 * Some bits that get toggled are ignored. There are several bits
831 * on newer hardware that are r/w.
832 */
833 switch (mac->type) {
834 case e1000_82571:
835 case e1000_82572:
836 case e1000_80003es2lan:
837 toggle = 0x7FFFF3FF;
838 break;
839 default:
840 toggle = 0x7FFFF033;
841 break;
842 }
843
844 before = er32(STATUS);
845 value = (er32(STATUS) & toggle);
846 ew32(STATUS, toggle);
847 after = er32(STATUS) & toggle;
848 if (value != after) {
849 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
850 after, value);
851 *data = 1;
852 return 1;
853 }
854 /* restore previous status */
855 ew32(STATUS, before);
856
857 if (!(adapter->flags & FLAG_IS_ICH)) {
858 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
859 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
860 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
861 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
862 }
863
864 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
865 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
866 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
867 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
868 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
869 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
870 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
871 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
872 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
873 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
874
875 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
876
877 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
878 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
879 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
880
881 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
882 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
883 if (!(adapter->flags & FLAG_IS_ICH))
884 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
885 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
886 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
887 mask = 0x8003FFFF;
888 switch (mac->type) {
889 case e1000_ich10lan:
890 case e1000_pchlan:
891 case e1000_pch2lan:
892 case e1000_pch_lpt:
893 case e1000_pch_spt:
894 case e1000_pch_cnp:
895 case e1000_pch_tgp:
896 case e1000_pch_adp:
897 case e1000_pch_mtp:
898 case e1000_pch_lnp:
899 case e1000_pch_ptp:
900 case e1000_pch_nvp:
901 mask |= BIT(18);
902 break;
903 default:
904 break;
905 }
906
907 if (mac->type >= e1000_pch_lpt)
908 wlock_mac = FIELD_GET(E1000_FWSM_WLOCK_MAC_MASK, er32(FWSM));
909
910 for (i = 0; i < mac->rar_entry_count; i++) {
911 if (mac->type >= e1000_pch_lpt) {
912 /* Cannot test write-protected SHRAL[n] registers */
913 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
914 continue;
915
916 /* SHRAH[9] different than the others */
917 if (i == 10)
918 mask |= BIT(30);
919 else
920 mask &= ~BIT(30);
921 }
922 if (mac->type == e1000_pch2lan) {
923 /* SHRAH[0,1,2] different than previous */
924 if (i == 1)
925 mask &= 0xFFF4FFFF;
926 /* SHRAH[3] different than SHRAH[0,1,2] */
927 if (i == 4)
928 mask |= BIT(30);
929 /* RAR[1-6] owned by management engine - skipping */
930 if (i > 0)
931 i += 6;
932 }
933
934 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
935 0xFFFFFFFF);
936 /* reset index to actual value */
937 if ((mac->type == e1000_pch2lan) && (i > 6))
938 i -= 6;
939 }
940
941 for (i = 0; i < mac->mta_reg_count; i++)
942 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
943
944 *data = 0;
945
946 return 0;
947 }
948
e1000_eeprom_test(struct e1000_adapter * adapter,u64 * data)949 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
950 {
951 u16 temp;
952 u16 checksum = 0;
953 u16 i;
954
955 *data = 0;
956 /* Read and add up the contents of the EEPROM */
957 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
958 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
959 *data = 1;
960 return *data;
961 }
962 checksum += temp;
963 }
964
965 /* If Checksum is not Correct return error else test passed */
966 if (checksum != NVM_SUM && !(*data))
967 *data = 2;
968
969 return *data;
970 }
971
e1000_test_intr(int __always_unused irq,void * data)972 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
973 {
974 struct net_device *netdev = (struct net_device *)data;
975 struct e1000_adapter *adapter = netdev_priv(netdev);
976 struct e1000_hw *hw = &adapter->hw;
977
978 adapter->test_icr |= er32(ICR);
979
980 return IRQ_HANDLED;
981 }
982
e1000_intr_test(struct e1000_adapter * adapter,u64 * data)983 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
984 {
985 struct net_device *netdev = adapter->netdev;
986 struct e1000_hw *hw = &adapter->hw;
987 u32 mask;
988 u32 shared_int = 1;
989 u32 irq = adapter->pdev->irq;
990 int i;
991 int ret_val = 0;
992 int int_mode = E1000E_INT_MODE_LEGACY;
993
994 *data = 0;
995
996 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
997 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
998 int_mode = adapter->int_mode;
999 e1000e_reset_interrupt_capability(adapter);
1000 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1001 e1000e_set_interrupt_capability(adapter);
1002 }
1003 /* Hook up test interrupt handler just for this test */
1004 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1005 netdev)) {
1006 shared_int = 0;
1007 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1008 netdev)) {
1009 *data = 1;
1010 ret_val = -1;
1011 goto out;
1012 }
1013 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1014
1015 /* Disable all the interrupts */
1016 ew32(IMC, 0xFFFFFFFF);
1017 e1e_flush();
1018 usleep_range(10000, 11000);
1019
1020 /* Test each interrupt */
1021 for (i = 0; i < 10; i++) {
1022 /* Interrupt to test */
1023 mask = BIT(i);
1024
1025 if (adapter->flags & FLAG_IS_ICH) {
1026 switch (mask) {
1027 case E1000_ICR_RXSEQ:
1028 continue;
1029 case 0x00000100:
1030 if (adapter->hw.mac.type == e1000_ich8lan ||
1031 adapter->hw.mac.type == e1000_ich9lan)
1032 continue;
1033 break;
1034 default:
1035 break;
1036 }
1037 }
1038
1039 if (!shared_int) {
1040 /* Disable the interrupt to be reported in
1041 * the cause register and then force the same
1042 * interrupt and see if one gets posted. If
1043 * an interrupt was posted to the bus, the
1044 * test failed.
1045 */
1046 adapter->test_icr = 0;
1047 ew32(IMC, mask);
1048 ew32(ICS, mask);
1049 e1e_flush();
1050 usleep_range(10000, 11000);
1051
1052 if (adapter->test_icr & mask) {
1053 *data = 3;
1054 break;
1055 }
1056 }
1057
1058 /* Enable the interrupt to be reported in
1059 * the cause register and then force the same
1060 * interrupt and see if one gets posted. If
1061 * an interrupt was not posted to the bus, the
1062 * test failed.
1063 */
1064 adapter->test_icr = 0;
1065 ew32(IMS, mask);
1066 ew32(ICS, mask);
1067 e1e_flush();
1068 usleep_range(10000, 11000);
1069
1070 if (!(adapter->test_icr & mask)) {
1071 *data = 4;
1072 break;
1073 }
1074
1075 if (!shared_int) {
1076 /* Disable the other interrupts to be reported in
1077 * the cause register and then force the other
1078 * interrupts and see if any get posted. If
1079 * an interrupt was posted to the bus, the
1080 * test failed.
1081 */
1082 adapter->test_icr = 0;
1083 ew32(IMC, ~mask & 0x00007FFF);
1084 ew32(ICS, ~mask & 0x00007FFF);
1085 e1e_flush();
1086 usleep_range(10000, 11000);
1087
1088 if (adapter->test_icr) {
1089 *data = 5;
1090 break;
1091 }
1092 }
1093 }
1094
1095 /* Disable all the interrupts */
1096 ew32(IMC, 0xFFFFFFFF);
1097 e1e_flush();
1098 usleep_range(10000, 11000);
1099
1100 /* Unhook test interrupt handler */
1101 free_irq(irq, netdev);
1102
1103 out:
1104 if (int_mode == E1000E_INT_MODE_MSIX) {
1105 e1000e_reset_interrupt_capability(adapter);
1106 adapter->int_mode = int_mode;
1107 e1000e_set_interrupt_capability(adapter);
1108 }
1109
1110 return ret_val;
1111 }
1112
e1000_free_desc_rings(struct e1000_adapter * adapter)1113 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1114 {
1115 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1116 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1117 struct pci_dev *pdev = adapter->pdev;
1118 struct e1000_buffer *buffer_info;
1119 int i;
1120
1121 if (tx_ring->desc && tx_ring->buffer_info) {
1122 for (i = 0; i < tx_ring->count; i++) {
1123 buffer_info = &tx_ring->buffer_info[i];
1124
1125 if (buffer_info->dma)
1126 dma_unmap_single(&pdev->dev,
1127 buffer_info->dma,
1128 buffer_info->length,
1129 DMA_TO_DEVICE);
1130 dev_kfree_skb(buffer_info->skb);
1131 }
1132 }
1133
1134 if (rx_ring->desc && rx_ring->buffer_info) {
1135 for (i = 0; i < rx_ring->count; i++) {
1136 buffer_info = &rx_ring->buffer_info[i];
1137
1138 if (buffer_info->dma)
1139 dma_unmap_single(&pdev->dev,
1140 buffer_info->dma,
1141 2048, DMA_FROM_DEVICE);
1142 dev_kfree_skb(buffer_info->skb);
1143 }
1144 }
1145
1146 if (tx_ring->desc) {
1147 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1148 tx_ring->dma);
1149 tx_ring->desc = NULL;
1150 }
1151 if (rx_ring->desc) {
1152 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1153 rx_ring->dma);
1154 rx_ring->desc = NULL;
1155 }
1156
1157 kfree(tx_ring->buffer_info);
1158 tx_ring->buffer_info = NULL;
1159 kfree(rx_ring->buffer_info);
1160 rx_ring->buffer_info = NULL;
1161 }
1162
e1000_setup_desc_rings(struct e1000_adapter * adapter)1163 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1164 {
1165 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1166 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1167 struct pci_dev *pdev = adapter->pdev;
1168 struct e1000_hw *hw = &adapter->hw;
1169 u32 rctl;
1170 int i;
1171 int ret_val;
1172
1173 /* Setup Tx descriptor ring and Tx buffers */
1174
1175 if (!tx_ring->count)
1176 tx_ring->count = E1000_DEFAULT_TXD;
1177
1178 tx_ring->buffer_info = kcalloc(tx_ring->count,
1179 sizeof(struct e1000_buffer), GFP_KERNEL);
1180 if (!tx_ring->buffer_info) {
1181 ret_val = 1;
1182 goto err_nomem;
1183 }
1184
1185 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1186 tx_ring->size = ALIGN(tx_ring->size, 4096);
1187 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1188 &tx_ring->dma, GFP_KERNEL);
1189 if (!tx_ring->desc) {
1190 ret_val = 2;
1191 goto err_nomem;
1192 }
1193 tx_ring->next_to_use = 0;
1194 tx_ring->next_to_clean = 0;
1195
1196 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1197 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1198 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1199 ew32(TDH(0), 0);
1200 ew32(TDT(0), 0);
1201 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1202 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1203 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1204
1205 for (i = 0; i < tx_ring->count; i++) {
1206 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1207 struct sk_buff *skb;
1208 unsigned int skb_size = 1024;
1209
1210 skb = alloc_skb(skb_size, GFP_KERNEL);
1211 if (!skb) {
1212 ret_val = 3;
1213 goto err_nomem;
1214 }
1215 skb_put(skb, skb_size);
1216 tx_ring->buffer_info[i].skb = skb;
1217 tx_ring->buffer_info[i].length = skb->len;
1218 tx_ring->buffer_info[i].dma =
1219 dma_map_single(&pdev->dev, skb->data, skb->len,
1220 DMA_TO_DEVICE);
1221 if (dma_mapping_error(&pdev->dev,
1222 tx_ring->buffer_info[i].dma)) {
1223 ret_val = 4;
1224 goto err_nomem;
1225 }
1226 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1227 tx_desc->lower.data = cpu_to_le32(skb->len);
1228 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1229 E1000_TXD_CMD_IFCS |
1230 E1000_TXD_CMD_RS);
1231 tx_desc->upper.data = 0;
1232 }
1233
1234 /* Setup Rx descriptor ring and Rx buffers */
1235
1236 if (!rx_ring->count)
1237 rx_ring->count = E1000_DEFAULT_RXD;
1238
1239 rx_ring->buffer_info = kcalloc(rx_ring->count,
1240 sizeof(struct e1000_buffer), GFP_KERNEL);
1241 if (!rx_ring->buffer_info) {
1242 ret_val = 5;
1243 goto err_nomem;
1244 }
1245
1246 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1247 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1248 &rx_ring->dma, GFP_KERNEL);
1249 if (!rx_ring->desc) {
1250 ret_val = 6;
1251 goto err_nomem;
1252 }
1253 rx_ring->next_to_use = 0;
1254 rx_ring->next_to_clean = 0;
1255
1256 rctl = er32(RCTL);
1257 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1258 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1259 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1260 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1261 ew32(RDLEN(0), rx_ring->size);
1262 ew32(RDH(0), 0);
1263 ew32(RDT(0), 0);
1264 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1265 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1266 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1267 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1268 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1269 ew32(RCTL, rctl);
1270
1271 for (i = 0; i < rx_ring->count; i++) {
1272 union e1000_rx_desc_extended *rx_desc;
1273 struct sk_buff *skb;
1274
1275 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1276 if (!skb) {
1277 ret_val = 7;
1278 goto err_nomem;
1279 }
1280 skb_reserve(skb, NET_IP_ALIGN);
1281 rx_ring->buffer_info[i].skb = skb;
1282 rx_ring->buffer_info[i].dma =
1283 dma_map_single(&pdev->dev, skb->data, 2048,
1284 DMA_FROM_DEVICE);
1285 if (dma_mapping_error(&pdev->dev,
1286 rx_ring->buffer_info[i].dma)) {
1287 ret_val = 8;
1288 goto err_nomem;
1289 }
1290 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1291 rx_desc->read.buffer_addr =
1292 cpu_to_le64(rx_ring->buffer_info[i].dma);
1293 memset(skb->data, 0x00, skb->len);
1294 }
1295
1296 return 0;
1297
1298 err_nomem:
1299 e1000_free_desc_rings(adapter);
1300 return ret_val;
1301 }
1302
e1000_phy_disable_receiver(struct e1000_adapter * adapter)1303 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1304 {
1305 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1306 e1e_wphy(&adapter->hw, 29, 0x001F);
1307 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1308 e1e_wphy(&adapter->hw, 29, 0x001A);
1309 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1310 }
1311
e1000_integrated_phy_loopback(struct e1000_adapter * adapter)1312 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1313 {
1314 struct e1000_hw *hw = &adapter->hw;
1315 u32 ctrl_reg = 0;
1316 u16 phy_reg = 0;
1317 s32 ret_val = 0;
1318
1319 hw->mac.autoneg = 0;
1320
1321 if (hw->phy.type == e1000_phy_ife) {
1322 /* force 100, set loopback */
1323 e1e_wphy(hw, MII_BMCR, 0x6100);
1324
1325 /* Now set up the MAC to the same speed/duplex as the PHY. */
1326 ctrl_reg = er32(CTRL);
1327 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1328 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1329 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1330 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1331 E1000_CTRL_FD); /* Force Duplex to FULL */
1332
1333 ew32(CTRL, ctrl_reg);
1334 e1e_flush();
1335 usleep_range(500, 1000);
1336
1337 return 0;
1338 }
1339
1340 /* Specific PHY configuration for loopback */
1341 switch (hw->phy.type) {
1342 case e1000_phy_m88:
1343 /* Auto-MDI/MDIX Off */
1344 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1345 /* reset to update Auto-MDI/MDIX */
1346 e1e_wphy(hw, MII_BMCR, 0x9140);
1347 /* autoneg off */
1348 e1e_wphy(hw, MII_BMCR, 0x8140);
1349 break;
1350 case e1000_phy_gg82563:
1351 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1352 break;
1353 case e1000_phy_bm:
1354 /* Set Default MAC Interface speed to 1GB */
1355 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1356 phy_reg &= ~0x0007;
1357 phy_reg |= 0x006;
1358 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1359 /* Assert SW reset for above settings to take effect */
1360 hw->phy.ops.commit(hw);
1361 usleep_range(1000, 2000);
1362 /* Force Full Duplex */
1363 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1364 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1365 /* Set Link Up (in force link) */
1366 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1367 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1368 /* Force Link */
1369 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1370 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1371 /* Set Early Link Enable */
1372 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1373 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1374 break;
1375 case e1000_phy_82577:
1376 case e1000_phy_82578:
1377 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1378 ret_val = hw->phy.ops.acquire(hw);
1379 if (ret_val) {
1380 e_err("Cannot setup 1Gbps loopback.\n");
1381 return ret_val;
1382 }
1383 e1000_configure_k1_ich8lan(hw, false);
1384 hw->phy.ops.release(hw);
1385 break;
1386 case e1000_phy_82579:
1387 /* Disable PHY energy detect power down */
1388 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1389 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1390 /* Disable full chip energy detect */
1391 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1392 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1393 /* Enable loopback on the PHY */
1394 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1395 break;
1396 default:
1397 break;
1398 }
1399
1400 /* force 1000, set loopback */
1401 e1e_wphy(hw, MII_BMCR, 0x4140);
1402 msleep(250);
1403
1404 /* Now set up the MAC to the same speed/duplex as the PHY. */
1405 ctrl_reg = er32(CTRL);
1406 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1407 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1408 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1409 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1410 E1000_CTRL_FD); /* Force Duplex to FULL */
1411
1412 if (adapter->flags & FLAG_IS_ICH)
1413 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1414
1415 if (hw->phy.media_type == e1000_media_type_copper &&
1416 hw->phy.type == e1000_phy_m88) {
1417 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1418 } else {
1419 /* Set the ILOS bit on the fiber Nic if half duplex link is
1420 * detected.
1421 */
1422 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1423 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1424 }
1425
1426 ew32(CTRL, ctrl_reg);
1427
1428 /* Disable the receiver on the PHY so when a cable is plugged in, the
1429 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1430 */
1431 if (hw->phy.type == e1000_phy_m88)
1432 e1000_phy_disable_receiver(adapter);
1433
1434 usleep_range(500, 1000);
1435
1436 return 0;
1437 }
1438
e1000_set_82571_fiber_loopback(struct e1000_adapter * adapter)1439 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1440 {
1441 struct e1000_hw *hw = &adapter->hw;
1442 u32 ctrl = er32(CTRL);
1443 int link;
1444
1445 /* special requirements for 82571/82572 fiber adapters */
1446
1447 /* jump through hoops to make sure link is up because serdes
1448 * link is hardwired up
1449 */
1450 ctrl |= E1000_CTRL_SLU;
1451 ew32(CTRL, ctrl);
1452
1453 /* disable autoneg */
1454 ctrl = er32(TXCW);
1455 ctrl &= ~BIT(31);
1456 ew32(TXCW, ctrl);
1457
1458 link = (er32(STATUS) & E1000_STATUS_LU);
1459
1460 if (!link) {
1461 /* set invert loss of signal */
1462 ctrl = er32(CTRL);
1463 ctrl |= E1000_CTRL_ILOS;
1464 ew32(CTRL, ctrl);
1465 }
1466
1467 /* special write to serdes control register to enable SerDes analog
1468 * loopback
1469 */
1470 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1471 e1e_flush();
1472 usleep_range(10000, 11000);
1473
1474 return 0;
1475 }
1476
1477 /* only call this for fiber/serdes connections to es2lan */
e1000_set_es2lan_mac_loopback(struct e1000_adapter * adapter)1478 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1479 {
1480 struct e1000_hw *hw = &adapter->hw;
1481 u32 ctrlext = er32(CTRL_EXT);
1482 u32 ctrl = er32(CTRL);
1483
1484 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1485 * on mac_type 80003es2lan)
1486 */
1487 adapter->tx_fifo_head = ctrlext;
1488
1489 /* clear the serdes mode bits, putting the device into mac loopback */
1490 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1491 ew32(CTRL_EXT, ctrlext);
1492
1493 /* force speed to 1000/FD, link up */
1494 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1495 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1496 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1497 ew32(CTRL, ctrl);
1498
1499 /* set mac loopback */
1500 ctrl = er32(RCTL);
1501 ctrl |= E1000_RCTL_LBM_MAC;
1502 ew32(RCTL, ctrl);
1503
1504 /* set testing mode parameters (no need to reset later) */
1505 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1506 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1507 ew32(KMRNCTRLSTA,
1508 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1509
1510 return 0;
1511 }
1512
e1000_setup_loopback_test(struct e1000_adapter * adapter)1513 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1514 {
1515 struct e1000_hw *hw = &adapter->hw;
1516 u32 rctl, fext_nvm11, tarc0;
1517
1518 if (hw->mac.type >= e1000_pch_spt) {
1519 fext_nvm11 = er32(FEXTNVM11);
1520 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1521 ew32(FEXTNVM11, fext_nvm11);
1522 tarc0 = er32(TARC(0));
1523 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1524 tarc0 &= 0xcfffffff;
1525 /* set bit 29 (value of MULR requests is now 2) */
1526 tarc0 |= 0x20000000;
1527 ew32(TARC(0), tarc0);
1528 }
1529 if (hw->phy.media_type == e1000_media_type_fiber ||
1530 hw->phy.media_type == e1000_media_type_internal_serdes) {
1531 switch (hw->mac.type) {
1532 case e1000_80003es2lan:
1533 return e1000_set_es2lan_mac_loopback(adapter);
1534 case e1000_82571:
1535 case e1000_82572:
1536 return e1000_set_82571_fiber_loopback(adapter);
1537 default:
1538 rctl = er32(RCTL);
1539 rctl |= E1000_RCTL_LBM_TCVR;
1540 ew32(RCTL, rctl);
1541 return 0;
1542 }
1543 } else if (hw->phy.media_type == e1000_media_type_copper) {
1544 return e1000_integrated_phy_loopback(adapter);
1545 }
1546
1547 return 7;
1548 }
1549
e1000_loopback_cleanup(struct e1000_adapter * adapter)1550 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1551 {
1552 struct e1000_hw *hw = &adapter->hw;
1553 u32 rctl, fext_nvm11, tarc0;
1554 u16 phy_reg;
1555
1556 rctl = er32(RCTL);
1557 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1558 ew32(RCTL, rctl);
1559
1560 switch (hw->mac.type) {
1561 case e1000_pch_spt:
1562 case e1000_pch_cnp:
1563 case e1000_pch_tgp:
1564 case e1000_pch_adp:
1565 case e1000_pch_mtp:
1566 case e1000_pch_lnp:
1567 case e1000_pch_ptp:
1568 case e1000_pch_nvp:
1569 fext_nvm11 = er32(FEXTNVM11);
1570 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1571 ew32(FEXTNVM11, fext_nvm11);
1572 tarc0 = er32(TARC(0));
1573 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1574 /* set bit 29 (value of MULR requests is now 0) */
1575 tarc0 &= 0xcfffffff;
1576 ew32(TARC(0), tarc0);
1577 fallthrough;
1578 case e1000_80003es2lan:
1579 if (hw->phy.media_type == e1000_media_type_fiber ||
1580 hw->phy.media_type == e1000_media_type_internal_serdes) {
1581 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1582 ew32(CTRL_EXT, adapter->tx_fifo_head);
1583 adapter->tx_fifo_head = 0;
1584 }
1585 fallthrough;
1586 case e1000_82571:
1587 case e1000_82572:
1588 if (hw->phy.media_type == e1000_media_type_fiber ||
1589 hw->phy.media_type == e1000_media_type_internal_serdes) {
1590 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1591 e1e_flush();
1592 usleep_range(10000, 11000);
1593 break;
1594 }
1595 fallthrough;
1596 default:
1597 hw->mac.autoneg = 1;
1598 if (hw->phy.type == e1000_phy_gg82563)
1599 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1600 e1e_rphy(hw, MII_BMCR, &phy_reg);
1601 if (phy_reg & BMCR_LOOPBACK) {
1602 phy_reg &= ~BMCR_LOOPBACK;
1603 e1e_wphy(hw, MII_BMCR, phy_reg);
1604 if (hw->phy.ops.commit)
1605 hw->phy.ops.commit(hw);
1606 }
1607 break;
1608 }
1609 }
1610
e1000_create_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1611 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1612 unsigned int frame_size)
1613 {
1614 memset(skb->data, 0xFF, frame_size);
1615 frame_size &= ~1;
1616 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1617 skb->data[frame_size / 2 + 10] = 0xBE;
1618 skb->data[frame_size / 2 + 12] = 0xAF;
1619 }
1620
e1000_check_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1621 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1622 unsigned int frame_size)
1623 {
1624 frame_size &= ~1;
1625 if (*(skb->data + 3) == 0xFF)
1626 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1627 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1628 return 0;
1629 return 13;
1630 }
1631
e1000_run_loopback_test(struct e1000_adapter * adapter)1632 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1633 {
1634 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1635 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1636 struct pci_dev *pdev = adapter->pdev;
1637 struct e1000_hw *hw = &adapter->hw;
1638 struct e1000_buffer *buffer_info;
1639 int i, j, k, l;
1640 int lc;
1641 int good_cnt;
1642 int ret_val = 0;
1643 unsigned long time;
1644
1645 ew32(RDT(0), rx_ring->count - 1);
1646
1647 /* Calculate the loop count based on the largest descriptor ring
1648 * The idea is to wrap the largest ring a number of times using 64
1649 * send/receive pairs during each loop
1650 */
1651
1652 if (rx_ring->count <= tx_ring->count)
1653 lc = ((tx_ring->count / 64) * 2) + 1;
1654 else
1655 lc = ((rx_ring->count / 64) * 2) + 1;
1656
1657 k = 0;
1658 l = 0;
1659 /* loop count loop */
1660 for (j = 0; j <= lc; j++) {
1661 /* send the packets */
1662 for (i = 0; i < 64; i++) {
1663 buffer_info = &tx_ring->buffer_info[k];
1664
1665 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1666 dma_sync_single_for_device(&pdev->dev,
1667 buffer_info->dma,
1668 buffer_info->length,
1669 DMA_TO_DEVICE);
1670 k++;
1671 if (k == tx_ring->count)
1672 k = 0;
1673 }
1674 ew32(TDT(0), k);
1675 e1e_flush();
1676 msleep(200);
1677 time = jiffies; /* set the start time for the receive */
1678 good_cnt = 0;
1679 /* receive the sent packets */
1680 do {
1681 buffer_info = &rx_ring->buffer_info[l];
1682
1683 dma_sync_single_for_cpu(&pdev->dev,
1684 buffer_info->dma, 2048,
1685 DMA_FROM_DEVICE);
1686
1687 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1688 1024);
1689 if (!ret_val)
1690 good_cnt++;
1691 l++;
1692 if (l == rx_ring->count)
1693 l = 0;
1694 /* time + 20 msecs (200 msecs on 2.4) is more than
1695 * enough time to complete the receives, if it's
1696 * exceeded, break and error off
1697 */
1698 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1699 if (good_cnt != 64) {
1700 ret_val = 13; /* ret_val is the same as mis-compare */
1701 break;
1702 }
1703 if (time_after(jiffies, time + 20)) {
1704 ret_val = 14; /* error code for time out error */
1705 break;
1706 }
1707 }
1708 return ret_val;
1709 }
1710
e1000_loopback_test(struct e1000_adapter * adapter,u64 * data)1711 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1712 {
1713 struct e1000_hw *hw = &adapter->hw;
1714
1715 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1716 if (hw->phy.ops.check_reset_block &&
1717 hw->phy.ops.check_reset_block(hw)) {
1718 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1719 *data = 0;
1720 goto out;
1721 }
1722
1723 *data = e1000_setup_desc_rings(adapter);
1724 if (*data)
1725 goto out;
1726
1727 *data = e1000_setup_loopback_test(adapter);
1728 if (*data)
1729 goto err_loopback;
1730
1731 *data = e1000_run_loopback_test(adapter);
1732 e1000_loopback_cleanup(adapter);
1733
1734 err_loopback:
1735 e1000_free_desc_rings(adapter);
1736 out:
1737 return *data;
1738 }
1739
e1000_link_test(struct e1000_adapter * adapter,u64 * data)1740 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1741 {
1742 struct e1000_hw *hw = &adapter->hw;
1743
1744 *data = 0;
1745 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1746 int i = 0;
1747
1748 hw->mac.serdes_has_link = false;
1749
1750 /* On some blade server designs, link establishment
1751 * could take as long as 2-3 minutes
1752 */
1753 do {
1754 hw->mac.ops.check_for_link(hw);
1755 if (hw->mac.serdes_has_link)
1756 return *data;
1757 msleep(20);
1758 } while (i++ < 3750);
1759
1760 *data = 1;
1761 } else {
1762 hw->mac.ops.check_for_link(hw);
1763 if (hw->mac.autoneg)
1764 /* On some Phy/switch combinations, link establishment
1765 * can take a few seconds more than expected.
1766 */
1767 msleep_interruptible(5000);
1768
1769 if (!(er32(STATUS) & E1000_STATUS_LU))
1770 *data = 1;
1771 }
1772 return *data;
1773 }
1774
e1000e_get_sset_count(struct net_device __always_unused * netdev,int sset)1775 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1776 int sset)
1777 {
1778 switch (sset) {
1779 case ETH_SS_TEST:
1780 return E1000_TEST_LEN;
1781 case ETH_SS_STATS:
1782 return E1000_STATS_LEN;
1783 case ETH_SS_PRIV_FLAGS:
1784 return E1000E_PRIV_FLAGS_STR_LEN;
1785 default:
1786 return -EOPNOTSUPP;
1787 }
1788 }
1789
e1000_diag_test(struct net_device * netdev,struct ethtool_test * eth_test,u64 * data)1790 static void e1000_diag_test(struct net_device *netdev,
1791 struct ethtool_test *eth_test, u64 *data)
1792 {
1793 struct e1000_adapter *adapter = netdev_priv(netdev);
1794 u16 autoneg_advertised;
1795 u8 forced_speed_duplex;
1796 u8 autoneg;
1797 bool if_running = netif_running(netdev);
1798
1799 set_bit(__E1000_TESTING, &adapter->state);
1800
1801 if (!if_running) {
1802 /* Get control of and reset hardware */
1803 if (adapter->flags & FLAG_HAS_AMT)
1804 e1000e_get_hw_control(adapter);
1805
1806 e1000e_power_up_phy(adapter);
1807
1808 adapter->hw.phy.autoneg_wait_to_complete = 1;
1809 e1000e_reset(adapter);
1810 adapter->hw.phy.autoneg_wait_to_complete = 0;
1811 }
1812
1813 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1814 /* Offline tests */
1815
1816 /* save speed, duplex, autoneg settings */
1817 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1818 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1819 autoneg = adapter->hw.mac.autoneg;
1820
1821 e_info("offline testing starting\n");
1822
1823 if (if_running)
1824 /* indicate we're in test mode */
1825 e1000e_close(netdev);
1826
1827 if (e1000_reg_test(adapter, &data[0]))
1828 eth_test->flags |= ETH_TEST_FL_FAILED;
1829
1830 e1000e_reset(adapter);
1831 if (e1000_eeprom_test(adapter, &data[1]))
1832 eth_test->flags |= ETH_TEST_FL_FAILED;
1833
1834 e1000e_reset(adapter);
1835 if (e1000_intr_test(adapter, &data[2]))
1836 eth_test->flags |= ETH_TEST_FL_FAILED;
1837
1838 e1000e_reset(adapter);
1839 if (e1000_loopback_test(adapter, &data[3]))
1840 eth_test->flags |= ETH_TEST_FL_FAILED;
1841
1842 /* force this routine to wait until autoneg complete/timeout */
1843 adapter->hw.phy.autoneg_wait_to_complete = 1;
1844 e1000e_reset(adapter);
1845 adapter->hw.phy.autoneg_wait_to_complete = 0;
1846
1847 if (e1000_link_test(adapter, &data[4]))
1848 eth_test->flags |= ETH_TEST_FL_FAILED;
1849
1850 /* restore speed, duplex, autoneg settings */
1851 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1852 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1853 adapter->hw.mac.autoneg = autoneg;
1854 e1000e_reset(adapter);
1855
1856 clear_bit(__E1000_TESTING, &adapter->state);
1857 if (if_running)
1858 e1000e_open(netdev);
1859 } else {
1860 /* Online tests */
1861
1862 e_info("online testing starting\n");
1863
1864 /* register, eeprom, intr and loopback tests not run online */
1865 data[0] = 0;
1866 data[1] = 0;
1867 data[2] = 0;
1868 data[3] = 0;
1869
1870 if (e1000_link_test(adapter, &data[4]))
1871 eth_test->flags |= ETH_TEST_FL_FAILED;
1872
1873 clear_bit(__E1000_TESTING, &adapter->state);
1874 }
1875
1876 if (!if_running) {
1877 e1000e_reset(adapter);
1878
1879 if (adapter->flags & FLAG_HAS_AMT)
1880 e1000e_release_hw_control(adapter);
1881 }
1882
1883 msleep_interruptible(4 * 1000);
1884 }
1885
e1000_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1886 static void e1000_get_wol(struct net_device *netdev,
1887 struct ethtool_wolinfo *wol)
1888 {
1889 struct e1000_adapter *adapter = netdev_priv(netdev);
1890
1891 wol->supported = 0;
1892 wol->wolopts = 0;
1893
1894 if (!(adapter->flags & FLAG_HAS_WOL) ||
1895 !device_can_wakeup(&adapter->pdev->dev))
1896 return;
1897
1898 wol->supported = WAKE_UCAST | WAKE_MCAST |
1899 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1900
1901 /* apply any specific unsupported masks here */
1902 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1903 wol->supported &= ~WAKE_UCAST;
1904
1905 if (adapter->wol & E1000_WUFC_EX)
1906 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1907 }
1908
1909 if (adapter->wol & E1000_WUFC_EX)
1910 wol->wolopts |= WAKE_UCAST;
1911 if (adapter->wol & E1000_WUFC_MC)
1912 wol->wolopts |= WAKE_MCAST;
1913 if (adapter->wol & E1000_WUFC_BC)
1914 wol->wolopts |= WAKE_BCAST;
1915 if (adapter->wol & E1000_WUFC_MAG)
1916 wol->wolopts |= WAKE_MAGIC;
1917 if (adapter->wol & E1000_WUFC_LNKC)
1918 wol->wolopts |= WAKE_PHY;
1919 }
1920
e1000_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1921 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1922 {
1923 struct e1000_adapter *adapter = netdev_priv(netdev);
1924
1925 if (!(adapter->flags & FLAG_HAS_WOL) ||
1926 !device_can_wakeup(&adapter->pdev->dev) ||
1927 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1928 WAKE_MAGIC | WAKE_PHY)))
1929 return -EOPNOTSUPP;
1930
1931 /* these settings will always override what we currently have */
1932 adapter->wol = 0;
1933
1934 if (wol->wolopts & WAKE_UCAST)
1935 adapter->wol |= E1000_WUFC_EX;
1936 if (wol->wolopts & WAKE_MCAST)
1937 adapter->wol |= E1000_WUFC_MC;
1938 if (wol->wolopts & WAKE_BCAST)
1939 adapter->wol |= E1000_WUFC_BC;
1940 if (wol->wolopts & WAKE_MAGIC)
1941 adapter->wol |= E1000_WUFC_MAG;
1942 if (wol->wolopts & WAKE_PHY)
1943 adapter->wol |= E1000_WUFC_LNKC;
1944
1945 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1946
1947 return 0;
1948 }
1949
e1000_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)1950 static int e1000_set_phys_id(struct net_device *netdev,
1951 enum ethtool_phys_id_state state)
1952 {
1953 struct e1000_adapter *adapter = netdev_priv(netdev);
1954 struct e1000_hw *hw = &adapter->hw;
1955
1956 switch (state) {
1957 case ETHTOOL_ID_ACTIVE:
1958 pm_runtime_get_sync(netdev->dev.parent);
1959
1960 if (!hw->mac.ops.blink_led)
1961 return 2; /* cycle on/off twice per second */
1962
1963 hw->mac.ops.blink_led(hw);
1964 break;
1965
1966 case ETHTOOL_ID_INACTIVE:
1967 if (hw->phy.type == e1000_phy_ife)
1968 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1969 hw->mac.ops.led_off(hw);
1970 hw->mac.ops.cleanup_led(hw);
1971 pm_runtime_put_sync(netdev->dev.parent);
1972 break;
1973
1974 case ETHTOOL_ID_ON:
1975 hw->mac.ops.led_on(hw);
1976 break;
1977
1978 case ETHTOOL_ID_OFF:
1979 hw->mac.ops.led_off(hw);
1980 break;
1981 }
1982
1983 return 0;
1984 }
1985
e1000_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1986 static int e1000_get_coalesce(struct net_device *netdev,
1987 struct ethtool_coalesce *ec,
1988 struct kernel_ethtool_coalesce *kernel_coal,
1989 struct netlink_ext_ack *extack)
1990 {
1991 struct e1000_adapter *adapter = netdev_priv(netdev);
1992
1993 if (adapter->itr_setting <= 4)
1994 ec->rx_coalesce_usecs = adapter->itr_setting;
1995 else
1996 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1997
1998 return 0;
1999 }
2000
e1000_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)2001 static int e1000_set_coalesce(struct net_device *netdev,
2002 struct ethtool_coalesce *ec,
2003 struct kernel_ethtool_coalesce *kernel_coal,
2004 struct netlink_ext_ack *extack)
2005 {
2006 struct e1000_adapter *adapter = netdev_priv(netdev);
2007
2008 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2009 ((ec->rx_coalesce_usecs > 4) &&
2010 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2011 (ec->rx_coalesce_usecs == 2))
2012 return -EINVAL;
2013
2014 if (ec->rx_coalesce_usecs == 4) {
2015 adapter->itr_setting = 4;
2016 adapter->itr = adapter->itr_setting;
2017 } else if (ec->rx_coalesce_usecs <= 3) {
2018 adapter->itr = 20000;
2019 adapter->itr_setting = ec->rx_coalesce_usecs;
2020 } else {
2021 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2022 adapter->itr_setting = adapter->itr & ~3;
2023 }
2024
2025 if (adapter->itr_setting != 0)
2026 e1000e_write_itr(adapter, adapter->itr);
2027 else
2028 e1000e_write_itr(adapter, 0);
2029
2030 return 0;
2031 }
2032
e1000_nway_reset(struct net_device * netdev)2033 static int e1000_nway_reset(struct net_device *netdev)
2034 {
2035 struct e1000_adapter *adapter = netdev_priv(netdev);
2036
2037 if (!netif_running(netdev))
2038 return -EAGAIN;
2039
2040 if (!adapter->hw.mac.autoneg)
2041 return -EINVAL;
2042
2043 e1000e_reinit_locked(adapter);
2044
2045 return 0;
2046 }
2047
e1000_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats __always_unused * stats,u64 * data)2048 static void e1000_get_ethtool_stats(struct net_device *netdev,
2049 struct ethtool_stats __always_unused *stats,
2050 u64 *data)
2051 {
2052 struct e1000_adapter *adapter = netdev_priv(netdev);
2053 struct rtnl_link_stats64 net_stats;
2054 int i;
2055 char *p = NULL;
2056
2057 dev_get_stats(netdev, &net_stats);
2058
2059 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2060 switch (e1000_gstrings_stats[i].type) {
2061 case NETDEV_STATS:
2062 p = (char *)&net_stats +
2063 e1000_gstrings_stats[i].stat_offset;
2064 break;
2065 case E1000_STATS:
2066 p = (char *)adapter +
2067 e1000_gstrings_stats[i].stat_offset;
2068 break;
2069 default:
2070 data[i] = 0;
2071 continue;
2072 }
2073
2074 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2075 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2076 }
2077 }
2078
e1000_get_strings(struct net_device __always_unused * netdev,u32 stringset,u8 * data)2079 static void e1000_get_strings(struct net_device __always_unused *netdev,
2080 u32 stringset, u8 *data)
2081 {
2082 u8 *p = data;
2083 int i;
2084
2085 switch (stringset) {
2086 case ETH_SS_TEST:
2087 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2088 break;
2089 case ETH_SS_STATS:
2090 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2091 memcpy(p, e1000_gstrings_stats[i].stat_string,
2092 ETH_GSTRING_LEN);
2093 p += ETH_GSTRING_LEN;
2094 }
2095 break;
2096 case ETH_SS_PRIV_FLAGS:
2097 memcpy(data, e1000e_priv_flags_strings,
2098 E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2099 break;
2100 }
2101 }
2102
e1000_get_rxfh_fields(struct net_device * netdev,struct ethtool_rxfh_fields * info)2103 static int e1000_get_rxfh_fields(struct net_device *netdev,
2104 struct ethtool_rxfh_fields *info)
2105 {
2106 struct e1000_adapter *adapter = netdev_priv(netdev);
2107 struct e1000_hw *hw = &adapter->hw;
2108 u32 mrqc;
2109
2110 info->data = 0;
2111
2112 mrqc = er32(MRQC);
2113
2114 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2115 return 0;
2116
2117 switch (info->flow_type) {
2118 case TCP_V4_FLOW:
2119 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2120 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2121 fallthrough;
2122 case UDP_V4_FLOW:
2123 case SCTP_V4_FLOW:
2124 case AH_ESP_V4_FLOW:
2125 case IPV4_FLOW:
2126 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2127 info->data |= RXH_IP_SRC | RXH_IP_DST;
2128 break;
2129 case TCP_V6_FLOW:
2130 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2131 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2132 fallthrough;
2133 case UDP_V6_FLOW:
2134 case SCTP_V6_FLOW:
2135 case AH_ESP_V6_FLOW:
2136 case IPV6_FLOW:
2137 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2138 info->data |= RXH_IP_SRC | RXH_IP_DST;
2139 break;
2140 default:
2141 break;
2142 }
2143 return 0;
2144 }
2145
e1000e_get_eee(struct net_device * netdev,struct ethtool_keee * edata)2146 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_keee *edata)
2147 {
2148 struct e1000_adapter *adapter = netdev_priv(netdev);
2149 struct e1000_hw *hw = &adapter->hw;
2150 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2151 u32 ret_val;
2152
2153 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2154 return -EOPNOTSUPP;
2155
2156 switch (hw->phy.type) {
2157 case e1000_phy_82579:
2158 cap_addr = I82579_EEE_CAPABILITY;
2159 lpa_addr = I82579_EEE_LP_ABILITY;
2160 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2161 break;
2162 case e1000_phy_i217:
2163 cap_addr = I217_EEE_CAPABILITY;
2164 lpa_addr = I217_EEE_LP_ABILITY;
2165 pcs_stat_addr = I217_EEE_PCS_STATUS;
2166 break;
2167 default:
2168 return -EOPNOTSUPP;
2169 }
2170
2171 ret_val = hw->phy.ops.acquire(hw);
2172 if (ret_val)
2173 return -EBUSY;
2174
2175 /* EEE Capability */
2176 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2177 if (ret_val)
2178 goto release;
2179 mii_eee_cap1_mod_linkmode_t(edata->supported, phy_data);
2180
2181 /* EEE Advertised */
2182 mii_eee_cap1_mod_linkmode_t(edata->advertised, adapter->eee_advert);
2183
2184 /* EEE Link Partner Advertised */
2185 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2186 if (ret_val)
2187 goto release;
2188 mii_eee_cap1_mod_linkmode_t(edata->lp_advertised, phy_data);
2189
2190 /* EEE PCS Status */
2191 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2192 if (ret_val)
2193 goto release;
2194 if (hw->phy.type == e1000_phy_82579)
2195 phy_data <<= 8;
2196
2197 /* Result of the EEE auto negotiation - there is no register that
2198 * has the status of the EEE negotiation so do a best-guess based
2199 * on whether Tx or Rx LPI indications have been received.
2200 */
2201 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2202 edata->eee_active = true;
2203
2204 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2205 edata->tx_lpi_enabled = true;
2206 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2207
2208 release:
2209 hw->phy.ops.release(hw);
2210 if (ret_val)
2211 ret_val = -ENODATA;
2212
2213 return ret_val;
2214 }
2215
e1000e_set_eee(struct net_device * netdev,struct ethtool_keee * edata)2216 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_keee *edata)
2217 {
2218 struct e1000_adapter *adapter = netdev_priv(netdev);
2219 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = {};
2220 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp) = {};
2221 struct e1000_hw *hw = &adapter->hw;
2222 struct ethtool_keee eee_curr;
2223 s32 ret_val;
2224
2225 ret_val = e1000e_get_eee(netdev, &eee_curr);
2226 if (ret_val)
2227 return ret_val;
2228
2229 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2230 e_err("Setting EEE tx-lpi is not supported\n");
2231 return -EINVAL;
2232 }
2233
2234 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2235 e_err("Setting EEE Tx LPI timer is not supported\n");
2236 return -EINVAL;
2237 }
2238
2239 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
2240 supported);
2241 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
2242 supported);
2243
2244 if (linkmode_andnot(tmp, edata->advertised, supported)) {
2245 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2246 return -EINVAL;
2247 }
2248
2249 adapter->eee_advert = linkmode_to_mii_eee_cap1_t(edata->advertised);
2250
2251 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2252
2253 /* reset the link */
2254 if (netif_running(netdev))
2255 e1000e_reinit_locked(adapter);
2256 else
2257 e1000e_reset(adapter);
2258
2259 return 0;
2260 }
2261
e1000e_get_ts_info(struct net_device * netdev,struct kernel_ethtool_ts_info * info)2262 static int e1000e_get_ts_info(struct net_device *netdev,
2263 struct kernel_ethtool_ts_info *info)
2264 {
2265 struct e1000_adapter *adapter = netdev_priv(netdev);
2266
2267 ethtool_op_get_ts_info(netdev, info);
2268
2269 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2270 return 0;
2271
2272 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2273 SOF_TIMESTAMPING_RX_HARDWARE |
2274 SOF_TIMESTAMPING_RAW_HARDWARE);
2275
2276 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2277
2278 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2279 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2280 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2281 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2282 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2283 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2284 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2285 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2286 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2287 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2288 BIT(HWTSTAMP_FILTER_ALL));
2289
2290 if (adapter->ptp_clock)
2291 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2292
2293 return 0;
2294 }
2295
e1000e_get_priv_flags(struct net_device * netdev)2296 static u32 e1000e_get_priv_flags(struct net_device *netdev)
2297 {
2298 struct e1000_adapter *adapter = netdev_priv(netdev);
2299 u32 priv_flags = 0;
2300
2301 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
2302 priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED;
2303
2304 return priv_flags;
2305 }
2306
e1000e_set_priv_flags(struct net_device * netdev,u32 priv_flags)2307 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags)
2308 {
2309 struct e1000_adapter *adapter = netdev_priv(netdev);
2310 unsigned int flags2 = adapter->flags2;
2311
2312 flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS;
2313 if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) {
2314 struct e1000_hw *hw = &adapter->hw;
2315
2316 if (hw->mac.type < e1000_pch_cnp)
2317 return -EINVAL;
2318 flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
2319 }
2320
2321 if (flags2 != adapter->flags2)
2322 adapter->flags2 = flags2;
2323
2324 return 0;
2325 }
2326
2327 static const struct ethtool_ops e1000_ethtool_ops = {
2328 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2329 .get_drvinfo = e1000_get_drvinfo,
2330 .get_regs_len = e1000_get_regs_len,
2331 .get_regs = e1000_get_regs,
2332 .get_wol = e1000_get_wol,
2333 .set_wol = e1000_set_wol,
2334 .get_msglevel = e1000_get_msglevel,
2335 .set_msglevel = e1000_set_msglevel,
2336 .nway_reset = e1000_nway_reset,
2337 .get_link = ethtool_op_get_link,
2338 .get_eeprom_len = e1000_get_eeprom_len,
2339 .get_eeprom = e1000_get_eeprom,
2340 .set_eeprom = e1000_set_eeprom,
2341 .get_ringparam = e1000_get_ringparam,
2342 .set_ringparam = e1000_set_ringparam,
2343 .get_pauseparam = e1000_get_pauseparam,
2344 .set_pauseparam = e1000_set_pauseparam,
2345 .self_test = e1000_diag_test,
2346 .get_strings = e1000_get_strings,
2347 .set_phys_id = e1000_set_phys_id,
2348 .get_ethtool_stats = e1000_get_ethtool_stats,
2349 .get_sset_count = e1000e_get_sset_count,
2350 .get_coalesce = e1000_get_coalesce,
2351 .set_coalesce = e1000_set_coalesce,
2352 .get_rxfh_fields = e1000_get_rxfh_fields,
2353 .get_ts_info = e1000e_get_ts_info,
2354 .get_eee = e1000e_get_eee,
2355 .set_eee = e1000e_set_eee,
2356 .get_link_ksettings = e1000_get_link_ksettings,
2357 .set_link_ksettings = e1000_set_link_ksettings,
2358 .get_priv_flags = e1000e_get_priv_flags,
2359 .set_priv_flags = e1000e_set_priv_flags,
2360 };
2361
e1000e_set_ethtool_ops(struct net_device * netdev)2362 void e1000e_set_ethtool_ops(struct net_device *netdev)
2363 {
2364 netdev->ethtool_ops = &e1000_ethtool_ops;
2365 }
2366