1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* ethtool support for e1000 */ 5 6 #include <linux/netdevice.h> 7 #include <linux/interrupt.h> 8 #include <linux/ethtool.h> 9 #include <linux/pci.h> 10 #include <linux/slab.h> 11 #include <linux/delay.h> 12 #include <linux/vmalloc.h> 13 #include <linux/pm_runtime.h> 14 15 #include "e1000.h" 16 17 enum { NETDEV_STATS, E1000_STATS }; 18 19 struct e1000_stats { 20 char stat_string[ETH_GSTRING_LEN]; 21 int type; 22 int sizeof_stat; 23 int stat_offset; 24 }; 25 26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = { 27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED BIT(0) 28 "s0ix-enabled", 29 #define E1000E_PRIV_FLAGS_DISABLE_K1 BIT(1) 30 "disable-k1", 31 }; 32 33 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings) 34 35 #define E1000_STAT(str, m) { \ 36 .stat_string = str, \ 37 .type = E1000_STATS, \ 38 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \ 39 .stat_offset = offsetof(struct e1000_adapter, m) } 40 #define E1000_NETDEV_STAT(str, m) { \ 41 .stat_string = str, \ 42 .type = NETDEV_STATS, \ 43 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \ 44 .stat_offset = offsetof(struct rtnl_link_stats64, m) } 45 46 static const struct e1000_stats e1000_gstrings_stats[] = { 47 E1000_STAT("rx_packets", stats.gprc), 48 E1000_STAT("tx_packets", stats.gptc), 49 E1000_STAT("rx_bytes", stats.gorc), 50 E1000_STAT("tx_bytes", stats.gotc), 51 E1000_STAT("rx_broadcast", stats.bprc), 52 E1000_STAT("tx_broadcast", stats.bptc), 53 E1000_STAT("rx_multicast", stats.mprc), 54 E1000_STAT("tx_multicast", stats.mptc), 55 E1000_NETDEV_STAT("rx_errors", rx_errors), 56 E1000_NETDEV_STAT("tx_errors", tx_errors), 57 E1000_NETDEV_STAT("tx_dropped", tx_dropped), 58 E1000_STAT("multicast", stats.mprc), 59 E1000_STAT("collisions", stats.colc), 60 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors), 61 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors), 62 E1000_STAT("rx_crc_errors", stats.crcerrs), 63 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors), 64 E1000_STAT("rx_no_buffer_count", stats.rnbc), 65 E1000_STAT("rx_missed_errors", stats.mpc), 66 E1000_STAT("tx_aborted_errors", stats.ecol), 67 E1000_STAT("tx_carrier_errors", stats.tncrs), 68 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors), 69 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors), 70 E1000_STAT("tx_window_errors", stats.latecol), 71 E1000_STAT("tx_abort_late_coll", stats.latecol), 72 E1000_STAT("tx_deferred_ok", stats.dc), 73 E1000_STAT("tx_single_coll_ok", stats.scc), 74 E1000_STAT("tx_multi_coll_ok", stats.mcc), 75 E1000_STAT("tx_timeout_count", tx_timeout_count), 76 E1000_STAT("tx_restart_queue", restart_queue), 77 E1000_STAT("rx_long_length_errors", stats.roc), 78 E1000_STAT("rx_short_length_errors", stats.ruc), 79 E1000_STAT("rx_align_errors", stats.algnerrc), 80 E1000_STAT("tx_tcp_seg_good", stats.tsctc), 81 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc), 82 E1000_STAT("rx_flow_control_xon", stats.xonrxc), 83 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc), 84 E1000_STAT("tx_flow_control_xon", stats.xontxc), 85 E1000_STAT("tx_flow_control_xoff", stats.xofftxc), 86 E1000_STAT("rx_csum_offload_good", hw_csum_good), 87 E1000_STAT("rx_csum_offload_errors", hw_csum_err), 88 E1000_STAT("rx_header_split", rx_hdr_split), 89 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed), 90 E1000_STAT("tx_smbus", stats.mgptc), 91 E1000_STAT("rx_smbus", stats.mgprc), 92 E1000_STAT("dropped_smbus", stats.mgpdc), 93 E1000_STAT("rx_dma_failed", rx_dma_failed), 94 E1000_STAT("tx_dma_failed", tx_dma_failed), 95 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 96 E1000_STAT("uncorr_ecc_errors", uncorr_errors), 97 E1000_STAT("corr_ecc_errors", corr_errors), 98 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 99 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped), 100 }; 101 102 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 103 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN) 104 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 105 "Register test (offline)", "Eeprom test (offline)", 106 "Interrupt test (offline)", "Loopback test (offline)", 107 "Link test (on/offline)" 108 }; 109 110 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 111 112 static int e1000_get_link_ksettings(struct net_device *netdev, 113 struct ethtool_link_ksettings *cmd) 114 { 115 u32 speed, supported, advertising, lp_advertising, lpa_t; 116 struct e1000_adapter *adapter = netdev_priv(netdev); 117 struct e1000_hw *hw = &adapter->hw; 118 119 if (hw->phy.media_type == e1000_media_type_copper) { 120 supported = (SUPPORTED_10baseT_Half | 121 SUPPORTED_10baseT_Full | 122 SUPPORTED_100baseT_Half | 123 SUPPORTED_100baseT_Full | 124 SUPPORTED_1000baseT_Full | 125 SUPPORTED_Asym_Pause | 126 SUPPORTED_Autoneg | 127 SUPPORTED_Pause | 128 SUPPORTED_TP); 129 if (hw->phy.type == e1000_phy_ife) 130 supported &= ~SUPPORTED_1000baseT_Full; 131 advertising = ADVERTISED_TP; 132 133 if (hw->mac.autoneg == 1) { 134 advertising |= ADVERTISED_Autoneg; 135 /* the e1000 autoneg seems to match ethtool nicely */ 136 advertising |= hw->phy.autoneg_advertised; 137 } 138 139 cmd->base.port = PORT_TP; 140 cmd->base.phy_address = hw->phy.addr; 141 } else { 142 supported = (SUPPORTED_1000baseT_Full | 143 SUPPORTED_FIBRE | 144 SUPPORTED_Autoneg); 145 146 advertising = (ADVERTISED_1000baseT_Full | 147 ADVERTISED_FIBRE | 148 ADVERTISED_Autoneg); 149 150 cmd->base.port = PORT_FIBRE; 151 } 152 153 speed = SPEED_UNKNOWN; 154 cmd->base.duplex = DUPLEX_UNKNOWN; 155 156 if (netif_running(netdev)) { 157 if (netif_carrier_ok(netdev)) { 158 speed = adapter->link_speed; 159 cmd->base.duplex = adapter->link_duplex - 1; 160 } 161 } else { 162 u32 status = er32(STATUS); 163 164 if (status & E1000_STATUS_LU) { 165 if (status & E1000_STATUS_SPEED_1000) 166 speed = SPEED_1000; 167 else if (status & E1000_STATUS_SPEED_100) 168 speed = SPEED_100; 169 else 170 speed = SPEED_10; 171 172 if (status & E1000_STATUS_FD) 173 cmd->base.duplex = DUPLEX_FULL; 174 else 175 cmd->base.duplex = DUPLEX_HALF; 176 } 177 } 178 179 cmd->base.speed = speed; 180 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) || 181 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 182 183 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 184 if ((hw->phy.media_type == e1000_media_type_copper) && 185 netif_carrier_ok(netdev)) 186 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? 187 ETH_TP_MDI_X : ETH_TP_MDI; 188 else 189 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 190 191 if (hw->phy.mdix == AUTO_ALL_MODES) 192 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 193 else 194 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; 195 196 if (hw->phy.media_type != e1000_media_type_copper) 197 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID; 198 199 lpa_t = mii_stat1000_to_ethtool_lpa_t(adapter->phy_regs.stat1000); 200 lp_advertising = lpa_t | 201 mii_lpa_to_ethtool_lpa_t(adapter->phy_regs.lpa); 202 203 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 204 supported); 205 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 206 advertising); 207 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising, 208 lp_advertising); 209 210 return 0; 211 } 212 213 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 214 { 215 struct e1000_mac_info *mac = &adapter->hw.mac; 216 217 mac->autoneg = 0; 218 219 /* Make sure dplx is at most 1 bit and lsb of speed is not set 220 * for the switch() below to work 221 */ 222 if ((spd & 1) || (dplx & ~1)) 223 goto err_inval; 224 225 /* Fiber NICs only allow 1000 gbps Full duplex */ 226 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) && 227 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) { 228 goto err_inval; 229 } 230 231 switch (spd + dplx) { 232 case SPEED_10 + DUPLEX_HALF: 233 mac->forced_speed_duplex = ADVERTISE_10_HALF; 234 break; 235 case SPEED_10 + DUPLEX_FULL: 236 mac->forced_speed_duplex = ADVERTISE_10_FULL; 237 break; 238 case SPEED_100 + DUPLEX_HALF: 239 mac->forced_speed_duplex = ADVERTISE_100_HALF; 240 break; 241 case SPEED_100 + DUPLEX_FULL: 242 mac->forced_speed_duplex = ADVERTISE_100_FULL; 243 break; 244 case SPEED_1000 + DUPLEX_FULL: 245 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 246 mac->autoneg = 1; 247 adapter->hw.phy.autoneg_advertised = 248 ADVERTISE_1000_FULL; 249 } else { 250 mac->forced_speed_duplex = ADVERTISE_1000_FULL; 251 } 252 break; 253 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 254 default: 255 goto err_inval; 256 } 257 258 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 259 adapter->hw.phy.mdix = AUTO_ALL_MODES; 260 261 return 0; 262 263 err_inval: 264 e_err("Unsupported Speed/Duplex configuration\n"); 265 return -EINVAL; 266 } 267 268 static int e1000_set_link_ksettings(struct net_device *netdev, 269 const struct ethtool_link_ksettings *cmd) 270 { 271 struct e1000_adapter *adapter = netdev_priv(netdev); 272 struct e1000_hw *hw = &adapter->hw; 273 int ret_val = 0; 274 u32 advertising; 275 276 ethtool_convert_link_mode_to_legacy_u32(&advertising, 277 cmd->link_modes.advertising); 278 279 /* When SoL/IDER sessions are active, autoneg/speed/duplex 280 * cannot be changed 281 */ 282 if (hw->phy.ops.check_reset_block && 283 hw->phy.ops.check_reset_block(hw)) { 284 e_err("Cannot change link characteristics when SoL/IDER is active.\n"); 285 return -EINVAL; 286 } 287 288 /* MDI setting is only allowed when autoneg enabled because 289 * some hardware doesn't allow MDI setting when speed or 290 * duplex is forced. 291 */ 292 if (cmd->base.eth_tp_mdix_ctrl) { 293 if (hw->phy.media_type != e1000_media_type_copper) 294 return -EOPNOTSUPP; 295 296 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 297 (cmd->base.autoneg != AUTONEG_ENABLE)) { 298 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 299 return -EINVAL; 300 } 301 } 302 303 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 304 usleep_range(1000, 2000); 305 306 if (cmd->base.autoneg == AUTONEG_ENABLE) { 307 hw->mac.autoneg = 1; 308 if (hw->phy.media_type == e1000_media_type_fiber) 309 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full | 310 ADVERTISED_FIBRE | ADVERTISED_Autoneg; 311 else 312 hw->phy.autoneg_advertised = advertising | 313 ADVERTISED_TP | ADVERTISED_Autoneg; 314 advertising = hw->phy.autoneg_advertised; 315 if (adapter->fc_autoneg) 316 hw->fc.requested_mode = e1000_fc_default; 317 } else { 318 u32 speed = cmd->base.speed; 319 /* calling this overrides forced MDI setting */ 320 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 321 ret_val = -EINVAL; 322 goto out; 323 } 324 } 325 326 /* MDI-X => 2; MDI => 1; Auto => 3 */ 327 if (cmd->base.eth_tp_mdix_ctrl) { 328 /* fix up the value for auto (3 => 0) as zero is mapped 329 * internally to auto 330 */ 331 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 332 hw->phy.mdix = AUTO_ALL_MODES; 333 else 334 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; 335 } 336 337 /* reset the link */ 338 if (netif_running(adapter->netdev)) { 339 e1000e_down(adapter, true); 340 e1000e_up(adapter); 341 } else { 342 e1000e_reset(adapter); 343 } 344 345 out: 346 clear_bit(__E1000_RESETTING, &adapter->state); 347 return ret_val; 348 } 349 350 static void e1000_get_pauseparam(struct net_device *netdev, 351 struct ethtool_pauseparam *pause) 352 { 353 struct e1000_adapter *adapter = netdev_priv(netdev); 354 struct e1000_hw *hw = &adapter->hw; 355 356 pause->autoneg = 357 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 358 359 if (hw->fc.current_mode == e1000_fc_rx_pause) { 360 pause->rx_pause = 1; 361 } else if (hw->fc.current_mode == e1000_fc_tx_pause) { 362 pause->tx_pause = 1; 363 } else if (hw->fc.current_mode == e1000_fc_full) { 364 pause->rx_pause = 1; 365 pause->tx_pause = 1; 366 } 367 } 368 369 static int e1000_set_pauseparam(struct net_device *netdev, 370 struct ethtool_pauseparam *pause) 371 { 372 struct e1000_adapter *adapter = netdev_priv(netdev); 373 struct e1000_hw *hw = &adapter->hw; 374 int retval = 0; 375 376 adapter->fc_autoneg = pause->autoneg; 377 378 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 379 usleep_range(1000, 2000); 380 381 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 382 hw->fc.requested_mode = e1000_fc_default; 383 if (netif_running(adapter->netdev)) { 384 e1000e_down(adapter, true); 385 e1000e_up(adapter); 386 } else { 387 e1000e_reset(adapter); 388 } 389 } else { 390 if (pause->rx_pause && pause->tx_pause) 391 hw->fc.requested_mode = e1000_fc_full; 392 else if (pause->rx_pause && !pause->tx_pause) 393 hw->fc.requested_mode = e1000_fc_rx_pause; 394 else if (!pause->rx_pause && pause->tx_pause) 395 hw->fc.requested_mode = e1000_fc_tx_pause; 396 else if (!pause->rx_pause && !pause->tx_pause) 397 hw->fc.requested_mode = e1000_fc_none; 398 399 hw->fc.current_mode = hw->fc.requested_mode; 400 401 if (hw->phy.media_type == e1000_media_type_fiber) { 402 retval = hw->mac.ops.setup_link(hw); 403 /* implicit goto out */ 404 } else { 405 retval = e1000e_force_mac_fc(hw); 406 if (retval) 407 goto out; 408 e1000e_set_fc_watermarks(hw); 409 } 410 } 411 412 out: 413 clear_bit(__E1000_RESETTING, &adapter->state); 414 return retval; 415 } 416 417 static u32 e1000_get_msglevel(struct net_device *netdev) 418 { 419 struct e1000_adapter *adapter = netdev_priv(netdev); 420 return adapter->msg_enable; 421 } 422 423 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 424 { 425 struct e1000_adapter *adapter = netdev_priv(netdev); 426 adapter->msg_enable = data; 427 } 428 429 static int e1000_get_regs_len(struct net_device __always_unused *netdev) 430 { 431 #define E1000_REGS_LEN 32 /* overestimate */ 432 return E1000_REGS_LEN * sizeof(u32); 433 } 434 435 static void e1000_get_regs(struct net_device *netdev, 436 struct ethtool_regs *regs, void *p) 437 { 438 struct e1000_adapter *adapter = netdev_priv(netdev); 439 struct e1000_hw *hw = &adapter->hw; 440 u32 *regs_buff = p; 441 u16 phy_data; 442 443 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 444 445 regs->version = (1u << 24) | 446 (adapter->pdev->revision << 16) | 447 adapter->pdev->device; 448 449 regs_buff[0] = er32(CTRL); 450 regs_buff[1] = er32(STATUS); 451 452 regs_buff[2] = er32(RCTL); 453 regs_buff[3] = er32(RDLEN(0)); 454 regs_buff[4] = er32(RDH(0)); 455 regs_buff[5] = er32(RDT(0)); 456 regs_buff[6] = er32(RDTR); 457 458 regs_buff[7] = er32(TCTL); 459 regs_buff[8] = er32(TDLEN(0)); 460 regs_buff[9] = er32(TDH(0)); 461 regs_buff[10] = er32(TDT(0)); 462 regs_buff[11] = er32(TIDV); 463 464 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */ 465 466 /* ethtool doesn't use anything past this point, so all this 467 * code is likely legacy junk for apps that may or may not exist 468 */ 469 if (hw->phy.type == e1000_phy_m88) { 470 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 471 regs_buff[13] = (u32)phy_data; /* cable length */ 472 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 473 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 474 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 475 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 476 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 477 regs_buff[18] = regs_buff[13]; /* cable polarity */ 478 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 479 regs_buff[20] = regs_buff[17]; /* polarity correction */ 480 /* phy receive errors */ 481 regs_buff[22] = adapter->phy_stats.receive_errors; 482 regs_buff[23] = regs_buff[13]; /* mdix mode */ 483 } 484 regs_buff[21] = 0; /* was idle_errors */ 485 e1e_rphy(hw, MII_STAT1000, &phy_data); 486 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 487 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 488 } 489 490 static int e1000_get_eeprom_len(struct net_device *netdev) 491 { 492 struct e1000_adapter *adapter = netdev_priv(netdev); 493 return adapter->hw.nvm.word_size * 2; 494 } 495 496 static int e1000_get_eeprom(struct net_device *netdev, 497 struct ethtool_eeprom *eeprom, u8 *bytes) 498 { 499 struct e1000_adapter *adapter = netdev_priv(netdev); 500 struct e1000_hw *hw = &adapter->hw; 501 u16 *eeprom_buff; 502 int first_word; 503 int last_word; 504 int ret_val = 0; 505 u16 i; 506 507 if (eeprom->len == 0) 508 return -EINVAL; 509 510 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16); 511 512 first_word = eeprom->offset >> 1; 513 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 514 515 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), 516 GFP_KERNEL); 517 if (!eeprom_buff) 518 return -ENOMEM; 519 520 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 521 ret_val = e1000_read_nvm(hw, first_word, 522 last_word - first_word + 1, 523 eeprom_buff); 524 } else { 525 for (i = 0; i < last_word - first_word + 1; i++) { 526 ret_val = e1000_read_nvm(hw, first_word + i, 1, 527 &eeprom_buff[i]); 528 if (ret_val) 529 break; 530 } 531 } 532 533 if (ret_val) { 534 /* a read error occurred, throw away the result */ 535 memset(eeprom_buff, 0xff, sizeof(u16) * 536 (last_word - first_word + 1)); 537 } else { 538 /* Device's eeprom is always little-endian, word addressable */ 539 for (i = 0; i < last_word - first_word + 1; i++) 540 le16_to_cpus(&eeprom_buff[i]); 541 } 542 543 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); 544 kfree(eeprom_buff); 545 546 return ret_val; 547 } 548 549 static int e1000_set_eeprom(struct net_device *netdev, 550 struct ethtool_eeprom *eeprom, u8 *bytes) 551 { 552 struct e1000_adapter *adapter = netdev_priv(netdev); 553 struct e1000_hw *hw = &adapter->hw; 554 u16 *eeprom_buff; 555 int ret_val = 0; 556 size_t max_len; 557 int first_word; 558 int last_word; 559 void *ptr; 560 u16 i; 561 562 if (eeprom->len == 0) 563 return -EOPNOTSUPP; 564 565 if (eeprom->magic != 566 (adapter->pdev->vendor | (adapter->pdev->device << 16))) 567 return -EFAULT; 568 569 if (adapter->flags & FLAG_READ_ONLY_NVM) 570 return -EINVAL; 571 572 max_len = hw->nvm.word_size * 2; 573 574 first_word = eeprom->offset >> 1; 575 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 576 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 577 if (!eeprom_buff) 578 return -ENOMEM; 579 580 ptr = (void *)eeprom_buff; 581 582 if (eeprom->offset & 1) { 583 /* need read/modify/write of first changed EEPROM word */ 584 /* only the second byte of the word is being modified */ 585 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]); 586 ptr++; 587 } 588 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val)) 589 /* need read/modify/write of last changed EEPROM word */ 590 /* only the first byte of the word is being modified */ 591 ret_val = e1000_read_nvm(hw, last_word, 1, 592 &eeprom_buff[last_word - first_word]); 593 594 if (ret_val) 595 goto out; 596 597 /* Device's eeprom is always little-endian, word addressable */ 598 for (i = 0; i < last_word - first_word + 1; i++) 599 le16_to_cpus(&eeprom_buff[i]); 600 601 memcpy(ptr, bytes, eeprom->len); 602 603 for (i = 0; i < last_word - first_word + 1; i++) 604 cpu_to_le16s(&eeprom_buff[i]); 605 606 ret_val = e1000_write_nvm(hw, first_word, 607 last_word - first_word + 1, eeprom_buff); 608 609 if (ret_val) 610 goto out; 611 612 /* Update the checksum over the first part of the EEPROM if needed 613 * and flush shadow RAM for applicable controllers 614 */ 615 if ((first_word <= NVM_CHECKSUM_REG) || 616 (hw->mac.type == e1000_82583) || 617 (hw->mac.type == e1000_82574) || 618 (hw->mac.type == e1000_82573)) 619 ret_val = e1000e_update_nvm_checksum(hw); 620 621 out: 622 kfree(eeprom_buff); 623 return ret_val; 624 } 625 626 static void e1000_get_drvinfo(struct net_device *netdev, 627 struct ethtool_drvinfo *drvinfo) 628 { 629 struct e1000_adapter *adapter = netdev_priv(netdev); 630 631 strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver)); 632 633 /* EEPROM image version # is reported as firmware version # for 634 * PCI-E controllers 635 */ 636 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), 637 "%d.%d-%d", 638 FIELD_GET(0xF000, adapter->eeprom_vers), 639 FIELD_GET(0x0FF0, adapter->eeprom_vers), 640 (adapter->eeprom_vers & 0x000F)); 641 642 strscpy(drvinfo->bus_info, pci_name(adapter->pdev), 643 sizeof(drvinfo->bus_info)); 644 } 645 646 static void e1000_get_ringparam(struct net_device *netdev, 647 struct ethtool_ringparam *ring, 648 struct kernel_ethtool_ringparam *kernel_ring, 649 struct netlink_ext_ack *extack) 650 { 651 struct e1000_adapter *adapter = netdev_priv(netdev); 652 653 ring->rx_max_pending = E1000_MAX_RXD; 654 ring->tx_max_pending = E1000_MAX_TXD; 655 ring->rx_pending = adapter->rx_ring_count; 656 ring->tx_pending = adapter->tx_ring_count; 657 } 658 659 static int e1000_set_ringparam(struct net_device *netdev, 660 struct ethtool_ringparam *ring, 661 struct kernel_ethtool_ringparam *kernel_ring, 662 struct netlink_ext_ack *extack) 663 { 664 struct e1000_adapter *adapter = netdev_priv(netdev); 665 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL; 666 int err = 0, size = sizeof(struct e1000_ring); 667 bool set_tx = false, set_rx = false; 668 u16 new_rx_count, new_tx_count; 669 670 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 671 return -EINVAL; 672 673 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD, 674 E1000_MAX_RXD); 675 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 676 677 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD, 678 E1000_MAX_TXD); 679 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 680 681 if ((new_tx_count == adapter->tx_ring_count) && 682 (new_rx_count == adapter->rx_ring_count)) 683 /* nothing to do */ 684 return 0; 685 686 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 687 usleep_range(1000, 2000); 688 689 if (!netif_running(adapter->netdev)) { 690 /* Set counts now and allocate resources during open() */ 691 adapter->tx_ring->count = new_tx_count; 692 adapter->rx_ring->count = new_rx_count; 693 adapter->tx_ring_count = new_tx_count; 694 adapter->rx_ring_count = new_rx_count; 695 goto clear_reset; 696 } 697 698 set_tx = (new_tx_count != adapter->tx_ring_count); 699 set_rx = (new_rx_count != adapter->rx_ring_count); 700 701 /* Allocate temporary storage for ring updates */ 702 if (set_tx) { 703 temp_tx = vmalloc(size); 704 if (!temp_tx) { 705 err = -ENOMEM; 706 goto free_temp; 707 } 708 } 709 if (set_rx) { 710 temp_rx = vmalloc(size); 711 if (!temp_rx) { 712 err = -ENOMEM; 713 goto free_temp; 714 } 715 } 716 717 e1000e_down(adapter, true); 718 719 /* We can't just free everything and then setup again, because the 720 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring 721 * structs. First, attempt to allocate new resources... 722 */ 723 if (set_tx) { 724 memcpy(temp_tx, adapter->tx_ring, size); 725 temp_tx->count = new_tx_count; 726 err = e1000e_setup_tx_resources(temp_tx); 727 if (err) 728 goto err_setup; 729 } 730 if (set_rx) { 731 memcpy(temp_rx, adapter->rx_ring, size); 732 temp_rx->count = new_rx_count; 733 err = e1000e_setup_rx_resources(temp_rx); 734 if (err) 735 goto err_setup_rx; 736 } 737 738 /* ...then free the old resources and copy back any new ring data */ 739 if (set_tx) { 740 e1000e_free_tx_resources(adapter->tx_ring); 741 memcpy(adapter->tx_ring, temp_tx, size); 742 adapter->tx_ring_count = new_tx_count; 743 } 744 if (set_rx) { 745 e1000e_free_rx_resources(adapter->rx_ring); 746 memcpy(adapter->rx_ring, temp_rx, size); 747 adapter->rx_ring_count = new_rx_count; 748 } 749 750 err_setup_rx: 751 if (err && set_tx) 752 e1000e_free_tx_resources(temp_tx); 753 err_setup: 754 e1000e_up(adapter); 755 free_temp: 756 vfree(temp_tx); 757 vfree(temp_rx); 758 clear_reset: 759 clear_bit(__E1000_RESETTING, &adapter->state); 760 return err; 761 } 762 763 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, 764 int reg, int offset, u32 mask, u32 write) 765 { 766 u32 pat, val; 767 static const u32 test[] = { 768 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 769 }; 770 for (pat = 0; pat < ARRAY_SIZE(test); pat++) { 771 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset, 772 (test[pat] & write)); 773 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset); 774 if (val != (test[pat] & write & mask)) { 775 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 776 reg + (offset << 2), val, 777 (test[pat] & write & mask)); 778 *data = reg; 779 return true; 780 } 781 } 782 return false; 783 } 784 785 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, 786 int reg, u32 mask, u32 write) 787 { 788 u32 val; 789 790 __ew32(&adapter->hw, reg, write & mask); 791 val = __er32(&adapter->hw, reg); 792 if ((write & mask) != (val & mask)) { 793 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n", 794 reg, (val & mask), (write & mask)); 795 *data = reg; 796 return true; 797 } 798 return false; 799 } 800 801 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \ 802 do { \ 803 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \ 804 return 1; \ 805 } while (0) 806 #define REG_PATTERN_TEST(reg, mask, write) \ 807 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write) 808 809 #define REG_SET_AND_CHECK(reg, mask, write) \ 810 do { \ 811 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 812 return 1; \ 813 } while (0) 814 815 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 816 { 817 struct e1000_hw *hw = &adapter->hw; 818 struct e1000_mac_info *mac = &adapter->hw.mac; 819 u32 value; 820 u32 before; 821 u32 after; 822 u32 i; 823 u32 toggle; 824 u32 mask; 825 u32 wlock_mac = 0; 826 827 /* The status register is Read Only, so a write should fail. 828 * Some bits that get toggled are ignored. There are several bits 829 * on newer hardware that are r/w. 830 */ 831 switch (mac->type) { 832 case e1000_82571: 833 case e1000_82572: 834 case e1000_80003es2lan: 835 toggle = 0x7FFFF3FF; 836 break; 837 default: 838 toggle = 0x7FFFF033; 839 break; 840 } 841 842 before = er32(STATUS); 843 value = (er32(STATUS) & toggle); 844 ew32(STATUS, toggle); 845 after = er32(STATUS) & toggle; 846 if (value != after) { 847 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n", 848 after, value); 849 *data = 1; 850 return 1; 851 } 852 /* restore previous status */ 853 ew32(STATUS, before); 854 855 if (!(adapter->flags & FLAG_IS_ICH)) { 856 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 857 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF); 858 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF); 859 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF); 860 } 861 862 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF); 863 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 864 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF); 865 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF); 866 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF); 867 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8); 868 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF); 869 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 870 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF); 871 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF); 872 873 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000); 874 875 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE); 876 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB); 877 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000); 878 879 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF); 880 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 881 if (!(adapter->flags & FLAG_IS_ICH)) 882 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF); 883 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF); 884 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF); 885 mask = 0x8003FFFF; 886 switch (mac->type) { 887 case e1000_ich10lan: 888 case e1000_pchlan: 889 case e1000_pch2lan: 890 case e1000_pch_lpt: 891 case e1000_pch_spt: 892 case e1000_pch_cnp: 893 case e1000_pch_tgp: 894 case e1000_pch_adp: 895 case e1000_pch_mtp: 896 case e1000_pch_lnp: 897 case e1000_pch_ptp: 898 case e1000_pch_nvp: 899 mask |= BIT(18); 900 break; 901 default: 902 break; 903 } 904 905 if (mac->type >= e1000_pch_lpt) 906 wlock_mac = FIELD_GET(E1000_FWSM_WLOCK_MAC_MASK, er32(FWSM)); 907 908 for (i = 0; i < mac->rar_entry_count; i++) { 909 if (mac->type >= e1000_pch_lpt) { 910 /* Cannot test write-protected SHRAL[n] registers */ 911 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac))) 912 continue; 913 914 /* SHRAH[9] different than the others */ 915 if (i == 10) 916 mask |= BIT(30); 917 else 918 mask &= ~BIT(30); 919 } 920 if (mac->type == e1000_pch2lan) { 921 /* SHRAH[0,1,2] different than previous */ 922 if (i == 1) 923 mask &= 0xFFF4FFFF; 924 /* SHRAH[3] different than SHRAH[0,1,2] */ 925 if (i == 4) 926 mask |= BIT(30); 927 /* RAR[1-6] owned by management engine - skipping */ 928 if (i > 0) 929 i += 6; 930 } 931 932 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask, 933 0xFFFFFFFF); 934 /* reset index to actual value */ 935 if ((mac->type == e1000_pch2lan) && (i > 6)) 936 i -= 6; 937 } 938 939 for (i = 0; i < mac->mta_reg_count; i++) 940 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF); 941 942 *data = 0; 943 944 return 0; 945 } 946 947 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 948 { 949 u16 temp; 950 u16 checksum = 0; 951 u16 i; 952 953 *data = 0; 954 /* Read and add up the contents of the EEPROM */ 955 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 956 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) { 957 *data = 1; 958 return *data; 959 } 960 checksum += temp; 961 } 962 963 /* If Checksum is not Correct return error else test passed */ 964 if (checksum != NVM_SUM && !(*data)) 965 *data = 2; 966 967 return *data; 968 } 969 970 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data) 971 { 972 struct net_device *netdev = (struct net_device *)data; 973 struct e1000_adapter *adapter = netdev_priv(netdev); 974 struct e1000_hw *hw = &adapter->hw; 975 976 adapter->test_icr |= er32(ICR); 977 978 return IRQ_HANDLED; 979 } 980 981 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 982 { 983 struct net_device *netdev = adapter->netdev; 984 struct e1000_hw *hw = &adapter->hw; 985 u32 mask; 986 u32 shared_int = 1; 987 u32 irq = adapter->pdev->irq; 988 int i; 989 int ret_val = 0; 990 int int_mode = E1000E_INT_MODE_LEGACY; 991 992 *data = 0; 993 994 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */ 995 if (adapter->int_mode == E1000E_INT_MODE_MSIX) { 996 int_mode = adapter->int_mode; 997 e1000e_reset_interrupt_capability(adapter); 998 adapter->int_mode = E1000E_INT_MODE_LEGACY; 999 e1000e_set_interrupt_capability(adapter); 1000 } 1001 /* Hook up test interrupt handler just for this test */ 1002 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 1003 netdev)) { 1004 shared_int = 0; 1005 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name, 1006 netdev)) { 1007 *data = 1; 1008 ret_val = -1; 1009 goto out; 1010 } 1011 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared")); 1012 1013 /* Disable all the interrupts */ 1014 ew32(IMC, 0xFFFFFFFF); 1015 e1e_flush(); 1016 usleep_range(10000, 11000); 1017 1018 /* Test each interrupt */ 1019 for (i = 0; i < 10; i++) { 1020 /* Interrupt to test */ 1021 mask = BIT(i); 1022 1023 if (adapter->flags & FLAG_IS_ICH) { 1024 switch (mask) { 1025 case E1000_ICR_RXSEQ: 1026 continue; 1027 case 0x00000100: 1028 if (adapter->hw.mac.type == e1000_ich8lan || 1029 adapter->hw.mac.type == e1000_ich9lan) 1030 continue; 1031 break; 1032 default: 1033 break; 1034 } 1035 } 1036 1037 if (!shared_int) { 1038 /* Disable the interrupt to be reported in 1039 * the cause register and then force the same 1040 * interrupt and see if one gets posted. If 1041 * an interrupt was posted to the bus, the 1042 * test failed. 1043 */ 1044 adapter->test_icr = 0; 1045 ew32(IMC, mask); 1046 ew32(ICS, mask); 1047 e1e_flush(); 1048 usleep_range(10000, 11000); 1049 1050 if (adapter->test_icr & mask) { 1051 *data = 3; 1052 break; 1053 } 1054 } 1055 1056 /* Enable the interrupt to be reported in 1057 * the cause register and then force the same 1058 * interrupt and see if one gets posted. If 1059 * an interrupt was not posted to the bus, the 1060 * test failed. 1061 */ 1062 adapter->test_icr = 0; 1063 ew32(IMS, mask); 1064 ew32(ICS, mask); 1065 e1e_flush(); 1066 usleep_range(10000, 11000); 1067 1068 if (!(adapter->test_icr & mask)) { 1069 *data = 4; 1070 break; 1071 } 1072 1073 if (!shared_int) { 1074 /* Disable the other interrupts to be reported in 1075 * the cause register and then force the other 1076 * interrupts and see if any get posted. If 1077 * an interrupt was posted to the bus, the 1078 * test failed. 1079 */ 1080 adapter->test_icr = 0; 1081 ew32(IMC, ~mask & 0x00007FFF); 1082 ew32(ICS, ~mask & 0x00007FFF); 1083 e1e_flush(); 1084 usleep_range(10000, 11000); 1085 1086 if (adapter->test_icr) { 1087 *data = 5; 1088 break; 1089 } 1090 } 1091 } 1092 1093 /* Disable all the interrupts */ 1094 ew32(IMC, 0xFFFFFFFF); 1095 e1e_flush(); 1096 usleep_range(10000, 11000); 1097 1098 /* Unhook test interrupt handler */ 1099 free_irq(irq, netdev); 1100 1101 out: 1102 if (int_mode == E1000E_INT_MODE_MSIX) { 1103 e1000e_reset_interrupt_capability(adapter); 1104 adapter->int_mode = int_mode; 1105 e1000e_set_interrupt_capability(adapter); 1106 } 1107 1108 return ret_val; 1109 } 1110 1111 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 1112 { 1113 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1114 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1115 struct pci_dev *pdev = adapter->pdev; 1116 struct e1000_buffer *buffer_info; 1117 int i; 1118 1119 if (tx_ring->desc && tx_ring->buffer_info) { 1120 for (i = 0; i < tx_ring->count; i++) { 1121 buffer_info = &tx_ring->buffer_info[i]; 1122 1123 if (buffer_info->dma) 1124 dma_unmap_single(&pdev->dev, 1125 buffer_info->dma, 1126 buffer_info->length, 1127 DMA_TO_DEVICE); 1128 dev_kfree_skb(buffer_info->skb); 1129 } 1130 } 1131 1132 if (rx_ring->desc && rx_ring->buffer_info) { 1133 for (i = 0; i < rx_ring->count; i++) { 1134 buffer_info = &rx_ring->buffer_info[i]; 1135 1136 if (buffer_info->dma) 1137 dma_unmap_single(&pdev->dev, 1138 buffer_info->dma, 1139 2048, DMA_FROM_DEVICE); 1140 dev_kfree_skb(buffer_info->skb); 1141 } 1142 } 1143 1144 if (tx_ring->desc) { 1145 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1146 tx_ring->dma); 1147 tx_ring->desc = NULL; 1148 } 1149 if (rx_ring->desc) { 1150 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 1151 rx_ring->dma); 1152 rx_ring->desc = NULL; 1153 } 1154 1155 kfree(tx_ring->buffer_info); 1156 tx_ring->buffer_info = NULL; 1157 kfree(rx_ring->buffer_info); 1158 rx_ring->buffer_info = NULL; 1159 } 1160 1161 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1162 { 1163 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1164 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1165 struct pci_dev *pdev = adapter->pdev; 1166 struct e1000_hw *hw = &adapter->hw; 1167 u32 rctl; 1168 int i; 1169 int ret_val; 1170 1171 /* Setup Tx descriptor ring and Tx buffers */ 1172 1173 if (!tx_ring->count) 1174 tx_ring->count = E1000_DEFAULT_TXD; 1175 1176 tx_ring->buffer_info = kcalloc(tx_ring->count, 1177 sizeof(struct e1000_buffer), GFP_KERNEL); 1178 if (!tx_ring->buffer_info) { 1179 ret_val = 1; 1180 goto err_nomem; 1181 } 1182 1183 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 1184 tx_ring->size = ALIGN(tx_ring->size, 4096); 1185 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size, 1186 &tx_ring->dma, GFP_KERNEL); 1187 if (!tx_ring->desc) { 1188 ret_val = 2; 1189 goto err_nomem; 1190 } 1191 tx_ring->next_to_use = 0; 1192 tx_ring->next_to_clean = 0; 1193 1194 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF)); 1195 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32)); 1196 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc)); 1197 ew32(TDH(0), 0); 1198 ew32(TDT(0), 0); 1199 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR | 1200 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1201 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1202 1203 for (i = 0; i < tx_ring->count; i++) { 1204 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 1205 struct sk_buff *skb; 1206 unsigned int skb_size = 1024; 1207 1208 skb = alloc_skb(skb_size, GFP_KERNEL); 1209 if (!skb) { 1210 ret_val = 3; 1211 goto err_nomem; 1212 } 1213 skb_put(skb, skb_size); 1214 tx_ring->buffer_info[i].skb = skb; 1215 tx_ring->buffer_info[i].length = skb->len; 1216 tx_ring->buffer_info[i].dma = 1217 dma_map_single(&pdev->dev, skb->data, skb->len, 1218 DMA_TO_DEVICE); 1219 if (dma_mapping_error(&pdev->dev, 1220 tx_ring->buffer_info[i].dma)) { 1221 ret_val = 4; 1222 goto err_nomem; 1223 } 1224 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma); 1225 tx_desc->lower.data = cpu_to_le32(skb->len); 1226 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1227 E1000_TXD_CMD_IFCS | 1228 E1000_TXD_CMD_RS); 1229 tx_desc->upper.data = 0; 1230 } 1231 1232 /* Setup Rx descriptor ring and Rx buffers */ 1233 1234 if (!rx_ring->count) 1235 rx_ring->count = E1000_DEFAULT_RXD; 1236 1237 rx_ring->buffer_info = kcalloc(rx_ring->count, 1238 sizeof(struct e1000_buffer), GFP_KERNEL); 1239 if (!rx_ring->buffer_info) { 1240 ret_val = 5; 1241 goto err_nomem; 1242 } 1243 1244 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended); 1245 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size, 1246 &rx_ring->dma, GFP_KERNEL); 1247 if (!rx_ring->desc) { 1248 ret_val = 6; 1249 goto err_nomem; 1250 } 1251 rx_ring->next_to_use = 0; 1252 rx_ring->next_to_clean = 0; 1253 1254 rctl = er32(RCTL); 1255 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 1256 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1257 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF)); 1258 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32)); 1259 ew32(RDLEN(0), rx_ring->size); 1260 ew32(RDH(0), 0); 1261 ew32(RDT(0), 0); 1262 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1263 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE | 1264 E1000_RCTL_SBP | E1000_RCTL_SECRC | 1265 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1266 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 1267 ew32(RCTL, rctl); 1268 1269 for (i = 0; i < rx_ring->count; i++) { 1270 union e1000_rx_desc_extended *rx_desc; 1271 struct sk_buff *skb; 1272 1273 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL); 1274 if (!skb) { 1275 ret_val = 7; 1276 goto err_nomem; 1277 } 1278 skb_reserve(skb, NET_IP_ALIGN); 1279 rx_ring->buffer_info[i].skb = skb; 1280 rx_ring->buffer_info[i].dma = 1281 dma_map_single(&pdev->dev, skb->data, 2048, 1282 DMA_FROM_DEVICE); 1283 if (dma_mapping_error(&pdev->dev, 1284 rx_ring->buffer_info[i].dma)) { 1285 ret_val = 8; 1286 goto err_nomem; 1287 } 1288 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1289 rx_desc->read.buffer_addr = 1290 cpu_to_le64(rx_ring->buffer_info[i].dma); 1291 memset(skb->data, 0x00, skb->len); 1292 } 1293 1294 return 0; 1295 1296 err_nomem: 1297 e1000_free_desc_rings(adapter); 1298 return ret_val; 1299 } 1300 1301 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1302 { 1303 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1304 e1e_wphy(&adapter->hw, 29, 0x001F); 1305 e1e_wphy(&adapter->hw, 30, 0x8FFC); 1306 e1e_wphy(&adapter->hw, 29, 0x001A); 1307 e1e_wphy(&adapter->hw, 30, 0x8FF0); 1308 } 1309 1310 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1311 { 1312 struct e1000_hw *hw = &adapter->hw; 1313 u32 ctrl_reg = 0; 1314 u16 phy_reg = 0; 1315 s32 ret_val = 0; 1316 1317 hw->mac.autoneg = 0; 1318 1319 if (hw->phy.type == e1000_phy_ife) { 1320 /* force 100, set loopback */ 1321 e1e_wphy(hw, MII_BMCR, 0x6100); 1322 1323 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1324 ctrl_reg = er32(CTRL); 1325 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1326 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1327 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1328 E1000_CTRL_SPD_100 |/* Force Speed to 100 */ 1329 E1000_CTRL_FD); /* Force Duplex to FULL */ 1330 1331 ew32(CTRL, ctrl_reg); 1332 e1e_flush(); 1333 usleep_range(500, 1000); 1334 1335 return 0; 1336 } 1337 1338 /* Specific PHY configuration for loopback */ 1339 switch (hw->phy.type) { 1340 case e1000_phy_m88: 1341 /* Auto-MDI/MDIX Off */ 1342 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1343 /* reset to update Auto-MDI/MDIX */ 1344 e1e_wphy(hw, MII_BMCR, 0x9140); 1345 /* autoneg off */ 1346 e1e_wphy(hw, MII_BMCR, 0x8140); 1347 break; 1348 case e1000_phy_gg82563: 1349 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC); 1350 break; 1351 case e1000_phy_bm: 1352 /* Set Default MAC Interface speed to 1GB */ 1353 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg); 1354 phy_reg &= ~0x0007; 1355 phy_reg |= 0x006; 1356 e1e_wphy(hw, PHY_REG(2, 21), phy_reg); 1357 /* Assert SW reset for above settings to take effect */ 1358 hw->phy.ops.commit(hw); 1359 usleep_range(1000, 2000); 1360 /* Force Full Duplex */ 1361 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1362 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C); 1363 /* Set Link Up (in force link) */ 1364 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg); 1365 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040); 1366 /* Force Link */ 1367 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg); 1368 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040); 1369 /* Set Early Link Enable */ 1370 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1371 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400); 1372 break; 1373 case e1000_phy_82577: 1374 case e1000_phy_82578: 1375 /* Workaround: K1 must be disabled for stable 1Gbps operation */ 1376 ret_val = hw->phy.ops.acquire(hw); 1377 if (ret_val) { 1378 e_err("Cannot setup 1Gbps loopback.\n"); 1379 return ret_val; 1380 } 1381 e1000_configure_k1_ich8lan(hw, false); 1382 hw->phy.ops.release(hw); 1383 break; 1384 case e1000_phy_82579: 1385 /* Disable PHY energy detect power down */ 1386 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg); 1387 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3)); 1388 /* Disable full chip energy detect */ 1389 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg); 1390 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1); 1391 /* Enable loopback on the PHY */ 1392 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001); 1393 break; 1394 default: 1395 break; 1396 } 1397 1398 /* force 1000, set loopback */ 1399 e1e_wphy(hw, MII_BMCR, 0x4140); 1400 msleep(250); 1401 1402 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1403 ctrl_reg = er32(CTRL); 1404 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1405 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1406 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1407 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1408 E1000_CTRL_FD); /* Force Duplex to FULL */ 1409 1410 if (adapter->flags & FLAG_IS_ICH) 1411 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */ 1412 1413 if (hw->phy.media_type == e1000_media_type_copper && 1414 hw->phy.type == e1000_phy_m88) { 1415 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1416 } else { 1417 /* Set the ILOS bit on the fiber Nic if half duplex link is 1418 * detected. 1419 */ 1420 if ((er32(STATUS) & E1000_STATUS_FD) == 0) 1421 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1422 } 1423 1424 ew32(CTRL, ctrl_reg); 1425 1426 /* Disable the receiver on the PHY so when a cable is plugged in, the 1427 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1428 */ 1429 if (hw->phy.type == e1000_phy_m88) 1430 e1000_phy_disable_receiver(adapter); 1431 1432 usleep_range(500, 1000); 1433 1434 return 0; 1435 } 1436 1437 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter) 1438 { 1439 struct e1000_hw *hw = &adapter->hw; 1440 u32 ctrl = er32(CTRL); 1441 int link; 1442 1443 /* special requirements for 82571/82572 fiber adapters */ 1444 1445 /* jump through hoops to make sure link is up because serdes 1446 * link is hardwired up 1447 */ 1448 ctrl |= E1000_CTRL_SLU; 1449 ew32(CTRL, ctrl); 1450 1451 /* disable autoneg */ 1452 ctrl = er32(TXCW); 1453 ctrl &= ~BIT(31); 1454 ew32(TXCW, ctrl); 1455 1456 link = (er32(STATUS) & E1000_STATUS_LU); 1457 1458 if (!link) { 1459 /* set invert loss of signal */ 1460 ctrl = er32(CTRL); 1461 ctrl |= E1000_CTRL_ILOS; 1462 ew32(CTRL, ctrl); 1463 } 1464 1465 /* special write to serdes control register to enable SerDes analog 1466 * loopback 1467 */ 1468 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK); 1469 e1e_flush(); 1470 usleep_range(10000, 11000); 1471 1472 return 0; 1473 } 1474 1475 /* only call this for fiber/serdes connections to es2lan */ 1476 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter) 1477 { 1478 struct e1000_hw *hw = &adapter->hw; 1479 u32 ctrlext = er32(CTRL_EXT); 1480 u32 ctrl = er32(CTRL); 1481 1482 /* save CTRL_EXT to restore later, reuse an empty variable (unused 1483 * on mac_type 80003es2lan) 1484 */ 1485 adapter->tx_fifo_head = ctrlext; 1486 1487 /* clear the serdes mode bits, putting the device into mac loopback */ 1488 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1489 ew32(CTRL_EXT, ctrlext); 1490 1491 /* force speed to 1000/FD, link up */ 1492 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1493 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | 1494 E1000_CTRL_SPD_1000 | E1000_CTRL_FD); 1495 ew32(CTRL, ctrl); 1496 1497 /* set mac loopback */ 1498 ctrl = er32(RCTL); 1499 ctrl |= E1000_RCTL_LBM_MAC; 1500 ew32(RCTL, ctrl); 1501 1502 /* set testing mode parameters (no need to reset later) */ 1503 #define KMRNCTRLSTA_OPMODE (0x1F << 16) 1504 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582 1505 ew32(KMRNCTRLSTA, 1506 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII)); 1507 1508 return 0; 1509 } 1510 1511 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1512 { 1513 struct e1000_hw *hw = &adapter->hw; 1514 u32 rctl, fext_nvm11, tarc0; 1515 1516 if (hw->mac.type >= e1000_pch_spt) { 1517 fext_nvm11 = er32(FEXTNVM11); 1518 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 1519 ew32(FEXTNVM11, fext_nvm11); 1520 tarc0 = er32(TARC(0)); 1521 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1522 tarc0 &= 0xcfffffff; 1523 /* set bit 29 (value of MULR requests is now 2) */ 1524 tarc0 |= 0x20000000; 1525 ew32(TARC(0), tarc0); 1526 } 1527 if (hw->phy.media_type == e1000_media_type_fiber || 1528 hw->phy.media_type == e1000_media_type_internal_serdes) { 1529 switch (hw->mac.type) { 1530 case e1000_80003es2lan: 1531 return e1000_set_es2lan_mac_loopback(adapter); 1532 case e1000_82571: 1533 case e1000_82572: 1534 return e1000_set_82571_fiber_loopback(adapter); 1535 default: 1536 rctl = er32(RCTL); 1537 rctl |= E1000_RCTL_LBM_TCVR; 1538 ew32(RCTL, rctl); 1539 return 0; 1540 } 1541 } else if (hw->phy.media_type == e1000_media_type_copper) { 1542 return e1000_integrated_phy_loopback(adapter); 1543 } 1544 1545 return 7; 1546 } 1547 1548 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1549 { 1550 struct e1000_hw *hw = &adapter->hw; 1551 u32 rctl, fext_nvm11, tarc0; 1552 u16 phy_reg; 1553 1554 rctl = er32(RCTL); 1555 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1556 ew32(RCTL, rctl); 1557 1558 switch (hw->mac.type) { 1559 case e1000_pch_spt: 1560 case e1000_pch_cnp: 1561 case e1000_pch_tgp: 1562 case e1000_pch_adp: 1563 case e1000_pch_mtp: 1564 case e1000_pch_lnp: 1565 case e1000_pch_ptp: 1566 case e1000_pch_nvp: 1567 fext_nvm11 = er32(FEXTNVM11); 1568 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX; 1569 ew32(FEXTNVM11, fext_nvm11); 1570 tarc0 = er32(TARC(0)); 1571 /* clear bits 28 & 29 (control of MULR concurrent requests) */ 1572 /* set bit 29 (value of MULR requests is now 0) */ 1573 tarc0 &= 0xcfffffff; 1574 ew32(TARC(0), tarc0); 1575 fallthrough; 1576 case e1000_80003es2lan: 1577 if (hw->phy.media_type == e1000_media_type_fiber || 1578 hw->phy.media_type == e1000_media_type_internal_serdes) { 1579 /* restore CTRL_EXT, stealing space from tx_fifo_head */ 1580 ew32(CTRL_EXT, adapter->tx_fifo_head); 1581 adapter->tx_fifo_head = 0; 1582 } 1583 fallthrough; 1584 case e1000_82571: 1585 case e1000_82572: 1586 if (hw->phy.media_type == e1000_media_type_fiber || 1587 hw->phy.media_type == e1000_media_type_internal_serdes) { 1588 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1589 e1e_flush(); 1590 usleep_range(10000, 11000); 1591 break; 1592 } 1593 fallthrough; 1594 default: 1595 hw->mac.autoneg = 1; 1596 if (hw->phy.type == e1000_phy_gg82563) 1597 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180); 1598 e1e_rphy(hw, MII_BMCR, &phy_reg); 1599 if (phy_reg & BMCR_LOOPBACK) { 1600 phy_reg &= ~BMCR_LOOPBACK; 1601 e1e_wphy(hw, MII_BMCR, phy_reg); 1602 if (hw->phy.ops.commit) 1603 hw->phy.ops.commit(hw); 1604 } 1605 break; 1606 } 1607 } 1608 1609 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1610 unsigned int frame_size) 1611 { 1612 memset(skb->data, 0xFF, frame_size); 1613 frame_size &= ~1; 1614 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1615 skb->data[frame_size / 2 + 10] = 0xBE; 1616 skb->data[frame_size / 2 + 12] = 0xAF; 1617 } 1618 1619 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1620 unsigned int frame_size) 1621 { 1622 frame_size &= ~1; 1623 if (*(skb->data + 3) == 0xFF) 1624 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1625 (*(skb->data + frame_size / 2 + 12) == 0xAF)) 1626 return 0; 1627 return 13; 1628 } 1629 1630 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1631 { 1632 struct e1000_ring *tx_ring = &adapter->test_tx_ring; 1633 struct e1000_ring *rx_ring = &adapter->test_rx_ring; 1634 struct pci_dev *pdev = adapter->pdev; 1635 struct e1000_hw *hw = &adapter->hw; 1636 struct e1000_buffer *buffer_info; 1637 int i, j, k, l; 1638 int lc; 1639 int good_cnt; 1640 int ret_val = 0; 1641 unsigned long time; 1642 1643 ew32(RDT(0), rx_ring->count - 1); 1644 1645 /* Calculate the loop count based on the largest descriptor ring 1646 * The idea is to wrap the largest ring a number of times using 64 1647 * send/receive pairs during each loop 1648 */ 1649 1650 if (rx_ring->count <= tx_ring->count) 1651 lc = ((tx_ring->count / 64) * 2) + 1; 1652 else 1653 lc = ((rx_ring->count / 64) * 2) + 1; 1654 1655 k = 0; 1656 l = 0; 1657 /* loop count loop */ 1658 for (j = 0; j <= lc; j++) { 1659 /* send the packets */ 1660 for (i = 0; i < 64; i++) { 1661 buffer_info = &tx_ring->buffer_info[k]; 1662 1663 e1000_create_lbtest_frame(buffer_info->skb, 1024); 1664 dma_sync_single_for_device(&pdev->dev, 1665 buffer_info->dma, 1666 buffer_info->length, 1667 DMA_TO_DEVICE); 1668 k++; 1669 if (k == tx_ring->count) 1670 k = 0; 1671 } 1672 ew32(TDT(0), k); 1673 e1e_flush(); 1674 msleep(200); 1675 time = jiffies; /* set the start time for the receive */ 1676 good_cnt = 0; 1677 /* receive the sent packets */ 1678 do { 1679 buffer_info = &rx_ring->buffer_info[l]; 1680 1681 dma_sync_single_for_cpu(&pdev->dev, 1682 buffer_info->dma, 2048, 1683 DMA_FROM_DEVICE); 1684 1685 ret_val = e1000_check_lbtest_frame(buffer_info->skb, 1686 1024); 1687 if (!ret_val) 1688 good_cnt++; 1689 l++; 1690 if (l == rx_ring->count) 1691 l = 0; 1692 /* time + 20 msecs (200 msecs on 2.4) is more than 1693 * enough time to complete the receives, if it's 1694 * exceeded, break and error off 1695 */ 1696 } while ((good_cnt < 64) && !time_after(jiffies, time + 20)); 1697 if (good_cnt != 64) { 1698 ret_val = 13; /* ret_val is the same as mis-compare */ 1699 break; 1700 } 1701 if (time_after(jiffies, time + 20)) { 1702 ret_val = 14; /* error code for time out error */ 1703 break; 1704 } 1705 } 1706 return ret_val; 1707 } 1708 1709 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1710 { 1711 struct e1000_hw *hw = &adapter->hw; 1712 1713 /* PHY loopback cannot be performed if SoL/IDER sessions are active */ 1714 if (hw->phy.ops.check_reset_block && 1715 hw->phy.ops.check_reset_block(hw)) { 1716 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n"); 1717 *data = 0; 1718 goto out; 1719 } 1720 1721 *data = e1000_setup_desc_rings(adapter); 1722 if (*data) 1723 goto out; 1724 1725 *data = e1000_setup_loopback_test(adapter); 1726 if (*data) 1727 goto err_loopback; 1728 1729 *data = e1000_run_loopback_test(adapter); 1730 e1000_loopback_cleanup(adapter); 1731 1732 err_loopback: 1733 e1000_free_desc_rings(adapter); 1734 out: 1735 return *data; 1736 } 1737 1738 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1739 { 1740 struct e1000_hw *hw = &adapter->hw; 1741 1742 *data = 0; 1743 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1744 int i = 0; 1745 1746 hw->mac.serdes_has_link = false; 1747 1748 /* On some blade server designs, link establishment 1749 * could take as long as 2-3 minutes 1750 */ 1751 do { 1752 hw->mac.ops.check_for_link(hw); 1753 if (hw->mac.serdes_has_link) 1754 return *data; 1755 msleep(20); 1756 } while (i++ < 3750); 1757 1758 *data = 1; 1759 } else { 1760 hw->mac.ops.check_for_link(hw); 1761 if (hw->mac.autoneg) 1762 /* On some Phy/switch combinations, link establishment 1763 * can take a few seconds more than expected. 1764 */ 1765 msleep_interruptible(5000); 1766 1767 if (!(er32(STATUS) & E1000_STATUS_LU)) 1768 *data = 1; 1769 } 1770 return *data; 1771 } 1772 1773 static int e1000e_get_sset_count(struct net_device __always_unused *netdev, 1774 int sset) 1775 { 1776 switch (sset) { 1777 case ETH_SS_TEST: 1778 return E1000_TEST_LEN; 1779 case ETH_SS_STATS: 1780 return E1000_STATS_LEN; 1781 case ETH_SS_PRIV_FLAGS: 1782 return E1000E_PRIV_FLAGS_STR_LEN; 1783 default: 1784 return -EOPNOTSUPP; 1785 } 1786 } 1787 1788 static void e1000_diag_test(struct net_device *netdev, 1789 struct ethtool_test *eth_test, u64 *data) 1790 { 1791 struct e1000_adapter *adapter = netdev_priv(netdev); 1792 u16 autoneg_advertised; 1793 u8 forced_speed_duplex; 1794 u8 autoneg; 1795 bool if_running = netif_running(netdev); 1796 1797 set_bit(__E1000_TESTING, &adapter->state); 1798 1799 if (!if_running) { 1800 /* Get control of and reset hardware */ 1801 if (adapter->flags & FLAG_HAS_AMT) 1802 e1000e_get_hw_control(adapter); 1803 1804 e1000e_power_up_phy(adapter); 1805 1806 adapter->hw.phy.autoneg_wait_to_complete = 1; 1807 e1000e_reset(adapter); 1808 adapter->hw.phy.autoneg_wait_to_complete = 0; 1809 } 1810 1811 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1812 /* Offline tests */ 1813 1814 /* save speed, duplex, autoneg settings */ 1815 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1816 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1817 autoneg = adapter->hw.mac.autoneg; 1818 1819 e_info("offline testing starting\n"); 1820 1821 if (if_running) 1822 /* indicate we're in test mode */ 1823 e1000e_close(netdev); 1824 1825 if (e1000_reg_test(adapter, &data[0])) 1826 eth_test->flags |= ETH_TEST_FL_FAILED; 1827 1828 e1000e_reset(adapter); 1829 if (e1000_eeprom_test(adapter, &data[1])) 1830 eth_test->flags |= ETH_TEST_FL_FAILED; 1831 1832 e1000e_reset(adapter); 1833 if (e1000_intr_test(adapter, &data[2])) 1834 eth_test->flags |= ETH_TEST_FL_FAILED; 1835 1836 e1000e_reset(adapter); 1837 if (e1000_loopback_test(adapter, &data[3])) 1838 eth_test->flags |= ETH_TEST_FL_FAILED; 1839 1840 /* force this routine to wait until autoneg complete/timeout */ 1841 adapter->hw.phy.autoneg_wait_to_complete = 1; 1842 e1000e_reset(adapter); 1843 adapter->hw.phy.autoneg_wait_to_complete = 0; 1844 1845 if (e1000_link_test(adapter, &data[4])) 1846 eth_test->flags |= ETH_TEST_FL_FAILED; 1847 1848 /* restore speed, duplex, autoneg settings */ 1849 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1850 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1851 adapter->hw.mac.autoneg = autoneg; 1852 e1000e_reset(adapter); 1853 1854 clear_bit(__E1000_TESTING, &adapter->state); 1855 if (if_running) 1856 e1000e_open(netdev); 1857 } else { 1858 /* Online tests */ 1859 1860 e_info("online testing starting\n"); 1861 1862 /* register, eeprom, intr and loopback tests not run online */ 1863 data[0] = 0; 1864 data[1] = 0; 1865 data[2] = 0; 1866 data[3] = 0; 1867 1868 if (e1000_link_test(adapter, &data[4])) 1869 eth_test->flags |= ETH_TEST_FL_FAILED; 1870 1871 clear_bit(__E1000_TESTING, &adapter->state); 1872 } 1873 1874 if (!if_running) { 1875 e1000e_reset(adapter); 1876 1877 if (adapter->flags & FLAG_HAS_AMT) 1878 e1000e_release_hw_control(adapter); 1879 } 1880 1881 msleep_interruptible(4 * 1000); 1882 } 1883 1884 static void e1000_get_wol(struct net_device *netdev, 1885 struct ethtool_wolinfo *wol) 1886 { 1887 struct e1000_adapter *adapter = netdev_priv(netdev); 1888 1889 wol->supported = 0; 1890 wol->wolopts = 0; 1891 1892 if (!(adapter->flags & FLAG_HAS_WOL) || 1893 !device_can_wakeup(&adapter->pdev->dev)) 1894 return; 1895 1896 wol->supported = WAKE_UCAST | WAKE_MCAST | 1897 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY; 1898 1899 /* apply any specific unsupported masks here */ 1900 if (adapter->flags & FLAG_NO_WAKE_UCAST) { 1901 wol->supported &= ~WAKE_UCAST; 1902 1903 if (adapter->wol & E1000_WUFC_EX) 1904 e_err("Interface does not support directed (unicast) frame wake-up packets\n"); 1905 } 1906 1907 if (adapter->wol & E1000_WUFC_EX) 1908 wol->wolopts |= WAKE_UCAST; 1909 if (adapter->wol & E1000_WUFC_MC) 1910 wol->wolopts |= WAKE_MCAST; 1911 if (adapter->wol & E1000_WUFC_BC) 1912 wol->wolopts |= WAKE_BCAST; 1913 if (adapter->wol & E1000_WUFC_MAG) 1914 wol->wolopts |= WAKE_MAGIC; 1915 if (adapter->wol & E1000_WUFC_LNKC) 1916 wol->wolopts |= WAKE_PHY; 1917 } 1918 1919 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1920 { 1921 struct e1000_adapter *adapter = netdev_priv(netdev); 1922 1923 if (!(adapter->flags & FLAG_HAS_WOL) || 1924 !device_can_wakeup(&adapter->pdev->dev) || 1925 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 1926 WAKE_MAGIC | WAKE_PHY))) 1927 return -EOPNOTSUPP; 1928 1929 /* these settings will always override what we currently have */ 1930 adapter->wol = 0; 1931 1932 if (wol->wolopts & WAKE_UCAST) 1933 adapter->wol |= E1000_WUFC_EX; 1934 if (wol->wolopts & WAKE_MCAST) 1935 adapter->wol |= E1000_WUFC_MC; 1936 if (wol->wolopts & WAKE_BCAST) 1937 adapter->wol |= E1000_WUFC_BC; 1938 if (wol->wolopts & WAKE_MAGIC) 1939 adapter->wol |= E1000_WUFC_MAG; 1940 if (wol->wolopts & WAKE_PHY) 1941 adapter->wol |= E1000_WUFC_LNKC; 1942 1943 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1944 1945 return 0; 1946 } 1947 1948 static int e1000_set_phys_id(struct net_device *netdev, 1949 enum ethtool_phys_id_state state) 1950 { 1951 struct e1000_adapter *adapter = netdev_priv(netdev); 1952 struct e1000_hw *hw = &adapter->hw; 1953 1954 switch (state) { 1955 case ETHTOOL_ID_ACTIVE: 1956 pm_runtime_get_sync(netdev->dev.parent); 1957 1958 if (!hw->mac.ops.blink_led) 1959 return 2; /* cycle on/off twice per second */ 1960 1961 hw->mac.ops.blink_led(hw); 1962 break; 1963 1964 case ETHTOOL_ID_INACTIVE: 1965 if (hw->phy.type == e1000_phy_ife) 1966 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 1967 hw->mac.ops.led_off(hw); 1968 hw->mac.ops.cleanup_led(hw); 1969 pm_runtime_put_sync(netdev->dev.parent); 1970 break; 1971 1972 case ETHTOOL_ID_ON: 1973 hw->mac.ops.led_on(hw); 1974 break; 1975 1976 case ETHTOOL_ID_OFF: 1977 hw->mac.ops.led_off(hw); 1978 break; 1979 } 1980 1981 return 0; 1982 } 1983 1984 static int e1000_get_coalesce(struct net_device *netdev, 1985 struct ethtool_coalesce *ec, 1986 struct kernel_ethtool_coalesce *kernel_coal, 1987 struct netlink_ext_ack *extack) 1988 { 1989 struct e1000_adapter *adapter = netdev_priv(netdev); 1990 1991 if (adapter->itr_setting <= 4) 1992 ec->rx_coalesce_usecs = adapter->itr_setting; 1993 else 1994 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1995 1996 return 0; 1997 } 1998 1999 static int e1000_set_coalesce(struct net_device *netdev, 2000 struct ethtool_coalesce *ec, 2001 struct kernel_ethtool_coalesce *kernel_coal, 2002 struct netlink_ext_ack *extack) 2003 { 2004 struct e1000_adapter *adapter = netdev_priv(netdev); 2005 2006 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 2007 ((ec->rx_coalesce_usecs > 4) && 2008 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 2009 (ec->rx_coalesce_usecs == 2)) 2010 return -EINVAL; 2011 2012 if (ec->rx_coalesce_usecs == 4) { 2013 adapter->itr_setting = 4; 2014 adapter->itr = adapter->itr_setting; 2015 } else if (ec->rx_coalesce_usecs <= 3) { 2016 adapter->itr = 20000; 2017 adapter->itr_setting = ec->rx_coalesce_usecs; 2018 } else { 2019 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 2020 adapter->itr_setting = adapter->itr & ~3; 2021 } 2022 2023 if (adapter->itr_setting != 0) 2024 e1000e_write_itr(adapter, adapter->itr); 2025 else 2026 e1000e_write_itr(adapter, 0); 2027 2028 return 0; 2029 } 2030 2031 static int e1000_nway_reset(struct net_device *netdev) 2032 { 2033 struct e1000_adapter *adapter = netdev_priv(netdev); 2034 2035 if (!netif_running(netdev)) 2036 return -EAGAIN; 2037 2038 if (!adapter->hw.mac.autoneg) 2039 return -EINVAL; 2040 2041 e1000e_reinit_locked(adapter); 2042 2043 return 0; 2044 } 2045 2046 static void e1000_get_ethtool_stats(struct net_device *netdev, 2047 struct ethtool_stats __always_unused *stats, 2048 u64 *data) 2049 { 2050 struct e1000_adapter *adapter = netdev_priv(netdev); 2051 struct rtnl_link_stats64 net_stats; 2052 int i; 2053 char *p = NULL; 2054 2055 dev_get_stats(netdev, &net_stats); 2056 2057 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2058 switch (e1000_gstrings_stats[i].type) { 2059 case NETDEV_STATS: 2060 p = (char *)&net_stats + 2061 e1000_gstrings_stats[i].stat_offset; 2062 break; 2063 case E1000_STATS: 2064 p = (char *)adapter + 2065 e1000_gstrings_stats[i].stat_offset; 2066 break; 2067 default: 2068 data[i] = 0; 2069 continue; 2070 } 2071 2072 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 2073 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2074 } 2075 } 2076 2077 static void e1000_get_strings(struct net_device __always_unused *netdev, 2078 u32 stringset, u8 *data) 2079 { 2080 u8 *p = data; 2081 int i; 2082 2083 switch (stringset) { 2084 case ETH_SS_TEST: 2085 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 2086 break; 2087 case ETH_SS_STATS: 2088 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 2089 memcpy(p, e1000_gstrings_stats[i].stat_string, 2090 ETH_GSTRING_LEN); 2091 p += ETH_GSTRING_LEN; 2092 } 2093 break; 2094 case ETH_SS_PRIV_FLAGS: 2095 memcpy(data, e1000e_priv_flags_strings, 2096 E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN); 2097 break; 2098 } 2099 } 2100 2101 static int e1000_get_rxfh_fields(struct net_device *netdev, 2102 struct ethtool_rxfh_fields *info) 2103 { 2104 struct e1000_adapter *adapter = netdev_priv(netdev); 2105 struct e1000_hw *hw = &adapter->hw; 2106 u32 mrqc; 2107 2108 info->data = 0; 2109 2110 mrqc = er32(MRQC); 2111 2112 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK)) 2113 return 0; 2114 2115 switch (info->flow_type) { 2116 case TCP_V4_FLOW: 2117 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) 2118 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2119 fallthrough; 2120 case UDP_V4_FLOW: 2121 case SCTP_V4_FLOW: 2122 case AH_ESP_V4_FLOW: 2123 case IPV4_FLOW: 2124 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) 2125 info->data |= RXH_IP_SRC | RXH_IP_DST; 2126 break; 2127 case TCP_V6_FLOW: 2128 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) 2129 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2130 fallthrough; 2131 case UDP_V6_FLOW: 2132 case SCTP_V6_FLOW: 2133 case AH_ESP_V6_FLOW: 2134 case IPV6_FLOW: 2135 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) 2136 info->data |= RXH_IP_SRC | RXH_IP_DST; 2137 break; 2138 default: 2139 break; 2140 } 2141 return 0; 2142 } 2143 2144 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_keee *edata) 2145 { 2146 struct e1000_adapter *adapter = netdev_priv(netdev); 2147 struct e1000_hw *hw = &adapter->hw; 2148 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data; 2149 u32 ret_val; 2150 2151 if (!(adapter->flags2 & FLAG2_HAS_EEE)) 2152 return -EOPNOTSUPP; 2153 2154 switch (hw->phy.type) { 2155 case e1000_phy_82579: 2156 cap_addr = I82579_EEE_CAPABILITY; 2157 lpa_addr = I82579_EEE_LP_ABILITY; 2158 pcs_stat_addr = I82579_EEE_PCS_STATUS; 2159 break; 2160 case e1000_phy_i217: 2161 cap_addr = I217_EEE_CAPABILITY; 2162 lpa_addr = I217_EEE_LP_ABILITY; 2163 pcs_stat_addr = I217_EEE_PCS_STATUS; 2164 break; 2165 default: 2166 return -EOPNOTSUPP; 2167 } 2168 2169 ret_val = hw->phy.ops.acquire(hw); 2170 if (ret_val) 2171 return -EBUSY; 2172 2173 /* EEE Capability */ 2174 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data); 2175 if (ret_val) 2176 goto release; 2177 mii_eee_cap1_mod_linkmode_t(edata->supported, phy_data); 2178 2179 /* EEE Advertised */ 2180 mii_eee_cap1_mod_linkmode_t(edata->advertised, adapter->eee_advert); 2181 2182 /* EEE Link Partner Advertised */ 2183 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data); 2184 if (ret_val) 2185 goto release; 2186 mii_eee_cap1_mod_linkmode_t(edata->lp_advertised, phy_data); 2187 2188 /* EEE PCS Status */ 2189 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data); 2190 if (ret_val) 2191 goto release; 2192 if (hw->phy.type == e1000_phy_82579) 2193 phy_data <<= 8; 2194 2195 /* Result of the EEE auto negotiation - there is no register that 2196 * has the status of the EEE negotiation so do a best-guess based 2197 * on whether Tx or Rx LPI indications have been received. 2198 */ 2199 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD)) 2200 edata->eee_active = true; 2201 2202 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable; 2203 edata->tx_lpi_enabled = true; 2204 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT; 2205 2206 release: 2207 hw->phy.ops.release(hw); 2208 if (ret_val) 2209 ret_val = -ENODATA; 2210 2211 return ret_val; 2212 } 2213 2214 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_keee *edata) 2215 { 2216 struct e1000_adapter *adapter = netdev_priv(netdev); 2217 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = {}; 2218 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp) = {}; 2219 struct e1000_hw *hw = &adapter->hw; 2220 struct ethtool_keee eee_curr; 2221 s32 ret_val; 2222 2223 ret_val = e1000e_get_eee(netdev, &eee_curr); 2224 if (ret_val) 2225 return ret_val; 2226 2227 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2228 e_err("Setting EEE tx-lpi is not supported\n"); 2229 return -EINVAL; 2230 } 2231 2232 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) { 2233 e_err("Setting EEE Tx LPI timer is not supported\n"); 2234 return -EINVAL; 2235 } 2236 2237 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 2238 supported); 2239 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, 2240 supported); 2241 2242 if (linkmode_andnot(tmp, edata->advertised, supported)) { 2243 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n"); 2244 return -EINVAL; 2245 } 2246 2247 adapter->eee_advert = linkmode_to_mii_eee_cap1_t(edata->advertised); 2248 2249 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled; 2250 2251 /* reset the link */ 2252 if (netif_running(netdev)) 2253 e1000e_reinit_locked(adapter); 2254 else 2255 e1000e_reset(adapter); 2256 2257 return 0; 2258 } 2259 2260 static int e1000e_get_ts_info(struct net_device *netdev, 2261 struct kernel_ethtool_ts_info *info) 2262 { 2263 struct e1000_adapter *adapter = netdev_priv(netdev); 2264 2265 ethtool_op_get_ts_info(netdev, info); 2266 2267 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 2268 return 0; 2269 2270 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 2271 SOF_TIMESTAMPING_RX_HARDWARE | 2272 SOF_TIMESTAMPING_RAW_HARDWARE); 2273 2274 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); 2275 2276 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) | 2277 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2278 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2279 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2280 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2281 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2282 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2283 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) | 2284 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) | 2285 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) | 2286 BIT(HWTSTAMP_FILTER_ALL)); 2287 2288 if (adapter->ptp_clock) 2289 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2290 2291 return 0; 2292 } 2293 2294 static u32 e1000e_get_priv_flags(struct net_device *netdev) 2295 { 2296 struct e1000_adapter *adapter = netdev_priv(netdev); 2297 u32 priv_flags = 0; 2298 2299 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS) 2300 priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED; 2301 2302 if (adapter->flags2 & FLAG2_DISABLE_K1) 2303 priv_flags |= E1000E_PRIV_FLAGS_DISABLE_K1; 2304 2305 return priv_flags; 2306 } 2307 2308 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags) 2309 { 2310 struct e1000_adapter *adapter = netdev_priv(netdev); 2311 struct e1000_hw *hw = &adapter->hw; 2312 unsigned int flags2 = adapter->flags2; 2313 unsigned int changed; 2314 2315 flags2 &= ~(FLAG2_ENABLE_S0IX_FLOWS | FLAG2_DISABLE_K1); 2316 2317 if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) { 2318 if (hw->mac.type < e1000_pch_cnp) { 2319 e_err("S0ix is not supported on this device\n"); 2320 return -EINVAL; 2321 } 2322 2323 flags2 |= FLAG2_ENABLE_S0IX_FLOWS; 2324 } 2325 2326 if (priv_flags & E1000E_PRIV_FLAGS_DISABLE_K1) { 2327 if (hw->mac.type < e1000_ich8lan) { 2328 e_err("Disabling K1 is not supported on this device\n"); 2329 return -EINVAL; 2330 } 2331 2332 flags2 |= FLAG2_DISABLE_K1; 2333 } 2334 2335 changed = adapter->flags2 ^ flags2; 2336 if (changed) 2337 adapter->flags2 = flags2; 2338 2339 if (changed & FLAG2_DISABLE_K1) { 2340 /* reset the hardware to apply the changes */ 2341 while (test_and_set_bit(__E1000_RESETTING, 2342 &adapter->state)) 2343 usleep_range(1000, 2000); 2344 2345 if (netif_running(adapter->netdev)) { 2346 e1000e_down(adapter, true); 2347 e1000e_up(adapter); 2348 } else { 2349 e1000e_reset(adapter); 2350 } 2351 2352 clear_bit(__E1000_RESETTING, &adapter->state); 2353 } 2354 2355 return 0; 2356 } 2357 2358 static const struct ethtool_ops e1000_ethtool_ops = { 2359 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 2360 .get_drvinfo = e1000_get_drvinfo, 2361 .get_regs_len = e1000_get_regs_len, 2362 .get_regs = e1000_get_regs, 2363 .get_wol = e1000_get_wol, 2364 .set_wol = e1000_set_wol, 2365 .get_msglevel = e1000_get_msglevel, 2366 .set_msglevel = e1000_set_msglevel, 2367 .nway_reset = e1000_nway_reset, 2368 .get_link = ethtool_op_get_link, 2369 .get_eeprom_len = e1000_get_eeprom_len, 2370 .get_eeprom = e1000_get_eeprom, 2371 .set_eeprom = e1000_set_eeprom, 2372 .get_ringparam = e1000_get_ringparam, 2373 .set_ringparam = e1000_set_ringparam, 2374 .get_pauseparam = e1000_get_pauseparam, 2375 .set_pauseparam = e1000_set_pauseparam, 2376 .self_test = e1000_diag_test, 2377 .get_strings = e1000_get_strings, 2378 .set_phys_id = e1000_set_phys_id, 2379 .get_ethtool_stats = e1000_get_ethtool_stats, 2380 .get_sset_count = e1000e_get_sset_count, 2381 .get_coalesce = e1000_get_coalesce, 2382 .set_coalesce = e1000_set_coalesce, 2383 .get_rxfh_fields = e1000_get_rxfh_fields, 2384 .get_ts_info = e1000e_get_ts_info, 2385 .get_eee = e1000e_get_eee, 2386 .set_eee = e1000e_set_eee, 2387 .get_link_ksettings = e1000_get_link_ksettings, 2388 .set_link_ksettings = e1000_set_link_ksettings, 2389 .get_priv_flags = e1000e_get_priv_flags, 2390 .set_priv_flags = e1000e_set_priv_flags, 2391 }; 2392 2393 void e1000e_set_ethtool_ops(struct net_device *netdev) 2394 { 2395 netdev->ethtool_ops = &e1000_ethtool_ops; 2396 } 2397