xref: /linux/arch/x86/Kconfig (revision bb2281fb05e50108ce95c43ab7e701ee564565c8)
1# SPDX-License-Identifier: GPL-2.0
2# Select 32 or 64 bit
3config 64BIT
4	bool "64-bit kernel" if "$(ARCH)" = "x86"
5	default "$(ARCH)" != "i386"
6	help
7	  Say yes to build a 64-bit kernel - formerly known as x86_64
8	  Say no to build a 32-bit kernel - formerly known as i386
9
10config X86_32
11	def_bool y
12	depends on !64BIT
13	# Options that are inherently 32-bit kernel only:
14	select ARCH_WANT_IPC_PARSE_VERSION
15	select CLKSRC_I8253
16	select CLONE_BACKWARDS
17	select GENERIC_VDSO_32
18	select HAVE_DEBUG_STACKOVERFLOW
19	select KMAP_LOCAL
20	select MODULES_USE_ELF_REL
21	select OLD_SIGACTION
22	select ARCH_SPLIT_ARG64
23
24config X86_64
25	def_bool y
26	depends on 64BIT
27	# Options that are inherently 64-bit kernel only:
28	select ARCH_HAS_GIGANTIC_PAGE
29	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
30	select ARCH_SUPPORTS_PER_VMA_LOCK
31	select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE
32	select HAVE_ARCH_SOFT_DIRTY
33	select MODULES_USE_ELF_RELA
34	select NEED_DMA_MAP_STATE
35	select SWIOTLB
36	select ARCH_HAS_ELFCORE_COMPAT
37	select ZONE_DMA32
38	select EXECMEM if DYNAMIC_FTRACE
39
40config FORCE_DYNAMIC_FTRACE
41	def_bool y
42	depends on X86_32
43	depends on FUNCTION_TRACER
44	select DYNAMIC_FTRACE
45	help
46	  We keep the static function tracing (!DYNAMIC_FTRACE) around
47	  in order to test the non static function tracing in the
48	  generic code, as other architectures still use it. But we
49	  only need to keep it around for x86_64. No need to keep it
50	  for x86_32. For x86_32, force DYNAMIC_FTRACE.
51#
52# Arch settings
53#
54# ( Note that options that are marked 'if X86_64' could in principle be
55#   ported to 32-bit as well. )
56#
57config X86
58	def_bool y
59	#
60	# Note: keep this list sorted alphabetically
61	#
62	select ACPI_LEGACY_TABLES_LOOKUP	if ACPI
63	select ACPI_SYSTEM_POWER_STATES_SUPPORT	if ACPI
64	select ACPI_HOTPLUG_CPU			if ACPI_PROCESSOR && HOTPLUG_CPU
65	select ARCH_32BIT_OFF_T			if X86_32
66	select ARCH_CLOCKSOURCE_INIT
67	select ARCH_CONFIGURES_CPU_MITIGATIONS
68	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
69	select ARCH_ENABLE_HUGEPAGE_MIGRATION if X86_64 && HUGETLB_PAGE && MIGRATION
70	select ARCH_ENABLE_MEMORY_HOTPLUG if X86_64
71	select ARCH_ENABLE_MEMORY_HOTREMOVE if MEMORY_HOTPLUG
72	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if (PGTABLE_LEVELS > 2) && (X86_64 || X86_PAE)
73	select ARCH_ENABLE_THP_MIGRATION if X86_64 && TRANSPARENT_HUGEPAGE
74	select ARCH_HAS_ACPI_TABLE_UPGRADE	if ACPI
75	select ARCH_HAS_CACHE_LINE_SIZE
76	select ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION
77	select ARCH_HAS_CPU_FINALIZE_INIT
78	select ARCH_HAS_CPU_PASID		if IOMMU_SVA
79	select ARCH_HAS_CRC32
80	select ARCH_HAS_CRC_T10DIF		if X86_64
81	select ARCH_HAS_CURRENT_STACK_POINTER
82	select ARCH_HAS_DEBUG_VIRTUAL
83	select ARCH_HAS_DEBUG_VM_PGTABLE	if !X86_PAE
84	select ARCH_HAS_DEVMEM_IS_ALLOWED
85	select ARCH_HAS_DMA_OPS			if GART_IOMMU || XEN
86	select ARCH_HAS_EARLY_DEBUG		if KGDB
87	select ARCH_HAS_ELF_RANDOMIZE
88	select ARCH_HAS_FAST_MULTIPLIER
89	select ARCH_HAS_FORTIFY_SOURCE
90	select ARCH_HAS_GCOV_PROFILE_ALL
91	select ARCH_HAS_KCOV			if X86_64
92	select ARCH_HAS_KERNEL_FPU_SUPPORT
93	select ARCH_HAS_MEM_ENCRYPT
94	select ARCH_HAS_MEMBARRIER_SYNC_CORE
95	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
96	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
97	select ARCH_HAS_PMEM_API		if X86_64
98	select ARCH_HAS_PREEMPT_LAZY
99	select ARCH_HAS_PTE_DEVMAP		if X86_64
100	select ARCH_HAS_PTE_SPECIAL
101	select ARCH_HAS_HW_PTE_YOUNG
102	select ARCH_HAS_NONLEAF_PMD_YOUNG	if PGTABLE_LEVELS > 2
103	select ARCH_HAS_UACCESS_FLUSHCACHE	if X86_64
104	select ARCH_HAS_COPY_MC			if X86_64
105	select ARCH_HAS_SET_MEMORY
106	select ARCH_HAS_SET_DIRECT_MAP
107	select ARCH_HAS_STRICT_KERNEL_RWX
108	select ARCH_HAS_STRICT_MODULE_RWX
109	select ARCH_HAS_SYNC_CORE_BEFORE_USERMODE
110	select ARCH_HAS_SYSCALL_WRAPPER
111	select ARCH_HAS_UBSAN
112	select ARCH_HAS_DEBUG_WX
113	select ARCH_HAS_ZONE_DMA_SET if EXPERT
114	select ARCH_HAVE_NMI_SAFE_CMPXCHG
115	select ARCH_HAVE_EXTRA_ELF_NOTES
116	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
117	select ARCH_MIGHT_HAVE_ACPI_PDC		if ACPI
118	select ARCH_MIGHT_HAVE_PC_PARPORT
119	select ARCH_MIGHT_HAVE_PC_SERIO
120	select ARCH_STACKWALK
121	select ARCH_SUPPORTS_ACPI
122	select ARCH_SUPPORTS_ATOMIC_RMW
123	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
124	select ARCH_SUPPORTS_PAGE_TABLE_CHECK	if X86_64
125	select ARCH_SUPPORTS_NUMA_BALANCING	if X86_64
126	select ARCH_SUPPORTS_KMAP_LOCAL_FORCE_MAP	if NR_CPUS <= 4096
127	select ARCH_SUPPORTS_CFI_CLANG		if X86_64
128	select ARCH_USES_CFI_TRAPS		if X86_64 && CFI_CLANG
129	select ARCH_SUPPORTS_LTO_CLANG
130	select ARCH_SUPPORTS_LTO_CLANG_THIN
131	select ARCH_SUPPORTS_RT
132	select ARCH_SUPPORTS_AUTOFDO_CLANG
133	select ARCH_SUPPORTS_PROPELLER_CLANG    if X86_64
134	select ARCH_USE_BUILTIN_BSWAP
135	select ARCH_USE_CMPXCHG_LOCKREF		if X86_CMPXCHG64
136	select ARCH_USE_MEMTEST
137	select ARCH_USE_QUEUED_RWLOCKS
138	select ARCH_USE_QUEUED_SPINLOCKS
139	select ARCH_USE_SYM_ANNOTATIONS
140	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
141	select ARCH_WANT_DEFAULT_BPF_JIT	if X86_64
142	select ARCH_WANTS_DYNAMIC_TASK_STRUCT
143	select ARCH_WANTS_NO_INSTR
144	select ARCH_WANT_GENERAL_HUGETLB
145	select ARCH_WANT_HUGE_PMD_SHARE
146	select ARCH_WANT_LD_ORPHAN_WARN
147	select ARCH_WANT_OPTIMIZE_DAX_VMEMMAP	if X86_64
148	select ARCH_WANT_OPTIMIZE_HUGETLB_VMEMMAP	if X86_64
149	select ARCH_WANTS_THP_SWAP		if X86_64
150	select ARCH_HAS_PARANOID_L1D_FLUSH
151	select BUILDTIME_TABLE_SORT
152	select CLKEVT_I8253
153	select CLOCKSOURCE_WATCHDOG
154	# Word-size accesses may read uninitialized data past the trailing \0
155	# in strings and cause false KMSAN reports.
156	select DCACHE_WORD_ACCESS		if !KMSAN
157	select DYNAMIC_SIGFRAME
158	select EDAC_ATOMIC_SCRUB
159	select EDAC_SUPPORT
160	select GENERIC_CLOCKEVENTS_BROADCAST	if X86_64 || (X86_32 && X86_LOCAL_APIC)
161	select GENERIC_CLOCKEVENTS_BROADCAST_IDLE	if GENERIC_CLOCKEVENTS_BROADCAST
162	select GENERIC_CLOCKEVENTS_MIN_ADJUST
163	select GENERIC_CMOS_UPDATE
164	select GENERIC_CPU_AUTOPROBE
165	select GENERIC_CPU_DEVICES
166	select GENERIC_CPU_VULNERABILITIES
167	select GENERIC_EARLY_IOREMAP
168	select GENERIC_ENTRY
169	select GENERIC_IOMAP
170	select GENERIC_IRQ_EFFECTIVE_AFF_MASK	if SMP
171	select GENERIC_IRQ_MATRIX_ALLOCATOR	if X86_LOCAL_APIC
172	select GENERIC_IRQ_MIGRATION		if SMP
173	select GENERIC_IRQ_PROBE
174	select GENERIC_IRQ_RESERVATION_MODE
175	select GENERIC_IRQ_SHOW
176	select GENERIC_PENDING_IRQ		if SMP
177	select GENERIC_PTDUMP
178	select GENERIC_SMP_IDLE_THREAD
179	select GENERIC_TIME_VSYSCALL
180	select GENERIC_GETTIMEOFDAY
181	select GENERIC_VDSO_TIME_NS
182	select GENERIC_VDSO_OVERFLOW_PROTECT
183	select GUP_GET_PXX_LOW_HIGH		if X86_PAE
184	select HARDIRQS_SW_RESEND
185	select HARDLOCKUP_CHECK_TIMESTAMP	if X86_64
186	select HAS_IOPORT
187	select HAVE_ACPI_APEI			if ACPI
188	select HAVE_ACPI_APEI_NMI		if ACPI
189	select HAVE_ALIGNED_STRUCT_PAGE
190	select HAVE_ARCH_AUDITSYSCALL
191	select HAVE_ARCH_HUGE_VMAP		if X86_64 || X86_PAE
192	select HAVE_ARCH_HUGE_VMALLOC		if X86_64
193	select HAVE_ARCH_JUMP_LABEL
194	select HAVE_ARCH_JUMP_LABEL_RELATIVE
195	select HAVE_ARCH_KASAN			if X86_64
196	select HAVE_ARCH_KASAN_VMALLOC		if X86_64
197	select HAVE_ARCH_KFENCE
198	select HAVE_ARCH_KMSAN			if X86_64
199	select HAVE_ARCH_KGDB
200	select HAVE_ARCH_MMAP_RND_BITS		if MMU
201	select HAVE_ARCH_MMAP_RND_COMPAT_BITS	if MMU && COMPAT
202	select HAVE_ARCH_COMPAT_MMAP_BASES	if MMU && COMPAT
203	select HAVE_ARCH_PREL32_RELOCATIONS
204	select HAVE_ARCH_SECCOMP_FILTER
205	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
206	select HAVE_ARCH_STACKLEAK
207	select HAVE_ARCH_TRACEHOOK
208	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
209	select HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD if X86_64
210	select HAVE_ARCH_USERFAULTFD_WP         if X86_64 && USERFAULTFD
211	select HAVE_ARCH_USERFAULTFD_MINOR	if X86_64 && USERFAULTFD
212	select HAVE_ARCH_VMAP_STACK		if X86_64
213	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
214	select HAVE_ARCH_WITHIN_STACK_FRAMES
215	select HAVE_ASM_MODVERSIONS
216	select HAVE_CMPXCHG_DOUBLE
217	select HAVE_CMPXCHG_LOCAL
218	select HAVE_CONTEXT_TRACKING_USER		if X86_64
219	select HAVE_CONTEXT_TRACKING_USER_OFFSTACK	if HAVE_CONTEXT_TRACKING_USER
220	select HAVE_C_RECORDMCOUNT
221	select HAVE_OBJTOOL_MCOUNT		if HAVE_OBJTOOL
222	select HAVE_OBJTOOL_NOP_MCOUNT		if HAVE_OBJTOOL_MCOUNT
223	select HAVE_BUILDTIME_MCOUNT_SORT
224	select HAVE_DEBUG_KMEMLEAK
225	select HAVE_DMA_CONTIGUOUS
226	select HAVE_DYNAMIC_FTRACE
227	select HAVE_DYNAMIC_FTRACE_WITH_REGS
228	select HAVE_DYNAMIC_FTRACE_WITH_ARGS	if X86_64
229	select HAVE_FTRACE_REGS_HAVING_PT_REGS	if X86_64
230	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
231	select HAVE_SAMPLE_FTRACE_DIRECT	if X86_64
232	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI	if X86_64
233	select HAVE_EBPF_JIT
234	select HAVE_EFFICIENT_UNALIGNED_ACCESS
235	select HAVE_EISA
236	select HAVE_EXIT_THREAD
237	select HAVE_GUP_FAST
238	select HAVE_FENTRY			if X86_64 || DYNAMIC_FTRACE
239	select HAVE_FTRACE_GRAPH_FUNC		if HAVE_FUNCTION_GRAPH_TRACER
240	select HAVE_FTRACE_MCOUNT_RECORD
241	select HAVE_FUNCTION_GRAPH_FREGS	if HAVE_FUNCTION_GRAPH_TRACER
242	select HAVE_FUNCTION_GRAPH_TRACER	if X86_32 || (X86_64 && DYNAMIC_FTRACE)
243	select HAVE_FUNCTION_TRACER
244	select HAVE_GCC_PLUGINS
245	select HAVE_HW_BREAKPOINT
246	select HAVE_IOREMAP_PROT
247	select HAVE_IRQ_EXIT_ON_IRQ_STACK	if X86_64
248	select HAVE_IRQ_TIME_ACCOUNTING
249	select HAVE_JUMP_LABEL_HACK		if HAVE_OBJTOOL
250	select HAVE_KERNEL_BZIP2
251	select HAVE_KERNEL_GZIP
252	select HAVE_KERNEL_LZ4
253	select HAVE_KERNEL_LZMA
254	select HAVE_KERNEL_LZO
255	select HAVE_KERNEL_XZ
256	select HAVE_KERNEL_ZSTD
257	select HAVE_KPROBES
258	select HAVE_KPROBES_ON_FTRACE
259	select HAVE_FUNCTION_ERROR_INJECTION
260	select HAVE_KRETPROBES
261	select HAVE_RETHOOK
262	select HAVE_LIVEPATCH			if X86_64
263	select HAVE_MIXED_BREAKPOINTS_REGS
264	select HAVE_MOD_ARCH_SPECIFIC
265	select HAVE_MOVE_PMD
266	select HAVE_MOVE_PUD
267	select HAVE_NOINSTR_HACK		if HAVE_OBJTOOL
268	select HAVE_NMI
269	select HAVE_NOINSTR_VALIDATION		if HAVE_OBJTOOL
270	select HAVE_OBJTOOL			if X86_64
271	select HAVE_OPTPROBES
272	select HAVE_PAGE_SIZE_4KB
273	select HAVE_PCSPKR_PLATFORM
274	select HAVE_PERF_EVENTS
275	select HAVE_PERF_EVENTS_NMI
276	select HAVE_HARDLOCKUP_DETECTOR_PERF	if PERF_EVENTS && HAVE_PERF_EVENTS_NMI
277	select HAVE_PCI
278	select HAVE_PERF_REGS
279	select HAVE_PERF_USER_STACK_DUMP
280	select MMU_GATHER_RCU_TABLE_FREE	if PARAVIRT
281	select MMU_GATHER_MERGE_VMAS
282	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
283	select HAVE_REGS_AND_STACK_ACCESS_API
284	select HAVE_RELIABLE_STACKTRACE		if UNWINDER_ORC || STACK_VALIDATION
285	select HAVE_FUNCTION_ARG_ACCESS_API
286	select HAVE_SETUP_PER_CPU_AREA
287	select HAVE_SOFTIRQ_ON_OWN_STACK
288	select HAVE_STACKPROTECTOR		if CC_HAS_SANE_STACKPROTECTOR
289	select HAVE_STACK_VALIDATION		if HAVE_OBJTOOL
290	select HAVE_STATIC_CALL
291	select HAVE_STATIC_CALL_INLINE		if HAVE_OBJTOOL
292	select HAVE_PREEMPT_DYNAMIC_CALL
293	select HAVE_RSEQ
294	select HAVE_RUST			if X86_64
295	select HAVE_SYSCALL_TRACEPOINTS
296	select HAVE_UACCESS_VALIDATION		if HAVE_OBJTOOL
297	select HAVE_UNSTABLE_SCHED_CLOCK
298	select HAVE_USER_RETURN_NOTIFIER
299	select HAVE_GENERIC_VDSO
300	select VDSO_GETRANDOM			if X86_64
301	select HOTPLUG_PARALLEL			if SMP && X86_64
302	select HOTPLUG_SMT			if SMP
303	select HOTPLUG_SPLIT_STARTUP		if SMP && X86_32
304	select IRQ_FORCED_THREADING
305	select LOCK_MM_AND_FIND_VMA
306	select NEED_PER_CPU_EMBED_FIRST_CHUNK
307	select NEED_PER_CPU_PAGE_FIRST_CHUNK
308	select NEED_SG_DMA_LENGTH
309	select NUMA_MEMBLKS			if NUMA
310	select PCI_DOMAINS			if PCI
311	select PCI_LOCKLESS_CONFIG		if PCI
312	select PERF_EVENTS
313	select RTC_LIB
314	select RTC_MC146818_LIB
315	select SPARSE_IRQ
316	select SYSCTL_EXCEPTION_TRACE
317	select THREAD_INFO_IN_TASK
318	select TRACE_IRQFLAGS_SUPPORT
319	select TRACE_IRQFLAGS_NMI_SUPPORT
320	select USER_STACKTRACE_SUPPORT
321	select HAVE_ARCH_KCSAN			if X86_64
322	select PROC_PID_ARCH_STATUS		if PROC_FS
323	select HAVE_ARCH_NODE_DEV_GROUP		if X86_SGX
324	select FUNCTION_ALIGNMENT_16B		if X86_64 || X86_ALIGNMENT_16
325	select FUNCTION_ALIGNMENT_4B
326	imply IMA_SECURE_AND_OR_TRUSTED_BOOT    if EFI
327	select HAVE_DYNAMIC_FTRACE_NO_PATCHABLE
328	select ARCH_SUPPORTS_PT_RECLAIM		if X86_64
329
330config INSTRUCTION_DECODER
331	def_bool y
332	depends on KPROBES || PERF_EVENTS || UPROBES
333
334config OUTPUT_FORMAT
335	string
336	default "elf32-i386" if X86_32
337	default "elf64-x86-64" if X86_64
338
339config LOCKDEP_SUPPORT
340	def_bool y
341
342config STACKTRACE_SUPPORT
343	def_bool y
344
345config MMU
346	def_bool y
347
348config ARCH_MMAP_RND_BITS_MIN
349	default 28 if 64BIT
350	default 8
351
352config ARCH_MMAP_RND_BITS_MAX
353	default 32 if 64BIT
354	default 16
355
356config ARCH_MMAP_RND_COMPAT_BITS_MIN
357	default 8
358
359config ARCH_MMAP_RND_COMPAT_BITS_MAX
360	default 16
361
362config SBUS
363	bool
364
365config GENERIC_ISA_DMA
366	def_bool y
367	depends on ISA_DMA_API
368
369config GENERIC_CSUM
370	bool
371	default y if KMSAN || KASAN
372
373config GENERIC_BUG
374	def_bool y
375	depends on BUG
376	select GENERIC_BUG_RELATIVE_POINTERS if X86_64
377
378config GENERIC_BUG_RELATIVE_POINTERS
379	bool
380
381config ARCH_MAY_HAVE_PC_FDC
382	def_bool y
383	depends on ISA_DMA_API
384
385config GENERIC_CALIBRATE_DELAY
386	def_bool y
387
388config ARCH_HAS_CPU_RELAX
389	def_bool y
390
391config ARCH_HIBERNATION_POSSIBLE
392	def_bool y
393
394config ARCH_SUSPEND_POSSIBLE
395	def_bool y
396
397config AUDIT_ARCH
398	def_bool y if X86_64
399
400config KASAN_SHADOW_OFFSET
401	hex
402	depends on KASAN
403	default 0xdffffc0000000000
404
405config HAVE_INTEL_TXT
406	def_bool y
407	depends on INTEL_IOMMU && ACPI
408
409config X86_64_SMP
410	def_bool y
411	depends on X86_64 && SMP
412
413config ARCH_SUPPORTS_UPROBES
414	def_bool y
415
416config FIX_EARLYCON_MEM
417	def_bool y
418
419config DYNAMIC_PHYSICAL_MASK
420	bool
421
422config PGTABLE_LEVELS
423	int
424	default 5 if X86_5LEVEL
425	default 4 if X86_64
426	default 3 if X86_PAE
427	default 2
428
429config CC_HAS_SANE_STACKPROTECTOR
430	bool
431	default $(success,$(srctree)/scripts/gcc-x86_64-has-stack-protector.sh $(CC) $(CLANG_FLAGS)) if 64BIT
432	default $(success,$(srctree)/scripts/gcc-x86_32-has-stack-protector.sh $(CC) $(CLANG_FLAGS))
433	help
434	  We have to make sure stack protector is unconditionally disabled if
435	  the compiler produces broken code or if it does not let us control
436	  the segment on 32-bit kernels.
437
438menu "Processor type and features"
439
440config SMP
441	bool "Symmetric multi-processing support"
442	help
443	  This enables support for systems with more than one CPU. If you have
444	  a system with only one CPU, say N. If you have a system with more
445	  than one CPU, say Y.
446
447	  If you say N here, the kernel will run on uni- and multiprocessor
448	  machines, but will use only one CPU of a multiprocessor machine. If
449	  you say Y here, the kernel will run on many, but not all,
450	  uniprocessor machines. On a uniprocessor machine, the kernel
451	  will run faster if you say N here.
452
453	  Note that if you say Y here and choose architecture "586" or
454	  "Pentium" under "Processor family", the kernel will not work on 486
455	  architectures. Similarly, multiprocessor kernels for the "PPro"
456	  architecture may not work on all Pentium based boards.
457
458	  People using multiprocessor machines who say Y here should also say
459	  Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
460	  Management" code will be disabled if you say Y here.
461
462	  See also <file:Documentation/arch/x86/i386/IO-APIC.rst>,
463	  <file:Documentation/admin-guide/lockup-watchdogs.rst> and the SMP-HOWTO available at
464	  <http://www.tldp.org/docs.html#howto>.
465
466	  If you don't know what to do here, say N.
467
468config X86_X2APIC
469	bool "Support x2apic"
470	depends on X86_LOCAL_APIC && X86_64 && (IRQ_REMAP || HYPERVISOR_GUEST)
471	help
472	  This enables x2apic support on CPUs that have this feature.
473
474	  This allows 32-bit apic IDs (so it can support very large systems),
475	  and accesses the local apic via MSRs not via mmio.
476
477	  Some Intel systems circa 2022 and later are locked into x2APIC mode
478	  and can not fall back to the legacy APIC modes if SGX or TDX are
479	  enabled in the BIOS. They will boot with very reduced functionality
480	  without enabling this option.
481
482	  If you don't know what to do here, say N.
483
484config X86_POSTED_MSI
485	bool "Enable MSI and MSI-x delivery by posted interrupts"
486	depends on X86_64 && IRQ_REMAP
487	help
488	  This enables MSIs that are under interrupt remapping to be delivered as
489	  posted interrupts to the host kernel. Interrupt throughput can
490	  potentially be improved by coalescing CPU notifications during high
491	  frequency bursts.
492
493	  If you don't know what to do here, say N.
494
495config X86_MPPARSE
496	bool "Enable MPS table" if ACPI
497	default y
498	depends on X86_LOCAL_APIC
499	help
500	  For old smp systems that do not have proper acpi support. Newer systems
501	  (esp with 64bit cpus) with acpi support, MADT and DSDT will override it
502
503config X86_CPU_RESCTRL
504	bool "x86 CPU resource control support"
505	depends on X86 && (CPU_SUP_INTEL || CPU_SUP_AMD)
506	select KERNFS
507	select PROC_CPU_RESCTRL		if PROC_FS
508	help
509	  Enable x86 CPU resource control support.
510
511	  Provide support for the allocation and monitoring of system resources
512	  usage by the CPU.
513
514	  Intel calls this Intel Resource Director Technology
515	  (Intel(R) RDT). More information about RDT can be found in the
516	  Intel x86 Architecture Software Developer Manual.
517
518	  AMD calls this AMD Platform Quality of Service (AMD QoS).
519	  More information about AMD QoS can be found in the AMD64 Technology
520	  Platform Quality of Service Extensions manual.
521
522	  Say N if unsure.
523
524config X86_FRED
525	bool "Flexible Return and Event Delivery"
526	depends on X86_64
527	help
528	  When enabled, try to use Flexible Return and Event Delivery
529	  instead of the legacy SYSCALL/SYSENTER/IDT architecture for
530	  ring transitions and exception/interrupt handling if the
531	  system supports it.
532
533config X86_BIGSMP
534	bool "Support for big SMP systems with more than 8 CPUs"
535	depends on SMP && X86_32
536	help
537	  This option is needed for the systems that have more than 8 CPUs.
538
539config X86_EXTENDED_PLATFORM
540	bool "Support for extended (non-PC) x86 platforms"
541	default y
542	help
543	  If you disable this option then the kernel will only support
544	  standard PC platforms. (which covers the vast majority of
545	  systems out there.)
546
547	  If you enable this option then you'll be able to select support
548	  for the following non-PC x86 platforms, depending on the value of
549	  CONFIG_64BIT.
550
551	  32-bit platforms (CONFIG_64BIT=n):
552		Goldfish (Android emulator)
553		AMD Elan
554		RDC R-321x SoC
555		SGI 320/540 (Visual Workstation)
556		STA2X11-based (e.g. Northville)
557		Moorestown MID devices
558
559	  64-bit platforms (CONFIG_64BIT=y):
560		Numascale NumaChip
561		ScaleMP vSMP
562		SGI Ultraviolet
563
564	  If you have one of these systems, or if you want to build a
565	  generic distribution kernel, say Y here - otherwise say N.
566
567# This is an alphabetically sorted list of 64 bit extended platforms
568# Please maintain the alphabetic order if and when there are additions
569config X86_NUMACHIP
570	bool "Numascale NumaChip"
571	depends on X86_64
572	depends on X86_EXTENDED_PLATFORM
573	depends on NUMA
574	depends on SMP
575	depends on X86_X2APIC
576	depends on PCI_MMCONFIG
577	help
578	  Adds support for Numascale NumaChip large-SMP systems. Needed to
579	  enable more than ~168 cores.
580	  If you don't have one of these, you should say N here.
581
582config X86_VSMP
583	bool "ScaleMP vSMP"
584	select HYPERVISOR_GUEST
585	select PARAVIRT
586	depends on X86_64 && PCI
587	depends on X86_EXTENDED_PLATFORM
588	depends on SMP
589	help
590	  Support for ScaleMP vSMP systems.  Say 'Y' here if this kernel is
591	  supposed to run on these EM64T-based machines.  Only choose this option
592	  if you have one of these machines.
593
594config X86_UV
595	bool "SGI Ultraviolet"
596	depends on X86_64
597	depends on X86_EXTENDED_PLATFORM
598	depends on NUMA
599	depends on EFI
600	depends on KEXEC_CORE
601	depends on X86_X2APIC
602	depends on PCI
603	help
604	  This option is needed in order to support SGI Ultraviolet systems.
605	  If you don't have one of these, you should say N here.
606
607# Following is an alphabetically sorted list of 32 bit extended platforms
608# Please maintain the alphabetic order if and when there are additions
609
610config X86_GOLDFISH
611	bool "Goldfish (Virtual Platform)"
612	depends on X86_EXTENDED_PLATFORM
613	help
614	  Enable support for the Goldfish virtual platform used primarily
615	  for Android development. Unless you are building for the Android
616	  Goldfish emulator say N here.
617
618config X86_INTEL_CE
619	bool "CE4100 TV platform"
620	depends on PCI
621	depends on PCI_GODIRECT
622	depends on X86_IO_APIC
623	depends on X86_32
624	depends on X86_EXTENDED_PLATFORM
625	select X86_REBOOTFIXUPS
626	select OF
627	select OF_EARLY_FLATTREE
628	help
629	  Select for the Intel CE media processor (CE4100) SOC.
630	  This option compiles in support for the CE4100 SOC for settop
631	  boxes and media devices.
632
633config X86_INTEL_MID
634	bool "Intel MID platform support"
635	depends on X86_EXTENDED_PLATFORM
636	depends on X86_PLATFORM_DEVICES
637	depends on PCI
638	depends on X86_64 || (PCI_GOANY && X86_32)
639	depends on X86_IO_APIC
640	select I2C
641	select DW_APB_TIMER
642	select INTEL_SCU_PCI
643	help
644	  Select to build a kernel capable of supporting Intel MID (Mobile
645	  Internet Device) platform systems which do not have the PCI legacy
646	  interfaces. If you are building for a PC class system say N here.
647
648	  Intel MID platforms are based on an Intel processor and chipset which
649	  consume less power than most of the x86 derivatives.
650
651config X86_INTEL_QUARK
652	bool "Intel Quark platform support"
653	depends on X86_32
654	depends on X86_EXTENDED_PLATFORM
655	depends on X86_PLATFORM_DEVICES
656	depends on X86_TSC
657	depends on PCI
658	depends on PCI_GOANY
659	depends on X86_IO_APIC
660	select IOSF_MBI
661	select INTEL_IMR
662	select COMMON_CLK
663	help
664	  Select to include support for Quark X1000 SoC.
665	  Say Y here if you have a Quark based system such as the Arduino
666	  compatible Intel Galileo.
667
668config X86_INTEL_LPSS
669	bool "Intel Low Power Subsystem Support"
670	depends on X86 && ACPI && PCI
671	select COMMON_CLK
672	select PINCTRL
673	select IOSF_MBI
674	help
675	  Select to build support for Intel Low Power Subsystem such as
676	  found on Intel Lynxpoint PCH. Selecting this option enables
677	  things like clock tree (common clock framework) and pincontrol
678	  which are needed by the LPSS peripheral drivers.
679
680config X86_AMD_PLATFORM_DEVICE
681	bool "AMD ACPI2Platform devices support"
682	depends on ACPI
683	select COMMON_CLK
684	select PINCTRL
685	help
686	  Select to interpret AMD specific ACPI device to platform device
687	  such as I2C, UART, GPIO found on AMD Carrizo and later chipsets.
688	  I2C and UART depend on COMMON_CLK to set clock. GPIO driver is
689	  implemented under PINCTRL subsystem.
690
691config IOSF_MBI
692	tristate "Intel SoC IOSF Sideband support for SoC platforms"
693	depends on PCI
694	help
695	  This option enables sideband register access support for Intel SoC
696	  platforms. On these platforms the IOSF sideband is used in lieu of
697	  MSR's for some register accesses, mostly but not limited to thermal
698	  and power. Drivers may query the availability of this device to
699	  determine if they need the sideband in order to work on these
700	  platforms. The sideband is available on the following SoC products.
701	  This list is not meant to be exclusive.
702	   - BayTrail
703	   - Braswell
704	   - Quark
705
706	  You should say Y if you are running a kernel on one of these SoC's.
707
708config IOSF_MBI_DEBUG
709	bool "Enable IOSF sideband access through debugfs"
710	depends on IOSF_MBI && DEBUG_FS
711	help
712	  Select this option to expose the IOSF sideband access registers (MCR,
713	  MDR, MCRX) through debugfs to write and read register information from
714	  different units on the SoC. This is most useful for obtaining device
715	  state information for debug and analysis. As this is a general access
716	  mechanism, users of this option would have specific knowledge of the
717	  device they want to access.
718
719	  If you don't require the option or are in doubt, say N.
720
721config X86_RDC321X
722	bool "RDC R-321x SoC"
723	depends on X86_32
724	depends on X86_EXTENDED_PLATFORM
725	select M486
726	select X86_REBOOTFIXUPS
727	help
728	  This option is needed for RDC R-321x system-on-chip, also known
729	  as R-8610-(G).
730	  If you don't have one of these chips, you should say N here.
731
732config X86_32_NON_STANDARD
733	bool "Support non-standard 32-bit SMP architectures"
734	depends on X86_32 && SMP
735	depends on X86_EXTENDED_PLATFORM
736	help
737	  This option compiles in the bigsmp and STA2X11 default
738	  subarchitectures.  It is intended for a generic binary
739	  kernel. If you select them all, kernel will probe it one by
740	  one and will fallback to default.
741
742# Alphabetically sorted list of Non standard 32 bit platforms
743
744config X86_SUPPORTS_MEMORY_FAILURE
745	def_bool y
746	# MCE code calls memory_failure():
747	depends on X86_MCE
748	# On 32-bit this adds too big of NODES_SHIFT and we run out of page flags:
749	# On 32-bit SPARSEMEM adds too big of SECTIONS_WIDTH:
750	depends on X86_64 || !SPARSEMEM
751	select ARCH_SUPPORTS_MEMORY_FAILURE
752
753config STA2X11
754	bool "STA2X11 Companion Chip Support"
755	depends on X86_32_NON_STANDARD && PCI
756	select SWIOTLB
757	select MFD_STA2X11
758	select GPIOLIB
759	help
760	  This adds support for boards based on the STA2X11 IO-Hub,
761	  a.k.a. "ConneXt". The chip is used in place of the standard
762	  PC chipset, so all "standard" peripherals are missing. If this
763	  option is selected the kernel will still be able to boot on
764	  standard PC machines.
765
766config X86_32_IRIS
767	tristate "Eurobraille/Iris poweroff module"
768	depends on X86_32
769	help
770	  The Iris machines from EuroBraille do not have APM or ACPI support
771	  to shut themselves down properly.  A special I/O sequence is
772	  needed to do so, which is what this module does at
773	  kernel shutdown.
774
775	  This is only for Iris machines from EuroBraille.
776
777	  If unused, say N.
778
779config SCHED_OMIT_FRAME_POINTER
780	def_bool y
781	prompt "Single-depth WCHAN output"
782	depends on X86
783	help
784	  Calculate simpler /proc/<PID>/wchan values. If this option
785	  is disabled then wchan values will recurse back to the
786	  caller function. This provides more accurate wchan values,
787	  at the expense of slightly more scheduling overhead.
788
789	  If in doubt, say "Y".
790
791menuconfig HYPERVISOR_GUEST
792	bool "Linux guest support"
793	help
794	  Say Y here to enable options for running Linux under various hyper-
795	  visors. This option enables basic hypervisor detection and platform
796	  setup.
797
798	  If you say N, all options in this submenu will be skipped and
799	  disabled, and Linux guest support won't be built in.
800
801if HYPERVISOR_GUEST
802
803config PARAVIRT
804	bool "Enable paravirtualization code"
805	depends on HAVE_STATIC_CALL
806	help
807	  This changes the kernel so it can modify itself when it is run
808	  under a hypervisor, potentially improving performance significantly
809	  over full virtualization.  However, when run without a hypervisor
810	  the kernel is theoretically slower and slightly larger.
811
812config PARAVIRT_XXL
813	bool
814
815config PARAVIRT_DEBUG
816	bool "paravirt-ops debugging"
817	depends on PARAVIRT && DEBUG_KERNEL
818	help
819	  Enable to debug paravirt_ops internals.  Specifically, BUG if
820	  a paravirt_op is missing when it is called.
821
822config PARAVIRT_SPINLOCKS
823	bool "Paravirtualization layer for spinlocks"
824	depends on PARAVIRT && SMP
825	help
826	  Paravirtualized spinlocks allow a pvops backend to replace the
827	  spinlock implementation with something virtualization-friendly
828	  (for example, block the virtual CPU rather than spinning).
829
830	  It has a minimal impact on native kernels and gives a nice performance
831	  benefit on paravirtualized KVM / Xen kernels.
832
833	  If you are unsure how to answer this question, answer Y.
834
835config X86_HV_CALLBACK_VECTOR
836	def_bool n
837
838source "arch/x86/xen/Kconfig"
839
840config KVM_GUEST
841	bool "KVM Guest support (including kvmclock)"
842	depends on PARAVIRT
843	select PARAVIRT_CLOCK
844	select ARCH_CPUIDLE_HALTPOLL
845	select X86_HV_CALLBACK_VECTOR
846	default y
847	help
848	  This option enables various optimizations for running under the KVM
849	  hypervisor. It includes a paravirtualized clock, so that instead
850	  of relying on a PIT (or probably other) emulation by the
851	  underlying device model, the host provides the guest with
852	  timing infrastructure such as time of day, and system time
853
854config ARCH_CPUIDLE_HALTPOLL
855	def_bool n
856	prompt "Disable host haltpoll when loading haltpoll driver"
857	help
858	  If virtualized under KVM, disable host haltpoll.
859
860config PVH
861	bool "Support for running PVH guests"
862	help
863	  This option enables the PVH entry point for guest virtual machines
864	  as specified in the x86/HVM direct boot ABI.
865
866config PARAVIRT_TIME_ACCOUNTING
867	bool "Paravirtual steal time accounting"
868	depends on PARAVIRT
869	help
870	  Select this option to enable fine granularity task steal time
871	  accounting. Time spent executing other tasks in parallel with
872	  the current vCPU is discounted from the vCPU power. To account for
873	  that, there can be a small performance impact.
874
875	  If in doubt, say N here.
876
877config PARAVIRT_CLOCK
878	bool
879
880config JAILHOUSE_GUEST
881	bool "Jailhouse non-root cell support"
882	depends on X86_64 && PCI
883	select X86_PM_TIMER
884	help
885	  This option allows to run Linux as guest in a Jailhouse non-root
886	  cell. You can leave this option disabled if you only want to start
887	  Jailhouse and run Linux afterwards in the root cell.
888
889config ACRN_GUEST
890	bool "ACRN Guest support"
891	depends on X86_64
892	select X86_HV_CALLBACK_VECTOR
893	help
894	  This option allows to run Linux as guest in the ACRN hypervisor. ACRN is
895	  a flexible, lightweight reference open-source hypervisor, built with
896	  real-time and safety-criticality in mind. It is built for embedded
897	  IOT with small footprint and real-time features. More details can be
898	  found in https://projectacrn.org/.
899
900config INTEL_TDX_GUEST
901	bool "Intel TDX (Trust Domain Extensions) - Guest Support"
902	depends on X86_64 && CPU_SUP_INTEL
903	depends on X86_X2APIC
904	depends on EFI_STUB
905	select ARCH_HAS_CC_PLATFORM
906	select X86_MEM_ENCRYPT
907	select X86_MCE
908	select UNACCEPTED_MEMORY
909	help
910	  Support running as a guest under Intel TDX.  Without this support,
911	  the guest kernel can not boot or run under TDX.
912	  TDX includes memory encryption and integrity capabilities
913	  which protect the confidentiality and integrity of guest
914	  memory contents and CPU state. TDX guests are protected from
915	  some attacks from the VMM.
916
917endif # HYPERVISOR_GUEST
918
919source "arch/x86/Kconfig.cpu"
920
921config HPET_TIMER
922	def_bool X86_64
923	prompt "HPET Timer Support" if X86_32
924	help
925	  Use the IA-PC HPET (High Precision Event Timer) to manage
926	  time in preference to the PIT and RTC, if a HPET is
927	  present.
928	  HPET is the next generation timer replacing legacy 8254s.
929	  The HPET provides a stable time base on SMP
930	  systems, unlike the TSC, but it is more expensive to access,
931	  as it is off-chip.  The interface used is documented
932	  in the HPET spec, revision 1.
933
934	  You can safely choose Y here.  However, HPET will only be
935	  activated if the platform and the BIOS support this feature.
936	  Otherwise the 8254 will be used for timing services.
937
938	  Choose N to continue using the legacy 8254 timer.
939
940config HPET_EMULATE_RTC
941	def_bool y
942	depends on HPET_TIMER && (RTC_DRV_CMOS=m || RTC_DRV_CMOS=y)
943
944# Mark as expert because too many people got it wrong.
945# The code disables itself when not needed.
946config DMI
947	default y
948	select DMI_SCAN_MACHINE_NON_EFI_FALLBACK
949	bool "Enable DMI scanning" if EXPERT
950	help
951	  Enabled scanning of DMI to identify machine quirks. Say Y
952	  here unless you have verified that your setup is not
953	  affected by entries in the DMI blacklist. Required by PNP
954	  BIOS code.
955
956config GART_IOMMU
957	bool "Old AMD GART IOMMU support"
958	select IOMMU_HELPER
959	select SWIOTLB
960	depends on X86_64 && PCI && AMD_NB
961	help
962	  Provides a driver for older AMD Athlon64/Opteron/Turion/Sempron
963	  GART based hardware IOMMUs.
964
965	  The GART supports full DMA access for devices with 32-bit access
966	  limitations, on systems with more than 3 GB. This is usually needed
967	  for USB, sound, many IDE/SATA chipsets and some other devices.
968
969	  Newer systems typically have a modern AMD IOMMU, supported via
970	  the CONFIG_AMD_IOMMU=y config option.
971
972	  In normal configurations this driver is only active when needed:
973	  there's more than 3 GB of memory and the system contains a
974	  32-bit limited device.
975
976	  If unsure, say Y.
977
978config BOOT_VESA_SUPPORT
979	bool
980	help
981	  If true, at least one selected framebuffer driver can take advantage
982	  of VESA video modes set at an early boot stage via the vga= parameter.
983
984config MAXSMP
985	bool "Enable Maximum number of SMP Processors and NUMA Nodes"
986	depends on X86_64 && SMP && DEBUG_KERNEL
987	select CPUMASK_OFFSTACK
988	help
989	  Enable maximum number of CPUS and NUMA Nodes for this architecture.
990	  If unsure, say N.
991
992#
993# The maximum number of CPUs supported:
994#
995# The main config value is NR_CPUS, which defaults to NR_CPUS_DEFAULT,
996# and which can be configured interactively in the
997# [NR_CPUS_RANGE_BEGIN ... NR_CPUS_RANGE_END] range.
998#
999# The ranges are different on 32-bit and 64-bit kernels, depending on
1000# hardware capabilities and scalability features of the kernel.
1001#
1002# ( If MAXSMP is enabled we just use the highest possible value and disable
1003#   interactive configuration. )
1004#
1005
1006config NR_CPUS_RANGE_BEGIN
1007	int
1008	default NR_CPUS_RANGE_END if MAXSMP
1009	default    1 if !SMP
1010	default    2
1011
1012config NR_CPUS_RANGE_END
1013	int
1014	depends on X86_32
1015	default   64 if  SMP &&  X86_BIGSMP
1016	default    8 if  SMP && !X86_BIGSMP
1017	default    1 if !SMP
1018
1019config NR_CPUS_RANGE_END
1020	int
1021	depends on X86_64
1022	default 8192 if  SMP && CPUMASK_OFFSTACK
1023	default  512 if  SMP && !CPUMASK_OFFSTACK
1024	default    1 if !SMP
1025
1026config NR_CPUS_DEFAULT
1027	int
1028	depends on X86_32
1029	default   32 if  X86_BIGSMP
1030	default    8 if  SMP
1031	default    1 if !SMP
1032
1033config NR_CPUS_DEFAULT
1034	int
1035	depends on X86_64
1036	default 8192 if  MAXSMP
1037	default   64 if  SMP
1038	default    1 if !SMP
1039
1040config NR_CPUS
1041	int "Maximum number of CPUs" if SMP && !MAXSMP
1042	range NR_CPUS_RANGE_BEGIN NR_CPUS_RANGE_END
1043	default NR_CPUS_DEFAULT
1044	help
1045	  This allows you to specify the maximum number of CPUs which this
1046	  kernel will support.  If CPUMASK_OFFSTACK is enabled, the maximum
1047	  supported value is 8192, otherwise the maximum value is 512.  The
1048	  minimum value which makes sense is 2.
1049
1050	  This is purely to save memory: each supported CPU adds about 8KB
1051	  to the kernel image.
1052
1053config SCHED_CLUSTER
1054	bool "Cluster scheduler support"
1055	depends on SMP
1056	default y
1057	help
1058	  Cluster scheduler support improves the CPU scheduler's decision
1059	  making when dealing with machines that have clusters of CPUs.
1060	  Cluster usually means a couple of CPUs which are placed closely
1061	  by sharing mid-level caches, last-level cache tags or internal
1062	  busses.
1063
1064config SCHED_SMT
1065	def_bool y if SMP
1066
1067config SCHED_MC
1068	def_bool y
1069	prompt "Multi-core scheduler support"
1070	depends on SMP
1071	help
1072	  Multi-core scheduler support improves the CPU scheduler's decision
1073	  making when dealing with multi-core CPU chips at a cost of slightly
1074	  increased overhead in some places. If unsure say N here.
1075
1076config SCHED_MC_PRIO
1077	bool "CPU core priorities scheduler support"
1078	depends on SCHED_MC
1079	select X86_INTEL_PSTATE if CPU_SUP_INTEL
1080	select X86_AMD_PSTATE if CPU_SUP_AMD && ACPI
1081	select CPU_FREQ
1082	default y
1083	help
1084	  Intel Turbo Boost Max Technology 3.0 enabled CPUs have a
1085	  core ordering determined at manufacturing time, which allows
1086	  certain cores to reach higher turbo frequencies (when running
1087	  single threaded workloads) than others.
1088
1089	  Enabling this kernel feature teaches the scheduler about
1090	  the TBM3 (aka ITMT) priority order of the CPU cores and adjusts the
1091	  scheduler's CPU selection logic accordingly, so that higher
1092	  overall system performance can be achieved.
1093
1094	  This feature will have no effect on CPUs without this feature.
1095
1096	  If unsure say Y here.
1097
1098config UP_LATE_INIT
1099	def_bool y
1100	depends on !SMP && X86_LOCAL_APIC
1101
1102config X86_UP_APIC
1103	bool "Local APIC support on uniprocessors" if !PCI_MSI
1104	default PCI_MSI
1105	depends on X86_32 && !SMP && !X86_32_NON_STANDARD
1106	help
1107	  A local APIC (Advanced Programmable Interrupt Controller) is an
1108	  integrated interrupt controller in the CPU. If you have a single-CPU
1109	  system which has a processor with a local APIC, you can say Y here to
1110	  enable and use it. If you say Y here even though your machine doesn't
1111	  have a local APIC, then the kernel will still run with no slowdown at
1112	  all. The local APIC supports CPU-generated self-interrupts (timer,
1113	  performance counters), and the NMI watchdog which detects hard
1114	  lockups.
1115
1116config X86_UP_IOAPIC
1117	bool "IO-APIC support on uniprocessors"
1118	depends on X86_UP_APIC
1119	help
1120	  An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
1121	  SMP-capable replacement for PC-style interrupt controllers. Most
1122	  SMP systems and many recent uniprocessor systems have one.
1123
1124	  If you have a single-CPU system with an IO-APIC, you can say Y here
1125	  to use it. If you say Y here even though your machine doesn't have
1126	  an IO-APIC, then the kernel will still run with no slowdown at all.
1127
1128config X86_LOCAL_APIC
1129	def_bool y
1130	depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_APIC || PCI_MSI
1131	select IRQ_DOMAIN_HIERARCHY
1132
1133config ACPI_MADT_WAKEUP
1134	def_bool y
1135	depends on X86_64
1136	depends on ACPI
1137	depends on SMP
1138	depends on X86_LOCAL_APIC
1139
1140config X86_IO_APIC
1141	def_bool y
1142	depends on X86_LOCAL_APIC || X86_UP_IOAPIC
1143
1144config X86_REROUTE_FOR_BROKEN_BOOT_IRQS
1145	bool "Reroute for broken boot IRQs"
1146	depends on X86_IO_APIC
1147	help
1148	  This option enables a workaround that fixes a source of
1149	  spurious interrupts. This is recommended when threaded
1150	  interrupt handling is used on systems where the generation of
1151	  superfluous "boot interrupts" cannot be disabled.
1152
1153	  Some chipsets generate a legacy INTx "boot IRQ" when the IRQ
1154	  entry in the chipset's IO-APIC is masked (as, e.g. the RT
1155	  kernel does during interrupt handling). On chipsets where this
1156	  boot IRQ generation cannot be disabled, this workaround keeps
1157	  the original IRQ line masked so that only the equivalent "boot
1158	  IRQ" is delivered to the CPUs. The workaround also tells the
1159	  kernel to set up the IRQ handler on the boot IRQ line. In this
1160	  way only one interrupt is delivered to the kernel. Otherwise
1161	  the spurious second interrupt may cause the kernel to bring
1162	  down (vital) interrupt lines.
1163
1164	  Only affects "broken" chipsets. Interrupt sharing may be
1165	  increased on these systems.
1166
1167config X86_MCE
1168	bool "Machine Check / overheating reporting"
1169	select GENERIC_ALLOCATOR
1170	default y
1171	help
1172	  Machine Check support allows the processor to notify the
1173	  kernel if it detects a problem (e.g. overheating, data corruption).
1174	  The action the kernel takes depends on the severity of the problem,
1175	  ranging from warning messages to halting the machine.
1176
1177config X86_MCELOG_LEGACY
1178	bool "Support for deprecated /dev/mcelog character device"
1179	depends on X86_MCE
1180	help
1181	  Enable support for /dev/mcelog which is needed by the old mcelog
1182	  userspace logging daemon. Consider switching to the new generation
1183	  rasdaemon solution.
1184
1185config X86_MCE_INTEL
1186	def_bool y
1187	prompt "Intel MCE features"
1188	depends on X86_MCE && X86_LOCAL_APIC
1189	help
1190	  Additional support for intel specific MCE features such as
1191	  the thermal monitor.
1192
1193config X86_MCE_AMD
1194	def_bool y
1195	prompt "AMD MCE features"
1196	depends on X86_MCE && X86_LOCAL_APIC
1197	help
1198	  Additional support for AMD specific MCE features such as
1199	  the DRAM Error Threshold.
1200
1201config X86_ANCIENT_MCE
1202	bool "Support for old Pentium 5 / WinChip machine checks"
1203	depends on X86_32 && X86_MCE
1204	help
1205	  Include support for machine check handling on old Pentium 5 or WinChip
1206	  systems. These typically need to be enabled explicitly on the command
1207	  line.
1208
1209config X86_MCE_THRESHOLD
1210	depends on X86_MCE_AMD || X86_MCE_INTEL
1211	def_bool y
1212
1213config X86_MCE_INJECT
1214	depends on X86_MCE && X86_LOCAL_APIC && DEBUG_FS
1215	tristate "Machine check injector support"
1216	help
1217	  Provide support for injecting machine checks for testing purposes.
1218	  If you don't know what a machine check is and you don't do kernel
1219	  QA it is safe to say n.
1220
1221source "arch/x86/events/Kconfig"
1222
1223config X86_LEGACY_VM86
1224	bool "Legacy VM86 support"
1225	depends on X86_32
1226	help
1227	  This option allows user programs to put the CPU into V8086
1228	  mode, which is an 80286-era approximation of 16-bit real mode.
1229
1230	  Some very old versions of X and/or vbetool require this option
1231	  for user mode setting.  Similarly, DOSEMU will use it if
1232	  available to accelerate real mode DOS programs.  However, any
1233	  recent version of DOSEMU, X, or vbetool should be fully
1234	  functional even without kernel VM86 support, as they will all
1235	  fall back to software emulation. Nevertheless, if you are using
1236	  a 16-bit DOS program where 16-bit performance matters, vm86
1237	  mode might be faster than emulation and you might want to
1238	  enable this option.
1239
1240	  Note that any app that works on a 64-bit kernel is unlikely to
1241	  need this option, as 64-bit kernels don't, and can't, support
1242	  V8086 mode. This option is also unrelated to 16-bit protected
1243	  mode and is not needed to run most 16-bit programs under Wine.
1244
1245	  Enabling this option increases the complexity of the kernel
1246	  and slows down exception handling a tiny bit.
1247
1248	  If unsure, say N here.
1249
1250config VM86
1251	bool
1252	default X86_LEGACY_VM86
1253
1254config X86_16BIT
1255	bool "Enable support for 16-bit segments" if EXPERT
1256	default y
1257	depends on MODIFY_LDT_SYSCALL
1258	help
1259	  This option is required by programs like Wine to run 16-bit
1260	  protected mode legacy code on x86 processors.  Disabling
1261	  this option saves about 300 bytes on i386, or around 6K text
1262	  plus 16K runtime memory on x86-64,
1263
1264config X86_ESPFIX32
1265	def_bool y
1266	depends on X86_16BIT && X86_32
1267
1268config X86_ESPFIX64
1269	def_bool y
1270	depends on X86_16BIT && X86_64
1271
1272config X86_VSYSCALL_EMULATION
1273	bool "Enable vsyscall emulation" if EXPERT
1274	default y
1275	depends on X86_64
1276	help
1277	  This enables emulation of the legacy vsyscall page.  Disabling
1278	  it is roughly equivalent to booting with vsyscall=none, except
1279	  that it will also disable the helpful warning if a program
1280	  tries to use a vsyscall.  With this option set to N, offending
1281	  programs will just segfault, citing addresses of the form
1282	  0xffffffffff600?00.
1283
1284	  This option is required by many programs built before 2013, and
1285	  care should be used even with newer programs if set to N.
1286
1287	  Disabling this option saves about 7K of kernel size and
1288	  possibly 4K of additional runtime pagetable memory.
1289
1290config X86_IOPL_IOPERM
1291	bool "IOPERM and IOPL Emulation"
1292	default y
1293	help
1294	  This enables the ioperm() and iopl() syscalls which are necessary
1295	  for legacy applications.
1296
1297	  Legacy IOPL support is an overbroad mechanism which allows user
1298	  space aside of accessing all 65536 I/O ports also to disable
1299	  interrupts. To gain this access the caller needs CAP_SYS_RAWIO
1300	  capabilities and permission from potentially active security
1301	  modules.
1302
1303	  The emulation restricts the functionality of the syscall to
1304	  only allowing the full range I/O port access, but prevents the
1305	  ability to disable interrupts from user space which would be
1306	  granted if the hardware IOPL mechanism would be used.
1307
1308config TOSHIBA
1309	tristate "Toshiba Laptop support"
1310	depends on X86_32
1311	help
1312	  This adds a driver to safely access the System Management Mode of
1313	  the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
1314	  not work on models with a Phoenix BIOS. The System Management Mode
1315	  is used to set the BIOS and power saving options on Toshiba portables.
1316
1317	  For information on utilities to make use of this driver see the
1318	  Toshiba Linux utilities web site at:
1319	  <http://www.buzzard.org.uk/toshiba/>.
1320
1321	  Say Y if you intend to run this kernel on a Toshiba portable.
1322	  Say N otherwise.
1323
1324config X86_REBOOTFIXUPS
1325	bool "Enable X86 board specific fixups for reboot"
1326	depends on X86_32
1327	help
1328	  This enables chipset and/or board specific fixups to be done
1329	  in order to get reboot to work correctly. This is only needed on
1330	  some combinations of hardware and BIOS. The symptom, for which
1331	  this config is intended, is when reboot ends with a stalled/hung
1332	  system.
1333
1334	  Currently, the only fixup is for the Geode machines using
1335	  CS5530A and CS5536 chipsets and the RDC R-321x SoC.
1336
1337	  Say Y if you want to enable the fixup. Currently, it's safe to
1338	  enable this option even if you don't need it.
1339	  Say N otherwise.
1340
1341config MICROCODE
1342	def_bool y
1343	depends on CPU_SUP_AMD || CPU_SUP_INTEL
1344	select CRYPTO_LIB_SHA256 if CPU_SUP_AMD
1345
1346config MICROCODE_INITRD32
1347	def_bool y
1348	depends on MICROCODE && X86_32 && BLK_DEV_INITRD
1349
1350config MICROCODE_LATE_LOADING
1351	bool "Late microcode loading (DANGEROUS)"
1352	default n
1353	depends on MICROCODE && SMP
1354	help
1355	  Loading microcode late, when the system is up and executing instructions
1356	  is a tricky business and should be avoided if possible. Just the sequence
1357	  of synchronizing all cores and SMT threads is one fragile dance which does
1358	  not guarantee that cores might not softlock after the loading. Therefore,
1359	  use this at your own risk. Late loading taints the kernel unless the
1360	  microcode header indicates that it is safe for late loading via the
1361	  minimal revision check. This minimal revision check can be enforced on
1362	  the kernel command line with "microcode.minrev=Y".
1363
1364config MICROCODE_LATE_FORCE_MINREV
1365	bool "Enforce late microcode loading minimal revision check"
1366	default n
1367	depends on MICROCODE_LATE_LOADING
1368	help
1369	  To prevent that users load microcode late which modifies already
1370	  in use features, newer microcode patches have a minimum revision field
1371	  in the microcode header, which tells the kernel which minimum
1372	  revision must be active in the CPU to safely load that new microcode
1373	  late into the running system. If disabled the check will not
1374	  be enforced but the kernel will be tainted when the minimal
1375	  revision check fails.
1376
1377	  This minimal revision check can also be controlled via the
1378	  "microcode.minrev" parameter on the kernel command line.
1379
1380	  If unsure say Y.
1381
1382config X86_MSR
1383	tristate "/dev/cpu/*/msr - Model-specific register support"
1384	help
1385	  This device gives privileged processes access to the x86
1386	  Model-Specific Registers (MSRs).  It is a character device with
1387	  major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
1388	  MSR accesses are directed to a specific CPU on multi-processor
1389	  systems.
1390
1391config X86_CPUID
1392	tristate "/dev/cpu/*/cpuid - CPU information support"
1393	help
1394	  This device gives processes access to the x86 CPUID instruction to
1395	  be executed on a specific processor.  It is a character device
1396	  with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
1397	  /dev/cpu/31/cpuid.
1398
1399choice
1400	prompt "High Memory Support"
1401	default HIGHMEM4G
1402	depends on X86_32
1403
1404config NOHIGHMEM
1405	bool "off"
1406	help
1407	  Linux can use up to 64 Gigabytes of physical memory on x86 systems.
1408	  However, the address space of 32-bit x86 processors is only 4
1409	  Gigabytes large. That means that, if you have a large amount of
1410	  physical memory, not all of it can be "permanently mapped" by the
1411	  kernel. The physical memory that's not permanently mapped is called
1412	  "high memory".
1413
1414	  If you are compiling a kernel which will never run on a machine with
1415	  more than 1 Gigabyte total physical RAM, answer "off" here (default
1416	  choice and suitable for most users). This will result in a "3GB/1GB"
1417	  split: 3GB are mapped so that each process sees a 3GB virtual memory
1418	  space and the remaining part of the 4GB virtual memory space is used
1419	  by the kernel to permanently map as much physical memory as
1420	  possible.
1421
1422	  If the machine has between 1 and 4 Gigabytes physical RAM, then
1423	  answer "4GB" here.
1424
1425	  If more than 4 Gigabytes is used then answer "64GB" here. This
1426	  selection turns Intel PAE (Physical Address Extension) mode on.
1427	  PAE implements 3-level paging on IA32 processors. PAE is fully
1428	  supported by Linux, PAE mode is implemented on all recent Intel
1429	  processors (Pentium Pro and better). NOTE: If you say "64GB" here,
1430	  then the kernel will not boot on CPUs that don't support PAE!
1431
1432	  The actual amount of total physical memory will either be
1433	  auto detected or can be forced by using a kernel command line option
1434	  such as "mem=256M". (Try "man bootparam" or see the documentation of
1435	  your boot loader (lilo or loadlin) about how to pass options to the
1436	  kernel at boot time.)
1437
1438	  If unsure, say "off".
1439
1440config HIGHMEM4G
1441	bool "4GB"
1442	help
1443	  Select this if you have a 32-bit processor and between 1 and 4
1444	  gigabytes of physical RAM.
1445
1446config HIGHMEM64G
1447	bool "64GB"
1448	depends on X86_HAVE_PAE
1449	select X86_PAE
1450	help
1451	  Select this if you have a 32-bit processor and more than 4
1452	  gigabytes of physical RAM.
1453
1454endchoice
1455
1456choice
1457	prompt "Memory split" if EXPERT
1458	default VMSPLIT_3G
1459	depends on X86_32
1460	help
1461	  Select the desired split between kernel and user memory.
1462
1463	  If the address range available to the kernel is less than the
1464	  physical memory installed, the remaining memory will be available
1465	  as "high memory". Accessing high memory is a little more costly
1466	  than low memory, as it needs to be mapped into the kernel first.
1467	  Note that increasing the kernel address space limits the range
1468	  available to user programs, making the address space there
1469	  tighter.  Selecting anything other than the default 3G/1G split
1470	  will also likely make your kernel incompatible with binary-only
1471	  kernel modules.
1472
1473	  If you are not absolutely sure what you are doing, leave this
1474	  option alone!
1475
1476	config VMSPLIT_3G
1477		bool "3G/1G user/kernel split"
1478	config VMSPLIT_3G_OPT
1479		depends on !X86_PAE
1480		bool "3G/1G user/kernel split (for full 1G low memory)"
1481	config VMSPLIT_2G
1482		bool "2G/2G user/kernel split"
1483	config VMSPLIT_2G_OPT
1484		depends on !X86_PAE
1485		bool "2G/2G user/kernel split (for full 2G low memory)"
1486	config VMSPLIT_1G
1487		bool "1G/3G user/kernel split"
1488endchoice
1489
1490config PAGE_OFFSET
1491	hex
1492	default 0xB0000000 if VMSPLIT_3G_OPT
1493	default 0x80000000 if VMSPLIT_2G
1494	default 0x78000000 if VMSPLIT_2G_OPT
1495	default 0x40000000 if VMSPLIT_1G
1496	default 0xC0000000
1497	depends on X86_32
1498
1499config HIGHMEM
1500	def_bool y
1501	depends on X86_32 && (HIGHMEM64G || HIGHMEM4G)
1502
1503config X86_PAE
1504	bool "PAE (Physical Address Extension) Support"
1505	depends on X86_32 && X86_HAVE_PAE
1506	select PHYS_ADDR_T_64BIT
1507	select SWIOTLB
1508	help
1509	  PAE is required for NX support, and furthermore enables
1510	  larger swapspace support for non-overcommit purposes. It
1511	  has the cost of more pagetable lookup overhead, and also
1512	  consumes more pagetable space per process.
1513
1514config X86_5LEVEL
1515	bool "Enable 5-level page tables support"
1516	default y
1517	select DYNAMIC_MEMORY_LAYOUT
1518	select SPARSEMEM_VMEMMAP
1519	depends on X86_64
1520	help
1521	  5-level paging enables access to larger address space:
1522	  up to 128 PiB of virtual address space and 4 PiB of
1523	  physical address space.
1524
1525	  It will be supported by future Intel CPUs.
1526
1527	  A kernel with the option enabled can be booted on machines that
1528	  support 4- or 5-level paging.
1529
1530	  See Documentation/arch/x86/x86_64/5level-paging.rst for more
1531	  information.
1532
1533	  Say N if unsure.
1534
1535config X86_DIRECT_GBPAGES
1536	def_bool y
1537	depends on X86_64
1538	help
1539	  Certain kernel features effectively disable kernel
1540	  linear 1 GB mappings (even if the CPU otherwise
1541	  supports them), so don't confuse the user by printing
1542	  that we have them enabled.
1543
1544config X86_CPA_STATISTICS
1545	bool "Enable statistic for Change Page Attribute"
1546	depends on DEBUG_FS
1547	help
1548	  Expose statistics about the Change Page Attribute mechanism, which
1549	  helps to determine the effectiveness of preserving large and huge
1550	  page mappings when mapping protections are changed.
1551
1552config X86_MEM_ENCRYPT
1553	select ARCH_HAS_FORCE_DMA_UNENCRYPTED
1554	select DYNAMIC_PHYSICAL_MASK
1555	def_bool n
1556
1557config AMD_MEM_ENCRYPT
1558	bool "AMD Secure Memory Encryption (SME) support"
1559	depends on X86_64 && CPU_SUP_AMD
1560	depends on EFI_STUB
1561	select DMA_COHERENT_POOL
1562	select ARCH_USE_MEMREMAP_PROT
1563	select INSTRUCTION_DECODER
1564	select ARCH_HAS_CC_PLATFORM
1565	select X86_MEM_ENCRYPT
1566	select UNACCEPTED_MEMORY
1567	select CRYPTO_LIB_AESGCM
1568	help
1569	  Say yes to enable support for the encryption of system memory.
1570	  This requires an AMD processor that supports Secure Memory
1571	  Encryption (SME).
1572
1573# Common NUMA Features
1574config NUMA
1575	bool "NUMA Memory Allocation and Scheduler Support"
1576	depends on SMP
1577	depends on X86_64 || (X86_32 && HIGHMEM64G && X86_BIGSMP)
1578	default y if X86_BIGSMP
1579	select USE_PERCPU_NUMA_NODE_ID
1580	select OF_NUMA if OF
1581	help
1582	  Enable NUMA (Non-Uniform Memory Access) support.
1583
1584	  The kernel will try to allocate memory used by a CPU on the
1585	  local memory controller of the CPU and add some more
1586	  NUMA awareness to the kernel.
1587
1588	  For 64-bit this is recommended if the system is Intel Core i7
1589	  (or later), AMD Opteron, or EM64T NUMA.
1590
1591	  For 32-bit this is only needed if you boot a 32-bit
1592	  kernel on a 64-bit NUMA platform.
1593
1594	  Otherwise, you should say N.
1595
1596config AMD_NUMA
1597	def_bool y
1598	prompt "Old style AMD Opteron NUMA detection"
1599	depends on X86_64 && NUMA && PCI
1600	help
1601	  Enable AMD NUMA node topology detection.  You should say Y here if
1602	  you have a multi processor AMD system. This uses an old method to
1603	  read the NUMA configuration directly from the builtin Northbridge
1604	  of Opteron. It is recommended to use X86_64_ACPI_NUMA instead,
1605	  which also takes priority if both are compiled in.
1606
1607config X86_64_ACPI_NUMA
1608	def_bool y
1609	prompt "ACPI NUMA detection"
1610	depends on X86_64 && NUMA && ACPI && PCI
1611	select ACPI_NUMA
1612	help
1613	  Enable ACPI SRAT based node topology detection.
1614
1615config NODES_SHIFT
1616	int "Maximum NUMA Nodes (as a power of 2)" if !MAXSMP
1617	range 1 10
1618	default "10" if MAXSMP
1619	default "6" if X86_64
1620	default "3"
1621	depends on NUMA
1622	help
1623	  Specify the maximum number of NUMA Nodes available on the target
1624	  system.  Increases memory reserved to accommodate various tables.
1625
1626config ARCH_FLATMEM_ENABLE
1627	def_bool y
1628	depends on X86_32 && !NUMA
1629
1630config ARCH_SPARSEMEM_ENABLE
1631	def_bool y
1632	depends on X86_64 || NUMA || X86_32 || X86_32_NON_STANDARD
1633	select SPARSEMEM_STATIC if X86_32
1634	select SPARSEMEM_VMEMMAP_ENABLE if X86_64
1635
1636config ARCH_SPARSEMEM_DEFAULT
1637	def_bool X86_64 || (NUMA && X86_32)
1638
1639config ARCH_SELECT_MEMORY_MODEL
1640	def_bool y
1641	depends on ARCH_SPARSEMEM_ENABLE && ARCH_FLATMEM_ENABLE
1642
1643config ARCH_MEMORY_PROBE
1644	bool "Enable sysfs memory/probe interface"
1645	depends on MEMORY_HOTPLUG
1646	help
1647	  This option enables a sysfs memory/probe interface for testing.
1648	  See Documentation/admin-guide/mm/memory-hotplug.rst for more information.
1649	  If you are unsure how to answer this question, answer N.
1650
1651config ARCH_PROC_KCORE_TEXT
1652	def_bool y
1653	depends on X86_64 && PROC_KCORE
1654
1655config ILLEGAL_POINTER_VALUE
1656	hex
1657	default 0 if X86_32
1658	default 0xdead000000000000 if X86_64
1659
1660config X86_PMEM_LEGACY_DEVICE
1661	bool
1662
1663config X86_PMEM_LEGACY
1664	tristate "Support non-standard NVDIMMs and ADR protected memory"
1665	depends on PHYS_ADDR_T_64BIT
1666	depends on BLK_DEV
1667	select X86_PMEM_LEGACY_DEVICE
1668	select NUMA_KEEP_MEMINFO if NUMA
1669	select LIBNVDIMM
1670	help
1671	  Treat memory marked using the non-standard e820 type of 12 as used
1672	  by the Intel Sandy Bridge-EP reference BIOS as protected memory.
1673	  The kernel will offer these regions to the 'pmem' driver so
1674	  they can be used for persistent storage.
1675
1676	  Say Y if unsure.
1677
1678config HIGHPTE
1679	bool "Allocate 3rd-level pagetables from highmem"
1680	depends on HIGHMEM
1681	help
1682	  The VM uses one page table entry for each page of physical memory.
1683	  For systems with a lot of RAM, this can be wasteful of precious
1684	  low memory.  Setting this option will put user-space page table
1685	  entries in high memory.
1686
1687config X86_CHECK_BIOS_CORRUPTION
1688	bool "Check for low memory corruption"
1689	help
1690	  Periodically check for memory corruption in low memory, which
1691	  is suspected to be caused by BIOS.  Even when enabled in the
1692	  configuration, it is disabled at runtime.  Enable it by
1693	  setting "memory_corruption_check=1" on the kernel command
1694	  line.  By default it scans the low 64k of memory every 60
1695	  seconds; see the memory_corruption_check_size and
1696	  memory_corruption_check_period parameters in
1697	  Documentation/admin-guide/kernel-parameters.rst to adjust this.
1698
1699	  When enabled with the default parameters, this option has
1700	  almost no overhead, as it reserves a relatively small amount
1701	  of memory and scans it infrequently.  It both detects corruption
1702	  and prevents it from affecting the running system.
1703
1704	  It is, however, intended as a diagnostic tool; if repeatable
1705	  BIOS-originated corruption always affects the same memory,
1706	  you can use memmap= to prevent the kernel from using that
1707	  memory.
1708
1709config X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK
1710	bool "Set the default setting of memory_corruption_check"
1711	depends on X86_CHECK_BIOS_CORRUPTION
1712	default y
1713	help
1714	  Set whether the default state of memory_corruption_check is
1715	  on or off.
1716
1717config MATH_EMULATION
1718	bool
1719	depends on MODIFY_LDT_SYSCALL
1720	prompt "Math emulation" if X86_32 && (M486SX || MELAN)
1721	help
1722	  Linux can emulate a math coprocessor (used for floating point
1723	  operations) if you don't have one. 486DX and Pentium processors have
1724	  a math coprocessor built in, 486SX and 386 do not, unless you added
1725	  a 487DX or 387, respectively. (The messages during boot time can
1726	  give you some hints here ["man dmesg"].) Everyone needs either a
1727	  coprocessor or this emulation.
1728
1729	  If you don't have a math coprocessor, you need to say Y here; if you
1730	  say Y here even though you have a coprocessor, the coprocessor will
1731	  be used nevertheless. (This behavior can be changed with the kernel
1732	  command line option "no387", which comes handy if your coprocessor
1733	  is broken. Try "man bootparam" or see the documentation of your boot
1734	  loader (lilo or loadlin) about how to pass options to the kernel at
1735	  boot time.) This means that it is a good idea to say Y here if you
1736	  intend to use this kernel on different machines.
1737
1738	  More information about the internals of the Linux math coprocessor
1739	  emulation can be found in <file:arch/x86/math-emu/README>.
1740
1741	  If you are not sure, say Y; apart from resulting in a 66 KB bigger
1742	  kernel, it won't hurt.
1743
1744config MTRR
1745	def_bool y
1746	prompt "MTRR (Memory Type Range Register) support" if EXPERT
1747	help
1748	  On Intel P6 family processors (Pentium Pro, Pentium II and later)
1749	  the Memory Type Range Registers (MTRRs) may be used to control
1750	  processor access to memory ranges. This is most useful if you have
1751	  a video (VGA) card on a PCI or AGP bus. Enabling write-combining
1752	  allows bus write transfers to be combined into a larger transfer
1753	  before bursting over the PCI/AGP bus. This can increase performance
1754	  of image write operations 2.5 times or more. Saying Y here creates a
1755	  /proc/mtrr file which may be used to manipulate your processor's
1756	  MTRRs. Typically the X server should use this.
1757
1758	  This code has a reasonably generic interface so that similar
1759	  control registers on other processors can be easily supported
1760	  as well:
1761
1762	  The Cyrix 6x86, 6x86MX and M II processors have Address Range
1763	  Registers (ARRs) which provide a similar functionality to MTRRs. For
1764	  these, the ARRs are used to emulate the MTRRs.
1765	  The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
1766	  MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
1767	  write-combining. All of these processors are supported by this code
1768	  and it makes sense to say Y here if you have one of them.
1769
1770	  Saying Y here also fixes a problem with buggy SMP BIOSes which only
1771	  set the MTRRs for the boot CPU and not for the secondary CPUs. This
1772	  can lead to all sorts of problems, so it's good to say Y here.
1773
1774	  You can safely say Y even if your machine doesn't have MTRRs, you'll
1775	  just add about 9 KB to your kernel.
1776
1777	  See <file:Documentation/arch/x86/mtrr.rst> for more information.
1778
1779config MTRR_SANITIZER
1780	def_bool y
1781	prompt "MTRR cleanup support"
1782	depends on MTRR
1783	help
1784	  Convert MTRR layout from continuous to discrete, so X drivers can
1785	  add writeback entries.
1786
1787	  Can be disabled with disable_mtrr_cleanup on the kernel command line.
1788	  The largest mtrr entry size for a continuous block can be set with
1789	  mtrr_chunk_size.
1790
1791	  If unsure, say Y.
1792
1793config MTRR_SANITIZER_ENABLE_DEFAULT
1794	int "MTRR cleanup enable value (0-1)"
1795	range 0 1
1796	default "0"
1797	depends on MTRR_SANITIZER
1798	help
1799	  Enable mtrr cleanup default value
1800
1801config MTRR_SANITIZER_SPARE_REG_NR_DEFAULT
1802	int "MTRR cleanup spare reg num (0-7)"
1803	range 0 7
1804	default "1"
1805	depends on MTRR_SANITIZER
1806	help
1807	  mtrr cleanup spare entries default, it can be changed via
1808	  mtrr_spare_reg_nr=N on the kernel command line.
1809
1810config X86_PAT
1811	def_bool y
1812	prompt "x86 PAT support" if EXPERT
1813	depends on MTRR
1814	select ARCH_USES_PG_ARCH_2
1815	help
1816	  Use PAT attributes to setup page level cache control.
1817
1818	  PATs are the modern equivalents of MTRRs and are much more
1819	  flexible than MTRRs.
1820
1821	  Say N here if you see bootup problems (boot crash, boot hang,
1822	  spontaneous reboots) or a non-working video driver.
1823
1824	  If unsure, say Y.
1825
1826config X86_UMIP
1827	def_bool y
1828	prompt "User Mode Instruction Prevention" if EXPERT
1829	help
1830	  User Mode Instruction Prevention (UMIP) is a security feature in
1831	  some x86 processors. If enabled, a general protection fault is
1832	  issued if the SGDT, SLDT, SIDT, SMSW or STR instructions are
1833	  executed in user mode. These instructions unnecessarily expose
1834	  information about the hardware state.
1835
1836	  The vast majority of applications do not use these instructions.
1837	  For the very few that do, software emulation is provided in
1838	  specific cases in protected and virtual-8086 modes. Emulated
1839	  results are dummy.
1840
1841config CC_HAS_IBT
1842	# GCC >= 9 and binutils >= 2.29
1843	# Retpoline check to work around https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93654
1844	# Clang/LLVM >= 14
1845	# https://github.com/llvm/llvm-project/commit/e0b89df2e0f0130881bf6c39bf31d7f6aac00e0f
1846	# https://github.com/llvm/llvm-project/commit/dfcf69770bc522b9e411c66454934a37c1f35332
1847	def_bool ((CC_IS_GCC && $(cc-option, -fcf-protection=branch -mindirect-branch-register)) || \
1848		  (CC_IS_CLANG && CLANG_VERSION >= 140000)) && \
1849		  $(as-instr,endbr64)
1850
1851config X86_CET
1852	def_bool n
1853	help
1854	  CET features configured (Shadow stack or IBT)
1855
1856config X86_KERNEL_IBT
1857	prompt "Indirect Branch Tracking"
1858	def_bool y
1859	depends on X86_64 && CC_HAS_IBT && HAVE_OBJTOOL
1860	# https://github.com/llvm/llvm-project/commit/9d7001eba9c4cb311e03cd8cdc231f9e579f2d0f
1861	depends on !LD_IS_LLD || LLD_VERSION >= 140000
1862	select OBJTOOL
1863	select X86_CET
1864	help
1865	  Build the kernel with support for Indirect Branch Tracking, a
1866	  hardware support course-grain forward-edge Control Flow Integrity
1867	  protection. It enforces that all indirect calls must land on
1868	  an ENDBR instruction, as such, the compiler will instrument the
1869	  code with them to make this happen.
1870
1871	  In addition to building the kernel with IBT, seal all functions that
1872	  are not indirect call targets, avoiding them ever becoming one.
1873
1874	  This requires LTO like objtool runs and will slow down the build. It
1875	  does significantly reduce the number of ENDBR instructions in the
1876	  kernel image.
1877
1878config X86_INTEL_MEMORY_PROTECTION_KEYS
1879	prompt "Memory Protection Keys"
1880	def_bool y
1881	# Note: only available in 64-bit mode
1882	depends on X86_64 && (CPU_SUP_INTEL || CPU_SUP_AMD)
1883	select ARCH_USES_HIGH_VMA_FLAGS
1884	select ARCH_HAS_PKEYS
1885	help
1886	  Memory Protection Keys provides a mechanism for enforcing
1887	  page-based protections, but without requiring modification of the
1888	  page tables when an application changes protection domains.
1889
1890	  For details, see Documentation/core-api/protection-keys.rst
1891
1892	  If unsure, say y.
1893
1894config ARCH_PKEY_BITS
1895	int
1896	default 4
1897
1898choice
1899	prompt "TSX enable mode"
1900	depends on CPU_SUP_INTEL
1901	default X86_INTEL_TSX_MODE_OFF
1902	help
1903	  Intel's TSX (Transactional Synchronization Extensions) feature
1904	  allows to optimize locking protocols through lock elision which
1905	  can lead to a noticeable performance boost.
1906
1907	  On the other hand it has been shown that TSX can be exploited
1908	  to form side channel attacks (e.g. TAA) and chances are there
1909	  will be more of those attacks discovered in the future.
1910
1911	  Therefore TSX is not enabled by default (aka tsx=off). An admin
1912	  might override this decision by tsx=on the command line parameter.
1913	  Even with TSX enabled, the kernel will attempt to enable the best
1914	  possible TAA mitigation setting depending on the microcode available
1915	  for the particular machine.
1916
1917	  This option allows to set the default tsx mode between tsx=on, =off
1918	  and =auto. See Documentation/admin-guide/kernel-parameters.txt for more
1919	  details.
1920
1921	  Say off if not sure, auto if TSX is in use but it should be used on safe
1922	  platforms or on if TSX is in use and the security aspect of tsx is not
1923	  relevant.
1924
1925config X86_INTEL_TSX_MODE_OFF
1926	bool "off"
1927	help
1928	  TSX is disabled if possible - equals to tsx=off command line parameter.
1929
1930config X86_INTEL_TSX_MODE_ON
1931	bool "on"
1932	help
1933	  TSX is always enabled on TSX capable HW - equals the tsx=on command
1934	  line parameter.
1935
1936config X86_INTEL_TSX_MODE_AUTO
1937	bool "auto"
1938	help
1939	  TSX is enabled on TSX capable HW that is believed to be safe against
1940	  side channel attacks- equals the tsx=auto command line parameter.
1941endchoice
1942
1943config X86_SGX
1944	bool "Software Guard eXtensions (SGX)"
1945	depends on X86_64 && CPU_SUP_INTEL && X86_X2APIC
1946	depends on CRYPTO=y
1947	depends on CRYPTO_SHA256=y
1948	select MMU_NOTIFIER
1949	select NUMA_KEEP_MEMINFO if NUMA
1950	select XARRAY_MULTI
1951	help
1952	  Intel(R) Software Guard eXtensions (SGX) is a set of CPU instructions
1953	  that can be used by applications to set aside private regions of code
1954	  and data, referred to as enclaves. An enclave's private memory can
1955	  only be accessed by code running within the enclave. Accesses from
1956	  outside the enclave, including other enclaves, are disallowed by
1957	  hardware.
1958
1959	  If unsure, say N.
1960
1961config X86_USER_SHADOW_STACK
1962	bool "X86 userspace shadow stack"
1963	depends on AS_WRUSS
1964	depends on X86_64
1965	select ARCH_USES_HIGH_VMA_FLAGS
1966	select ARCH_HAS_USER_SHADOW_STACK
1967	select X86_CET
1968	help
1969	  Shadow stack protection is a hardware feature that detects function
1970	  return address corruption.  This helps mitigate ROP attacks.
1971	  Applications must be enabled to use it, and old userspace does not
1972	  get protection "for free".
1973
1974	  CPUs supporting shadow stacks were first released in 2020.
1975
1976	  See Documentation/arch/x86/shstk.rst for more information.
1977
1978	  If unsure, say N.
1979
1980config INTEL_TDX_HOST
1981	bool "Intel Trust Domain Extensions (TDX) host support"
1982	depends on CPU_SUP_INTEL
1983	depends on X86_64
1984	depends on KVM_INTEL
1985	depends on X86_X2APIC
1986	select ARCH_KEEP_MEMBLOCK
1987	depends on CONTIG_ALLOC
1988	depends on !KEXEC_CORE
1989	depends on X86_MCE
1990	help
1991	  Intel Trust Domain Extensions (TDX) protects guest VMs from malicious
1992	  host and certain physical attacks.  This option enables necessary TDX
1993	  support in the host kernel to run confidential VMs.
1994
1995	  If unsure, say N.
1996
1997config EFI
1998	bool "EFI runtime service support"
1999	depends on ACPI
2000	select UCS2_STRING
2001	select EFI_RUNTIME_WRAPPERS
2002	select ARCH_USE_MEMREMAP_PROT
2003	select EFI_RUNTIME_MAP if KEXEC_CORE
2004	help
2005	  This enables the kernel to use EFI runtime services that are
2006	  available (such as the EFI variable services).
2007
2008	  This option is only useful on systems that have EFI firmware.
2009	  In addition, you should use the latest ELILO loader available
2010	  at <http://elilo.sourceforge.net> in order to take advantage
2011	  of EFI runtime services. However, even with this option, the
2012	  resultant kernel should continue to boot on existing non-EFI
2013	  platforms.
2014
2015config EFI_STUB
2016	bool "EFI stub support"
2017	depends on EFI
2018	select RELOCATABLE
2019	help
2020	  This kernel feature allows a bzImage to be loaded directly
2021	  by EFI firmware without the use of a bootloader.
2022
2023	  See Documentation/admin-guide/efi-stub.rst for more information.
2024
2025config EFI_HANDOVER_PROTOCOL
2026	bool "EFI handover protocol (DEPRECATED)"
2027	depends on EFI_STUB
2028	default y
2029	help
2030	  Select this in order to include support for the deprecated EFI
2031	  handover protocol, which defines alternative entry points into the
2032	  EFI stub.  This is a practice that has no basis in the UEFI
2033	  specification, and requires a priori knowledge on the part of the
2034	  bootloader about Linux/x86 specific ways of passing the command line
2035	  and initrd, and where in memory those assets may be loaded.
2036
2037	  If in doubt, say Y. Even though the corresponding support is not
2038	  present in upstream GRUB or other bootloaders, most distros build
2039	  GRUB with numerous downstream patches applied, and may rely on the
2040	  handover protocol as as result.
2041
2042config EFI_MIXED
2043	bool "EFI mixed-mode support"
2044	depends on EFI_STUB && X86_64
2045	help
2046	  Enabling this feature allows a 64-bit kernel to be booted
2047	  on a 32-bit firmware, provided that your CPU supports 64-bit
2048	  mode.
2049
2050	  Note that it is not possible to boot a mixed-mode enabled
2051	  kernel via the EFI boot stub - a bootloader that supports
2052	  the EFI handover protocol must be used.
2053
2054	  If unsure, say N.
2055
2056config EFI_RUNTIME_MAP
2057	bool "Export EFI runtime maps to sysfs" if EXPERT
2058	depends on EFI
2059	help
2060	  Export EFI runtime memory regions to /sys/firmware/efi/runtime-map.
2061	  That memory map is required by the 2nd kernel to set up EFI virtual
2062	  mappings after kexec, but can also be used for debugging purposes.
2063
2064	  See also Documentation/ABI/testing/sysfs-firmware-efi-runtime-map.
2065
2066source "kernel/Kconfig.hz"
2067
2068config ARCH_SUPPORTS_KEXEC
2069	def_bool y
2070
2071config ARCH_SUPPORTS_KEXEC_FILE
2072	def_bool X86_64
2073
2074config ARCH_SELECTS_KEXEC_FILE
2075	def_bool y
2076	depends on KEXEC_FILE
2077	select HAVE_IMA_KEXEC if IMA
2078
2079config ARCH_SUPPORTS_KEXEC_PURGATORY
2080	def_bool y
2081
2082config ARCH_SUPPORTS_KEXEC_SIG
2083	def_bool y
2084
2085config ARCH_SUPPORTS_KEXEC_SIG_FORCE
2086	def_bool y
2087
2088config ARCH_SUPPORTS_KEXEC_BZIMAGE_VERIFY_SIG
2089	def_bool y
2090
2091config ARCH_SUPPORTS_KEXEC_JUMP
2092	def_bool y
2093
2094config ARCH_SUPPORTS_CRASH_DUMP
2095	def_bool X86_64 || (X86_32 && HIGHMEM)
2096
2097config ARCH_DEFAULT_CRASH_DUMP
2098	def_bool y
2099
2100config ARCH_SUPPORTS_CRASH_HOTPLUG
2101	def_bool y
2102
2103config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
2104	def_bool CRASH_RESERVE
2105
2106config PHYSICAL_START
2107	hex "Physical address where the kernel is loaded" if (EXPERT || CRASH_DUMP)
2108	default "0x1000000"
2109	help
2110	  This gives the physical address where the kernel is loaded.
2111
2112	  If the kernel is not relocatable (CONFIG_RELOCATABLE=n) then bzImage
2113	  will decompress itself to above physical address and run from there.
2114	  Otherwise, bzImage will run from the address where it has been loaded
2115	  by the boot loader. The only exception is if it is loaded below the
2116	  above physical address, in which case it will relocate itself there.
2117
2118	  In normal kdump cases one does not have to set/change this option
2119	  as now bzImage can be compiled as a completely relocatable image
2120	  (CONFIG_RELOCATABLE=y) and be used to load and run from a different
2121	  address. This option is mainly useful for the folks who don't want
2122	  to use a bzImage for capturing the crash dump and want to use a
2123	  vmlinux instead. vmlinux is not relocatable hence a kernel needs
2124	  to be specifically compiled to run from a specific memory area
2125	  (normally a reserved region) and this option comes handy.
2126
2127	  So if you are using bzImage for capturing the crash dump,
2128	  leave the value here unchanged to 0x1000000 and set
2129	  CONFIG_RELOCATABLE=y.  Otherwise if you plan to use vmlinux
2130	  for capturing the crash dump change this value to start of
2131	  the reserved region.  In other words, it can be set based on
2132	  the "X" value as specified in the "crashkernel=YM@XM"
2133	  command line boot parameter passed to the panic-ed
2134	  kernel. Please take a look at Documentation/admin-guide/kdump/kdump.rst
2135	  for more details about crash dumps.
2136
2137	  Usage of bzImage for capturing the crash dump is recommended as
2138	  one does not have to build two kernels. Same kernel can be used
2139	  as production kernel and capture kernel. Above option should have
2140	  gone away after relocatable bzImage support is introduced. But it
2141	  is present because there are users out there who continue to use
2142	  vmlinux for dump capture. This option should go away down the
2143	  line.
2144
2145	  Don't change this unless you know what you are doing.
2146
2147config RELOCATABLE
2148	bool "Build a relocatable kernel"
2149	default y
2150	help
2151	  This builds a kernel image that retains relocation information
2152	  so it can be loaded someplace besides the default 1MB.
2153	  The relocations tend to make the kernel binary about 10% larger,
2154	  but are discarded at runtime.
2155
2156	  One use is for the kexec on panic case where the recovery kernel
2157	  must live at a different physical address than the primary
2158	  kernel.
2159
2160	  Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
2161	  it has been loaded at and the compile time physical address
2162	  (CONFIG_PHYSICAL_START) is used as the minimum location.
2163
2164config RANDOMIZE_BASE
2165	bool "Randomize the address of the kernel image (KASLR)"
2166	depends on RELOCATABLE
2167	default y
2168	help
2169	  In support of Kernel Address Space Layout Randomization (KASLR),
2170	  this randomizes the physical address at which the kernel image
2171	  is decompressed and the virtual address where the kernel
2172	  image is mapped, as a security feature that deters exploit
2173	  attempts relying on knowledge of the location of kernel
2174	  code internals.
2175
2176	  On 64-bit, the kernel physical and virtual addresses are
2177	  randomized separately. The physical address will be anywhere
2178	  between 16MB and the top of physical memory (up to 64TB). The
2179	  virtual address will be randomized from 16MB up to 1GB (9 bits
2180	  of entropy). Note that this also reduces the memory space
2181	  available to kernel modules from 1.5GB to 1GB.
2182
2183	  On 32-bit, the kernel physical and virtual addresses are
2184	  randomized together. They will be randomized from 16MB up to
2185	  512MB (8 bits of entropy).
2186
2187	  Entropy is generated using the RDRAND instruction if it is
2188	  supported. If RDTSC is supported, its value is mixed into
2189	  the entropy pool as well. If neither RDRAND nor RDTSC are
2190	  supported, then entropy is read from the i8254 timer. The
2191	  usable entropy is limited by the kernel being built using
2192	  2GB addressing, and that PHYSICAL_ALIGN must be at a
2193	  minimum of 2MB. As a result, only 10 bits of entropy are
2194	  theoretically possible, but the implementations are further
2195	  limited due to memory layouts.
2196
2197	  If unsure, say Y.
2198
2199# Relocation on x86 needs some additional build support
2200config X86_NEED_RELOCS
2201	def_bool y
2202	depends on RANDOMIZE_BASE || (X86_32 && RELOCATABLE)
2203
2204config PHYSICAL_ALIGN
2205	hex "Alignment value to which kernel should be aligned"
2206	default "0x200000"
2207	range 0x2000 0x1000000 if X86_32
2208	range 0x200000 0x1000000 if X86_64
2209	help
2210	  This value puts the alignment restrictions on physical address
2211	  where kernel is loaded and run from. Kernel is compiled for an
2212	  address which meets above alignment restriction.
2213
2214	  If bootloader loads the kernel at a non-aligned address and
2215	  CONFIG_RELOCATABLE is set, kernel will move itself to nearest
2216	  address aligned to above value and run from there.
2217
2218	  If bootloader loads the kernel at a non-aligned address and
2219	  CONFIG_RELOCATABLE is not set, kernel will ignore the run time
2220	  load address and decompress itself to the address it has been
2221	  compiled for and run from there. The address for which kernel is
2222	  compiled already meets above alignment restrictions. Hence the
2223	  end result is that kernel runs from a physical address meeting
2224	  above alignment restrictions.
2225
2226	  On 32-bit this value must be a multiple of 0x2000. On 64-bit
2227	  this value must be a multiple of 0x200000.
2228
2229	  Don't change this unless you know what you are doing.
2230
2231config DYNAMIC_MEMORY_LAYOUT
2232	bool
2233	help
2234	  This option makes base addresses of vmalloc and vmemmap as well as
2235	  __PAGE_OFFSET movable during boot.
2236
2237config RANDOMIZE_MEMORY
2238	bool "Randomize the kernel memory sections"
2239	depends on X86_64
2240	depends on RANDOMIZE_BASE
2241	select DYNAMIC_MEMORY_LAYOUT
2242	default RANDOMIZE_BASE
2243	help
2244	  Randomizes the base virtual address of kernel memory sections
2245	  (physical memory mapping, vmalloc & vmemmap). This security feature
2246	  makes exploits relying on predictable memory locations less reliable.
2247
2248	  The order of allocations remains unchanged. Entropy is generated in
2249	  the same way as RANDOMIZE_BASE. Current implementation in the optimal
2250	  configuration have in average 30,000 different possible virtual
2251	  addresses for each memory section.
2252
2253	  If unsure, say Y.
2254
2255config RANDOMIZE_MEMORY_PHYSICAL_PADDING
2256	hex "Physical memory mapping padding" if EXPERT
2257	depends on RANDOMIZE_MEMORY
2258	default "0xa" if MEMORY_HOTPLUG
2259	default "0x0"
2260	range 0x1 0x40 if MEMORY_HOTPLUG
2261	range 0x0 0x40
2262	help
2263	  Define the padding in terabytes added to the existing physical
2264	  memory size during kernel memory randomization. It is useful
2265	  for memory hotplug support but reduces the entropy available for
2266	  address randomization.
2267
2268	  If unsure, leave at the default value.
2269
2270config ADDRESS_MASKING
2271	bool "Linear Address Masking support"
2272	depends on X86_64
2273	depends on COMPILE_TEST || !CPU_MITIGATIONS # wait for LASS
2274	help
2275	  Linear Address Masking (LAM) modifies the checking that is applied
2276	  to 64-bit linear addresses, allowing software to use of the
2277	  untranslated address bits for metadata.
2278
2279	  The capability can be used for efficient address sanitizers (ASAN)
2280	  implementation and for optimizations in JITs.
2281
2282config HOTPLUG_CPU
2283	def_bool y
2284	depends on SMP
2285
2286config COMPAT_VDSO
2287	def_bool n
2288	prompt "Disable the 32-bit vDSO (needed for glibc 2.3.3)"
2289	depends on COMPAT_32
2290	help
2291	  Certain buggy versions of glibc will crash if they are
2292	  presented with a 32-bit vDSO that is not mapped at the address
2293	  indicated in its segment table.
2294
2295	  The bug was introduced by f866314b89d56845f55e6f365e18b31ec978ec3a
2296	  and fixed by 3b3ddb4f7db98ec9e912ccdf54d35df4aa30e04a and
2297	  49ad572a70b8aeb91e57483a11dd1b77e31c4468.  Glibc 2.3.3 is
2298	  the only released version with the bug, but OpenSUSE 9
2299	  contains a buggy "glibc 2.3.2".
2300
2301	  The symptom of the bug is that everything crashes on startup, saying:
2302	  dl_main: Assertion `(void *) ph->p_vaddr == _rtld_local._dl_sysinfo_dso' failed!
2303
2304	  Saying Y here changes the default value of the vdso32 boot
2305	  option from 1 to 0, which turns off the 32-bit vDSO entirely.
2306	  This works around the glibc bug but hurts performance.
2307
2308	  If unsure, say N: if you are compiling your own kernel, you
2309	  are unlikely to be using a buggy version of glibc.
2310
2311choice
2312	prompt "vsyscall table for legacy applications"
2313	depends on X86_64
2314	default LEGACY_VSYSCALL_XONLY
2315	help
2316	  Legacy user code that does not know how to find the vDSO expects
2317	  to be able to issue three syscalls by calling fixed addresses in
2318	  kernel space. Since this location is not randomized with ASLR,
2319	  it can be used to assist security vulnerability exploitation.
2320
2321	  This setting can be changed at boot time via the kernel command
2322	  line parameter vsyscall=[emulate|xonly|none].  Emulate mode
2323	  is deprecated and can only be enabled using the kernel command
2324	  line.
2325
2326	  On a system with recent enough glibc (2.14 or newer) and no
2327	  static binaries, you can say None without a performance penalty
2328	  to improve security.
2329
2330	  If unsure, select "Emulate execution only".
2331
2332	config LEGACY_VSYSCALL_XONLY
2333		bool "Emulate execution only"
2334		help
2335		  The kernel traps and emulates calls into the fixed vsyscall
2336		  address mapping and does not allow reads.  This
2337		  configuration is recommended when userspace might use the
2338		  legacy vsyscall area but support for legacy binary
2339		  instrumentation of legacy code is not needed.  It mitigates
2340		  certain uses of the vsyscall area as an ASLR-bypassing
2341		  buffer.
2342
2343	config LEGACY_VSYSCALL_NONE
2344		bool "None"
2345		help
2346		  There will be no vsyscall mapping at all. This will
2347		  eliminate any risk of ASLR bypass due to the vsyscall
2348		  fixed address mapping. Attempts to use the vsyscalls
2349		  will be reported to dmesg, so that either old or
2350		  malicious userspace programs can be identified.
2351
2352endchoice
2353
2354config CMDLINE_BOOL
2355	bool "Built-in kernel command line"
2356	help
2357	  Allow for specifying boot arguments to the kernel at
2358	  build time.  On some systems (e.g. embedded ones), it is
2359	  necessary or convenient to provide some or all of the
2360	  kernel boot arguments with the kernel itself (that is,
2361	  to not rely on the boot loader to provide them.)
2362
2363	  To compile command line arguments into the kernel,
2364	  set this option to 'Y', then fill in the
2365	  boot arguments in CONFIG_CMDLINE.
2366
2367	  Systems with fully functional boot loaders (i.e. non-embedded)
2368	  should leave this option set to 'N'.
2369
2370config CMDLINE
2371	string "Built-in kernel command string"
2372	depends on CMDLINE_BOOL
2373	default ""
2374	help
2375	  Enter arguments here that should be compiled into the kernel
2376	  image and used at boot time.  If the boot loader provides a
2377	  command line at boot time, it is appended to this string to
2378	  form the full kernel command line, when the system boots.
2379
2380	  However, you can use the CONFIG_CMDLINE_OVERRIDE option to
2381	  change this behavior.
2382
2383	  In most cases, the command line (whether built-in or provided
2384	  by the boot loader) should specify the device for the root
2385	  file system.
2386
2387config CMDLINE_OVERRIDE
2388	bool "Built-in command line overrides boot loader arguments"
2389	depends on CMDLINE_BOOL && CMDLINE != ""
2390	help
2391	  Set this option to 'Y' to have the kernel ignore the boot loader
2392	  command line, and use ONLY the built-in command line.
2393
2394	  This is used to work around broken boot loaders.  This should
2395	  be set to 'N' under normal conditions.
2396
2397config MODIFY_LDT_SYSCALL
2398	bool "Enable the LDT (local descriptor table)" if EXPERT
2399	default y
2400	help
2401	  Linux can allow user programs to install a per-process x86
2402	  Local Descriptor Table (LDT) using the modify_ldt(2) system
2403	  call.  This is required to run 16-bit or segmented code such as
2404	  DOSEMU or some Wine programs.  It is also used by some very old
2405	  threading libraries.
2406
2407	  Enabling this feature adds a small amount of overhead to
2408	  context switches and increases the low-level kernel attack
2409	  surface.  Disabling it removes the modify_ldt(2) system call.
2410
2411	  Saying 'N' here may make sense for embedded or server kernels.
2412
2413config STRICT_SIGALTSTACK_SIZE
2414	bool "Enforce strict size checking for sigaltstack"
2415	depends on DYNAMIC_SIGFRAME
2416	help
2417	  For historical reasons MINSIGSTKSZ is a constant which became
2418	  already too small with AVX512 support. Add a mechanism to
2419	  enforce strict checking of the sigaltstack size against the
2420	  real size of the FPU frame. This option enables the check
2421	  by default. It can also be controlled via the kernel command
2422	  line option 'strict_sas_size' independent of this config
2423	  switch. Enabling it might break existing applications which
2424	  allocate a too small sigaltstack but 'work' because they
2425	  never get a signal delivered.
2426
2427	  Say 'N' unless you want to really enforce this check.
2428
2429config CFI_AUTO_DEFAULT
2430	bool "Attempt to use FineIBT by default at boot time"
2431	depends on FINEIBT
2432	default y
2433	help
2434	  Attempt to use FineIBT by default at boot time. If enabled,
2435	  this is the same as booting with "cfi=auto". If disabled,
2436	  this is the same as booting with "cfi=kcfi".
2437
2438source "kernel/livepatch/Kconfig"
2439
2440config X86_BUS_LOCK_DETECT
2441	bool "Split Lock Detect and Bus Lock Detect support"
2442	depends on CPU_SUP_INTEL || CPU_SUP_AMD
2443	default y
2444	help
2445	  Enable Split Lock Detect and Bus Lock Detect functionalities.
2446	  See <file:Documentation/arch/x86/buslock.rst> for more information.
2447
2448endmenu
2449
2450config CC_HAS_NAMED_AS
2451	def_bool $(success,echo 'int __seg_fs fs; int __seg_gs gs;' | $(CC) -x c - -S -o /dev/null)
2452	depends on CC_IS_GCC
2453
2454config CC_HAS_NAMED_AS_FIXED_SANITIZERS
2455	def_bool CC_IS_GCC && GCC_VERSION >= 130300
2456
2457config USE_X86_SEG_SUPPORT
2458	def_bool y
2459	depends on CC_HAS_NAMED_AS
2460	#
2461	# -fsanitize=kernel-address (KASAN) and -fsanitize=thread
2462	# (KCSAN) are incompatible with named address spaces with
2463	# GCC < 13.3 - see GCC PR sanitizer/111736.
2464	#
2465	depends on !(KASAN || KCSAN) || CC_HAS_NAMED_AS_FIXED_SANITIZERS
2466
2467config CC_HAS_SLS
2468	def_bool $(cc-option,-mharden-sls=all)
2469
2470config CC_HAS_RETURN_THUNK
2471	def_bool $(cc-option,-mfunction-return=thunk-extern)
2472
2473config CC_HAS_ENTRY_PADDING
2474	def_bool $(cc-option,-fpatchable-function-entry=16,16)
2475
2476config FUNCTION_PADDING_CFI
2477	int
2478	default 59 if FUNCTION_ALIGNMENT_64B
2479	default 27 if FUNCTION_ALIGNMENT_32B
2480	default 11 if FUNCTION_ALIGNMENT_16B
2481	default  3 if FUNCTION_ALIGNMENT_8B
2482	default  0
2483
2484# Basically: FUNCTION_ALIGNMENT - 5*CFI_CLANG
2485# except Kconfig can't do arithmetic :/
2486config FUNCTION_PADDING_BYTES
2487	int
2488	default FUNCTION_PADDING_CFI if CFI_CLANG
2489	default FUNCTION_ALIGNMENT
2490
2491config CALL_PADDING
2492	def_bool n
2493	depends on CC_HAS_ENTRY_PADDING && OBJTOOL
2494	select FUNCTION_ALIGNMENT_16B
2495
2496config FINEIBT
2497	def_bool y
2498	depends on X86_KERNEL_IBT && CFI_CLANG && MITIGATION_RETPOLINE
2499	select CALL_PADDING
2500
2501config HAVE_CALL_THUNKS
2502	def_bool y
2503	depends on CC_HAS_ENTRY_PADDING && MITIGATION_RETHUNK && OBJTOOL
2504
2505config CALL_THUNKS
2506	def_bool n
2507	select CALL_PADDING
2508
2509config PREFIX_SYMBOLS
2510	def_bool y
2511	depends on CALL_PADDING && !CFI_CLANG
2512
2513menuconfig CPU_MITIGATIONS
2514	bool "Mitigations for CPU vulnerabilities"
2515	default y
2516	help
2517	  Say Y here to enable options which enable mitigations for hardware
2518	  vulnerabilities (usually related to speculative execution).
2519	  Mitigations can be disabled or restricted to SMT systems at runtime
2520	  via the "mitigations" kernel parameter.
2521
2522	  If you say N, all mitigations will be disabled.  This CANNOT be
2523	  overridden at runtime.
2524
2525	  Say 'Y', unless you really know what you are doing.
2526
2527if CPU_MITIGATIONS
2528
2529config MITIGATION_PAGE_TABLE_ISOLATION
2530	bool "Remove the kernel mapping in user mode"
2531	default y
2532	depends on (X86_64 || X86_PAE)
2533	help
2534	  This feature reduces the number of hardware side channels by
2535	  ensuring that the majority of kernel addresses are not mapped
2536	  into userspace.
2537
2538	  See Documentation/arch/x86/pti.rst for more details.
2539
2540config MITIGATION_RETPOLINE
2541	bool "Avoid speculative indirect branches in kernel"
2542	select OBJTOOL if HAVE_OBJTOOL
2543	default y
2544	help
2545	  Compile kernel with the retpoline compiler options to guard against
2546	  kernel-to-user data leaks by avoiding speculative indirect
2547	  branches. Requires a compiler with -mindirect-branch=thunk-extern
2548	  support for full protection. The kernel may run slower.
2549
2550config MITIGATION_RETHUNK
2551	bool "Enable return-thunks"
2552	depends on MITIGATION_RETPOLINE && CC_HAS_RETURN_THUNK
2553	select OBJTOOL if HAVE_OBJTOOL
2554	default y if X86_64
2555	help
2556	  Compile the kernel with the return-thunks compiler option to guard
2557	  against kernel-to-user data leaks by avoiding return speculation.
2558	  Requires a compiler with -mfunction-return=thunk-extern
2559	  support for full protection. The kernel may run slower.
2560
2561config MITIGATION_UNRET_ENTRY
2562	bool "Enable UNRET on kernel entry"
2563	depends on CPU_SUP_AMD && MITIGATION_RETHUNK && X86_64
2564	default y
2565	help
2566	  Compile the kernel with support for the retbleed=unret mitigation.
2567
2568config MITIGATION_CALL_DEPTH_TRACKING
2569	bool "Mitigate RSB underflow with call depth tracking"
2570	depends on CPU_SUP_INTEL && HAVE_CALL_THUNKS
2571	select HAVE_DYNAMIC_FTRACE_NO_PATCHABLE
2572	select CALL_THUNKS
2573	default y
2574	help
2575	  Compile the kernel with call depth tracking to mitigate the Intel
2576	  SKL Return-Stack-Buffer (RSB) underflow issue. The mitigation is off
2577	  by default and needs to be enabled on the kernel command line via the
2578	  retbleed=stuff option. For non-affected systems the overhead of this
2579	  option is marginal as the call depth tracking is using run-time
2580	  generated call thunks in a compiler generated padding area and call
2581	  patching. This increases text size by ~5%. For non affected systems
2582	  this space is unused. On affected SKL systems this results in a
2583	  significant performance gain over the IBRS mitigation.
2584
2585config CALL_THUNKS_DEBUG
2586	bool "Enable call thunks and call depth tracking debugging"
2587	depends on MITIGATION_CALL_DEPTH_TRACKING
2588	select FUNCTION_ALIGNMENT_32B
2589	default n
2590	help
2591	  Enable call/ret counters for imbalance detection and build in
2592	  a noisy dmesg about callthunks generation and call patching for
2593	  trouble shooting. The debug prints need to be enabled on the
2594	  kernel command line with 'debug-callthunks'.
2595	  Only enable this when you are debugging call thunks as this
2596	  creates a noticeable runtime overhead. If unsure say N.
2597
2598config MITIGATION_IBPB_ENTRY
2599	bool "Enable IBPB on kernel entry"
2600	depends on CPU_SUP_AMD && X86_64
2601	default y
2602	help
2603	  Compile the kernel with support for the retbleed=ibpb and
2604	  spec_rstack_overflow={ibpb,ibpb-vmexit} mitigations.
2605
2606config MITIGATION_IBRS_ENTRY
2607	bool "Enable IBRS on kernel entry"
2608	depends on CPU_SUP_INTEL && X86_64
2609	default y
2610	help
2611	  Compile the kernel with support for the spectre_v2=ibrs mitigation.
2612	  This mitigates both spectre_v2 and retbleed at great cost to
2613	  performance.
2614
2615config MITIGATION_SRSO
2616	bool "Mitigate speculative RAS overflow on AMD"
2617	depends on CPU_SUP_AMD && X86_64 && MITIGATION_RETHUNK
2618	default y
2619	help
2620	  Enable the SRSO mitigation needed on AMD Zen1-4 machines.
2621
2622config MITIGATION_SLS
2623	bool "Mitigate Straight-Line-Speculation"
2624	depends on CC_HAS_SLS && X86_64
2625	select OBJTOOL if HAVE_OBJTOOL
2626	default n
2627	help
2628	  Compile the kernel with straight-line-speculation options to guard
2629	  against straight line speculation. The kernel image might be slightly
2630	  larger.
2631
2632config MITIGATION_GDS
2633	bool "Mitigate Gather Data Sampling"
2634	depends on CPU_SUP_INTEL
2635	default y
2636	help
2637	  Enable mitigation for Gather Data Sampling (GDS). GDS is a hardware
2638	  vulnerability which allows unprivileged speculative access to data
2639	  which was previously stored in vector registers. The attacker uses gather
2640	  instructions to infer the stale vector register data.
2641
2642config MITIGATION_RFDS
2643	bool "RFDS Mitigation"
2644	depends on CPU_SUP_INTEL
2645	default y
2646	help
2647	  Enable mitigation for Register File Data Sampling (RFDS) by default.
2648	  RFDS is a hardware vulnerability which affects Intel Atom CPUs. It
2649	  allows unprivileged speculative access to stale data previously
2650	  stored in floating point, vector and integer registers.
2651	  See also <file:Documentation/admin-guide/hw-vuln/reg-file-data-sampling.rst>
2652
2653config MITIGATION_SPECTRE_BHI
2654	bool "Mitigate Spectre-BHB (Branch History Injection)"
2655	depends on CPU_SUP_INTEL
2656	default y
2657	help
2658	  Enable BHI mitigations. BHI attacks are a form of Spectre V2 attacks
2659	  where the branch history buffer is poisoned to speculatively steer
2660	  indirect branches.
2661	  See <file:Documentation/admin-guide/hw-vuln/spectre.rst>
2662
2663config MITIGATION_MDS
2664	bool "Mitigate Microarchitectural Data Sampling (MDS) hardware bug"
2665	depends on CPU_SUP_INTEL
2666	default y
2667	help
2668	  Enable mitigation for Microarchitectural Data Sampling (MDS). MDS is
2669	  a hardware vulnerability which allows unprivileged speculative access
2670	  to data which is available in various CPU internal buffers.
2671	  See also <file:Documentation/admin-guide/hw-vuln/mds.rst>
2672
2673config MITIGATION_TAA
2674	bool "Mitigate TSX Asynchronous Abort (TAA) hardware bug"
2675	depends on CPU_SUP_INTEL
2676	default y
2677	help
2678	  Enable mitigation for TSX Asynchronous Abort (TAA). TAA is a hardware
2679	  vulnerability that allows unprivileged speculative access to data
2680	  which is available in various CPU internal buffers by using
2681	  asynchronous aborts within an Intel TSX transactional region.
2682	  See also <file:Documentation/admin-guide/hw-vuln/tsx_async_abort.rst>
2683
2684config MITIGATION_MMIO_STALE_DATA
2685	bool "Mitigate MMIO Stale Data hardware bug"
2686	depends on CPU_SUP_INTEL
2687	default y
2688	help
2689	  Enable mitigation for MMIO Stale Data hardware bugs.  Processor MMIO
2690	  Stale Data Vulnerabilities are a class of memory-mapped I/O (MMIO)
2691	  vulnerabilities that can expose data. The vulnerabilities require the
2692	  attacker to have access to MMIO.
2693	  See also
2694	  <file:Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst>
2695
2696config MITIGATION_L1TF
2697	bool "Mitigate L1 Terminal Fault (L1TF) hardware bug"
2698	depends on CPU_SUP_INTEL
2699	default y
2700	help
2701	  Mitigate L1 Terminal Fault (L1TF) hardware bug. L1 Terminal Fault is a
2702	  hardware vulnerability which allows unprivileged speculative access to data
2703	  available in the Level 1 Data Cache.
2704	  See <file:Documentation/admin-guide/hw-vuln/l1tf.rst
2705
2706config MITIGATION_RETBLEED
2707	bool "Mitigate RETBleed hardware bug"
2708	depends on (CPU_SUP_INTEL && MITIGATION_SPECTRE_V2) || MITIGATION_UNRET_ENTRY || MITIGATION_IBPB_ENTRY
2709	default y
2710	help
2711	  Enable mitigation for RETBleed (Arbitrary Speculative Code Execution
2712	  with Return Instructions) vulnerability.  RETBleed is a speculative
2713	  execution attack which takes advantage of microarchitectural behavior
2714	  in many modern microprocessors, similar to Spectre v2. An
2715	  unprivileged attacker can use these flaws to bypass conventional
2716	  memory security restrictions to gain read access to privileged memory
2717	  that would otherwise be inaccessible.
2718
2719config MITIGATION_SPECTRE_V1
2720	bool "Mitigate SPECTRE V1 hardware bug"
2721	default y
2722	help
2723	  Enable mitigation for Spectre V1 (Bounds Check Bypass). Spectre V1 is a
2724	  class of side channel attacks that takes advantage of speculative
2725	  execution that bypasses conditional branch instructions used for
2726	  memory access bounds check.
2727	  See also <file:Documentation/admin-guide/hw-vuln/spectre.rst>
2728
2729config MITIGATION_SPECTRE_V2
2730	bool "Mitigate SPECTRE V2 hardware bug"
2731	default y
2732	help
2733	  Enable mitigation for Spectre V2 (Branch Target Injection). Spectre
2734	  V2 is a class of side channel attacks that takes advantage of
2735	  indirect branch predictors inside the processor. In Spectre variant 2
2736	  attacks, the attacker can steer speculative indirect branches in the
2737	  victim to gadget code by poisoning the branch target buffer of a CPU
2738	  used for predicting indirect branch addresses.
2739	  See also <file:Documentation/admin-guide/hw-vuln/spectre.rst>
2740
2741config MITIGATION_SRBDS
2742	bool "Mitigate Special Register Buffer Data Sampling (SRBDS) hardware bug"
2743	depends on CPU_SUP_INTEL
2744	default y
2745	help
2746	  Enable mitigation for Special Register Buffer Data Sampling (SRBDS).
2747	  SRBDS is a hardware vulnerability that allows Microarchitectural Data
2748	  Sampling (MDS) techniques to infer values returned from special
2749	  register accesses. An unprivileged user can extract values returned
2750	  from RDRAND and RDSEED executed on another core or sibling thread
2751	  using MDS techniques.
2752	  See also
2753	  <file:Documentation/admin-guide/hw-vuln/special-register-buffer-data-sampling.rst>
2754
2755config MITIGATION_SSB
2756	bool "Mitigate Speculative Store Bypass (SSB) hardware bug"
2757	default y
2758	help
2759	  Enable mitigation for Speculative Store Bypass (SSB). SSB is a
2760	  hardware security vulnerability and its exploitation takes advantage
2761	  of speculative execution in a similar way to the Meltdown and Spectre
2762	  security vulnerabilities.
2763
2764endif
2765
2766config ARCH_HAS_ADD_PAGES
2767	def_bool y
2768	depends on ARCH_ENABLE_MEMORY_HOTPLUG
2769
2770menu "Power management and ACPI options"
2771
2772config ARCH_HIBERNATION_HEADER
2773	def_bool y
2774	depends on HIBERNATION
2775
2776source "kernel/power/Kconfig"
2777
2778source "drivers/acpi/Kconfig"
2779
2780config X86_APM_BOOT
2781	def_bool y
2782	depends on APM
2783
2784menuconfig APM
2785	tristate "APM (Advanced Power Management) BIOS support"
2786	depends on X86_32 && PM_SLEEP
2787	help
2788	  APM is a BIOS specification for saving power using several different
2789	  techniques. This is mostly useful for battery powered laptops with
2790	  APM compliant BIOSes. If you say Y here, the system time will be
2791	  reset after a RESUME operation, the /proc/apm device will provide
2792	  battery status information, and user-space programs will receive
2793	  notification of APM "events" (e.g. battery status change).
2794
2795	  If you select "Y" here, you can disable actual use of the APM
2796	  BIOS by passing the "apm=off" option to the kernel at boot time.
2797
2798	  Note that the APM support is almost completely disabled for
2799	  machines with more than one CPU.
2800
2801	  In order to use APM, you will need supporting software. For location
2802	  and more information, read <file:Documentation/power/apm-acpi.rst>
2803	  and the Battery Powered Linux mini-HOWTO, available from
2804	  <http://www.tldp.org/docs.html#howto>.
2805
2806	  This driver does not spin down disk drives (see the hdparm(8)
2807	  manpage ("man 8 hdparm") for that), and it doesn't turn off
2808	  VESA-compliant "green" monitors.
2809
2810	  This driver does not support the TI 4000M TravelMate and the ACER
2811	  486/DX4/75 because they don't have compliant BIOSes. Many "green"
2812	  desktop machines also don't have compliant BIOSes, and this driver
2813	  may cause those machines to panic during the boot phase.
2814
2815	  Generally, if you don't have a battery in your machine, there isn't
2816	  much point in using this driver and you should say N. If you get
2817	  random kernel OOPSes or reboots that don't seem to be related to
2818	  anything, try disabling/enabling this option (or disabling/enabling
2819	  APM in your BIOS).
2820
2821	  Some other things you should try when experiencing seemingly random,
2822	  "weird" problems:
2823
2824	  1) make sure that you have enough swap space and that it is
2825	  enabled.
2826	  2) pass the "idle=poll" option to the kernel
2827	  3) switch on floating point emulation in the kernel and pass
2828	  the "no387" option to the kernel
2829	  4) pass the "floppy=nodma" option to the kernel
2830	  5) pass the "mem=4M" option to the kernel (thereby disabling
2831	  all but the first 4 MB of RAM)
2832	  6) make sure that the CPU is not over clocked.
2833	  7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
2834	  8) disable the cache from your BIOS settings
2835	  9) install a fan for the video card or exchange video RAM
2836	  10) install a better fan for the CPU
2837	  11) exchange RAM chips
2838	  12) exchange the motherboard.
2839
2840	  To compile this driver as a module, choose M here: the
2841	  module will be called apm.
2842
2843if APM
2844
2845config APM_IGNORE_USER_SUSPEND
2846	bool "Ignore USER SUSPEND"
2847	help
2848	  This option will ignore USER SUSPEND requests. On machines with a
2849	  compliant APM BIOS, you want to say N. However, on the NEC Versa M
2850	  series notebooks, it is necessary to say Y because of a BIOS bug.
2851
2852config APM_DO_ENABLE
2853	bool "Enable PM at boot time"
2854	help
2855	  Enable APM features at boot time. From page 36 of the APM BIOS
2856	  specification: "When disabled, the APM BIOS does not automatically
2857	  power manage devices, enter the Standby State, enter the Suspend
2858	  State, or take power saving steps in response to CPU Idle calls."
2859	  This driver will make CPU Idle calls when Linux is idle (unless this
2860	  feature is turned off -- see "Do CPU IDLE calls", below). This
2861	  should always save battery power, but more complicated APM features
2862	  will be dependent on your BIOS implementation. You may need to turn
2863	  this option off if your computer hangs at boot time when using APM
2864	  support, or if it beeps continuously instead of suspending. Turn
2865	  this off if you have a NEC UltraLite Versa 33/C or a Toshiba
2866	  T400CDT. This is off by default since most machines do fine without
2867	  this feature.
2868
2869config APM_CPU_IDLE
2870	depends on CPU_IDLE
2871	bool "Make CPU Idle calls when idle"
2872	help
2873	  Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
2874	  On some machines, this can activate improved power savings, such as
2875	  a slowed CPU clock rate, when the machine is idle. These idle calls
2876	  are made after the idle loop has run for some length of time (e.g.,
2877	  333 mS). On some machines, this will cause a hang at boot time or
2878	  whenever the CPU becomes idle. (On machines with more than one CPU,
2879	  this option does nothing.)
2880
2881config APM_DISPLAY_BLANK
2882	bool "Enable console blanking using APM"
2883	help
2884	  Enable console blanking using the APM. Some laptops can use this to
2885	  turn off the LCD backlight when the screen blanker of the Linux
2886	  virtual console blanks the screen. Note that this is only used by
2887	  the virtual console screen blanker, and won't turn off the backlight
2888	  when using the X Window system. This also doesn't have anything to
2889	  do with your VESA-compliant power-saving monitor. Further, this
2890	  option doesn't work for all laptops -- it might not turn off your
2891	  backlight at all, or it might print a lot of errors to the console,
2892	  especially if you are using gpm.
2893
2894config APM_ALLOW_INTS
2895	bool "Allow interrupts during APM BIOS calls"
2896	help
2897	  Normally we disable external interrupts while we are making calls to
2898	  the APM BIOS as a measure to lessen the effects of a badly behaving
2899	  BIOS implementation.  The BIOS should reenable interrupts if it
2900	  needs to.  Unfortunately, some BIOSes do not -- especially those in
2901	  many of the newer IBM Thinkpads.  If you experience hangs when you
2902	  suspend, try setting this to Y.  Otherwise, say N.
2903
2904endif # APM
2905
2906source "drivers/cpufreq/Kconfig"
2907
2908source "drivers/cpuidle/Kconfig"
2909
2910source "drivers/idle/Kconfig"
2911
2912endmenu
2913
2914menu "Bus options (PCI etc.)"
2915
2916choice
2917	prompt "PCI access mode"
2918	depends on X86_32 && PCI
2919	default PCI_GOANY
2920	help
2921	  On PCI systems, the BIOS can be used to detect the PCI devices and
2922	  determine their configuration. However, some old PCI motherboards
2923	  have BIOS bugs and may crash if this is done. Also, some embedded
2924	  PCI-based systems don't have any BIOS at all. Linux can also try to
2925	  detect the PCI hardware directly without using the BIOS.
2926
2927	  With this option, you can specify how Linux should detect the
2928	  PCI devices. If you choose "BIOS", the BIOS will be used,
2929	  if you choose "Direct", the BIOS won't be used, and if you
2930	  choose "MMConfig", then PCI Express MMCONFIG will be used.
2931	  If you choose "Any", the kernel will try MMCONFIG, then the
2932	  direct access method and falls back to the BIOS if that doesn't
2933	  work. If unsure, go with the default, which is "Any".
2934
2935config PCI_GOBIOS
2936	bool "BIOS"
2937
2938config PCI_GOMMCONFIG
2939	bool "MMConfig"
2940
2941config PCI_GODIRECT
2942	bool "Direct"
2943
2944config PCI_GOOLPC
2945	bool "OLPC XO-1"
2946	depends on OLPC
2947
2948config PCI_GOANY
2949	bool "Any"
2950
2951endchoice
2952
2953config PCI_BIOS
2954	def_bool y
2955	depends on X86_32 && PCI && (PCI_GOBIOS || PCI_GOANY)
2956
2957# x86-64 doesn't support PCI BIOS access from long mode so always go direct.
2958config PCI_DIRECT
2959	def_bool y
2960	depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY || PCI_GOOLPC || PCI_GOMMCONFIG))
2961
2962config PCI_MMCONFIG
2963	bool "Support mmconfig PCI config space access" if X86_64
2964	default y
2965	depends on PCI && (ACPI || JAILHOUSE_GUEST)
2966	depends on X86_64 || (PCI_GOANY || PCI_GOMMCONFIG)
2967
2968config PCI_OLPC
2969	def_bool y
2970	depends on PCI && OLPC && (PCI_GOOLPC || PCI_GOANY)
2971
2972config PCI_XEN
2973	def_bool y
2974	depends on PCI && XEN
2975
2976config MMCONF_FAM10H
2977	def_bool y
2978	depends on X86_64 && PCI_MMCONFIG && ACPI
2979
2980config PCI_CNB20LE_QUIRK
2981	bool "Read CNB20LE Host Bridge Windows" if EXPERT
2982	depends on PCI
2983	help
2984	  Read the PCI windows out of the CNB20LE host bridge. This allows
2985	  PCI hotplug to work on systems with the CNB20LE chipset which do
2986	  not have ACPI.
2987
2988	  There's no public spec for this chipset, and this functionality
2989	  is known to be incomplete.
2990
2991	  You should say N unless you know you need this.
2992
2993config ISA_BUS
2994	bool "ISA bus support on modern systems" if EXPERT
2995	help
2996	  Expose ISA bus device drivers and options available for selection and
2997	  configuration. Enable this option if your target machine has an ISA
2998	  bus. ISA is an older system, displaced by PCI and newer bus
2999	  architectures -- if your target machine is modern, it probably does
3000	  not have an ISA bus.
3001
3002	  If unsure, say N.
3003
3004# x86_64 have no ISA slots, but can have ISA-style DMA.
3005config ISA_DMA_API
3006	bool "ISA-style DMA support" if (X86_64 && EXPERT)
3007	default y
3008	help
3009	  Enables ISA-style DMA support for devices requiring such controllers.
3010	  If unsure, say Y.
3011
3012if X86_32
3013
3014config ISA
3015	bool "ISA support"
3016	help
3017	  Find out whether you have ISA slots on your motherboard.  ISA is the
3018	  name of a bus system, i.e. the way the CPU talks to the other stuff
3019	  inside your box.  Other bus systems are PCI, EISA, MicroChannel
3020	  (MCA) or VESA.  ISA is an older system, now being displaced by PCI;
3021	  newer boards don't support it.  If you have ISA, say Y, otherwise N.
3022
3023config SCx200
3024	tristate "NatSemi SCx200 support"
3025	help
3026	  This provides basic support for National Semiconductor's
3027	  (now AMD's) Geode processors.  The driver probes for the
3028	  PCI-IDs of several on-chip devices, so its a good dependency
3029	  for other scx200_* drivers.
3030
3031	  If compiled as a module, the driver is named scx200.
3032
3033config SCx200HR_TIMER
3034	tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
3035	depends on SCx200
3036	default y
3037	help
3038	  This driver provides a clocksource built upon the on-chip
3039	  27MHz high-resolution timer.  Its also a workaround for
3040	  NSC Geode SC-1100's buggy TSC, which loses time when the
3041	  processor goes idle (as is done by the scheduler).  The
3042	  other workaround is idle=poll boot option.
3043
3044config OLPC
3045	bool "One Laptop Per Child support"
3046	depends on !X86_PAE
3047	select GPIOLIB
3048	select OF
3049	select OF_PROMTREE
3050	select IRQ_DOMAIN
3051	select OLPC_EC
3052	help
3053	  Add support for detecting the unique features of the OLPC
3054	  XO hardware.
3055
3056config OLPC_XO1_PM
3057	bool "OLPC XO-1 Power Management"
3058	depends on OLPC && MFD_CS5535=y && PM_SLEEP
3059	help
3060	  Add support for poweroff and suspend of the OLPC XO-1 laptop.
3061
3062config OLPC_XO1_RTC
3063	bool "OLPC XO-1 Real Time Clock"
3064	depends on OLPC_XO1_PM && RTC_DRV_CMOS
3065	help
3066	  Add support for the XO-1 real time clock, which can be used as a
3067	  programmable wakeup source.
3068
3069config OLPC_XO1_SCI
3070	bool "OLPC XO-1 SCI extras"
3071	depends on OLPC && OLPC_XO1_PM && GPIO_CS5535=y
3072	depends on INPUT=y
3073	select POWER_SUPPLY
3074	help
3075	  Add support for SCI-based features of the OLPC XO-1 laptop:
3076	   - EC-driven system wakeups
3077	   - Power button
3078	   - Ebook switch
3079	   - Lid switch
3080	   - AC adapter status updates
3081	   - Battery status updates
3082
3083config OLPC_XO15_SCI
3084	bool "OLPC XO-1.5 SCI extras"
3085	depends on OLPC && ACPI
3086	select POWER_SUPPLY
3087	help
3088	  Add support for SCI-based features of the OLPC XO-1.5 laptop:
3089	   - EC-driven system wakeups
3090	   - AC adapter status updates
3091	   - Battery status updates
3092
3093config GEODE_COMMON
3094	bool
3095
3096config ALIX
3097	bool "PCEngines ALIX System Support (LED setup)"
3098	select GPIOLIB
3099	select GEODE_COMMON
3100	help
3101	  This option enables system support for the PCEngines ALIX.
3102	  At present this just sets up LEDs for GPIO control on
3103	  ALIX2/3/6 boards.  However, other system specific setup should
3104	  get added here.
3105
3106	  Note: You must still enable the drivers for GPIO and LED support
3107	  (GPIO_CS5535 & LEDS_GPIO) to actually use the LEDs
3108
3109	  Note: You have to set alix.force=1 for boards with Award BIOS.
3110
3111config NET5501
3112	bool "Soekris Engineering net5501 System Support (LEDS, GPIO, etc)"
3113	select GPIOLIB
3114	select GEODE_COMMON
3115	help
3116	  This option enables system support for the Soekris Engineering net5501.
3117
3118config GEOS
3119	bool "Traverse Technologies GEOS System Support (LEDS, GPIO, etc)"
3120	select GPIOLIB
3121	select GEODE_COMMON
3122	depends on DMI
3123	help
3124	  This option enables system support for the Traverse Technologies GEOS.
3125
3126config TS5500
3127	bool "Technologic Systems TS-5500 platform support"
3128	depends on MELAN
3129	select CHECK_SIGNATURE
3130	select NEW_LEDS
3131	select LEDS_CLASS
3132	help
3133	  This option enables system support for the Technologic Systems TS-5500.
3134
3135endif # X86_32
3136
3137config AMD_NB
3138	def_bool y
3139	depends on AMD_NODE
3140
3141config AMD_NODE
3142	def_bool y
3143	depends on CPU_SUP_AMD && PCI
3144
3145endmenu
3146
3147menu "Binary Emulations"
3148
3149config IA32_EMULATION
3150	bool "IA32 Emulation"
3151	depends on X86_64
3152	select ARCH_WANT_OLD_COMPAT_IPC
3153	select BINFMT_ELF
3154	select COMPAT_OLD_SIGACTION
3155	help
3156	  Include code to run legacy 32-bit programs under a
3157	  64-bit kernel. You should likely turn this on, unless you're
3158	  100% sure that you don't have any 32-bit programs left.
3159
3160config IA32_EMULATION_DEFAULT_DISABLED
3161	bool "IA32 emulation disabled by default"
3162	default n
3163	depends on IA32_EMULATION
3164	help
3165	  Make IA32 emulation disabled by default. This prevents loading 32-bit
3166	  processes and access to 32-bit syscalls. If unsure, leave it to its
3167	  default value.
3168
3169config X86_X32_ABI
3170	bool "x32 ABI for 64-bit mode"
3171	depends on X86_64
3172	# llvm-objcopy does not convert x86_64 .note.gnu.property or
3173	# compressed debug sections to x86_x32 properly:
3174	# https://github.com/ClangBuiltLinux/linux/issues/514
3175	# https://github.com/ClangBuiltLinux/linux/issues/1141
3176	depends on $(success,$(OBJCOPY) --version | head -n1 | grep -qv llvm)
3177	help
3178	  Include code to run binaries for the x32 native 32-bit ABI
3179	  for 64-bit processors.  An x32 process gets access to the
3180	  full 64-bit register file and wide data path while leaving
3181	  pointers at 32 bits for smaller memory footprint.
3182
3183config COMPAT_32
3184	def_bool y
3185	depends on IA32_EMULATION || X86_32
3186	select HAVE_UID16
3187	select OLD_SIGSUSPEND3
3188
3189config COMPAT
3190	def_bool y
3191	depends on IA32_EMULATION || X86_X32_ABI
3192
3193config COMPAT_FOR_U64_ALIGNMENT
3194	def_bool y
3195	depends on COMPAT
3196
3197endmenu
3198
3199config HAVE_ATOMIC_IOMAP
3200	def_bool y
3201	depends on X86_32
3202
3203source "arch/x86/kvm/Kconfig"
3204
3205source "arch/x86/Kconfig.assembler"
3206