xref: /linux/arch/arm64/Kconfig (revision 63f4993b792efe9ccde7302184d0184d2c52a9b7)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU
9	select ACPI_IORT if ACPI
10	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
11	select ACPI_MCFG if (ACPI && PCI)
12	select ACPI_SPCR_TABLE if ACPI
13	select ACPI_PPTT if ACPI
14	select ARCH_HAS_DEBUG_WX
15	select ARCH_BINFMT_ELF_EXTRA_PHDRS
16	select ARCH_BINFMT_ELF_STATE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CC_PLATFORM
24	select ARCH_HAS_CURRENT_STACK_POINTER
25	select ARCH_HAS_DEBUG_VIRTUAL
26	select ARCH_HAS_DEBUG_VM_PGTABLE
27	select ARCH_HAS_DMA_OPS if XEN
28	select ARCH_HAS_DMA_PREP_COHERENT
29	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
30	select ARCH_HAS_FAST_MULTIPLIER
31	select ARCH_HAS_FORTIFY_SOURCE
32	select ARCH_HAS_GCOV_PROFILE_ALL
33	select ARCH_HAS_GIGANTIC_PAGE
34	select ARCH_HAS_KCOV
35	select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON
36	select ARCH_HAS_KEEPINITRD
37	select ARCH_HAS_MEMBARRIER_SYNC_CORE
38	select ARCH_HAS_MEM_ENCRYPT
39	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
40	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
41	select ARCH_HAS_NONLEAF_PMD_YOUNG if ARM64_HAFT
42	select ARCH_HAS_PTE_DEVMAP
43	select ARCH_HAS_PTE_SPECIAL
44	select ARCH_HAS_HW_PTE_YOUNG
45	select ARCH_HAS_SETUP_DMA_OPS
46	select ARCH_HAS_SET_DIRECT_MAP
47	select ARCH_HAS_SET_MEMORY
48	select ARCH_HAS_MEM_ENCRYPT
49	select ARCH_HAS_FORCE_DMA_UNENCRYPTED
50	select ARCH_STACKWALK
51	select ARCH_HAS_STRICT_KERNEL_RWX
52	select ARCH_HAS_STRICT_MODULE_RWX
53	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
54	select ARCH_HAS_SYNC_DMA_FOR_CPU
55	select ARCH_HAS_SYSCALL_WRAPPER
56	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
57	select ARCH_HAS_ZONE_DMA_SET if EXPERT
58	select ARCH_HAVE_ELF_PROT
59	select ARCH_HAVE_NMI_SAFE_CMPXCHG
60	select ARCH_HAVE_TRACE_MMIO_ACCESS
61	select ARCH_INLINE_READ_LOCK if !PREEMPTION
62	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
63	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
64	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
65	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
66	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
67	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
68	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
69	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
70	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
71	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
72	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
73	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
74	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
75	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
76	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
77	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
78	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
79	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
80	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
81	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
82	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
83	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
84	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
85	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
86	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
87	select ARCH_KEEP_MEMBLOCK
88	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
89	select ARCH_USE_CMPXCHG_LOCKREF
90	select ARCH_USE_GNU_PROPERTY
91	select ARCH_USE_MEMTEST
92	select ARCH_USE_QUEUED_RWLOCKS
93	select ARCH_USE_QUEUED_SPINLOCKS
94	select ARCH_USE_SYM_ANNOTATIONS
95	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
96	select ARCH_SUPPORTS_HUGETLBFS
97	select ARCH_SUPPORTS_MEMORY_FAILURE
98	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
99	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
100	select ARCH_SUPPORTS_LTO_CLANG_THIN
101	select ARCH_SUPPORTS_CFI_CLANG
102	select ARCH_SUPPORTS_ATOMIC_RMW
103	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
104	select ARCH_SUPPORTS_NUMA_BALANCING
105	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
106	select ARCH_SUPPORTS_PER_VMA_LOCK
107	select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE
108	select ARCH_SUPPORTS_RT
109	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
110	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
111	select ARCH_WANT_DEFAULT_BPF_JIT
112	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
113	select ARCH_WANT_FRAME_POINTERS
114	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
115	select ARCH_WANT_LD_ORPHAN_WARN
116	select ARCH_WANTS_EXECMEM_LATE if EXECMEM
117	select ARCH_WANTS_NO_INSTR
118	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
119	select ARCH_HAS_UBSAN
120	select ARM_AMBA
121	select ARM_ARCH_TIMER
122	select ARM_GIC
123	select AUDIT_ARCH_COMPAT_GENERIC
124	select ARM_GIC_V2M if PCI
125	select ARM_GIC_V3
126	select ARM_GIC_V3_ITS if PCI
127	select ARM_PSCI_FW
128	select BUILDTIME_TABLE_SORT
129	select CLONE_BACKWARDS
130	select COMMON_CLK
131	select CPU_PM if (SUSPEND || CPU_IDLE)
132	select CPUMASK_OFFSTACK if NR_CPUS > 256
133	select CRC32
134	select DCACHE_WORD_ACCESS
135	select DYNAMIC_FTRACE if FUNCTION_TRACER
136	select DMA_BOUNCE_UNALIGNED_KMALLOC
137	select DMA_DIRECT_REMAP
138	select EDAC_SUPPORT
139	select FRAME_POINTER
140	select FUNCTION_ALIGNMENT_4B
141	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
142	select GENERIC_ALLOCATOR
143	select GENERIC_ARCH_TOPOLOGY
144	select GENERIC_CLOCKEVENTS_BROADCAST
145	select GENERIC_CPU_AUTOPROBE
146	select GENERIC_CPU_DEVICES
147	select GENERIC_CPU_VULNERABILITIES
148	select GENERIC_EARLY_IOREMAP
149	select GENERIC_IDLE_POLL_SETUP
150	select GENERIC_IOREMAP
151	select GENERIC_IRQ_IPI
152	select GENERIC_IRQ_PROBE
153	select GENERIC_IRQ_SHOW
154	select GENERIC_IRQ_SHOW_LEVEL
155	select GENERIC_LIB_DEVMEM_IS_ALLOWED
156	select GENERIC_PCI_IOMAP
157	select GENERIC_PTDUMP
158	select GENERIC_SCHED_CLOCK
159	select GENERIC_SMP_IDLE_THREAD
160	select GENERIC_TIME_VSYSCALL
161	select GENERIC_GETTIMEOFDAY
162	select GENERIC_VDSO_TIME_NS
163	select HARDIRQS_SW_RESEND
164	select HAS_IOPORT
165	select HAVE_MOVE_PMD
166	select HAVE_MOVE_PUD
167	select HAVE_PCI
168	select HAVE_ACPI_APEI if (ACPI && EFI)
169	select HAVE_ALIGNED_STRUCT_PAGE
170	select HAVE_ARCH_AUDITSYSCALL
171	select HAVE_ARCH_BITREVERSE
172	select HAVE_ARCH_COMPILER_H
173	select HAVE_ARCH_HUGE_VMALLOC
174	select HAVE_ARCH_HUGE_VMAP
175	select HAVE_ARCH_JUMP_LABEL
176	select HAVE_ARCH_JUMP_LABEL_RELATIVE
177	select HAVE_ARCH_KASAN
178	select HAVE_ARCH_KASAN_VMALLOC
179	select HAVE_ARCH_KASAN_SW_TAGS
180	select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE
181	# Some instrumentation may be unsound, hence EXPERT
182	select HAVE_ARCH_KCSAN if EXPERT
183	select HAVE_ARCH_KFENCE
184	select HAVE_ARCH_KGDB
185	select HAVE_ARCH_MMAP_RND_BITS
186	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
187	select HAVE_ARCH_PREL32_RELOCATIONS
188	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
189	select HAVE_ARCH_SECCOMP_FILTER
190	select HAVE_ARCH_STACKLEAK
191	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
192	select HAVE_ARCH_TRACEHOOK
193	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
194	select HAVE_ARCH_VMAP_STACK
195	select HAVE_ARM_SMCCC
196	select HAVE_ASM_MODVERSIONS
197	select HAVE_EBPF_JIT
198	select HAVE_C_RECORDMCOUNT
199	select HAVE_CMPXCHG_DOUBLE
200	select HAVE_CMPXCHG_LOCAL
201	select HAVE_CONTEXT_TRACKING_USER
202	select HAVE_DEBUG_KMEMLEAK
203	select HAVE_DMA_CONTIGUOUS
204	select HAVE_DYNAMIC_FTRACE
205	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
206		if (GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS || \
207		    CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS)
208	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
209		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
210	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
211		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
212		    (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
213	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
214		if DYNAMIC_FTRACE_WITH_ARGS
215	select HAVE_SAMPLE_FTRACE_DIRECT
216	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
217	select HAVE_EFFICIENT_UNALIGNED_ACCESS
218	select HAVE_GUP_FAST
219	select HAVE_FTRACE_MCOUNT_RECORD
220	select HAVE_FUNCTION_TRACER
221	select HAVE_FUNCTION_ERROR_INJECTION
222	select HAVE_FUNCTION_GRAPH_TRACER
223	select HAVE_FUNCTION_GRAPH_RETVAL
224	select HAVE_GCC_PLUGINS
225	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
226		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
227	select HAVE_HW_BREAKPOINT if PERF_EVENTS
228	select HAVE_IOREMAP_PROT
229	select HAVE_IRQ_TIME_ACCOUNTING
230	select HAVE_MOD_ARCH_SPECIFIC
231	select HAVE_NMI
232	select HAVE_PERF_EVENTS
233	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
234	select HAVE_PERF_REGS
235	select HAVE_PERF_USER_STACK_DUMP
236	select HAVE_PREEMPT_DYNAMIC_KEY
237	select HAVE_REGS_AND_STACK_ACCESS_API
238	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
239	select HAVE_FUNCTION_ARG_ACCESS_API
240	select MMU_GATHER_RCU_TABLE_FREE
241	select HAVE_RSEQ
242	select HAVE_RUST if RUSTC_SUPPORTS_ARM64
243	select HAVE_STACKPROTECTOR
244	select HAVE_SYSCALL_TRACEPOINTS
245	select HAVE_KPROBES
246	select HAVE_KRETPROBES
247	select HAVE_GENERIC_VDSO
248	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
249	select IRQ_DOMAIN
250	select IRQ_FORCED_THREADING
251	select KASAN_VMALLOC if KASAN
252	select LOCK_MM_AND_FIND_VMA
253	select MODULES_USE_ELF_RELA
254	select NEED_DMA_MAP_STATE
255	select NEED_SG_DMA_LENGTH
256	select OF
257	select OF_EARLY_FLATTREE
258	select PCI_DOMAINS_GENERIC if PCI
259	select PCI_ECAM if (ACPI && PCI)
260	select PCI_SYSCALL if PCI
261	select POWER_RESET
262	select POWER_SUPPLY
263	select SPARSE_IRQ
264	select SWIOTLB
265	select SYSCTL_EXCEPTION_TRACE
266	select THREAD_INFO_IN_TASK
267	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
268	select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD
269	select TRACE_IRQFLAGS_SUPPORT
270	select TRACE_IRQFLAGS_NMI_SUPPORT
271	select HAVE_SOFTIRQ_ON_OWN_STACK
272	select USER_STACKTRACE_SUPPORT
273	select VDSO_GETRANDOM
274	help
275	  ARM 64-bit (AArch64) Linux support.
276
277config RUSTC_SUPPORTS_ARM64
278	def_bool y
279	depends on CPU_LITTLE_ENDIAN
280	# Shadow call stack is only supported on certain rustc versions.
281	#
282	# When using the UNWIND_PATCH_PAC_INTO_SCS option, rustc version 1.80+ is
283	# required due to use of the -Zfixed-x18 flag.
284	#
285	# Otherwise, rustc version 1.82+ is required due to use of the
286	# -Zsanitizer=shadow-call-stack flag.
287	depends on !SHADOW_CALL_STACK || RUSTC_VERSION >= 108200 || RUSTC_VERSION >= 108000 && UNWIND_PATCH_PAC_INTO_SCS
288
289config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
290	def_bool CC_IS_CLANG
291	# https://github.com/ClangBuiltLinux/linux/issues/1507
292	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
293
294config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
295	def_bool CC_IS_GCC
296	depends on $(cc-option,-fpatchable-function-entry=2)
297
298config 64BIT
299	def_bool y
300
301config MMU
302	def_bool y
303
304config ARM64_CONT_PTE_SHIFT
305	int
306	default 5 if PAGE_SIZE_64KB
307	default 7 if PAGE_SIZE_16KB
308	default 4
309
310config ARM64_CONT_PMD_SHIFT
311	int
312	default 5 if PAGE_SIZE_64KB
313	default 5 if PAGE_SIZE_16KB
314	default 4
315
316config ARCH_MMAP_RND_BITS_MIN
317	default 14 if PAGE_SIZE_64KB
318	default 16 if PAGE_SIZE_16KB
319	default 18
320
321# max bits determined by the following formula:
322#  VA_BITS - PAGE_SHIFT - 3
323config ARCH_MMAP_RND_BITS_MAX
324	default 19 if ARM64_VA_BITS=36
325	default 24 if ARM64_VA_BITS=39
326	default 27 if ARM64_VA_BITS=42
327	default 30 if ARM64_VA_BITS=47
328	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
329	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
330	default 33 if ARM64_VA_BITS=48
331	default 14 if ARM64_64K_PAGES
332	default 16 if ARM64_16K_PAGES
333	default 18
334
335config ARCH_MMAP_RND_COMPAT_BITS_MIN
336	default 7 if ARM64_64K_PAGES
337	default 9 if ARM64_16K_PAGES
338	default 11
339
340config ARCH_MMAP_RND_COMPAT_BITS_MAX
341	default 16
342
343config NO_IOPORT_MAP
344	def_bool y if !PCI
345
346config STACKTRACE_SUPPORT
347	def_bool y
348
349config ILLEGAL_POINTER_VALUE
350	hex
351	default 0xdead000000000000
352
353config LOCKDEP_SUPPORT
354	def_bool y
355
356config GENERIC_BUG
357	def_bool y
358	depends on BUG
359
360config GENERIC_BUG_RELATIVE_POINTERS
361	def_bool y
362	depends on GENERIC_BUG
363
364config GENERIC_HWEIGHT
365	def_bool y
366
367config GENERIC_CSUM
368	def_bool y
369
370config GENERIC_CALIBRATE_DELAY
371	def_bool y
372
373config SMP
374	def_bool y
375
376config KERNEL_MODE_NEON
377	def_bool y
378
379config FIX_EARLYCON_MEM
380	def_bool y
381
382config PGTABLE_LEVELS
383	int
384	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
385	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
386	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
387	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
388	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
389	default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
390	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
391	default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
392
393config ARCH_SUPPORTS_UPROBES
394	def_bool y
395
396config ARCH_PROC_KCORE_TEXT
397	def_bool y
398
399config BROKEN_GAS_INST
400	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
401
402config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
403	bool
404	# Clang's __builtin_return_address() strips the PAC since 12.0.0
405	# https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
406	default y if CC_IS_CLANG
407	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
408	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
409	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
410	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
411	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
412	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
413	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
414	default n
415
416config KASAN_SHADOW_OFFSET
417	hex
418	depends on KASAN_GENERIC || KASAN_SW_TAGS
419	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
420	default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
421	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
422	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
423	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
424	default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
425	default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
426	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
427	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
428	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
429	default 0xffffffffffffffff
430
431config UNWIND_TABLES
432	bool
433
434source "arch/arm64/Kconfig.platforms"
435
436menu "Kernel Features"
437
438menu "ARM errata workarounds via the alternatives framework"
439
440config AMPERE_ERRATUM_AC03_CPU_38
441        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
442	default y
443	help
444	  This option adds an alternative code sequence to work around Ampere
445	  errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne.
446
447	  The affected design reports FEAT_HAFDBS as not implemented in
448	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
449	  as required by the architecture. The unadvertised HAFDBS
450	  implementation suffers from an additional erratum where hardware
451	  A/D updates can occur after a PTE has been marked invalid.
452
453	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
454	  which avoids enabling unadvertised hardware Access Flag management
455	  at stage-2.
456
457	  If unsure, say Y.
458
459config ARM64_WORKAROUND_CLEAN_CACHE
460	bool
461
462config ARM64_ERRATUM_826319
463	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
464	default y
465	select ARM64_WORKAROUND_CLEAN_CACHE
466	help
467	  This option adds an alternative code sequence to work around ARM
468	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
469	  AXI master interface and an L2 cache.
470
471	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
472	  and is unable to accept a certain write via this interface, it will
473	  not progress on read data presented on the read data channel and the
474	  system can deadlock.
475
476	  The workaround promotes data cache clean instructions to
477	  data cache clean-and-invalidate.
478	  Please note that this does not necessarily enable the workaround,
479	  as it depends on the alternative framework, which will only patch
480	  the kernel if an affected CPU is detected.
481
482	  If unsure, say Y.
483
484config ARM64_ERRATUM_827319
485	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
486	default y
487	select ARM64_WORKAROUND_CLEAN_CACHE
488	help
489	  This option adds an alternative code sequence to work around ARM
490	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
491	  master interface and an L2 cache.
492
493	  Under certain conditions this erratum can cause a clean line eviction
494	  to occur at the same time as another transaction to the same address
495	  on the AMBA 5 CHI interface, which can cause data corruption if the
496	  interconnect reorders the two transactions.
497
498	  The workaround promotes data cache clean instructions to
499	  data cache clean-and-invalidate.
500	  Please note that this does not necessarily enable the workaround,
501	  as it depends on the alternative framework, which will only patch
502	  the kernel if an affected CPU is detected.
503
504	  If unsure, say Y.
505
506config ARM64_ERRATUM_824069
507	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
508	default y
509	select ARM64_WORKAROUND_CLEAN_CACHE
510	help
511	  This option adds an alternative code sequence to work around ARM
512	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
513	  to a coherent interconnect.
514
515	  If a Cortex-A53 processor is executing a store or prefetch for
516	  write instruction at the same time as a processor in another
517	  cluster is executing a cache maintenance operation to the same
518	  address, then this erratum might cause a clean cache line to be
519	  incorrectly marked as dirty.
520
521	  The workaround promotes data cache clean instructions to
522	  data cache clean-and-invalidate.
523	  Please note that this option does not necessarily enable the
524	  workaround, as it depends on the alternative framework, which will
525	  only patch the kernel if an affected CPU is detected.
526
527	  If unsure, say Y.
528
529config ARM64_ERRATUM_819472
530	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
531	default y
532	select ARM64_WORKAROUND_CLEAN_CACHE
533	help
534	  This option adds an alternative code sequence to work around ARM
535	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
536	  present when it is connected to a coherent interconnect.
537
538	  If the processor is executing a load and store exclusive sequence at
539	  the same time as a processor in another cluster is executing a cache
540	  maintenance operation to the same address, then this erratum might
541	  cause data corruption.
542
543	  The workaround promotes data cache clean instructions to
544	  data cache clean-and-invalidate.
545	  Please note that this does not necessarily enable the workaround,
546	  as it depends on the alternative framework, which will only patch
547	  the kernel if an affected CPU is detected.
548
549	  If unsure, say Y.
550
551config ARM64_ERRATUM_832075
552	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
553	default y
554	help
555	  This option adds an alternative code sequence to work around ARM
556	  erratum 832075 on Cortex-A57 parts up to r1p2.
557
558	  Affected Cortex-A57 parts might deadlock when exclusive load/store
559	  instructions to Write-Back memory are mixed with Device loads.
560
561	  The workaround is to promote device loads to use Load-Acquire
562	  semantics.
563	  Please note that this does not necessarily enable the workaround,
564	  as it depends on the alternative framework, which will only patch
565	  the kernel if an affected CPU is detected.
566
567	  If unsure, say Y.
568
569config ARM64_ERRATUM_834220
570	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
571	depends on KVM
572	help
573	  This option adds an alternative code sequence to work around ARM
574	  erratum 834220 on Cortex-A57 parts up to r1p2.
575
576	  Affected Cortex-A57 parts might report a Stage 2 translation
577	  fault as the result of a Stage 1 fault for load crossing a
578	  page boundary when there is a permission or device memory
579	  alignment fault at Stage 1 and a translation fault at Stage 2.
580
581	  The workaround is to verify that the Stage 1 translation
582	  doesn't generate a fault before handling the Stage 2 fault.
583	  Please note that this does not necessarily enable the workaround,
584	  as it depends on the alternative framework, which will only patch
585	  the kernel if an affected CPU is detected.
586
587	  If unsure, say N.
588
589config ARM64_ERRATUM_1742098
590	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
591	depends on COMPAT
592	default y
593	help
594	  This option removes the AES hwcap for aarch32 user-space to
595	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
596
597	  Affected parts may corrupt the AES state if an interrupt is
598	  taken between a pair of AES instructions. These instructions
599	  are only present if the cryptography extensions are present.
600	  All software should have a fallback implementation for CPUs
601	  that don't implement the cryptography extensions.
602
603	  If unsure, say Y.
604
605config ARM64_ERRATUM_845719
606	bool "Cortex-A53: 845719: a load might read incorrect data"
607	depends on COMPAT
608	default y
609	help
610	  This option adds an alternative code sequence to work around ARM
611	  erratum 845719 on Cortex-A53 parts up to r0p4.
612
613	  When running a compat (AArch32) userspace on an affected Cortex-A53
614	  part, a load at EL0 from a virtual address that matches the bottom 32
615	  bits of the virtual address used by a recent load at (AArch64) EL1
616	  might return incorrect data.
617
618	  The workaround is to write the contextidr_el1 register on exception
619	  return to a 32-bit task.
620	  Please note that this does not necessarily enable the workaround,
621	  as it depends on the alternative framework, which will only patch
622	  the kernel if an affected CPU is detected.
623
624	  If unsure, say Y.
625
626config ARM64_ERRATUM_843419
627	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
628	default y
629	help
630	  This option links the kernel with '--fix-cortex-a53-843419' and
631	  enables PLT support to replace certain ADRP instructions, which can
632	  cause subsequent memory accesses to use an incorrect address on
633	  Cortex-A53 parts up to r0p4.
634
635	  If unsure, say Y.
636
637config ARM64_LD_HAS_FIX_ERRATUM_843419
638	def_bool $(ld-option,--fix-cortex-a53-843419)
639
640config ARM64_ERRATUM_1024718
641	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
642	default y
643	help
644	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
645
646	  Affected Cortex-A55 cores (all revisions) could cause incorrect
647	  update of the hardware dirty bit when the DBM/AP bits are updated
648	  without a break-before-make. The workaround is to disable the usage
649	  of hardware DBM locally on the affected cores. CPUs not affected by
650	  this erratum will continue to use the feature.
651
652	  If unsure, say Y.
653
654config ARM64_ERRATUM_1418040
655	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
656	default y
657	depends on COMPAT
658	help
659	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
660	  errata 1188873 and 1418040.
661
662	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
663	  cause register corruption when accessing the timer registers
664	  from AArch32 userspace.
665
666	  If unsure, say Y.
667
668config ARM64_WORKAROUND_SPECULATIVE_AT
669	bool
670
671config ARM64_ERRATUM_1165522
672	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
673	default y
674	select ARM64_WORKAROUND_SPECULATIVE_AT
675	help
676	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
677
678	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
679	  corrupted TLBs by speculating an AT instruction during a guest
680	  context switch.
681
682	  If unsure, say Y.
683
684config ARM64_ERRATUM_1319367
685	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
686	default y
687	select ARM64_WORKAROUND_SPECULATIVE_AT
688	help
689	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
690	  and A72 erratum 1319367
691
692	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
693	  speculating an AT instruction during a guest context switch.
694
695	  If unsure, say Y.
696
697config ARM64_ERRATUM_1530923
698	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
699	default y
700	select ARM64_WORKAROUND_SPECULATIVE_AT
701	help
702	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
703
704	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
705	  corrupted TLBs by speculating an AT instruction during a guest
706	  context switch.
707
708	  If unsure, say Y.
709
710config ARM64_WORKAROUND_REPEAT_TLBI
711	bool
712
713config ARM64_ERRATUM_2441007
714	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
715	select ARM64_WORKAROUND_REPEAT_TLBI
716	help
717	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
718
719	  Under very rare circumstances, affected Cortex-A55 CPUs
720	  may not handle a race between a break-before-make sequence on one
721	  CPU, and another CPU accessing the same page. This could allow a
722	  store to a page that has been unmapped.
723
724	  Work around this by adding the affected CPUs to the list that needs
725	  TLB sequences to be done twice.
726
727	  If unsure, say N.
728
729config ARM64_ERRATUM_1286807
730	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
731	select ARM64_WORKAROUND_REPEAT_TLBI
732	help
733	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
734
735	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
736	  address for a cacheable mapping of a location is being
737	  accessed by a core while another core is remapping the virtual
738	  address to a new physical page using the recommended
739	  break-before-make sequence, then under very rare circumstances
740	  TLBI+DSB completes before a read using the translation being
741	  invalidated has been observed by other observers. The
742	  workaround repeats the TLBI+DSB operation.
743
744	  If unsure, say N.
745
746config ARM64_ERRATUM_1463225
747	bool "Cortex-A76: Software Step might prevent interrupt recognition"
748	default y
749	help
750	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
751
752	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
753	  of a system call instruction (SVC) can prevent recognition of
754	  subsequent interrupts when software stepping is disabled in the
755	  exception handler of the system call and either kernel debugging
756	  is enabled or VHE is in use.
757
758	  Work around the erratum by triggering a dummy step exception
759	  when handling a system call from a task that is being stepped
760	  in a VHE configuration of the kernel.
761
762	  If unsure, say Y.
763
764config ARM64_ERRATUM_1542419
765	bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
766	help
767	  This option adds a workaround for ARM Neoverse-N1 erratum
768	  1542419.
769
770	  Affected Neoverse-N1 cores could execute a stale instruction when
771	  modified by another CPU. The workaround depends on a firmware
772	  counterpart.
773
774	  Workaround the issue by hiding the DIC feature from EL0. This
775	  forces user-space to perform cache maintenance.
776
777	  If unsure, say N.
778
779config ARM64_ERRATUM_1508412
780	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
781	default y
782	help
783	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
784
785	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
786	  of a store-exclusive or read of PAR_EL1 and a load with device or
787	  non-cacheable memory attributes. The workaround depends on a firmware
788	  counterpart.
789
790	  KVM guests must also have the workaround implemented or they can
791	  deadlock the system.
792
793	  Work around the issue by inserting DMB SY barriers around PAR_EL1
794	  register reads and warning KVM users. The DMB barrier is sufficient
795	  to prevent a speculative PAR_EL1 read.
796
797	  If unsure, say Y.
798
799config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
800	bool
801
802config ARM64_ERRATUM_2051678
803	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
804	default y
805	help
806	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
807	  Affected Cortex-A510 might not respect the ordering rules for
808	  hardware update of the page table's dirty bit. The workaround
809	  is to not enable the feature on affected CPUs.
810
811	  If unsure, say Y.
812
813config ARM64_ERRATUM_2077057
814	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
815	default y
816	help
817	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
818	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
819	  expected, but a Pointer Authentication trap is taken instead. The
820	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
821	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
822
823	  This can only happen when EL2 is stepping EL1.
824
825	  When these conditions occur, the SPSR_EL2 value is unchanged from the
826	  previous guest entry, and can be restored from the in-memory copy.
827
828	  If unsure, say Y.
829
830config ARM64_ERRATUM_2658417
831	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
832	default y
833	help
834	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
835	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
836	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
837	  A510 CPUs are using shared neon hardware. As the sharing is not
838	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
839	  user-space should not be using these instructions.
840
841	  If unsure, say Y.
842
843config ARM64_ERRATUM_2119858
844	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
845	default y
846	depends on CORESIGHT_TRBE
847	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
848	help
849	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
850
851	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
852	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
853	  the event of a WRAP event.
854
855	  Work around the issue by always making sure we move the TRBPTR_EL1 by
856	  256 bytes before enabling the buffer and filling the first 256 bytes of
857	  the buffer with ETM ignore packets upon disabling.
858
859	  If unsure, say Y.
860
861config ARM64_ERRATUM_2139208
862	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
863	default y
864	depends on CORESIGHT_TRBE
865	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
866	help
867	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
868
869	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
870	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
871	  the event of a WRAP event.
872
873	  Work around the issue by always making sure we move the TRBPTR_EL1 by
874	  256 bytes before enabling the buffer and filling the first 256 bytes of
875	  the buffer with ETM ignore packets upon disabling.
876
877	  If unsure, say Y.
878
879config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
880	bool
881
882config ARM64_ERRATUM_2054223
883	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
884	default y
885	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
886	help
887	  Enable workaround for ARM Cortex-A710 erratum 2054223
888
889	  Affected cores may fail to flush the trace data on a TSB instruction, when
890	  the PE is in trace prohibited state. This will cause losing a few bytes
891	  of the trace cached.
892
893	  Workaround is to issue two TSB consecutively on affected cores.
894
895	  If unsure, say Y.
896
897config ARM64_ERRATUM_2067961
898	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
899	default y
900	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
901	help
902	  Enable workaround for ARM Neoverse-N2 erratum 2067961
903
904	  Affected cores may fail to flush the trace data on a TSB instruction, when
905	  the PE is in trace prohibited state. This will cause losing a few bytes
906	  of the trace cached.
907
908	  Workaround is to issue two TSB consecutively on affected cores.
909
910	  If unsure, say Y.
911
912config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
913	bool
914
915config ARM64_ERRATUM_2253138
916	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
917	depends on CORESIGHT_TRBE
918	default y
919	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
920	help
921	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
922
923	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
924	  for TRBE. Under some conditions, the TRBE might generate a write to the next
925	  virtually addressed page following the last page of the TRBE address space
926	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
927
928	  Work around this in the driver by always making sure that there is a
929	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
930
931	  If unsure, say Y.
932
933config ARM64_ERRATUM_2224489
934	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
935	depends on CORESIGHT_TRBE
936	default y
937	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
938	help
939	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
940
941	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
942	  for TRBE. Under some conditions, the TRBE might generate a write to the next
943	  virtually addressed page following the last page of the TRBE address space
944	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
945
946	  Work around this in the driver by always making sure that there is a
947	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
948
949	  If unsure, say Y.
950
951config ARM64_ERRATUM_2441009
952	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
953	select ARM64_WORKAROUND_REPEAT_TLBI
954	help
955	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
956
957	  Under very rare circumstances, affected Cortex-A510 CPUs
958	  may not handle a race between a break-before-make sequence on one
959	  CPU, and another CPU accessing the same page. This could allow a
960	  store to a page that has been unmapped.
961
962	  Work around this by adding the affected CPUs to the list that needs
963	  TLB sequences to be done twice.
964
965	  If unsure, say N.
966
967config ARM64_ERRATUM_2064142
968	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
969	depends on CORESIGHT_TRBE
970	default y
971	help
972	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
973
974	  Affected Cortex-A510 core might fail to write into system registers after the
975	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
976	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
977	  and TRBTRG_EL1 will be ignored and will not be effected.
978
979	  Work around this in the driver by executing TSB CSYNC and DSB after collection
980	  is stopped and before performing a system register write to one of the affected
981	  registers.
982
983	  If unsure, say Y.
984
985config ARM64_ERRATUM_2038923
986	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
987	depends on CORESIGHT_TRBE
988	default y
989	help
990	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
991
992	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
993	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
994	  might be corrupted. This happens after TRBE buffer has been enabled by setting
995	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
996	  execution changes from a context, in which trace is prohibited to one where it
997	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
998	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
999	  the trace buffer state might be corrupted.
1000
1001	  Work around this in the driver by preventing an inconsistent view of whether the
1002	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
1003	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
1004	  two ISB instructions if no ERET is to take place.
1005
1006	  If unsure, say Y.
1007
1008config ARM64_ERRATUM_1902691
1009	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
1010	depends on CORESIGHT_TRBE
1011	default y
1012	help
1013	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
1014
1015	  Affected Cortex-A510 core might cause trace data corruption, when being written
1016	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
1017	  trace data.
1018
1019	  Work around this problem in the driver by just preventing TRBE initialization on
1020	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
1021	  on such implementations. This will cover the kernel for any firmware that doesn't
1022	  do this already.
1023
1024	  If unsure, say Y.
1025
1026config ARM64_ERRATUM_2457168
1027	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1028	depends on ARM64_AMU_EXTN
1029	default y
1030	help
1031	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1032
1033	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1034	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1035	  incorrectly giving a significantly higher output value.
1036
1037	  Work around this problem by returning 0 when reading the affected counter in
1038	  key locations that results in disabling all users of this counter. This effect
1039	  is the same to firmware disabling affected counters.
1040
1041	  If unsure, say Y.
1042
1043config ARM64_ERRATUM_2645198
1044	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1045	default y
1046	help
1047	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1048
1049	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1050	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1051	  next instruction abort caused by permission fault.
1052
1053	  Only user-space does executable to non-executable permission transition via
1054	  mprotect() system call. Workaround the problem by doing a break-before-make
1055	  TLB invalidation, for all changes to executable user space mappings.
1056
1057	  If unsure, say Y.
1058
1059config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1060	bool
1061
1062config ARM64_ERRATUM_2966298
1063	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1064	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1065	default y
1066	help
1067	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1068
1069	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1070	  load might leak data from a privileged level via a cache side channel.
1071
1072	  Work around this problem by executing a TLBI before returning to EL0.
1073
1074	  If unsure, say Y.
1075
1076config ARM64_ERRATUM_3117295
1077	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1078	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1079	default y
1080	help
1081	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1082
1083	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1084	  load might leak data from a privileged level via a cache side channel.
1085
1086	  Work around this problem by executing a TLBI before returning to EL0.
1087
1088	  If unsure, say Y.
1089
1090config ARM64_ERRATUM_3194386
1091	bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing"
1092	default y
1093	help
1094	  This option adds the workaround for the following errata:
1095
1096	  * ARM Cortex-A76 erratum 3324349
1097	  * ARM Cortex-A77 erratum 3324348
1098	  * ARM Cortex-A78 erratum 3324344
1099	  * ARM Cortex-A78C erratum 3324346
1100	  * ARM Cortex-A78C erratum 3324347
1101	  * ARM Cortex-A710 erratam 3324338
1102	  * ARM Cortex-A715 errartum 3456084
1103	  * ARM Cortex-A720 erratum 3456091
1104	  * ARM Cortex-A725 erratum 3456106
1105	  * ARM Cortex-X1 erratum 3324344
1106	  * ARM Cortex-X1C erratum 3324346
1107	  * ARM Cortex-X2 erratum 3324338
1108	  * ARM Cortex-X3 erratum 3324335
1109	  * ARM Cortex-X4 erratum 3194386
1110	  * ARM Cortex-X925 erratum 3324334
1111	  * ARM Neoverse-N1 erratum 3324349
1112	  * ARM Neoverse N2 erratum 3324339
1113	  * ARM Neoverse-N3 erratum 3456111
1114	  * ARM Neoverse-V1 erratum 3324341
1115	  * ARM Neoverse V2 erratum 3324336
1116	  * ARM Neoverse-V3 erratum 3312417
1117
1118	  On affected cores "MSR SSBS, #0" instructions may not affect
1119	  subsequent speculative instructions, which may permit unexepected
1120	  speculative store bypassing.
1121
1122	  Work around this problem by placing a Speculation Barrier (SB) or
1123	  Instruction Synchronization Barrier (ISB) after kernel changes to
1124	  SSBS. The presence of the SSBS special-purpose register is hidden
1125	  from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace
1126	  will use the PR_SPEC_STORE_BYPASS prctl to change SSBS.
1127
1128	  If unsure, say Y.
1129
1130config CAVIUM_ERRATUM_22375
1131	bool "Cavium erratum 22375, 24313"
1132	default y
1133	help
1134	  Enable workaround for errata 22375 and 24313.
1135
1136	  This implements two gicv3-its errata workarounds for ThunderX. Both
1137	  with a small impact affecting only ITS table allocation.
1138
1139	    erratum 22375: only alloc 8MB table size
1140	    erratum 24313: ignore memory access type
1141
1142	  The fixes are in ITS initialization and basically ignore memory access
1143	  type and table size provided by the TYPER and BASER registers.
1144
1145	  If unsure, say Y.
1146
1147config CAVIUM_ERRATUM_23144
1148	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1149	depends on NUMA
1150	default y
1151	help
1152	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1153
1154	  If unsure, say Y.
1155
1156config CAVIUM_ERRATUM_23154
1157	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1158	default y
1159	help
1160	  The ThunderX GICv3 implementation requires a modified version for
1161	  reading the IAR status to ensure data synchronization
1162	  (access to icc_iar1_el1 is not sync'ed before and after).
1163
1164	  It also suffers from erratum 38545 (also present on Marvell's
1165	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1166	  spuriously presented to the CPU interface.
1167
1168	  If unsure, say Y.
1169
1170config CAVIUM_ERRATUM_27456
1171	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1172	default y
1173	help
1174	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1175	  instructions may cause the icache to become corrupted if it
1176	  contains data for a non-current ASID.  The fix is to
1177	  invalidate the icache when changing the mm context.
1178
1179	  If unsure, say Y.
1180
1181config CAVIUM_ERRATUM_30115
1182	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1183	default y
1184	help
1185	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1186	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1187	  interrupts in host. Trapping both GICv3 group-0 and group-1
1188	  accesses sidesteps the issue.
1189
1190	  If unsure, say Y.
1191
1192config CAVIUM_TX2_ERRATUM_219
1193	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1194	default y
1195	help
1196	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1197	  TTBR update and the corresponding context synchronizing operation can
1198	  cause a spurious Data Abort to be delivered to any hardware thread in
1199	  the CPU core.
1200
1201	  Work around the issue by avoiding the problematic code sequence and
1202	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1203	  trap handler performs the corresponding register access, skips the
1204	  instruction and ensures context synchronization by virtue of the
1205	  exception return.
1206
1207	  If unsure, say Y.
1208
1209config FUJITSU_ERRATUM_010001
1210	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1211	default y
1212	help
1213	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1214	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1215	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1216	  This fault occurs under a specific hardware condition when a
1217	  load/store instruction performs an address translation using:
1218	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1219	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1220	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1221	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1222
1223	  The workaround is to ensure these bits are clear in TCR_ELx.
1224	  The workaround only affects the Fujitsu-A64FX.
1225
1226	  If unsure, say Y.
1227
1228config HISILICON_ERRATUM_161600802
1229	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1230	default y
1231	help
1232	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1233	  when issued ITS commands such as VMOVP and VMAPP, and requires
1234	  a 128kB offset to be applied to the target address in this commands.
1235
1236	  If unsure, say Y.
1237
1238config HISILICON_ERRATUM_162100801
1239	bool "Hip09 162100801 erratum support"
1240	default y
1241	help
1242	  When enabling GICv4.1 in hip09, VMAPP will fail to clear some caches
1243	  during unmapping operation, which will cause some vSGIs lost.
1244	  To fix the issue, invalidate related vPE cache through GICR_INVALLR
1245	  after VMOVP.
1246
1247	  If unsure, say Y.
1248
1249config QCOM_FALKOR_ERRATUM_1003
1250	bool "Falkor E1003: Incorrect translation due to ASID change"
1251	default y
1252	help
1253	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1254	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1255	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1256	  then only for entries in the walk cache, since the leaf translation
1257	  is unchanged. Work around the erratum by invalidating the walk cache
1258	  entries for the trampoline before entering the kernel proper.
1259
1260config QCOM_FALKOR_ERRATUM_1009
1261	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1262	default y
1263	select ARM64_WORKAROUND_REPEAT_TLBI
1264	help
1265	  On Falkor v1, the CPU may prematurely complete a DSB following a
1266	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1267	  one more time to fix the issue.
1268
1269	  If unsure, say Y.
1270
1271config QCOM_QDF2400_ERRATUM_0065
1272	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1273	default y
1274	help
1275	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1276	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1277	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1278
1279	  If unsure, say Y.
1280
1281config QCOM_FALKOR_ERRATUM_E1041
1282	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1283	default y
1284	help
1285	  Falkor CPU may speculatively fetch instructions from an improper
1286	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1287	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1288
1289	  If unsure, say Y.
1290
1291config NVIDIA_CARMEL_CNP_ERRATUM
1292	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1293	default y
1294	help
1295	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1296	  invalidate shared TLB entries installed by a different core, as it would
1297	  on standard ARM cores.
1298
1299	  If unsure, say Y.
1300
1301config ROCKCHIP_ERRATUM_3588001
1302	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1303	default y
1304	help
1305	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1306	  This means, that its sharability feature may not be used, even though it
1307	  is supported by the IP itself.
1308
1309	  If unsure, say Y.
1310
1311config SOCIONEXT_SYNQUACER_PREITS
1312	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1313	default y
1314	help
1315	  Socionext Synquacer SoCs implement a separate h/w block to generate
1316	  MSI doorbell writes with non-zero values for the device ID.
1317
1318	  If unsure, say Y.
1319
1320endmenu # "ARM errata workarounds via the alternatives framework"
1321
1322choice
1323	prompt "Page size"
1324	default ARM64_4K_PAGES
1325	help
1326	  Page size (translation granule) configuration.
1327
1328config ARM64_4K_PAGES
1329	bool "4KB"
1330	select HAVE_PAGE_SIZE_4KB
1331	help
1332	  This feature enables 4KB pages support.
1333
1334config ARM64_16K_PAGES
1335	bool "16KB"
1336	select HAVE_PAGE_SIZE_16KB
1337	help
1338	  The system will use 16KB pages support. AArch32 emulation
1339	  requires applications compiled with 16K (or a multiple of 16K)
1340	  aligned segments.
1341
1342config ARM64_64K_PAGES
1343	bool "64KB"
1344	select HAVE_PAGE_SIZE_64KB
1345	help
1346	  This feature enables 64KB pages support (4KB by default)
1347	  allowing only two levels of page tables and faster TLB
1348	  look-up. AArch32 emulation requires applications compiled
1349	  with 64K aligned segments.
1350
1351endchoice
1352
1353choice
1354	prompt "Virtual address space size"
1355	default ARM64_VA_BITS_52
1356	help
1357	  Allows choosing one of multiple possible virtual address
1358	  space sizes. The level of translation table is determined by
1359	  a combination of page size and virtual address space size.
1360
1361config ARM64_VA_BITS_36
1362	bool "36-bit" if EXPERT
1363	depends on PAGE_SIZE_16KB
1364
1365config ARM64_VA_BITS_39
1366	bool "39-bit"
1367	depends on PAGE_SIZE_4KB
1368
1369config ARM64_VA_BITS_42
1370	bool "42-bit"
1371	depends on PAGE_SIZE_64KB
1372
1373config ARM64_VA_BITS_47
1374	bool "47-bit"
1375	depends on PAGE_SIZE_16KB
1376
1377config ARM64_VA_BITS_48
1378	bool "48-bit"
1379
1380config ARM64_VA_BITS_52
1381	bool "52-bit"
1382	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1383	help
1384	  Enable 52-bit virtual addressing for userspace when explicitly
1385	  requested via a hint to mmap(). The kernel will also use 52-bit
1386	  virtual addresses for its own mappings (provided HW support for
1387	  this feature is available, otherwise it reverts to 48-bit).
1388
1389	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1390	  ARMv8.3 Pointer Authentication will result in the PAC being
1391	  reduced from 7 bits to 3 bits, which may have a significant
1392	  impact on its susceptibility to brute-force attacks.
1393
1394	  If unsure, select 48-bit virtual addressing instead.
1395
1396endchoice
1397
1398config ARM64_FORCE_52BIT
1399	bool "Force 52-bit virtual addresses for userspace"
1400	depends on ARM64_VA_BITS_52 && EXPERT
1401	help
1402	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1403	  to maintain compatibility with older software by providing 48-bit VAs
1404	  unless a hint is supplied to mmap.
1405
1406	  This configuration option disables the 48-bit compatibility logic, and
1407	  forces all userspace addresses to be 52-bit on HW that supports it. One
1408	  should only enable this configuration option for stress testing userspace
1409	  memory management code. If unsure say N here.
1410
1411config ARM64_VA_BITS
1412	int
1413	default 36 if ARM64_VA_BITS_36
1414	default 39 if ARM64_VA_BITS_39
1415	default 42 if ARM64_VA_BITS_42
1416	default 47 if ARM64_VA_BITS_47
1417	default 48 if ARM64_VA_BITS_48
1418	default 52 if ARM64_VA_BITS_52
1419
1420choice
1421	prompt "Physical address space size"
1422	default ARM64_PA_BITS_48
1423	help
1424	  Choose the maximum physical address range that the kernel will
1425	  support.
1426
1427config ARM64_PA_BITS_48
1428	bool "48-bit"
1429	depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1430
1431config ARM64_PA_BITS_52
1432	bool "52-bit"
1433	depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1434	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1435	help
1436	  Enable support for a 52-bit physical address space, introduced as
1437	  part of the ARMv8.2-LPA extension.
1438
1439	  With this enabled, the kernel will also continue to work on CPUs that
1440	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1441	  minor performance overhead).
1442
1443endchoice
1444
1445config ARM64_PA_BITS
1446	int
1447	default 48 if ARM64_PA_BITS_48
1448	default 52 if ARM64_PA_BITS_52
1449
1450config ARM64_LPA2
1451	def_bool y
1452	depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1453
1454choice
1455	prompt "Endianness"
1456	default CPU_LITTLE_ENDIAN
1457	help
1458	  Select the endianness of data accesses performed by the CPU. Userspace
1459	  applications will need to be compiled and linked for the endianness
1460	  that is selected here.
1461
1462config CPU_BIG_ENDIAN
1463	bool "Build big-endian kernel"
1464	# https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1465	depends on AS_IS_GNU || AS_VERSION >= 150000
1466	help
1467	  Say Y if you plan on running a kernel with a big-endian userspace.
1468
1469config CPU_LITTLE_ENDIAN
1470	bool "Build little-endian kernel"
1471	help
1472	  Say Y if you plan on running a kernel with a little-endian userspace.
1473	  This is usually the case for distributions targeting arm64.
1474
1475endchoice
1476
1477config SCHED_MC
1478	bool "Multi-core scheduler support"
1479	help
1480	  Multi-core scheduler support improves the CPU scheduler's decision
1481	  making when dealing with multi-core CPU chips at a cost of slightly
1482	  increased overhead in some places. If unsure say N here.
1483
1484config SCHED_CLUSTER
1485	bool "Cluster scheduler support"
1486	help
1487	  Cluster scheduler support improves the CPU scheduler's decision
1488	  making when dealing with machines that have clusters of CPUs.
1489	  Cluster usually means a couple of CPUs which are placed closely
1490	  by sharing mid-level caches, last-level cache tags or internal
1491	  busses.
1492
1493config SCHED_SMT
1494	bool "SMT scheduler support"
1495	help
1496	  Improves the CPU scheduler's decision making when dealing with
1497	  MultiThreading at a cost of slightly increased overhead in some
1498	  places. If unsure say N here.
1499
1500config NR_CPUS
1501	int "Maximum number of CPUs (2-4096)"
1502	range 2 4096
1503	default "512"
1504
1505config HOTPLUG_CPU
1506	bool "Support for hot-pluggable CPUs"
1507	select GENERIC_IRQ_MIGRATION
1508	help
1509	  Say Y here to experiment with turning CPUs off and on.  CPUs
1510	  can be controlled through /sys/devices/system/cpu.
1511
1512# Common NUMA Features
1513config NUMA
1514	bool "NUMA Memory Allocation and Scheduler Support"
1515	select GENERIC_ARCH_NUMA
1516	select OF_NUMA
1517	select HAVE_SETUP_PER_CPU_AREA
1518	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1519	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1520	select USE_PERCPU_NUMA_NODE_ID
1521	help
1522	  Enable NUMA (Non-Uniform Memory Access) support.
1523
1524	  The kernel will try to allocate memory used by a CPU on the
1525	  local memory of the CPU and add some more
1526	  NUMA awareness to the kernel.
1527
1528config NODES_SHIFT
1529	int "Maximum NUMA Nodes (as a power of 2)"
1530	range 1 10
1531	default "4"
1532	depends on NUMA
1533	help
1534	  Specify the maximum number of NUMA Nodes available on the target
1535	  system.  Increases memory reserved to accommodate various tables.
1536
1537source "kernel/Kconfig.hz"
1538
1539config ARCH_SPARSEMEM_ENABLE
1540	def_bool y
1541	select SPARSEMEM_VMEMMAP_ENABLE
1542	select SPARSEMEM_VMEMMAP
1543
1544config HW_PERF_EVENTS
1545	def_bool y
1546	depends on ARM_PMU
1547
1548# Supported by clang >= 7.0 or GCC >= 12.0.0
1549config CC_HAVE_SHADOW_CALL_STACK
1550	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1551
1552config PARAVIRT
1553	bool "Enable paravirtualization code"
1554	help
1555	  This changes the kernel so it can modify itself when it is run
1556	  under a hypervisor, potentially improving performance significantly
1557	  over full virtualization.
1558
1559config PARAVIRT_TIME_ACCOUNTING
1560	bool "Paravirtual steal time accounting"
1561	select PARAVIRT
1562	help
1563	  Select this option to enable fine granularity task steal time
1564	  accounting. Time spent executing other tasks in parallel with
1565	  the current vCPU is discounted from the vCPU power. To account for
1566	  that, there can be a small performance impact.
1567
1568	  If in doubt, say N here.
1569
1570config ARCH_SUPPORTS_KEXEC
1571	def_bool PM_SLEEP_SMP
1572
1573config ARCH_SUPPORTS_KEXEC_FILE
1574	def_bool y
1575
1576config ARCH_SELECTS_KEXEC_FILE
1577	def_bool y
1578	depends on KEXEC_FILE
1579	select HAVE_IMA_KEXEC if IMA
1580
1581config ARCH_SUPPORTS_KEXEC_SIG
1582	def_bool y
1583
1584config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1585	def_bool y
1586
1587config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1588	def_bool y
1589
1590config ARCH_SUPPORTS_CRASH_DUMP
1591	def_bool y
1592
1593config ARCH_DEFAULT_CRASH_DUMP
1594	def_bool y
1595
1596config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1597	def_bool CRASH_RESERVE
1598
1599config TRANS_TABLE
1600	def_bool y
1601	depends on HIBERNATION || KEXEC_CORE
1602
1603config XEN_DOM0
1604	def_bool y
1605	depends on XEN
1606
1607config XEN
1608	bool "Xen guest support on ARM64"
1609	depends on ARM64 && OF
1610	select SWIOTLB_XEN
1611	select PARAVIRT
1612	help
1613	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1614
1615# include/linux/mmzone.h requires the following to be true:
1616#
1617#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1618#
1619# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1620#
1621#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1622# ----+-------------------+--------------+----------------------+-------------------------+
1623# 4K  |       27          |      12      |       15             |         10              |
1624# 16K |       27          |      14      |       13             |         11              |
1625# 64K |       29          |      16      |       13             |         13              |
1626config ARCH_FORCE_MAX_ORDER
1627	int
1628	default "13" if ARM64_64K_PAGES
1629	default "11" if ARM64_16K_PAGES
1630	default "10"
1631	help
1632	  The kernel page allocator limits the size of maximal physically
1633	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1634	  defines the maximal power of two of number of pages that can be
1635	  allocated as a single contiguous block. This option allows
1636	  overriding the default setting when ability to allocate very
1637	  large blocks of physically contiguous memory is required.
1638
1639	  The maximal size of allocation cannot exceed the size of the
1640	  section, so the value of MAX_PAGE_ORDER should satisfy
1641
1642	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1643
1644	  Don't change if unsure.
1645
1646config UNMAP_KERNEL_AT_EL0
1647	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1648	default y
1649	help
1650	  Speculation attacks against some high-performance processors can
1651	  be used to bypass MMU permission checks and leak kernel data to
1652	  userspace. This can be defended against by unmapping the kernel
1653	  when running in userspace, mapping it back in on exception entry
1654	  via a trampoline page in the vector table.
1655
1656	  If unsure, say Y.
1657
1658config MITIGATE_SPECTRE_BRANCH_HISTORY
1659	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1660	default y
1661	help
1662	  Speculation attacks against some high-performance processors can
1663	  make use of branch history to influence future speculation.
1664	  When taking an exception from user-space, a sequence of branches
1665	  or a firmware call overwrites the branch history.
1666
1667config RODATA_FULL_DEFAULT_ENABLED
1668	bool "Apply r/o permissions of VM areas also to their linear aliases"
1669	default y
1670	help
1671	  Apply read-only attributes of VM areas to the linear alias of
1672	  the backing pages as well. This prevents code or read-only data
1673	  from being modified (inadvertently or intentionally) via another
1674	  mapping of the same memory page. This additional enhancement can
1675	  be turned off at runtime by passing rodata=[off|on] (and turned on
1676	  with rodata=full if this option is set to 'n')
1677
1678	  This requires the linear region to be mapped down to pages,
1679	  which may adversely affect performance in some cases.
1680
1681config ARM64_SW_TTBR0_PAN
1682	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1683	depends on !KCSAN
1684	help
1685	  Enabling this option prevents the kernel from accessing
1686	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1687	  zeroed area and reserved ASID. The user access routines
1688	  restore the valid TTBR0_EL1 temporarily.
1689
1690config ARM64_TAGGED_ADDR_ABI
1691	bool "Enable the tagged user addresses syscall ABI"
1692	default y
1693	help
1694	  When this option is enabled, user applications can opt in to a
1695	  relaxed ABI via prctl() allowing tagged addresses to be passed
1696	  to system calls as pointer arguments. For details, see
1697	  Documentation/arch/arm64/tagged-address-abi.rst.
1698
1699menuconfig COMPAT
1700	bool "Kernel support for 32-bit EL0"
1701	depends on ARM64_4K_PAGES || EXPERT
1702	select HAVE_UID16
1703	select OLD_SIGSUSPEND3
1704	select COMPAT_OLD_SIGACTION
1705	help
1706	  This option enables support for a 32-bit EL0 running under a 64-bit
1707	  kernel at EL1. AArch32-specific components such as system calls,
1708	  the user helper functions, VFP support and the ptrace interface are
1709	  handled appropriately by the kernel.
1710
1711	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1712	  that you will only be able to execute AArch32 binaries that were compiled
1713	  with page size aligned segments.
1714
1715	  If you want to execute 32-bit userspace applications, say Y.
1716
1717if COMPAT
1718
1719config KUSER_HELPERS
1720	bool "Enable kuser helpers page for 32-bit applications"
1721	default y
1722	help
1723	  Warning: disabling this option may break 32-bit user programs.
1724
1725	  Provide kuser helpers to compat tasks. The kernel provides
1726	  helper code to userspace in read only form at a fixed location
1727	  to allow userspace to be independent of the CPU type fitted to
1728	  the system. This permits binaries to be run on ARMv4 through
1729	  to ARMv8 without modification.
1730
1731	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1732
1733	  However, the fixed address nature of these helpers can be used
1734	  by ROP (return orientated programming) authors when creating
1735	  exploits.
1736
1737	  If all of the binaries and libraries which run on your platform
1738	  are built specifically for your platform, and make no use of
1739	  these helpers, then you can turn this option off to hinder
1740	  such exploits. However, in that case, if a binary or library
1741	  relying on those helpers is run, it will not function correctly.
1742
1743	  Say N here only if you are absolutely certain that you do not
1744	  need these helpers; otherwise, the safe option is to say Y.
1745
1746config COMPAT_VDSO
1747	bool "Enable vDSO for 32-bit applications"
1748	depends on !CPU_BIG_ENDIAN
1749	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1750	select GENERIC_COMPAT_VDSO
1751	default y
1752	help
1753	  Place in the process address space of 32-bit applications an
1754	  ELF shared object providing fast implementations of gettimeofday
1755	  and clock_gettime.
1756
1757	  You must have a 32-bit build of glibc 2.22 or later for programs
1758	  to seamlessly take advantage of this.
1759
1760config THUMB2_COMPAT_VDSO
1761	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1762	depends on COMPAT_VDSO
1763	default y
1764	help
1765	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1766	  otherwise with '-marm'.
1767
1768config COMPAT_ALIGNMENT_FIXUPS
1769	bool "Fix up misaligned multi-word loads and stores in user space"
1770
1771menuconfig ARMV8_DEPRECATED
1772	bool "Emulate deprecated/obsolete ARMv8 instructions"
1773	depends on SYSCTL
1774	help
1775	  Legacy software support may require certain instructions
1776	  that have been deprecated or obsoleted in the architecture.
1777
1778	  Enable this config to enable selective emulation of these
1779	  features.
1780
1781	  If unsure, say Y
1782
1783if ARMV8_DEPRECATED
1784
1785config SWP_EMULATION
1786	bool "Emulate SWP/SWPB instructions"
1787	help
1788	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1789	  they are always undefined. Say Y here to enable software
1790	  emulation of these instructions for userspace using LDXR/STXR.
1791	  This feature can be controlled at runtime with the abi.swp
1792	  sysctl which is disabled by default.
1793
1794	  In some older versions of glibc [<=2.8] SWP is used during futex
1795	  trylock() operations with the assumption that the code will not
1796	  be preempted. This invalid assumption may be more likely to fail
1797	  with SWP emulation enabled, leading to deadlock of the user
1798	  application.
1799
1800	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1801	  on an external transaction monitoring block called a global
1802	  monitor to maintain update atomicity. If your system does not
1803	  implement a global monitor, this option can cause programs that
1804	  perform SWP operations to uncached memory to deadlock.
1805
1806	  If unsure, say Y
1807
1808config CP15_BARRIER_EMULATION
1809	bool "Emulate CP15 Barrier instructions"
1810	help
1811	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1812	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1813	  strongly recommended to use the ISB, DSB, and DMB
1814	  instructions instead.
1815
1816	  Say Y here to enable software emulation of these
1817	  instructions for AArch32 userspace code. When this option is
1818	  enabled, CP15 barrier usage is traced which can help
1819	  identify software that needs updating. This feature can be
1820	  controlled at runtime with the abi.cp15_barrier sysctl.
1821
1822	  If unsure, say Y
1823
1824config SETEND_EMULATION
1825	bool "Emulate SETEND instruction"
1826	help
1827	  The SETEND instruction alters the data-endianness of the
1828	  AArch32 EL0, and is deprecated in ARMv8.
1829
1830	  Say Y here to enable software emulation of the instruction
1831	  for AArch32 userspace code. This feature can be controlled
1832	  at runtime with the abi.setend sysctl.
1833
1834	  Note: All the cpus on the system must have mixed endian support at EL0
1835	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1836	  endian - is hotplugged in after this feature has been enabled, there could
1837	  be unexpected results in the applications.
1838
1839	  If unsure, say Y
1840endif # ARMV8_DEPRECATED
1841
1842endif # COMPAT
1843
1844menu "ARMv8.1 architectural features"
1845
1846config ARM64_HW_AFDBM
1847	bool "Support for hardware updates of the Access and Dirty page flags"
1848	default y
1849	help
1850	  The ARMv8.1 architecture extensions introduce support for
1851	  hardware updates of the access and dirty information in page
1852	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1853	  capable processors, accesses to pages with PTE_AF cleared will
1854	  set this bit instead of raising an access flag fault.
1855	  Similarly, writes to read-only pages with the DBM bit set will
1856	  clear the read-only bit (AP[2]) instead of raising a
1857	  permission fault.
1858
1859	  Kernels built with this configuration option enabled continue
1860	  to work on pre-ARMv8.1 hardware and the performance impact is
1861	  minimal. If unsure, say Y.
1862
1863config ARM64_PAN
1864	bool "Enable support for Privileged Access Never (PAN)"
1865	default y
1866	help
1867	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1868	  prevents the kernel or hypervisor from accessing user-space (EL0)
1869	  memory directly.
1870
1871	  Choosing this option will cause any unprotected (not using
1872	  copy_to_user et al) memory access to fail with a permission fault.
1873
1874	  The feature is detected at runtime, and will remain as a 'nop'
1875	  instruction if the cpu does not implement the feature.
1876
1877config AS_HAS_LSE_ATOMICS
1878	def_bool $(as-instr,.arch_extension lse)
1879
1880config ARM64_LSE_ATOMICS
1881	bool
1882	default ARM64_USE_LSE_ATOMICS
1883	depends on AS_HAS_LSE_ATOMICS
1884
1885config ARM64_USE_LSE_ATOMICS
1886	bool "Atomic instructions"
1887	default y
1888	help
1889	  As part of the Large System Extensions, ARMv8.1 introduces new
1890	  atomic instructions that are designed specifically to scale in
1891	  very large systems.
1892
1893	  Say Y here to make use of these instructions for the in-kernel
1894	  atomic routines. This incurs a small overhead on CPUs that do
1895	  not support these instructions and requires the kernel to be
1896	  built with binutils >= 2.25 in order for the new instructions
1897	  to be used.
1898
1899endmenu # "ARMv8.1 architectural features"
1900
1901menu "ARMv8.2 architectural features"
1902
1903config AS_HAS_ARMV8_2
1904	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1905
1906config AS_HAS_SHA3
1907	def_bool $(as-instr,.arch armv8.2-a+sha3)
1908
1909config ARM64_PMEM
1910	bool "Enable support for persistent memory"
1911	select ARCH_HAS_PMEM_API
1912	select ARCH_HAS_UACCESS_FLUSHCACHE
1913	help
1914	  Say Y to enable support for the persistent memory API based on the
1915	  ARMv8.2 DCPoP feature.
1916
1917	  The feature is detected at runtime, and the kernel will use DC CVAC
1918	  operations if DC CVAP is not supported (following the behaviour of
1919	  DC CVAP itself if the system does not define a point of persistence).
1920
1921config ARM64_RAS_EXTN
1922	bool "Enable support for RAS CPU Extensions"
1923	default y
1924	help
1925	  CPUs that support the Reliability, Availability and Serviceability
1926	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1927	  errors, classify them and report them to software.
1928
1929	  On CPUs with these extensions system software can use additional
1930	  barriers to determine if faults are pending and read the
1931	  classification from a new set of registers.
1932
1933	  Selecting this feature will allow the kernel to use these barriers
1934	  and access the new registers if the system supports the extension.
1935	  Platform RAS features may additionally depend on firmware support.
1936
1937config ARM64_CNP
1938	bool "Enable support for Common Not Private (CNP) translations"
1939	default y
1940	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1941	help
1942	  Common Not Private (CNP) allows translation table entries to
1943	  be shared between different PEs in the same inner shareable
1944	  domain, so the hardware can use this fact to optimise the
1945	  caching of such entries in the TLB.
1946
1947	  Selecting this option allows the CNP feature to be detected
1948	  at runtime, and does not affect PEs that do not implement
1949	  this feature.
1950
1951endmenu # "ARMv8.2 architectural features"
1952
1953menu "ARMv8.3 architectural features"
1954
1955config ARM64_PTR_AUTH
1956	bool "Enable support for pointer authentication"
1957	default y
1958	help
1959	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1960	  instructions for signing and authenticating pointers against secret
1961	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1962	  and other attacks.
1963
1964	  This option enables these instructions at EL0 (i.e. for userspace).
1965	  Choosing this option will cause the kernel to initialise secret keys
1966	  for each process at exec() time, with these keys being
1967	  context-switched along with the process.
1968
1969	  The feature is detected at runtime. If the feature is not present in
1970	  hardware it will not be advertised to userspace/KVM guest nor will it
1971	  be enabled.
1972
1973	  If the feature is present on the boot CPU but not on a late CPU, then
1974	  the late CPU will be parked. Also, if the boot CPU does not have
1975	  address auth and the late CPU has then the late CPU will still boot
1976	  but with the feature disabled. On such a system, this option should
1977	  not be selected.
1978
1979config ARM64_PTR_AUTH_KERNEL
1980	bool "Use pointer authentication for kernel"
1981	default y
1982	depends on ARM64_PTR_AUTH
1983	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1984	# Modern compilers insert a .note.gnu.property section note for PAC
1985	# which is only understood by binutils starting with version 2.33.1.
1986	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1987	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1988	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1989	help
1990	  If the compiler supports the -mbranch-protection or
1991	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1992	  will cause the kernel itself to be compiled with return address
1993	  protection. In this case, and if the target hardware is known to
1994	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1995	  disabled with minimal loss of protection.
1996
1997	  This feature works with FUNCTION_GRAPH_TRACER option only if
1998	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
1999
2000config CC_HAS_BRANCH_PROT_PAC_RET
2001	# GCC 9 or later, clang 8 or later
2002	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
2003
2004config CC_HAS_SIGN_RETURN_ADDRESS
2005	# GCC 7, 8
2006	def_bool $(cc-option,-msign-return-address=all)
2007
2008config AS_HAS_ARMV8_3
2009	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
2010
2011config AS_HAS_CFI_NEGATE_RA_STATE
2012	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
2013
2014config AS_HAS_LDAPR
2015	def_bool $(as-instr,.arch_extension rcpc)
2016
2017endmenu # "ARMv8.3 architectural features"
2018
2019menu "ARMv8.4 architectural features"
2020
2021config ARM64_AMU_EXTN
2022	bool "Enable support for the Activity Monitors Unit CPU extension"
2023	default y
2024	help
2025	  The activity monitors extension is an optional extension introduced
2026	  by the ARMv8.4 CPU architecture. This enables support for version 1
2027	  of the activity monitors architecture, AMUv1.
2028
2029	  To enable the use of this extension on CPUs that implement it, say Y.
2030
2031	  Note that for architectural reasons, firmware _must_ implement AMU
2032	  support when running on CPUs that present the activity monitors
2033	  extension. The required support is present in:
2034	    * Version 1.5 and later of the ARM Trusted Firmware
2035
2036	  For kernels that have this configuration enabled but boot with broken
2037	  firmware, you may need to say N here until the firmware is fixed.
2038	  Otherwise you may experience firmware panics or lockups when
2039	  accessing the counter registers. Even if you are not observing these
2040	  symptoms, the values returned by the register reads might not
2041	  correctly reflect reality. Most commonly, the value read will be 0,
2042	  indicating that the counter is not enabled.
2043
2044config AS_HAS_ARMV8_4
2045	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
2046
2047config ARM64_TLB_RANGE
2048	bool "Enable support for tlbi range feature"
2049	default y
2050	depends on AS_HAS_ARMV8_4
2051	help
2052	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
2053	  range of input addresses.
2054
2055	  The feature introduces new assembly instructions, and they were
2056	  support when binutils >= 2.30.
2057
2058endmenu # "ARMv8.4 architectural features"
2059
2060menu "ARMv8.5 architectural features"
2061
2062config AS_HAS_ARMV8_5
2063	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
2064
2065config ARM64_BTI
2066	bool "Branch Target Identification support"
2067	default y
2068	help
2069	  Branch Target Identification (part of the ARMv8.5 Extensions)
2070	  provides a mechanism to limit the set of locations to which computed
2071	  branch instructions such as BR or BLR can jump.
2072
2073	  To make use of BTI on CPUs that support it, say Y.
2074
2075	  BTI is intended to provide complementary protection to other control
2076	  flow integrity protection mechanisms, such as the Pointer
2077	  authentication mechanism provided as part of the ARMv8.3 Extensions.
2078	  For this reason, it does not make sense to enable this option without
2079	  also enabling support for pointer authentication.  Thus, when
2080	  enabling this option you should also select ARM64_PTR_AUTH=y.
2081
2082	  Userspace binaries must also be specifically compiled to make use of
2083	  this mechanism.  If you say N here or the hardware does not support
2084	  BTI, such binaries can still run, but you get no additional
2085	  enforcement of branch destinations.
2086
2087config ARM64_BTI_KERNEL
2088	bool "Use Branch Target Identification for kernel"
2089	default y
2090	depends on ARM64_BTI
2091	depends on ARM64_PTR_AUTH_KERNEL
2092	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2093	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2094	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2095	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2096	depends on !CC_IS_GCC
2097	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2098	help
2099	  Build the kernel with Branch Target Identification annotations
2100	  and enable enforcement of this for kernel code. When this option
2101	  is enabled and the system supports BTI all kernel code including
2102	  modular code must have BTI enabled.
2103
2104config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2105	# GCC 9 or later, clang 8 or later
2106	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2107
2108config ARM64_E0PD
2109	bool "Enable support for E0PD"
2110	default y
2111	help
2112	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2113	  that EL0 accesses made via TTBR1 always fault in constant time,
2114	  providing similar benefits to KASLR as those provided by KPTI, but
2115	  with lower overhead and without disrupting legitimate access to
2116	  kernel memory such as SPE.
2117
2118	  This option enables E0PD for TTBR1 where available.
2119
2120config ARM64_AS_HAS_MTE
2121	# Initial support for MTE went in binutils 2.32.0, checked with
2122	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2123	# as a late addition to the final architecture spec (LDGM/STGM)
2124	# is only supported in the newer 2.32.x and 2.33 binutils
2125	# versions, hence the extra "stgm" instruction check below.
2126	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2127
2128config ARM64_MTE
2129	bool "Memory Tagging Extension support"
2130	default y
2131	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2132	depends on AS_HAS_ARMV8_5
2133	depends on AS_HAS_LSE_ATOMICS
2134	# Required for tag checking in the uaccess routines
2135	depends on ARM64_PAN
2136	select ARCH_HAS_SUBPAGE_FAULTS
2137	select ARCH_USES_HIGH_VMA_FLAGS
2138	select ARCH_USES_PG_ARCH_2
2139	select ARCH_USES_PG_ARCH_3
2140	help
2141	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2142	  architectural support for run-time, always-on detection of
2143	  various classes of memory error to aid with software debugging
2144	  to eliminate vulnerabilities arising from memory-unsafe
2145	  languages.
2146
2147	  This option enables the support for the Memory Tagging
2148	  Extension at EL0 (i.e. for userspace).
2149
2150	  Selecting this option allows the feature to be detected at
2151	  runtime. Any secondary CPU not implementing this feature will
2152	  not be allowed a late bring-up.
2153
2154	  Userspace binaries that want to use this feature must
2155	  explicitly opt in. The mechanism for the userspace is
2156	  described in:
2157
2158	  Documentation/arch/arm64/memory-tagging-extension.rst.
2159
2160endmenu # "ARMv8.5 architectural features"
2161
2162menu "ARMv8.7 architectural features"
2163
2164config ARM64_EPAN
2165	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2166	default y
2167	depends on ARM64_PAN
2168	help
2169	  Enhanced Privileged Access Never (EPAN) allows Privileged
2170	  Access Never to be used with Execute-only mappings.
2171
2172	  The feature is detected at runtime, and will remain disabled
2173	  if the cpu does not implement the feature.
2174endmenu # "ARMv8.7 architectural features"
2175
2176config AS_HAS_MOPS
2177	def_bool $(as-instr,.arch_extension mops)
2178
2179menu "ARMv8.9 architectural features"
2180
2181config ARM64_POE
2182	prompt "Permission Overlay Extension"
2183	def_bool y
2184	select ARCH_USES_HIGH_VMA_FLAGS
2185	select ARCH_HAS_PKEYS
2186	help
2187	  The Permission Overlay Extension is used to implement Memory
2188	  Protection Keys. Memory Protection Keys provides a mechanism for
2189	  enforcing page-based protections, but without requiring modification
2190	  of the page tables when an application changes protection domains.
2191
2192	  For details, see Documentation/core-api/protection-keys.rst
2193
2194	  If unsure, say y.
2195
2196config ARCH_PKEY_BITS
2197	int
2198	default 3
2199
2200config ARM64_HAFT
2201	bool "Support for Hardware managed Access Flag for Table Descriptors"
2202	depends on ARM64_HW_AFDBM
2203	default y
2204	help
2205	  The ARMv8.9/ARMv9.5 introduces the feature Hardware managed Access
2206	  Flag for Table descriptors. When enabled an architectural executed
2207	  memory access will update the Access Flag in each Table descriptor
2208	  which is accessed during the translation table walk and for which
2209	  the Access Flag is 0. The Access Flag of the Table descriptor use
2210	  the same bit of PTE_AF.
2211
2212	  The feature will only be enabled if all the CPUs in the system
2213	  support this feature. If unsure, say Y.
2214
2215endmenu # "ARMv8.9 architectural features"
2216
2217menu "v9.4 architectural features"
2218
2219config ARM64_GCS
2220	bool "Enable support for Guarded Control Stack (GCS)"
2221	default y
2222	select ARCH_HAS_USER_SHADOW_STACK
2223	select ARCH_USES_HIGH_VMA_FLAGS
2224	depends on !UPROBES
2225	help
2226	  Guarded Control Stack (GCS) provides support for a separate
2227	  stack with restricted access which contains only return
2228	  addresses.  This can be used to harden against some attacks
2229	  by comparing return address used by the program with what is
2230	  stored in the GCS, and may also be used to efficiently obtain
2231	  the call stack for applications such as profiling.
2232
2233	  The feature is detected at runtime, and will remain disabled
2234	  if the system does not implement the feature.
2235
2236endmenu # "v9.4 architectural features"
2237
2238config ARM64_SVE
2239	bool "ARM Scalable Vector Extension support"
2240	default y
2241	help
2242	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2243	  execution state which complements and extends the SIMD functionality
2244	  of the base architecture to support much larger vectors and to enable
2245	  additional vectorisation opportunities.
2246
2247	  To enable use of this extension on CPUs that implement it, say Y.
2248
2249	  On CPUs that support the SVE2 extensions, this option will enable
2250	  those too.
2251
2252	  Note that for architectural reasons, firmware _must_ implement SVE
2253	  support when running on SVE capable hardware.  The required support
2254	  is present in:
2255
2256	    * version 1.5 and later of the ARM Trusted Firmware
2257	    * the AArch64 boot wrapper since commit 5e1261e08abf
2258	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2259
2260	  For other firmware implementations, consult the firmware documentation
2261	  or vendor.
2262
2263	  If you need the kernel to boot on SVE-capable hardware with broken
2264	  firmware, you may need to say N here until you get your firmware
2265	  fixed.  Otherwise, you may experience firmware panics or lockups when
2266	  booting the kernel.  If unsure and you are not observing these
2267	  symptoms, you should assume that it is safe to say Y.
2268
2269config ARM64_SME
2270	bool "ARM Scalable Matrix Extension support"
2271	default y
2272	depends on ARM64_SVE
2273	depends on BROKEN
2274	help
2275	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2276	  execution state which utilises a substantial subset of the SVE
2277	  instruction set, together with the addition of new architectural
2278	  register state capable of holding two dimensional matrix tiles to
2279	  enable various matrix operations.
2280
2281config ARM64_PSEUDO_NMI
2282	bool "Support for NMI-like interrupts"
2283	select ARM_GIC_V3
2284	help
2285	  Adds support for mimicking Non-Maskable Interrupts through the use of
2286	  GIC interrupt priority. This support requires version 3 or later of
2287	  ARM GIC.
2288
2289	  This high priority configuration for interrupts needs to be
2290	  explicitly enabled by setting the kernel parameter
2291	  "irqchip.gicv3_pseudo_nmi" to 1.
2292
2293	  If unsure, say N
2294
2295if ARM64_PSEUDO_NMI
2296config ARM64_DEBUG_PRIORITY_MASKING
2297	bool "Debug interrupt priority masking"
2298	help
2299	  This adds runtime checks to functions enabling/disabling
2300	  interrupts when using priority masking. The additional checks verify
2301	  the validity of ICC_PMR_EL1 when calling concerned functions.
2302
2303	  If unsure, say N
2304endif # ARM64_PSEUDO_NMI
2305
2306config RELOCATABLE
2307	bool "Build a relocatable kernel image" if EXPERT
2308	select ARCH_HAS_RELR
2309	default y
2310	help
2311	  This builds the kernel as a Position Independent Executable (PIE),
2312	  which retains all relocation metadata required to relocate the
2313	  kernel binary at runtime to a different virtual address than the
2314	  address it was linked at.
2315	  Since AArch64 uses the RELA relocation format, this requires a
2316	  relocation pass at runtime even if the kernel is loaded at the
2317	  same address it was linked at.
2318
2319config RANDOMIZE_BASE
2320	bool "Randomize the address of the kernel image"
2321	select RELOCATABLE
2322	help
2323	  Randomizes the virtual address at which the kernel image is
2324	  loaded, as a security feature that deters exploit attempts
2325	  relying on knowledge of the location of kernel internals.
2326
2327	  It is the bootloader's job to provide entropy, by passing a
2328	  random u64 value in /chosen/kaslr-seed at kernel entry.
2329
2330	  When booting via the UEFI stub, it will invoke the firmware's
2331	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2332	  to the kernel proper. In addition, it will randomise the physical
2333	  location of the kernel Image as well.
2334
2335	  If unsure, say N.
2336
2337config RANDOMIZE_MODULE_REGION_FULL
2338	bool "Randomize the module region over a 2 GB range"
2339	depends on RANDOMIZE_BASE
2340	default y
2341	help
2342	  Randomizes the location of the module region inside a 2 GB window
2343	  covering the core kernel. This way, it is less likely for modules
2344	  to leak information about the location of core kernel data structures
2345	  but it does imply that function calls between modules and the core
2346	  kernel will need to be resolved via veneers in the module PLT.
2347
2348	  When this option is not set, the module region will be randomized over
2349	  a limited range that contains the [_stext, _etext] interval of the
2350	  core kernel, so branch relocations are almost always in range unless
2351	  the region is exhausted. In this particular case of region
2352	  exhaustion, modules might be able to fall back to a larger 2GB area.
2353
2354config CC_HAVE_STACKPROTECTOR_SYSREG
2355	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2356
2357config STACKPROTECTOR_PER_TASK
2358	def_bool y
2359	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2360
2361config UNWIND_PATCH_PAC_INTO_SCS
2362	bool "Enable shadow call stack dynamically using code patching"
2363	# needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated
2364	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2365	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2366	depends on SHADOW_CALL_STACK
2367	select UNWIND_TABLES
2368	select DYNAMIC_SCS
2369
2370config ARM64_CONTPTE
2371	bool "Contiguous PTE mappings for user memory" if EXPERT
2372	depends on TRANSPARENT_HUGEPAGE
2373	default y
2374	help
2375	  When enabled, user mappings are configured using the PTE contiguous
2376	  bit, for any mappings that meet the size and alignment requirements.
2377	  This reduces TLB pressure and improves performance.
2378
2379endmenu # "Kernel Features"
2380
2381menu "Boot options"
2382
2383config ARM64_ACPI_PARKING_PROTOCOL
2384	bool "Enable support for the ARM64 ACPI parking protocol"
2385	depends on ACPI
2386	help
2387	  Enable support for the ARM64 ACPI parking protocol. If disabled
2388	  the kernel will not allow booting through the ARM64 ACPI parking
2389	  protocol even if the corresponding data is present in the ACPI
2390	  MADT table.
2391
2392config CMDLINE
2393	string "Default kernel command string"
2394	default ""
2395	help
2396	  Provide a set of default command-line options at build time by
2397	  entering them here. As a minimum, you should specify the the
2398	  root device (e.g. root=/dev/nfs).
2399
2400choice
2401	prompt "Kernel command line type"
2402	depends on CMDLINE != ""
2403	default CMDLINE_FROM_BOOTLOADER
2404	help
2405	  Choose how the kernel will handle the provided default kernel
2406	  command line string.
2407
2408config CMDLINE_FROM_BOOTLOADER
2409	bool "Use bootloader kernel arguments if available"
2410	help
2411	  Uses the command-line options passed by the boot loader. If
2412	  the boot loader doesn't provide any, the default kernel command
2413	  string provided in CMDLINE will be used.
2414
2415config CMDLINE_FORCE
2416	bool "Always use the default kernel command string"
2417	help
2418	  Always use the default kernel command string, even if the boot
2419	  loader passes other arguments to the kernel.
2420	  This is useful if you cannot or don't want to change the
2421	  command-line options your boot loader passes to the kernel.
2422
2423endchoice
2424
2425config EFI_STUB
2426	bool
2427
2428config EFI
2429	bool "UEFI runtime support"
2430	depends on OF && !CPU_BIG_ENDIAN
2431	depends on KERNEL_MODE_NEON
2432	select ARCH_SUPPORTS_ACPI
2433	select LIBFDT
2434	select UCS2_STRING
2435	select EFI_PARAMS_FROM_FDT
2436	select EFI_RUNTIME_WRAPPERS
2437	select EFI_STUB
2438	select EFI_GENERIC_STUB
2439	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2440	default y
2441	help
2442	  This option provides support for runtime services provided
2443	  by UEFI firmware (such as non-volatile variables, realtime
2444	  clock, and platform reset). A UEFI stub is also provided to
2445	  allow the kernel to be booted as an EFI application. This
2446	  is only useful on systems that have UEFI firmware.
2447
2448config COMPRESSED_INSTALL
2449	bool "Install compressed image by default"
2450	help
2451	  This makes the regular "make install" install the compressed
2452	  image we built, not the legacy uncompressed one.
2453
2454	  You can check that a compressed image works for you by doing
2455	  "make zinstall" first, and verifying that everything is fine
2456	  in your environment before making "make install" do this for
2457	  you.
2458
2459config DMI
2460	bool "Enable support for SMBIOS (DMI) tables"
2461	depends on EFI
2462	default y
2463	help
2464	  This enables SMBIOS/DMI feature for systems.
2465
2466	  This option is only useful on systems that have UEFI firmware.
2467	  However, even with this option, the resultant kernel should
2468	  continue to boot on existing non-UEFI platforms.
2469
2470endmenu # "Boot options"
2471
2472menu "Power management options"
2473
2474source "kernel/power/Kconfig"
2475
2476config ARCH_HIBERNATION_POSSIBLE
2477	def_bool y
2478	depends on CPU_PM
2479
2480config ARCH_HIBERNATION_HEADER
2481	def_bool y
2482	depends on HIBERNATION
2483
2484config ARCH_SUSPEND_POSSIBLE
2485	def_bool y
2486
2487endmenu # "Power management options"
2488
2489menu "CPU Power Management"
2490
2491source "drivers/cpuidle/Kconfig"
2492
2493source "drivers/cpufreq/Kconfig"
2494
2495endmenu # "CPU Power Management"
2496
2497source "drivers/acpi/Kconfig"
2498
2499source "arch/arm64/kvm/Kconfig"
2500
2501