xref: /linux/arch/arm64/Kconfig (revision dd161f74f8198c62f9bcf893f72c64bbb0d68b25)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU
9	select ACPI_IORT if ACPI
10	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
11	select ACPI_MCFG if (ACPI && PCI)
12	select ACPI_SPCR_TABLE if ACPI
13	select ACPI_PPTT if ACPI
14	select ARCH_HAS_DEBUG_WX
15	select ARCH_BINFMT_ELF_EXTRA_PHDRS
16	select ARCH_BINFMT_ELF_STATE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CC_PLATFORM
24	select ARCH_HAS_CRC32
25	select ARCH_HAS_CRC_T10DIF if KERNEL_MODE_NEON
26	select ARCH_HAS_CURRENT_STACK_POINTER
27	select ARCH_HAS_DEBUG_VIRTUAL
28	select ARCH_HAS_DEBUG_VM_PGTABLE
29	select ARCH_HAS_DMA_OPS if XEN
30	select ARCH_HAS_DMA_PREP_COHERENT
31	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
32	select ARCH_HAS_FAST_MULTIPLIER
33	select ARCH_HAS_FORTIFY_SOURCE
34	select ARCH_HAS_GCOV_PROFILE_ALL
35	select ARCH_HAS_GIGANTIC_PAGE
36	select ARCH_HAS_KCOV
37	select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON
38	select ARCH_HAS_KEEPINITRD
39	select ARCH_HAS_MEMBARRIER_SYNC_CORE
40	select ARCH_HAS_MEM_ENCRYPT
41	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
42	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
43	select ARCH_HAS_NONLEAF_PMD_YOUNG if ARM64_HAFT
44	select ARCH_HAS_PTE_DEVMAP
45	select ARCH_HAS_PTE_SPECIAL
46	select ARCH_HAS_HW_PTE_YOUNG
47	select ARCH_HAS_SETUP_DMA_OPS
48	select ARCH_HAS_SET_DIRECT_MAP
49	select ARCH_HAS_SET_MEMORY
50	select ARCH_HAS_MEM_ENCRYPT
51	select ARCH_HAS_FORCE_DMA_UNENCRYPTED
52	select ARCH_STACKWALK
53	select ARCH_HAS_STRICT_KERNEL_RWX
54	select ARCH_HAS_STRICT_MODULE_RWX
55	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
56	select ARCH_HAS_SYNC_DMA_FOR_CPU
57	select ARCH_HAS_SYSCALL_WRAPPER
58	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
59	select ARCH_HAS_ZONE_DMA_SET if EXPERT
60	select ARCH_HAVE_ELF_PROT
61	select ARCH_HAVE_NMI_SAFE_CMPXCHG
62	select ARCH_HAVE_TRACE_MMIO_ACCESS
63	select ARCH_INLINE_READ_LOCK if !PREEMPTION
64	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
65	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
66	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
67	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
68	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
69	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
70	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
71	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
72	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
73	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
74	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
75	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
76	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
77	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
78	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
79	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
80	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
81	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
82	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
83	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
84	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
85	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
86	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
87	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
88	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
89	select ARCH_KEEP_MEMBLOCK
90	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
91	select ARCH_USE_CMPXCHG_LOCKREF
92	select ARCH_USE_GNU_PROPERTY
93	select ARCH_USE_MEMTEST
94	select ARCH_USE_QUEUED_RWLOCKS
95	select ARCH_USE_QUEUED_SPINLOCKS
96	select ARCH_USE_SYM_ANNOTATIONS
97	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
98	select ARCH_SUPPORTS_HUGETLBFS
99	select ARCH_SUPPORTS_MEMORY_FAILURE
100	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
101	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
102	select ARCH_SUPPORTS_LTO_CLANG_THIN
103	select ARCH_SUPPORTS_CFI_CLANG
104	select ARCH_SUPPORTS_ATOMIC_RMW
105	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
106	select ARCH_SUPPORTS_NUMA_BALANCING
107	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
108	select ARCH_SUPPORTS_PER_VMA_LOCK
109	select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE
110	select ARCH_SUPPORTS_RT
111	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
112	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
113	select ARCH_WANT_DEFAULT_BPF_JIT
114	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
115	select ARCH_WANT_FRAME_POINTERS
116	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
117	select ARCH_WANT_LD_ORPHAN_WARN
118	select ARCH_WANTS_EXECMEM_LATE
119	select ARCH_WANTS_NO_INSTR
120	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
121	select ARCH_HAS_UBSAN
122	select ARM_AMBA
123	select ARM_ARCH_TIMER
124	select ARM_GIC
125	select AUDIT_ARCH_COMPAT_GENERIC
126	select ARM_GIC_V2M if PCI
127	select ARM_GIC_V3
128	select ARM_GIC_V3_ITS if PCI
129	select ARM_PSCI_FW
130	select BUILDTIME_TABLE_SORT
131	select CLONE_BACKWARDS
132	select COMMON_CLK
133	select CPU_PM if (SUSPEND || CPU_IDLE)
134	select CPUMASK_OFFSTACK if NR_CPUS > 256
135	select CRC32
136	select DCACHE_WORD_ACCESS
137	select DYNAMIC_FTRACE if FUNCTION_TRACER
138	select DMA_BOUNCE_UNALIGNED_KMALLOC
139	select DMA_DIRECT_REMAP
140	select EDAC_SUPPORT
141	select FRAME_POINTER
142	select FUNCTION_ALIGNMENT_4B
143	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
144	select GENERIC_ALLOCATOR
145	select GENERIC_ARCH_TOPOLOGY
146	select GENERIC_CLOCKEVENTS_BROADCAST
147	select GENERIC_CPU_AUTOPROBE
148	select GENERIC_CPU_DEVICES
149	select GENERIC_CPU_VULNERABILITIES
150	select GENERIC_EARLY_IOREMAP
151	select GENERIC_IDLE_POLL_SETUP
152	select GENERIC_IOREMAP
153	select GENERIC_IRQ_IPI
154	select GENERIC_IRQ_KEXEC_CLEAR_VM_FORWARD
155	select GENERIC_IRQ_PROBE
156	select GENERIC_IRQ_SHOW
157	select GENERIC_IRQ_SHOW_LEVEL
158	select GENERIC_LIB_DEVMEM_IS_ALLOWED
159	select GENERIC_PCI_IOMAP
160	select GENERIC_PTDUMP
161	select GENERIC_SCHED_CLOCK
162	select GENERIC_SMP_IDLE_THREAD
163	select GENERIC_TIME_VSYSCALL
164	select GENERIC_GETTIMEOFDAY
165	select GENERIC_VDSO_DATA_STORE
166	select GENERIC_VDSO_TIME_NS
167	select HARDIRQS_SW_RESEND
168	select HAS_IOPORT
169	select HAVE_MOVE_PMD
170	select HAVE_MOVE_PUD
171	select HAVE_PCI
172	select HAVE_ACPI_APEI if (ACPI && EFI)
173	select HAVE_ALIGNED_STRUCT_PAGE
174	select HAVE_ARCH_AUDITSYSCALL
175	select HAVE_ARCH_BITREVERSE
176	select HAVE_ARCH_COMPILER_H
177	select HAVE_ARCH_HUGE_VMALLOC
178	select HAVE_ARCH_HUGE_VMAP
179	select HAVE_ARCH_JUMP_LABEL
180	select HAVE_ARCH_JUMP_LABEL_RELATIVE
181	select HAVE_ARCH_KASAN
182	select HAVE_ARCH_KASAN_VMALLOC
183	select HAVE_ARCH_KASAN_SW_TAGS
184	select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE
185	# Some instrumentation may be unsound, hence EXPERT
186	select HAVE_ARCH_KCSAN if EXPERT
187	select HAVE_ARCH_KFENCE
188	select HAVE_ARCH_KGDB
189	select HAVE_ARCH_MMAP_RND_BITS
190	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
191	select HAVE_ARCH_PREL32_RELOCATIONS
192	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
193	select HAVE_ARCH_SECCOMP_FILTER
194	select HAVE_ARCH_STACKLEAK
195	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
196	select HAVE_ARCH_TRACEHOOK
197	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
198	select HAVE_ARCH_VMAP_STACK
199	select HAVE_ARM_SMCCC
200	select HAVE_ASM_MODVERSIONS
201	select HAVE_EBPF_JIT
202	select HAVE_C_RECORDMCOUNT
203	select HAVE_CMPXCHG_DOUBLE
204	select HAVE_CMPXCHG_LOCAL
205	select HAVE_CONTEXT_TRACKING_USER
206	select HAVE_DEBUG_KMEMLEAK
207	select HAVE_DMA_CONTIGUOUS
208	select HAVE_DYNAMIC_FTRACE
209	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
210		if (GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS || \
211		    CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS)
212	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
213		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
214	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
215		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
216		    (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
217	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
218		if DYNAMIC_FTRACE_WITH_ARGS
219	select HAVE_SAMPLE_FTRACE_DIRECT
220	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
221	select HAVE_BUILDTIME_MCOUNT_SORT
222	select HAVE_EFFICIENT_UNALIGNED_ACCESS
223	select HAVE_GUP_FAST
224	select HAVE_FTRACE_GRAPH_FUNC
225	select HAVE_FTRACE_MCOUNT_RECORD
226	select HAVE_FUNCTION_TRACER
227	select HAVE_FUNCTION_ERROR_INJECTION
228	select HAVE_FUNCTION_GRAPH_FREGS
229	select HAVE_FUNCTION_GRAPH_TRACER
230	select HAVE_GCC_PLUGINS
231	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
232		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
233	select HAVE_HW_BREAKPOINT if PERF_EVENTS
234	select HAVE_IOREMAP_PROT
235	select HAVE_IRQ_TIME_ACCOUNTING
236	select HAVE_MOD_ARCH_SPECIFIC
237	select HAVE_NMI
238	select HAVE_PERF_EVENTS
239	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
240	select HAVE_PERF_REGS
241	select HAVE_PERF_USER_STACK_DUMP
242	select HAVE_PREEMPT_DYNAMIC_KEY
243	select HAVE_REGS_AND_STACK_ACCESS_API
244	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
245	select HAVE_FUNCTION_ARG_ACCESS_API
246	select MMU_GATHER_RCU_TABLE_FREE
247	select HAVE_RSEQ
248	select HAVE_RUST if RUSTC_SUPPORTS_ARM64
249	select HAVE_STACKPROTECTOR
250	select HAVE_SYSCALL_TRACEPOINTS
251	select HAVE_KPROBES
252	select HAVE_KRETPROBES
253	select HAVE_GENERIC_VDSO
254	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
255	select HOTPLUG_SMT if HOTPLUG_CPU
256	select IRQ_DOMAIN
257	select IRQ_FORCED_THREADING
258	select KASAN_VMALLOC if KASAN
259	select LOCK_MM_AND_FIND_VMA
260	select MODULES_USE_ELF_RELA
261	select NEED_DMA_MAP_STATE
262	select NEED_SG_DMA_LENGTH
263	select OF
264	select OF_EARLY_FLATTREE
265	select PCI_DOMAINS_GENERIC if PCI
266	select PCI_ECAM if (ACPI && PCI)
267	select PCI_SYSCALL if PCI
268	select POWER_RESET
269	select POWER_SUPPLY
270	select SPARSE_IRQ
271	select SWIOTLB
272	select SYSCTL_EXCEPTION_TRACE
273	select THREAD_INFO_IN_TASK
274	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
275	select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD
276	select TRACE_IRQFLAGS_SUPPORT
277	select TRACE_IRQFLAGS_NMI_SUPPORT
278	select HAVE_SOFTIRQ_ON_OWN_STACK
279	select USER_STACKTRACE_SUPPORT
280	select VDSO_GETRANDOM
281	help
282	  ARM 64-bit (AArch64) Linux support.
283
284config RUSTC_SUPPORTS_ARM64
285	def_bool y
286	depends on CPU_LITTLE_ENDIAN
287	# Shadow call stack is only supported on certain rustc versions.
288	#
289	# When using the UNWIND_PATCH_PAC_INTO_SCS option, rustc version 1.80+ is
290	# required due to use of the -Zfixed-x18 flag.
291	#
292	# Otherwise, rustc version 1.82+ is required due to use of the
293	# -Zsanitizer=shadow-call-stack flag.
294	depends on !SHADOW_CALL_STACK || RUSTC_VERSION >= 108200 || RUSTC_VERSION >= 108000 && UNWIND_PATCH_PAC_INTO_SCS
295
296config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
297	def_bool CC_IS_CLANG
298	# https://github.com/ClangBuiltLinux/linux/issues/1507
299	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
300
301config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
302	def_bool CC_IS_GCC
303	depends on $(cc-option,-fpatchable-function-entry=2)
304
305config 64BIT
306	def_bool y
307
308config MMU
309	def_bool y
310
311config ARM64_CONT_PTE_SHIFT
312	int
313	default 5 if PAGE_SIZE_64KB
314	default 7 if PAGE_SIZE_16KB
315	default 4
316
317config ARM64_CONT_PMD_SHIFT
318	int
319	default 5 if PAGE_SIZE_64KB
320	default 5 if PAGE_SIZE_16KB
321	default 4
322
323config ARCH_MMAP_RND_BITS_MIN
324	default 14 if PAGE_SIZE_64KB
325	default 16 if PAGE_SIZE_16KB
326	default 18
327
328# max bits determined by the following formula:
329#  VA_BITS - PTDESC_TABLE_SHIFT
330config ARCH_MMAP_RND_BITS_MAX
331	default 19 if ARM64_VA_BITS=36
332	default 24 if ARM64_VA_BITS=39
333	default 27 if ARM64_VA_BITS=42
334	default 30 if ARM64_VA_BITS=47
335	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
336	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
337	default 33 if ARM64_VA_BITS=48
338	default 14 if ARM64_64K_PAGES
339	default 16 if ARM64_16K_PAGES
340	default 18
341
342config ARCH_MMAP_RND_COMPAT_BITS_MIN
343	default 7 if ARM64_64K_PAGES
344	default 9 if ARM64_16K_PAGES
345	default 11
346
347config ARCH_MMAP_RND_COMPAT_BITS_MAX
348	default 16
349
350config NO_IOPORT_MAP
351	def_bool y if !PCI
352
353config STACKTRACE_SUPPORT
354	def_bool y
355
356config ILLEGAL_POINTER_VALUE
357	hex
358	default 0xdead000000000000
359
360config LOCKDEP_SUPPORT
361	def_bool y
362
363config GENERIC_BUG
364	def_bool y
365	depends on BUG
366
367config GENERIC_BUG_RELATIVE_POINTERS
368	def_bool y
369	depends on GENERIC_BUG
370
371config GENERIC_HWEIGHT
372	def_bool y
373
374config GENERIC_CSUM
375	def_bool y
376
377config GENERIC_CALIBRATE_DELAY
378	def_bool y
379
380config SMP
381	def_bool y
382
383config KERNEL_MODE_NEON
384	def_bool y
385
386config FIX_EARLYCON_MEM
387	def_bool y
388
389config PGTABLE_LEVELS
390	int
391	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
392	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
393	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
394	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
395	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
396	default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
397	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
398	default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
399
400config ARCH_SUPPORTS_UPROBES
401	def_bool y
402
403config ARCH_PROC_KCORE_TEXT
404	def_bool y
405
406config BROKEN_GAS_INST
407	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
408
409config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
410	bool
411	# Clang's __builtin_return_address() strips the PAC since 12.0.0
412	# https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
413	default y if CC_IS_CLANG
414	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
415	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
416	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
417	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
418	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
419	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
420	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
421	default n
422
423config KASAN_SHADOW_OFFSET
424	hex
425	depends on KASAN_GENERIC || KASAN_SW_TAGS
426	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
427	default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
428	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
429	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
430	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
431	default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
432	default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
433	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
434	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
435	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
436	default 0xffffffffffffffff
437
438config UNWIND_TABLES
439	bool
440
441source "arch/arm64/Kconfig.platforms"
442
443menu "Kernel Features"
444
445menu "ARM errata workarounds via the alternatives framework"
446
447config AMPERE_ERRATUM_AC03_CPU_38
448        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
449	default y
450	help
451	  This option adds an alternative code sequence to work around Ampere
452	  errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne.
453
454	  The affected design reports FEAT_HAFDBS as not implemented in
455	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
456	  as required by the architecture. The unadvertised HAFDBS
457	  implementation suffers from an additional erratum where hardware
458	  A/D updates can occur after a PTE has been marked invalid.
459
460	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
461	  which avoids enabling unadvertised hardware Access Flag management
462	  at stage-2.
463
464	  If unsure, say Y.
465
466config ARM64_WORKAROUND_CLEAN_CACHE
467	bool
468
469config ARM64_ERRATUM_826319
470	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
471	default y
472	select ARM64_WORKAROUND_CLEAN_CACHE
473	help
474	  This option adds an alternative code sequence to work around ARM
475	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
476	  AXI master interface and an L2 cache.
477
478	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
479	  and is unable to accept a certain write via this interface, it will
480	  not progress on read data presented on the read data channel and the
481	  system can deadlock.
482
483	  The workaround promotes data cache clean instructions to
484	  data cache clean-and-invalidate.
485	  Please note that this does not necessarily enable the workaround,
486	  as it depends on the alternative framework, which will only patch
487	  the kernel if an affected CPU is detected.
488
489	  If unsure, say Y.
490
491config ARM64_ERRATUM_827319
492	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
493	default y
494	select ARM64_WORKAROUND_CLEAN_CACHE
495	help
496	  This option adds an alternative code sequence to work around ARM
497	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
498	  master interface and an L2 cache.
499
500	  Under certain conditions this erratum can cause a clean line eviction
501	  to occur at the same time as another transaction to the same address
502	  on the AMBA 5 CHI interface, which can cause data corruption if the
503	  interconnect reorders the two transactions.
504
505	  The workaround promotes data cache clean instructions to
506	  data cache clean-and-invalidate.
507	  Please note that this does not necessarily enable the workaround,
508	  as it depends on the alternative framework, which will only patch
509	  the kernel if an affected CPU is detected.
510
511	  If unsure, say Y.
512
513config ARM64_ERRATUM_824069
514	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
515	default y
516	select ARM64_WORKAROUND_CLEAN_CACHE
517	help
518	  This option adds an alternative code sequence to work around ARM
519	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
520	  to a coherent interconnect.
521
522	  If a Cortex-A53 processor is executing a store or prefetch for
523	  write instruction at the same time as a processor in another
524	  cluster is executing a cache maintenance operation to the same
525	  address, then this erratum might cause a clean cache line to be
526	  incorrectly marked as dirty.
527
528	  The workaround promotes data cache clean instructions to
529	  data cache clean-and-invalidate.
530	  Please note that this option does not necessarily enable the
531	  workaround, as it depends on the alternative framework, which will
532	  only patch the kernel if an affected CPU is detected.
533
534	  If unsure, say Y.
535
536config ARM64_ERRATUM_819472
537	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
538	default y
539	select ARM64_WORKAROUND_CLEAN_CACHE
540	help
541	  This option adds an alternative code sequence to work around ARM
542	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
543	  present when it is connected to a coherent interconnect.
544
545	  If the processor is executing a load and store exclusive sequence at
546	  the same time as a processor in another cluster is executing a cache
547	  maintenance operation to the same address, then this erratum might
548	  cause data corruption.
549
550	  The workaround promotes data cache clean instructions to
551	  data cache clean-and-invalidate.
552	  Please note that this does not necessarily enable the workaround,
553	  as it depends on the alternative framework, which will only patch
554	  the kernel if an affected CPU is detected.
555
556	  If unsure, say Y.
557
558config ARM64_ERRATUM_832075
559	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
560	default y
561	help
562	  This option adds an alternative code sequence to work around ARM
563	  erratum 832075 on Cortex-A57 parts up to r1p2.
564
565	  Affected Cortex-A57 parts might deadlock when exclusive load/store
566	  instructions to Write-Back memory are mixed with Device loads.
567
568	  The workaround is to promote device loads to use Load-Acquire
569	  semantics.
570	  Please note that this does not necessarily enable the workaround,
571	  as it depends on the alternative framework, which will only patch
572	  the kernel if an affected CPU is detected.
573
574	  If unsure, say Y.
575
576config ARM64_ERRATUM_834220
577	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
578	depends on KVM
579	help
580	  This option adds an alternative code sequence to work around ARM
581	  erratum 834220 on Cortex-A57 parts up to r1p2.
582
583	  Affected Cortex-A57 parts might report a Stage 2 translation
584	  fault as the result of a Stage 1 fault for load crossing a
585	  page boundary when there is a permission or device memory
586	  alignment fault at Stage 1 and a translation fault at Stage 2.
587
588	  The workaround is to verify that the Stage 1 translation
589	  doesn't generate a fault before handling the Stage 2 fault.
590	  Please note that this does not necessarily enable the workaround,
591	  as it depends on the alternative framework, which will only patch
592	  the kernel if an affected CPU is detected.
593
594	  If unsure, say N.
595
596config ARM64_ERRATUM_1742098
597	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
598	depends on COMPAT
599	default y
600	help
601	  This option removes the AES hwcap for aarch32 user-space to
602	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
603
604	  Affected parts may corrupt the AES state if an interrupt is
605	  taken between a pair of AES instructions. These instructions
606	  are only present if the cryptography extensions are present.
607	  All software should have a fallback implementation for CPUs
608	  that don't implement the cryptography extensions.
609
610	  If unsure, say Y.
611
612config ARM64_ERRATUM_845719
613	bool "Cortex-A53: 845719: a load might read incorrect data"
614	depends on COMPAT
615	default y
616	help
617	  This option adds an alternative code sequence to work around ARM
618	  erratum 845719 on Cortex-A53 parts up to r0p4.
619
620	  When running a compat (AArch32) userspace on an affected Cortex-A53
621	  part, a load at EL0 from a virtual address that matches the bottom 32
622	  bits of the virtual address used by a recent load at (AArch64) EL1
623	  might return incorrect data.
624
625	  The workaround is to write the contextidr_el1 register on exception
626	  return to a 32-bit task.
627	  Please note that this does not necessarily enable the workaround,
628	  as it depends on the alternative framework, which will only patch
629	  the kernel if an affected CPU is detected.
630
631	  If unsure, say Y.
632
633config ARM64_ERRATUM_843419
634	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
635	default y
636	help
637	  This option links the kernel with '--fix-cortex-a53-843419' and
638	  enables PLT support to replace certain ADRP instructions, which can
639	  cause subsequent memory accesses to use an incorrect address on
640	  Cortex-A53 parts up to r0p4.
641
642	  If unsure, say Y.
643
644config ARM64_LD_HAS_FIX_ERRATUM_843419
645	def_bool $(ld-option,--fix-cortex-a53-843419)
646
647config ARM64_ERRATUM_1024718
648	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
649	default y
650	help
651	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
652
653	  Affected Cortex-A55 cores (all revisions) could cause incorrect
654	  update of the hardware dirty bit when the DBM/AP bits are updated
655	  without a break-before-make. The workaround is to disable the usage
656	  of hardware DBM locally on the affected cores. CPUs not affected by
657	  this erratum will continue to use the feature.
658
659	  If unsure, say Y.
660
661config ARM64_ERRATUM_1418040
662	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
663	default y
664	depends on COMPAT
665	help
666	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
667	  errata 1188873 and 1418040.
668
669	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
670	  cause register corruption when accessing the timer registers
671	  from AArch32 userspace.
672
673	  If unsure, say Y.
674
675config ARM64_WORKAROUND_SPECULATIVE_AT
676	bool
677
678config ARM64_ERRATUM_1165522
679	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
680	default y
681	select ARM64_WORKAROUND_SPECULATIVE_AT
682	help
683	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
684
685	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
686	  corrupted TLBs by speculating an AT instruction during a guest
687	  context switch.
688
689	  If unsure, say Y.
690
691config ARM64_ERRATUM_1319367
692	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
693	default y
694	select ARM64_WORKAROUND_SPECULATIVE_AT
695	help
696	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
697	  and A72 erratum 1319367
698
699	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
700	  speculating an AT instruction during a guest context switch.
701
702	  If unsure, say Y.
703
704config ARM64_ERRATUM_1530923
705	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
706	default y
707	select ARM64_WORKAROUND_SPECULATIVE_AT
708	help
709	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
710
711	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
712	  corrupted TLBs by speculating an AT instruction during a guest
713	  context switch.
714
715	  If unsure, say Y.
716
717config ARM64_WORKAROUND_REPEAT_TLBI
718	bool
719
720config ARM64_ERRATUM_2441007
721	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
722	select ARM64_WORKAROUND_REPEAT_TLBI
723	help
724	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
725
726	  Under very rare circumstances, affected Cortex-A55 CPUs
727	  may not handle a race between a break-before-make sequence on one
728	  CPU, and another CPU accessing the same page. This could allow a
729	  store to a page that has been unmapped.
730
731	  Work around this by adding the affected CPUs to the list that needs
732	  TLB sequences to be done twice.
733
734	  If unsure, say N.
735
736config ARM64_ERRATUM_1286807
737	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
738	select ARM64_WORKAROUND_REPEAT_TLBI
739	help
740	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
741
742	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
743	  address for a cacheable mapping of a location is being
744	  accessed by a core while another core is remapping the virtual
745	  address to a new physical page using the recommended
746	  break-before-make sequence, then under very rare circumstances
747	  TLBI+DSB completes before a read using the translation being
748	  invalidated has been observed by other observers. The
749	  workaround repeats the TLBI+DSB operation.
750
751	  If unsure, say N.
752
753config ARM64_ERRATUM_1463225
754	bool "Cortex-A76: Software Step might prevent interrupt recognition"
755	default y
756	help
757	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
758
759	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
760	  of a system call instruction (SVC) can prevent recognition of
761	  subsequent interrupts when software stepping is disabled in the
762	  exception handler of the system call and either kernel debugging
763	  is enabled or VHE is in use.
764
765	  Work around the erratum by triggering a dummy step exception
766	  when handling a system call from a task that is being stepped
767	  in a VHE configuration of the kernel.
768
769	  If unsure, say Y.
770
771config ARM64_ERRATUM_1542419
772	bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
773	help
774	  This option adds a workaround for ARM Neoverse-N1 erratum
775	  1542419.
776
777	  Affected Neoverse-N1 cores could execute a stale instruction when
778	  modified by another CPU. The workaround depends on a firmware
779	  counterpart.
780
781	  Workaround the issue by hiding the DIC feature from EL0. This
782	  forces user-space to perform cache maintenance.
783
784	  If unsure, say N.
785
786config ARM64_ERRATUM_1508412
787	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
788	default y
789	help
790	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
791
792	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
793	  of a store-exclusive or read of PAR_EL1 and a load with device or
794	  non-cacheable memory attributes. The workaround depends on a firmware
795	  counterpart.
796
797	  KVM guests must also have the workaround implemented or they can
798	  deadlock the system.
799
800	  Work around the issue by inserting DMB SY barriers around PAR_EL1
801	  register reads and warning KVM users. The DMB barrier is sufficient
802	  to prevent a speculative PAR_EL1 read.
803
804	  If unsure, say Y.
805
806config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
807	bool
808
809config ARM64_ERRATUM_2051678
810	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
811	default y
812	help
813	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
814	  Affected Cortex-A510 might not respect the ordering rules for
815	  hardware update of the page table's dirty bit. The workaround
816	  is to not enable the feature on affected CPUs.
817
818	  If unsure, say Y.
819
820config ARM64_ERRATUM_2077057
821	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
822	default y
823	help
824	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
825	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
826	  expected, but a Pointer Authentication trap is taken instead. The
827	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
828	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
829
830	  This can only happen when EL2 is stepping EL1.
831
832	  When these conditions occur, the SPSR_EL2 value is unchanged from the
833	  previous guest entry, and can be restored from the in-memory copy.
834
835	  If unsure, say Y.
836
837config ARM64_ERRATUM_2658417
838	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
839	default y
840	help
841	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
842	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
843	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
844	  A510 CPUs are using shared neon hardware. As the sharing is not
845	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
846	  user-space should not be using these instructions.
847
848	  If unsure, say Y.
849
850config ARM64_ERRATUM_2119858
851	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
852	default y
853	depends on CORESIGHT_TRBE
854	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
855	help
856	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
857
858	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
859	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
860	  the event of a WRAP event.
861
862	  Work around the issue by always making sure we move the TRBPTR_EL1 by
863	  256 bytes before enabling the buffer and filling the first 256 bytes of
864	  the buffer with ETM ignore packets upon disabling.
865
866	  If unsure, say Y.
867
868config ARM64_ERRATUM_2139208
869	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
870	default y
871	depends on CORESIGHT_TRBE
872	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
873	help
874	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
875
876	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
877	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
878	  the event of a WRAP event.
879
880	  Work around the issue by always making sure we move the TRBPTR_EL1 by
881	  256 bytes before enabling the buffer and filling the first 256 bytes of
882	  the buffer with ETM ignore packets upon disabling.
883
884	  If unsure, say Y.
885
886config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
887	bool
888
889config ARM64_ERRATUM_2054223
890	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
891	default y
892	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
893	help
894	  Enable workaround for ARM Cortex-A710 erratum 2054223
895
896	  Affected cores may fail to flush the trace data on a TSB instruction, when
897	  the PE is in trace prohibited state. This will cause losing a few bytes
898	  of the trace cached.
899
900	  Workaround is to issue two TSB consecutively on affected cores.
901
902	  If unsure, say Y.
903
904config ARM64_ERRATUM_2067961
905	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
906	default y
907	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
908	help
909	  Enable workaround for ARM Neoverse-N2 erratum 2067961
910
911	  Affected cores may fail to flush the trace data on a TSB instruction, when
912	  the PE is in trace prohibited state. This will cause losing a few bytes
913	  of the trace cached.
914
915	  Workaround is to issue two TSB consecutively on affected cores.
916
917	  If unsure, say Y.
918
919config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
920	bool
921
922config ARM64_ERRATUM_2253138
923	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
924	depends on CORESIGHT_TRBE
925	default y
926	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
927	help
928	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
929
930	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
931	  for TRBE. Under some conditions, the TRBE might generate a write to the next
932	  virtually addressed page following the last page of the TRBE address space
933	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
934
935	  Work around this in the driver by always making sure that there is a
936	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
937
938	  If unsure, say Y.
939
940config ARM64_ERRATUM_2224489
941	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
942	depends on CORESIGHT_TRBE
943	default y
944	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
945	help
946	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
947
948	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
949	  for TRBE. Under some conditions, the TRBE might generate a write to the next
950	  virtually addressed page following the last page of the TRBE address space
951	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
952
953	  Work around this in the driver by always making sure that there is a
954	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
955
956	  If unsure, say Y.
957
958config ARM64_ERRATUM_2441009
959	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
960	select ARM64_WORKAROUND_REPEAT_TLBI
961	help
962	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
963
964	  Under very rare circumstances, affected Cortex-A510 CPUs
965	  may not handle a race between a break-before-make sequence on one
966	  CPU, and another CPU accessing the same page. This could allow a
967	  store to a page that has been unmapped.
968
969	  Work around this by adding the affected CPUs to the list that needs
970	  TLB sequences to be done twice.
971
972	  If unsure, say N.
973
974config ARM64_ERRATUM_2064142
975	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
976	depends on CORESIGHT_TRBE
977	default y
978	help
979	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
980
981	  Affected Cortex-A510 core might fail to write into system registers after the
982	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
983	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
984	  and TRBTRG_EL1 will be ignored and will not be effected.
985
986	  Work around this in the driver by executing TSB CSYNC and DSB after collection
987	  is stopped and before performing a system register write to one of the affected
988	  registers.
989
990	  If unsure, say Y.
991
992config ARM64_ERRATUM_2038923
993	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
994	depends on CORESIGHT_TRBE
995	default y
996	help
997	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
998
999	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
1000	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
1001	  might be corrupted. This happens after TRBE buffer has been enabled by setting
1002	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
1003	  execution changes from a context, in which trace is prohibited to one where it
1004	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
1005	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
1006	  the trace buffer state might be corrupted.
1007
1008	  Work around this in the driver by preventing an inconsistent view of whether the
1009	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
1010	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
1011	  two ISB instructions if no ERET is to take place.
1012
1013	  If unsure, say Y.
1014
1015config ARM64_ERRATUM_1902691
1016	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
1017	depends on CORESIGHT_TRBE
1018	default y
1019	help
1020	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
1021
1022	  Affected Cortex-A510 core might cause trace data corruption, when being written
1023	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
1024	  trace data.
1025
1026	  Work around this problem in the driver by just preventing TRBE initialization on
1027	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
1028	  on such implementations. This will cover the kernel for any firmware that doesn't
1029	  do this already.
1030
1031	  If unsure, say Y.
1032
1033config ARM64_ERRATUM_2457168
1034	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1035	depends on ARM64_AMU_EXTN
1036	default y
1037	help
1038	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1039
1040	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1041	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1042	  incorrectly giving a significantly higher output value.
1043
1044	  Work around this problem by returning 0 when reading the affected counter in
1045	  key locations that results in disabling all users of this counter. This effect
1046	  is the same to firmware disabling affected counters.
1047
1048	  If unsure, say Y.
1049
1050config ARM64_ERRATUM_2645198
1051	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1052	default y
1053	help
1054	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1055
1056	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1057	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1058	  next instruction abort caused by permission fault.
1059
1060	  Only user-space does executable to non-executable permission transition via
1061	  mprotect() system call. Workaround the problem by doing a break-before-make
1062	  TLB invalidation, for all changes to executable user space mappings.
1063
1064	  If unsure, say Y.
1065
1066config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1067	bool
1068
1069config ARM64_ERRATUM_2966298
1070	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1071	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1072	default y
1073	help
1074	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1075
1076	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1077	  load might leak data from a privileged level via a cache side channel.
1078
1079	  Work around this problem by executing a TLBI before returning to EL0.
1080
1081	  If unsure, say Y.
1082
1083config ARM64_ERRATUM_3117295
1084	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1085	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1086	default y
1087	help
1088	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1089
1090	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1091	  load might leak data from a privileged level via a cache side channel.
1092
1093	  Work around this problem by executing a TLBI before returning to EL0.
1094
1095	  If unsure, say Y.
1096
1097config ARM64_ERRATUM_3194386
1098	bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing"
1099	default y
1100	help
1101	  This option adds the workaround for the following errata:
1102
1103	  * ARM Cortex-A76 erratum 3324349
1104	  * ARM Cortex-A77 erratum 3324348
1105	  * ARM Cortex-A78 erratum 3324344
1106	  * ARM Cortex-A78C erratum 3324346
1107	  * ARM Cortex-A78C erratum 3324347
1108	  * ARM Cortex-A710 erratam 3324338
1109	  * ARM Cortex-A715 errartum 3456084
1110	  * ARM Cortex-A720 erratum 3456091
1111	  * ARM Cortex-A725 erratum 3456106
1112	  * ARM Cortex-X1 erratum 3324344
1113	  * ARM Cortex-X1C erratum 3324346
1114	  * ARM Cortex-X2 erratum 3324338
1115	  * ARM Cortex-X3 erratum 3324335
1116	  * ARM Cortex-X4 erratum 3194386
1117	  * ARM Cortex-X925 erratum 3324334
1118	  * ARM Neoverse-N1 erratum 3324349
1119	  * ARM Neoverse N2 erratum 3324339
1120	  * ARM Neoverse-N3 erratum 3456111
1121	  * ARM Neoverse-V1 erratum 3324341
1122	  * ARM Neoverse V2 erratum 3324336
1123	  * ARM Neoverse-V3 erratum 3312417
1124
1125	  On affected cores "MSR SSBS, #0" instructions may not affect
1126	  subsequent speculative instructions, which may permit unexepected
1127	  speculative store bypassing.
1128
1129	  Work around this problem by placing a Speculation Barrier (SB) or
1130	  Instruction Synchronization Barrier (ISB) after kernel changes to
1131	  SSBS. The presence of the SSBS special-purpose register is hidden
1132	  from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace
1133	  will use the PR_SPEC_STORE_BYPASS prctl to change SSBS.
1134
1135	  If unsure, say Y.
1136
1137config CAVIUM_ERRATUM_22375
1138	bool "Cavium erratum 22375, 24313"
1139	default y
1140	help
1141	  Enable workaround for errata 22375 and 24313.
1142
1143	  This implements two gicv3-its errata workarounds for ThunderX. Both
1144	  with a small impact affecting only ITS table allocation.
1145
1146	    erratum 22375: only alloc 8MB table size
1147	    erratum 24313: ignore memory access type
1148
1149	  The fixes are in ITS initialization and basically ignore memory access
1150	  type and table size provided by the TYPER and BASER registers.
1151
1152	  If unsure, say Y.
1153
1154config CAVIUM_ERRATUM_23144
1155	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1156	depends on NUMA
1157	default y
1158	help
1159	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1160
1161	  If unsure, say Y.
1162
1163config CAVIUM_ERRATUM_23154
1164	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1165	default y
1166	help
1167	  The ThunderX GICv3 implementation requires a modified version for
1168	  reading the IAR status to ensure data synchronization
1169	  (access to icc_iar1_el1 is not sync'ed before and after).
1170
1171	  It also suffers from erratum 38545 (also present on Marvell's
1172	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1173	  spuriously presented to the CPU interface.
1174
1175	  If unsure, say Y.
1176
1177config CAVIUM_ERRATUM_27456
1178	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1179	default y
1180	help
1181	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1182	  instructions may cause the icache to become corrupted if it
1183	  contains data for a non-current ASID.  The fix is to
1184	  invalidate the icache when changing the mm context.
1185
1186	  If unsure, say Y.
1187
1188config CAVIUM_ERRATUM_30115
1189	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1190	default y
1191	help
1192	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1193	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1194	  interrupts in host. Trapping both GICv3 group-0 and group-1
1195	  accesses sidesteps the issue.
1196
1197	  If unsure, say Y.
1198
1199config CAVIUM_TX2_ERRATUM_219
1200	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1201	default y
1202	help
1203	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1204	  TTBR update and the corresponding context synchronizing operation can
1205	  cause a spurious Data Abort to be delivered to any hardware thread in
1206	  the CPU core.
1207
1208	  Work around the issue by avoiding the problematic code sequence and
1209	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1210	  trap handler performs the corresponding register access, skips the
1211	  instruction and ensures context synchronization by virtue of the
1212	  exception return.
1213
1214	  If unsure, say Y.
1215
1216config FUJITSU_ERRATUM_010001
1217	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1218	default y
1219	help
1220	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1221	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1222	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1223	  This fault occurs under a specific hardware condition when a
1224	  load/store instruction performs an address translation using:
1225	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1226	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1227	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1228	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1229
1230	  The workaround is to ensure these bits are clear in TCR_ELx.
1231	  The workaround only affects the Fujitsu-A64FX.
1232
1233	  If unsure, say Y.
1234
1235config HISILICON_ERRATUM_161600802
1236	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1237	default y
1238	help
1239	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1240	  when issued ITS commands such as VMOVP and VMAPP, and requires
1241	  a 128kB offset to be applied to the target address in this commands.
1242
1243	  If unsure, say Y.
1244
1245config HISILICON_ERRATUM_162100801
1246	bool "Hip09 162100801 erratum support"
1247	default y
1248	help
1249	  When enabling GICv4.1 in hip09, VMAPP will fail to clear some caches
1250	  during unmapping operation, which will cause some vSGIs lost.
1251	  To fix the issue, invalidate related vPE cache through GICR_INVALLR
1252	  after VMOVP.
1253
1254	  If unsure, say Y.
1255
1256config QCOM_FALKOR_ERRATUM_1003
1257	bool "Falkor E1003: Incorrect translation due to ASID change"
1258	default y
1259	help
1260	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1261	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1262	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1263	  then only for entries in the walk cache, since the leaf translation
1264	  is unchanged. Work around the erratum by invalidating the walk cache
1265	  entries for the trampoline before entering the kernel proper.
1266
1267config QCOM_FALKOR_ERRATUM_1009
1268	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1269	default y
1270	select ARM64_WORKAROUND_REPEAT_TLBI
1271	help
1272	  On Falkor v1, the CPU may prematurely complete a DSB following a
1273	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1274	  one more time to fix the issue.
1275
1276	  If unsure, say Y.
1277
1278config QCOM_QDF2400_ERRATUM_0065
1279	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1280	default y
1281	help
1282	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1283	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1284	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1285
1286	  If unsure, say Y.
1287
1288config QCOM_FALKOR_ERRATUM_E1041
1289	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1290	default y
1291	help
1292	  Falkor CPU may speculatively fetch instructions from an improper
1293	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1294	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1295
1296	  If unsure, say Y.
1297
1298config NVIDIA_CARMEL_CNP_ERRATUM
1299	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1300	default y
1301	help
1302	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1303	  invalidate shared TLB entries installed by a different core, as it would
1304	  on standard ARM cores.
1305
1306	  If unsure, say Y.
1307
1308config ROCKCHIP_ERRATUM_3568002
1309	bool "Rockchip 3568002: GIC600 can not access physical addresses higher than 4GB"
1310	default y
1311	help
1312	  The Rockchip RK3566 and RK3568 GIC600 SoC integrations have AXI
1313	  addressing limited to the first 32bit of physical address space.
1314
1315	  If unsure, say Y.
1316
1317config ROCKCHIP_ERRATUM_3588001
1318	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1319	default y
1320	help
1321	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1322	  This means, that its sharability feature may not be used, even though it
1323	  is supported by the IP itself.
1324
1325	  If unsure, say Y.
1326
1327config SOCIONEXT_SYNQUACER_PREITS
1328	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1329	default y
1330	help
1331	  Socionext Synquacer SoCs implement a separate h/w block to generate
1332	  MSI doorbell writes with non-zero values for the device ID.
1333
1334	  If unsure, say Y.
1335
1336endmenu # "ARM errata workarounds via the alternatives framework"
1337
1338choice
1339	prompt "Page size"
1340	default ARM64_4K_PAGES
1341	help
1342	  Page size (translation granule) configuration.
1343
1344config ARM64_4K_PAGES
1345	bool "4KB"
1346	select HAVE_PAGE_SIZE_4KB
1347	help
1348	  This feature enables 4KB pages support.
1349
1350config ARM64_16K_PAGES
1351	bool "16KB"
1352	select HAVE_PAGE_SIZE_16KB
1353	help
1354	  The system will use 16KB pages support. AArch32 emulation
1355	  requires applications compiled with 16K (or a multiple of 16K)
1356	  aligned segments.
1357
1358config ARM64_64K_PAGES
1359	bool "64KB"
1360	select HAVE_PAGE_SIZE_64KB
1361	help
1362	  This feature enables 64KB pages support (4KB by default)
1363	  allowing only two levels of page tables and faster TLB
1364	  look-up. AArch32 emulation requires applications compiled
1365	  with 64K aligned segments.
1366
1367endchoice
1368
1369choice
1370	prompt "Virtual address space size"
1371	default ARM64_VA_BITS_52
1372	help
1373	  Allows choosing one of multiple possible virtual address
1374	  space sizes. The level of translation table is determined by
1375	  a combination of page size and virtual address space size.
1376
1377config ARM64_VA_BITS_36
1378	bool "36-bit" if EXPERT
1379	depends on PAGE_SIZE_16KB
1380
1381config ARM64_VA_BITS_39
1382	bool "39-bit"
1383	depends on PAGE_SIZE_4KB
1384
1385config ARM64_VA_BITS_42
1386	bool "42-bit"
1387	depends on PAGE_SIZE_64KB
1388
1389config ARM64_VA_BITS_47
1390	bool "47-bit"
1391	depends on PAGE_SIZE_16KB
1392
1393config ARM64_VA_BITS_48
1394	bool "48-bit"
1395
1396config ARM64_VA_BITS_52
1397	bool "52-bit"
1398	help
1399	  Enable 52-bit virtual addressing for userspace when explicitly
1400	  requested via a hint to mmap(). The kernel will also use 52-bit
1401	  virtual addresses for its own mappings (provided HW support for
1402	  this feature is available, otherwise it reverts to 48-bit).
1403
1404	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1405	  ARMv8.3 Pointer Authentication will result in the PAC being
1406	  reduced from 7 bits to 3 bits, which may have a significant
1407	  impact on its susceptibility to brute-force attacks.
1408
1409	  If unsure, select 48-bit virtual addressing instead.
1410
1411endchoice
1412
1413config ARM64_FORCE_52BIT
1414	bool "Force 52-bit virtual addresses for userspace"
1415	depends on ARM64_VA_BITS_52 && EXPERT
1416	help
1417	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1418	  to maintain compatibility with older software by providing 48-bit VAs
1419	  unless a hint is supplied to mmap.
1420
1421	  This configuration option disables the 48-bit compatibility logic, and
1422	  forces all userspace addresses to be 52-bit on HW that supports it. One
1423	  should only enable this configuration option for stress testing userspace
1424	  memory management code. If unsure say N here.
1425
1426config ARM64_VA_BITS
1427	int
1428	default 36 if ARM64_VA_BITS_36
1429	default 39 if ARM64_VA_BITS_39
1430	default 42 if ARM64_VA_BITS_42
1431	default 47 if ARM64_VA_BITS_47
1432	default 48 if ARM64_VA_BITS_48
1433	default 52 if ARM64_VA_BITS_52
1434
1435choice
1436	prompt "Physical address space size"
1437	default ARM64_PA_BITS_48
1438	help
1439	  Choose the maximum physical address range that the kernel will
1440	  support.
1441
1442config ARM64_PA_BITS_48
1443	bool "48-bit"
1444	depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1445
1446config ARM64_PA_BITS_52
1447	bool "52-bit"
1448	depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1449	help
1450	  Enable support for a 52-bit physical address space, introduced as
1451	  part of the ARMv8.2-LPA extension.
1452
1453	  With this enabled, the kernel will also continue to work on CPUs that
1454	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1455	  minor performance overhead).
1456
1457endchoice
1458
1459config ARM64_PA_BITS
1460	int
1461	default 48 if ARM64_PA_BITS_48
1462	default 52 if ARM64_PA_BITS_52
1463
1464config ARM64_LPA2
1465	def_bool y
1466	depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1467
1468choice
1469	prompt "Endianness"
1470	default CPU_LITTLE_ENDIAN
1471	help
1472	  Select the endianness of data accesses performed by the CPU. Userspace
1473	  applications will need to be compiled and linked for the endianness
1474	  that is selected here.
1475
1476config CPU_BIG_ENDIAN
1477	bool "Build big-endian kernel"
1478	# https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1479	depends on AS_IS_GNU || AS_VERSION >= 150000
1480	help
1481	  Say Y if you plan on running a kernel with a big-endian userspace.
1482
1483config CPU_LITTLE_ENDIAN
1484	bool "Build little-endian kernel"
1485	help
1486	  Say Y if you plan on running a kernel with a little-endian userspace.
1487	  This is usually the case for distributions targeting arm64.
1488
1489endchoice
1490
1491config SCHED_MC
1492	bool "Multi-core scheduler support"
1493	help
1494	  Multi-core scheduler support improves the CPU scheduler's decision
1495	  making when dealing with multi-core CPU chips at a cost of slightly
1496	  increased overhead in some places. If unsure say N here.
1497
1498config SCHED_CLUSTER
1499	bool "Cluster scheduler support"
1500	help
1501	  Cluster scheduler support improves the CPU scheduler's decision
1502	  making when dealing with machines that have clusters of CPUs.
1503	  Cluster usually means a couple of CPUs which are placed closely
1504	  by sharing mid-level caches, last-level cache tags or internal
1505	  busses.
1506
1507config SCHED_SMT
1508	bool "SMT scheduler support"
1509	help
1510	  Improves the CPU scheduler's decision making when dealing with
1511	  MultiThreading at a cost of slightly increased overhead in some
1512	  places. If unsure say N here.
1513
1514config NR_CPUS
1515	int "Maximum number of CPUs (2-4096)"
1516	range 2 4096
1517	default "512"
1518
1519config HOTPLUG_CPU
1520	bool "Support for hot-pluggable CPUs"
1521	select GENERIC_IRQ_MIGRATION
1522	help
1523	  Say Y here to experiment with turning CPUs off and on.  CPUs
1524	  can be controlled through /sys/devices/system/cpu.
1525
1526# Common NUMA Features
1527config NUMA
1528	bool "NUMA Memory Allocation and Scheduler Support"
1529	select GENERIC_ARCH_NUMA
1530	select OF_NUMA
1531	select HAVE_SETUP_PER_CPU_AREA
1532	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1533	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1534	select USE_PERCPU_NUMA_NODE_ID
1535	help
1536	  Enable NUMA (Non-Uniform Memory Access) support.
1537
1538	  The kernel will try to allocate memory used by a CPU on the
1539	  local memory of the CPU and add some more
1540	  NUMA awareness to the kernel.
1541
1542config NODES_SHIFT
1543	int "Maximum NUMA Nodes (as a power of 2)"
1544	range 1 10
1545	default "4"
1546	depends on NUMA
1547	help
1548	  Specify the maximum number of NUMA Nodes available on the target
1549	  system.  Increases memory reserved to accommodate various tables.
1550
1551source "kernel/Kconfig.hz"
1552
1553config ARCH_SPARSEMEM_ENABLE
1554	def_bool y
1555	select SPARSEMEM_VMEMMAP_ENABLE
1556	select SPARSEMEM_VMEMMAP
1557
1558config HW_PERF_EVENTS
1559	def_bool y
1560	depends on ARM_PMU
1561
1562# Supported by clang >= 7.0 or GCC >= 12.0.0
1563config CC_HAVE_SHADOW_CALL_STACK
1564	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1565
1566config PARAVIRT
1567	bool "Enable paravirtualization code"
1568	help
1569	  This changes the kernel so it can modify itself when it is run
1570	  under a hypervisor, potentially improving performance significantly
1571	  over full virtualization.
1572
1573config PARAVIRT_TIME_ACCOUNTING
1574	bool "Paravirtual steal time accounting"
1575	select PARAVIRT
1576	help
1577	  Select this option to enable fine granularity task steal time
1578	  accounting. Time spent executing other tasks in parallel with
1579	  the current vCPU is discounted from the vCPU power. To account for
1580	  that, there can be a small performance impact.
1581
1582	  If in doubt, say N here.
1583
1584config ARCH_SUPPORTS_KEXEC
1585	def_bool PM_SLEEP_SMP
1586
1587config ARCH_SUPPORTS_KEXEC_FILE
1588	def_bool y
1589
1590config ARCH_SELECTS_KEXEC_FILE
1591	def_bool y
1592	depends on KEXEC_FILE
1593	select HAVE_IMA_KEXEC if IMA
1594
1595config ARCH_SUPPORTS_KEXEC_SIG
1596	def_bool y
1597
1598config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1599	def_bool y
1600
1601config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1602	def_bool y
1603
1604config ARCH_SUPPORTS_CRASH_DUMP
1605	def_bool y
1606
1607config ARCH_DEFAULT_CRASH_DUMP
1608	def_bool y
1609
1610config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1611	def_bool CRASH_RESERVE
1612
1613config TRANS_TABLE
1614	def_bool y
1615	depends on HIBERNATION || KEXEC_CORE
1616
1617config XEN_DOM0
1618	def_bool y
1619	depends on XEN
1620
1621config XEN
1622	bool "Xen guest support on ARM64"
1623	depends on ARM64 && OF
1624	select SWIOTLB_XEN
1625	select PARAVIRT
1626	help
1627	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1628
1629# include/linux/mmzone.h requires the following to be true:
1630#
1631#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1632#
1633# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1634#
1635#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1636# ----+-------------------+--------------+----------------------+-------------------------+
1637# 4K  |       27          |      12      |       15             |         10              |
1638# 16K |       27          |      14      |       13             |         11              |
1639# 64K |       29          |      16      |       13             |         13              |
1640config ARCH_FORCE_MAX_ORDER
1641	int
1642	default "13" if ARM64_64K_PAGES
1643	default "11" if ARM64_16K_PAGES
1644	default "10"
1645	help
1646	  The kernel page allocator limits the size of maximal physically
1647	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1648	  defines the maximal power of two of number of pages that can be
1649	  allocated as a single contiguous block. This option allows
1650	  overriding the default setting when ability to allocate very
1651	  large blocks of physically contiguous memory is required.
1652
1653	  The maximal size of allocation cannot exceed the size of the
1654	  section, so the value of MAX_PAGE_ORDER should satisfy
1655
1656	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1657
1658	  Don't change if unsure.
1659
1660config UNMAP_KERNEL_AT_EL0
1661	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1662	default y
1663	help
1664	  Speculation attacks against some high-performance processors can
1665	  be used to bypass MMU permission checks and leak kernel data to
1666	  userspace. This can be defended against by unmapping the kernel
1667	  when running in userspace, mapping it back in on exception entry
1668	  via a trampoline page in the vector table.
1669
1670	  If unsure, say Y.
1671
1672config MITIGATE_SPECTRE_BRANCH_HISTORY
1673	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1674	default y
1675	help
1676	  Speculation attacks against some high-performance processors can
1677	  make use of branch history to influence future speculation.
1678	  When taking an exception from user-space, a sequence of branches
1679	  or a firmware call overwrites the branch history.
1680
1681config RODATA_FULL_DEFAULT_ENABLED
1682	bool "Apply r/o permissions of VM areas also to their linear aliases"
1683	default y
1684	help
1685	  Apply read-only attributes of VM areas to the linear alias of
1686	  the backing pages as well. This prevents code or read-only data
1687	  from being modified (inadvertently or intentionally) via another
1688	  mapping of the same memory page. This additional enhancement can
1689	  be turned off at runtime by passing rodata=[off|on] (and turned on
1690	  with rodata=full if this option is set to 'n')
1691
1692	  This requires the linear region to be mapped down to pages,
1693	  which may adversely affect performance in some cases.
1694
1695config ARM64_SW_TTBR0_PAN
1696	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1697	depends on !KCSAN
1698	select ARM64_PAN
1699	help
1700	  Enabling this option prevents the kernel from accessing
1701	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1702	  zeroed area and reserved ASID. The user access routines
1703	  restore the valid TTBR0_EL1 temporarily.
1704
1705config ARM64_TAGGED_ADDR_ABI
1706	bool "Enable the tagged user addresses syscall ABI"
1707	default y
1708	help
1709	  When this option is enabled, user applications can opt in to a
1710	  relaxed ABI via prctl() allowing tagged addresses to be passed
1711	  to system calls as pointer arguments. For details, see
1712	  Documentation/arch/arm64/tagged-address-abi.rst.
1713
1714menuconfig COMPAT
1715	bool "Kernel support for 32-bit EL0"
1716	depends on ARM64_4K_PAGES || EXPERT
1717	select HAVE_UID16
1718	select OLD_SIGSUSPEND3
1719	select COMPAT_OLD_SIGACTION
1720	help
1721	  This option enables support for a 32-bit EL0 running under a 64-bit
1722	  kernel at EL1. AArch32-specific components such as system calls,
1723	  the user helper functions, VFP support and the ptrace interface are
1724	  handled appropriately by the kernel.
1725
1726	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1727	  that you will only be able to execute AArch32 binaries that were compiled
1728	  with page size aligned segments.
1729
1730	  If you want to execute 32-bit userspace applications, say Y.
1731
1732if COMPAT
1733
1734config KUSER_HELPERS
1735	bool "Enable kuser helpers page for 32-bit applications"
1736	default y
1737	help
1738	  Warning: disabling this option may break 32-bit user programs.
1739
1740	  Provide kuser helpers to compat tasks. The kernel provides
1741	  helper code to userspace in read only form at a fixed location
1742	  to allow userspace to be independent of the CPU type fitted to
1743	  the system. This permits binaries to be run on ARMv4 through
1744	  to ARMv8 without modification.
1745
1746	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1747
1748	  However, the fixed address nature of these helpers can be used
1749	  by ROP (return orientated programming) authors when creating
1750	  exploits.
1751
1752	  If all of the binaries and libraries which run on your platform
1753	  are built specifically for your platform, and make no use of
1754	  these helpers, then you can turn this option off to hinder
1755	  such exploits. However, in that case, if a binary or library
1756	  relying on those helpers is run, it will not function correctly.
1757
1758	  Say N here only if you are absolutely certain that you do not
1759	  need these helpers; otherwise, the safe option is to say Y.
1760
1761config COMPAT_VDSO
1762	bool "Enable vDSO for 32-bit applications"
1763	depends on !CPU_BIG_ENDIAN
1764	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1765	select GENERIC_COMPAT_VDSO
1766	default y
1767	help
1768	  Place in the process address space of 32-bit applications an
1769	  ELF shared object providing fast implementations of gettimeofday
1770	  and clock_gettime.
1771
1772	  You must have a 32-bit build of glibc 2.22 or later for programs
1773	  to seamlessly take advantage of this.
1774
1775config THUMB2_COMPAT_VDSO
1776	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1777	depends on COMPAT_VDSO
1778	default y
1779	help
1780	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1781	  otherwise with '-marm'.
1782
1783config COMPAT_ALIGNMENT_FIXUPS
1784	bool "Fix up misaligned multi-word loads and stores in user space"
1785
1786menuconfig ARMV8_DEPRECATED
1787	bool "Emulate deprecated/obsolete ARMv8 instructions"
1788	depends on SYSCTL
1789	help
1790	  Legacy software support may require certain instructions
1791	  that have been deprecated or obsoleted in the architecture.
1792
1793	  Enable this config to enable selective emulation of these
1794	  features.
1795
1796	  If unsure, say Y
1797
1798if ARMV8_DEPRECATED
1799
1800config SWP_EMULATION
1801	bool "Emulate SWP/SWPB instructions"
1802	help
1803	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1804	  they are always undefined. Say Y here to enable software
1805	  emulation of these instructions for userspace using LDXR/STXR.
1806	  This feature can be controlled at runtime with the abi.swp
1807	  sysctl which is disabled by default.
1808
1809	  In some older versions of glibc [<=2.8] SWP is used during futex
1810	  trylock() operations with the assumption that the code will not
1811	  be preempted. This invalid assumption may be more likely to fail
1812	  with SWP emulation enabled, leading to deadlock of the user
1813	  application.
1814
1815	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1816	  on an external transaction monitoring block called a global
1817	  monitor to maintain update atomicity. If your system does not
1818	  implement a global monitor, this option can cause programs that
1819	  perform SWP operations to uncached memory to deadlock.
1820
1821	  If unsure, say Y
1822
1823config CP15_BARRIER_EMULATION
1824	bool "Emulate CP15 Barrier instructions"
1825	help
1826	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1827	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1828	  strongly recommended to use the ISB, DSB, and DMB
1829	  instructions instead.
1830
1831	  Say Y here to enable software emulation of these
1832	  instructions for AArch32 userspace code. When this option is
1833	  enabled, CP15 barrier usage is traced which can help
1834	  identify software that needs updating. This feature can be
1835	  controlled at runtime with the abi.cp15_barrier sysctl.
1836
1837	  If unsure, say Y
1838
1839config SETEND_EMULATION
1840	bool "Emulate SETEND instruction"
1841	help
1842	  The SETEND instruction alters the data-endianness of the
1843	  AArch32 EL0, and is deprecated in ARMv8.
1844
1845	  Say Y here to enable software emulation of the instruction
1846	  for AArch32 userspace code. This feature can be controlled
1847	  at runtime with the abi.setend sysctl.
1848
1849	  Note: All the cpus on the system must have mixed endian support at EL0
1850	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1851	  endian - is hotplugged in after this feature has been enabled, there could
1852	  be unexpected results in the applications.
1853
1854	  If unsure, say Y
1855endif # ARMV8_DEPRECATED
1856
1857endif # COMPAT
1858
1859menu "ARMv8.1 architectural features"
1860
1861config ARM64_HW_AFDBM
1862	bool "Support for hardware updates of the Access and Dirty page flags"
1863	default y
1864	help
1865	  The ARMv8.1 architecture extensions introduce support for
1866	  hardware updates of the access and dirty information in page
1867	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1868	  capable processors, accesses to pages with PTE_AF cleared will
1869	  set this bit instead of raising an access flag fault.
1870	  Similarly, writes to read-only pages with the DBM bit set will
1871	  clear the read-only bit (AP[2]) instead of raising a
1872	  permission fault.
1873
1874	  Kernels built with this configuration option enabled continue
1875	  to work on pre-ARMv8.1 hardware and the performance impact is
1876	  minimal. If unsure, say Y.
1877
1878config ARM64_PAN
1879	bool "Enable support for Privileged Access Never (PAN)"
1880	default y
1881	help
1882	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1883	  prevents the kernel or hypervisor from accessing user-space (EL0)
1884	  memory directly.
1885
1886	  Choosing this option will cause any unprotected (not using
1887	  copy_to_user et al) memory access to fail with a permission fault.
1888
1889	  The feature is detected at runtime, and will remain as a 'nop'
1890	  instruction if the cpu does not implement the feature.
1891
1892config AS_HAS_LSE_ATOMICS
1893	def_bool $(as-instr,.arch_extension lse)
1894
1895config ARM64_LSE_ATOMICS
1896	bool
1897	default ARM64_USE_LSE_ATOMICS
1898	depends on AS_HAS_LSE_ATOMICS
1899
1900config ARM64_USE_LSE_ATOMICS
1901	bool "Atomic instructions"
1902	default y
1903	help
1904	  As part of the Large System Extensions, ARMv8.1 introduces new
1905	  atomic instructions that are designed specifically to scale in
1906	  very large systems.
1907
1908	  Say Y here to make use of these instructions for the in-kernel
1909	  atomic routines. This incurs a small overhead on CPUs that do
1910	  not support these instructions and requires the kernel to be
1911	  built with binutils >= 2.25 in order for the new instructions
1912	  to be used.
1913
1914endmenu # "ARMv8.1 architectural features"
1915
1916menu "ARMv8.2 architectural features"
1917
1918config AS_HAS_ARMV8_2
1919	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1920
1921config AS_HAS_SHA3
1922	def_bool $(as-instr,.arch armv8.2-a+sha3)
1923
1924config ARM64_PMEM
1925	bool "Enable support for persistent memory"
1926	select ARCH_HAS_PMEM_API
1927	select ARCH_HAS_UACCESS_FLUSHCACHE
1928	help
1929	  Say Y to enable support for the persistent memory API based on the
1930	  ARMv8.2 DCPoP feature.
1931
1932	  The feature is detected at runtime, and the kernel will use DC CVAC
1933	  operations if DC CVAP is not supported (following the behaviour of
1934	  DC CVAP itself if the system does not define a point of persistence).
1935
1936config ARM64_RAS_EXTN
1937	bool "Enable support for RAS CPU Extensions"
1938	default y
1939	help
1940	  CPUs that support the Reliability, Availability and Serviceability
1941	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1942	  errors, classify them and report them to software.
1943
1944	  On CPUs with these extensions system software can use additional
1945	  barriers to determine if faults are pending and read the
1946	  classification from a new set of registers.
1947
1948	  Selecting this feature will allow the kernel to use these barriers
1949	  and access the new registers if the system supports the extension.
1950	  Platform RAS features may additionally depend on firmware support.
1951
1952config ARM64_CNP
1953	bool "Enable support for Common Not Private (CNP) translations"
1954	default y
1955	help
1956	  Common Not Private (CNP) allows translation table entries to
1957	  be shared between different PEs in the same inner shareable
1958	  domain, so the hardware can use this fact to optimise the
1959	  caching of such entries in the TLB.
1960
1961	  Selecting this option allows the CNP feature to be detected
1962	  at runtime, and does not affect PEs that do not implement
1963	  this feature.
1964
1965endmenu # "ARMv8.2 architectural features"
1966
1967menu "ARMv8.3 architectural features"
1968
1969config ARM64_PTR_AUTH
1970	bool "Enable support for pointer authentication"
1971	default y
1972	help
1973	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1974	  instructions for signing and authenticating pointers against secret
1975	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1976	  and other attacks.
1977
1978	  This option enables these instructions at EL0 (i.e. for userspace).
1979	  Choosing this option will cause the kernel to initialise secret keys
1980	  for each process at exec() time, with these keys being
1981	  context-switched along with the process.
1982
1983	  The feature is detected at runtime. If the feature is not present in
1984	  hardware it will not be advertised to userspace/KVM guest nor will it
1985	  be enabled.
1986
1987	  If the feature is present on the boot CPU but not on a late CPU, then
1988	  the late CPU will be parked. Also, if the boot CPU does not have
1989	  address auth and the late CPU has then the late CPU will still boot
1990	  but with the feature disabled. On such a system, this option should
1991	  not be selected.
1992
1993config ARM64_PTR_AUTH_KERNEL
1994	bool "Use pointer authentication for kernel"
1995	default y
1996	depends on ARM64_PTR_AUTH
1997	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1998	# Modern compilers insert a .note.gnu.property section note for PAC
1999	# which is only understood by binutils starting with version 2.33.1.
2000	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
2001	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
2002	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2003	help
2004	  If the compiler supports the -mbranch-protection or
2005	  -msign-return-address flag (e.g. GCC 7 or later), then this option
2006	  will cause the kernel itself to be compiled with return address
2007	  protection. In this case, and if the target hardware is known to
2008	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
2009	  disabled with minimal loss of protection.
2010
2011	  This feature works with FUNCTION_GRAPH_TRACER option only if
2012	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
2013
2014config CC_HAS_BRANCH_PROT_PAC_RET
2015	# GCC 9 or later, clang 8 or later
2016	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
2017
2018config CC_HAS_SIGN_RETURN_ADDRESS
2019	# GCC 7, 8
2020	def_bool $(cc-option,-msign-return-address=all)
2021
2022config AS_HAS_ARMV8_3
2023	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
2024
2025config AS_HAS_CFI_NEGATE_RA_STATE
2026	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
2027
2028config AS_HAS_LDAPR
2029	def_bool $(as-instr,.arch_extension rcpc)
2030
2031endmenu # "ARMv8.3 architectural features"
2032
2033menu "ARMv8.4 architectural features"
2034
2035config ARM64_AMU_EXTN
2036	bool "Enable support for the Activity Monitors Unit CPU extension"
2037	default y
2038	help
2039	  The activity monitors extension is an optional extension introduced
2040	  by the ARMv8.4 CPU architecture. This enables support for version 1
2041	  of the activity monitors architecture, AMUv1.
2042
2043	  To enable the use of this extension on CPUs that implement it, say Y.
2044
2045	  Note that for architectural reasons, firmware _must_ implement AMU
2046	  support when running on CPUs that present the activity monitors
2047	  extension. The required support is present in:
2048	    * Version 1.5 and later of the ARM Trusted Firmware
2049
2050	  For kernels that have this configuration enabled but boot with broken
2051	  firmware, you may need to say N here until the firmware is fixed.
2052	  Otherwise you may experience firmware panics or lockups when
2053	  accessing the counter registers. Even if you are not observing these
2054	  symptoms, the values returned by the register reads might not
2055	  correctly reflect reality. Most commonly, the value read will be 0,
2056	  indicating that the counter is not enabled.
2057
2058config AS_HAS_ARMV8_4
2059	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
2060
2061config ARM64_TLB_RANGE
2062	bool "Enable support for tlbi range feature"
2063	default y
2064	depends on AS_HAS_ARMV8_4
2065	help
2066	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
2067	  range of input addresses.
2068
2069	  The feature introduces new assembly instructions, and they were
2070	  support when binutils >= 2.30.
2071
2072endmenu # "ARMv8.4 architectural features"
2073
2074menu "ARMv8.5 architectural features"
2075
2076config AS_HAS_ARMV8_5
2077	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
2078
2079config ARM64_BTI
2080	bool "Branch Target Identification support"
2081	default y
2082	help
2083	  Branch Target Identification (part of the ARMv8.5 Extensions)
2084	  provides a mechanism to limit the set of locations to which computed
2085	  branch instructions such as BR or BLR can jump.
2086
2087	  To make use of BTI on CPUs that support it, say Y.
2088
2089	  BTI is intended to provide complementary protection to other control
2090	  flow integrity protection mechanisms, such as the Pointer
2091	  authentication mechanism provided as part of the ARMv8.3 Extensions.
2092	  For this reason, it does not make sense to enable this option without
2093	  also enabling support for pointer authentication.  Thus, when
2094	  enabling this option you should also select ARM64_PTR_AUTH=y.
2095
2096	  Userspace binaries must also be specifically compiled to make use of
2097	  this mechanism.  If you say N here or the hardware does not support
2098	  BTI, such binaries can still run, but you get no additional
2099	  enforcement of branch destinations.
2100
2101config ARM64_BTI_KERNEL
2102	bool "Use Branch Target Identification for kernel"
2103	default y
2104	depends on ARM64_BTI
2105	depends on ARM64_PTR_AUTH_KERNEL
2106	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2107	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2108	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2109	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2110	depends on !CC_IS_GCC
2111	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2112	help
2113	  Build the kernel with Branch Target Identification annotations
2114	  and enable enforcement of this for kernel code. When this option
2115	  is enabled and the system supports BTI all kernel code including
2116	  modular code must have BTI enabled.
2117
2118config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2119	# GCC 9 or later, clang 8 or later
2120	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2121
2122config ARM64_E0PD
2123	bool "Enable support for E0PD"
2124	default y
2125	help
2126	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2127	  that EL0 accesses made via TTBR1 always fault in constant time,
2128	  providing similar benefits to KASLR as those provided by KPTI, but
2129	  with lower overhead and without disrupting legitimate access to
2130	  kernel memory such as SPE.
2131
2132	  This option enables E0PD for TTBR1 where available.
2133
2134config ARM64_AS_HAS_MTE
2135	# Initial support for MTE went in binutils 2.32.0, checked with
2136	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2137	# as a late addition to the final architecture spec (LDGM/STGM)
2138	# is only supported in the newer 2.32.x and 2.33 binutils
2139	# versions, hence the extra "stgm" instruction check below.
2140	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2141
2142config ARM64_MTE
2143	bool "Memory Tagging Extension support"
2144	default y
2145	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2146	depends on AS_HAS_ARMV8_5
2147	depends on AS_HAS_LSE_ATOMICS
2148	# Required for tag checking in the uaccess routines
2149	select ARM64_PAN
2150	select ARCH_HAS_SUBPAGE_FAULTS
2151	select ARCH_USES_HIGH_VMA_FLAGS
2152	select ARCH_USES_PG_ARCH_2
2153	select ARCH_USES_PG_ARCH_3
2154	help
2155	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2156	  architectural support for run-time, always-on detection of
2157	  various classes of memory error to aid with software debugging
2158	  to eliminate vulnerabilities arising from memory-unsafe
2159	  languages.
2160
2161	  This option enables the support for the Memory Tagging
2162	  Extension at EL0 (i.e. for userspace).
2163
2164	  Selecting this option allows the feature to be detected at
2165	  runtime. Any secondary CPU not implementing this feature will
2166	  not be allowed a late bring-up.
2167
2168	  Userspace binaries that want to use this feature must
2169	  explicitly opt in. The mechanism for the userspace is
2170	  described in:
2171
2172	  Documentation/arch/arm64/memory-tagging-extension.rst.
2173
2174endmenu # "ARMv8.5 architectural features"
2175
2176menu "ARMv8.7 architectural features"
2177
2178config ARM64_EPAN
2179	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2180	default y
2181	depends on ARM64_PAN
2182	help
2183	  Enhanced Privileged Access Never (EPAN) allows Privileged
2184	  Access Never to be used with Execute-only mappings.
2185
2186	  The feature is detected at runtime, and will remain disabled
2187	  if the cpu does not implement the feature.
2188endmenu # "ARMv8.7 architectural features"
2189
2190config AS_HAS_MOPS
2191	def_bool $(as-instr,.arch_extension mops)
2192
2193menu "ARMv8.9 architectural features"
2194
2195config ARM64_POE
2196	prompt "Permission Overlay Extension"
2197	def_bool y
2198	select ARCH_USES_HIGH_VMA_FLAGS
2199	select ARCH_HAS_PKEYS
2200	help
2201	  The Permission Overlay Extension is used to implement Memory
2202	  Protection Keys. Memory Protection Keys provides a mechanism for
2203	  enforcing page-based protections, but without requiring modification
2204	  of the page tables when an application changes protection domains.
2205
2206	  For details, see Documentation/core-api/protection-keys.rst
2207
2208	  If unsure, say y.
2209
2210config ARCH_PKEY_BITS
2211	int
2212	default 3
2213
2214config ARM64_HAFT
2215	bool "Support for Hardware managed Access Flag for Table Descriptors"
2216	depends on ARM64_HW_AFDBM
2217	default y
2218	help
2219	  The ARMv8.9/ARMv9.5 introduces the feature Hardware managed Access
2220	  Flag for Table descriptors. When enabled an architectural executed
2221	  memory access will update the Access Flag in each Table descriptor
2222	  which is accessed during the translation table walk and for which
2223	  the Access Flag is 0. The Access Flag of the Table descriptor use
2224	  the same bit of PTE_AF.
2225
2226	  The feature will only be enabled if all the CPUs in the system
2227	  support this feature. If unsure, say Y.
2228
2229endmenu # "ARMv8.9 architectural features"
2230
2231menu "v9.4 architectural features"
2232
2233config ARM64_GCS
2234	bool "Enable support for Guarded Control Stack (GCS)"
2235	default y
2236	select ARCH_HAS_USER_SHADOW_STACK
2237	select ARCH_USES_HIGH_VMA_FLAGS
2238	depends on !UPROBES
2239	help
2240	  Guarded Control Stack (GCS) provides support for a separate
2241	  stack with restricted access which contains only return
2242	  addresses.  This can be used to harden against some attacks
2243	  by comparing return address used by the program with what is
2244	  stored in the GCS, and may also be used to efficiently obtain
2245	  the call stack for applications such as profiling.
2246
2247	  The feature is detected at runtime, and will remain disabled
2248	  if the system does not implement the feature.
2249
2250endmenu # "v9.4 architectural features"
2251
2252config ARM64_SVE
2253	bool "ARM Scalable Vector Extension support"
2254	default y
2255	help
2256	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2257	  execution state which complements and extends the SIMD functionality
2258	  of the base architecture to support much larger vectors and to enable
2259	  additional vectorisation opportunities.
2260
2261	  To enable use of this extension on CPUs that implement it, say Y.
2262
2263	  On CPUs that support the SVE2 extensions, this option will enable
2264	  those too.
2265
2266	  Note that for architectural reasons, firmware _must_ implement SVE
2267	  support when running on SVE capable hardware.  The required support
2268	  is present in:
2269
2270	    * version 1.5 and later of the ARM Trusted Firmware
2271	    * the AArch64 boot wrapper since commit 5e1261e08abf
2272	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2273
2274	  For other firmware implementations, consult the firmware documentation
2275	  or vendor.
2276
2277	  If you need the kernel to boot on SVE-capable hardware with broken
2278	  firmware, you may need to say N here until you get your firmware
2279	  fixed.  Otherwise, you may experience firmware panics or lockups when
2280	  booting the kernel.  If unsure and you are not observing these
2281	  symptoms, you should assume that it is safe to say Y.
2282
2283config ARM64_SME
2284	bool "ARM Scalable Matrix Extension support"
2285	default y
2286	depends on ARM64_SVE
2287	depends on BROKEN
2288	help
2289	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2290	  execution state which utilises a substantial subset of the SVE
2291	  instruction set, together with the addition of new architectural
2292	  register state capable of holding two dimensional matrix tiles to
2293	  enable various matrix operations.
2294
2295config ARM64_PSEUDO_NMI
2296	bool "Support for NMI-like interrupts"
2297	select ARM_GIC_V3
2298	help
2299	  Adds support for mimicking Non-Maskable Interrupts through the use of
2300	  GIC interrupt priority. This support requires version 3 or later of
2301	  ARM GIC.
2302
2303	  This high priority configuration for interrupts needs to be
2304	  explicitly enabled by setting the kernel parameter
2305	  "irqchip.gicv3_pseudo_nmi" to 1.
2306
2307	  If unsure, say N
2308
2309if ARM64_PSEUDO_NMI
2310config ARM64_DEBUG_PRIORITY_MASKING
2311	bool "Debug interrupt priority masking"
2312	help
2313	  This adds runtime checks to functions enabling/disabling
2314	  interrupts when using priority masking. The additional checks verify
2315	  the validity of ICC_PMR_EL1 when calling concerned functions.
2316
2317	  If unsure, say N
2318endif # ARM64_PSEUDO_NMI
2319
2320config RELOCATABLE
2321	bool "Build a relocatable kernel image" if EXPERT
2322	select ARCH_HAS_RELR
2323	default y
2324	help
2325	  This builds the kernel as a Position Independent Executable (PIE),
2326	  which retains all relocation metadata required to relocate the
2327	  kernel binary at runtime to a different virtual address than the
2328	  address it was linked at.
2329	  Since AArch64 uses the RELA relocation format, this requires a
2330	  relocation pass at runtime even if the kernel is loaded at the
2331	  same address it was linked at.
2332
2333config RANDOMIZE_BASE
2334	bool "Randomize the address of the kernel image"
2335	select RELOCATABLE
2336	help
2337	  Randomizes the virtual address at which the kernel image is
2338	  loaded, as a security feature that deters exploit attempts
2339	  relying on knowledge of the location of kernel internals.
2340
2341	  It is the bootloader's job to provide entropy, by passing a
2342	  random u64 value in /chosen/kaslr-seed at kernel entry.
2343
2344	  When booting via the UEFI stub, it will invoke the firmware's
2345	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2346	  to the kernel proper. In addition, it will randomise the physical
2347	  location of the kernel Image as well.
2348
2349	  If unsure, say N.
2350
2351config RANDOMIZE_MODULE_REGION_FULL
2352	bool "Randomize the module region over a 2 GB range"
2353	depends on RANDOMIZE_BASE
2354	default y
2355	help
2356	  Randomizes the location of the module region inside a 2 GB window
2357	  covering the core kernel. This way, it is less likely for modules
2358	  to leak information about the location of core kernel data structures
2359	  but it does imply that function calls between modules and the core
2360	  kernel will need to be resolved via veneers in the module PLT.
2361
2362	  When this option is not set, the module region will be randomized over
2363	  a limited range that contains the [_stext, _etext] interval of the
2364	  core kernel, so branch relocations are almost always in range unless
2365	  the region is exhausted. In this particular case of region
2366	  exhaustion, modules might be able to fall back to a larger 2GB area.
2367
2368config CC_HAVE_STACKPROTECTOR_SYSREG
2369	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2370
2371config STACKPROTECTOR_PER_TASK
2372	def_bool y
2373	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2374
2375config UNWIND_PATCH_PAC_INTO_SCS
2376	bool "Enable shadow call stack dynamically using code patching"
2377	# needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated
2378	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2379	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2380	depends on SHADOW_CALL_STACK
2381	select UNWIND_TABLES
2382	select DYNAMIC_SCS
2383
2384config ARM64_CONTPTE
2385	bool "Contiguous PTE mappings for user memory" if EXPERT
2386	depends on TRANSPARENT_HUGEPAGE
2387	default y
2388	help
2389	  When enabled, user mappings are configured using the PTE contiguous
2390	  bit, for any mappings that meet the size and alignment requirements.
2391	  This reduces TLB pressure and improves performance.
2392
2393endmenu # "Kernel Features"
2394
2395menu "Boot options"
2396
2397config ARM64_ACPI_PARKING_PROTOCOL
2398	bool "Enable support for the ARM64 ACPI parking protocol"
2399	depends on ACPI
2400	help
2401	  Enable support for the ARM64 ACPI parking protocol. If disabled
2402	  the kernel will not allow booting through the ARM64 ACPI parking
2403	  protocol even if the corresponding data is present in the ACPI
2404	  MADT table.
2405
2406config CMDLINE
2407	string "Default kernel command string"
2408	default ""
2409	help
2410	  Provide a set of default command-line options at build time by
2411	  entering them here. As a minimum, you should specify the the
2412	  root device (e.g. root=/dev/nfs).
2413
2414choice
2415	prompt "Kernel command line type"
2416	depends on CMDLINE != ""
2417	default CMDLINE_FROM_BOOTLOADER
2418	help
2419	  Choose how the kernel will handle the provided default kernel
2420	  command line string.
2421
2422config CMDLINE_FROM_BOOTLOADER
2423	bool "Use bootloader kernel arguments if available"
2424	help
2425	  Uses the command-line options passed by the boot loader. If
2426	  the boot loader doesn't provide any, the default kernel command
2427	  string provided in CMDLINE will be used.
2428
2429config CMDLINE_FORCE
2430	bool "Always use the default kernel command string"
2431	help
2432	  Always use the default kernel command string, even if the boot
2433	  loader passes other arguments to the kernel.
2434	  This is useful if you cannot or don't want to change the
2435	  command-line options your boot loader passes to the kernel.
2436
2437endchoice
2438
2439config EFI_STUB
2440	bool
2441
2442config EFI
2443	bool "UEFI runtime support"
2444	depends on OF && !CPU_BIG_ENDIAN
2445	depends on KERNEL_MODE_NEON
2446	select ARCH_SUPPORTS_ACPI
2447	select LIBFDT
2448	select UCS2_STRING
2449	select EFI_PARAMS_FROM_FDT
2450	select EFI_RUNTIME_WRAPPERS
2451	select EFI_STUB
2452	select EFI_GENERIC_STUB
2453	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2454	default y
2455	help
2456	  This option provides support for runtime services provided
2457	  by UEFI firmware (such as non-volatile variables, realtime
2458	  clock, and platform reset). A UEFI stub is also provided to
2459	  allow the kernel to be booted as an EFI application. This
2460	  is only useful on systems that have UEFI firmware.
2461
2462config COMPRESSED_INSTALL
2463	bool "Install compressed image by default"
2464	help
2465	  This makes the regular "make install" install the compressed
2466	  image we built, not the legacy uncompressed one.
2467
2468	  You can check that a compressed image works for you by doing
2469	  "make zinstall" first, and verifying that everything is fine
2470	  in your environment before making "make install" do this for
2471	  you.
2472
2473config DMI
2474	bool "Enable support for SMBIOS (DMI) tables"
2475	depends on EFI
2476	default y
2477	help
2478	  This enables SMBIOS/DMI feature for systems.
2479
2480	  This option is only useful on systems that have UEFI firmware.
2481	  However, even with this option, the resultant kernel should
2482	  continue to boot on existing non-UEFI platforms.
2483
2484endmenu # "Boot options"
2485
2486menu "Power management options"
2487
2488source "kernel/power/Kconfig"
2489
2490config ARCH_HIBERNATION_POSSIBLE
2491	def_bool y
2492	depends on CPU_PM
2493
2494config ARCH_HIBERNATION_HEADER
2495	def_bool y
2496	depends on HIBERNATION
2497
2498config ARCH_SUSPEND_POSSIBLE
2499	def_bool y
2500
2501endmenu # "Power management options"
2502
2503menu "CPU Power Management"
2504
2505source "drivers/cpuidle/Kconfig"
2506
2507source "drivers/cpufreq/Kconfig"
2508
2509endmenu # "CPU Power Management"
2510
2511source "drivers/acpi/Kconfig"
2512
2513source "arch/arm64/kvm/Kconfig"
2514
2515