xref: /linux/arch/arm64/Kconfig (revision 8c7c1b5506e593ce00c42214b4fcafd640ceeb42)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU
9	select ACPI_IORT if ACPI
10	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
11	select ACPI_MCFG if (ACPI && PCI)
12	select ACPI_SPCR_TABLE if ACPI
13	select ACPI_PPTT if ACPI
14	select ARCH_HAS_DEBUG_WX
15	select ARCH_BINFMT_ELF_EXTRA_PHDRS
16	select ARCH_BINFMT_ELF_STATE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CC_PLATFORM
24	select ARCH_HAS_CRC32
25	select ARCH_HAS_CRC_T10DIF if KERNEL_MODE_NEON
26	select ARCH_HAS_CURRENT_STACK_POINTER
27	select ARCH_HAS_DEBUG_VIRTUAL
28	select ARCH_HAS_DEBUG_VM_PGTABLE
29	select ARCH_HAS_DMA_OPS if XEN
30	select ARCH_HAS_DMA_PREP_COHERENT
31	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
32	select ARCH_HAS_FAST_MULTIPLIER
33	select ARCH_HAS_FORTIFY_SOURCE
34	select ARCH_HAS_GCOV_PROFILE_ALL
35	select ARCH_HAS_GIGANTIC_PAGE
36	select ARCH_HAS_KCOV
37	select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON
38	select ARCH_HAS_KEEPINITRD
39	select ARCH_HAS_MEMBARRIER_SYNC_CORE
40	select ARCH_HAS_MEM_ENCRYPT
41	select ARCH_SUPPORTS_MSEAL_SYSTEM_MAPPINGS
42	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
43	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
44	select ARCH_HAS_NONLEAF_PMD_YOUNG if ARM64_HAFT
45	select ARCH_HAS_PTDUMP
46	select ARCH_HAS_PTE_DEVMAP
47	select ARCH_HAS_PTE_SPECIAL
48	select ARCH_HAS_HW_PTE_YOUNG
49	select ARCH_HAS_SETUP_DMA_OPS
50	select ARCH_HAS_SET_DIRECT_MAP
51	select ARCH_HAS_SET_MEMORY
52	select ARCH_HAS_MEM_ENCRYPT
53	select ARCH_HAS_FORCE_DMA_UNENCRYPTED
54	select ARCH_STACKWALK
55	select ARCH_HAS_STRICT_KERNEL_RWX
56	select ARCH_HAS_STRICT_MODULE_RWX
57	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
58	select ARCH_HAS_SYNC_DMA_FOR_CPU
59	select ARCH_HAS_SYSCALL_WRAPPER
60	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
61	select ARCH_HAS_ZONE_DMA_SET if EXPERT
62	select ARCH_HAVE_ELF_PROT
63	select ARCH_HAVE_NMI_SAFE_CMPXCHG
64	select ARCH_HAVE_TRACE_MMIO_ACCESS
65	select ARCH_INLINE_READ_LOCK if !PREEMPTION
66	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
67	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
68	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
69	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
70	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
71	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
72	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
73	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
74	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
75	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
76	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
77	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
78	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
79	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
80	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
81	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
82	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
83	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
84	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
85	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
86	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
87	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
88	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
89	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
90	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
91	select ARCH_KEEP_MEMBLOCK
92	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
93	select ARCH_USE_CMPXCHG_LOCKREF
94	select ARCH_USE_GNU_PROPERTY
95	select ARCH_USE_MEMTEST
96	select ARCH_USE_QUEUED_RWLOCKS
97	select ARCH_USE_QUEUED_SPINLOCKS
98	select ARCH_USE_SYM_ANNOTATIONS
99	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
100	select ARCH_SUPPORTS_HUGETLBFS
101	select ARCH_SUPPORTS_MEMORY_FAILURE
102	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
103	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
104	select ARCH_SUPPORTS_LTO_CLANG_THIN
105	select ARCH_SUPPORTS_CFI_CLANG
106	select ARCH_SUPPORTS_ATOMIC_RMW
107	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
108	select ARCH_SUPPORTS_NUMA_BALANCING
109	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
110	select ARCH_SUPPORTS_PER_VMA_LOCK
111	select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE
112	select ARCH_SUPPORTS_RT
113	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
114	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
115	select ARCH_WANT_DEFAULT_BPF_JIT
116	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
117	select ARCH_WANT_FRAME_POINTERS
118	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
119	select ARCH_WANT_LD_ORPHAN_WARN
120	select ARCH_WANTS_EXECMEM_LATE
121	select ARCH_WANTS_NO_INSTR
122	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
123	select ARCH_HAS_UBSAN
124	select ARM_AMBA
125	select ARM_ARCH_TIMER
126	select ARM_GIC
127	select AUDIT_ARCH_COMPAT_GENERIC
128	select ARM_GIC_V2M if PCI
129	select ARM_GIC_V3
130	select ARM_GIC_V3_ITS if PCI
131	select ARM_PSCI_FW
132	select BUILDTIME_TABLE_SORT
133	select CLONE_BACKWARDS
134	select COMMON_CLK
135	select CPU_PM if (SUSPEND || CPU_IDLE)
136	select CPUMASK_OFFSTACK if NR_CPUS > 256
137	select CRC32
138	select DCACHE_WORD_ACCESS
139	select DYNAMIC_FTRACE if FUNCTION_TRACER
140	select DMA_BOUNCE_UNALIGNED_KMALLOC
141	select DMA_DIRECT_REMAP
142	select EDAC_SUPPORT
143	select FRAME_POINTER
144	select FUNCTION_ALIGNMENT_4B
145	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
146	select GENERIC_ALLOCATOR
147	select GENERIC_ARCH_TOPOLOGY
148	select GENERIC_CLOCKEVENTS_BROADCAST
149	select GENERIC_CPU_AUTOPROBE
150	select GENERIC_CPU_DEVICES
151	select GENERIC_CPU_VULNERABILITIES
152	select GENERIC_EARLY_IOREMAP
153	select GENERIC_IDLE_POLL_SETUP
154	select GENERIC_IOREMAP
155	select GENERIC_IRQ_IPI
156	select GENERIC_IRQ_KEXEC_CLEAR_VM_FORWARD
157	select GENERIC_IRQ_PROBE
158	select GENERIC_IRQ_SHOW
159	select GENERIC_IRQ_SHOW_LEVEL
160	select GENERIC_LIB_DEVMEM_IS_ALLOWED
161	select GENERIC_PCI_IOMAP
162	select GENERIC_SCHED_CLOCK
163	select GENERIC_SMP_IDLE_THREAD
164	select GENERIC_TIME_VSYSCALL
165	select GENERIC_GETTIMEOFDAY
166	select GENERIC_VDSO_DATA_STORE
167	select GENERIC_VDSO_TIME_NS
168	select HARDIRQS_SW_RESEND
169	select HAS_IOPORT
170	select HAVE_MOVE_PMD
171	select HAVE_MOVE_PUD
172	select HAVE_PCI
173	select HAVE_ACPI_APEI if (ACPI && EFI)
174	select HAVE_ALIGNED_STRUCT_PAGE
175	select HAVE_ARCH_AUDITSYSCALL
176	select HAVE_ARCH_BITREVERSE
177	select HAVE_ARCH_COMPILER_H
178	select HAVE_ARCH_HUGE_VMALLOC
179	select HAVE_ARCH_HUGE_VMAP
180	select HAVE_ARCH_JUMP_LABEL
181	select HAVE_ARCH_JUMP_LABEL_RELATIVE
182	select HAVE_ARCH_KASAN
183	select HAVE_ARCH_KASAN_VMALLOC
184	select HAVE_ARCH_KASAN_SW_TAGS
185	select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE
186	# Some instrumentation may be unsound, hence EXPERT
187	select HAVE_ARCH_KCSAN if EXPERT
188	select HAVE_ARCH_KFENCE
189	select HAVE_ARCH_KGDB
190	select HAVE_ARCH_MMAP_RND_BITS
191	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
192	select HAVE_ARCH_PREL32_RELOCATIONS
193	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
194	select HAVE_ARCH_SECCOMP_FILTER
195	select HAVE_ARCH_STACKLEAK
196	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
197	select HAVE_ARCH_TRACEHOOK
198	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
199	select HAVE_ARCH_VMAP_STACK
200	select HAVE_ARM_SMCCC
201	select HAVE_ASM_MODVERSIONS
202	select HAVE_EBPF_JIT
203	select HAVE_C_RECORDMCOUNT
204	select HAVE_CMPXCHG_DOUBLE
205	select HAVE_CMPXCHG_LOCAL
206	select HAVE_CONTEXT_TRACKING_USER
207	select HAVE_DEBUG_KMEMLEAK
208	select HAVE_DMA_CONTIGUOUS
209	select HAVE_DYNAMIC_FTRACE
210	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
211		if (GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS || \
212		    CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS)
213	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
214		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
215	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
216		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
217		    (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
218	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
219		if DYNAMIC_FTRACE_WITH_ARGS
220	select HAVE_SAMPLE_FTRACE_DIRECT
221	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
222	select HAVE_BUILDTIME_MCOUNT_SORT
223	select HAVE_EFFICIENT_UNALIGNED_ACCESS
224	select HAVE_GUP_FAST
225	select HAVE_FTRACE_GRAPH_FUNC
226	select HAVE_FTRACE_MCOUNT_RECORD
227	select HAVE_FUNCTION_TRACER
228	select HAVE_FUNCTION_ERROR_INJECTION
229	select HAVE_FUNCTION_GRAPH_FREGS
230	select HAVE_FUNCTION_GRAPH_TRACER
231	select HAVE_GCC_PLUGINS
232	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
233		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
234	select HAVE_HW_BREAKPOINT if PERF_EVENTS
235	select HAVE_IOREMAP_PROT
236	select HAVE_IRQ_TIME_ACCOUNTING
237	select HAVE_MOD_ARCH_SPECIFIC
238	select HAVE_NMI
239	select HAVE_PERF_EVENTS
240	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
241	select HAVE_PERF_REGS
242	select HAVE_PERF_USER_STACK_DUMP
243	select HAVE_PREEMPT_DYNAMIC_KEY
244	select HAVE_REGS_AND_STACK_ACCESS_API
245	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
246	select HAVE_FUNCTION_ARG_ACCESS_API
247	select MMU_GATHER_RCU_TABLE_FREE
248	select HAVE_RSEQ
249	select HAVE_RUST if RUSTC_SUPPORTS_ARM64
250	select HAVE_STACKPROTECTOR
251	select HAVE_SYSCALL_TRACEPOINTS
252	select HAVE_KPROBES
253	select HAVE_KRETPROBES
254	select HAVE_GENERIC_VDSO
255	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
256	select HOTPLUG_SMT if HOTPLUG_CPU
257	select IRQ_DOMAIN
258	select IRQ_FORCED_THREADING
259	select KASAN_VMALLOC if KASAN
260	select LOCK_MM_AND_FIND_VMA
261	select MODULES_USE_ELF_RELA
262	select NEED_DMA_MAP_STATE
263	select NEED_SG_DMA_LENGTH
264	select OF
265	select OF_EARLY_FLATTREE
266	select PCI_DOMAINS_GENERIC if PCI
267	select PCI_ECAM if (ACPI && PCI)
268	select PCI_SYSCALL if PCI
269	select POWER_RESET
270	select POWER_SUPPLY
271	select SPARSE_IRQ
272	select SWIOTLB
273	select SYSCTL_EXCEPTION_TRACE
274	select THREAD_INFO_IN_TASK
275	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
276	select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD
277	select TRACE_IRQFLAGS_SUPPORT
278	select TRACE_IRQFLAGS_NMI_SUPPORT
279	select HAVE_SOFTIRQ_ON_OWN_STACK
280	select USER_STACKTRACE_SUPPORT
281	select VDSO_GETRANDOM
282	help
283	  ARM 64-bit (AArch64) Linux support.
284
285config RUSTC_SUPPORTS_ARM64
286	def_bool y
287	depends on CPU_LITTLE_ENDIAN
288	# Shadow call stack is only supported on certain rustc versions.
289	#
290	# When using the UNWIND_PATCH_PAC_INTO_SCS option, rustc version 1.80+ is
291	# required due to use of the -Zfixed-x18 flag.
292	#
293	# Otherwise, rustc version 1.82+ is required due to use of the
294	# -Zsanitizer=shadow-call-stack flag.
295	depends on !SHADOW_CALL_STACK || RUSTC_VERSION >= 108200 || RUSTC_VERSION >= 108000 && UNWIND_PATCH_PAC_INTO_SCS
296
297config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
298	def_bool CC_IS_CLANG
299	# https://github.com/ClangBuiltLinux/linux/issues/1507
300	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
301
302config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
303	def_bool CC_IS_GCC
304	depends on $(cc-option,-fpatchable-function-entry=2)
305
306config 64BIT
307	def_bool y
308
309config MMU
310	def_bool y
311
312config ARM64_CONT_PTE_SHIFT
313	int
314	default 5 if PAGE_SIZE_64KB
315	default 7 if PAGE_SIZE_16KB
316	default 4
317
318config ARM64_CONT_PMD_SHIFT
319	int
320	default 5 if PAGE_SIZE_64KB
321	default 5 if PAGE_SIZE_16KB
322	default 4
323
324config ARCH_MMAP_RND_BITS_MIN
325	default 14 if PAGE_SIZE_64KB
326	default 16 if PAGE_SIZE_16KB
327	default 18
328
329# max bits determined by the following formula:
330#  VA_BITS - PTDESC_TABLE_SHIFT
331config ARCH_MMAP_RND_BITS_MAX
332	default 19 if ARM64_VA_BITS=36
333	default 24 if ARM64_VA_BITS=39
334	default 27 if ARM64_VA_BITS=42
335	default 30 if ARM64_VA_BITS=47
336	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
337	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
338	default 33 if ARM64_VA_BITS=48
339	default 14 if ARM64_64K_PAGES
340	default 16 if ARM64_16K_PAGES
341	default 18
342
343config ARCH_MMAP_RND_COMPAT_BITS_MIN
344	default 7 if ARM64_64K_PAGES
345	default 9 if ARM64_16K_PAGES
346	default 11
347
348config ARCH_MMAP_RND_COMPAT_BITS_MAX
349	default 16
350
351config NO_IOPORT_MAP
352	def_bool y if !PCI
353
354config STACKTRACE_SUPPORT
355	def_bool y
356
357config ILLEGAL_POINTER_VALUE
358	hex
359	default 0xdead000000000000
360
361config LOCKDEP_SUPPORT
362	def_bool y
363
364config GENERIC_BUG
365	def_bool y
366	depends on BUG
367
368config GENERIC_BUG_RELATIVE_POINTERS
369	def_bool y
370	depends on GENERIC_BUG
371
372config GENERIC_HWEIGHT
373	def_bool y
374
375config GENERIC_CSUM
376	def_bool y
377
378config GENERIC_CALIBRATE_DELAY
379	def_bool y
380
381config SMP
382	def_bool y
383
384config KERNEL_MODE_NEON
385	def_bool y
386
387config FIX_EARLYCON_MEM
388	def_bool y
389
390config PGTABLE_LEVELS
391	int
392	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
393	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
394	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
395	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
396	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
397	default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
398	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
399	default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
400
401config ARCH_SUPPORTS_UPROBES
402	def_bool y
403
404config ARCH_PROC_KCORE_TEXT
405	def_bool y
406
407config BROKEN_GAS_INST
408	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
409
410config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
411	bool
412	# Clang's __builtin_return_address() strips the PAC since 12.0.0
413	# https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
414	default y if CC_IS_CLANG
415	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
416	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
417	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
418	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
419	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
420	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
421	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
422	default n
423
424config KASAN_SHADOW_OFFSET
425	hex
426	depends on KASAN_GENERIC || KASAN_SW_TAGS
427	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
428	default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
429	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
430	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
431	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
432	default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
433	default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
434	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
435	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
436	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
437	default 0xffffffffffffffff
438
439config UNWIND_TABLES
440	bool
441
442source "arch/arm64/Kconfig.platforms"
443
444menu "Kernel Features"
445
446menu "ARM errata workarounds via the alternatives framework"
447
448config AMPERE_ERRATUM_AC03_CPU_38
449        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
450	default y
451	help
452	  This option adds an alternative code sequence to work around Ampere
453	  errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne.
454
455	  The affected design reports FEAT_HAFDBS as not implemented in
456	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
457	  as required by the architecture. The unadvertised HAFDBS
458	  implementation suffers from an additional erratum where hardware
459	  A/D updates can occur after a PTE has been marked invalid.
460
461	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
462	  which avoids enabling unadvertised hardware Access Flag management
463	  at stage-2.
464
465	  If unsure, say Y.
466
467config ARM64_WORKAROUND_CLEAN_CACHE
468	bool
469
470config ARM64_ERRATUM_826319
471	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
472	default y
473	select ARM64_WORKAROUND_CLEAN_CACHE
474	help
475	  This option adds an alternative code sequence to work around ARM
476	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
477	  AXI master interface and an L2 cache.
478
479	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
480	  and is unable to accept a certain write via this interface, it will
481	  not progress on read data presented on the read data channel and the
482	  system can deadlock.
483
484	  The workaround promotes data cache clean instructions to
485	  data cache clean-and-invalidate.
486	  Please note that this does not necessarily enable the workaround,
487	  as it depends on the alternative framework, which will only patch
488	  the kernel if an affected CPU is detected.
489
490	  If unsure, say Y.
491
492config ARM64_ERRATUM_827319
493	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
494	default y
495	select ARM64_WORKAROUND_CLEAN_CACHE
496	help
497	  This option adds an alternative code sequence to work around ARM
498	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
499	  master interface and an L2 cache.
500
501	  Under certain conditions this erratum can cause a clean line eviction
502	  to occur at the same time as another transaction to the same address
503	  on the AMBA 5 CHI interface, which can cause data corruption if the
504	  interconnect reorders the two transactions.
505
506	  The workaround promotes data cache clean instructions to
507	  data cache clean-and-invalidate.
508	  Please note that this does not necessarily enable the workaround,
509	  as it depends on the alternative framework, which will only patch
510	  the kernel if an affected CPU is detected.
511
512	  If unsure, say Y.
513
514config ARM64_ERRATUM_824069
515	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
516	default y
517	select ARM64_WORKAROUND_CLEAN_CACHE
518	help
519	  This option adds an alternative code sequence to work around ARM
520	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
521	  to a coherent interconnect.
522
523	  If a Cortex-A53 processor is executing a store or prefetch for
524	  write instruction at the same time as a processor in another
525	  cluster is executing a cache maintenance operation to the same
526	  address, then this erratum might cause a clean cache line to be
527	  incorrectly marked as dirty.
528
529	  The workaround promotes data cache clean instructions to
530	  data cache clean-and-invalidate.
531	  Please note that this option does not necessarily enable the
532	  workaround, as it depends on the alternative framework, which will
533	  only patch the kernel if an affected CPU is detected.
534
535	  If unsure, say Y.
536
537config ARM64_ERRATUM_819472
538	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
539	default y
540	select ARM64_WORKAROUND_CLEAN_CACHE
541	help
542	  This option adds an alternative code sequence to work around ARM
543	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
544	  present when it is connected to a coherent interconnect.
545
546	  If the processor is executing a load and store exclusive sequence at
547	  the same time as a processor in another cluster is executing a cache
548	  maintenance operation to the same address, then this erratum might
549	  cause data corruption.
550
551	  The workaround promotes data cache clean instructions to
552	  data cache clean-and-invalidate.
553	  Please note that this does not necessarily enable the workaround,
554	  as it depends on the alternative framework, which will only patch
555	  the kernel if an affected CPU is detected.
556
557	  If unsure, say Y.
558
559config ARM64_ERRATUM_832075
560	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
561	default y
562	help
563	  This option adds an alternative code sequence to work around ARM
564	  erratum 832075 on Cortex-A57 parts up to r1p2.
565
566	  Affected Cortex-A57 parts might deadlock when exclusive load/store
567	  instructions to Write-Back memory are mixed with Device loads.
568
569	  The workaround is to promote device loads to use Load-Acquire
570	  semantics.
571	  Please note that this does not necessarily enable the workaround,
572	  as it depends on the alternative framework, which will only patch
573	  the kernel if an affected CPU is detected.
574
575	  If unsure, say Y.
576
577config ARM64_ERRATUM_834220
578	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
579	depends on KVM
580	help
581	  This option adds an alternative code sequence to work around ARM
582	  erratum 834220 on Cortex-A57 parts up to r1p2.
583
584	  Affected Cortex-A57 parts might report a Stage 2 translation
585	  fault as the result of a Stage 1 fault for load crossing a
586	  page boundary when there is a permission or device memory
587	  alignment fault at Stage 1 and a translation fault at Stage 2.
588
589	  The workaround is to verify that the Stage 1 translation
590	  doesn't generate a fault before handling the Stage 2 fault.
591	  Please note that this does not necessarily enable the workaround,
592	  as it depends on the alternative framework, which will only patch
593	  the kernel if an affected CPU is detected.
594
595	  If unsure, say N.
596
597config ARM64_ERRATUM_1742098
598	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
599	depends on COMPAT
600	default y
601	help
602	  This option removes the AES hwcap for aarch32 user-space to
603	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
604
605	  Affected parts may corrupt the AES state if an interrupt is
606	  taken between a pair of AES instructions. These instructions
607	  are only present if the cryptography extensions are present.
608	  All software should have a fallback implementation for CPUs
609	  that don't implement the cryptography extensions.
610
611	  If unsure, say Y.
612
613config ARM64_ERRATUM_845719
614	bool "Cortex-A53: 845719: a load might read incorrect data"
615	depends on COMPAT
616	default y
617	help
618	  This option adds an alternative code sequence to work around ARM
619	  erratum 845719 on Cortex-A53 parts up to r0p4.
620
621	  When running a compat (AArch32) userspace on an affected Cortex-A53
622	  part, a load at EL0 from a virtual address that matches the bottom 32
623	  bits of the virtual address used by a recent load at (AArch64) EL1
624	  might return incorrect data.
625
626	  The workaround is to write the contextidr_el1 register on exception
627	  return to a 32-bit task.
628	  Please note that this does not necessarily enable the workaround,
629	  as it depends on the alternative framework, which will only patch
630	  the kernel if an affected CPU is detected.
631
632	  If unsure, say Y.
633
634config ARM64_ERRATUM_843419
635	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
636	default y
637	help
638	  This option links the kernel with '--fix-cortex-a53-843419' and
639	  enables PLT support to replace certain ADRP instructions, which can
640	  cause subsequent memory accesses to use an incorrect address on
641	  Cortex-A53 parts up to r0p4.
642
643	  If unsure, say Y.
644
645config ARM64_LD_HAS_FIX_ERRATUM_843419
646	def_bool $(ld-option,--fix-cortex-a53-843419)
647
648config ARM64_ERRATUM_1024718
649	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
650	default y
651	help
652	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
653
654	  Affected Cortex-A55 cores (all revisions) could cause incorrect
655	  update of the hardware dirty bit when the DBM/AP bits are updated
656	  without a break-before-make. The workaround is to disable the usage
657	  of hardware DBM locally on the affected cores. CPUs not affected by
658	  this erratum will continue to use the feature.
659
660	  If unsure, say Y.
661
662config ARM64_ERRATUM_1418040
663	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
664	default y
665	depends on COMPAT
666	help
667	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
668	  errata 1188873 and 1418040.
669
670	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
671	  cause register corruption when accessing the timer registers
672	  from AArch32 userspace.
673
674	  If unsure, say Y.
675
676config ARM64_WORKAROUND_SPECULATIVE_AT
677	bool
678
679config ARM64_ERRATUM_1165522
680	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
681	default y
682	select ARM64_WORKAROUND_SPECULATIVE_AT
683	help
684	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
685
686	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
687	  corrupted TLBs by speculating an AT instruction during a guest
688	  context switch.
689
690	  If unsure, say Y.
691
692config ARM64_ERRATUM_1319367
693	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
694	default y
695	select ARM64_WORKAROUND_SPECULATIVE_AT
696	help
697	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
698	  and A72 erratum 1319367
699
700	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
701	  speculating an AT instruction during a guest context switch.
702
703	  If unsure, say Y.
704
705config ARM64_ERRATUM_1530923
706	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
707	default y
708	select ARM64_WORKAROUND_SPECULATIVE_AT
709	help
710	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
711
712	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
713	  corrupted TLBs by speculating an AT instruction during a guest
714	  context switch.
715
716	  If unsure, say Y.
717
718config ARM64_WORKAROUND_REPEAT_TLBI
719	bool
720
721config ARM64_ERRATUM_2441007
722	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
723	select ARM64_WORKAROUND_REPEAT_TLBI
724	help
725	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
726
727	  Under very rare circumstances, affected Cortex-A55 CPUs
728	  may not handle a race between a break-before-make sequence on one
729	  CPU, and another CPU accessing the same page. This could allow a
730	  store to a page that has been unmapped.
731
732	  Work around this by adding the affected CPUs to the list that needs
733	  TLB sequences to be done twice.
734
735	  If unsure, say N.
736
737config ARM64_ERRATUM_1286807
738	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
739	select ARM64_WORKAROUND_REPEAT_TLBI
740	help
741	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
742
743	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
744	  address for a cacheable mapping of a location is being
745	  accessed by a core while another core is remapping the virtual
746	  address to a new physical page using the recommended
747	  break-before-make sequence, then under very rare circumstances
748	  TLBI+DSB completes before a read using the translation being
749	  invalidated has been observed by other observers. The
750	  workaround repeats the TLBI+DSB operation.
751
752	  If unsure, say N.
753
754config ARM64_ERRATUM_1463225
755	bool "Cortex-A76: Software Step might prevent interrupt recognition"
756	default y
757	help
758	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
759
760	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
761	  of a system call instruction (SVC) can prevent recognition of
762	  subsequent interrupts when software stepping is disabled in the
763	  exception handler of the system call and either kernel debugging
764	  is enabled or VHE is in use.
765
766	  Work around the erratum by triggering a dummy step exception
767	  when handling a system call from a task that is being stepped
768	  in a VHE configuration of the kernel.
769
770	  If unsure, say Y.
771
772config ARM64_ERRATUM_1542419
773	bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
774	help
775	  This option adds a workaround for ARM Neoverse-N1 erratum
776	  1542419.
777
778	  Affected Neoverse-N1 cores could execute a stale instruction when
779	  modified by another CPU. The workaround depends on a firmware
780	  counterpart.
781
782	  Workaround the issue by hiding the DIC feature from EL0. This
783	  forces user-space to perform cache maintenance.
784
785	  If unsure, say N.
786
787config ARM64_ERRATUM_1508412
788	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
789	default y
790	help
791	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
792
793	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
794	  of a store-exclusive or read of PAR_EL1 and a load with device or
795	  non-cacheable memory attributes. The workaround depends on a firmware
796	  counterpart.
797
798	  KVM guests must also have the workaround implemented or they can
799	  deadlock the system.
800
801	  Work around the issue by inserting DMB SY barriers around PAR_EL1
802	  register reads and warning KVM users. The DMB barrier is sufficient
803	  to prevent a speculative PAR_EL1 read.
804
805	  If unsure, say Y.
806
807config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
808	bool
809
810config ARM64_ERRATUM_2051678
811	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
812	default y
813	help
814	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
815	  Affected Cortex-A510 might not respect the ordering rules for
816	  hardware update of the page table's dirty bit. The workaround
817	  is to not enable the feature on affected CPUs.
818
819	  If unsure, say Y.
820
821config ARM64_ERRATUM_2077057
822	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
823	default y
824	help
825	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
826	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
827	  expected, but a Pointer Authentication trap is taken instead. The
828	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
829	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
830
831	  This can only happen when EL2 is stepping EL1.
832
833	  When these conditions occur, the SPSR_EL2 value is unchanged from the
834	  previous guest entry, and can be restored from the in-memory copy.
835
836	  If unsure, say Y.
837
838config ARM64_ERRATUM_2658417
839	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
840	default y
841	help
842	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
843	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
844	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
845	  A510 CPUs are using shared neon hardware. As the sharing is not
846	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
847	  user-space should not be using these instructions.
848
849	  If unsure, say Y.
850
851config ARM64_ERRATUM_2119858
852	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
853	default y
854	depends on CORESIGHT_TRBE
855	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
856	help
857	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
858
859	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
860	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
861	  the event of a WRAP event.
862
863	  Work around the issue by always making sure we move the TRBPTR_EL1 by
864	  256 bytes before enabling the buffer and filling the first 256 bytes of
865	  the buffer with ETM ignore packets upon disabling.
866
867	  If unsure, say Y.
868
869config ARM64_ERRATUM_2139208
870	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
871	default y
872	depends on CORESIGHT_TRBE
873	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
874	help
875	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
876
877	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
878	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
879	  the event of a WRAP event.
880
881	  Work around the issue by always making sure we move the TRBPTR_EL1 by
882	  256 bytes before enabling the buffer and filling the first 256 bytes of
883	  the buffer with ETM ignore packets upon disabling.
884
885	  If unsure, say Y.
886
887config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
888	bool
889
890config ARM64_ERRATUM_2054223
891	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
892	default y
893	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
894	help
895	  Enable workaround for ARM Cortex-A710 erratum 2054223
896
897	  Affected cores may fail to flush the trace data on a TSB instruction, when
898	  the PE is in trace prohibited state. This will cause losing a few bytes
899	  of the trace cached.
900
901	  Workaround is to issue two TSB consecutively on affected cores.
902
903	  If unsure, say Y.
904
905config ARM64_ERRATUM_2067961
906	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
907	default y
908	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
909	help
910	  Enable workaround for ARM Neoverse-N2 erratum 2067961
911
912	  Affected cores may fail to flush the trace data on a TSB instruction, when
913	  the PE is in trace prohibited state. This will cause losing a few bytes
914	  of the trace cached.
915
916	  Workaround is to issue two TSB consecutively on affected cores.
917
918	  If unsure, say Y.
919
920config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
921	bool
922
923config ARM64_ERRATUM_2253138
924	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
925	depends on CORESIGHT_TRBE
926	default y
927	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
928	help
929	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
930
931	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
932	  for TRBE. Under some conditions, the TRBE might generate a write to the next
933	  virtually addressed page following the last page of the TRBE address space
934	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
935
936	  Work around this in the driver by always making sure that there is a
937	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
938
939	  If unsure, say Y.
940
941config ARM64_ERRATUM_2224489
942	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
943	depends on CORESIGHT_TRBE
944	default y
945	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
946	help
947	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
948
949	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
950	  for TRBE. Under some conditions, the TRBE might generate a write to the next
951	  virtually addressed page following the last page of the TRBE address space
952	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
953
954	  Work around this in the driver by always making sure that there is a
955	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
956
957	  If unsure, say Y.
958
959config ARM64_ERRATUM_2441009
960	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
961	select ARM64_WORKAROUND_REPEAT_TLBI
962	help
963	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
964
965	  Under very rare circumstances, affected Cortex-A510 CPUs
966	  may not handle a race between a break-before-make sequence on one
967	  CPU, and another CPU accessing the same page. This could allow a
968	  store to a page that has been unmapped.
969
970	  Work around this by adding the affected CPUs to the list that needs
971	  TLB sequences to be done twice.
972
973	  If unsure, say N.
974
975config ARM64_ERRATUM_2064142
976	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
977	depends on CORESIGHT_TRBE
978	default y
979	help
980	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
981
982	  Affected Cortex-A510 core might fail to write into system registers after the
983	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
984	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
985	  and TRBTRG_EL1 will be ignored and will not be effected.
986
987	  Work around this in the driver by executing TSB CSYNC and DSB after collection
988	  is stopped and before performing a system register write to one of the affected
989	  registers.
990
991	  If unsure, say Y.
992
993config ARM64_ERRATUM_2038923
994	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
995	depends on CORESIGHT_TRBE
996	default y
997	help
998	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
999
1000	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
1001	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
1002	  might be corrupted. This happens after TRBE buffer has been enabled by setting
1003	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
1004	  execution changes from a context, in which trace is prohibited to one where it
1005	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
1006	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
1007	  the trace buffer state might be corrupted.
1008
1009	  Work around this in the driver by preventing an inconsistent view of whether the
1010	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
1011	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
1012	  two ISB instructions if no ERET is to take place.
1013
1014	  If unsure, say Y.
1015
1016config ARM64_ERRATUM_1902691
1017	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
1018	depends on CORESIGHT_TRBE
1019	default y
1020	help
1021	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
1022
1023	  Affected Cortex-A510 core might cause trace data corruption, when being written
1024	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
1025	  trace data.
1026
1027	  Work around this problem in the driver by just preventing TRBE initialization on
1028	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
1029	  on such implementations. This will cover the kernel for any firmware that doesn't
1030	  do this already.
1031
1032	  If unsure, say Y.
1033
1034config ARM64_ERRATUM_2457168
1035	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1036	depends on ARM64_AMU_EXTN
1037	default y
1038	help
1039	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1040
1041	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1042	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1043	  incorrectly giving a significantly higher output value.
1044
1045	  Work around this problem by returning 0 when reading the affected counter in
1046	  key locations that results in disabling all users of this counter. This effect
1047	  is the same to firmware disabling affected counters.
1048
1049	  If unsure, say Y.
1050
1051config ARM64_ERRATUM_2645198
1052	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1053	default y
1054	help
1055	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1056
1057	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1058	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1059	  next instruction abort caused by permission fault.
1060
1061	  Only user-space does executable to non-executable permission transition via
1062	  mprotect() system call. Workaround the problem by doing a break-before-make
1063	  TLB invalidation, for all changes to executable user space mappings.
1064
1065	  If unsure, say Y.
1066
1067config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1068	bool
1069
1070config ARM64_ERRATUM_2966298
1071	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1072	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1073	default y
1074	help
1075	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1076
1077	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1078	  load might leak data from a privileged level via a cache side channel.
1079
1080	  Work around this problem by executing a TLBI before returning to EL0.
1081
1082	  If unsure, say Y.
1083
1084config ARM64_ERRATUM_3117295
1085	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1086	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1087	default y
1088	help
1089	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1090
1091	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1092	  load might leak data from a privileged level via a cache side channel.
1093
1094	  Work around this problem by executing a TLBI before returning to EL0.
1095
1096	  If unsure, say Y.
1097
1098config ARM64_ERRATUM_3194386
1099	bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing"
1100	default y
1101	help
1102	  This option adds the workaround for the following errata:
1103
1104	  * ARM Cortex-A76 erratum 3324349
1105	  * ARM Cortex-A77 erratum 3324348
1106	  * ARM Cortex-A78 erratum 3324344
1107	  * ARM Cortex-A78C erratum 3324346
1108	  * ARM Cortex-A78C erratum 3324347
1109	  * ARM Cortex-A710 erratam 3324338
1110	  * ARM Cortex-A715 errartum 3456084
1111	  * ARM Cortex-A720 erratum 3456091
1112	  * ARM Cortex-A725 erratum 3456106
1113	  * ARM Cortex-X1 erratum 3324344
1114	  * ARM Cortex-X1C erratum 3324346
1115	  * ARM Cortex-X2 erratum 3324338
1116	  * ARM Cortex-X3 erratum 3324335
1117	  * ARM Cortex-X4 erratum 3194386
1118	  * ARM Cortex-X925 erratum 3324334
1119	  * ARM Neoverse-N1 erratum 3324349
1120	  * ARM Neoverse N2 erratum 3324339
1121	  * ARM Neoverse-N3 erratum 3456111
1122	  * ARM Neoverse-V1 erratum 3324341
1123	  * ARM Neoverse V2 erratum 3324336
1124	  * ARM Neoverse-V3 erratum 3312417
1125
1126	  On affected cores "MSR SSBS, #0" instructions may not affect
1127	  subsequent speculative instructions, which may permit unexepected
1128	  speculative store bypassing.
1129
1130	  Work around this problem by placing a Speculation Barrier (SB) or
1131	  Instruction Synchronization Barrier (ISB) after kernel changes to
1132	  SSBS. The presence of the SSBS special-purpose register is hidden
1133	  from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace
1134	  will use the PR_SPEC_STORE_BYPASS prctl to change SSBS.
1135
1136	  If unsure, say Y.
1137
1138config CAVIUM_ERRATUM_22375
1139	bool "Cavium erratum 22375, 24313"
1140	default y
1141	help
1142	  Enable workaround for errata 22375 and 24313.
1143
1144	  This implements two gicv3-its errata workarounds for ThunderX. Both
1145	  with a small impact affecting only ITS table allocation.
1146
1147	    erratum 22375: only alloc 8MB table size
1148	    erratum 24313: ignore memory access type
1149
1150	  The fixes are in ITS initialization and basically ignore memory access
1151	  type and table size provided by the TYPER and BASER registers.
1152
1153	  If unsure, say Y.
1154
1155config CAVIUM_ERRATUM_23144
1156	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1157	depends on NUMA
1158	default y
1159	help
1160	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1161
1162	  If unsure, say Y.
1163
1164config CAVIUM_ERRATUM_23154
1165	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1166	default y
1167	help
1168	  The ThunderX GICv3 implementation requires a modified version for
1169	  reading the IAR status to ensure data synchronization
1170	  (access to icc_iar1_el1 is not sync'ed before and after).
1171
1172	  It also suffers from erratum 38545 (also present on Marvell's
1173	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1174	  spuriously presented to the CPU interface.
1175
1176	  If unsure, say Y.
1177
1178config CAVIUM_ERRATUM_27456
1179	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1180	default y
1181	help
1182	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1183	  instructions may cause the icache to become corrupted if it
1184	  contains data for a non-current ASID.  The fix is to
1185	  invalidate the icache when changing the mm context.
1186
1187	  If unsure, say Y.
1188
1189config CAVIUM_ERRATUM_30115
1190	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1191	default y
1192	help
1193	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1194	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1195	  interrupts in host. Trapping both GICv3 group-0 and group-1
1196	  accesses sidesteps the issue.
1197
1198	  If unsure, say Y.
1199
1200config CAVIUM_TX2_ERRATUM_219
1201	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1202	default y
1203	help
1204	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1205	  TTBR update and the corresponding context synchronizing operation can
1206	  cause a spurious Data Abort to be delivered to any hardware thread in
1207	  the CPU core.
1208
1209	  Work around the issue by avoiding the problematic code sequence and
1210	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1211	  trap handler performs the corresponding register access, skips the
1212	  instruction and ensures context synchronization by virtue of the
1213	  exception return.
1214
1215	  If unsure, say Y.
1216
1217config FUJITSU_ERRATUM_010001
1218	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1219	default y
1220	help
1221	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1222	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1223	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1224	  This fault occurs under a specific hardware condition when a
1225	  load/store instruction performs an address translation using:
1226	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1227	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1228	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1229	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1230
1231	  The workaround is to ensure these bits are clear in TCR_ELx.
1232	  The workaround only affects the Fujitsu-A64FX.
1233
1234	  If unsure, say Y.
1235
1236config HISILICON_ERRATUM_161600802
1237	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1238	default y
1239	help
1240	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1241	  when issued ITS commands such as VMOVP and VMAPP, and requires
1242	  a 128kB offset to be applied to the target address in this commands.
1243
1244	  If unsure, say Y.
1245
1246config HISILICON_ERRATUM_162100801
1247	bool "Hip09 162100801 erratum support"
1248	default y
1249	help
1250	  When enabling GICv4.1 in hip09, VMAPP will fail to clear some caches
1251	  during unmapping operation, which will cause some vSGIs lost.
1252	  To fix the issue, invalidate related vPE cache through GICR_INVALLR
1253	  after VMOVP.
1254
1255	  If unsure, say Y.
1256
1257config QCOM_FALKOR_ERRATUM_1003
1258	bool "Falkor E1003: Incorrect translation due to ASID change"
1259	default y
1260	help
1261	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1262	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1263	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1264	  then only for entries in the walk cache, since the leaf translation
1265	  is unchanged. Work around the erratum by invalidating the walk cache
1266	  entries for the trampoline before entering the kernel proper.
1267
1268config QCOM_FALKOR_ERRATUM_1009
1269	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1270	default y
1271	select ARM64_WORKAROUND_REPEAT_TLBI
1272	help
1273	  On Falkor v1, the CPU may prematurely complete a DSB following a
1274	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1275	  one more time to fix the issue.
1276
1277	  If unsure, say Y.
1278
1279config QCOM_QDF2400_ERRATUM_0065
1280	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1281	default y
1282	help
1283	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1284	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1285	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1286
1287	  If unsure, say Y.
1288
1289config QCOM_FALKOR_ERRATUM_E1041
1290	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1291	default y
1292	help
1293	  Falkor CPU may speculatively fetch instructions from an improper
1294	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1295	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1296
1297	  If unsure, say Y.
1298
1299config NVIDIA_CARMEL_CNP_ERRATUM
1300	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1301	default y
1302	help
1303	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1304	  invalidate shared TLB entries installed by a different core, as it would
1305	  on standard ARM cores.
1306
1307	  If unsure, say Y.
1308
1309config ROCKCHIP_ERRATUM_3568002
1310	bool "Rockchip 3568002: GIC600 can not access physical addresses higher than 4GB"
1311	default y
1312	help
1313	  The Rockchip RK3566 and RK3568 GIC600 SoC integrations have AXI
1314	  addressing limited to the first 32bit of physical address space.
1315
1316	  If unsure, say Y.
1317
1318config ROCKCHIP_ERRATUM_3588001
1319	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1320	default y
1321	help
1322	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1323	  This means, that its sharability feature may not be used, even though it
1324	  is supported by the IP itself.
1325
1326	  If unsure, say Y.
1327
1328config SOCIONEXT_SYNQUACER_PREITS
1329	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1330	default y
1331	help
1332	  Socionext Synquacer SoCs implement a separate h/w block to generate
1333	  MSI doorbell writes with non-zero values for the device ID.
1334
1335	  If unsure, say Y.
1336
1337endmenu # "ARM errata workarounds via the alternatives framework"
1338
1339choice
1340	prompt "Page size"
1341	default ARM64_4K_PAGES
1342	help
1343	  Page size (translation granule) configuration.
1344
1345config ARM64_4K_PAGES
1346	bool "4KB"
1347	select HAVE_PAGE_SIZE_4KB
1348	help
1349	  This feature enables 4KB pages support.
1350
1351config ARM64_16K_PAGES
1352	bool "16KB"
1353	select HAVE_PAGE_SIZE_16KB
1354	help
1355	  The system will use 16KB pages support. AArch32 emulation
1356	  requires applications compiled with 16K (or a multiple of 16K)
1357	  aligned segments.
1358
1359config ARM64_64K_PAGES
1360	bool "64KB"
1361	select HAVE_PAGE_SIZE_64KB
1362	help
1363	  This feature enables 64KB pages support (4KB by default)
1364	  allowing only two levels of page tables and faster TLB
1365	  look-up. AArch32 emulation requires applications compiled
1366	  with 64K aligned segments.
1367
1368endchoice
1369
1370choice
1371	prompt "Virtual address space size"
1372	default ARM64_VA_BITS_52
1373	help
1374	  Allows choosing one of multiple possible virtual address
1375	  space sizes. The level of translation table is determined by
1376	  a combination of page size and virtual address space size.
1377
1378config ARM64_VA_BITS_36
1379	bool "36-bit" if EXPERT
1380	depends on PAGE_SIZE_16KB
1381
1382config ARM64_VA_BITS_39
1383	bool "39-bit"
1384	depends on PAGE_SIZE_4KB
1385
1386config ARM64_VA_BITS_42
1387	bool "42-bit"
1388	depends on PAGE_SIZE_64KB
1389
1390config ARM64_VA_BITS_47
1391	bool "47-bit"
1392	depends on PAGE_SIZE_16KB
1393
1394config ARM64_VA_BITS_48
1395	bool "48-bit"
1396
1397config ARM64_VA_BITS_52
1398	bool "52-bit"
1399	help
1400	  Enable 52-bit virtual addressing for userspace when explicitly
1401	  requested via a hint to mmap(). The kernel will also use 52-bit
1402	  virtual addresses for its own mappings (provided HW support for
1403	  this feature is available, otherwise it reverts to 48-bit).
1404
1405	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1406	  ARMv8.3 Pointer Authentication will result in the PAC being
1407	  reduced from 7 bits to 3 bits, which may have a significant
1408	  impact on its susceptibility to brute-force attacks.
1409
1410	  If unsure, select 48-bit virtual addressing instead.
1411
1412endchoice
1413
1414config ARM64_FORCE_52BIT
1415	bool "Force 52-bit virtual addresses for userspace"
1416	depends on ARM64_VA_BITS_52 && EXPERT
1417	help
1418	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1419	  to maintain compatibility with older software by providing 48-bit VAs
1420	  unless a hint is supplied to mmap.
1421
1422	  This configuration option disables the 48-bit compatibility logic, and
1423	  forces all userspace addresses to be 52-bit on HW that supports it. One
1424	  should only enable this configuration option for stress testing userspace
1425	  memory management code. If unsure say N here.
1426
1427config ARM64_VA_BITS
1428	int
1429	default 36 if ARM64_VA_BITS_36
1430	default 39 if ARM64_VA_BITS_39
1431	default 42 if ARM64_VA_BITS_42
1432	default 47 if ARM64_VA_BITS_47
1433	default 48 if ARM64_VA_BITS_48
1434	default 52 if ARM64_VA_BITS_52
1435
1436choice
1437	prompt "Physical address space size"
1438	default ARM64_PA_BITS_48
1439	help
1440	  Choose the maximum physical address range that the kernel will
1441	  support.
1442
1443config ARM64_PA_BITS_48
1444	bool "48-bit"
1445	depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1446
1447config ARM64_PA_BITS_52
1448	bool "52-bit"
1449	depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1450	help
1451	  Enable support for a 52-bit physical address space, introduced as
1452	  part of the ARMv8.2-LPA extension.
1453
1454	  With this enabled, the kernel will also continue to work on CPUs that
1455	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1456	  minor performance overhead).
1457
1458endchoice
1459
1460config ARM64_PA_BITS
1461	int
1462	default 48 if ARM64_PA_BITS_48
1463	default 52 if ARM64_PA_BITS_52
1464
1465config ARM64_LPA2
1466	def_bool y
1467	depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1468
1469choice
1470	prompt "Endianness"
1471	default CPU_LITTLE_ENDIAN
1472	help
1473	  Select the endianness of data accesses performed by the CPU. Userspace
1474	  applications will need to be compiled and linked for the endianness
1475	  that is selected here.
1476
1477config CPU_BIG_ENDIAN
1478	bool "Build big-endian kernel"
1479	# https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1480	depends on AS_IS_GNU || AS_VERSION >= 150000
1481	help
1482	  Say Y if you plan on running a kernel with a big-endian userspace.
1483
1484config CPU_LITTLE_ENDIAN
1485	bool "Build little-endian kernel"
1486	help
1487	  Say Y if you plan on running a kernel with a little-endian userspace.
1488	  This is usually the case for distributions targeting arm64.
1489
1490endchoice
1491
1492config SCHED_MC
1493	bool "Multi-core scheduler support"
1494	help
1495	  Multi-core scheduler support improves the CPU scheduler's decision
1496	  making when dealing with multi-core CPU chips at a cost of slightly
1497	  increased overhead in some places. If unsure say N here.
1498
1499config SCHED_CLUSTER
1500	bool "Cluster scheduler support"
1501	help
1502	  Cluster scheduler support improves the CPU scheduler's decision
1503	  making when dealing with machines that have clusters of CPUs.
1504	  Cluster usually means a couple of CPUs which are placed closely
1505	  by sharing mid-level caches, last-level cache tags or internal
1506	  busses.
1507
1508config SCHED_SMT
1509	bool "SMT scheduler support"
1510	help
1511	  Improves the CPU scheduler's decision making when dealing with
1512	  MultiThreading at a cost of slightly increased overhead in some
1513	  places. If unsure say N here.
1514
1515config NR_CPUS
1516	int "Maximum number of CPUs (2-4096)"
1517	range 2 4096
1518	default "512"
1519
1520config HOTPLUG_CPU
1521	bool "Support for hot-pluggable CPUs"
1522	select GENERIC_IRQ_MIGRATION
1523	help
1524	  Say Y here to experiment with turning CPUs off and on.  CPUs
1525	  can be controlled through /sys/devices/system/cpu.
1526
1527# Common NUMA Features
1528config NUMA
1529	bool "NUMA Memory Allocation and Scheduler Support"
1530	select GENERIC_ARCH_NUMA
1531	select OF_NUMA
1532	select HAVE_SETUP_PER_CPU_AREA
1533	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1534	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1535	select USE_PERCPU_NUMA_NODE_ID
1536	help
1537	  Enable NUMA (Non-Uniform Memory Access) support.
1538
1539	  The kernel will try to allocate memory used by a CPU on the
1540	  local memory of the CPU and add some more
1541	  NUMA awareness to the kernel.
1542
1543config NODES_SHIFT
1544	int "Maximum NUMA Nodes (as a power of 2)"
1545	range 1 10
1546	default "4"
1547	depends on NUMA
1548	help
1549	  Specify the maximum number of NUMA Nodes available on the target
1550	  system.  Increases memory reserved to accommodate various tables.
1551
1552source "kernel/Kconfig.hz"
1553
1554config ARCH_SPARSEMEM_ENABLE
1555	def_bool y
1556	select SPARSEMEM_VMEMMAP_ENABLE
1557	select SPARSEMEM_VMEMMAP
1558
1559config HW_PERF_EVENTS
1560	def_bool y
1561	depends on ARM_PMU
1562
1563# Supported by clang >= 7.0 or GCC >= 12.0.0
1564config CC_HAVE_SHADOW_CALL_STACK
1565	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1566
1567config PARAVIRT
1568	bool "Enable paravirtualization code"
1569	help
1570	  This changes the kernel so it can modify itself when it is run
1571	  under a hypervisor, potentially improving performance significantly
1572	  over full virtualization.
1573
1574config PARAVIRT_TIME_ACCOUNTING
1575	bool "Paravirtual steal time accounting"
1576	select PARAVIRT
1577	help
1578	  Select this option to enable fine granularity task steal time
1579	  accounting. Time spent executing other tasks in parallel with
1580	  the current vCPU is discounted from the vCPU power. To account for
1581	  that, there can be a small performance impact.
1582
1583	  If in doubt, say N here.
1584
1585config ARCH_SUPPORTS_KEXEC
1586	def_bool PM_SLEEP_SMP
1587
1588config ARCH_SUPPORTS_KEXEC_FILE
1589	def_bool y
1590
1591config ARCH_SELECTS_KEXEC_FILE
1592	def_bool y
1593	depends on KEXEC_FILE
1594	select HAVE_IMA_KEXEC if IMA
1595
1596config ARCH_SUPPORTS_KEXEC_SIG
1597	def_bool y
1598
1599config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1600	def_bool y
1601
1602config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1603	def_bool y
1604
1605config ARCH_SUPPORTS_CRASH_DUMP
1606	def_bool y
1607
1608config ARCH_DEFAULT_CRASH_DUMP
1609	def_bool y
1610
1611config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1612	def_bool CRASH_RESERVE
1613
1614config TRANS_TABLE
1615	def_bool y
1616	depends on HIBERNATION || KEXEC_CORE
1617
1618config XEN_DOM0
1619	def_bool y
1620	depends on XEN
1621
1622config XEN
1623	bool "Xen guest support on ARM64"
1624	depends on ARM64 && OF
1625	select SWIOTLB_XEN
1626	select PARAVIRT
1627	help
1628	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1629
1630# include/linux/mmzone.h requires the following to be true:
1631#
1632#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1633#
1634# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1635#
1636#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1637# ----+-------------------+--------------+----------------------+-------------------------+
1638# 4K  |       27          |      12      |       15             |         10              |
1639# 16K |       27          |      14      |       13             |         11              |
1640# 64K |       29          |      16      |       13             |         13              |
1641config ARCH_FORCE_MAX_ORDER
1642	int
1643	default "13" if ARM64_64K_PAGES
1644	default "11" if ARM64_16K_PAGES
1645	default "10"
1646	help
1647	  The kernel page allocator limits the size of maximal physically
1648	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1649	  defines the maximal power of two of number of pages that can be
1650	  allocated as a single contiguous block. This option allows
1651	  overriding the default setting when ability to allocate very
1652	  large blocks of physically contiguous memory is required.
1653
1654	  The maximal size of allocation cannot exceed the size of the
1655	  section, so the value of MAX_PAGE_ORDER should satisfy
1656
1657	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1658
1659	  Don't change if unsure.
1660
1661config UNMAP_KERNEL_AT_EL0
1662	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1663	default y
1664	help
1665	  Speculation attacks against some high-performance processors can
1666	  be used to bypass MMU permission checks and leak kernel data to
1667	  userspace. This can be defended against by unmapping the kernel
1668	  when running in userspace, mapping it back in on exception entry
1669	  via a trampoline page in the vector table.
1670
1671	  If unsure, say Y.
1672
1673config MITIGATE_SPECTRE_BRANCH_HISTORY
1674	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1675	default y
1676	help
1677	  Speculation attacks against some high-performance processors can
1678	  make use of branch history to influence future speculation.
1679	  When taking an exception from user-space, a sequence of branches
1680	  or a firmware call overwrites the branch history.
1681
1682config RODATA_FULL_DEFAULT_ENABLED
1683	bool "Apply r/o permissions of VM areas also to their linear aliases"
1684	default y
1685	help
1686	  Apply read-only attributes of VM areas to the linear alias of
1687	  the backing pages as well. This prevents code or read-only data
1688	  from being modified (inadvertently or intentionally) via another
1689	  mapping of the same memory page. This additional enhancement can
1690	  be turned off at runtime by passing rodata=[off|on] (and turned on
1691	  with rodata=full if this option is set to 'n')
1692
1693	  This requires the linear region to be mapped down to pages,
1694	  which may adversely affect performance in some cases.
1695
1696config ARM64_SW_TTBR0_PAN
1697	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1698	depends on !KCSAN
1699	select ARM64_PAN
1700	help
1701	  Enabling this option prevents the kernel from accessing
1702	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1703	  zeroed area and reserved ASID. The user access routines
1704	  restore the valid TTBR0_EL1 temporarily.
1705
1706config ARM64_TAGGED_ADDR_ABI
1707	bool "Enable the tagged user addresses syscall ABI"
1708	default y
1709	help
1710	  When this option is enabled, user applications can opt in to a
1711	  relaxed ABI via prctl() allowing tagged addresses to be passed
1712	  to system calls as pointer arguments. For details, see
1713	  Documentation/arch/arm64/tagged-address-abi.rst.
1714
1715menuconfig COMPAT
1716	bool "Kernel support for 32-bit EL0"
1717	depends on ARM64_4K_PAGES || EXPERT
1718	select HAVE_UID16
1719	select OLD_SIGSUSPEND3
1720	select COMPAT_OLD_SIGACTION
1721	help
1722	  This option enables support for a 32-bit EL0 running under a 64-bit
1723	  kernel at EL1. AArch32-specific components such as system calls,
1724	  the user helper functions, VFP support and the ptrace interface are
1725	  handled appropriately by the kernel.
1726
1727	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1728	  that you will only be able to execute AArch32 binaries that were compiled
1729	  with page size aligned segments.
1730
1731	  If you want to execute 32-bit userspace applications, say Y.
1732
1733if COMPAT
1734
1735config KUSER_HELPERS
1736	bool "Enable kuser helpers page for 32-bit applications"
1737	default y
1738	help
1739	  Warning: disabling this option may break 32-bit user programs.
1740
1741	  Provide kuser helpers to compat tasks. The kernel provides
1742	  helper code to userspace in read only form at a fixed location
1743	  to allow userspace to be independent of the CPU type fitted to
1744	  the system. This permits binaries to be run on ARMv4 through
1745	  to ARMv8 without modification.
1746
1747	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1748
1749	  However, the fixed address nature of these helpers can be used
1750	  by ROP (return orientated programming) authors when creating
1751	  exploits.
1752
1753	  If all of the binaries and libraries which run on your platform
1754	  are built specifically for your platform, and make no use of
1755	  these helpers, then you can turn this option off to hinder
1756	  such exploits. However, in that case, if a binary or library
1757	  relying on those helpers is run, it will not function correctly.
1758
1759	  Say N here only if you are absolutely certain that you do not
1760	  need these helpers; otherwise, the safe option is to say Y.
1761
1762config COMPAT_VDSO
1763	bool "Enable vDSO for 32-bit applications"
1764	depends on !CPU_BIG_ENDIAN
1765	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1766	select GENERIC_COMPAT_VDSO
1767	default y
1768	help
1769	  Place in the process address space of 32-bit applications an
1770	  ELF shared object providing fast implementations of gettimeofday
1771	  and clock_gettime.
1772
1773	  You must have a 32-bit build of glibc 2.22 or later for programs
1774	  to seamlessly take advantage of this.
1775
1776config THUMB2_COMPAT_VDSO
1777	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1778	depends on COMPAT_VDSO
1779	default y
1780	help
1781	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1782	  otherwise with '-marm'.
1783
1784config COMPAT_ALIGNMENT_FIXUPS
1785	bool "Fix up misaligned multi-word loads and stores in user space"
1786
1787menuconfig ARMV8_DEPRECATED
1788	bool "Emulate deprecated/obsolete ARMv8 instructions"
1789	depends on SYSCTL
1790	help
1791	  Legacy software support may require certain instructions
1792	  that have been deprecated or obsoleted in the architecture.
1793
1794	  Enable this config to enable selective emulation of these
1795	  features.
1796
1797	  If unsure, say Y
1798
1799if ARMV8_DEPRECATED
1800
1801config SWP_EMULATION
1802	bool "Emulate SWP/SWPB instructions"
1803	help
1804	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1805	  they are always undefined. Say Y here to enable software
1806	  emulation of these instructions for userspace using LDXR/STXR.
1807	  This feature can be controlled at runtime with the abi.swp
1808	  sysctl which is disabled by default.
1809
1810	  In some older versions of glibc [<=2.8] SWP is used during futex
1811	  trylock() operations with the assumption that the code will not
1812	  be preempted. This invalid assumption may be more likely to fail
1813	  with SWP emulation enabled, leading to deadlock of the user
1814	  application.
1815
1816	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1817	  on an external transaction monitoring block called a global
1818	  monitor to maintain update atomicity. If your system does not
1819	  implement a global monitor, this option can cause programs that
1820	  perform SWP operations to uncached memory to deadlock.
1821
1822	  If unsure, say Y
1823
1824config CP15_BARRIER_EMULATION
1825	bool "Emulate CP15 Barrier instructions"
1826	help
1827	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1828	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1829	  strongly recommended to use the ISB, DSB, and DMB
1830	  instructions instead.
1831
1832	  Say Y here to enable software emulation of these
1833	  instructions for AArch32 userspace code. When this option is
1834	  enabled, CP15 barrier usage is traced which can help
1835	  identify software that needs updating. This feature can be
1836	  controlled at runtime with the abi.cp15_barrier sysctl.
1837
1838	  If unsure, say Y
1839
1840config SETEND_EMULATION
1841	bool "Emulate SETEND instruction"
1842	help
1843	  The SETEND instruction alters the data-endianness of the
1844	  AArch32 EL0, and is deprecated in ARMv8.
1845
1846	  Say Y here to enable software emulation of the instruction
1847	  for AArch32 userspace code. This feature can be controlled
1848	  at runtime with the abi.setend sysctl.
1849
1850	  Note: All the cpus on the system must have mixed endian support at EL0
1851	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1852	  endian - is hotplugged in after this feature has been enabled, there could
1853	  be unexpected results in the applications.
1854
1855	  If unsure, say Y
1856endif # ARMV8_DEPRECATED
1857
1858endif # COMPAT
1859
1860menu "ARMv8.1 architectural features"
1861
1862config ARM64_HW_AFDBM
1863	bool "Support for hardware updates of the Access and Dirty page flags"
1864	default y
1865	help
1866	  The ARMv8.1 architecture extensions introduce support for
1867	  hardware updates of the access and dirty information in page
1868	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1869	  capable processors, accesses to pages with PTE_AF cleared will
1870	  set this bit instead of raising an access flag fault.
1871	  Similarly, writes to read-only pages with the DBM bit set will
1872	  clear the read-only bit (AP[2]) instead of raising a
1873	  permission fault.
1874
1875	  Kernels built with this configuration option enabled continue
1876	  to work on pre-ARMv8.1 hardware and the performance impact is
1877	  minimal. If unsure, say Y.
1878
1879config ARM64_PAN
1880	bool "Enable support for Privileged Access Never (PAN)"
1881	default y
1882	help
1883	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1884	  prevents the kernel or hypervisor from accessing user-space (EL0)
1885	  memory directly.
1886
1887	  Choosing this option will cause any unprotected (not using
1888	  copy_to_user et al) memory access to fail with a permission fault.
1889
1890	  The feature is detected at runtime, and will remain as a 'nop'
1891	  instruction if the cpu does not implement the feature.
1892
1893config AS_HAS_LSE_ATOMICS
1894	def_bool $(as-instr,.arch_extension lse)
1895
1896config ARM64_LSE_ATOMICS
1897	bool
1898	default ARM64_USE_LSE_ATOMICS
1899	depends on AS_HAS_LSE_ATOMICS
1900
1901config ARM64_USE_LSE_ATOMICS
1902	bool "Atomic instructions"
1903	default y
1904	help
1905	  As part of the Large System Extensions, ARMv8.1 introduces new
1906	  atomic instructions that are designed specifically to scale in
1907	  very large systems.
1908
1909	  Say Y here to make use of these instructions for the in-kernel
1910	  atomic routines. This incurs a small overhead on CPUs that do
1911	  not support these instructions and requires the kernel to be
1912	  built with binutils >= 2.25 in order for the new instructions
1913	  to be used.
1914
1915endmenu # "ARMv8.1 architectural features"
1916
1917menu "ARMv8.2 architectural features"
1918
1919config AS_HAS_ARMV8_2
1920	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1921
1922config AS_HAS_SHA3
1923	def_bool $(as-instr,.arch armv8.2-a+sha3)
1924
1925config ARM64_PMEM
1926	bool "Enable support for persistent memory"
1927	select ARCH_HAS_PMEM_API
1928	select ARCH_HAS_UACCESS_FLUSHCACHE
1929	help
1930	  Say Y to enable support for the persistent memory API based on the
1931	  ARMv8.2 DCPoP feature.
1932
1933	  The feature is detected at runtime, and the kernel will use DC CVAC
1934	  operations if DC CVAP is not supported (following the behaviour of
1935	  DC CVAP itself if the system does not define a point of persistence).
1936
1937config ARM64_RAS_EXTN
1938	bool "Enable support for RAS CPU Extensions"
1939	default y
1940	help
1941	  CPUs that support the Reliability, Availability and Serviceability
1942	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1943	  errors, classify them and report them to software.
1944
1945	  On CPUs with these extensions system software can use additional
1946	  barriers to determine if faults are pending and read the
1947	  classification from a new set of registers.
1948
1949	  Selecting this feature will allow the kernel to use these barriers
1950	  and access the new registers if the system supports the extension.
1951	  Platform RAS features may additionally depend on firmware support.
1952
1953config ARM64_CNP
1954	bool "Enable support for Common Not Private (CNP) translations"
1955	default y
1956	help
1957	  Common Not Private (CNP) allows translation table entries to
1958	  be shared between different PEs in the same inner shareable
1959	  domain, so the hardware can use this fact to optimise the
1960	  caching of such entries in the TLB.
1961
1962	  Selecting this option allows the CNP feature to be detected
1963	  at runtime, and does not affect PEs that do not implement
1964	  this feature.
1965
1966endmenu # "ARMv8.2 architectural features"
1967
1968menu "ARMv8.3 architectural features"
1969
1970config ARM64_PTR_AUTH
1971	bool "Enable support for pointer authentication"
1972	default y
1973	help
1974	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1975	  instructions for signing and authenticating pointers against secret
1976	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1977	  and other attacks.
1978
1979	  This option enables these instructions at EL0 (i.e. for userspace).
1980	  Choosing this option will cause the kernel to initialise secret keys
1981	  for each process at exec() time, with these keys being
1982	  context-switched along with the process.
1983
1984	  The feature is detected at runtime. If the feature is not present in
1985	  hardware it will not be advertised to userspace/KVM guest nor will it
1986	  be enabled.
1987
1988	  If the feature is present on the boot CPU but not on a late CPU, then
1989	  the late CPU will be parked. Also, if the boot CPU does not have
1990	  address auth and the late CPU has then the late CPU will still boot
1991	  but with the feature disabled. On such a system, this option should
1992	  not be selected.
1993
1994config ARM64_PTR_AUTH_KERNEL
1995	bool "Use pointer authentication for kernel"
1996	default y
1997	depends on ARM64_PTR_AUTH
1998	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1999	# Modern compilers insert a .note.gnu.property section note for PAC
2000	# which is only understood by binutils starting with version 2.33.1.
2001	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
2002	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
2003	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2004	help
2005	  If the compiler supports the -mbranch-protection or
2006	  -msign-return-address flag (e.g. GCC 7 or later), then this option
2007	  will cause the kernel itself to be compiled with return address
2008	  protection. In this case, and if the target hardware is known to
2009	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
2010	  disabled with minimal loss of protection.
2011
2012	  This feature works with FUNCTION_GRAPH_TRACER option only if
2013	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
2014
2015config CC_HAS_BRANCH_PROT_PAC_RET
2016	# GCC 9 or later, clang 8 or later
2017	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
2018
2019config CC_HAS_SIGN_RETURN_ADDRESS
2020	# GCC 7, 8
2021	def_bool $(cc-option,-msign-return-address=all)
2022
2023config AS_HAS_ARMV8_3
2024	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
2025
2026config AS_HAS_CFI_NEGATE_RA_STATE
2027	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
2028
2029config AS_HAS_LDAPR
2030	def_bool $(as-instr,.arch_extension rcpc)
2031
2032endmenu # "ARMv8.3 architectural features"
2033
2034menu "ARMv8.4 architectural features"
2035
2036config ARM64_AMU_EXTN
2037	bool "Enable support for the Activity Monitors Unit CPU extension"
2038	default y
2039	help
2040	  The activity monitors extension is an optional extension introduced
2041	  by the ARMv8.4 CPU architecture. This enables support for version 1
2042	  of the activity monitors architecture, AMUv1.
2043
2044	  To enable the use of this extension on CPUs that implement it, say Y.
2045
2046	  Note that for architectural reasons, firmware _must_ implement AMU
2047	  support when running on CPUs that present the activity monitors
2048	  extension. The required support is present in:
2049	    * Version 1.5 and later of the ARM Trusted Firmware
2050
2051	  For kernels that have this configuration enabled but boot with broken
2052	  firmware, you may need to say N here until the firmware is fixed.
2053	  Otherwise you may experience firmware panics or lockups when
2054	  accessing the counter registers. Even if you are not observing these
2055	  symptoms, the values returned by the register reads might not
2056	  correctly reflect reality. Most commonly, the value read will be 0,
2057	  indicating that the counter is not enabled.
2058
2059config AS_HAS_ARMV8_4
2060	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
2061
2062config ARM64_TLB_RANGE
2063	bool "Enable support for tlbi range feature"
2064	default y
2065	depends on AS_HAS_ARMV8_4
2066	help
2067	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
2068	  range of input addresses.
2069
2070	  The feature introduces new assembly instructions, and they were
2071	  support when binutils >= 2.30.
2072
2073endmenu # "ARMv8.4 architectural features"
2074
2075menu "ARMv8.5 architectural features"
2076
2077config AS_HAS_ARMV8_5
2078	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
2079
2080config ARM64_BTI
2081	bool "Branch Target Identification support"
2082	default y
2083	help
2084	  Branch Target Identification (part of the ARMv8.5 Extensions)
2085	  provides a mechanism to limit the set of locations to which computed
2086	  branch instructions such as BR or BLR can jump.
2087
2088	  To make use of BTI on CPUs that support it, say Y.
2089
2090	  BTI is intended to provide complementary protection to other control
2091	  flow integrity protection mechanisms, such as the Pointer
2092	  authentication mechanism provided as part of the ARMv8.3 Extensions.
2093	  For this reason, it does not make sense to enable this option without
2094	  also enabling support for pointer authentication.  Thus, when
2095	  enabling this option you should also select ARM64_PTR_AUTH=y.
2096
2097	  Userspace binaries must also be specifically compiled to make use of
2098	  this mechanism.  If you say N here or the hardware does not support
2099	  BTI, such binaries can still run, but you get no additional
2100	  enforcement of branch destinations.
2101
2102config ARM64_BTI_KERNEL
2103	bool "Use Branch Target Identification for kernel"
2104	default y
2105	depends on ARM64_BTI
2106	depends on ARM64_PTR_AUTH_KERNEL
2107	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2108	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2109	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2110	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2111	depends on !CC_IS_GCC
2112	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2113	help
2114	  Build the kernel with Branch Target Identification annotations
2115	  and enable enforcement of this for kernel code. When this option
2116	  is enabled and the system supports BTI all kernel code including
2117	  modular code must have BTI enabled.
2118
2119config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2120	# GCC 9 or later, clang 8 or later
2121	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2122
2123config ARM64_E0PD
2124	bool "Enable support for E0PD"
2125	default y
2126	help
2127	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2128	  that EL0 accesses made via TTBR1 always fault in constant time,
2129	  providing similar benefits to KASLR as those provided by KPTI, but
2130	  with lower overhead and without disrupting legitimate access to
2131	  kernel memory such as SPE.
2132
2133	  This option enables E0PD for TTBR1 where available.
2134
2135config ARM64_AS_HAS_MTE
2136	# Initial support for MTE went in binutils 2.32.0, checked with
2137	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2138	# as a late addition to the final architecture spec (LDGM/STGM)
2139	# is only supported in the newer 2.32.x and 2.33 binutils
2140	# versions, hence the extra "stgm" instruction check below.
2141	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2142
2143config ARM64_MTE
2144	bool "Memory Tagging Extension support"
2145	default y
2146	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2147	depends on AS_HAS_ARMV8_5
2148	depends on AS_HAS_LSE_ATOMICS
2149	# Required for tag checking in the uaccess routines
2150	select ARM64_PAN
2151	select ARCH_HAS_SUBPAGE_FAULTS
2152	select ARCH_USES_HIGH_VMA_FLAGS
2153	select ARCH_USES_PG_ARCH_2
2154	select ARCH_USES_PG_ARCH_3
2155	help
2156	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2157	  architectural support for run-time, always-on detection of
2158	  various classes of memory error to aid with software debugging
2159	  to eliminate vulnerabilities arising from memory-unsafe
2160	  languages.
2161
2162	  This option enables the support for the Memory Tagging
2163	  Extension at EL0 (i.e. for userspace).
2164
2165	  Selecting this option allows the feature to be detected at
2166	  runtime. Any secondary CPU not implementing this feature will
2167	  not be allowed a late bring-up.
2168
2169	  Userspace binaries that want to use this feature must
2170	  explicitly opt in. The mechanism for the userspace is
2171	  described in:
2172
2173	  Documentation/arch/arm64/memory-tagging-extension.rst.
2174
2175endmenu # "ARMv8.5 architectural features"
2176
2177menu "ARMv8.7 architectural features"
2178
2179config ARM64_EPAN
2180	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2181	default y
2182	depends on ARM64_PAN
2183	help
2184	  Enhanced Privileged Access Never (EPAN) allows Privileged
2185	  Access Never to be used with Execute-only mappings.
2186
2187	  The feature is detected at runtime, and will remain disabled
2188	  if the cpu does not implement the feature.
2189endmenu # "ARMv8.7 architectural features"
2190
2191config AS_HAS_MOPS
2192	def_bool $(as-instr,.arch_extension mops)
2193
2194menu "ARMv8.9 architectural features"
2195
2196config ARM64_POE
2197	prompt "Permission Overlay Extension"
2198	def_bool y
2199	select ARCH_USES_HIGH_VMA_FLAGS
2200	select ARCH_HAS_PKEYS
2201	help
2202	  The Permission Overlay Extension is used to implement Memory
2203	  Protection Keys. Memory Protection Keys provides a mechanism for
2204	  enforcing page-based protections, but without requiring modification
2205	  of the page tables when an application changes protection domains.
2206
2207	  For details, see Documentation/core-api/protection-keys.rst
2208
2209	  If unsure, say y.
2210
2211config ARCH_PKEY_BITS
2212	int
2213	default 3
2214
2215config ARM64_HAFT
2216	bool "Support for Hardware managed Access Flag for Table Descriptors"
2217	depends on ARM64_HW_AFDBM
2218	default y
2219	help
2220	  The ARMv8.9/ARMv9.5 introduces the feature Hardware managed Access
2221	  Flag for Table descriptors. When enabled an architectural executed
2222	  memory access will update the Access Flag in each Table descriptor
2223	  which is accessed during the translation table walk and for which
2224	  the Access Flag is 0. The Access Flag of the Table descriptor use
2225	  the same bit of PTE_AF.
2226
2227	  The feature will only be enabled if all the CPUs in the system
2228	  support this feature. If unsure, say Y.
2229
2230endmenu # "ARMv8.9 architectural features"
2231
2232menu "v9.4 architectural features"
2233
2234config ARM64_GCS
2235	bool "Enable support for Guarded Control Stack (GCS)"
2236	default y
2237	select ARCH_HAS_USER_SHADOW_STACK
2238	select ARCH_USES_HIGH_VMA_FLAGS
2239	depends on !UPROBES
2240	help
2241	  Guarded Control Stack (GCS) provides support for a separate
2242	  stack with restricted access which contains only return
2243	  addresses.  This can be used to harden against some attacks
2244	  by comparing return address used by the program with what is
2245	  stored in the GCS, and may also be used to efficiently obtain
2246	  the call stack for applications such as profiling.
2247
2248	  The feature is detected at runtime, and will remain disabled
2249	  if the system does not implement the feature.
2250
2251endmenu # "v9.4 architectural features"
2252
2253config ARM64_SVE
2254	bool "ARM Scalable Vector Extension support"
2255	default y
2256	help
2257	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2258	  execution state which complements and extends the SIMD functionality
2259	  of the base architecture to support much larger vectors and to enable
2260	  additional vectorisation opportunities.
2261
2262	  To enable use of this extension on CPUs that implement it, say Y.
2263
2264	  On CPUs that support the SVE2 extensions, this option will enable
2265	  those too.
2266
2267	  Note that for architectural reasons, firmware _must_ implement SVE
2268	  support when running on SVE capable hardware.  The required support
2269	  is present in:
2270
2271	    * version 1.5 and later of the ARM Trusted Firmware
2272	    * the AArch64 boot wrapper since commit 5e1261e08abf
2273	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2274
2275	  For other firmware implementations, consult the firmware documentation
2276	  or vendor.
2277
2278	  If you need the kernel to boot on SVE-capable hardware with broken
2279	  firmware, you may need to say N here until you get your firmware
2280	  fixed.  Otherwise, you may experience firmware panics or lockups when
2281	  booting the kernel.  If unsure and you are not observing these
2282	  symptoms, you should assume that it is safe to say Y.
2283
2284config ARM64_SME
2285	bool "ARM Scalable Matrix Extension support"
2286	default y
2287	depends on ARM64_SVE
2288	depends on BROKEN
2289	help
2290	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2291	  execution state which utilises a substantial subset of the SVE
2292	  instruction set, together with the addition of new architectural
2293	  register state capable of holding two dimensional matrix tiles to
2294	  enable various matrix operations.
2295
2296config ARM64_PSEUDO_NMI
2297	bool "Support for NMI-like interrupts"
2298	select ARM_GIC_V3
2299	help
2300	  Adds support for mimicking Non-Maskable Interrupts through the use of
2301	  GIC interrupt priority. This support requires version 3 or later of
2302	  ARM GIC.
2303
2304	  This high priority configuration for interrupts needs to be
2305	  explicitly enabled by setting the kernel parameter
2306	  "irqchip.gicv3_pseudo_nmi" to 1.
2307
2308	  If unsure, say N
2309
2310if ARM64_PSEUDO_NMI
2311config ARM64_DEBUG_PRIORITY_MASKING
2312	bool "Debug interrupt priority masking"
2313	help
2314	  This adds runtime checks to functions enabling/disabling
2315	  interrupts when using priority masking. The additional checks verify
2316	  the validity of ICC_PMR_EL1 when calling concerned functions.
2317
2318	  If unsure, say N
2319endif # ARM64_PSEUDO_NMI
2320
2321config RELOCATABLE
2322	bool "Build a relocatable kernel image" if EXPERT
2323	select ARCH_HAS_RELR
2324	default y
2325	help
2326	  This builds the kernel as a Position Independent Executable (PIE),
2327	  which retains all relocation metadata required to relocate the
2328	  kernel binary at runtime to a different virtual address than the
2329	  address it was linked at.
2330	  Since AArch64 uses the RELA relocation format, this requires a
2331	  relocation pass at runtime even if the kernel is loaded at the
2332	  same address it was linked at.
2333
2334config RANDOMIZE_BASE
2335	bool "Randomize the address of the kernel image"
2336	select RELOCATABLE
2337	help
2338	  Randomizes the virtual address at which the kernel image is
2339	  loaded, as a security feature that deters exploit attempts
2340	  relying on knowledge of the location of kernel internals.
2341
2342	  It is the bootloader's job to provide entropy, by passing a
2343	  random u64 value in /chosen/kaslr-seed at kernel entry.
2344
2345	  When booting via the UEFI stub, it will invoke the firmware's
2346	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2347	  to the kernel proper. In addition, it will randomise the physical
2348	  location of the kernel Image as well.
2349
2350	  If unsure, say N.
2351
2352config RANDOMIZE_MODULE_REGION_FULL
2353	bool "Randomize the module region over a 2 GB range"
2354	depends on RANDOMIZE_BASE
2355	default y
2356	help
2357	  Randomizes the location of the module region inside a 2 GB window
2358	  covering the core kernel. This way, it is less likely for modules
2359	  to leak information about the location of core kernel data structures
2360	  but it does imply that function calls between modules and the core
2361	  kernel will need to be resolved via veneers in the module PLT.
2362
2363	  When this option is not set, the module region will be randomized over
2364	  a limited range that contains the [_stext, _etext] interval of the
2365	  core kernel, so branch relocations are almost always in range unless
2366	  the region is exhausted. In this particular case of region
2367	  exhaustion, modules might be able to fall back to a larger 2GB area.
2368
2369config CC_HAVE_STACKPROTECTOR_SYSREG
2370	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2371
2372config STACKPROTECTOR_PER_TASK
2373	def_bool y
2374	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2375
2376config UNWIND_PATCH_PAC_INTO_SCS
2377	bool "Enable shadow call stack dynamically using code patching"
2378	# needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated
2379	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2380	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2381	depends on SHADOW_CALL_STACK
2382	select UNWIND_TABLES
2383	select DYNAMIC_SCS
2384
2385config ARM64_CONTPTE
2386	bool "Contiguous PTE mappings for user memory" if EXPERT
2387	depends on TRANSPARENT_HUGEPAGE
2388	default y
2389	help
2390	  When enabled, user mappings are configured using the PTE contiguous
2391	  bit, for any mappings that meet the size and alignment requirements.
2392	  This reduces TLB pressure and improves performance.
2393
2394endmenu # "Kernel Features"
2395
2396menu "Boot options"
2397
2398config ARM64_ACPI_PARKING_PROTOCOL
2399	bool "Enable support for the ARM64 ACPI parking protocol"
2400	depends on ACPI
2401	help
2402	  Enable support for the ARM64 ACPI parking protocol. If disabled
2403	  the kernel will not allow booting through the ARM64 ACPI parking
2404	  protocol even if the corresponding data is present in the ACPI
2405	  MADT table.
2406
2407config CMDLINE
2408	string "Default kernel command string"
2409	default ""
2410	help
2411	  Provide a set of default command-line options at build time by
2412	  entering them here. As a minimum, you should specify the the
2413	  root device (e.g. root=/dev/nfs).
2414
2415choice
2416	prompt "Kernel command line type"
2417	depends on CMDLINE != ""
2418	default CMDLINE_FROM_BOOTLOADER
2419	help
2420	  Choose how the kernel will handle the provided default kernel
2421	  command line string.
2422
2423config CMDLINE_FROM_BOOTLOADER
2424	bool "Use bootloader kernel arguments if available"
2425	help
2426	  Uses the command-line options passed by the boot loader. If
2427	  the boot loader doesn't provide any, the default kernel command
2428	  string provided in CMDLINE will be used.
2429
2430config CMDLINE_FORCE
2431	bool "Always use the default kernel command string"
2432	help
2433	  Always use the default kernel command string, even if the boot
2434	  loader passes other arguments to the kernel.
2435	  This is useful if you cannot or don't want to change the
2436	  command-line options your boot loader passes to the kernel.
2437
2438endchoice
2439
2440config EFI_STUB
2441	bool
2442
2443config EFI
2444	bool "UEFI runtime support"
2445	depends on OF && !CPU_BIG_ENDIAN
2446	depends on KERNEL_MODE_NEON
2447	select ARCH_SUPPORTS_ACPI
2448	select LIBFDT
2449	select UCS2_STRING
2450	select EFI_PARAMS_FROM_FDT
2451	select EFI_RUNTIME_WRAPPERS
2452	select EFI_STUB
2453	select EFI_GENERIC_STUB
2454	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2455	default y
2456	help
2457	  This option provides support for runtime services provided
2458	  by UEFI firmware (such as non-volatile variables, realtime
2459	  clock, and platform reset). A UEFI stub is also provided to
2460	  allow the kernel to be booted as an EFI application. This
2461	  is only useful on systems that have UEFI firmware.
2462
2463config COMPRESSED_INSTALL
2464	bool "Install compressed image by default"
2465	help
2466	  This makes the regular "make install" install the compressed
2467	  image we built, not the legacy uncompressed one.
2468
2469	  You can check that a compressed image works for you by doing
2470	  "make zinstall" first, and verifying that everything is fine
2471	  in your environment before making "make install" do this for
2472	  you.
2473
2474config DMI
2475	bool "Enable support for SMBIOS (DMI) tables"
2476	depends on EFI
2477	default y
2478	help
2479	  This enables SMBIOS/DMI feature for systems.
2480
2481	  This option is only useful on systems that have UEFI firmware.
2482	  However, even with this option, the resultant kernel should
2483	  continue to boot on existing non-UEFI platforms.
2484
2485endmenu # "Boot options"
2486
2487menu "Power management options"
2488
2489source "kernel/power/Kconfig"
2490
2491config ARCH_HIBERNATION_POSSIBLE
2492	def_bool y
2493	depends on CPU_PM
2494
2495config ARCH_HIBERNATION_HEADER
2496	def_bool y
2497	depends on HIBERNATION
2498
2499config ARCH_SUSPEND_POSSIBLE
2500	def_bool y
2501
2502endmenu # "Power management options"
2503
2504menu "CPU Power Management"
2505
2506source "drivers/cpuidle/Kconfig"
2507
2508source "drivers/cpufreq/Kconfig"
2509
2510endmenu # "CPU Power Management"
2511
2512source "drivers/acpi/Kconfig"
2513
2514source "arch/arm64/kvm/Kconfig"
2515
2516