1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_APMT if ACPI 5 select ACPI_CCA_REQUIRED if ACPI 6 select ACPI_GENERIC_GSI if ACPI 7 select ACPI_GTDT if ACPI 8 select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU 9 select ACPI_IORT if ACPI 10 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 11 select ACPI_MCFG if (ACPI && PCI) 12 select ACPI_SPCR_TABLE if ACPI 13 select ACPI_PPTT if ACPI 14 select ARCH_HAS_DEBUG_WX 15 select ARCH_BINFMT_ELF_EXTRA_PHDRS 16 select ARCH_BINFMT_ELF_STATE 17 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION 18 select ARCH_ENABLE_MEMORY_HOTPLUG 19 select ARCH_ENABLE_MEMORY_HOTREMOVE 20 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 21 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE 22 select ARCH_HAS_CACHE_LINE_SIZE 23 select ARCH_HAS_CC_PLATFORM 24 select ARCH_HAS_CRC32 25 select ARCH_HAS_CRC_T10DIF if KERNEL_MODE_NEON 26 select ARCH_HAS_CURRENT_STACK_POINTER 27 select ARCH_HAS_DEBUG_VIRTUAL 28 select ARCH_HAS_DEBUG_VM_PGTABLE 29 select ARCH_HAS_DMA_OPS if XEN 30 select ARCH_HAS_DMA_PREP_COHERENT 31 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 32 select ARCH_HAS_FAST_MULTIPLIER 33 select ARCH_HAS_FORTIFY_SOURCE 34 select ARCH_HAS_GCOV_PROFILE_ALL 35 select ARCH_HAS_GIGANTIC_PAGE 36 select ARCH_HAS_KCOV 37 select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON 38 select ARCH_HAS_KEEPINITRD 39 select ARCH_HAS_MEMBARRIER_SYNC_CORE 40 select ARCH_HAS_MEM_ENCRYPT 41 select ARCH_SUPPORTS_MSEAL_SYSTEM_MAPPINGS 42 select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS 43 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 44 select ARCH_HAS_NONLEAF_PMD_YOUNG if ARM64_HAFT 45 select ARCH_HAS_PTDUMP 46 select ARCH_HAS_PTE_DEVMAP 47 select ARCH_HAS_PTE_SPECIAL 48 select ARCH_HAS_HW_PTE_YOUNG 49 select ARCH_HAS_SETUP_DMA_OPS 50 select ARCH_HAS_SET_DIRECT_MAP 51 select ARCH_HAS_SET_MEMORY 52 select ARCH_HAS_MEM_ENCRYPT 53 select ARCH_HAS_FORCE_DMA_UNENCRYPTED 54 select ARCH_STACKWALK 55 select ARCH_HAS_STRICT_KERNEL_RWX 56 select ARCH_HAS_STRICT_MODULE_RWX 57 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 58 select ARCH_HAS_SYNC_DMA_FOR_CPU 59 select ARCH_HAS_SYSCALL_WRAPPER 60 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 61 select ARCH_HAS_ZONE_DMA_SET if EXPERT 62 select ARCH_HAVE_ELF_PROT 63 select ARCH_HAVE_NMI_SAFE_CMPXCHG 64 select ARCH_HAVE_TRACE_MMIO_ACCESS 65 select ARCH_INLINE_READ_LOCK if !PREEMPTION 66 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 67 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 68 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 69 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 70 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 71 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 72 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 73 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 74 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 75 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 76 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 77 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 78 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 79 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 80 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 81 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 82 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 83 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 84 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 85 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 86 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 87 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 88 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 89 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 90 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 91 select ARCH_KEEP_MEMBLOCK 92 select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 93 select ARCH_USE_CMPXCHG_LOCKREF 94 select ARCH_USE_GNU_PROPERTY 95 select ARCH_USE_MEMTEST 96 select ARCH_USE_QUEUED_RWLOCKS 97 select ARCH_USE_QUEUED_SPINLOCKS 98 select ARCH_USE_SYM_ANNOTATIONS 99 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 100 select ARCH_SUPPORTS_HUGETLBFS 101 select ARCH_SUPPORTS_MEMORY_FAILURE 102 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 103 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 104 select ARCH_SUPPORTS_LTO_CLANG_THIN 105 select ARCH_SUPPORTS_CFI_CLANG 106 select ARCH_SUPPORTS_ATOMIC_RMW 107 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 108 select ARCH_SUPPORTS_NUMA_BALANCING 109 select ARCH_SUPPORTS_PAGE_TABLE_CHECK 110 select ARCH_SUPPORTS_PER_VMA_LOCK 111 select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE 112 select ARCH_SUPPORTS_RT 113 select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 114 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 115 select ARCH_WANT_DEFAULT_BPF_JIT 116 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 117 select ARCH_WANT_FRAME_POINTERS 118 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 119 select ARCH_WANT_LD_ORPHAN_WARN 120 select ARCH_WANTS_EXECMEM_LATE 121 select ARCH_WANTS_NO_INSTR 122 select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES 123 select ARCH_HAS_UBSAN 124 select ARM_AMBA 125 select ARM_ARCH_TIMER 126 select ARM_GIC 127 select AUDIT_ARCH_COMPAT_GENERIC 128 select ARM_GIC_V2M if PCI 129 select ARM_GIC_V3 130 select ARM_GIC_V3_ITS if PCI 131 select ARM_PSCI_FW 132 select BUILDTIME_TABLE_SORT 133 select CLONE_BACKWARDS 134 select COMMON_CLK 135 select CPU_PM if (SUSPEND || CPU_IDLE) 136 select CPUMASK_OFFSTACK if NR_CPUS > 256 137 select CRC32 138 select DCACHE_WORD_ACCESS 139 select DYNAMIC_FTRACE if FUNCTION_TRACER 140 select DMA_BOUNCE_UNALIGNED_KMALLOC 141 select DMA_DIRECT_REMAP 142 select EDAC_SUPPORT 143 select FRAME_POINTER 144 select FUNCTION_ALIGNMENT_4B 145 select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS 146 select GENERIC_ALLOCATOR 147 select GENERIC_ARCH_TOPOLOGY 148 select GENERIC_CLOCKEVENTS_BROADCAST 149 select GENERIC_CPU_AUTOPROBE 150 select GENERIC_CPU_DEVICES 151 select GENERIC_CPU_VULNERABILITIES 152 select GENERIC_EARLY_IOREMAP 153 select GENERIC_IDLE_POLL_SETUP 154 select GENERIC_IOREMAP 155 select GENERIC_IRQ_IPI 156 select GENERIC_IRQ_KEXEC_CLEAR_VM_FORWARD 157 select GENERIC_IRQ_PROBE 158 select GENERIC_IRQ_SHOW 159 select GENERIC_IRQ_SHOW_LEVEL 160 select GENERIC_LIB_DEVMEM_IS_ALLOWED 161 select GENERIC_PCI_IOMAP 162 select GENERIC_SCHED_CLOCK 163 select GENERIC_SMP_IDLE_THREAD 164 select GENERIC_TIME_VSYSCALL 165 select GENERIC_GETTIMEOFDAY 166 select GENERIC_VDSO_DATA_STORE 167 select GENERIC_VDSO_TIME_NS 168 select HARDIRQS_SW_RESEND 169 select HAS_IOPORT 170 select HAVE_MOVE_PMD 171 select HAVE_MOVE_PUD 172 select HAVE_PCI 173 select HAVE_ACPI_APEI if (ACPI && EFI) 174 select HAVE_ALIGNED_STRUCT_PAGE 175 select HAVE_ARCH_AUDITSYSCALL 176 select HAVE_ARCH_BITREVERSE 177 select HAVE_ARCH_COMPILER_H 178 select HAVE_ARCH_HUGE_VMALLOC 179 select HAVE_ARCH_HUGE_VMAP 180 select HAVE_ARCH_JUMP_LABEL 181 select HAVE_ARCH_JUMP_LABEL_RELATIVE 182 select HAVE_ARCH_KASAN 183 select HAVE_ARCH_KASAN_VMALLOC 184 select HAVE_ARCH_KASAN_SW_TAGS 185 select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE 186 # Some instrumentation may be unsound, hence EXPERT 187 select HAVE_ARCH_KCSAN if EXPERT 188 select HAVE_ARCH_KFENCE 189 select HAVE_ARCH_KGDB 190 select HAVE_ARCH_MMAP_RND_BITS 191 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 192 select HAVE_ARCH_PREL32_RELOCATIONS 193 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 194 select HAVE_ARCH_SECCOMP_FILTER 195 select HAVE_ARCH_STACKLEAK 196 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 197 select HAVE_ARCH_TRACEHOOK 198 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 199 select HAVE_ARCH_VMAP_STACK 200 select HAVE_ARM_SMCCC 201 select HAVE_ASM_MODVERSIONS 202 select HAVE_EBPF_JIT 203 select HAVE_C_RECORDMCOUNT 204 select HAVE_CMPXCHG_DOUBLE 205 select HAVE_CMPXCHG_LOCAL 206 select HAVE_CONTEXT_TRACKING_USER 207 select HAVE_DEBUG_KMEMLEAK 208 select HAVE_DMA_CONTIGUOUS 209 select HAVE_DYNAMIC_FTRACE 210 select HAVE_DYNAMIC_FTRACE_WITH_ARGS \ 211 if (GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS || \ 212 CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS) 213 select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \ 214 if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS 215 select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \ 216 if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \ 217 (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE)) 218 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 219 if DYNAMIC_FTRACE_WITH_ARGS 220 select HAVE_SAMPLE_FTRACE_DIRECT 221 select HAVE_SAMPLE_FTRACE_DIRECT_MULTI 222 select HAVE_BUILDTIME_MCOUNT_SORT 223 select HAVE_EFFICIENT_UNALIGNED_ACCESS 224 select HAVE_GUP_FAST 225 select HAVE_FTRACE_GRAPH_FUNC 226 select HAVE_FTRACE_MCOUNT_RECORD 227 select HAVE_FUNCTION_TRACER 228 select HAVE_FUNCTION_ERROR_INJECTION 229 select HAVE_FUNCTION_GRAPH_FREGS 230 select HAVE_FUNCTION_GRAPH_TRACER 231 select HAVE_GCC_PLUGINS 232 select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \ 233 HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI 234 select HAVE_HW_BREAKPOINT if PERF_EVENTS 235 select HAVE_IOREMAP_PROT 236 select HAVE_IRQ_TIME_ACCOUNTING 237 select HAVE_MOD_ARCH_SPECIFIC 238 select HAVE_NMI 239 select HAVE_PERF_EVENTS 240 select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI 241 select HAVE_PERF_REGS 242 select HAVE_PERF_USER_STACK_DUMP 243 select HAVE_PREEMPT_DYNAMIC_KEY 244 select HAVE_REGS_AND_STACK_ACCESS_API 245 select HAVE_POSIX_CPU_TIMERS_TASK_WORK 246 select HAVE_FUNCTION_ARG_ACCESS_API 247 select MMU_GATHER_RCU_TABLE_FREE 248 select HAVE_RSEQ 249 select HAVE_RUST if RUSTC_SUPPORTS_ARM64 250 select HAVE_STACKPROTECTOR 251 select HAVE_SYSCALL_TRACEPOINTS 252 select HAVE_KPROBES 253 select HAVE_KRETPROBES 254 select HAVE_GENERIC_VDSO 255 select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU 256 select HOTPLUG_SMT if HOTPLUG_CPU 257 select IRQ_DOMAIN 258 select IRQ_FORCED_THREADING 259 select KASAN_VMALLOC if KASAN 260 select LOCK_MM_AND_FIND_VMA 261 select MODULES_USE_ELF_RELA 262 select NEED_DMA_MAP_STATE 263 select NEED_SG_DMA_LENGTH 264 select OF 265 select OF_EARLY_FLATTREE 266 select PCI_DOMAINS_GENERIC if PCI 267 select PCI_ECAM if (ACPI && PCI) 268 select PCI_SYSCALL if PCI 269 select POWER_RESET 270 select POWER_SUPPLY 271 select SPARSE_IRQ 272 select SWIOTLB 273 select SYSCTL_EXCEPTION_TRACE 274 select THREAD_INFO_IN_TASK 275 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD 276 select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD 277 select TRACE_IRQFLAGS_SUPPORT 278 select TRACE_IRQFLAGS_NMI_SUPPORT 279 select HAVE_SOFTIRQ_ON_OWN_STACK 280 select USER_STACKTRACE_SUPPORT 281 select VDSO_GETRANDOM 282 help 283 ARM 64-bit (AArch64) Linux support. 284 285config RUSTC_SUPPORTS_ARM64 286 def_bool y 287 depends on CPU_LITTLE_ENDIAN 288 # Shadow call stack is only supported on certain rustc versions. 289 # 290 # When using the UNWIND_PATCH_PAC_INTO_SCS option, rustc version 1.80+ is 291 # required due to use of the -Zfixed-x18 flag. 292 # 293 # Otherwise, rustc version 1.82+ is required due to use of the 294 # -Zsanitizer=shadow-call-stack flag. 295 depends on !SHADOW_CALL_STACK || RUSTC_VERSION >= 108200 || RUSTC_VERSION >= 108000 && UNWIND_PATCH_PAC_INTO_SCS 296 297config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 298 def_bool CC_IS_CLANG 299 # https://github.com/ClangBuiltLinux/linux/issues/1507 300 depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600)) 301 302config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 303 def_bool CC_IS_GCC 304 depends on $(cc-option,-fpatchable-function-entry=2) 305 306config 64BIT 307 def_bool y 308 309config MMU 310 def_bool y 311 312config ARM64_CONT_PTE_SHIFT 313 int 314 default 5 if PAGE_SIZE_64KB 315 default 7 if PAGE_SIZE_16KB 316 default 4 317 318config ARM64_CONT_PMD_SHIFT 319 int 320 default 5 if PAGE_SIZE_64KB 321 default 5 if PAGE_SIZE_16KB 322 default 4 323 324config ARCH_MMAP_RND_BITS_MIN 325 default 14 if PAGE_SIZE_64KB 326 default 16 if PAGE_SIZE_16KB 327 default 18 328 329# max bits determined by the following formula: 330# VA_BITS - PTDESC_TABLE_SHIFT 331config ARCH_MMAP_RND_BITS_MAX 332 default 19 if ARM64_VA_BITS=36 333 default 24 if ARM64_VA_BITS=39 334 default 27 if ARM64_VA_BITS=42 335 default 30 if ARM64_VA_BITS=47 336 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 337 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 338 default 33 if ARM64_VA_BITS=48 339 default 14 if ARM64_64K_PAGES 340 default 16 if ARM64_16K_PAGES 341 default 18 342 343config ARCH_MMAP_RND_COMPAT_BITS_MIN 344 default 7 if ARM64_64K_PAGES 345 default 9 if ARM64_16K_PAGES 346 default 11 347 348config ARCH_MMAP_RND_COMPAT_BITS_MAX 349 default 16 350 351config NO_IOPORT_MAP 352 def_bool y if !PCI 353 354config STACKTRACE_SUPPORT 355 def_bool y 356 357config ILLEGAL_POINTER_VALUE 358 hex 359 default 0xdead000000000000 360 361config LOCKDEP_SUPPORT 362 def_bool y 363 364config GENERIC_BUG 365 def_bool y 366 depends on BUG 367 368config GENERIC_BUG_RELATIVE_POINTERS 369 def_bool y 370 depends on GENERIC_BUG 371 372config GENERIC_HWEIGHT 373 def_bool y 374 375config GENERIC_CSUM 376 def_bool y 377 378config GENERIC_CALIBRATE_DELAY 379 def_bool y 380 381config SMP 382 def_bool y 383 384config KERNEL_MODE_NEON 385 def_bool y 386 387config FIX_EARLYCON_MEM 388 def_bool y 389 390config PGTABLE_LEVELS 391 int 392 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 393 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 394 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 395 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 396 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 397 default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 398 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 399 default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52 400 401config ARCH_SUPPORTS_UPROBES 402 def_bool y 403 404config ARCH_PROC_KCORE_TEXT 405 def_bool y 406 407config BROKEN_GAS_INST 408 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 409 410config BUILTIN_RETURN_ADDRESS_STRIPS_PAC 411 bool 412 # Clang's __builtin_return_address() strips the PAC since 12.0.0 413 # https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2 414 default y if CC_IS_CLANG 415 # GCC's __builtin_return_address() strips the PAC since 11.1.0, 416 # and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier 417 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891 418 default y if CC_IS_GCC && (GCC_VERSION >= 110100) 419 default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000) 420 default y if CC_IS_GCC && (GCC_VERSION >= 90400) && (GCC_VERSION < 100000) 421 default y if CC_IS_GCC && (GCC_VERSION >= 80500) && (GCC_VERSION < 90000) 422 default n 423 424config KASAN_SHADOW_OFFSET 425 hex 426 depends on KASAN_GENERIC || KASAN_SW_TAGS 427 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS 428 default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS 429 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 430 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 431 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 432 default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS 433 default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS 434 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 435 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 436 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 437 default 0xffffffffffffffff 438 439config UNWIND_TABLES 440 bool 441 442source "arch/arm64/Kconfig.platforms" 443 444menu "Kernel Features" 445 446menu "ARM errata workarounds via the alternatives framework" 447 448config AMPERE_ERRATUM_AC03_CPU_38 449 bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics" 450 default y 451 help 452 This option adds an alternative code sequence to work around Ampere 453 errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne. 454 455 The affected design reports FEAT_HAFDBS as not implemented in 456 ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0 457 as required by the architecture. The unadvertised HAFDBS 458 implementation suffers from an additional erratum where hardware 459 A/D updates can occur after a PTE has been marked invalid. 460 461 The workaround forces KVM to explicitly set VTCR_EL2.HA to 0, 462 which avoids enabling unadvertised hardware Access Flag management 463 at stage-2. 464 465 If unsure, say Y. 466 467config ARM64_WORKAROUND_CLEAN_CACHE 468 bool 469 470config ARM64_ERRATUM_826319 471 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 472 default y 473 select ARM64_WORKAROUND_CLEAN_CACHE 474 help 475 This option adds an alternative code sequence to work around ARM 476 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 477 AXI master interface and an L2 cache. 478 479 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 480 and is unable to accept a certain write via this interface, it will 481 not progress on read data presented on the read data channel and the 482 system can deadlock. 483 484 The workaround promotes data cache clean instructions to 485 data cache clean-and-invalidate. 486 Please note that this does not necessarily enable the workaround, 487 as it depends on the alternative framework, which will only patch 488 the kernel if an affected CPU is detected. 489 490 If unsure, say Y. 491 492config ARM64_ERRATUM_827319 493 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 494 default y 495 select ARM64_WORKAROUND_CLEAN_CACHE 496 help 497 This option adds an alternative code sequence to work around ARM 498 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 499 master interface and an L2 cache. 500 501 Under certain conditions this erratum can cause a clean line eviction 502 to occur at the same time as another transaction to the same address 503 on the AMBA 5 CHI interface, which can cause data corruption if the 504 interconnect reorders the two transactions. 505 506 The workaround promotes data cache clean instructions to 507 data cache clean-and-invalidate. 508 Please note that this does not necessarily enable the workaround, 509 as it depends on the alternative framework, which will only patch 510 the kernel if an affected CPU is detected. 511 512 If unsure, say Y. 513 514config ARM64_ERRATUM_824069 515 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 516 default y 517 select ARM64_WORKAROUND_CLEAN_CACHE 518 help 519 This option adds an alternative code sequence to work around ARM 520 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 521 to a coherent interconnect. 522 523 If a Cortex-A53 processor is executing a store or prefetch for 524 write instruction at the same time as a processor in another 525 cluster is executing a cache maintenance operation to the same 526 address, then this erratum might cause a clean cache line to be 527 incorrectly marked as dirty. 528 529 The workaround promotes data cache clean instructions to 530 data cache clean-and-invalidate. 531 Please note that this option does not necessarily enable the 532 workaround, as it depends on the alternative framework, which will 533 only patch the kernel if an affected CPU is detected. 534 535 If unsure, say Y. 536 537config ARM64_ERRATUM_819472 538 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 539 default y 540 select ARM64_WORKAROUND_CLEAN_CACHE 541 help 542 This option adds an alternative code sequence to work around ARM 543 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 544 present when it is connected to a coherent interconnect. 545 546 If the processor is executing a load and store exclusive sequence at 547 the same time as a processor in another cluster is executing a cache 548 maintenance operation to the same address, then this erratum might 549 cause data corruption. 550 551 The workaround promotes data cache clean instructions to 552 data cache clean-and-invalidate. 553 Please note that this does not necessarily enable the workaround, 554 as it depends on the alternative framework, which will only patch 555 the kernel if an affected CPU is detected. 556 557 If unsure, say Y. 558 559config ARM64_ERRATUM_832075 560 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 561 default y 562 help 563 This option adds an alternative code sequence to work around ARM 564 erratum 832075 on Cortex-A57 parts up to r1p2. 565 566 Affected Cortex-A57 parts might deadlock when exclusive load/store 567 instructions to Write-Back memory are mixed with Device loads. 568 569 The workaround is to promote device loads to use Load-Acquire 570 semantics. 571 Please note that this does not necessarily enable the workaround, 572 as it depends on the alternative framework, which will only patch 573 the kernel if an affected CPU is detected. 574 575 If unsure, say Y. 576 577config ARM64_ERRATUM_834220 578 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)" 579 depends on KVM 580 help 581 This option adds an alternative code sequence to work around ARM 582 erratum 834220 on Cortex-A57 parts up to r1p2. 583 584 Affected Cortex-A57 parts might report a Stage 2 translation 585 fault as the result of a Stage 1 fault for load crossing a 586 page boundary when there is a permission or device memory 587 alignment fault at Stage 1 and a translation fault at Stage 2. 588 589 The workaround is to verify that the Stage 1 translation 590 doesn't generate a fault before handling the Stage 2 fault. 591 Please note that this does not necessarily enable the workaround, 592 as it depends on the alternative framework, which will only patch 593 the kernel if an affected CPU is detected. 594 595 If unsure, say N. 596 597config ARM64_ERRATUM_1742098 598 bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence" 599 depends on COMPAT 600 default y 601 help 602 This option removes the AES hwcap for aarch32 user-space to 603 workaround erratum 1742098 on Cortex-A57 and Cortex-A72. 604 605 Affected parts may corrupt the AES state if an interrupt is 606 taken between a pair of AES instructions. These instructions 607 are only present if the cryptography extensions are present. 608 All software should have a fallback implementation for CPUs 609 that don't implement the cryptography extensions. 610 611 If unsure, say Y. 612 613config ARM64_ERRATUM_845719 614 bool "Cortex-A53: 845719: a load might read incorrect data" 615 depends on COMPAT 616 default y 617 help 618 This option adds an alternative code sequence to work around ARM 619 erratum 845719 on Cortex-A53 parts up to r0p4. 620 621 When running a compat (AArch32) userspace on an affected Cortex-A53 622 part, a load at EL0 from a virtual address that matches the bottom 32 623 bits of the virtual address used by a recent load at (AArch64) EL1 624 might return incorrect data. 625 626 The workaround is to write the contextidr_el1 register on exception 627 return to a 32-bit task. 628 Please note that this does not necessarily enable the workaround, 629 as it depends on the alternative framework, which will only patch 630 the kernel if an affected CPU is detected. 631 632 If unsure, say Y. 633 634config ARM64_ERRATUM_843419 635 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 636 default y 637 help 638 This option links the kernel with '--fix-cortex-a53-843419' and 639 enables PLT support to replace certain ADRP instructions, which can 640 cause subsequent memory accesses to use an incorrect address on 641 Cortex-A53 parts up to r0p4. 642 643 If unsure, say Y. 644 645config ARM64_LD_HAS_FIX_ERRATUM_843419 646 def_bool $(ld-option,--fix-cortex-a53-843419) 647 648config ARM64_ERRATUM_1024718 649 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 650 default y 651 help 652 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 653 654 Affected Cortex-A55 cores (all revisions) could cause incorrect 655 update of the hardware dirty bit when the DBM/AP bits are updated 656 without a break-before-make. The workaround is to disable the usage 657 of hardware DBM locally on the affected cores. CPUs not affected by 658 this erratum will continue to use the feature. 659 660 If unsure, say Y. 661 662config ARM64_ERRATUM_1418040 663 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 664 default y 665 depends on COMPAT 666 help 667 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 668 errata 1188873 and 1418040. 669 670 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 671 cause register corruption when accessing the timer registers 672 from AArch32 userspace. 673 674 If unsure, say Y. 675 676config ARM64_WORKAROUND_SPECULATIVE_AT 677 bool 678 679config ARM64_ERRATUM_1165522 680 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 681 default y 682 select ARM64_WORKAROUND_SPECULATIVE_AT 683 help 684 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 685 686 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 687 corrupted TLBs by speculating an AT instruction during a guest 688 context switch. 689 690 If unsure, say Y. 691 692config ARM64_ERRATUM_1319367 693 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 694 default y 695 select ARM64_WORKAROUND_SPECULATIVE_AT 696 help 697 This option adds work arounds for ARM Cortex-A57 erratum 1319537 698 and A72 erratum 1319367 699 700 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 701 speculating an AT instruction during a guest context switch. 702 703 If unsure, say Y. 704 705config ARM64_ERRATUM_1530923 706 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 707 default y 708 select ARM64_WORKAROUND_SPECULATIVE_AT 709 help 710 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 711 712 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 713 corrupted TLBs by speculating an AT instruction during a guest 714 context switch. 715 716 If unsure, say Y. 717 718config ARM64_WORKAROUND_REPEAT_TLBI 719 bool 720 721config ARM64_ERRATUM_2441007 722 bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)" 723 select ARM64_WORKAROUND_REPEAT_TLBI 724 help 725 This option adds a workaround for ARM Cortex-A55 erratum #2441007. 726 727 Under very rare circumstances, affected Cortex-A55 CPUs 728 may not handle a race between a break-before-make sequence on one 729 CPU, and another CPU accessing the same page. This could allow a 730 store to a page that has been unmapped. 731 732 Work around this by adding the affected CPUs to the list that needs 733 TLB sequences to be done twice. 734 735 If unsure, say N. 736 737config ARM64_ERRATUM_1286807 738 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)" 739 select ARM64_WORKAROUND_REPEAT_TLBI 740 help 741 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 742 743 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 744 address for a cacheable mapping of a location is being 745 accessed by a core while another core is remapping the virtual 746 address to a new physical page using the recommended 747 break-before-make sequence, then under very rare circumstances 748 TLBI+DSB completes before a read using the translation being 749 invalidated has been observed by other observers. The 750 workaround repeats the TLBI+DSB operation. 751 752 If unsure, say N. 753 754config ARM64_ERRATUM_1463225 755 bool "Cortex-A76: Software Step might prevent interrupt recognition" 756 default y 757 help 758 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 759 760 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 761 of a system call instruction (SVC) can prevent recognition of 762 subsequent interrupts when software stepping is disabled in the 763 exception handler of the system call and either kernel debugging 764 is enabled or VHE is in use. 765 766 Work around the erratum by triggering a dummy step exception 767 when handling a system call from a task that is being stepped 768 in a VHE configuration of the kernel. 769 770 If unsure, say Y. 771 772config ARM64_ERRATUM_1542419 773 bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)" 774 help 775 This option adds a workaround for ARM Neoverse-N1 erratum 776 1542419. 777 778 Affected Neoverse-N1 cores could execute a stale instruction when 779 modified by another CPU. The workaround depends on a firmware 780 counterpart. 781 782 Workaround the issue by hiding the DIC feature from EL0. This 783 forces user-space to perform cache maintenance. 784 785 If unsure, say N. 786 787config ARM64_ERRATUM_1508412 788 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 789 default y 790 help 791 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 792 793 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 794 of a store-exclusive or read of PAR_EL1 and a load with device or 795 non-cacheable memory attributes. The workaround depends on a firmware 796 counterpart. 797 798 KVM guests must also have the workaround implemented or they can 799 deadlock the system. 800 801 Work around the issue by inserting DMB SY barriers around PAR_EL1 802 register reads and warning KVM users. The DMB barrier is sufficient 803 to prevent a speculative PAR_EL1 read. 804 805 If unsure, say Y. 806 807config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 808 bool 809 810config ARM64_ERRATUM_2051678 811 bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit" 812 default y 813 help 814 This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678. 815 Affected Cortex-A510 might not respect the ordering rules for 816 hardware update of the page table's dirty bit. The workaround 817 is to not enable the feature on affected CPUs. 818 819 If unsure, say Y. 820 821config ARM64_ERRATUM_2077057 822 bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2" 823 default y 824 help 825 This option adds the workaround for ARM Cortex-A510 erratum 2077057. 826 Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is 827 expected, but a Pointer Authentication trap is taken instead. The 828 erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow 829 EL1 to cause a return to EL2 with a guest controlled ELR_EL2. 830 831 This can only happen when EL2 is stepping EL1. 832 833 When these conditions occur, the SPSR_EL2 value is unchanged from the 834 previous guest entry, and can be restored from the in-memory copy. 835 836 If unsure, say Y. 837 838config ARM64_ERRATUM_2658417 839 bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result" 840 default y 841 help 842 This option adds the workaround for ARM Cortex-A510 erratum 2658417. 843 Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for 844 BFMMLA or VMMLA instructions in rare circumstances when a pair of 845 A510 CPUs are using shared neon hardware. As the sharing is not 846 discoverable by the kernel, hide the BF16 HWCAP to indicate that 847 user-space should not be using these instructions. 848 849 If unsure, say Y. 850 851config ARM64_ERRATUM_2119858 852 bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode" 853 default y 854 depends on CORESIGHT_TRBE 855 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 856 help 857 This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858. 858 859 Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace 860 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 861 the event of a WRAP event. 862 863 Work around the issue by always making sure we move the TRBPTR_EL1 by 864 256 bytes before enabling the buffer and filling the first 256 bytes of 865 the buffer with ETM ignore packets upon disabling. 866 867 If unsure, say Y. 868 869config ARM64_ERRATUM_2139208 870 bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode" 871 default y 872 depends on CORESIGHT_TRBE 873 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 874 help 875 This option adds the workaround for ARM Neoverse-N2 erratum 2139208. 876 877 Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace 878 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 879 the event of a WRAP event. 880 881 Work around the issue by always making sure we move the TRBPTR_EL1 by 882 256 bytes before enabling the buffer and filling the first 256 bytes of 883 the buffer with ETM ignore packets upon disabling. 884 885 If unsure, say Y. 886 887config ARM64_WORKAROUND_TSB_FLUSH_FAILURE 888 bool 889 890config ARM64_ERRATUM_2054223 891 bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace" 892 default y 893 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 894 help 895 Enable workaround for ARM Cortex-A710 erratum 2054223 896 897 Affected cores may fail to flush the trace data on a TSB instruction, when 898 the PE is in trace prohibited state. This will cause losing a few bytes 899 of the trace cached. 900 901 Workaround is to issue two TSB consecutively on affected cores. 902 903 If unsure, say Y. 904 905config ARM64_ERRATUM_2067961 906 bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace" 907 default y 908 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 909 help 910 Enable workaround for ARM Neoverse-N2 erratum 2067961 911 912 Affected cores may fail to flush the trace data on a TSB instruction, when 913 the PE is in trace prohibited state. This will cause losing a few bytes 914 of the trace cached. 915 916 Workaround is to issue two TSB consecutively on affected cores. 917 918 If unsure, say Y. 919 920config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 921 bool 922 923config ARM64_ERRATUM_2253138 924 bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range" 925 depends on CORESIGHT_TRBE 926 default y 927 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 928 help 929 This option adds the workaround for ARM Neoverse-N2 erratum 2253138. 930 931 Affected Neoverse-N2 cores might write to an out-of-range address, not reserved 932 for TRBE. Under some conditions, the TRBE might generate a write to the next 933 virtually addressed page following the last page of the TRBE address space 934 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 935 936 Work around this in the driver by always making sure that there is a 937 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 938 939 If unsure, say Y. 940 941config ARM64_ERRATUM_2224489 942 bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range" 943 depends on CORESIGHT_TRBE 944 default y 945 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 946 help 947 This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489. 948 949 Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved 950 for TRBE. Under some conditions, the TRBE might generate a write to the next 951 virtually addressed page following the last page of the TRBE address space 952 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 953 954 Work around this in the driver by always making sure that there is a 955 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 956 957 If unsure, say Y. 958 959config ARM64_ERRATUM_2441009 960 bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)" 961 select ARM64_WORKAROUND_REPEAT_TLBI 962 help 963 This option adds a workaround for ARM Cortex-A510 erratum #2441009. 964 965 Under very rare circumstances, affected Cortex-A510 CPUs 966 may not handle a race between a break-before-make sequence on one 967 CPU, and another CPU accessing the same page. This could allow a 968 store to a page that has been unmapped. 969 970 Work around this by adding the affected CPUs to the list that needs 971 TLB sequences to be done twice. 972 973 If unsure, say N. 974 975config ARM64_ERRATUM_2064142 976 bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled" 977 depends on CORESIGHT_TRBE 978 default y 979 help 980 This option adds the workaround for ARM Cortex-A510 erratum 2064142. 981 982 Affected Cortex-A510 core might fail to write into system registers after the 983 TRBE has been disabled. Under some conditions after the TRBE has been disabled 984 writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1, 985 and TRBTRG_EL1 will be ignored and will not be effected. 986 987 Work around this in the driver by executing TSB CSYNC and DSB after collection 988 is stopped and before performing a system register write to one of the affected 989 registers. 990 991 If unsure, say Y. 992 993config ARM64_ERRATUM_2038923 994 bool "Cortex-A510: 2038923: workaround TRBE corruption with enable" 995 depends on CORESIGHT_TRBE 996 default y 997 help 998 This option adds the workaround for ARM Cortex-A510 erratum 2038923. 999 1000 Affected Cortex-A510 core might cause an inconsistent view on whether trace is 1001 prohibited within the CPU. As a result, the trace buffer or trace buffer state 1002 might be corrupted. This happens after TRBE buffer has been enabled by setting 1003 TRBLIMITR_EL1.E, followed by just a single context synchronization event before 1004 execution changes from a context, in which trace is prohibited to one where it 1005 isn't, or vice versa. In these mentioned conditions, the view of whether trace 1006 is prohibited is inconsistent between parts of the CPU, and the trace buffer or 1007 the trace buffer state might be corrupted. 1008 1009 Work around this in the driver by preventing an inconsistent view of whether the 1010 trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a 1011 change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or 1012 two ISB instructions if no ERET is to take place. 1013 1014 If unsure, say Y. 1015 1016config ARM64_ERRATUM_1902691 1017 bool "Cortex-A510: 1902691: workaround TRBE trace corruption" 1018 depends on CORESIGHT_TRBE 1019 default y 1020 help 1021 This option adds the workaround for ARM Cortex-A510 erratum 1902691. 1022 1023 Affected Cortex-A510 core might cause trace data corruption, when being written 1024 into the memory. Effectively TRBE is broken and hence cannot be used to capture 1025 trace data. 1026 1027 Work around this problem in the driver by just preventing TRBE initialization on 1028 affected cpus. The firmware must have disabled the access to TRBE for the kernel 1029 on such implementations. This will cover the kernel for any firmware that doesn't 1030 do this already. 1031 1032 If unsure, say Y. 1033 1034config ARM64_ERRATUM_2457168 1035 bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly" 1036 depends on ARM64_AMU_EXTN 1037 default y 1038 help 1039 This option adds the workaround for ARM Cortex-A510 erratum 2457168. 1040 1041 The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate 1042 as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments 1043 incorrectly giving a significantly higher output value. 1044 1045 Work around this problem by returning 0 when reading the affected counter in 1046 key locations that results in disabling all users of this counter. This effect 1047 is the same to firmware disabling affected counters. 1048 1049 If unsure, say Y. 1050 1051config ARM64_ERRATUM_2645198 1052 bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption" 1053 default y 1054 help 1055 This option adds the workaround for ARM Cortex-A715 erratum 2645198. 1056 1057 If a Cortex-A715 cpu sees a page mapping permissions change from executable 1058 to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the 1059 next instruction abort caused by permission fault. 1060 1061 Only user-space does executable to non-executable permission transition via 1062 mprotect() system call. Workaround the problem by doing a break-before-make 1063 TLB invalidation, for all changes to executable user space mappings. 1064 1065 If unsure, say Y. 1066 1067config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1068 bool 1069 1070config ARM64_ERRATUM_2966298 1071 bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load" 1072 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1073 default y 1074 help 1075 This option adds the workaround for ARM Cortex-A520 erratum 2966298. 1076 1077 On an affected Cortex-A520 core, a speculatively executed unprivileged 1078 load might leak data from a privileged level via a cache side channel. 1079 1080 Work around this problem by executing a TLBI before returning to EL0. 1081 1082 If unsure, say Y. 1083 1084config ARM64_ERRATUM_3117295 1085 bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load" 1086 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1087 default y 1088 help 1089 This option adds the workaround for ARM Cortex-A510 erratum 3117295. 1090 1091 On an affected Cortex-A510 core, a speculatively executed unprivileged 1092 load might leak data from a privileged level via a cache side channel. 1093 1094 Work around this problem by executing a TLBI before returning to EL0. 1095 1096 If unsure, say Y. 1097 1098config ARM64_ERRATUM_3194386 1099 bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing" 1100 default y 1101 help 1102 This option adds the workaround for the following errata: 1103 1104 * ARM Cortex-A76 erratum 3324349 1105 * ARM Cortex-A77 erratum 3324348 1106 * ARM Cortex-A78 erratum 3324344 1107 * ARM Cortex-A78C erratum 3324346 1108 * ARM Cortex-A78C erratum 3324347 1109 * ARM Cortex-A710 erratam 3324338 1110 * ARM Cortex-A715 errartum 3456084 1111 * ARM Cortex-A720 erratum 3456091 1112 * ARM Cortex-A725 erratum 3456106 1113 * ARM Cortex-X1 erratum 3324344 1114 * ARM Cortex-X1C erratum 3324346 1115 * ARM Cortex-X2 erratum 3324338 1116 * ARM Cortex-X3 erratum 3324335 1117 * ARM Cortex-X4 erratum 3194386 1118 * ARM Cortex-X925 erratum 3324334 1119 * ARM Neoverse-N1 erratum 3324349 1120 * ARM Neoverse N2 erratum 3324339 1121 * ARM Neoverse-N3 erratum 3456111 1122 * ARM Neoverse-V1 erratum 3324341 1123 * ARM Neoverse V2 erratum 3324336 1124 * ARM Neoverse-V3 erratum 3312417 1125 1126 On affected cores "MSR SSBS, #0" instructions may not affect 1127 subsequent speculative instructions, which may permit unexepected 1128 speculative store bypassing. 1129 1130 Work around this problem by placing a Speculation Barrier (SB) or 1131 Instruction Synchronization Barrier (ISB) after kernel changes to 1132 SSBS. The presence of the SSBS special-purpose register is hidden 1133 from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace 1134 will use the PR_SPEC_STORE_BYPASS prctl to change SSBS. 1135 1136 If unsure, say Y. 1137 1138config CAVIUM_ERRATUM_22375 1139 bool "Cavium erratum 22375, 24313" 1140 default y 1141 help 1142 Enable workaround for errata 22375 and 24313. 1143 1144 This implements two gicv3-its errata workarounds for ThunderX. Both 1145 with a small impact affecting only ITS table allocation. 1146 1147 erratum 22375: only alloc 8MB table size 1148 erratum 24313: ignore memory access type 1149 1150 The fixes are in ITS initialization and basically ignore memory access 1151 type and table size provided by the TYPER and BASER registers. 1152 1153 If unsure, say Y. 1154 1155config CAVIUM_ERRATUM_23144 1156 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 1157 depends on NUMA 1158 default y 1159 help 1160 ITS SYNC command hang for cross node io and collections/cpu mapping. 1161 1162 If unsure, say Y. 1163 1164config CAVIUM_ERRATUM_23154 1165 bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation" 1166 default y 1167 help 1168 The ThunderX GICv3 implementation requires a modified version for 1169 reading the IAR status to ensure data synchronization 1170 (access to icc_iar1_el1 is not sync'ed before and after). 1171 1172 It also suffers from erratum 38545 (also present on Marvell's 1173 OcteonTX and OcteonTX2), resulting in deactivated interrupts being 1174 spuriously presented to the CPU interface. 1175 1176 If unsure, say Y. 1177 1178config CAVIUM_ERRATUM_27456 1179 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 1180 default y 1181 help 1182 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 1183 instructions may cause the icache to become corrupted if it 1184 contains data for a non-current ASID. The fix is to 1185 invalidate the icache when changing the mm context. 1186 1187 If unsure, say Y. 1188 1189config CAVIUM_ERRATUM_30115 1190 bool "Cavium erratum 30115: Guest may disable interrupts in host" 1191 default y 1192 help 1193 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 1194 1.2, and T83 Pass 1.0, KVM guest execution may disable 1195 interrupts in host. Trapping both GICv3 group-0 and group-1 1196 accesses sidesteps the issue. 1197 1198 If unsure, say Y. 1199 1200config CAVIUM_TX2_ERRATUM_219 1201 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 1202 default y 1203 help 1204 On Cavium ThunderX2, a load, store or prefetch instruction between a 1205 TTBR update and the corresponding context synchronizing operation can 1206 cause a spurious Data Abort to be delivered to any hardware thread in 1207 the CPU core. 1208 1209 Work around the issue by avoiding the problematic code sequence and 1210 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 1211 trap handler performs the corresponding register access, skips the 1212 instruction and ensures context synchronization by virtue of the 1213 exception return. 1214 1215 If unsure, say Y. 1216 1217config FUJITSU_ERRATUM_010001 1218 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 1219 default y 1220 help 1221 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 1222 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 1223 accesses may cause undefined fault (Data abort, DFSC=0b111111). 1224 This fault occurs under a specific hardware condition when a 1225 load/store instruction performs an address translation using: 1226 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 1227 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 1228 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 1229 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 1230 1231 The workaround is to ensure these bits are clear in TCR_ELx. 1232 The workaround only affects the Fujitsu-A64FX. 1233 1234 If unsure, say Y. 1235 1236config HISILICON_ERRATUM_161600802 1237 bool "Hip07 161600802: Erroneous redistributor VLPI base" 1238 default y 1239 help 1240 The HiSilicon Hip07 SoC uses the wrong redistributor base 1241 when issued ITS commands such as VMOVP and VMAPP, and requires 1242 a 128kB offset to be applied to the target address in this commands. 1243 1244 If unsure, say Y. 1245 1246config HISILICON_ERRATUM_162100801 1247 bool "Hip09 162100801 erratum support" 1248 default y 1249 help 1250 When enabling GICv4.1 in hip09, VMAPP will fail to clear some caches 1251 during unmapping operation, which will cause some vSGIs lost. 1252 To fix the issue, invalidate related vPE cache through GICR_INVALLR 1253 after VMOVP. 1254 1255 If unsure, say Y. 1256 1257config QCOM_FALKOR_ERRATUM_1003 1258 bool "Falkor E1003: Incorrect translation due to ASID change" 1259 default y 1260 help 1261 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 1262 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 1263 in TTBR1_EL1, this situation only occurs in the entry trampoline and 1264 then only for entries in the walk cache, since the leaf translation 1265 is unchanged. Work around the erratum by invalidating the walk cache 1266 entries for the trampoline before entering the kernel proper. 1267 1268config QCOM_FALKOR_ERRATUM_1009 1269 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 1270 default y 1271 select ARM64_WORKAROUND_REPEAT_TLBI 1272 help 1273 On Falkor v1, the CPU may prematurely complete a DSB following a 1274 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 1275 one more time to fix the issue. 1276 1277 If unsure, say Y. 1278 1279config QCOM_QDF2400_ERRATUM_0065 1280 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 1281 default y 1282 help 1283 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 1284 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 1285 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 1286 1287 If unsure, say Y. 1288 1289config QCOM_FALKOR_ERRATUM_E1041 1290 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 1291 default y 1292 help 1293 Falkor CPU may speculatively fetch instructions from an improper 1294 memory location when MMU translation is changed from SCTLR_ELn[M]=1 1295 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 1296 1297 If unsure, say Y. 1298 1299config NVIDIA_CARMEL_CNP_ERRATUM 1300 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 1301 default y 1302 help 1303 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 1304 invalidate shared TLB entries installed by a different core, as it would 1305 on standard ARM cores. 1306 1307 If unsure, say Y. 1308 1309config ROCKCHIP_ERRATUM_3568002 1310 bool "Rockchip 3568002: GIC600 can not access physical addresses higher than 4GB" 1311 default y 1312 help 1313 The Rockchip RK3566 and RK3568 GIC600 SoC integrations have AXI 1314 addressing limited to the first 32bit of physical address space. 1315 1316 If unsure, say Y. 1317 1318config ROCKCHIP_ERRATUM_3588001 1319 bool "Rockchip 3588001: GIC600 can not support shareability attributes" 1320 default y 1321 help 1322 The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite. 1323 This means, that its sharability feature may not be used, even though it 1324 is supported by the IP itself. 1325 1326 If unsure, say Y. 1327 1328config SOCIONEXT_SYNQUACER_PREITS 1329 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 1330 default y 1331 help 1332 Socionext Synquacer SoCs implement a separate h/w block to generate 1333 MSI doorbell writes with non-zero values for the device ID. 1334 1335 If unsure, say Y. 1336 1337endmenu # "ARM errata workarounds via the alternatives framework" 1338 1339choice 1340 prompt "Page size" 1341 default ARM64_4K_PAGES 1342 help 1343 Page size (translation granule) configuration. 1344 1345config ARM64_4K_PAGES 1346 bool "4KB" 1347 select HAVE_PAGE_SIZE_4KB 1348 help 1349 This feature enables 4KB pages support. 1350 1351config ARM64_16K_PAGES 1352 bool "16KB" 1353 select HAVE_PAGE_SIZE_16KB 1354 help 1355 The system will use 16KB pages support. AArch32 emulation 1356 requires applications compiled with 16K (or a multiple of 16K) 1357 aligned segments. 1358 1359config ARM64_64K_PAGES 1360 bool "64KB" 1361 select HAVE_PAGE_SIZE_64KB 1362 help 1363 This feature enables 64KB pages support (4KB by default) 1364 allowing only two levels of page tables and faster TLB 1365 look-up. AArch32 emulation requires applications compiled 1366 with 64K aligned segments. 1367 1368endchoice 1369 1370choice 1371 prompt "Virtual address space size" 1372 default ARM64_VA_BITS_52 1373 help 1374 Allows choosing one of multiple possible virtual address 1375 space sizes. The level of translation table is determined by 1376 a combination of page size and virtual address space size. 1377 1378config ARM64_VA_BITS_36 1379 bool "36-bit" if EXPERT 1380 depends on PAGE_SIZE_16KB 1381 1382config ARM64_VA_BITS_39 1383 bool "39-bit" 1384 depends on PAGE_SIZE_4KB 1385 1386config ARM64_VA_BITS_42 1387 bool "42-bit" 1388 depends on PAGE_SIZE_64KB 1389 1390config ARM64_VA_BITS_47 1391 bool "47-bit" 1392 depends on PAGE_SIZE_16KB 1393 1394config ARM64_VA_BITS_48 1395 bool "48-bit" 1396 1397config ARM64_VA_BITS_52 1398 bool "52-bit" 1399 help 1400 Enable 52-bit virtual addressing for userspace when explicitly 1401 requested via a hint to mmap(). The kernel will also use 52-bit 1402 virtual addresses for its own mappings (provided HW support for 1403 this feature is available, otherwise it reverts to 48-bit). 1404 1405 NOTE: Enabling 52-bit virtual addressing in conjunction with 1406 ARMv8.3 Pointer Authentication will result in the PAC being 1407 reduced from 7 bits to 3 bits, which may have a significant 1408 impact on its susceptibility to brute-force attacks. 1409 1410 If unsure, select 48-bit virtual addressing instead. 1411 1412endchoice 1413 1414config ARM64_FORCE_52BIT 1415 bool "Force 52-bit virtual addresses for userspace" 1416 depends on ARM64_VA_BITS_52 && EXPERT 1417 help 1418 For systems with 52-bit userspace VAs enabled, the kernel will attempt 1419 to maintain compatibility with older software by providing 48-bit VAs 1420 unless a hint is supplied to mmap. 1421 1422 This configuration option disables the 48-bit compatibility logic, and 1423 forces all userspace addresses to be 52-bit on HW that supports it. One 1424 should only enable this configuration option for stress testing userspace 1425 memory management code. If unsure say N here. 1426 1427config ARM64_VA_BITS 1428 int 1429 default 36 if ARM64_VA_BITS_36 1430 default 39 if ARM64_VA_BITS_39 1431 default 42 if ARM64_VA_BITS_42 1432 default 47 if ARM64_VA_BITS_47 1433 default 48 if ARM64_VA_BITS_48 1434 default 52 if ARM64_VA_BITS_52 1435 1436choice 1437 prompt "Physical address space size" 1438 default ARM64_PA_BITS_48 1439 help 1440 Choose the maximum physical address range that the kernel will 1441 support. 1442 1443config ARM64_PA_BITS_48 1444 bool "48-bit" 1445 depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52 1446 1447config ARM64_PA_BITS_52 1448 bool "52-bit" 1449 depends on ARM64_64K_PAGES || ARM64_VA_BITS_52 1450 help 1451 Enable support for a 52-bit physical address space, introduced as 1452 part of the ARMv8.2-LPA extension. 1453 1454 With this enabled, the kernel will also continue to work on CPUs that 1455 do not support ARMv8.2-LPA, but with some added memory overhead (and 1456 minor performance overhead). 1457 1458endchoice 1459 1460config ARM64_PA_BITS 1461 int 1462 default 48 if ARM64_PA_BITS_48 1463 default 52 if ARM64_PA_BITS_52 1464 1465config ARM64_LPA2 1466 def_bool y 1467 depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES 1468 1469choice 1470 prompt "Endianness" 1471 default CPU_LITTLE_ENDIAN 1472 help 1473 Select the endianness of data accesses performed by the CPU. Userspace 1474 applications will need to be compiled and linked for the endianness 1475 that is selected here. 1476 1477config CPU_BIG_ENDIAN 1478 bool "Build big-endian kernel" 1479 # https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c 1480 depends on AS_IS_GNU || AS_VERSION >= 150000 1481 help 1482 Say Y if you plan on running a kernel with a big-endian userspace. 1483 1484config CPU_LITTLE_ENDIAN 1485 bool "Build little-endian kernel" 1486 help 1487 Say Y if you plan on running a kernel with a little-endian userspace. 1488 This is usually the case for distributions targeting arm64. 1489 1490endchoice 1491 1492config SCHED_MC 1493 bool "Multi-core scheduler support" 1494 help 1495 Multi-core scheduler support improves the CPU scheduler's decision 1496 making when dealing with multi-core CPU chips at a cost of slightly 1497 increased overhead in some places. If unsure say N here. 1498 1499config SCHED_CLUSTER 1500 bool "Cluster scheduler support" 1501 help 1502 Cluster scheduler support improves the CPU scheduler's decision 1503 making when dealing with machines that have clusters of CPUs. 1504 Cluster usually means a couple of CPUs which are placed closely 1505 by sharing mid-level caches, last-level cache tags or internal 1506 busses. 1507 1508config SCHED_SMT 1509 bool "SMT scheduler support" 1510 help 1511 Improves the CPU scheduler's decision making when dealing with 1512 MultiThreading at a cost of slightly increased overhead in some 1513 places. If unsure say N here. 1514 1515config NR_CPUS 1516 int "Maximum number of CPUs (2-4096)" 1517 range 2 4096 1518 default "512" 1519 1520config HOTPLUG_CPU 1521 bool "Support for hot-pluggable CPUs" 1522 select GENERIC_IRQ_MIGRATION 1523 help 1524 Say Y here to experiment with turning CPUs off and on. CPUs 1525 can be controlled through /sys/devices/system/cpu. 1526 1527# Common NUMA Features 1528config NUMA 1529 bool "NUMA Memory Allocation and Scheduler Support" 1530 select GENERIC_ARCH_NUMA 1531 select OF_NUMA 1532 select HAVE_SETUP_PER_CPU_AREA 1533 select NEED_PER_CPU_EMBED_FIRST_CHUNK 1534 select NEED_PER_CPU_PAGE_FIRST_CHUNK 1535 select USE_PERCPU_NUMA_NODE_ID 1536 help 1537 Enable NUMA (Non-Uniform Memory Access) support. 1538 1539 The kernel will try to allocate memory used by a CPU on the 1540 local memory of the CPU and add some more 1541 NUMA awareness to the kernel. 1542 1543config NODES_SHIFT 1544 int "Maximum NUMA Nodes (as a power of 2)" 1545 range 1 10 1546 default "4" 1547 depends on NUMA 1548 help 1549 Specify the maximum number of NUMA Nodes available on the target 1550 system. Increases memory reserved to accommodate various tables. 1551 1552source "kernel/Kconfig.hz" 1553 1554config ARCH_SPARSEMEM_ENABLE 1555 def_bool y 1556 select SPARSEMEM_VMEMMAP_ENABLE 1557 select SPARSEMEM_VMEMMAP 1558 1559config HW_PERF_EVENTS 1560 def_bool y 1561 depends on ARM_PMU 1562 1563# Supported by clang >= 7.0 or GCC >= 12.0.0 1564config CC_HAVE_SHADOW_CALL_STACK 1565 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1566 1567config PARAVIRT 1568 bool "Enable paravirtualization code" 1569 help 1570 This changes the kernel so it can modify itself when it is run 1571 under a hypervisor, potentially improving performance significantly 1572 over full virtualization. 1573 1574config PARAVIRT_TIME_ACCOUNTING 1575 bool "Paravirtual steal time accounting" 1576 select PARAVIRT 1577 help 1578 Select this option to enable fine granularity task steal time 1579 accounting. Time spent executing other tasks in parallel with 1580 the current vCPU is discounted from the vCPU power. To account for 1581 that, there can be a small performance impact. 1582 1583 If in doubt, say N here. 1584 1585config ARCH_SUPPORTS_KEXEC 1586 def_bool PM_SLEEP_SMP 1587 1588config ARCH_SUPPORTS_KEXEC_FILE 1589 def_bool y 1590 1591config ARCH_SELECTS_KEXEC_FILE 1592 def_bool y 1593 depends on KEXEC_FILE 1594 select HAVE_IMA_KEXEC if IMA 1595 1596config ARCH_SUPPORTS_KEXEC_SIG 1597 def_bool y 1598 1599config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG 1600 def_bool y 1601 1602config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG 1603 def_bool y 1604 1605config ARCH_SUPPORTS_CRASH_DUMP 1606 def_bool y 1607 1608config ARCH_DEFAULT_CRASH_DUMP 1609 def_bool y 1610 1611config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION 1612 def_bool CRASH_RESERVE 1613 1614config TRANS_TABLE 1615 def_bool y 1616 depends on HIBERNATION || KEXEC_CORE 1617 1618config XEN_DOM0 1619 def_bool y 1620 depends on XEN 1621 1622config XEN 1623 bool "Xen guest support on ARM64" 1624 depends on ARM64 && OF 1625 select SWIOTLB_XEN 1626 select PARAVIRT 1627 help 1628 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1629 1630# include/linux/mmzone.h requires the following to be true: 1631# 1632# MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1633# 1634# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT: 1635# 1636# | SECTION_SIZE_BITS | PAGE_SHIFT | max MAX_PAGE_ORDER | default MAX_PAGE_ORDER | 1637# ----+-------------------+--------------+----------------------+-------------------------+ 1638# 4K | 27 | 12 | 15 | 10 | 1639# 16K | 27 | 14 | 13 | 11 | 1640# 64K | 29 | 16 | 13 | 13 | 1641config ARCH_FORCE_MAX_ORDER 1642 int 1643 default "13" if ARM64_64K_PAGES 1644 default "11" if ARM64_16K_PAGES 1645 default "10" 1646 help 1647 The kernel page allocator limits the size of maximal physically 1648 contiguous allocations. The limit is called MAX_PAGE_ORDER and it 1649 defines the maximal power of two of number of pages that can be 1650 allocated as a single contiguous block. This option allows 1651 overriding the default setting when ability to allocate very 1652 large blocks of physically contiguous memory is required. 1653 1654 The maximal size of allocation cannot exceed the size of the 1655 section, so the value of MAX_PAGE_ORDER should satisfy 1656 1657 MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1658 1659 Don't change if unsure. 1660 1661config UNMAP_KERNEL_AT_EL0 1662 bool "Unmap kernel when running in userspace (KPTI)" if EXPERT 1663 default y 1664 help 1665 Speculation attacks against some high-performance processors can 1666 be used to bypass MMU permission checks and leak kernel data to 1667 userspace. This can be defended against by unmapping the kernel 1668 when running in userspace, mapping it back in on exception entry 1669 via a trampoline page in the vector table. 1670 1671 If unsure, say Y. 1672 1673config MITIGATE_SPECTRE_BRANCH_HISTORY 1674 bool "Mitigate Spectre style attacks against branch history" if EXPERT 1675 default y 1676 help 1677 Speculation attacks against some high-performance processors can 1678 make use of branch history to influence future speculation. 1679 When taking an exception from user-space, a sequence of branches 1680 or a firmware call overwrites the branch history. 1681 1682config RODATA_FULL_DEFAULT_ENABLED 1683 bool "Apply r/o permissions of VM areas also to their linear aliases" 1684 default y 1685 help 1686 Apply read-only attributes of VM areas to the linear alias of 1687 the backing pages as well. This prevents code or read-only data 1688 from being modified (inadvertently or intentionally) via another 1689 mapping of the same memory page. This additional enhancement can 1690 be turned off at runtime by passing rodata=[off|on] (and turned on 1691 with rodata=full if this option is set to 'n') 1692 1693 This requires the linear region to be mapped down to pages, 1694 which may adversely affect performance in some cases. 1695 1696config ARM64_SW_TTBR0_PAN 1697 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1698 depends on !KCSAN 1699 select ARM64_PAN 1700 help 1701 Enabling this option prevents the kernel from accessing 1702 user-space memory directly by pointing TTBR0_EL1 to a reserved 1703 zeroed area and reserved ASID. The user access routines 1704 restore the valid TTBR0_EL1 temporarily. 1705 1706config ARM64_TAGGED_ADDR_ABI 1707 bool "Enable the tagged user addresses syscall ABI" 1708 default y 1709 help 1710 When this option is enabled, user applications can opt in to a 1711 relaxed ABI via prctl() allowing tagged addresses to be passed 1712 to system calls as pointer arguments. For details, see 1713 Documentation/arch/arm64/tagged-address-abi.rst. 1714 1715menuconfig COMPAT 1716 bool "Kernel support for 32-bit EL0" 1717 depends on ARM64_4K_PAGES || EXPERT 1718 select HAVE_UID16 1719 select OLD_SIGSUSPEND3 1720 select COMPAT_OLD_SIGACTION 1721 help 1722 This option enables support for a 32-bit EL0 running under a 64-bit 1723 kernel at EL1. AArch32-specific components such as system calls, 1724 the user helper functions, VFP support and the ptrace interface are 1725 handled appropriately by the kernel. 1726 1727 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1728 that you will only be able to execute AArch32 binaries that were compiled 1729 with page size aligned segments. 1730 1731 If you want to execute 32-bit userspace applications, say Y. 1732 1733if COMPAT 1734 1735config KUSER_HELPERS 1736 bool "Enable kuser helpers page for 32-bit applications" 1737 default y 1738 help 1739 Warning: disabling this option may break 32-bit user programs. 1740 1741 Provide kuser helpers to compat tasks. The kernel provides 1742 helper code to userspace in read only form at a fixed location 1743 to allow userspace to be independent of the CPU type fitted to 1744 the system. This permits binaries to be run on ARMv4 through 1745 to ARMv8 without modification. 1746 1747 See Documentation/arch/arm/kernel_user_helpers.rst for details. 1748 1749 However, the fixed address nature of these helpers can be used 1750 by ROP (return orientated programming) authors when creating 1751 exploits. 1752 1753 If all of the binaries and libraries which run on your platform 1754 are built specifically for your platform, and make no use of 1755 these helpers, then you can turn this option off to hinder 1756 such exploits. However, in that case, if a binary or library 1757 relying on those helpers is run, it will not function correctly. 1758 1759 Say N here only if you are absolutely certain that you do not 1760 need these helpers; otherwise, the safe option is to say Y. 1761 1762config COMPAT_VDSO 1763 bool "Enable vDSO for 32-bit applications" 1764 depends on !CPU_BIG_ENDIAN 1765 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != "" 1766 select GENERIC_COMPAT_VDSO 1767 default y 1768 help 1769 Place in the process address space of 32-bit applications an 1770 ELF shared object providing fast implementations of gettimeofday 1771 and clock_gettime. 1772 1773 You must have a 32-bit build of glibc 2.22 or later for programs 1774 to seamlessly take advantage of this. 1775 1776config THUMB2_COMPAT_VDSO 1777 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1778 depends on COMPAT_VDSO 1779 default y 1780 help 1781 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1782 otherwise with '-marm'. 1783 1784config COMPAT_ALIGNMENT_FIXUPS 1785 bool "Fix up misaligned multi-word loads and stores in user space" 1786 1787menuconfig ARMV8_DEPRECATED 1788 bool "Emulate deprecated/obsolete ARMv8 instructions" 1789 depends on SYSCTL 1790 help 1791 Legacy software support may require certain instructions 1792 that have been deprecated or obsoleted in the architecture. 1793 1794 Enable this config to enable selective emulation of these 1795 features. 1796 1797 If unsure, say Y 1798 1799if ARMV8_DEPRECATED 1800 1801config SWP_EMULATION 1802 bool "Emulate SWP/SWPB instructions" 1803 help 1804 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1805 they are always undefined. Say Y here to enable software 1806 emulation of these instructions for userspace using LDXR/STXR. 1807 This feature can be controlled at runtime with the abi.swp 1808 sysctl which is disabled by default. 1809 1810 In some older versions of glibc [<=2.8] SWP is used during futex 1811 trylock() operations with the assumption that the code will not 1812 be preempted. This invalid assumption may be more likely to fail 1813 with SWP emulation enabled, leading to deadlock of the user 1814 application. 1815 1816 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1817 on an external transaction monitoring block called a global 1818 monitor to maintain update atomicity. If your system does not 1819 implement a global monitor, this option can cause programs that 1820 perform SWP operations to uncached memory to deadlock. 1821 1822 If unsure, say Y 1823 1824config CP15_BARRIER_EMULATION 1825 bool "Emulate CP15 Barrier instructions" 1826 help 1827 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1828 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1829 strongly recommended to use the ISB, DSB, and DMB 1830 instructions instead. 1831 1832 Say Y here to enable software emulation of these 1833 instructions for AArch32 userspace code. When this option is 1834 enabled, CP15 barrier usage is traced which can help 1835 identify software that needs updating. This feature can be 1836 controlled at runtime with the abi.cp15_barrier sysctl. 1837 1838 If unsure, say Y 1839 1840config SETEND_EMULATION 1841 bool "Emulate SETEND instruction" 1842 help 1843 The SETEND instruction alters the data-endianness of the 1844 AArch32 EL0, and is deprecated in ARMv8. 1845 1846 Say Y here to enable software emulation of the instruction 1847 for AArch32 userspace code. This feature can be controlled 1848 at runtime with the abi.setend sysctl. 1849 1850 Note: All the cpus on the system must have mixed endian support at EL0 1851 for this feature to be enabled. If a new CPU - which doesn't support mixed 1852 endian - is hotplugged in after this feature has been enabled, there could 1853 be unexpected results in the applications. 1854 1855 If unsure, say Y 1856endif # ARMV8_DEPRECATED 1857 1858endif # COMPAT 1859 1860menu "ARMv8.1 architectural features" 1861 1862config ARM64_HW_AFDBM 1863 bool "Support for hardware updates of the Access and Dirty page flags" 1864 default y 1865 help 1866 The ARMv8.1 architecture extensions introduce support for 1867 hardware updates of the access and dirty information in page 1868 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1869 capable processors, accesses to pages with PTE_AF cleared will 1870 set this bit instead of raising an access flag fault. 1871 Similarly, writes to read-only pages with the DBM bit set will 1872 clear the read-only bit (AP[2]) instead of raising a 1873 permission fault. 1874 1875 Kernels built with this configuration option enabled continue 1876 to work on pre-ARMv8.1 hardware and the performance impact is 1877 minimal. If unsure, say Y. 1878 1879config ARM64_PAN 1880 bool "Enable support for Privileged Access Never (PAN)" 1881 default y 1882 help 1883 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1884 prevents the kernel or hypervisor from accessing user-space (EL0) 1885 memory directly. 1886 1887 Choosing this option will cause any unprotected (not using 1888 copy_to_user et al) memory access to fail with a permission fault. 1889 1890 The feature is detected at runtime, and will remain as a 'nop' 1891 instruction if the cpu does not implement the feature. 1892 1893config AS_HAS_LSE_ATOMICS 1894 def_bool $(as-instr,.arch_extension lse) 1895 1896config ARM64_LSE_ATOMICS 1897 bool 1898 default ARM64_USE_LSE_ATOMICS 1899 depends on AS_HAS_LSE_ATOMICS 1900 1901config ARM64_USE_LSE_ATOMICS 1902 bool "Atomic instructions" 1903 default y 1904 help 1905 As part of the Large System Extensions, ARMv8.1 introduces new 1906 atomic instructions that are designed specifically to scale in 1907 very large systems. 1908 1909 Say Y here to make use of these instructions for the in-kernel 1910 atomic routines. This incurs a small overhead on CPUs that do 1911 not support these instructions and requires the kernel to be 1912 built with binutils >= 2.25 in order for the new instructions 1913 to be used. 1914 1915endmenu # "ARMv8.1 architectural features" 1916 1917menu "ARMv8.2 architectural features" 1918 1919config AS_HAS_ARMV8_2 1920 def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a) 1921 1922config AS_HAS_SHA3 1923 def_bool $(as-instr,.arch armv8.2-a+sha3) 1924 1925config ARM64_PMEM 1926 bool "Enable support for persistent memory" 1927 select ARCH_HAS_PMEM_API 1928 select ARCH_HAS_UACCESS_FLUSHCACHE 1929 help 1930 Say Y to enable support for the persistent memory API based on the 1931 ARMv8.2 DCPoP feature. 1932 1933 The feature is detected at runtime, and the kernel will use DC CVAC 1934 operations if DC CVAP is not supported (following the behaviour of 1935 DC CVAP itself if the system does not define a point of persistence). 1936 1937config ARM64_RAS_EXTN 1938 bool "Enable support for RAS CPU Extensions" 1939 default y 1940 help 1941 CPUs that support the Reliability, Availability and Serviceability 1942 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1943 errors, classify them and report them to software. 1944 1945 On CPUs with these extensions system software can use additional 1946 barriers to determine if faults are pending and read the 1947 classification from a new set of registers. 1948 1949 Selecting this feature will allow the kernel to use these barriers 1950 and access the new registers if the system supports the extension. 1951 Platform RAS features may additionally depend on firmware support. 1952 1953config ARM64_CNP 1954 bool "Enable support for Common Not Private (CNP) translations" 1955 default y 1956 help 1957 Common Not Private (CNP) allows translation table entries to 1958 be shared between different PEs in the same inner shareable 1959 domain, so the hardware can use this fact to optimise the 1960 caching of such entries in the TLB. 1961 1962 Selecting this option allows the CNP feature to be detected 1963 at runtime, and does not affect PEs that do not implement 1964 this feature. 1965 1966endmenu # "ARMv8.2 architectural features" 1967 1968menu "ARMv8.3 architectural features" 1969 1970config ARM64_PTR_AUTH 1971 bool "Enable support for pointer authentication" 1972 default y 1973 help 1974 Pointer authentication (part of the ARMv8.3 Extensions) provides 1975 instructions for signing and authenticating pointers against secret 1976 keys, which can be used to mitigate Return Oriented Programming (ROP) 1977 and other attacks. 1978 1979 This option enables these instructions at EL0 (i.e. for userspace). 1980 Choosing this option will cause the kernel to initialise secret keys 1981 for each process at exec() time, with these keys being 1982 context-switched along with the process. 1983 1984 The feature is detected at runtime. If the feature is not present in 1985 hardware it will not be advertised to userspace/KVM guest nor will it 1986 be enabled. 1987 1988 If the feature is present on the boot CPU but not on a late CPU, then 1989 the late CPU will be parked. Also, if the boot CPU does not have 1990 address auth and the late CPU has then the late CPU will still boot 1991 but with the feature disabled. On such a system, this option should 1992 not be selected. 1993 1994config ARM64_PTR_AUTH_KERNEL 1995 bool "Use pointer authentication for kernel" 1996 default y 1997 depends on ARM64_PTR_AUTH 1998 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3 1999 # Modern compilers insert a .note.gnu.property section note for PAC 2000 # which is only understood by binutils starting with version 2.33.1. 2001 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 2002 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 2003 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 2004 help 2005 If the compiler supports the -mbranch-protection or 2006 -msign-return-address flag (e.g. GCC 7 or later), then this option 2007 will cause the kernel itself to be compiled with return address 2008 protection. In this case, and if the target hardware is known to 2009 support pointer authentication, then CONFIG_STACKPROTECTOR can be 2010 disabled with minimal loss of protection. 2011 2012 This feature works with FUNCTION_GRAPH_TRACER option only if 2013 DYNAMIC_FTRACE_WITH_ARGS is enabled. 2014 2015config CC_HAS_BRANCH_PROT_PAC_RET 2016 # GCC 9 or later, clang 8 or later 2017 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 2018 2019config CC_HAS_SIGN_RETURN_ADDRESS 2020 # GCC 7, 8 2021 def_bool $(cc-option,-msign-return-address=all) 2022 2023config AS_HAS_ARMV8_3 2024 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 2025 2026config AS_HAS_CFI_NEGATE_RA_STATE 2027 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 2028 2029config AS_HAS_LDAPR 2030 def_bool $(as-instr,.arch_extension rcpc) 2031 2032endmenu # "ARMv8.3 architectural features" 2033 2034menu "ARMv8.4 architectural features" 2035 2036config ARM64_AMU_EXTN 2037 bool "Enable support for the Activity Monitors Unit CPU extension" 2038 default y 2039 help 2040 The activity monitors extension is an optional extension introduced 2041 by the ARMv8.4 CPU architecture. This enables support for version 1 2042 of the activity monitors architecture, AMUv1. 2043 2044 To enable the use of this extension on CPUs that implement it, say Y. 2045 2046 Note that for architectural reasons, firmware _must_ implement AMU 2047 support when running on CPUs that present the activity monitors 2048 extension. The required support is present in: 2049 * Version 1.5 and later of the ARM Trusted Firmware 2050 2051 For kernels that have this configuration enabled but boot with broken 2052 firmware, you may need to say N here until the firmware is fixed. 2053 Otherwise you may experience firmware panics or lockups when 2054 accessing the counter registers. Even if you are not observing these 2055 symptoms, the values returned by the register reads might not 2056 correctly reflect reality. Most commonly, the value read will be 0, 2057 indicating that the counter is not enabled. 2058 2059config AS_HAS_ARMV8_4 2060 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 2061 2062config ARM64_TLB_RANGE 2063 bool "Enable support for tlbi range feature" 2064 default y 2065 depends on AS_HAS_ARMV8_4 2066 help 2067 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 2068 range of input addresses. 2069 2070 The feature introduces new assembly instructions, and they were 2071 support when binutils >= 2.30. 2072 2073endmenu # "ARMv8.4 architectural features" 2074 2075menu "ARMv8.5 architectural features" 2076 2077config AS_HAS_ARMV8_5 2078 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 2079 2080config ARM64_BTI 2081 bool "Branch Target Identification support" 2082 default y 2083 help 2084 Branch Target Identification (part of the ARMv8.5 Extensions) 2085 provides a mechanism to limit the set of locations to which computed 2086 branch instructions such as BR or BLR can jump. 2087 2088 To make use of BTI on CPUs that support it, say Y. 2089 2090 BTI is intended to provide complementary protection to other control 2091 flow integrity protection mechanisms, such as the Pointer 2092 authentication mechanism provided as part of the ARMv8.3 Extensions. 2093 For this reason, it does not make sense to enable this option without 2094 also enabling support for pointer authentication. Thus, when 2095 enabling this option you should also select ARM64_PTR_AUTH=y. 2096 2097 Userspace binaries must also be specifically compiled to make use of 2098 this mechanism. If you say N here or the hardware does not support 2099 BTI, such binaries can still run, but you get no additional 2100 enforcement of branch destinations. 2101 2102config ARM64_BTI_KERNEL 2103 bool "Use Branch Target Identification for kernel" 2104 default y 2105 depends on ARM64_BTI 2106 depends on ARM64_PTR_AUTH_KERNEL 2107 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 2108 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 2109 depends on !CC_IS_GCC || GCC_VERSION >= 100100 2110 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671 2111 depends on !CC_IS_GCC 2112 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 2113 help 2114 Build the kernel with Branch Target Identification annotations 2115 and enable enforcement of this for kernel code. When this option 2116 is enabled and the system supports BTI all kernel code including 2117 modular code must have BTI enabled. 2118 2119config CC_HAS_BRANCH_PROT_PAC_RET_BTI 2120 # GCC 9 or later, clang 8 or later 2121 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 2122 2123config ARM64_E0PD 2124 bool "Enable support for E0PD" 2125 default y 2126 help 2127 E0PD (part of the ARMv8.5 extensions) allows us to ensure 2128 that EL0 accesses made via TTBR1 always fault in constant time, 2129 providing similar benefits to KASLR as those provided by KPTI, but 2130 with lower overhead and without disrupting legitimate access to 2131 kernel memory such as SPE. 2132 2133 This option enables E0PD for TTBR1 where available. 2134 2135config ARM64_AS_HAS_MTE 2136 # Initial support for MTE went in binutils 2.32.0, checked with 2137 # ".arch armv8.5-a+memtag" below. However, this was incomplete 2138 # as a late addition to the final architecture spec (LDGM/STGM) 2139 # is only supported in the newer 2.32.x and 2.33 binutils 2140 # versions, hence the extra "stgm" instruction check below. 2141 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 2142 2143config ARM64_MTE 2144 bool "Memory Tagging Extension support" 2145 default y 2146 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 2147 depends on AS_HAS_ARMV8_5 2148 depends on AS_HAS_LSE_ATOMICS 2149 # Required for tag checking in the uaccess routines 2150 select ARM64_PAN 2151 select ARCH_HAS_SUBPAGE_FAULTS 2152 select ARCH_USES_HIGH_VMA_FLAGS 2153 select ARCH_USES_PG_ARCH_2 2154 select ARCH_USES_PG_ARCH_3 2155 help 2156 Memory Tagging (part of the ARMv8.5 Extensions) provides 2157 architectural support for run-time, always-on detection of 2158 various classes of memory error to aid with software debugging 2159 to eliminate vulnerabilities arising from memory-unsafe 2160 languages. 2161 2162 This option enables the support for the Memory Tagging 2163 Extension at EL0 (i.e. for userspace). 2164 2165 Selecting this option allows the feature to be detected at 2166 runtime. Any secondary CPU not implementing this feature will 2167 not be allowed a late bring-up. 2168 2169 Userspace binaries that want to use this feature must 2170 explicitly opt in. The mechanism for the userspace is 2171 described in: 2172 2173 Documentation/arch/arm64/memory-tagging-extension.rst. 2174 2175endmenu # "ARMv8.5 architectural features" 2176 2177menu "ARMv8.7 architectural features" 2178 2179config ARM64_EPAN 2180 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 2181 default y 2182 depends on ARM64_PAN 2183 help 2184 Enhanced Privileged Access Never (EPAN) allows Privileged 2185 Access Never to be used with Execute-only mappings. 2186 2187 The feature is detected at runtime, and will remain disabled 2188 if the cpu does not implement the feature. 2189endmenu # "ARMv8.7 architectural features" 2190 2191config AS_HAS_MOPS 2192 def_bool $(as-instr,.arch_extension mops) 2193 2194menu "ARMv8.9 architectural features" 2195 2196config ARM64_POE 2197 prompt "Permission Overlay Extension" 2198 def_bool y 2199 select ARCH_USES_HIGH_VMA_FLAGS 2200 select ARCH_HAS_PKEYS 2201 help 2202 The Permission Overlay Extension is used to implement Memory 2203 Protection Keys. Memory Protection Keys provides a mechanism for 2204 enforcing page-based protections, but without requiring modification 2205 of the page tables when an application changes protection domains. 2206 2207 For details, see Documentation/core-api/protection-keys.rst 2208 2209 If unsure, say y. 2210 2211config ARCH_PKEY_BITS 2212 int 2213 default 3 2214 2215config ARM64_HAFT 2216 bool "Support for Hardware managed Access Flag for Table Descriptors" 2217 depends on ARM64_HW_AFDBM 2218 default y 2219 help 2220 The ARMv8.9/ARMv9.5 introduces the feature Hardware managed Access 2221 Flag for Table descriptors. When enabled an architectural executed 2222 memory access will update the Access Flag in each Table descriptor 2223 which is accessed during the translation table walk and for which 2224 the Access Flag is 0. The Access Flag of the Table descriptor use 2225 the same bit of PTE_AF. 2226 2227 The feature will only be enabled if all the CPUs in the system 2228 support this feature. If unsure, say Y. 2229 2230endmenu # "ARMv8.9 architectural features" 2231 2232menu "v9.4 architectural features" 2233 2234config ARM64_GCS 2235 bool "Enable support for Guarded Control Stack (GCS)" 2236 default y 2237 select ARCH_HAS_USER_SHADOW_STACK 2238 select ARCH_USES_HIGH_VMA_FLAGS 2239 depends on !UPROBES 2240 help 2241 Guarded Control Stack (GCS) provides support for a separate 2242 stack with restricted access which contains only return 2243 addresses. This can be used to harden against some attacks 2244 by comparing return address used by the program with what is 2245 stored in the GCS, and may also be used to efficiently obtain 2246 the call stack for applications such as profiling. 2247 2248 The feature is detected at runtime, and will remain disabled 2249 if the system does not implement the feature. 2250 2251endmenu # "v9.4 architectural features" 2252 2253config ARM64_SVE 2254 bool "ARM Scalable Vector Extension support" 2255 default y 2256 help 2257 The Scalable Vector Extension (SVE) is an extension to the AArch64 2258 execution state which complements and extends the SIMD functionality 2259 of the base architecture to support much larger vectors and to enable 2260 additional vectorisation opportunities. 2261 2262 To enable use of this extension on CPUs that implement it, say Y. 2263 2264 On CPUs that support the SVE2 extensions, this option will enable 2265 those too. 2266 2267 Note that for architectural reasons, firmware _must_ implement SVE 2268 support when running on SVE capable hardware. The required support 2269 is present in: 2270 2271 * version 1.5 and later of the ARM Trusted Firmware 2272 * the AArch64 boot wrapper since commit 5e1261e08abf 2273 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 2274 2275 For other firmware implementations, consult the firmware documentation 2276 or vendor. 2277 2278 If you need the kernel to boot on SVE-capable hardware with broken 2279 firmware, you may need to say N here until you get your firmware 2280 fixed. Otherwise, you may experience firmware panics or lockups when 2281 booting the kernel. If unsure and you are not observing these 2282 symptoms, you should assume that it is safe to say Y. 2283 2284config ARM64_SME 2285 bool "ARM Scalable Matrix Extension support" 2286 default y 2287 depends on ARM64_SVE 2288 depends on BROKEN 2289 help 2290 The Scalable Matrix Extension (SME) is an extension to the AArch64 2291 execution state which utilises a substantial subset of the SVE 2292 instruction set, together with the addition of new architectural 2293 register state capable of holding two dimensional matrix tiles to 2294 enable various matrix operations. 2295 2296config ARM64_PSEUDO_NMI 2297 bool "Support for NMI-like interrupts" 2298 select ARM_GIC_V3 2299 help 2300 Adds support for mimicking Non-Maskable Interrupts through the use of 2301 GIC interrupt priority. This support requires version 3 or later of 2302 ARM GIC. 2303 2304 This high priority configuration for interrupts needs to be 2305 explicitly enabled by setting the kernel parameter 2306 "irqchip.gicv3_pseudo_nmi" to 1. 2307 2308 If unsure, say N 2309 2310if ARM64_PSEUDO_NMI 2311config ARM64_DEBUG_PRIORITY_MASKING 2312 bool "Debug interrupt priority masking" 2313 help 2314 This adds runtime checks to functions enabling/disabling 2315 interrupts when using priority masking. The additional checks verify 2316 the validity of ICC_PMR_EL1 when calling concerned functions. 2317 2318 If unsure, say N 2319endif # ARM64_PSEUDO_NMI 2320 2321config RELOCATABLE 2322 bool "Build a relocatable kernel image" if EXPERT 2323 select ARCH_HAS_RELR 2324 default y 2325 help 2326 This builds the kernel as a Position Independent Executable (PIE), 2327 which retains all relocation metadata required to relocate the 2328 kernel binary at runtime to a different virtual address than the 2329 address it was linked at. 2330 Since AArch64 uses the RELA relocation format, this requires a 2331 relocation pass at runtime even if the kernel is loaded at the 2332 same address it was linked at. 2333 2334config RANDOMIZE_BASE 2335 bool "Randomize the address of the kernel image" 2336 select RELOCATABLE 2337 help 2338 Randomizes the virtual address at which the kernel image is 2339 loaded, as a security feature that deters exploit attempts 2340 relying on knowledge of the location of kernel internals. 2341 2342 It is the bootloader's job to provide entropy, by passing a 2343 random u64 value in /chosen/kaslr-seed at kernel entry. 2344 2345 When booting via the UEFI stub, it will invoke the firmware's 2346 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 2347 to the kernel proper. In addition, it will randomise the physical 2348 location of the kernel Image as well. 2349 2350 If unsure, say N. 2351 2352config RANDOMIZE_MODULE_REGION_FULL 2353 bool "Randomize the module region over a 2 GB range" 2354 depends on RANDOMIZE_BASE 2355 default y 2356 help 2357 Randomizes the location of the module region inside a 2 GB window 2358 covering the core kernel. This way, it is less likely for modules 2359 to leak information about the location of core kernel data structures 2360 but it does imply that function calls between modules and the core 2361 kernel will need to be resolved via veneers in the module PLT. 2362 2363 When this option is not set, the module region will be randomized over 2364 a limited range that contains the [_stext, _etext] interval of the 2365 core kernel, so branch relocations are almost always in range unless 2366 the region is exhausted. In this particular case of region 2367 exhaustion, modules might be able to fall back to a larger 2GB area. 2368 2369config CC_HAVE_STACKPROTECTOR_SYSREG 2370 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 2371 2372config STACKPROTECTOR_PER_TASK 2373 def_bool y 2374 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 2375 2376config UNWIND_PATCH_PAC_INTO_SCS 2377 bool "Enable shadow call stack dynamically using code patching" 2378 # needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated 2379 depends on CC_IS_CLANG && CLANG_VERSION >= 150000 2380 depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET 2381 depends on SHADOW_CALL_STACK 2382 select UNWIND_TABLES 2383 select DYNAMIC_SCS 2384 2385config ARM64_CONTPTE 2386 bool "Contiguous PTE mappings for user memory" if EXPERT 2387 depends on TRANSPARENT_HUGEPAGE 2388 default y 2389 help 2390 When enabled, user mappings are configured using the PTE contiguous 2391 bit, for any mappings that meet the size and alignment requirements. 2392 This reduces TLB pressure and improves performance. 2393 2394endmenu # "Kernel Features" 2395 2396menu "Boot options" 2397 2398config ARM64_ACPI_PARKING_PROTOCOL 2399 bool "Enable support for the ARM64 ACPI parking protocol" 2400 depends on ACPI 2401 help 2402 Enable support for the ARM64 ACPI parking protocol. If disabled 2403 the kernel will not allow booting through the ARM64 ACPI parking 2404 protocol even if the corresponding data is present in the ACPI 2405 MADT table. 2406 2407config CMDLINE 2408 string "Default kernel command string" 2409 default "" 2410 help 2411 Provide a set of default command-line options at build time by 2412 entering them here. As a minimum, you should specify the the 2413 root device (e.g. root=/dev/nfs). 2414 2415choice 2416 prompt "Kernel command line type" 2417 depends on CMDLINE != "" 2418 default CMDLINE_FROM_BOOTLOADER 2419 help 2420 Choose how the kernel will handle the provided default kernel 2421 command line string. 2422 2423config CMDLINE_FROM_BOOTLOADER 2424 bool "Use bootloader kernel arguments if available" 2425 help 2426 Uses the command-line options passed by the boot loader. If 2427 the boot loader doesn't provide any, the default kernel command 2428 string provided in CMDLINE will be used. 2429 2430config CMDLINE_FORCE 2431 bool "Always use the default kernel command string" 2432 help 2433 Always use the default kernel command string, even if the boot 2434 loader passes other arguments to the kernel. 2435 This is useful if you cannot or don't want to change the 2436 command-line options your boot loader passes to the kernel. 2437 2438endchoice 2439 2440config EFI_STUB 2441 bool 2442 2443config EFI 2444 bool "UEFI runtime support" 2445 depends on OF && !CPU_BIG_ENDIAN 2446 depends on KERNEL_MODE_NEON 2447 select ARCH_SUPPORTS_ACPI 2448 select LIBFDT 2449 select UCS2_STRING 2450 select EFI_PARAMS_FROM_FDT 2451 select EFI_RUNTIME_WRAPPERS 2452 select EFI_STUB 2453 select EFI_GENERIC_STUB 2454 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 2455 default y 2456 help 2457 This option provides support for runtime services provided 2458 by UEFI firmware (such as non-volatile variables, realtime 2459 clock, and platform reset). A UEFI stub is also provided to 2460 allow the kernel to be booted as an EFI application. This 2461 is only useful on systems that have UEFI firmware. 2462 2463config COMPRESSED_INSTALL 2464 bool "Install compressed image by default" 2465 help 2466 This makes the regular "make install" install the compressed 2467 image we built, not the legacy uncompressed one. 2468 2469 You can check that a compressed image works for you by doing 2470 "make zinstall" first, and verifying that everything is fine 2471 in your environment before making "make install" do this for 2472 you. 2473 2474config DMI 2475 bool "Enable support for SMBIOS (DMI) tables" 2476 depends on EFI 2477 default y 2478 help 2479 This enables SMBIOS/DMI feature for systems. 2480 2481 This option is only useful on systems that have UEFI firmware. 2482 However, even with this option, the resultant kernel should 2483 continue to boot on existing non-UEFI platforms. 2484 2485endmenu # "Boot options" 2486 2487menu "Power management options" 2488 2489source "kernel/power/Kconfig" 2490 2491config ARCH_HIBERNATION_POSSIBLE 2492 def_bool y 2493 depends on CPU_PM 2494 2495config ARCH_HIBERNATION_HEADER 2496 def_bool y 2497 depends on HIBERNATION 2498 2499config ARCH_SUSPEND_POSSIBLE 2500 def_bool y 2501 2502endmenu # "Power management options" 2503 2504menu "CPU Power Management" 2505 2506source "drivers/cpuidle/Kconfig" 2507 2508source "drivers/cpufreq/Kconfig" 2509 2510endmenu # "CPU Power Management" 2511 2512source "drivers/acpi/Kconfig" 2513 2514source "arch/arm64/kvm/Kconfig" 2515 2516