1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_APMT if ACPI 5 select ACPI_CCA_REQUIRED if ACPI 6 select ACPI_GENERIC_GSI if ACPI 7 select ACPI_GTDT if ACPI 8 select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU 9 select ACPI_IORT if ACPI 10 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 11 select ACPI_MCFG if (ACPI && PCI) 12 select ACPI_SPCR_TABLE if ACPI 13 select ACPI_PPTT if ACPI 14 select ARCH_HAS_DEBUG_WX 15 select ARCH_BINFMT_ELF_EXTRA_PHDRS 16 select ARCH_BINFMT_ELF_STATE 17 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION 18 select ARCH_ENABLE_MEMORY_HOTPLUG 19 select ARCH_ENABLE_MEMORY_HOTREMOVE 20 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 21 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE 22 select ARCH_HAS_CACHE_LINE_SIZE 23 select ARCH_HAS_CC_PLATFORM 24 select ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION 25 select ARCH_HAS_CURRENT_STACK_POINTER 26 select ARCH_HAS_DEBUG_VIRTUAL 27 select ARCH_HAS_DEBUG_VM_PGTABLE 28 select ARCH_HAS_DMA_OPS if XEN 29 select ARCH_HAS_DMA_PREP_COHERENT 30 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 31 select ARCH_HAS_FAST_MULTIPLIER 32 select ARCH_HAS_FORTIFY_SOURCE 33 select ARCH_HAS_GCOV_PROFILE_ALL 34 select ARCH_HAS_GIGANTIC_PAGE 35 select ARCH_HAS_KCOV 36 select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON 37 select ARCH_HAS_KEEPINITRD 38 select ARCH_HAS_MEMBARRIER_SYNC_CORE 39 select ARCH_HAS_MEM_ENCRYPT 40 select ARCH_SUPPORTS_MSEAL_SYSTEM_MAPPINGS 41 select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS 42 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 43 select ARCH_HAS_NONLEAF_PMD_YOUNG if ARM64_HAFT 44 select ARCH_HAS_PREEMPT_LAZY 45 select ARCH_HAS_PTDUMP 46 select ARCH_HAS_PTE_SPECIAL 47 select ARCH_HAS_HW_PTE_YOUNG 48 select ARCH_HAS_SETUP_DMA_OPS 49 select ARCH_HAS_SET_DIRECT_MAP 50 select ARCH_HAS_SET_MEMORY 51 select ARCH_HAS_FORCE_DMA_UNENCRYPTED 52 select ARCH_STACKWALK 53 select ARCH_HAS_STRICT_KERNEL_RWX 54 select ARCH_HAS_STRICT_MODULE_RWX 55 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 56 select ARCH_HAS_SYNC_DMA_FOR_CPU 57 select ARCH_HAS_SYSCALL_WRAPPER 58 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 59 select ARCH_HAS_ZONE_DMA_SET if EXPERT 60 select ARCH_HAVE_ELF_PROT 61 select ARCH_HAVE_NMI_SAFE_CMPXCHG 62 select ARCH_HAVE_TRACE_MMIO_ACCESS 63 select ARCH_INLINE_READ_LOCK if !PREEMPTION 64 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 65 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 66 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 67 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 68 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 69 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 70 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 71 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 72 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 73 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 74 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 75 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 76 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 77 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 78 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 79 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 80 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 81 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 82 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 83 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 84 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 85 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 86 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 87 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 88 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 89 select ARCH_KEEP_MEMBLOCK 90 select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 91 select ARCH_USE_CMPXCHG_LOCKREF 92 select ARCH_USE_GNU_PROPERTY 93 select ARCH_USE_MEMTEST 94 select ARCH_USE_QUEUED_RWLOCKS 95 select ARCH_USE_QUEUED_SPINLOCKS 96 select ARCH_USE_SYM_ANNOTATIONS 97 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 98 select ARCH_SUPPORTS_HUGETLBFS 99 select ARCH_SUPPORTS_MEMORY_FAILURE 100 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 101 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 102 select ARCH_SUPPORTS_LTO_CLANG_THIN 103 select ARCH_SUPPORTS_CFI 104 select ARCH_SUPPORTS_ATOMIC_RMW 105 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 106 select ARCH_SUPPORTS_NUMA_BALANCING 107 select ARCH_SUPPORTS_PAGE_TABLE_CHECK 108 select ARCH_SUPPORTS_PER_VMA_LOCK 109 select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE 110 select ARCH_SUPPORTS_RT 111 select ARCH_SUPPORTS_SCHED_SMT 112 select ARCH_SUPPORTS_SCHED_CLUSTER 113 select ARCH_SUPPORTS_SCHED_MC 114 select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 115 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 116 select ARCH_WANT_DEFAULT_BPF_JIT 117 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 118 select ARCH_WANT_FRAME_POINTERS 119 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 120 select ARCH_WANT_LD_ORPHAN_WARN 121 select ARCH_WANTS_EXECMEM_LATE 122 select ARCH_WANTS_NO_INSTR 123 select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES 124 select ARCH_HAS_UBSAN 125 select ARM_AMBA 126 select ARM_ARCH_TIMER 127 select ARM_GIC 128 select AUDIT_ARCH_COMPAT_GENERIC 129 select ARM_GIC_V2M if PCI 130 select ARM_GIC_V3 131 select ARM_GIC_V3_ITS if PCI 132 select ARM_GIC_V5 133 select ARM_PSCI_FW 134 select BUILDTIME_TABLE_SORT 135 select CLONE_BACKWARDS 136 select COMMON_CLK 137 select CPU_PM if (SUSPEND || CPU_IDLE) 138 select CPUMASK_OFFSTACK if NR_CPUS > 256 139 select DCACHE_WORD_ACCESS 140 select HAVE_EXTRA_IPI_TRACEPOINTS 141 select DYNAMIC_FTRACE if FUNCTION_TRACER 142 select DMA_BOUNCE_UNALIGNED_KMALLOC 143 select DMA_DIRECT_REMAP 144 select EDAC_SUPPORT 145 select FRAME_POINTER 146 select FUNCTION_ALIGNMENT_4B 147 select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS 148 select GENERIC_ALLOCATOR 149 select GENERIC_ARCH_TOPOLOGY 150 select GENERIC_CLOCKEVENTS_BROADCAST 151 select GENERIC_CPU_AUTOPROBE 152 select GENERIC_CPU_CACHE_MAINTENANCE 153 select GENERIC_CPU_DEVICES 154 select GENERIC_CPU_VULNERABILITIES 155 select GENERIC_EARLY_IOREMAP 156 select GENERIC_IDLE_POLL_SETUP 157 select GENERIC_IOREMAP 158 select GENERIC_IRQ_ENTRY 159 select GENERIC_IRQ_IPI 160 select GENERIC_IRQ_KEXEC_CLEAR_VM_FORWARD 161 select GENERIC_IRQ_PROBE 162 select GENERIC_IRQ_SHOW 163 select GENERIC_IRQ_SHOW_LEVEL 164 select GENERIC_LIB_DEVMEM_IS_ALLOWED 165 select GENERIC_PCI_IOMAP 166 select GENERIC_SCHED_CLOCK 167 select GENERIC_SMP_IDLE_THREAD 168 select GENERIC_TIME_VSYSCALL 169 select GENERIC_GETTIMEOFDAY 170 select HARDIRQS_SW_RESEND 171 select HAS_IOPORT 172 select HAVE_MOVE_PMD 173 select HAVE_MOVE_PUD 174 select HAVE_PCI 175 select HAVE_ACPI_APEI if (ACPI && EFI) 176 select HAVE_ALIGNED_STRUCT_PAGE 177 select HAVE_ARCH_AUDITSYSCALL 178 select HAVE_ARCH_BITREVERSE 179 select HAVE_ARCH_COMPILER_H 180 select HAVE_ARCH_HUGE_VMALLOC 181 select HAVE_ARCH_HUGE_VMAP 182 select HAVE_ARCH_JUMP_LABEL 183 select HAVE_ARCH_JUMP_LABEL_RELATIVE 184 select HAVE_ARCH_KASAN 185 select HAVE_ARCH_KASAN_VMALLOC 186 select HAVE_ARCH_KASAN_SW_TAGS 187 select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE 188 # Some instrumentation may be unsound, hence EXPERT 189 select HAVE_ARCH_KCSAN if EXPERT 190 select HAVE_ARCH_KFENCE 191 select HAVE_ARCH_KGDB 192 select HAVE_ARCH_KSTACK_ERASE 193 select HAVE_ARCH_MMAP_RND_BITS 194 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 195 select HAVE_ARCH_PREL32_RELOCATIONS 196 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 197 select HAVE_ARCH_SECCOMP_FILTER 198 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 199 select HAVE_ARCH_TRACEHOOK 200 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 201 select HAVE_ARCH_VMAP_STACK 202 select HAVE_ARM_SMCCC 203 select HAVE_ASM_MODVERSIONS 204 select HAVE_EBPF_JIT 205 select HAVE_C_RECORDMCOUNT 206 select HAVE_CMPXCHG_DOUBLE 207 select HAVE_CMPXCHG_LOCAL 208 select HAVE_CONTEXT_TRACKING_USER 209 select HAVE_DEBUG_KMEMLEAK 210 select HAVE_DMA_CONTIGUOUS 211 select HAVE_DYNAMIC_FTRACE 212 select HAVE_DYNAMIC_FTRACE_WITH_ARGS \ 213 if (GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS || \ 214 CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS) 215 select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \ 216 if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS 217 select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \ 218 if (DYNAMIC_FTRACE_WITH_ARGS && !CFI && \ 219 (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE)) 220 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 221 if DYNAMIC_FTRACE_WITH_ARGS 222 select HAVE_SAMPLE_FTRACE_DIRECT 223 select HAVE_SAMPLE_FTRACE_DIRECT_MULTI 224 select HAVE_BUILDTIME_MCOUNT_SORT 225 select HAVE_EFFICIENT_UNALIGNED_ACCESS 226 select HAVE_GUP_FAST 227 select HAVE_FTRACE_GRAPH_FUNC 228 select HAVE_FUNCTION_TRACER 229 select HAVE_FUNCTION_ERROR_INJECTION 230 select HAVE_FUNCTION_GRAPH_FREGS 231 select HAVE_FUNCTION_GRAPH_TRACER 232 select HAVE_GCC_PLUGINS 233 select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \ 234 HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI 235 select HAVE_HW_BREAKPOINT if PERF_EVENTS 236 select HAVE_IOREMAP_PROT 237 select HAVE_IRQ_TIME_ACCOUNTING 238 select HAVE_LIVEPATCH 239 select HAVE_MOD_ARCH_SPECIFIC 240 select HAVE_NMI 241 select HAVE_PERF_EVENTS 242 select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI 243 select HAVE_PERF_REGS 244 select HAVE_PERF_USER_STACK_DUMP 245 select HAVE_PREEMPT_DYNAMIC_KEY 246 select HAVE_REGS_AND_STACK_ACCESS_API 247 select HAVE_RELIABLE_STACKTRACE 248 select HAVE_POSIX_CPU_TIMERS_TASK_WORK 249 select HAVE_FUNCTION_ARG_ACCESS_API 250 select MMU_GATHER_RCU_TABLE_FREE 251 select HAVE_RSEQ 252 select HAVE_RUST if RUSTC_SUPPORTS_ARM64 253 select HAVE_STACKPROTECTOR 254 select HAVE_SYSCALL_TRACEPOINTS 255 select HAVE_KPROBES 256 select HAVE_KRETPROBES 257 select HAVE_GENERIC_VDSO 258 select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU 259 select HOTPLUG_SMT if HOTPLUG_CPU 260 select IRQ_DOMAIN 261 select IRQ_FORCED_THREADING 262 select JUMP_LABEL 263 select KASAN_VMALLOC if KASAN 264 select LOCK_MM_AND_FIND_VMA 265 select MODULES_USE_ELF_RELA 266 select NEED_DMA_MAP_STATE 267 select NEED_SG_DMA_LENGTH 268 select OF 269 select OF_EARLY_FLATTREE 270 select PCI_DOMAINS_GENERIC if PCI 271 select PCI_ECAM if (ACPI && PCI) 272 select PCI_SYSCALL if PCI 273 select POWER_RESET 274 select POWER_SUPPLY 275 select SPARSE_IRQ 276 select SWIOTLB 277 select SYSCTL_EXCEPTION_TRACE 278 select THREAD_INFO_IN_TASK 279 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD 280 select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD 281 select TRACE_IRQFLAGS_SUPPORT 282 select TRACE_IRQFLAGS_NMI_SUPPORT 283 select HAVE_SOFTIRQ_ON_OWN_STACK 284 select USER_STACKTRACE_SUPPORT 285 select VDSO_GETRANDOM 286 select VMAP_STACK 287 help 288 ARM 64-bit (AArch64) Linux support. 289 290config RUSTC_SUPPORTS_ARM64 291 def_bool y 292 depends on CPU_LITTLE_ENDIAN 293 # Shadow call stack is only supported on certain rustc versions. 294 # 295 # When using the UNWIND_PATCH_PAC_INTO_SCS option, rustc version 1.80+ is 296 # required due to use of the -Zfixed-x18 flag. 297 # 298 # Otherwise, rustc version 1.82+ is required due to use of the 299 # -Zsanitizer=shadow-call-stack flag. 300 depends on !SHADOW_CALL_STACK || RUSTC_VERSION >= 108200 || RUSTC_VERSION >= 108000 && UNWIND_PATCH_PAC_INTO_SCS 301 302config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 303 def_bool CC_IS_CLANG 304 # https://github.com/ClangBuiltLinux/linux/issues/1507 305 depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600)) 306 307config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 308 def_bool CC_IS_GCC 309 depends on $(cc-option,-fpatchable-function-entry=2) 310 311config 64BIT 312 def_bool y 313 314config MMU 315 def_bool y 316 317config ARM64_CONT_PTE_SHIFT 318 int 319 default 5 if PAGE_SIZE_64KB 320 default 7 if PAGE_SIZE_16KB 321 default 4 322 323config ARM64_CONT_PMD_SHIFT 324 int 325 default 5 if PAGE_SIZE_64KB 326 default 5 if PAGE_SIZE_16KB 327 default 4 328 329config ARCH_MMAP_RND_BITS_MIN 330 default 14 if PAGE_SIZE_64KB 331 default 16 if PAGE_SIZE_16KB 332 default 18 333 334# max bits determined by the following formula: 335# VA_BITS - PTDESC_TABLE_SHIFT 336config ARCH_MMAP_RND_BITS_MAX 337 default 19 if ARM64_VA_BITS=36 338 default 24 if ARM64_VA_BITS=39 339 default 27 if ARM64_VA_BITS=42 340 default 30 if ARM64_VA_BITS=47 341 default 29 if (ARM64_VA_BITS=48 || ARM64_VA_BITS=52) && ARM64_64K_PAGES 342 default 31 if (ARM64_VA_BITS=48 || ARM64_VA_BITS=52) && ARM64_16K_PAGES 343 default 33 if (ARM64_VA_BITS=48 || ARM64_VA_BITS=52) 344 default 14 if ARM64_64K_PAGES 345 default 16 if ARM64_16K_PAGES 346 default 18 347 348config ARCH_MMAP_RND_COMPAT_BITS_MIN 349 default 7 if ARM64_64K_PAGES 350 default 9 if ARM64_16K_PAGES 351 default 11 352 353config ARCH_MMAP_RND_COMPAT_BITS_MAX 354 default 16 355 356config NO_IOPORT_MAP 357 def_bool y if !PCI 358 359config STACKTRACE_SUPPORT 360 def_bool y 361 362config ILLEGAL_POINTER_VALUE 363 hex 364 default 0xdead000000000000 365 366config LOCKDEP_SUPPORT 367 def_bool y 368 369config GENERIC_BUG 370 def_bool y 371 depends on BUG 372 373config GENERIC_BUG_RELATIVE_POINTERS 374 def_bool y 375 depends on GENERIC_BUG 376 377config GENERIC_HWEIGHT 378 def_bool y 379 380config GENERIC_CSUM 381 def_bool y 382 383config GENERIC_CALIBRATE_DELAY 384 def_bool y 385 386config SMP 387 def_bool y 388 389config KERNEL_MODE_NEON 390 def_bool y 391 392config FIX_EARLYCON_MEM 393 def_bool y 394 395config PGTABLE_LEVELS 396 int 397 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 398 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 399 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 400 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 401 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 402 default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 403 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 404 default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52 405 406config ARCH_SUPPORTS_UPROBES 407 def_bool y 408 409config ARCH_PROC_KCORE_TEXT 410 def_bool y 411 412config BROKEN_GAS_INST 413 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 414 415config BUILTIN_RETURN_ADDRESS_STRIPS_PAC 416 bool 417 # Clang's __builtin_return_address() strips the PAC since 12.0.0 418 # https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2 419 default y if CC_IS_CLANG 420 # GCC's __builtin_return_address() strips the PAC since 11.1.0, 421 # and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier 422 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891 423 default y if CC_IS_GCC && (GCC_VERSION >= 110100) 424 default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000) 425 default y if CC_IS_GCC && (GCC_VERSION >= 90400) && (GCC_VERSION < 100000) 426 default y if CC_IS_GCC && (GCC_VERSION >= 80500) && (GCC_VERSION < 90000) 427 default n 428 429config KASAN_SHADOW_OFFSET 430 hex 431 depends on KASAN_GENERIC || KASAN_SW_TAGS 432 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS 433 default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS 434 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 435 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 436 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 437 default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS 438 default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS 439 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 440 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 441 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 442 default 0xffffffffffffffff 443 444config UNWIND_TABLES 445 bool 446 447source "arch/arm64/Kconfig.platforms" 448 449menu "Kernel Features" 450 451menu "ARM errata workarounds via the alternatives framework" 452 453config AMPERE_ERRATUM_AC03_CPU_38 454 bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics" 455 default y 456 help 457 This option adds an alternative code sequence to work around Ampere 458 errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne. 459 460 The affected design reports FEAT_HAFDBS as not implemented in 461 ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0 462 as required by the architecture. The unadvertised HAFDBS 463 implementation suffers from an additional erratum where hardware 464 A/D updates can occur after a PTE has been marked invalid. 465 466 The workaround forces KVM to explicitly set VTCR_EL2.HA to 0, 467 which avoids enabling unadvertised hardware Access Flag management 468 at stage-2. 469 470 If unsure, say Y. 471 472config AMPERE_ERRATUM_AC04_CPU_23 473 bool "AmpereOne: AC04_CPU_23: Failure to synchronize writes to HCR_EL2 may corrupt address translations." 474 default y 475 help 476 This option adds an alternative code sequence to work around Ampere 477 errata AC04_CPU_23 on AmpereOne. 478 479 Updates to HCR_EL2 can rarely corrupt simultaneous translations for 480 data addresses initiated by load/store instructions. Only 481 instruction initiated translations are vulnerable, not translations 482 from prefetches for example. A DSB before the store to HCR_EL2 is 483 sufficient to prevent older instructions from hitting the window 484 for corruption, and an ISB after is sufficient to prevent younger 485 instructions from hitting the window for corruption. 486 487 If unsure, say Y. 488 489config ARM64_WORKAROUND_CLEAN_CACHE 490 bool 491 492config ARM64_ERRATUM_826319 493 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 494 default y 495 select ARM64_WORKAROUND_CLEAN_CACHE 496 help 497 This option adds an alternative code sequence to work around ARM 498 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 499 AXI master interface and an L2 cache. 500 501 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 502 and is unable to accept a certain write via this interface, it will 503 not progress on read data presented on the read data channel and the 504 system can deadlock. 505 506 The workaround promotes data cache clean instructions to 507 data cache clean-and-invalidate. 508 Please note that this does not necessarily enable the workaround, 509 as it depends on the alternative framework, which will only patch 510 the kernel if an affected CPU is detected. 511 512 If unsure, say Y. 513 514config ARM64_ERRATUM_827319 515 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 516 default y 517 select ARM64_WORKAROUND_CLEAN_CACHE 518 help 519 This option adds an alternative code sequence to work around ARM 520 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 521 master interface and an L2 cache. 522 523 Under certain conditions this erratum can cause a clean line eviction 524 to occur at the same time as another transaction to the same address 525 on the AMBA 5 CHI interface, which can cause data corruption if the 526 interconnect reorders the two transactions. 527 528 The workaround promotes data cache clean instructions to 529 data cache clean-and-invalidate. 530 Please note that this does not necessarily enable the workaround, 531 as it depends on the alternative framework, which will only patch 532 the kernel if an affected CPU is detected. 533 534 If unsure, say Y. 535 536config ARM64_ERRATUM_824069 537 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 538 default y 539 select ARM64_WORKAROUND_CLEAN_CACHE 540 help 541 This option adds an alternative code sequence to work around ARM 542 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 543 to a coherent interconnect. 544 545 If a Cortex-A53 processor is executing a store or prefetch for 546 write instruction at the same time as a processor in another 547 cluster is executing a cache maintenance operation to the same 548 address, then this erratum might cause a clean cache line to be 549 incorrectly marked as dirty. 550 551 The workaround promotes data cache clean instructions to 552 data cache clean-and-invalidate. 553 Please note that this option does not necessarily enable the 554 workaround, as it depends on the alternative framework, which will 555 only patch the kernel if an affected CPU is detected. 556 557 If unsure, say Y. 558 559config ARM64_ERRATUM_819472 560 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 561 default y 562 select ARM64_WORKAROUND_CLEAN_CACHE 563 help 564 This option adds an alternative code sequence to work around ARM 565 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 566 present when it is connected to a coherent interconnect. 567 568 If the processor is executing a load and store exclusive sequence at 569 the same time as a processor in another cluster is executing a cache 570 maintenance operation to the same address, then this erratum might 571 cause data corruption. 572 573 The workaround promotes data cache clean instructions to 574 data cache clean-and-invalidate. 575 Please note that this does not necessarily enable the workaround, 576 as it depends on the alternative framework, which will only patch 577 the kernel if an affected CPU is detected. 578 579 If unsure, say Y. 580 581config ARM64_ERRATUM_832075 582 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 583 default y 584 help 585 This option adds an alternative code sequence to work around ARM 586 erratum 832075 on Cortex-A57 parts up to r1p2. 587 588 Affected Cortex-A57 parts might deadlock when exclusive load/store 589 instructions to Write-Back memory are mixed with Device loads. 590 591 The workaround is to promote device loads to use Load-Acquire 592 semantics. 593 Please note that this does not necessarily enable the workaround, 594 as it depends on the alternative framework, which will only patch 595 the kernel if an affected CPU is detected. 596 597 If unsure, say Y. 598 599config ARM64_ERRATUM_834220 600 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)" 601 depends on KVM 602 help 603 This option adds an alternative code sequence to work around ARM 604 erratum 834220 on Cortex-A57 parts up to r1p2. 605 606 Affected Cortex-A57 parts might report a Stage 2 translation 607 fault as the result of a Stage 1 fault for load crossing a 608 page boundary when there is a permission or device memory 609 alignment fault at Stage 1 and a translation fault at Stage 2. 610 611 The workaround is to verify that the Stage 1 translation 612 doesn't generate a fault before handling the Stage 2 fault. 613 Please note that this does not necessarily enable the workaround, 614 as it depends on the alternative framework, which will only patch 615 the kernel if an affected CPU is detected. 616 617 If unsure, say N. 618 619config ARM64_ERRATUM_1742098 620 bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence" 621 depends on COMPAT 622 default y 623 help 624 This option removes the AES hwcap for aarch32 user-space to 625 workaround erratum 1742098 on Cortex-A57 and Cortex-A72. 626 627 Affected parts may corrupt the AES state if an interrupt is 628 taken between a pair of AES instructions. These instructions 629 are only present if the cryptography extensions are present. 630 All software should have a fallback implementation for CPUs 631 that don't implement the cryptography extensions. 632 633 If unsure, say Y. 634 635config ARM64_ERRATUM_845719 636 bool "Cortex-A53: 845719: a load might read incorrect data" 637 depends on COMPAT 638 default y 639 help 640 This option adds an alternative code sequence to work around ARM 641 erratum 845719 on Cortex-A53 parts up to r0p4. 642 643 When running a compat (AArch32) userspace on an affected Cortex-A53 644 part, a load at EL0 from a virtual address that matches the bottom 32 645 bits of the virtual address used by a recent load at (AArch64) EL1 646 might return incorrect data. 647 648 The workaround is to write the contextidr_el1 register on exception 649 return to a 32-bit task. 650 Please note that this does not necessarily enable the workaround, 651 as it depends on the alternative framework, which will only patch 652 the kernel if an affected CPU is detected. 653 654 If unsure, say Y. 655 656config ARM64_ERRATUM_843419 657 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 658 default y 659 help 660 This option links the kernel with '--fix-cortex-a53-843419' and 661 enables PLT support to replace certain ADRP instructions, which can 662 cause subsequent memory accesses to use an incorrect address on 663 Cortex-A53 parts up to r0p4. 664 665 If unsure, say Y. 666 667config ARM64_ERRATUM_1024718 668 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 669 default y 670 help 671 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 672 673 Affected Cortex-A55 cores (all revisions) could cause incorrect 674 update of the hardware dirty bit when the DBM/AP bits are updated 675 without a break-before-make. The workaround is to disable the usage 676 of hardware DBM locally on the affected cores. CPUs not affected by 677 this erratum will continue to use the feature. 678 679 If unsure, say Y. 680 681config ARM64_ERRATUM_1418040 682 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 683 default y 684 depends on COMPAT 685 help 686 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 687 errata 1188873 and 1418040. 688 689 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 690 cause register corruption when accessing the timer registers 691 from AArch32 userspace. 692 693 If unsure, say Y. 694 695config ARM64_WORKAROUND_SPECULATIVE_AT 696 bool 697 698config ARM64_ERRATUM_1165522 699 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 700 default y 701 select ARM64_WORKAROUND_SPECULATIVE_AT 702 help 703 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 704 705 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 706 corrupted TLBs by speculating an AT instruction during a guest 707 context switch. 708 709 If unsure, say Y. 710 711config ARM64_ERRATUM_1319367 712 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 713 default y 714 select ARM64_WORKAROUND_SPECULATIVE_AT 715 help 716 This option adds work arounds for ARM Cortex-A57 erratum 1319537 717 and A72 erratum 1319367 718 719 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 720 speculating an AT instruction during a guest context switch. 721 722 If unsure, say Y. 723 724config ARM64_ERRATUM_1530923 725 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 726 default y 727 select ARM64_WORKAROUND_SPECULATIVE_AT 728 help 729 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 730 731 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 732 corrupted TLBs by speculating an AT instruction during a guest 733 context switch. 734 735 If unsure, say Y. 736 737config ARM64_WORKAROUND_REPEAT_TLBI 738 bool 739 740config ARM64_ERRATUM_2441007 741 bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)" 742 select ARM64_WORKAROUND_REPEAT_TLBI 743 help 744 This option adds a workaround for ARM Cortex-A55 erratum #2441007. 745 746 Under very rare circumstances, affected Cortex-A55 CPUs 747 may not handle a race between a break-before-make sequence on one 748 CPU, and another CPU accessing the same page. This could allow a 749 store to a page that has been unmapped. 750 751 Work around this by adding the affected CPUs to the list that needs 752 TLB sequences to be done twice. 753 754 If unsure, say N. 755 756config ARM64_ERRATUM_1286807 757 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)" 758 select ARM64_WORKAROUND_REPEAT_TLBI 759 help 760 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 761 762 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 763 address for a cacheable mapping of a location is being 764 accessed by a core while another core is remapping the virtual 765 address to a new physical page using the recommended 766 break-before-make sequence, then under very rare circumstances 767 TLBI+DSB completes before a read using the translation being 768 invalidated has been observed by other observers. The 769 workaround repeats the TLBI+DSB operation. 770 771 If unsure, say N. 772 773config ARM64_ERRATUM_1463225 774 bool "Cortex-A76: Software Step might prevent interrupt recognition" 775 default y 776 help 777 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 778 779 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 780 of a system call instruction (SVC) can prevent recognition of 781 subsequent interrupts when software stepping is disabled in the 782 exception handler of the system call and either kernel debugging 783 is enabled or VHE is in use. 784 785 Work around the erratum by triggering a dummy step exception 786 when handling a system call from a task that is being stepped 787 in a VHE configuration of the kernel. 788 789 If unsure, say Y. 790 791config ARM64_ERRATUM_1542419 792 bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)" 793 help 794 This option adds a workaround for ARM Neoverse-N1 erratum 795 1542419. 796 797 Affected Neoverse-N1 cores could execute a stale instruction when 798 modified by another CPU. The workaround depends on a firmware 799 counterpart. 800 801 Workaround the issue by hiding the DIC feature from EL0. This 802 forces user-space to perform cache maintenance. 803 804 If unsure, say N. 805 806config ARM64_ERRATUM_1508412 807 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 808 default y 809 help 810 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 811 812 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 813 of a store-exclusive or read of PAR_EL1 and a load with device or 814 non-cacheable memory attributes. The workaround depends on a firmware 815 counterpart. 816 817 KVM guests must also have the workaround implemented or they can 818 deadlock the system. 819 820 Work around the issue by inserting DMB SY barriers around PAR_EL1 821 register reads and warning KVM users. The DMB barrier is sufficient 822 to prevent a speculative PAR_EL1 read. 823 824 If unsure, say Y. 825 826config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 827 bool 828 829config ARM64_ERRATUM_2051678 830 bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit" 831 default y 832 help 833 This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678. 834 Affected Cortex-A510 might not respect the ordering rules for 835 hardware update of the page table's dirty bit. The workaround 836 is to not enable the feature on affected CPUs. 837 838 If unsure, say Y. 839 840config ARM64_ERRATUM_2077057 841 bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2" 842 default y 843 help 844 This option adds the workaround for ARM Cortex-A510 erratum 2077057. 845 Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is 846 expected, but a Pointer Authentication trap is taken instead. The 847 erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow 848 EL1 to cause a return to EL2 with a guest controlled ELR_EL2. 849 850 This can only happen when EL2 is stepping EL1. 851 852 When these conditions occur, the SPSR_EL2 value is unchanged from the 853 previous guest entry, and can be restored from the in-memory copy. 854 855 If unsure, say Y. 856 857config ARM64_ERRATUM_2658417 858 bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result" 859 default y 860 help 861 This option adds the workaround for ARM Cortex-A510 erratum 2658417. 862 Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for 863 BFMMLA or VMMLA instructions in rare circumstances when a pair of 864 A510 CPUs are using shared neon hardware. As the sharing is not 865 discoverable by the kernel, hide the BF16 HWCAP to indicate that 866 user-space should not be using these instructions. 867 868 If unsure, say Y. 869 870config ARM64_ERRATUM_2119858 871 bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode" 872 default y 873 depends on CORESIGHT_TRBE 874 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 875 help 876 This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858. 877 878 Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace 879 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 880 the event of a WRAP event. 881 882 Work around the issue by always making sure we move the TRBPTR_EL1 by 883 256 bytes before enabling the buffer and filling the first 256 bytes of 884 the buffer with ETM ignore packets upon disabling. 885 886 If unsure, say Y. 887 888config ARM64_ERRATUM_2139208 889 bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode" 890 default y 891 depends on CORESIGHT_TRBE 892 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 893 help 894 This option adds the workaround for ARM Neoverse-N2 erratum 2139208. 895 896 Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace 897 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 898 the event of a WRAP event. 899 900 Work around the issue by always making sure we move the TRBPTR_EL1 by 901 256 bytes before enabling the buffer and filling the first 256 bytes of 902 the buffer with ETM ignore packets upon disabling. 903 904 If unsure, say Y. 905 906config ARM64_WORKAROUND_TSB_FLUSH_FAILURE 907 bool 908 909config ARM64_ERRATUM_2054223 910 bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace" 911 default y 912 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 913 help 914 Enable workaround for ARM Cortex-A710 erratum 2054223 915 916 Affected cores may fail to flush the trace data on a TSB instruction, when 917 the PE is in trace prohibited state. This will cause losing a few bytes 918 of the trace cached. 919 920 Workaround is to issue two TSB consecutively on affected cores. 921 922 If unsure, say Y. 923 924config ARM64_ERRATUM_2067961 925 bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace" 926 default y 927 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 928 help 929 Enable workaround for ARM Neoverse-N2 erratum 2067961 930 931 Affected cores may fail to flush the trace data on a TSB instruction, when 932 the PE is in trace prohibited state. This will cause losing a few bytes 933 of the trace cached. 934 935 Workaround is to issue two TSB consecutively on affected cores. 936 937 If unsure, say Y. 938 939config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 940 bool 941 942config ARM64_ERRATUM_2253138 943 bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range" 944 depends on CORESIGHT_TRBE 945 default y 946 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 947 help 948 This option adds the workaround for ARM Neoverse-N2 erratum 2253138. 949 950 Affected Neoverse-N2 cores might write to an out-of-range address, not reserved 951 for TRBE. Under some conditions, the TRBE might generate a write to the next 952 virtually addressed page following the last page of the TRBE address space 953 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 954 955 Work around this in the driver by always making sure that there is a 956 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 957 958 If unsure, say Y. 959 960config ARM64_ERRATUM_2224489 961 bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range" 962 depends on CORESIGHT_TRBE 963 default y 964 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 965 help 966 This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489. 967 968 Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved 969 for TRBE. Under some conditions, the TRBE might generate a write to the next 970 virtually addressed page following the last page of the TRBE address space 971 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 972 973 Work around this in the driver by always making sure that there is a 974 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 975 976 If unsure, say Y. 977 978config ARM64_ERRATUM_2441009 979 bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)" 980 select ARM64_WORKAROUND_REPEAT_TLBI 981 help 982 This option adds a workaround for ARM Cortex-A510 erratum #2441009. 983 984 Under very rare circumstances, affected Cortex-A510 CPUs 985 may not handle a race between a break-before-make sequence on one 986 CPU, and another CPU accessing the same page. This could allow a 987 store to a page that has been unmapped. 988 989 Work around this by adding the affected CPUs to the list that needs 990 TLB sequences to be done twice. 991 992 If unsure, say N. 993 994config ARM64_ERRATUM_2064142 995 bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled" 996 depends on CORESIGHT_TRBE 997 default y 998 help 999 This option adds the workaround for ARM Cortex-A510 erratum 2064142. 1000 1001 Affected Cortex-A510 core might fail to write into system registers after the 1002 TRBE has been disabled. Under some conditions after the TRBE has been disabled 1003 writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1, 1004 and TRBTRG_EL1 will be ignored and will not be effected. 1005 1006 Work around this in the driver by executing TSB CSYNC and DSB after collection 1007 is stopped and before performing a system register write to one of the affected 1008 registers. 1009 1010 If unsure, say Y. 1011 1012config ARM64_ERRATUM_2038923 1013 bool "Cortex-A510: 2038923: workaround TRBE corruption with enable" 1014 depends on CORESIGHT_TRBE 1015 default y 1016 help 1017 This option adds the workaround for ARM Cortex-A510 erratum 2038923. 1018 1019 Affected Cortex-A510 core might cause an inconsistent view on whether trace is 1020 prohibited within the CPU. As a result, the trace buffer or trace buffer state 1021 might be corrupted. This happens after TRBE buffer has been enabled by setting 1022 TRBLIMITR_EL1.E, followed by just a single context synchronization event before 1023 execution changes from a context, in which trace is prohibited to one where it 1024 isn't, or vice versa. In these mentioned conditions, the view of whether trace 1025 is prohibited is inconsistent between parts of the CPU, and the trace buffer or 1026 the trace buffer state might be corrupted. 1027 1028 Work around this in the driver by preventing an inconsistent view of whether the 1029 trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a 1030 change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or 1031 two ISB instructions if no ERET is to take place. 1032 1033 If unsure, say Y. 1034 1035config ARM64_ERRATUM_1902691 1036 bool "Cortex-A510: 1902691: workaround TRBE trace corruption" 1037 depends on CORESIGHT_TRBE 1038 default y 1039 help 1040 This option adds the workaround for ARM Cortex-A510 erratum 1902691. 1041 1042 Affected Cortex-A510 core might cause trace data corruption, when being written 1043 into the memory. Effectively TRBE is broken and hence cannot be used to capture 1044 trace data. 1045 1046 Work around this problem in the driver by just preventing TRBE initialization on 1047 affected cpus. The firmware must have disabled the access to TRBE for the kernel 1048 on such implementations. This will cover the kernel for any firmware that doesn't 1049 do this already. 1050 1051 If unsure, say Y. 1052 1053config ARM64_ERRATUM_2457168 1054 bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly" 1055 depends on ARM64_AMU_EXTN 1056 default y 1057 help 1058 This option adds the workaround for ARM Cortex-A510 erratum 2457168. 1059 1060 The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate 1061 as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments 1062 incorrectly giving a significantly higher output value. 1063 1064 Work around this problem by returning 0 when reading the affected counter in 1065 key locations that results in disabling all users of this counter. This effect 1066 is the same to firmware disabling affected counters. 1067 1068 If unsure, say Y. 1069 1070config ARM64_ERRATUM_2645198 1071 bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption" 1072 default y 1073 help 1074 This option adds the workaround for ARM Cortex-A715 erratum 2645198. 1075 1076 If a Cortex-A715 cpu sees a page mapping permissions change from executable 1077 to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the 1078 next instruction abort caused by permission fault. 1079 1080 Only user-space does executable to non-executable permission transition via 1081 mprotect() system call. Workaround the problem by doing a break-before-make 1082 TLB invalidation, for all changes to executable user space mappings. 1083 1084 If unsure, say Y. 1085 1086config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1087 bool 1088 1089config ARM64_ERRATUM_2966298 1090 bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load" 1091 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1092 default y 1093 help 1094 This option adds the workaround for ARM Cortex-A520 erratum 2966298. 1095 1096 On an affected Cortex-A520 core, a speculatively executed unprivileged 1097 load might leak data from a privileged level via a cache side channel. 1098 1099 Work around this problem by executing a TLBI before returning to EL0. 1100 1101 If unsure, say Y. 1102 1103config ARM64_ERRATUM_3117295 1104 bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load" 1105 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1106 default y 1107 help 1108 This option adds the workaround for ARM Cortex-A510 erratum 3117295. 1109 1110 On an affected Cortex-A510 core, a speculatively executed unprivileged 1111 load might leak data from a privileged level via a cache side channel. 1112 1113 Work around this problem by executing a TLBI before returning to EL0. 1114 1115 If unsure, say Y. 1116 1117config ARM64_ERRATUM_3194386 1118 bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing" 1119 default y 1120 help 1121 This option adds the workaround for the following errata: 1122 1123 * ARM Cortex-A76 erratum 3324349 1124 * ARM Cortex-A77 erratum 3324348 1125 * ARM Cortex-A78 erratum 3324344 1126 * ARM Cortex-A78C erratum 3324346 1127 * ARM Cortex-A78C erratum 3324347 1128 * ARM Cortex-A710 erratam 3324338 1129 * ARM Cortex-A715 errartum 3456084 1130 * ARM Cortex-A720 erratum 3456091 1131 * ARM Cortex-A725 erratum 3456106 1132 * ARM Cortex-X1 erratum 3324344 1133 * ARM Cortex-X1C erratum 3324346 1134 * ARM Cortex-X2 erratum 3324338 1135 * ARM Cortex-X3 erratum 3324335 1136 * ARM Cortex-X4 erratum 3194386 1137 * ARM Cortex-X925 erratum 3324334 1138 * ARM Neoverse-N1 erratum 3324349 1139 * ARM Neoverse N2 erratum 3324339 1140 * ARM Neoverse-N3 erratum 3456111 1141 * ARM Neoverse-V1 erratum 3324341 1142 * ARM Neoverse V2 erratum 3324336 1143 * ARM Neoverse-V3 erratum 3312417 1144 * ARM Neoverse-V3AE erratum 3312417 1145 1146 On affected cores "MSR SSBS, #0" instructions may not affect 1147 subsequent speculative instructions, which may permit unexepected 1148 speculative store bypassing. 1149 1150 Work around this problem by placing a Speculation Barrier (SB) or 1151 Instruction Synchronization Barrier (ISB) after kernel changes to 1152 SSBS. The presence of the SSBS special-purpose register is hidden 1153 from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace 1154 will use the PR_SPEC_STORE_BYPASS prctl to change SSBS. 1155 1156 If unsure, say Y. 1157 1158config ARM64_ERRATUM_4311569 1159 bool "SI L1: 4311569: workaround for premature CMO completion erratum" 1160 default y 1161 help 1162 This option adds the workaround for ARM SI L1 erratum 4311569. 1163 1164 The erratum of SI L1 can cause an early response to a combined write 1165 and cache maintenance operation (WR+CMO) before the operation is fully 1166 completed to the Point of Serialization (POS). 1167 This can result in a non-I/O coherent agent observing stale data, 1168 potentially leading to system instability or incorrect behavior. 1169 1170 Enabling this option implements a software workaround by inserting a 1171 second loop of Cache Maintenance Operation (CMO) immediately following the 1172 end of function to do CMOs. This ensures that the data is correctly serialized 1173 before the buffer is handed off to a non-coherent agent. 1174 1175 If unsure, say Y. 1176 1177config CAVIUM_ERRATUM_22375 1178 bool "Cavium erratum 22375, 24313" 1179 default y 1180 help 1181 Enable workaround for errata 22375 and 24313. 1182 1183 This implements two gicv3-its errata workarounds for ThunderX. Both 1184 with a small impact affecting only ITS table allocation. 1185 1186 erratum 22375: only alloc 8MB table size 1187 erratum 24313: ignore memory access type 1188 1189 The fixes are in ITS initialization and basically ignore memory access 1190 type and table size provided by the TYPER and BASER registers. 1191 1192 If unsure, say Y. 1193 1194config CAVIUM_ERRATUM_23144 1195 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 1196 depends on NUMA 1197 default y 1198 help 1199 ITS SYNC command hang for cross node io and collections/cpu mapping. 1200 1201 If unsure, say Y. 1202 1203config CAVIUM_ERRATUM_23154 1204 bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation" 1205 default y 1206 help 1207 The ThunderX GICv3 implementation requires a modified version for 1208 reading the IAR status to ensure data synchronization 1209 (access to icc_iar1_el1 is not sync'ed before and after). 1210 1211 It also suffers from erratum 38545 (also present on Marvell's 1212 OcteonTX and OcteonTX2), resulting in deactivated interrupts being 1213 spuriously presented to the CPU interface. 1214 1215 If unsure, say Y. 1216 1217config CAVIUM_ERRATUM_27456 1218 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 1219 default y 1220 help 1221 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 1222 instructions may cause the icache to become corrupted if it 1223 contains data for a non-current ASID. The fix is to 1224 invalidate the icache when changing the mm context. 1225 1226 If unsure, say Y. 1227 1228config CAVIUM_ERRATUM_30115 1229 bool "Cavium erratum 30115: Guest may disable interrupts in host" 1230 default y 1231 help 1232 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 1233 1.2, and T83 Pass 1.0, KVM guest execution may disable 1234 interrupts in host. Trapping both GICv3 group-0 and group-1 1235 accesses sidesteps the issue. 1236 1237 If unsure, say Y. 1238 1239config CAVIUM_TX2_ERRATUM_219 1240 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 1241 default y 1242 help 1243 On Cavium ThunderX2, a load, store or prefetch instruction between a 1244 TTBR update and the corresponding context synchronizing operation can 1245 cause a spurious Data Abort to be delivered to any hardware thread in 1246 the CPU core. 1247 1248 Work around the issue by avoiding the problematic code sequence and 1249 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 1250 trap handler performs the corresponding register access, skips the 1251 instruction and ensures context synchronization by virtue of the 1252 exception return. 1253 1254 If unsure, say Y. 1255 1256config FUJITSU_ERRATUM_010001 1257 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 1258 default y 1259 help 1260 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 1261 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 1262 accesses may cause undefined fault (Data abort, DFSC=0b111111). 1263 This fault occurs under a specific hardware condition when a 1264 load/store instruction performs an address translation using: 1265 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 1266 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 1267 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 1268 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 1269 1270 The workaround is to ensure these bits are clear in TCR_ELx. 1271 The workaround only affects the Fujitsu-A64FX. 1272 1273 If unsure, say Y. 1274 1275config HISILICON_ERRATUM_161600802 1276 bool "Hip07 161600802: Erroneous redistributor VLPI base" 1277 default y 1278 help 1279 The HiSilicon Hip07 SoC uses the wrong redistributor base 1280 when issued ITS commands such as VMOVP and VMAPP, and requires 1281 a 128kB offset to be applied to the target address in this commands. 1282 1283 If unsure, say Y. 1284 1285config HISILICON_ERRATUM_162100801 1286 bool "Hip09 162100801 erratum support" 1287 default y 1288 help 1289 When enabling GICv4.1 in hip09, VMAPP will fail to clear some caches 1290 during unmapping operation, which will cause some vSGIs lost. 1291 To fix the issue, invalidate related vPE cache through GICR_INVALLR 1292 after VMOVP. 1293 1294 If unsure, say Y. 1295 1296config QCOM_FALKOR_ERRATUM_1003 1297 bool "Falkor E1003: Incorrect translation due to ASID change" 1298 default y 1299 help 1300 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 1301 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 1302 in TTBR1_EL1, this situation only occurs in the entry trampoline and 1303 then only for entries in the walk cache, since the leaf translation 1304 is unchanged. Work around the erratum by invalidating the walk cache 1305 entries for the trampoline before entering the kernel proper. 1306 1307config QCOM_FALKOR_ERRATUM_1009 1308 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 1309 default y 1310 select ARM64_WORKAROUND_REPEAT_TLBI 1311 help 1312 On Falkor v1, the CPU may prematurely complete a DSB following a 1313 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 1314 one more time to fix the issue. 1315 1316 If unsure, say Y. 1317 1318config QCOM_QDF2400_ERRATUM_0065 1319 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 1320 default y 1321 help 1322 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 1323 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 1324 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 1325 1326 If unsure, say Y. 1327 1328config QCOM_FALKOR_ERRATUM_E1041 1329 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 1330 default y 1331 help 1332 Falkor CPU may speculatively fetch instructions from an improper 1333 memory location when MMU translation is changed from SCTLR_ELn[M]=1 1334 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 1335 1336 If unsure, say Y. 1337 1338config NVIDIA_CARMEL_CNP_ERRATUM 1339 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 1340 default y 1341 help 1342 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 1343 invalidate shared TLB entries installed by a different core, as it would 1344 on standard ARM cores. 1345 1346 If unsure, say Y. 1347 1348config ROCKCHIP_ERRATUM_3568002 1349 bool "Rockchip 3568002: GIC600 can not access physical addresses higher than 4GB" 1350 default y 1351 help 1352 The Rockchip RK3566 and RK3568 GIC600 SoC integrations have AXI 1353 addressing limited to the first 32bit of physical address space. 1354 1355 If unsure, say Y. 1356 1357config ROCKCHIP_ERRATUM_3588001 1358 bool "Rockchip 3588001: GIC600 can not support shareability attributes" 1359 default y 1360 help 1361 The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite. 1362 This means, that its sharability feature may not be used, even though it 1363 is supported by the IP itself. 1364 1365 If unsure, say Y. 1366 1367config SOCIONEXT_SYNQUACER_PREITS 1368 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 1369 default y 1370 help 1371 Socionext Synquacer SoCs implement a separate h/w block to generate 1372 MSI doorbell writes with non-zero values for the device ID. 1373 1374 If unsure, say Y. 1375 1376endmenu # "ARM errata workarounds via the alternatives framework" 1377 1378choice 1379 prompt "Page size" 1380 default ARM64_4K_PAGES 1381 help 1382 Page size (translation granule) configuration. 1383 1384config ARM64_4K_PAGES 1385 bool "4KB" 1386 select HAVE_PAGE_SIZE_4KB 1387 help 1388 This feature enables 4KB pages support. 1389 1390config ARM64_16K_PAGES 1391 bool "16KB" 1392 select HAVE_PAGE_SIZE_16KB 1393 help 1394 The system will use 16KB pages support. AArch32 emulation 1395 requires applications compiled with 16K (or a multiple of 16K) 1396 aligned segments. 1397 1398config ARM64_64K_PAGES 1399 bool "64KB" 1400 select HAVE_PAGE_SIZE_64KB 1401 help 1402 This feature enables 64KB pages support (4KB by default) 1403 allowing only two levels of page tables and faster TLB 1404 look-up. AArch32 emulation requires applications compiled 1405 with 64K aligned segments. 1406 1407endchoice 1408 1409choice 1410 prompt "Virtual address space size" 1411 default ARM64_VA_BITS_52 1412 help 1413 Allows choosing one of multiple possible virtual address 1414 space sizes. The level of translation table is determined by 1415 a combination of page size and virtual address space size. 1416 1417config ARM64_VA_BITS_36 1418 bool "36-bit" if EXPERT 1419 depends on PAGE_SIZE_16KB 1420 1421config ARM64_VA_BITS_39 1422 bool "39-bit" 1423 depends on PAGE_SIZE_4KB 1424 1425config ARM64_VA_BITS_42 1426 bool "42-bit" 1427 depends on PAGE_SIZE_64KB 1428 1429config ARM64_VA_BITS_47 1430 bool "47-bit" 1431 depends on PAGE_SIZE_16KB 1432 1433config ARM64_VA_BITS_48 1434 bool "48-bit" 1435 1436config ARM64_VA_BITS_52 1437 bool "52-bit" 1438 help 1439 Enable 52-bit virtual addressing for userspace when explicitly 1440 requested via a hint to mmap(). The kernel will also use 52-bit 1441 virtual addresses for its own mappings (provided HW support for 1442 this feature is available, otherwise it reverts to 48-bit). 1443 1444 NOTE: Enabling 52-bit virtual addressing in conjunction with 1445 ARMv8.3 Pointer Authentication will result in the PAC being 1446 reduced from 7 bits to 3 bits, which may have a significant 1447 impact on its susceptibility to brute-force attacks. 1448 1449 If unsure, select 48-bit virtual addressing instead. 1450 1451endchoice 1452 1453config ARM64_FORCE_52BIT 1454 bool "Force 52-bit virtual addresses for userspace" 1455 depends on ARM64_VA_BITS_52 && EXPERT 1456 help 1457 For systems with 52-bit userspace VAs enabled, the kernel will attempt 1458 to maintain compatibility with older software by providing 48-bit VAs 1459 unless a hint is supplied to mmap. 1460 1461 This configuration option disables the 48-bit compatibility logic, and 1462 forces all userspace addresses to be 52-bit on HW that supports it. One 1463 should only enable this configuration option for stress testing userspace 1464 memory management code. If unsure say N here. 1465 1466config ARM64_VA_BITS 1467 int 1468 default 36 if ARM64_VA_BITS_36 1469 default 39 if ARM64_VA_BITS_39 1470 default 42 if ARM64_VA_BITS_42 1471 default 47 if ARM64_VA_BITS_47 1472 default 48 if ARM64_VA_BITS_48 1473 default 52 if ARM64_VA_BITS_52 1474 1475choice 1476 prompt "Physical address space size" 1477 default ARM64_PA_BITS_48 1478 help 1479 Choose the maximum physical address range that the kernel will 1480 support. 1481 1482config ARM64_PA_BITS_48 1483 bool "48-bit" 1484 depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52 1485 1486config ARM64_PA_BITS_52 1487 bool "52-bit" 1488 depends on ARM64_64K_PAGES || ARM64_VA_BITS_52 1489 help 1490 Enable support for a 52-bit physical address space, introduced as 1491 part of the ARMv8.2-LPA extension. 1492 1493 With this enabled, the kernel will also continue to work on CPUs that 1494 do not support ARMv8.2-LPA, but with some added memory overhead (and 1495 minor performance overhead). 1496 1497endchoice 1498 1499config ARM64_PA_BITS 1500 int 1501 default 48 if ARM64_PA_BITS_48 1502 default 52 if ARM64_PA_BITS_52 1503 1504config ARM64_LPA2 1505 def_bool y 1506 depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES 1507 1508choice 1509 prompt "Endianness" 1510 default CPU_LITTLE_ENDIAN 1511 help 1512 Select the endianness of data accesses performed by the CPU. Userspace 1513 applications will need to be compiled and linked for the endianness 1514 that is selected here. 1515 1516config CPU_BIG_ENDIAN 1517 bool "Build big-endian kernel" 1518 depends on BROKEN 1519 help 1520 Say Y if you plan on running a kernel with a big-endian userspace. 1521 1522config CPU_LITTLE_ENDIAN 1523 bool "Build little-endian kernel" 1524 help 1525 Say Y if you plan on running a kernel with a little-endian userspace. 1526 This is usually the case for distributions targeting arm64. 1527 1528endchoice 1529 1530config NR_CPUS 1531 int "Maximum number of CPUs (2-4096)" 1532 range 2 4096 1533 default "512" 1534 1535config HOTPLUG_CPU 1536 bool "Support for hot-pluggable CPUs" 1537 select GENERIC_IRQ_MIGRATION 1538 help 1539 Say Y here to experiment with turning CPUs off and on. CPUs 1540 can be controlled through /sys/devices/system/cpu. 1541 1542# Common NUMA Features 1543config NUMA 1544 bool "NUMA Memory Allocation and Scheduler Support" 1545 select GENERIC_ARCH_NUMA 1546 select OF_NUMA 1547 select HAVE_SETUP_PER_CPU_AREA 1548 select NEED_PER_CPU_EMBED_FIRST_CHUNK 1549 select NEED_PER_CPU_PAGE_FIRST_CHUNK 1550 select USE_PERCPU_NUMA_NODE_ID 1551 help 1552 Enable NUMA (Non-Uniform Memory Access) support. 1553 1554 The kernel will try to allocate memory used by a CPU on the 1555 local memory of the CPU and add some more 1556 NUMA awareness to the kernel. 1557 1558config NODES_SHIFT 1559 int "Maximum NUMA Nodes (as a power of 2)" 1560 range 1 10 1561 default "4" 1562 depends on NUMA 1563 help 1564 Specify the maximum number of NUMA Nodes available on the target 1565 system. Increases memory reserved to accommodate various tables. 1566 1567source "kernel/Kconfig.hz" 1568 1569config ARCH_SPARSEMEM_ENABLE 1570 def_bool y 1571 select SPARSEMEM_VMEMMAP_ENABLE 1572 1573config HW_PERF_EVENTS 1574 def_bool y 1575 depends on ARM_PMU 1576 1577# Supported by clang >= 7.0 or GCC >= 12.0.0 1578config CC_HAVE_SHADOW_CALL_STACK 1579 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1580 1581config PARAVIRT 1582 bool "Enable paravirtualization code" 1583 help 1584 This changes the kernel so it can modify itself when it is run 1585 under a hypervisor, potentially improving performance significantly 1586 over full virtualization. 1587 1588config PARAVIRT_TIME_ACCOUNTING 1589 bool "Paravirtual steal time accounting" 1590 select PARAVIRT 1591 help 1592 Select this option to enable fine granularity task steal time 1593 accounting. Time spent executing other tasks in parallel with 1594 the current vCPU is discounted from the vCPU power. To account for 1595 that, there can be a small performance impact. 1596 1597 If in doubt, say N here. 1598 1599config ARCH_SUPPORTS_KEXEC 1600 def_bool PM_SLEEP_SMP 1601 1602config ARCH_SUPPORTS_KEXEC_FILE 1603 def_bool y 1604 1605config ARCH_SELECTS_KEXEC_FILE 1606 def_bool y 1607 depends on KEXEC_FILE 1608 select HAVE_IMA_KEXEC if IMA 1609 1610config ARCH_SUPPORTS_KEXEC_SIG 1611 def_bool y 1612 1613config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG 1614 def_bool y 1615 1616config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG 1617 def_bool y 1618 1619config ARCH_SUPPORTS_KEXEC_HANDOVER 1620 def_bool y 1621 1622config ARCH_SUPPORTS_CRASH_DUMP 1623 def_bool y 1624 1625config ARCH_DEFAULT_CRASH_DUMP 1626 def_bool y 1627 1628config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION 1629 def_bool CRASH_RESERVE 1630 1631config TRANS_TABLE 1632 def_bool y 1633 depends on HIBERNATION || KEXEC_CORE 1634 1635config XEN_DOM0 1636 def_bool y 1637 depends on XEN 1638 1639config XEN 1640 bool "Xen guest support on ARM64" 1641 depends on ARM64 && OF 1642 select SWIOTLB_XEN 1643 select PARAVIRT 1644 help 1645 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1646 1647# include/linux/mmzone.h requires the following to be true: 1648# 1649# MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1650# 1651# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT: 1652# 1653# | SECTION_SIZE_BITS | PAGE_SHIFT | max MAX_PAGE_ORDER | default MAX_PAGE_ORDER | 1654# ----+-------------------+--------------+----------------------+-------------------------+ 1655# 4K | 27 | 12 | 15 | 10 | 1656# 16K | 27 | 14 | 13 | 11 | 1657# 64K | 29 | 16 | 13 | 13 | 1658config ARCH_FORCE_MAX_ORDER 1659 int 1660 default "13" if ARM64_64K_PAGES 1661 default "11" if ARM64_16K_PAGES 1662 default "10" 1663 help 1664 The kernel page allocator limits the size of maximal physically 1665 contiguous allocations. The limit is called MAX_PAGE_ORDER and it 1666 defines the maximal power of two of number of pages that can be 1667 allocated as a single contiguous block. This option allows 1668 overriding the default setting when ability to allocate very 1669 large blocks of physically contiguous memory is required. 1670 1671 The maximal size of allocation cannot exceed the size of the 1672 section, so the value of MAX_PAGE_ORDER should satisfy 1673 1674 MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1675 1676 Don't change if unsure. 1677 1678config UNMAP_KERNEL_AT_EL0 1679 bool "Unmap kernel when running in userspace (KPTI)" if EXPERT 1680 default y 1681 help 1682 Speculation attacks against some high-performance processors can 1683 be used to bypass MMU permission checks and leak kernel data to 1684 userspace. This can be defended against by unmapping the kernel 1685 when running in userspace, mapping it back in on exception entry 1686 via a trampoline page in the vector table. 1687 1688 If unsure, say Y. 1689 1690config MITIGATE_SPECTRE_BRANCH_HISTORY 1691 bool "Mitigate Spectre style attacks against branch history" if EXPERT 1692 default y 1693 help 1694 Speculation attacks against some high-performance processors can 1695 make use of branch history to influence future speculation. 1696 When taking an exception from user-space, a sequence of branches 1697 or a firmware call overwrites the branch history. 1698 1699config ARM64_SW_TTBR0_PAN 1700 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1701 depends on !KCSAN 1702 help 1703 Enabling this option prevents the kernel from accessing 1704 user-space memory directly by pointing TTBR0_EL1 to a reserved 1705 zeroed area and reserved ASID. The user access routines 1706 restore the valid TTBR0_EL1 temporarily. 1707 1708config ARM64_TAGGED_ADDR_ABI 1709 bool "Enable the tagged user addresses syscall ABI" 1710 default y 1711 help 1712 When this option is enabled, user applications can opt in to a 1713 relaxed ABI via prctl() allowing tagged addresses to be passed 1714 to system calls as pointer arguments. For details, see 1715 Documentation/arch/arm64/tagged-address-abi.rst. 1716 1717menuconfig COMPAT 1718 bool "Kernel support for 32-bit EL0" 1719 depends on ARM64_4K_PAGES || EXPERT 1720 select HAVE_UID16 1721 select OLD_SIGSUSPEND3 1722 select COMPAT_OLD_SIGACTION 1723 help 1724 This option enables support for a 32-bit EL0 running under a 64-bit 1725 kernel at EL1. AArch32-specific components such as system calls, 1726 the user helper functions, VFP support and the ptrace interface are 1727 handled appropriately by the kernel. 1728 1729 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1730 that you will only be able to execute AArch32 binaries that were compiled 1731 with page size aligned segments. 1732 1733 If you want to execute 32-bit userspace applications, say Y. 1734 1735if COMPAT 1736 1737config KUSER_HELPERS 1738 bool "Enable kuser helpers page for 32-bit applications" 1739 default y 1740 help 1741 Warning: disabling this option may break 32-bit user programs. 1742 1743 Provide kuser helpers to compat tasks. The kernel provides 1744 helper code to userspace in read only form at a fixed location 1745 to allow userspace to be independent of the CPU type fitted to 1746 the system. This permits binaries to be run on ARMv4 through 1747 to ARMv8 without modification. 1748 1749 See Documentation/arch/arm/kernel_user_helpers.rst for details. 1750 1751 However, the fixed address nature of these helpers can be used 1752 by ROP (return orientated programming) authors when creating 1753 exploits. 1754 1755 If all of the binaries and libraries which run on your platform 1756 are built specifically for your platform, and make no use of 1757 these helpers, then you can turn this option off to hinder 1758 such exploits. However, in that case, if a binary or library 1759 relying on those helpers is run, it will not function correctly. 1760 1761 Say N here only if you are absolutely certain that you do not 1762 need these helpers; otherwise, the safe option is to say Y. 1763 1764config COMPAT_VDSO 1765 bool "Enable vDSO for 32-bit applications" 1766 depends on !CPU_BIG_ENDIAN 1767 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != "" 1768 default y 1769 help 1770 Place in the process address space of 32-bit applications an 1771 ELF shared object providing fast implementations of gettimeofday 1772 and clock_gettime. 1773 1774 You must have a 32-bit build of glibc 2.22 or later for programs 1775 to seamlessly take advantage of this. 1776 1777config THUMB2_COMPAT_VDSO 1778 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1779 depends on COMPAT_VDSO 1780 default y 1781 help 1782 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1783 otherwise with '-marm'. 1784 1785config COMPAT_ALIGNMENT_FIXUPS 1786 bool "Fix up misaligned multi-word loads and stores in user space" 1787 1788menuconfig ARMV8_DEPRECATED 1789 bool "Emulate deprecated/obsolete ARMv8 instructions" 1790 depends on SYSCTL 1791 help 1792 Legacy software support may require certain instructions 1793 that have been deprecated or obsoleted in the architecture. 1794 1795 Enable this config to enable selective emulation of these 1796 features. 1797 1798 If unsure, say Y 1799 1800if ARMV8_DEPRECATED 1801 1802config SWP_EMULATION 1803 bool "Emulate SWP/SWPB instructions" 1804 help 1805 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1806 they are always undefined. Say Y here to enable software 1807 emulation of these instructions for userspace using LDXR/STXR. 1808 This feature can be controlled at runtime with the abi.swp 1809 sysctl which is disabled by default. 1810 1811 In some older versions of glibc [<=2.8] SWP is used during futex 1812 trylock() operations with the assumption that the code will not 1813 be preempted. This invalid assumption may be more likely to fail 1814 with SWP emulation enabled, leading to deadlock of the user 1815 application. 1816 1817 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1818 on an external transaction monitoring block called a global 1819 monitor to maintain update atomicity. If your system does not 1820 implement a global monitor, this option can cause programs that 1821 perform SWP operations to uncached memory to deadlock. 1822 1823 If unsure, say Y 1824 1825config CP15_BARRIER_EMULATION 1826 bool "Emulate CP15 Barrier instructions" 1827 help 1828 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1829 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1830 strongly recommended to use the ISB, DSB, and DMB 1831 instructions instead. 1832 1833 Say Y here to enable software emulation of these 1834 instructions for AArch32 userspace code. When this option is 1835 enabled, CP15 barrier usage is traced which can help 1836 identify software that needs updating. This feature can be 1837 controlled at runtime with the abi.cp15_barrier sysctl. 1838 1839 If unsure, say Y 1840 1841config SETEND_EMULATION 1842 bool "Emulate SETEND instruction" 1843 help 1844 The SETEND instruction alters the data-endianness of the 1845 AArch32 EL0, and is deprecated in ARMv8. 1846 1847 Say Y here to enable software emulation of the instruction 1848 for AArch32 userspace code. This feature can be controlled 1849 at runtime with the abi.setend sysctl. 1850 1851 Note: All the cpus on the system must have mixed endian support at EL0 1852 for this feature to be enabled. If a new CPU - which doesn't support mixed 1853 endian - is hotplugged in after this feature has been enabled, there could 1854 be unexpected results in the applications. 1855 1856 If unsure, say Y 1857endif # ARMV8_DEPRECATED 1858 1859endif # COMPAT 1860 1861menu "ARMv8.1 architectural features" 1862 1863config ARM64_HW_AFDBM 1864 bool "Support for hardware updates of the Access and Dirty page flags" 1865 default y 1866 help 1867 The ARMv8.1 architecture extensions introduce support for 1868 hardware updates of the access and dirty information in page 1869 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1870 capable processors, accesses to pages with PTE_AF cleared will 1871 set this bit instead of raising an access flag fault. 1872 Similarly, writes to read-only pages with the DBM bit set will 1873 clear the read-only bit (AP[2]) instead of raising a 1874 permission fault. 1875 1876 Kernels built with this configuration option enabled continue 1877 to work on pre-ARMv8.1 hardware and the performance impact is 1878 minimal. If unsure, say Y. 1879 1880endmenu # "ARMv8.1 architectural features" 1881 1882menu "ARMv8.2 architectural features" 1883 1884config ARM64_PMEM 1885 bool "Enable support for persistent memory" 1886 select ARCH_HAS_PMEM_API 1887 select ARCH_HAS_UACCESS_FLUSHCACHE 1888 help 1889 Say Y to enable support for the persistent memory API based on the 1890 ARMv8.2 DCPoP feature. 1891 1892 The feature is detected at runtime, and the kernel will use DC CVAC 1893 operations if DC CVAP is not supported (following the behaviour of 1894 DC CVAP itself if the system does not define a point of persistence). 1895 1896config ARM64_RAS_EXTN 1897 bool "Enable support for RAS CPU Extensions" 1898 default y 1899 help 1900 CPUs that support the Reliability, Availability and Serviceability 1901 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1902 errors, classify them and report them to software. 1903 1904 On CPUs with these extensions system software can use additional 1905 barriers to determine if faults are pending and read the 1906 classification from a new set of registers. 1907 1908 Selecting this feature will allow the kernel to use these barriers 1909 and access the new registers if the system supports the extension. 1910 Platform RAS features may additionally depend on firmware support. 1911 1912config ARM64_CNP 1913 bool "Enable support for Common Not Private (CNP) translations" 1914 default y 1915 help 1916 Common Not Private (CNP) allows translation table entries to 1917 be shared between different PEs in the same inner shareable 1918 domain, so the hardware can use this fact to optimise the 1919 caching of such entries in the TLB. 1920 1921 Selecting this option allows the CNP feature to be detected 1922 at runtime, and does not affect PEs that do not implement 1923 this feature. 1924 1925endmenu # "ARMv8.2 architectural features" 1926 1927menu "ARMv8.3 architectural features" 1928 1929config ARM64_PTR_AUTH 1930 bool "Enable support for pointer authentication" 1931 default y 1932 help 1933 Pointer authentication (part of the ARMv8.3 Extensions) provides 1934 instructions for signing and authenticating pointers against secret 1935 keys, which can be used to mitigate Return Oriented Programming (ROP) 1936 and other attacks. 1937 1938 This option enables these instructions at EL0 (i.e. for userspace). 1939 Choosing this option will cause the kernel to initialise secret keys 1940 for each process at exec() time, with these keys being 1941 context-switched along with the process. 1942 1943 The feature is detected at runtime. If the feature is not present in 1944 hardware it will not be advertised to userspace/KVM guest nor will it 1945 be enabled. 1946 1947 If the feature is present on the boot CPU but not on a late CPU, then 1948 the late CPU will be parked. Also, if the boot CPU does not have 1949 address auth and the late CPU has then the late CPU will still boot 1950 but with the feature disabled. On such a system, this option should 1951 not be selected. 1952 1953config ARM64_PTR_AUTH_KERNEL 1954 bool "Use pointer authentication for kernel" 1955 default y 1956 depends on ARM64_PTR_AUTH 1957 # Modern compilers insert a .note.gnu.property section note for PAC 1958 # which is only understood by binutils starting with version 2.33.1. 1959 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 1960 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1961 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 1962 help 1963 If the compiler supports the -mbranch-protection or 1964 -msign-return-address flag (e.g. GCC 7 or later), then this option 1965 will cause the kernel itself to be compiled with return address 1966 protection. In this case, and if the target hardware is known to 1967 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1968 disabled with minimal loss of protection. 1969 1970 This feature works with FUNCTION_GRAPH_TRACER option only if 1971 DYNAMIC_FTRACE_WITH_ARGS is enabled. 1972 1973config CC_HAS_BRANCH_PROT_PAC_RET 1974 # GCC 9 or later, clang 8 or later 1975 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1976 1977config AS_HAS_CFI_NEGATE_RA_STATE 1978 # binutils 2.34+ 1979 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1980 1981endmenu # "ARMv8.3 architectural features" 1982 1983menu "ARMv8.4 architectural features" 1984 1985config ARM64_AMU_EXTN 1986 bool "Enable support for the Activity Monitors Unit CPU extension" 1987 default y 1988 help 1989 The activity monitors extension is an optional extension introduced 1990 by the ARMv8.4 CPU architecture. This enables support for version 1 1991 of the activity monitors architecture, AMUv1. 1992 1993 To enable the use of this extension on CPUs that implement it, say Y. 1994 1995 Note that for architectural reasons, firmware _must_ implement AMU 1996 support when running on CPUs that present the activity monitors 1997 extension. The required support is present in: 1998 * Version 1.5 and later of the ARM Trusted Firmware 1999 2000 For kernels that have this configuration enabled but boot with broken 2001 firmware, you may need to say N here until the firmware is fixed. 2002 Otherwise you may experience firmware panics or lockups when 2003 accessing the counter registers. Even if you are not observing these 2004 symptoms, the values returned by the register reads might not 2005 correctly reflect reality. Most commonly, the value read will be 0, 2006 indicating that the counter is not enabled. 2007 2008config ARM64_TLB_RANGE 2009 bool "Enable support for tlbi range feature" 2010 default y 2011 help 2012 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 2013 range of input addresses. 2014 2015config ARM64_MPAM 2016 bool "Enable support for MPAM" 2017 select ARM64_MPAM_DRIVER if EXPERT # does nothing yet 2018 select ACPI_MPAM if ACPI 2019 help 2020 Memory System Resource Partitioning and Monitoring (MPAM) is an 2021 optional extension to the Arm architecture that allows each 2022 transaction issued to the memory system to be labelled with a 2023 Partition identifier (PARTID) and Performance Monitoring Group 2024 identifier (PMG). 2025 2026 Memory system components, such as the caches, can be configured with 2027 policies to control how much of various physical resources (such as 2028 memory bandwidth or cache memory) the transactions labelled with each 2029 PARTID can consume. Depending on the capabilities of the hardware, 2030 the PARTID and PMG can also be used as filtering criteria to measure 2031 the memory system resource consumption of different parts of a 2032 workload. 2033 2034 Use of this extension requires CPU support, support in the 2035 Memory System Components (MSC), and a description from firmware 2036 of where the MSCs are in the address space. 2037 2038 MPAM is exposed to user-space via the resctrl pseudo filesystem. 2039 2040endmenu # "ARMv8.4 architectural features" 2041 2042menu "ARMv8.5 architectural features" 2043 2044config AS_HAS_ARMV8_5 2045 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 2046 2047config ARM64_BTI 2048 bool "Branch Target Identification support" 2049 default y 2050 help 2051 Branch Target Identification (part of the ARMv8.5 Extensions) 2052 provides a mechanism to limit the set of locations to which computed 2053 branch instructions such as BR or BLR can jump. 2054 2055 To make use of BTI on CPUs that support it, say Y. 2056 2057 BTI is intended to provide complementary protection to other control 2058 flow integrity protection mechanisms, such as the Pointer 2059 authentication mechanism provided as part of the ARMv8.3 Extensions. 2060 For this reason, it does not make sense to enable this option without 2061 also enabling support for pointer authentication. Thus, when 2062 enabling this option you should also select ARM64_PTR_AUTH=y. 2063 2064 Userspace binaries must also be specifically compiled to make use of 2065 this mechanism. If you say N here or the hardware does not support 2066 BTI, such binaries can still run, but you get no additional 2067 enforcement of branch destinations. 2068 2069config ARM64_BTI_KERNEL 2070 bool "Use Branch Target Identification for kernel" 2071 default y 2072 depends on ARM64_BTI 2073 depends on ARM64_PTR_AUTH_KERNEL 2074 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 2075 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 2076 depends on !CC_IS_GCC || GCC_VERSION >= 100100 2077 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671 2078 depends on !CC_IS_GCC 2079 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 2080 help 2081 Build the kernel with Branch Target Identification annotations 2082 and enable enforcement of this for kernel code. When this option 2083 is enabled and the system supports BTI all kernel code including 2084 modular code must have BTI enabled. 2085 2086config CC_HAS_BRANCH_PROT_PAC_RET_BTI 2087 # GCC 9 or later, clang 8 or later 2088 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 2089 2090config ARM64_E0PD 2091 bool "Enable support for E0PD" 2092 default y 2093 help 2094 E0PD (part of the ARMv8.5 extensions) allows us to ensure 2095 that EL0 accesses made via TTBR1 always fault in constant time, 2096 providing similar benefits to KASLR as those provided by KPTI, but 2097 with lower overhead and without disrupting legitimate access to 2098 kernel memory such as SPE. 2099 2100 This option enables E0PD for TTBR1 where available. 2101 2102config ARM64_AS_HAS_MTE 2103 # Initial support for MTE went in binutils 2.32.0, checked with 2104 # ".arch armv8.5-a+memtag" below. However, this was incomplete 2105 # as a late addition to the final architecture spec (LDGM/STGM) 2106 # is only supported in the newer 2.32.x and 2.33 binutils 2107 # versions, hence the extra "stgm" instruction check below. 2108 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 2109 2110config ARM64_MTE 2111 bool "Memory Tagging Extension support" 2112 default y 2113 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 2114 depends on AS_HAS_ARMV8_5 2115 # Required for tag checking in the uaccess routines 2116 select ARCH_HAS_SUBPAGE_FAULTS 2117 select ARCH_USES_HIGH_VMA_FLAGS 2118 select ARCH_USES_PG_ARCH_2 2119 select ARCH_USES_PG_ARCH_3 2120 help 2121 Memory Tagging (part of the ARMv8.5 Extensions) provides 2122 architectural support for run-time, always-on detection of 2123 various classes of memory error to aid with software debugging 2124 to eliminate vulnerabilities arising from memory-unsafe 2125 languages. 2126 2127 This option enables the support for the Memory Tagging 2128 Extension at EL0 (i.e. for userspace). 2129 2130 Selecting this option allows the feature to be detected at 2131 runtime. Any secondary CPU not implementing this feature will 2132 not be allowed a late bring-up. 2133 2134 Userspace binaries that want to use this feature must 2135 explicitly opt in. The mechanism for the userspace is 2136 described in: 2137 2138 Documentation/arch/arm64/memory-tagging-extension.rst. 2139 2140endmenu # "ARMv8.5 architectural features" 2141 2142menu "ARMv8.7 architectural features" 2143 2144config ARM64_EPAN 2145 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 2146 default y 2147 help 2148 Enhanced Privileged Access Never (EPAN) allows Privileged 2149 Access Never to be used with Execute-only mappings. 2150 2151 The feature is detected at runtime, and will remain disabled 2152 if the cpu does not implement the feature. 2153endmenu # "ARMv8.7 architectural features" 2154 2155config AS_HAS_MOPS 2156 def_bool $(as-instr,.arch_extension mops) 2157 2158menu "ARMv8.9 architectural features" 2159 2160config ARM64_POE 2161 prompt "Permission Overlay Extension" 2162 def_bool y 2163 select ARCH_USES_HIGH_VMA_FLAGS 2164 select ARCH_HAS_PKEYS 2165 help 2166 The Permission Overlay Extension is used to implement Memory 2167 Protection Keys. Memory Protection Keys provides a mechanism for 2168 enforcing page-based protections, but without requiring modification 2169 of the page tables when an application changes protection domains. 2170 2171 For details, see Documentation/core-api/protection-keys.rst 2172 2173 If unsure, say y. 2174 2175config ARCH_PKEY_BITS 2176 int 2177 default 3 2178 2179config ARM64_HAFT 2180 bool "Support for Hardware managed Access Flag for Table Descriptors" 2181 depends on ARM64_HW_AFDBM 2182 default y 2183 help 2184 The ARMv8.9/ARMv9.5 introduces the feature Hardware managed Access 2185 Flag for Table descriptors. When enabled an architectural executed 2186 memory access will update the Access Flag in each Table descriptor 2187 which is accessed during the translation table walk and for which 2188 the Access Flag is 0. The Access Flag of the Table descriptor use 2189 the same bit of PTE_AF. 2190 2191 The feature will only be enabled if all the CPUs in the system 2192 support this feature. If unsure, say Y. 2193 2194endmenu # "ARMv8.9 architectural features" 2195 2196menu "ARMv9.4 architectural features" 2197 2198config ARM64_GCS 2199 bool "Enable support for Guarded Control Stack (GCS)" 2200 default y 2201 select ARCH_HAS_USER_SHADOW_STACK 2202 select ARCH_USES_HIGH_VMA_FLAGS 2203 help 2204 Guarded Control Stack (GCS) provides support for a separate 2205 stack with restricted access which contains only return 2206 addresses. This can be used to harden against some attacks 2207 by comparing return address used by the program with what is 2208 stored in the GCS, and may also be used to efficiently obtain 2209 the call stack for applications such as profiling. 2210 2211 The feature is detected at runtime, and will remain disabled 2212 if the system does not implement the feature. 2213 2214endmenu # "ARMv9.4 architectural features" 2215 2216config ARM64_SVE 2217 bool "ARM Scalable Vector Extension support" 2218 default y 2219 help 2220 The Scalable Vector Extension (SVE) is an extension to the AArch64 2221 execution state which complements and extends the SIMD functionality 2222 of the base architecture to support much larger vectors and to enable 2223 additional vectorisation opportunities. 2224 2225 To enable use of this extension on CPUs that implement it, say Y. 2226 2227 On CPUs that support the SVE2 extensions, this option will enable 2228 those too. 2229 2230 Note that for architectural reasons, firmware _must_ implement SVE 2231 support when running on SVE capable hardware. The required support 2232 is present in: 2233 2234 * version 1.5 and later of the ARM Trusted Firmware 2235 * the AArch64 boot wrapper since commit 5e1261e08abf 2236 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 2237 2238 For other firmware implementations, consult the firmware documentation 2239 or vendor. 2240 2241 If you need the kernel to boot on SVE-capable hardware with broken 2242 firmware, you may need to say N here until you get your firmware 2243 fixed. Otherwise, you may experience firmware panics or lockups when 2244 booting the kernel. If unsure and you are not observing these 2245 symptoms, you should assume that it is safe to say Y. 2246 2247config ARM64_SME 2248 bool "ARM Scalable Matrix Extension support" 2249 default y 2250 depends on ARM64_SVE 2251 help 2252 The Scalable Matrix Extension (SME) is an extension to the AArch64 2253 execution state which utilises a substantial subset of the SVE 2254 instruction set, together with the addition of new architectural 2255 register state capable of holding two dimensional matrix tiles to 2256 enable various matrix operations. 2257 2258config ARM64_PSEUDO_NMI 2259 bool "Support for NMI-like interrupts" 2260 select ARM_GIC_V3 2261 help 2262 Adds support for mimicking Non-Maskable Interrupts through the use of 2263 GIC interrupt priority. This support requires version 3 or later of 2264 ARM GIC. 2265 2266 This high priority configuration for interrupts needs to be 2267 explicitly enabled by setting the kernel parameter 2268 "irqchip.gicv3_pseudo_nmi" to 1. 2269 2270 If unsure, say N 2271 2272if ARM64_PSEUDO_NMI 2273config ARM64_DEBUG_PRIORITY_MASKING 2274 bool "Debug interrupt priority masking" 2275 help 2276 This adds runtime checks to functions enabling/disabling 2277 interrupts when using priority masking. The additional checks verify 2278 the validity of ICC_PMR_EL1 when calling concerned functions. 2279 2280 If unsure, say N 2281endif # ARM64_PSEUDO_NMI 2282 2283config RELOCATABLE 2284 bool "Build a relocatable kernel image" if EXPERT 2285 select ARCH_HAS_RELR 2286 default y 2287 help 2288 This builds the kernel as a Position Independent Executable (PIE), 2289 which retains all relocation metadata required to relocate the 2290 kernel binary at runtime to a different virtual address than the 2291 address it was linked at. 2292 Since AArch64 uses the RELA relocation format, this requires a 2293 relocation pass at runtime even if the kernel is loaded at the 2294 same address it was linked at. 2295 2296config RANDOMIZE_BASE 2297 bool "Randomize the address of the kernel image" 2298 select RELOCATABLE 2299 help 2300 Randomizes the virtual address at which the kernel image is 2301 loaded, as a security feature that deters exploit attempts 2302 relying on knowledge of the location of kernel internals. 2303 2304 It is the bootloader's job to provide entropy, by passing a 2305 random u64 value in /chosen/kaslr-seed at kernel entry. 2306 2307 When booting via the UEFI stub, it will invoke the firmware's 2308 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 2309 to the kernel proper. In addition, it will randomise the physical 2310 location of the kernel Image as well. 2311 2312 If unsure, say N. 2313 2314config RANDOMIZE_MODULE_REGION_FULL 2315 bool "Randomize the module region over a 2 GB range" 2316 depends on RANDOMIZE_BASE 2317 default y 2318 help 2319 Randomizes the location of the module region inside a 2 GB window 2320 covering the core kernel. This way, it is less likely for modules 2321 to leak information about the location of core kernel data structures 2322 but it does imply that function calls between modules and the core 2323 kernel will need to be resolved via veneers in the module PLT. 2324 2325 When this option is not set, the module region will be randomized over 2326 a limited range that contains the [_stext, _etext] interval of the 2327 core kernel, so branch relocations are almost always in range unless 2328 the region is exhausted. In this particular case of region 2329 exhaustion, modules might be able to fall back to a larger 2GB area. 2330 2331config CC_HAVE_STACKPROTECTOR_SYSREG 2332 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 2333 2334config STACKPROTECTOR_PER_TASK 2335 def_bool y 2336 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 2337 2338config UNWIND_PATCH_PAC_INTO_SCS 2339 bool "Enable shadow call stack dynamically using code patching" 2340 depends on CC_IS_CLANG 2341 depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET 2342 depends on SHADOW_CALL_STACK 2343 select UNWIND_TABLES 2344 select DYNAMIC_SCS 2345 2346config ARM64_CONTPTE 2347 bool "Contiguous PTE mappings for user memory" if EXPERT 2348 depends on TRANSPARENT_HUGEPAGE 2349 default y 2350 help 2351 When enabled, user mappings are configured using the PTE contiguous 2352 bit, for any mappings that meet the size and alignment requirements. 2353 This reduces TLB pressure and improves performance. 2354 2355endmenu # "Kernel Features" 2356 2357menu "Boot options" 2358 2359config ARM64_ACPI_PARKING_PROTOCOL 2360 bool "Enable support for the ARM64 ACPI parking protocol" 2361 depends on ACPI 2362 help 2363 Enable support for the ARM64 ACPI parking protocol. If disabled 2364 the kernel will not allow booting through the ARM64 ACPI parking 2365 protocol even if the corresponding data is present in the ACPI 2366 MADT table. 2367 2368config CMDLINE 2369 string "Default kernel command string" 2370 default "" 2371 help 2372 Provide a set of default command-line options at build time by 2373 entering them here. As a minimum, you should specify the the 2374 root device (e.g. root=/dev/nfs). 2375 2376choice 2377 prompt "Kernel command line type" 2378 depends on CMDLINE != "" 2379 default CMDLINE_FROM_BOOTLOADER 2380 help 2381 Choose how the kernel will handle the provided default kernel 2382 command line string. 2383 2384config CMDLINE_FROM_BOOTLOADER 2385 bool "Use bootloader kernel arguments if available" 2386 help 2387 Uses the command-line options passed by the boot loader. If 2388 the boot loader doesn't provide any, the default kernel command 2389 string provided in CMDLINE will be used. 2390 2391config CMDLINE_FORCE 2392 bool "Always use the default kernel command string" 2393 help 2394 Always use the default kernel command string, even if the boot 2395 loader passes other arguments to the kernel. 2396 This is useful if you cannot or don't want to change the 2397 command-line options your boot loader passes to the kernel. 2398 2399endchoice 2400 2401config EFI_STUB 2402 bool 2403 2404config EFI 2405 bool "UEFI runtime support" 2406 depends on OF && !CPU_BIG_ENDIAN 2407 depends on KERNEL_MODE_NEON 2408 select ARCH_SUPPORTS_ACPI 2409 select LIBFDT 2410 select UCS2_STRING 2411 select EFI_PARAMS_FROM_FDT 2412 select EFI_RUNTIME_WRAPPERS 2413 select EFI_STUB 2414 select EFI_GENERIC_STUB 2415 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 2416 default y 2417 help 2418 This option provides support for runtime services provided 2419 by UEFI firmware (such as non-volatile variables, realtime 2420 clock, and platform reset). A UEFI stub is also provided to 2421 allow the kernel to be booted as an EFI application. This 2422 is only useful on systems that have UEFI firmware. 2423 2424config COMPRESSED_INSTALL 2425 bool "Install compressed image by default" 2426 help 2427 This makes the regular "make install" install the compressed 2428 image we built, not the legacy uncompressed one. 2429 2430 You can check that a compressed image works for you by doing 2431 "make zinstall" first, and verifying that everything is fine 2432 in your environment before making "make install" do this for 2433 you. 2434 2435config DMI 2436 bool "Enable support for SMBIOS (DMI) tables" 2437 depends on EFI 2438 default y 2439 help 2440 This enables SMBIOS/DMI feature for systems. 2441 2442 This option is only useful on systems that have UEFI firmware. 2443 However, even with this option, the resultant kernel should 2444 continue to boot on existing non-UEFI platforms. 2445 2446endmenu # "Boot options" 2447 2448menu "Power management options" 2449 2450source "kernel/power/Kconfig" 2451 2452config ARCH_HIBERNATION_POSSIBLE 2453 def_bool y 2454 depends on CPU_PM 2455 2456config ARCH_HIBERNATION_HEADER 2457 def_bool y 2458 depends on HIBERNATION 2459 2460config ARCH_SUSPEND_POSSIBLE 2461 def_bool y 2462 2463endmenu # "Power management options" 2464 2465menu "CPU Power Management" 2466 2467source "drivers/cpuidle/Kconfig" 2468 2469source "drivers/cpufreq/Kconfig" 2470 2471endmenu # "CPU Power Management" 2472 2473source "drivers/acpi/Kconfig" 2474 2475source "arch/arm64/kvm/Kconfig" 2476 2477source "kernel/livepatch/Kconfig" 2478