xref: /linux/fs/btrfs/ioctl.c (revision c3018a2c6adae9b32f7b9259f5b38257ba9a758e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include <linux/io_uring/cmd.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "export.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "block-group.h"
50 #include "fs.h"
51 #include "accessors.h"
52 #include "extent-tree.h"
53 #include "root-tree.h"
54 #include "defrag.h"
55 #include "dir-item.h"
56 #include "uuid-tree.h"
57 #include "ioctl.h"
58 #include "file.h"
59 #include "scrub.h"
60 #include "super.h"
61 
62 #ifdef CONFIG_64BIT
63 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
64  * structures are incorrect, as the timespec structure from userspace
65  * is 4 bytes too small. We define these alternatives here to teach
66  * the kernel about the 32-bit struct packing.
67  */
68 struct btrfs_ioctl_timespec_32 {
69 	__u64 sec;
70 	__u32 nsec;
71 } __attribute__ ((__packed__));
72 
73 struct btrfs_ioctl_received_subvol_args_32 {
74 	char	uuid[BTRFS_UUID_SIZE];	/* in */
75 	__u64	stransid;		/* in */
76 	__u64	rtransid;		/* out */
77 	struct btrfs_ioctl_timespec_32 stime; /* in */
78 	struct btrfs_ioctl_timespec_32 rtime; /* out */
79 	__u64	flags;			/* in */
80 	__u64	reserved[16];		/* in */
81 } __attribute__ ((__packed__));
82 
83 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
84 				struct btrfs_ioctl_received_subvol_args_32)
85 #endif
86 
87 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
88 struct btrfs_ioctl_send_args_32 {
89 	__s64 send_fd;			/* in */
90 	__u64 clone_sources_count;	/* in */
91 	compat_uptr_t clone_sources;	/* in */
92 	__u64 parent_root;		/* in */
93 	__u64 flags;			/* in */
94 	__u32 version;			/* in */
95 	__u8  reserved[28];		/* in */
96 } __attribute__ ((__packed__));
97 
98 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
99 			       struct btrfs_ioctl_send_args_32)
100 
101 struct btrfs_ioctl_encoded_io_args_32 {
102 	compat_uptr_t iov;
103 	compat_ulong_t iovcnt;
104 	__s64 offset;
105 	__u64 flags;
106 	__u64 len;
107 	__u64 unencoded_len;
108 	__u64 unencoded_offset;
109 	__u32 compression;
110 	__u32 encryption;
111 	__u8 reserved[64];
112 };
113 
114 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
115 				       struct btrfs_ioctl_encoded_io_args_32)
116 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
117 					struct btrfs_ioctl_encoded_io_args_32)
118 #endif
119 
120 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(const struct inode * inode,unsigned int flags)121 static unsigned int btrfs_mask_fsflags_for_type(const struct inode *inode,
122 						unsigned int flags)
123 {
124 	if (S_ISDIR(inode->i_mode))
125 		return flags;
126 	else if (S_ISREG(inode->i_mode))
127 		return flags & ~FS_DIRSYNC_FL;
128 	else
129 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
130 }
131 
132 /*
133  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
134  * ioctl.
135  */
btrfs_inode_flags_to_fsflags(const struct btrfs_inode * inode)136 static unsigned int btrfs_inode_flags_to_fsflags(const struct btrfs_inode *inode)
137 {
138 	unsigned int iflags = 0;
139 	u32 flags = inode->flags;
140 	u32 ro_flags = inode->ro_flags;
141 
142 	if (flags & BTRFS_INODE_SYNC)
143 		iflags |= FS_SYNC_FL;
144 	if (flags & BTRFS_INODE_IMMUTABLE)
145 		iflags |= FS_IMMUTABLE_FL;
146 	if (flags & BTRFS_INODE_APPEND)
147 		iflags |= FS_APPEND_FL;
148 	if (flags & BTRFS_INODE_NODUMP)
149 		iflags |= FS_NODUMP_FL;
150 	if (flags & BTRFS_INODE_NOATIME)
151 		iflags |= FS_NOATIME_FL;
152 	if (flags & BTRFS_INODE_DIRSYNC)
153 		iflags |= FS_DIRSYNC_FL;
154 	if (flags & BTRFS_INODE_NODATACOW)
155 		iflags |= FS_NOCOW_FL;
156 	if (ro_flags & BTRFS_INODE_RO_VERITY)
157 		iflags |= FS_VERITY_FL;
158 
159 	if (flags & BTRFS_INODE_NOCOMPRESS)
160 		iflags |= FS_NOCOMP_FL;
161 	else if (flags & BTRFS_INODE_COMPRESS)
162 		iflags |= FS_COMPR_FL;
163 
164 	return iflags;
165 }
166 
167 /*
168  * Update inode->i_flags based on the btrfs internal flags.
169  */
btrfs_sync_inode_flags_to_i_flags(struct btrfs_inode * inode)170 void btrfs_sync_inode_flags_to_i_flags(struct btrfs_inode *inode)
171 {
172 	unsigned int new_fl = 0;
173 
174 	if (inode->flags & BTRFS_INODE_SYNC)
175 		new_fl |= S_SYNC;
176 	if (inode->flags & BTRFS_INODE_IMMUTABLE)
177 		new_fl |= S_IMMUTABLE;
178 	if (inode->flags & BTRFS_INODE_APPEND)
179 		new_fl |= S_APPEND;
180 	if (inode->flags & BTRFS_INODE_NOATIME)
181 		new_fl |= S_NOATIME;
182 	if (inode->flags & BTRFS_INODE_DIRSYNC)
183 		new_fl |= S_DIRSYNC;
184 	if (inode->ro_flags & BTRFS_INODE_RO_VERITY)
185 		new_fl |= S_VERITY;
186 
187 	set_mask_bits(&inode->vfs_inode.i_flags,
188 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
189 		      S_VERITY, new_fl);
190 }
191 
192 /*
193  * Check if @flags are a supported and valid set of FS_*_FL flags and that
194  * the old and new flags are not conflicting
195  */
check_fsflags(unsigned int old_flags,unsigned int flags)196 static int check_fsflags(unsigned int old_flags, unsigned int flags)
197 {
198 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
199 		      FS_NOATIME_FL | FS_NODUMP_FL | \
200 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
201 		      FS_NOCOMP_FL | FS_COMPR_FL |
202 		      FS_NOCOW_FL))
203 		return -EOPNOTSUPP;
204 
205 	/* COMPR and NOCOMP on new/old are valid */
206 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
207 		return -EINVAL;
208 
209 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
210 		return -EINVAL;
211 
212 	/* NOCOW and compression options are mutually exclusive */
213 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
214 		return -EINVAL;
215 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
216 		return -EINVAL;
217 
218 	return 0;
219 }
220 
check_fsflags_compatible(const struct btrfs_fs_info * fs_info,unsigned int flags)221 static int check_fsflags_compatible(const struct btrfs_fs_info *fs_info,
222 				    unsigned int flags)
223 {
224 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
225 		return -EPERM;
226 
227 	return 0;
228 }
229 
btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args * vol_args)230 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
231 {
232 	if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
233 		return -ENAMETOOLONG;
234 	return 0;
235 }
236 
btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 * vol_args2)237 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
238 {
239 	if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
240 		return -ENAMETOOLONG;
241 	return 0;
242 }
243 
244 /*
245  * Set flags/xflags from the internal inode flags. The remaining items of
246  * fsxattr are zeroed.
247  */
btrfs_fileattr_get(struct dentry * dentry,struct file_kattr * fa)248 int btrfs_fileattr_get(struct dentry *dentry, struct file_kattr *fa)
249 {
250 	const struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
251 
252 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(inode));
253 	return 0;
254 }
255 
btrfs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct file_kattr * fa)256 int btrfs_fileattr_set(struct mnt_idmap *idmap,
257 		       struct dentry *dentry, struct file_kattr *fa)
258 {
259 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
260 	struct btrfs_root *root = inode->root;
261 	struct btrfs_fs_info *fs_info = root->fs_info;
262 	struct btrfs_trans_handle *trans;
263 	unsigned int fsflags, old_fsflags;
264 	int ret;
265 	const char *comp = NULL;
266 	u32 inode_flags;
267 
268 	if (btrfs_root_readonly(root))
269 		return -EROFS;
270 
271 	if (fileattr_has_fsx(fa))
272 		return -EOPNOTSUPP;
273 
274 	fsflags = btrfs_mask_fsflags_for_type(&inode->vfs_inode, fa->flags);
275 	old_fsflags = btrfs_inode_flags_to_fsflags(inode);
276 	ret = check_fsflags(old_fsflags, fsflags);
277 	if (ret)
278 		return ret;
279 
280 	ret = check_fsflags_compatible(fs_info, fsflags);
281 	if (ret)
282 		return ret;
283 
284 	inode_flags = inode->flags;
285 	if (fsflags & FS_SYNC_FL)
286 		inode_flags |= BTRFS_INODE_SYNC;
287 	else
288 		inode_flags &= ~BTRFS_INODE_SYNC;
289 	if (fsflags & FS_IMMUTABLE_FL)
290 		inode_flags |= BTRFS_INODE_IMMUTABLE;
291 	else
292 		inode_flags &= ~BTRFS_INODE_IMMUTABLE;
293 	if (fsflags & FS_APPEND_FL)
294 		inode_flags |= BTRFS_INODE_APPEND;
295 	else
296 		inode_flags &= ~BTRFS_INODE_APPEND;
297 	if (fsflags & FS_NODUMP_FL)
298 		inode_flags |= BTRFS_INODE_NODUMP;
299 	else
300 		inode_flags &= ~BTRFS_INODE_NODUMP;
301 	if (fsflags & FS_NOATIME_FL)
302 		inode_flags |= BTRFS_INODE_NOATIME;
303 	else
304 		inode_flags &= ~BTRFS_INODE_NOATIME;
305 
306 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
307 	if (!fa->flags_valid) {
308 		/* 1 item for the inode */
309 		trans = btrfs_start_transaction(root, 1);
310 		if (IS_ERR(trans))
311 			return PTR_ERR(trans);
312 		goto update_flags;
313 	}
314 
315 	if (fsflags & FS_DIRSYNC_FL)
316 		inode_flags |= BTRFS_INODE_DIRSYNC;
317 	else
318 		inode_flags &= ~BTRFS_INODE_DIRSYNC;
319 	if (fsflags & FS_NOCOW_FL) {
320 		if (S_ISREG(inode->vfs_inode.i_mode)) {
321 			/*
322 			 * It's safe to turn csums off here, no extents exist.
323 			 * Otherwise we want the flag to reflect the real COW
324 			 * status of the file and will not set it.
325 			 */
326 			if (inode->vfs_inode.i_size == 0)
327 				inode_flags |= BTRFS_INODE_NODATACOW |
328 					       BTRFS_INODE_NODATASUM;
329 		} else {
330 			inode_flags |= BTRFS_INODE_NODATACOW;
331 		}
332 	} else {
333 		/*
334 		 * Revert back under same assumptions as above
335 		 */
336 		if (S_ISREG(inode->vfs_inode.i_mode)) {
337 			if (inode->vfs_inode.i_size == 0)
338 				inode_flags &= ~(BTRFS_INODE_NODATACOW |
339 						 BTRFS_INODE_NODATASUM);
340 		} else {
341 			inode_flags &= ~BTRFS_INODE_NODATACOW;
342 		}
343 	}
344 
345 	/*
346 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
347 	 * flag may be changed automatically if compression code won't make
348 	 * things smaller.
349 	 */
350 	if (fsflags & FS_NOCOMP_FL) {
351 		inode_flags &= ~BTRFS_INODE_COMPRESS;
352 		inode_flags |= BTRFS_INODE_NOCOMPRESS;
353 	} else if (fsflags & FS_COMPR_FL) {
354 
355 		if (IS_SWAPFILE(&inode->vfs_inode))
356 			return -ETXTBSY;
357 
358 		inode_flags |= BTRFS_INODE_COMPRESS;
359 		inode_flags &= ~BTRFS_INODE_NOCOMPRESS;
360 
361 		comp = btrfs_compress_type2str(fs_info->compress_type);
362 		if (!comp || comp[0] == 0)
363 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
364 	} else {
365 		inode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
366 	}
367 
368 	/*
369 	 * 1 for inode item
370 	 * 2 for properties
371 	 */
372 	trans = btrfs_start_transaction(root, 3);
373 	if (IS_ERR(trans))
374 		return PTR_ERR(trans);
375 
376 	if (comp) {
377 		ret = btrfs_set_prop(trans, inode, "btrfs.compression",
378 				     comp, strlen(comp), 0);
379 		if (ret) {
380 			btrfs_abort_transaction(trans, ret);
381 			goto out_end_trans;
382 		}
383 	} else {
384 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 0, 0);
385 		if (ret && ret != -ENODATA) {
386 			btrfs_abort_transaction(trans, ret);
387 			goto out_end_trans;
388 		}
389 	}
390 
391 update_flags:
392 	inode->flags = inode_flags;
393 	btrfs_update_inode_mapping_flags(inode);
394 	btrfs_sync_inode_flags_to_i_flags(inode);
395 	inode_inc_iversion(&inode->vfs_inode);
396 	inode_set_ctime_current(&inode->vfs_inode);
397 	ret = btrfs_update_inode(trans, inode);
398 
399  out_end_trans:
400 	btrfs_end_transaction(trans);
401 	return ret;
402 }
403 
btrfs_ioctl_getversion(const struct inode * inode,int __user * arg)404 static int btrfs_ioctl_getversion(const struct inode *inode, int __user *arg)
405 {
406 	return put_user(inode->i_generation, arg);
407 }
408 
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)409 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
410 					void __user *arg)
411 {
412 	struct btrfs_device *device;
413 	struct fstrim_range range;
414 	u64 minlen = ULLONG_MAX;
415 	u64 num_devices = 0;
416 	int ret;
417 
418 	if (!capable(CAP_SYS_ADMIN))
419 		return -EPERM;
420 
421 	/*
422 	 * btrfs_trim_block_group() depends on space cache, which is not
423 	 * available in zoned filesystem. So, disallow fitrim on a zoned
424 	 * filesystem for now.
425 	 */
426 	if (btrfs_is_zoned(fs_info))
427 		return -EOPNOTSUPP;
428 
429 	/*
430 	 * If the fs is mounted with nologreplay, which requires it to be
431 	 * mounted in RO mode as well, we can not allow discard on free space
432 	 * inside block groups, because log trees refer to extents that are not
433 	 * pinned in a block group's free space cache (pinning the extents is
434 	 * precisely the first phase of replaying a log tree).
435 	 */
436 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
437 		return -EROFS;
438 
439 	rcu_read_lock();
440 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
441 				dev_list) {
442 		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
443 			continue;
444 		num_devices++;
445 		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
446 				    minlen);
447 	}
448 	rcu_read_unlock();
449 
450 	if (!num_devices)
451 		return -EOPNOTSUPP;
452 	if (copy_from_user(&range, arg, sizeof(range)))
453 		return -EFAULT;
454 
455 	/*
456 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
457 	 * block group is in the logical address space, which can be any
458 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
459 	 */
460 	if (range.len < fs_info->sectorsize)
461 		return -EINVAL;
462 
463 	range.minlen = max(range.minlen, minlen);
464 	ret = btrfs_trim_fs(fs_info, &range);
465 
466 	if (copy_to_user(arg, &range, sizeof(range)))
467 		return -EFAULT;
468 
469 	return ret;
470 }
471 
472 /*
473  * Calculate the number of transaction items to reserve for creating a subvolume
474  * or snapshot, not including the inode, directory entries, or parent directory.
475  */
create_subvol_num_items(const struct btrfs_qgroup_inherit * inherit)476 static unsigned int create_subvol_num_items(const struct btrfs_qgroup_inherit *inherit)
477 {
478 	/*
479 	 * 1 to add root block
480 	 * 1 to add root item
481 	 * 1 to add root ref
482 	 * 1 to add root backref
483 	 * 1 to add UUID item
484 	 * 1 to add qgroup info
485 	 * 1 to add qgroup limit
486 	 *
487 	 * Ideally the last two would only be accounted if qgroups are enabled,
488 	 * but that can change between now and the time we would insert them.
489 	 */
490 	unsigned int num_items = 7;
491 
492 	if (inherit) {
493 		/* 2 to add qgroup relations for each inherited qgroup */
494 		num_items += 2 * inherit->num_qgroups;
495 	}
496 	return num_items;
497 }
498 
create_subvol(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct btrfs_qgroup_inherit * inherit)499 static noinline int create_subvol(struct mnt_idmap *idmap,
500 				  struct inode *dir, struct dentry *dentry,
501 				  struct btrfs_qgroup_inherit *inherit)
502 {
503 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
504 	struct btrfs_trans_handle *trans;
505 	struct btrfs_key key;
506 	struct btrfs_root_item *root_item;
507 	struct btrfs_inode_item *inode_item;
508 	struct extent_buffer *leaf;
509 	struct btrfs_root *root = BTRFS_I(dir)->root;
510 	struct btrfs_root *new_root;
511 	struct btrfs_block_rsv block_rsv;
512 	struct timespec64 cur_time = current_time(dir);
513 	struct btrfs_new_inode_args new_inode_args = {
514 		.dir = dir,
515 		.dentry = dentry,
516 		.subvol = true,
517 	};
518 	unsigned int trans_num_items;
519 	int ret;
520 	dev_t anon_dev;
521 	u64 objectid;
522 	u64 qgroup_reserved = 0;
523 
524 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
525 	if (!root_item)
526 		return -ENOMEM;
527 
528 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
529 	if (ret)
530 		goto out_root_item;
531 
532 	/*
533 	 * Don't create subvolume whose level is not zero. Or qgroup will be
534 	 * screwed up since it assumes subvolume qgroup's level to be 0.
535 	 */
536 	if (btrfs_qgroup_level(objectid)) {
537 		ret = -ENOSPC;
538 		goto out_root_item;
539 	}
540 
541 	ret = get_anon_bdev(&anon_dev);
542 	if (ret < 0)
543 		goto out_root_item;
544 
545 	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
546 	if (!new_inode_args.inode) {
547 		ret = -ENOMEM;
548 		goto out_anon_dev;
549 	}
550 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
551 	if (ret)
552 		goto out_inode;
553 	trans_num_items += create_subvol_num_items(inherit);
554 
555 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
556 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
557 					       trans_num_items, false);
558 	if (ret)
559 		goto out_new_inode_args;
560 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
561 
562 	trans = btrfs_start_transaction(root, 0);
563 	if (IS_ERR(trans)) {
564 		ret = PTR_ERR(trans);
565 		goto out_release_rsv;
566 	}
567 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
568 	qgroup_reserved = 0;
569 	trans->block_rsv = &block_rsv;
570 	trans->bytes_reserved = block_rsv.size;
571 
572 	ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
573 	if (ret)
574 		goto out;
575 
576 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
577 				      0, BTRFS_NESTING_NORMAL);
578 	if (IS_ERR(leaf)) {
579 		ret = PTR_ERR(leaf);
580 		goto out;
581 	}
582 
583 	btrfs_mark_buffer_dirty(trans, leaf);
584 
585 	inode_item = &root_item->inode;
586 	btrfs_set_stack_inode_generation(inode_item, 1);
587 	btrfs_set_stack_inode_size(inode_item, 3);
588 	btrfs_set_stack_inode_nlink(inode_item, 1);
589 	btrfs_set_stack_inode_nbytes(inode_item,
590 				     fs_info->nodesize);
591 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
592 
593 	btrfs_set_root_flags(root_item, 0);
594 	btrfs_set_root_limit(root_item, 0);
595 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
596 
597 	btrfs_set_root_bytenr(root_item, leaf->start);
598 	btrfs_set_root_generation(root_item, trans->transid);
599 	btrfs_set_root_level(root_item, 0);
600 	btrfs_set_root_refs(root_item, 1);
601 	btrfs_set_root_used(root_item, leaf->len);
602 	btrfs_set_root_last_snapshot(root_item, 0);
603 
604 	btrfs_set_root_generation_v2(root_item,
605 			btrfs_root_generation(root_item));
606 	generate_random_guid(root_item->uuid);
607 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
608 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
609 	root_item->ctime = root_item->otime;
610 	btrfs_set_root_ctransid(root_item, trans->transid);
611 	btrfs_set_root_otransid(root_item, trans->transid);
612 
613 	btrfs_tree_unlock(leaf);
614 
615 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
616 
617 	key.objectid = objectid;
618 	key.type = BTRFS_ROOT_ITEM_KEY;
619 	key.offset = 0;
620 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
621 				root_item);
622 	if (ret) {
623 		int ret2;
624 
625 		/*
626 		 * Since we don't abort the transaction in this case, free the
627 		 * tree block so that we don't leak space and leave the
628 		 * filesystem in an inconsistent state (an extent item in the
629 		 * extent tree with a backreference for a root that does not
630 		 * exists).
631 		 */
632 		btrfs_tree_lock(leaf);
633 		btrfs_clear_buffer_dirty(trans, leaf);
634 		btrfs_tree_unlock(leaf);
635 		ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
636 		if (ret2 < 0)
637 			btrfs_abort_transaction(trans, ret2);
638 		free_extent_buffer(leaf);
639 		goto out;
640 	}
641 
642 	free_extent_buffer(leaf);
643 	leaf = NULL;
644 
645 	new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
646 	if (IS_ERR(new_root)) {
647 		ret = PTR_ERR(new_root);
648 		btrfs_abort_transaction(trans, ret);
649 		goto out;
650 	}
651 	/* anon_dev is owned by new_root now. */
652 	anon_dev = 0;
653 	BTRFS_I(new_inode_args.inode)->root = new_root;
654 	/* ... and new_root is owned by new_inode_args.inode now. */
655 
656 	ret = btrfs_record_root_in_trans(trans, new_root);
657 	if (ret) {
658 		btrfs_abort_transaction(trans, ret);
659 		goto out;
660 	}
661 
662 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
663 				  BTRFS_UUID_KEY_SUBVOL, objectid);
664 	if (ret) {
665 		btrfs_abort_transaction(trans, ret);
666 		goto out;
667 	}
668 
669 	btrfs_record_new_subvolume(trans, BTRFS_I(dir));
670 
671 	ret = btrfs_create_new_inode(trans, &new_inode_args);
672 	if (ret) {
673 		btrfs_abort_transaction(trans, ret);
674 		goto out;
675 	}
676 
677 	d_instantiate_new(dentry, new_inode_args.inode);
678 	new_inode_args.inode = NULL;
679 
680 out:
681 	trans->block_rsv = NULL;
682 	trans->bytes_reserved = 0;
683 	btrfs_end_transaction(trans);
684 out_release_rsv:
685 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
686 	if (qgroup_reserved)
687 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
688 out_new_inode_args:
689 	btrfs_new_inode_args_destroy(&new_inode_args);
690 out_inode:
691 	iput(new_inode_args.inode);
692 out_anon_dev:
693 	if (anon_dev)
694 		free_anon_bdev(anon_dev);
695 out_root_item:
696 	kfree(root_item);
697 	return ret;
698 }
699 
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)700 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
701 			   struct dentry *dentry, bool readonly,
702 			   struct btrfs_qgroup_inherit *inherit)
703 {
704 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
705 	struct inode *inode;
706 	struct btrfs_pending_snapshot *pending_snapshot;
707 	unsigned int trans_num_items;
708 	struct btrfs_trans_handle *trans;
709 	struct btrfs_block_rsv *block_rsv;
710 	u64 qgroup_reserved = 0;
711 	int ret;
712 
713 	/* We do not support snapshotting right now. */
714 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
715 		btrfs_warn(fs_info,
716 			   "extent tree v2 doesn't support snapshotting yet");
717 		return -EOPNOTSUPP;
718 	}
719 
720 	if (btrfs_root_refs(&root->root_item) == 0)
721 		return -ENOENT;
722 
723 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
724 		return -EINVAL;
725 
726 	if (atomic_read(&root->nr_swapfiles)) {
727 		btrfs_warn(fs_info,
728 			   "cannot snapshot subvolume with active swapfile");
729 		return -ETXTBSY;
730 	}
731 
732 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
733 	if (!pending_snapshot)
734 		return -ENOMEM;
735 
736 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
737 	if (ret < 0)
738 		goto free_pending;
739 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
740 			GFP_KERNEL);
741 	pending_snapshot->path = btrfs_alloc_path();
742 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
743 		ret = -ENOMEM;
744 		goto free_pending;
745 	}
746 
747 	block_rsv = &pending_snapshot->block_rsv;
748 	btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
749 	/*
750 	 * 1 to add dir item
751 	 * 1 to add dir index
752 	 * 1 to update parent inode item
753 	 */
754 	trans_num_items = create_subvol_num_items(inherit) + 3;
755 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
756 					       trans_num_items, false);
757 	if (ret)
758 		goto free_pending;
759 	qgroup_reserved = block_rsv->qgroup_rsv_reserved;
760 
761 	pending_snapshot->dentry = dentry;
762 	pending_snapshot->root = root;
763 	pending_snapshot->readonly = readonly;
764 	pending_snapshot->dir = BTRFS_I(dir);
765 	pending_snapshot->inherit = inherit;
766 
767 	trans = btrfs_start_transaction(root, 0);
768 	if (IS_ERR(trans)) {
769 		ret = PTR_ERR(trans);
770 		goto fail;
771 	}
772 	ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
773 	if (ret) {
774 		btrfs_end_transaction(trans);
775 		goto fail;
776 	}
777 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
778 	qgroup_reserved = 0;
779 
780 	trans->pending_snapshot = pending_snapshot;
781 
782 	ret = btrfs_commit_transaction(trans);
783 	if (ret)
784 		goto fail;
785 
786 	ret = pending_snapshot->error;
787 	if (ret)
788 		goto fail;
789 
790 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
791 	if (ret)
792 		goto fail;
793 
794 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
795 	if (IS_ERR(inode)) {
796 		ret = PTR_ERR(inode);
797 		goto fail;
798 	}
799 
800 	d_instantiate(dentry, inode);
801 	ret = 0;
802 	pending_snapshot->anon_dev = 0;
803 fail:
804 	/* Prevent double freeing of anon_dev */
805 	if (ret && pending_snapshot->snap)
806 		pending_snapshot->snap->anon_dev = 0;
807 	btrfs_put_root(pending_snapshot->snap);
808 	btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
809 	if (qgroup_reserved)
810 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
811 free_pending:
812 	if (pending_snapshot->anon_dev)
813 		free_anon_bdev(pending_snapshot->anon_dev);
814 	kfree(pending_snapshot->root_item);
815 	btrfs_free_path(pending_snapshot->path);
816 	kfree(pending_snapshot);
817 
818 	return ret;
819 }
820 
821 /*  copy of may_delete in fs/namei.c()
822  *	Check whether we can remove a link victim from directory dir, check
823  *  whether the type of victim is right.
824  *  1. We can't do it if dir is read-only (done in permission())
825  *  2. We should have write and exec permissions on dir
826  *  3. We can't remove anything from append-only dir
827  *  4. We can't do anything with immutable dir (done in permission())
828  *  5. If the sticky bit on dir is set we should either
829  *	a. be owner of dir, or
830  *	b. be owner of victim, or
831  *	c. have CAP_FOWNER capability
832  *  6. If the victim is append-only or immutable we can't do anything with
833  *     links pointing to it.
834  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
835  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
836  *  9. We can't remove a root or mountpoint.
837  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
838  *     nfs_async_unlink().
839  */
840 
btrfs_may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,int isdir)841 static int btrfs_may_delete(struct mnt_idmap *idmap,
842 			    struct inode *dir, struct dentry *victim, int isdir)
843 {
844 	int ret;
845 
846 	if (d_really_is_negative(victim))
847 		return -ENOENT;
848 
849 	/* The @victim is not inside @dir. */
850 	if (d_inode(victim->d_parent) != dir)
851 		return -EINVAL;
852 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
853 
854 	ret = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
855 	if (ret)
856 		return ret;
857 	if (IS_APPEND(dir))
858 		return -EPERM;
859 	if (check_sticky(idmap, dir, d_inode(victim)) ||
860 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
861 	    IS_SWAPFILE(d_inode(victim)))
862 		return -EPERM;
863 	if (isdir) {
864 		if (!d_is_dir(victim))
865 			return -ENOTDIR;
866 		if (IS_ROOT(victim))
867 			return -EBUSY;
868 	} else if (d_is_dir(victim))
869 		return -EISDIR;
870 	if (IS_DEADDIR(dir))
871 		return -ENOENT;
872 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
873 		return -EBUSY;
874 	return 0;
875 }
876 
877 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct mnt_idmap * idmap,struct inode * dir,const struct dentry * child)878 static inline int btrfs_may_create(struct mnt_idmap *idmap,
879 				   struct inode *dir, const struct dentry *child)
880 {
881 	if (d_really_is_positive(child))
882 		return -EEXIST;
883 	if (IS_DEADDIR(dir))
884 		return -ENOENT;
885 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
886 		return -EOVERFLOW;
887 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
888 }
889 
890 /*
891  * Create a new subvolume below @parent.  This is largely modeled after
892  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
893  * inside this filesystem so it's quite a bit simpler.
894  */
btrfs_mksubvol(struct dentry * parent,struct mnt_idmap * idmap,struct qstr * qname,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)895 static noinline int btrfs_mksubvol(struct dentry *parent,
896 				   struct mnt_idmap *idmap,
897 				   struct qstr *qname, struct btrfs_root *snap_src,
898 				   bool readonly,
899 				   struct btrfs_qgroup_inherit *inherit)
900 {
901 	struct inode *dir = d_inode(parent);
902 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
903 	struct dentry *dentry;
904 	struct fscrypt_str name_str = FSTR_INIT((char *)qname->name, qname->len);
905 	int ret;
906 
907 	ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
908 	if (ret == -EINTR)
909 		return ret;
910 
911 	dentry = lookup_one(idmap, qname, parent);
912 	ret = PTR_ERR(dentry);
913 	if (IS_ERR(dentry))
914 		goto out_unlock;
915 
916 	ret = btrfs_may_create(idmap, dir, dentry);
917 	if (ret)
918 		goto out_dput;
919 
920 	/*
921 	 * even if this name doesn't exist, we may get hash collisions.
922 	 * check for them now when we can safely fail
923 	 */
924 	ret = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, dir->i_ino, &name_str);
925 	if (ret)
926 		goto out_dput;
927 
928 	down_read(&fs_info->subvol_sem);
929 
930 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
931 		goto out_up_read;
932 
933 	if (snap_src)
934 		ret = create_snapshot(snap_src, dir, dentry, readonly, inherit);
935 	else
936 		ret = create_subvol(idmap, dir, dentry, inherit);
937 
938 	if (!ret)
939 		fsnotify_mkdir(dir, dentry);
940 out_up_read:
941 	up_read(&fs_info->subvol_sem);
942 out_dput:
943 	dput(dentry);
944 out_unlock:
945 	btrfs_inode_unlock(BTRFS_I(dir), 0);
946 	return ret;
947 }
948 
btrfs_mksnapshot(struct dentry * parent,struct mnt_idmap * idmap,struct qstr * qname,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)949 static noinline int btrfs_mksnapshot(struct dentry *parent,
950 				   struct mnt_idmap *idmap,
951 				   struct qstr *qname,
952 				   struct btrfs_root *root,
953 				   bool readonly,
954 				   struct btrfs_qgroup_inherit *inherit)
955 {
956 	int ret;
957 
958 	/*
959 	 * Force new buffered writes to reserve space even when NOCOW is
960 	 * possible. This is to avoid later writeback (running dealloc) to
961 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
962 	 */
963 	btrfs_drew_read_lock(&root->snapshot_lock);
964 
965 	ret = btrfs_start_delalloc_snapshot(root, false);
966 	if (ret)
967 		goto out;
968 
969 	/*
970 	 * All previous writes have started writeback in NOCOW mode, so now
971 	 * we force future writes to fallback to COW mode during snapshot
972 	 * creation.
973 	 */
974 	atomic_inc(&root->snapshot_force_cow);
975 
976 	btrfs_wait_ordered_extents(root, U64_MAX, NULL);
977 
978 	ret = btrfs_mksubvol(parent, idmap, qname, root, readonly, inherit);
979 
980 	atomic_dec(&root->snapshot_force_cow);
981 out:
982 	btrfs_drew_read_unlock(&root->snapshot_lock);
983 	return ret;
984 }
985 
986 /*
987  * Try to start exclusive operation @type or cancel it if it's running.
988  *
989  * Return:
990  *   0        - normal mode, newly claimed op started
991  *  >0        - normal mode, something else is running,
992  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
993  * ECANCELED  - cancel mode, successful cancel
994  * ENOTCONN   - cancel mode, operation not running anymore
995  */
exclop_start_or_cancel_reloc(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type,bool cancel)996 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
997 			enum btrfs_exclusive_operation type, bool cancel)
998 {
999 	if (!cancel) {
1000 		/* Start normal op */
1001 		if (!btrfs_exclop_start(fs_info, type))
1002 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1003 		/* Exclusive operation is now claimed */
1004 		return 0;
1005 	}
1006 
1007 	/* Cancel running op */
1008 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1009 		/*
1010 		 * This blocks any exclop finish from setting it to NONE, so we
1011 		 * request cancellation. Either it runs and we will wait for it,
1012 		 * or it has finished and no waiting will happen.
1013 		 */
1014 		atomic_inc(&fs_info->reloc_cancel_req);
1015 		btrfs_exclop_start_unlock(fs_info);
1016 
1017 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1018 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1019 				    TASK_INTERRUPTIBLE);
1020 
1021 		return -ECANCELED;
1022 	}
1023 
1024 	/* Something else is running or none */
1025 	return -ENOTCONN;
1026 }
1027 
btrfs_ioctl_resize(struct file * file,void __user * arg)1028 static noinline int btrfs_ioctl_resize(struct file *file,
1029 					void __user *arg)
1030 {
1031 	BTRFS_DEV_LOOKUP_ARGS(args);
1032 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1033 	struct btrfs_fs_info *fs_info = root->fs_info;
1034 	u64 new_size;
1035 	u64 old_size;
1036 	u64 devid = 1;
1037 	struct btrfs_ioctl_vol_args *vol_args;
1038 	struct btrfs_device *device = NULL;
1039 	char *sizestr;
1040 	char *devstr = NULL;
1041 	int ret = 0;
1042 	int mod = 0;
1043 	bool cancel;
1044 
1045 	if (!capable(CAP_SYS_ADMIN))
1046 		return -EPERM;
1047 
1048 	ret = mnt_want_write_file(file);
1049 	if (ret)
1050 		return ret;
1051 
1052 	/*
1053 	 * Read the arguments before checking exclusivity to be able to
1054 	 * distinguish regular resize and cancel
1055 	 */
1056 	vol_args = memdup_user(arg, sizeof(*vol_args));
1057 	if (IS_ERR(vol_args)) {
1058 		ret = PTR_ERR(vol_args);
1059 		goto out_drop;
1060 	}
1061 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1062 	if (ret < 0)
1063 		goto out_free;
1064 
1065 	sizestr = vol_args->name;
1066 	cancel = (strcmp("cancel", sizestr) == 0);
1067 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1068 	if (ret)
1069 		goto out_free;
1070 	/* Exclusive operation is now claimed */
1071 
1072 	devstr = strchr(sizestr, ':');
1073 	if (devstr) {
1074 		sizestr = devstr + 1;
1075 		*devstr = '\0';
1076 		devstr = vol_args->name;
1077 		ret = kstrtoull(devstr, 10, &devid);
1078 		if (ret)
1079 			goto out_finish;
1080 		if (!devid) {
1081 			ret = -EINVAL;
1082 			goto out_finish;
1083 		}
1084 		btrfs_info(fs_info, "resizing devid %llu", devid);
1085 	}
1086 
1087 	args.devid = devid;
1088 	device = btrfs_find_device(fs_info->fs_devices, &args);
1089 	if (!device) {
1090 		btrfs_info(fs_info, "resizer unable to find device %llu",
1091 			   devid);
1092 		ret = -ENODEV;
1093 		goto out_finish;
1094 	}
1095 
1096 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1097 		btrfs_info(fs_info,
1098 			   "resizer unable to apply on readonly device %llu",
1099 		       devid);
1100 		ret = -EPERM;
1101 		goto out_finish;
1102 	}
1103 
1104 	if (!strcmp(sizestr, "max"))
1105 		new_size = bdev_nr_bytes(device->bdev);
1106 	else {
1107 		char *retptr;
1108 
1109 		if (sizestr[0] == '-') {
1110 			mod = -1;
1111 			sizestr++;
1112 		} else if (sizestr[0] == '+') {
1113 			mod = 1;
1114 			sizestr++;
1115 		}
1116 		new_size = memparse(sizestr, &retptr);
1117 		if (*retptr != '\0' || new_size == 0) {
1118 			ret = -EINVAL;
1119 			goto out_finish;
1120 		}
1121 	}
1122 
1123 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1124 		ret = -EPERM;
1125 		goto out_finish;
1126 	}
1127 
1128 	old_size = btrfs_device_get_total_bytes(device);
1129 
1130 	if (mod < 0) {
1131 		if (new_size > old_size) {
1132 			ret = -EINVAL;
1133 			goto out_finish;
1134 		}
1135 		new_size = old_size - new_size;
1136 	} else if (mod > 0) {
1137 		if (new_size > ULLONG_MAX - old_size) {
1138 			ret = -ERANGE;
1139 			goto out_finish;
1140 		}
1141 		new_size = old_size + new_size;
1142 	}
1143 
1144 	if (new_size < SZ_256M) {
1145 		ret = -EINVAL;
1146 		goto out_finish;
1147 	}
1148 	if (new_size > bdev_nr_bytes(device->bdev)) {
1149 		ret = -EFBIG;
1150 		goto out_finish;
1151 	}
1152 
1153 	new_size = round_down(new_size, fs_info->sectorsize);
1154 
1155 	if (new_size > old_size) {
1156 		struct btrfs_trans_handle *trans;
1157 
1158 		trans = btrfs_start_transaction(root, 0);
1159 		if (IS_ERR(trans)) {
1160 			ret = PTR_ERR(trans);
1161 			goto out_finish;
1162 		}
1163 		ret = btrfs_grow_device(trans, device, new_size);
1164 		btrfs_commit_transaction(trans);
1165 	} else if (new_size < old_size) {
1166 		ret = btrfs_shrink_device(device, new_size);
1167 	} /* equal, nothing need to do */
1168 
1169 	if (ret == 0 && new_size != old_size)
1170 		btrfs_info(fs_info,
1171 			"resize device %s (devid %llu) from %llu to %llu",
1172 			btrfs_dev_name(device), device->devid,
1173 			old_size, new_size);
1174 out_finish:
1175 	btrfs_exclop_finish(fs_info);
1176 out_free:
1177 	kfree(vol_args);
1178 out_drop:
1179 	mnt_drop_write_file(file);
1180 	return ret;
1181 }
1182 
__btrfs_ioctl_snap_create(struct file * file,struct mnt_idmap * idmap,const char * name,unsigned long fd,bool subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)1183 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1184 				struct mnt_idmap *idmap,
1185 				const char *name, unsigned long fd, bool subvol,
1186 				bool readonly,
1187 				struct btrfs_qgroup_inherit *inherit)
1188 {
1189 	int ret = 0;
1190 	struct qstr qname = QSTR_INIT(name, strlen(name));
1191 
1192 	if (!S_ISDIR(file_inode(file)->i_mode))
1193 		return -ENOTDIR;
1194 
1195 	ret = mnt_want_write_file(file);
1196 	if (ret)
1197 		goto out;
1198 
1199 	if (strchr(name, '/')) {
1200 		ret = -EINVAL;
1201 		goto out_drop_write;
1202 	}
1203 
1204 	if (qname.name[0] == '.' &&
1205 	   (qname.len == 1 || (qname.name[1] == '.' && qname.len == 2))) {
1206 		ret = -EEXIST;
1207 		goto out_drop_write;
1208 	}
1209 
1210 	if (subvol) {
1211 		ret = btrfs_mksubvol(file_dentry(file), idmap, &qname, NULL,
1212 				     readonly, inherit);
1213 	} else {
1214 		CLASS(fd, src)(fd);
1215 		struct inode *src_inode;
1216 		if (fd_empty(src)) {
1217 			ret = -EINVAL;
1218 			goto out_drop_write;
1219 		}
1220 
1221 		src_inode = file_inode(fd_file(src));
1222 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1223 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1224 				   "Snapshot src from another FS");
1225 			ret = -EXDEV;
1226 		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1227 			/*
1228 			 * Subvolume creation is not restricted, but snapshots
1229 			 * are limited to own subvolumes only
1230 			 */
1231 			ret = -EPERM;
1232 		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1233 			/*
1234 			 * Snapshots must be made with the src_inode referring
1235 			 * to the subvolume inode, otherwise the permission
1236 			 * checking above is useless because we may have
1237 			 * permission on a lower directory but not the subvol
1238 			 * itself.
1239 			 */
1240 			ret = -EINVAL;
1241 		} else {
1242 			ret = btrfs_mksnapshot(file_dentry(file), idmap, &qname,
1243 					       BTRFS_I(src_inode)->root,
1244 					       readonly, inherit);
1245 		}
1246 	}
1247 out_drop_write:
1248 	mnt_drop_write_file(file);
1249 out:
1250 	return ret;
1251 }
1252 
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1253 static noinline int btrfs_ioctl_snap_create(struct file *file,
1254 					    void __user *arg, int subvol)
1255 {
1256 	struct btrfs_ioctl_vol_args *vol_args;
1257 	int ret;
1258 
1259 	if (!S_ISDIR(file_inode(file)->i_mode))
1260 		return -ENOTDIR;
1261 
1262 	vol_args = memdup_user(arg, sizeof(*vol_args));
1263 	if (IS_ERR(vol_args))
1264 		return PTR_ERR(vol_args);
1265 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1266 	if (ret < 0)
1267 		goto out;
1268 
1269 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1270 					vol_args->name, vol_args->fd, subvol,
1271 					false, NULL);
1272 
1273 out:
1274 	kfree(vol_args);
1275 	return ret;
1276 }
1277 
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,bool subvol)1278 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1279 					       void __user *arg, bool subvol)
1280 {
1281 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1282 	int ret;
1283 	bool readonly = false;
1284 	struct btrfs_qgroup_inherit *inherit = NULL;
1285 
1286 	if (!S_ISDIR(file_inode(file)->i_mode))
1287 		return -ENOTDIR;
1288 
1289 	vol_args = memdup_user(arg, sizeof(*vol_args));
1290 	if (IS_ERR(vol_args))
1291 		return PTR_ERR(vol_args);
1292 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1293 	if (ret < 0)
1294 		goto free_args;
1295 
1296 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1297 		ret = -EOPNOTSUPP;
1298 		goto free_args;
1299 	}
1300 
1301 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1302 		readonly = true;
1303 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1304 		struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1305 
1306 		if (vol_args->size < sizeof(*inherit) ||
1307 		    vol_args->size > PAGE_SIZE) {
1308 			ret = -EINVAL;
1309 			goto free_args;
1310 		}
1311 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1312 		if (IS_ERR(inherit)) {
1313 			ret = PTR_ERR(inherit);
1314 			goto free_args;
1315 		}
1316 
1317 		ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1318 		if (ret < 0)
1319 			goto free_inherit;
1320 	}
1321 
1322 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1323 					vol_args->name, vol_args->fd, subvol,
1324 					readonly, inherit);
1325 	if (ret)
1326 		goto free_inherit;
1327 free_inherit:
1328 	kfree(inherit);
1329 free_args:
1330 	kfree(vol_args);
1331 	return ret;
1332 }
1333 
btrfs_ioctl_subvol_getflags(struct btrfs_inode * inode,void __user * arg)1334 static noinline int btrfs_ioctl_subvol_getflags(struct btrfs_inode *inode,
1335 						void __user *arg)
1336 {
1337 	struct btrfs_root *root = inode->root;
1338 	struct btrfs_fs_info *fs_info = root->fs_info;
1339 	int ret = 0;
1340 	u64 flags = 0;
1341 
1342 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1343 		return -EINVAL;
1344 
1345 	down_read(&fs_info->subvol_sem);
1346 	if (btrfs_root_readonly(root))
1347 		flags |= BTRFS_SUBVOL_RDONLY;
1348 	up_read(&fs_info->subvol_sem);
1349 
1350 	if (copy_to_user(arg, &flags, sizeof(flags)))
1351 		ret = -EFAULT;
1352 
1353 	return ret;
1354 }
1355 
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1356 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1357 					      void __user *arg)
1358 {
1359 	struct inode *inode = file_inode(file);
1360 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1361 	struct btrfs_root *root = BTRFS_I(inode)->root;
1362 	struct btrfs_trans_handle *trans;
1363 	u64 root_flags;
1364 	u64 flags;
1365 	int ret = 0;
1366 
1367 	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1368 		return -EPERM;
1369 
1370 	ret = mnt_want_write_file(file);
1371 	if (ret)
1372 		goto out;
1373 
1374 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1375 		ret = -EINVAL;
1376 		goto out_drop_write;
1377 	}
1378 
1379 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1380 		ret = -EFAULT;
1381 		goto out_drop_write;
1382 	}
1383 
1384 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1385 		ret = -EOPNOTSUPP;
1386 		goto out_drop_write;
1387 	}
1388 
1389 	down_write(&fs_info->subvol_sem);
1390 
1391 	/* nothing to do */
1392 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1393 		goto out_drop_sem;
1394 
1395 	root_flags = btrfs_root_flags(&root->root_item);
1396 	if (flags & BTRFS_SUBVOL_RDONLY) {
1397 		btrfs_set_root_flags(&root->root_item,
1398 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1399 	} else {
1400 		/*
1401 		 * Block RO -> RW transition if this subvolume is involved in
1402 		 * send
1403 		 */
1404 		spin_lock(&root->root_item_lock);
1405 		if (root->send_in_progress == 0) {
1406 			btrfs_set_root_flags(&root->root_item,
1407 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1408 			spin_unlock(&root->root_item_lock);
1409 		} else {
1410 			spin_unlock(&root->root_item_lock);
1411 			btrfs_warn(fs_info,
1412 				   "Attempt to set subvolume %llu read-write during send",
1413 				   btrfs_root_id(root));
1414 			ret = -EPERM;
1415 			goto out_drop_sem;
1416 		}
1417 	}
1418 
1419 	trans = btrfs_start_transaction(root, 1);
1420 	if (IS_ERR(trans)) {
1421 		ret = PTR_ERR(trans);
1422 		goto out_reset;
1423 	}
1424 
1425 	ret = btrfs_update_root(trans, fs_info->tree_root,
1426 				&root->root_key, &root->root_item);
1427 	if (ret < 0) {
1428 		btrfs_end_transaction(trans);
1429 		goto out_reset;
1430 	}
1431 
1432 	ret = btrfs_commit_transaction(trans);
1433 
1434 out_reset:
1435 	if (ret)
1436 		btrfs_set_root_flags(&root->root_item, root_flags);
1437 out_drop_sem:
1438 	up_write(&fs_info->subvol_sem);
1439 out_drop_write:
1440 	mnt_drop_write_file(file);
1441 out:
1442 	return ret;
1443 }
1444 
key_in_sk(const struct btrfs_key * key,const struct btrfs_ioctl_search_key * sk)1445 static noinline bool key_in_sk(const struct btrfs_key *key,
1446 			       const struct btrfs_ioctl_search_key *sk)
1447 {
1448 	struct btrfs_key test;
1449 	int ret;
1450 
1451 	test.objectid = sk->min_objectid;
1452 	test.type = sk->min_type;
1453 	test.offset = sk->min_offset;
1454 
1455 	ret = btrfs_comp_cpu_keys(key, &test);
1456 	if (ret < 0)
1457 		return false;
1458 
1459 	test.objectid = sk->max_objectid;
1460 	test.type = sk->max_type;
1461 	test.offset = sk->max_offset;
1462 
1463 	ret = btrfs_comp_cpu_keys(key, &test);
1464 	if (ret > 0)
1465 		return false;
1466 	return true;
1467 }
1468 
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,const struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)1469 static noinline int copy_to_sk(struct btrfs_path *path,
1470 			       struct btrfs_key *key,
1471 			       const struct btrfs_ioctl_search_key *sk,
1472 			       u64 *buf_size,
1473 			       char __user *ubuf,
1474 			       unsigned long *sk_offset,
1475 			       int *num_found)
1476 {
1477 	u64 found_transid;
1478 	struct extent_buffer *leaf;
1479 	struct btrfs_ioctl_search_header sh;
1480 	struct btrfs_key test;
1481 	unsigned long item_off;
1482 	unsigned long item_len;
1483 	int nritems;
1484 	int i;
1485 	int slot;
1486 	int ret = 0;
1487 
1488 	leaf = path->nodes[0];
1489 	slot = path->slots[0];
1490 	nritems = btrfs_header_nritems(leaf);
1491 
1492 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1493 		i = nritems;
1494 		goto advance_key;
1495 	}
1496 	found_transid = btrfs_header_generation(leaf);
1497 
1498 	for (i = slot; i < nritems; i++) {
1499 		item_off = btrfs_item_ptr_offset(leaf, i);
1500 		item_len = btrfs_item_size(leaf, i);
1501 
1502 		btrfs_item_key_to_cpu(leaf, key, i);
1503 		if (!key_in_sk(key, sk))
1504 			continue;
1505 
1506 		if (sizeof(sh) + item_len > *buf_size) {
1507 			if (*num_found) {
1508 				ret = 1;
1509 				goto out;
1510 			}
1511 
1512 			/*
1513 			 * return one empty item back for v1, which does not
1514 			 * handle -EOVERFLOW
1515 			 */
1516 
1517 			*buf_size = sizeof(sh) + item_len;
1518 			item_len = 0;
1519 			ret = -EOVERFLOW;
1520 		}
1521 
1522 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1523 			ret = 1;
1524 			goto out;
1525 		}
1526 
1527 		sh.objectid = key->objectid;
1528 		sh.type = key->type;
1529 		sh.offset = key->offset;
1530 		sh.len = item_len;
1531 		sh.transid = found_transid;
1532 
1533 		/*
1534 		 * Copy search result header. If we fault then loop again so we
1535 		 * can fault in the pages and -EFAULT there if there's a
1536 		 * problem. Otherwise we'll fault and then copy the buffer in
1537 		 * properly this next time through
1538 		 */
1539 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1540 			ret = 0;
1541 			goto out;
1542 		}
1543 
1544 		*sk_offset += sizeof(sh);
1545 
1546 		if (item_len) {
1547 			char __user *up = ubuf + *sk_offset;
1548 			/*
1549 			 * Copy the item, same behavior as above, but reset the
1550 			 * * sk_offset so we copy the full thing again.
1551 			 */
1552 			if (read_extent_buffer_to_user_nofault(leaf, up,
1553 						item_off, item_len)) {
1554 				ret = 0;
1555 				*sk_offset -= sizeof(sh);
1556 				goto out;
1557 			}
1558 
1559 			*sk_offset += item_len;
1560 		}
1561 		(*num_found)++;
1562 
1563 		if (ret) /* -EOVERFLOW from above */
1564 			goto out;
1565 
1566 		if (*num_found >= sk->nr_items) {
1567 			ret = 1;
1568 			goto out;
1569 		}
1570 	}
1571 advance_key:
1572 	ret = 0;
1573 	test.objectid = sk->max_objectid;
1574 	test.type = sk->max_type;
1575 	test.offset = sk->max_offset;
1576 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1577 		ret = 1;
1578 	else if (key->offset < (u64)-1)
1579 		key->offset++;
1580 	else if (key->type < (u8)-1) {
1581 		key->offset = 0;
1582 		key->type++;
1583 	} else if (key->objectid < (u64)-1) {
1584 		key->offset = 0;
1585 		key->type = 0;
1586 		key->objectid++;
1587 	} else
1588 		ret = 1;
1589 out:
1590 	/*
1591 	 *  0: all items from this leaf copied, continue with next
1592 	 *  1: * more items can be copied, but unused buffer is too small
1593 	 *     * all items were found
1594 	 *     Either way, it will stops the loop which iterates to the next
1595 	 *     leaf
1596 	 *  -EOVERFLOW: item was to large for buffer
1597 	 *  -EFAULT: could not copy extent buffer back to userspace
1598 	 */
1599 	return ret;
1600 }
1601 
search_ioctl(struct btrfs_root * root,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf)1602 static noinline int search_ioctl(struct btrfs_root *root,
1603 				 struct btrfs_ioctl_search_key *sk,
1604 				 u64 *buf_size,
1605 				 char __user *ubuf)
1606 {
1607 	struct btrfs_fs_info *info = root->fs_info;
1608 	struct btrfs_key key;
1609 	struct btrfs_path *path;
1610 	int ret;
1611 	int num_found = 0;
1612 	unsigned long sk_offset = 0;
1613 
1614 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1615 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1616 		return -EOVERFLOW;
1617 	}
1618 
1619 	path = btrfs_alloc_path();
1620 	if (!path)
1621 		return -ENOMEM;
1622 
1623 	if (sk->tree_id == 0) {
1624 		/* Search the root that we got passed. */
1625 		root = btrfs_grab_root(root);
1626 	} else {
1627 		/* Look up the root from the arguments. */
1628 		root = btrfs_get_fs_root(info, sk->tree_id, true);
1629 		if (IS_ERR(root)) {
1630 			btrfs_free_path(path);
1631 			return PTR_ERR(root);
1632 		}
1633 	}
1634 
1635 	key.objectid = sk->min_objectid;
1636 	key.type = sk->min_type;
1637 	key.offset = sk->min_offset;
1638 
1639 	while (1) {
1640 		/*
1641 		 * Ensure that the whole user buffer is faulted in at sub-page
1642 		 * granularity, otherwise the loop may live-lock.
1643 		 */
1644 		if (fault_in_subpage_writeable(ubuf + sk_offset, *buf_size - sk_offset)) {
1645 			ret = -EFAULT;
1646 			break;
1647 		}
1648 
1649 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1650 		if (ret)
1651 			break;
1652 
1653 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1654 				 &sk_offset, &num_found);
1655 		btrfs_release_path(path);
1656 		if (ret)
1657 			break;
1658 
1659 	}
1660 	/* Normalize return values from btrfs_search_forward() and copy_to_sk(). */
1661 	if (ret > 0)
1662 		ret = 0;
1663 
1664 	sk->nr_items = num_found;
1665 	btrfs_put_root(root);
1666 	btrfs_free_path(path);
1667 	return ret;
1668 }
1669 
btrfs_ioctl_tree_search(struct btrfs_root * root,void __user * argp)1670 static noinline int btrfs_ioctl_tree_search(struct btrfs_root *root,
1671 					    void __user *argp)
1672 {
1673 	struct btrfs_ioctl_search_args __user *uargs = argp;
1674 	struct btrfs_ioctl_search_key sk;
1675 	int ret;
1676 	u64 buf_size;
1677 
1678 	if (!capable(CAP_SYS_ADMIN))
1679 		return -EPERM;
1680 
1681 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1682 		return -EFAULT;
1683 
1684 	buf_size = sizeof(uargs->buf);
1685 
1686 	ret = search_ioctl(root, &sk, &buf_size, uargs->buf);
1687 
1688 	/*
1689 	 * In the origin implementation an overflow is handled by returning a
1690 	 * search header with a len of zero, so reset ret.
1691 	 */
1692 	if (ret == -EOVERFLOW)
1693 		ret = 0;
1694 
1695 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1696 		ret = -EFAULT;
1697 	return ret;
1698 }
1699 
btrfs_ioctl_tree_search_v2(struct btrfs_root * root,void __user * argp)1700 static noinline int btrfs_ioctl_tree_search_v2(struct btrfs_root *root,
1701 					       void __user *argp)
1702 {
1703 	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1704 	struct btrfs_ioctl_search_args_v2 args;
1705 	int ret;
1706 	u64 buf_size;
1707 	const u64 buf_limit = SZ_16M;
1708 
1709 	if (!capable(CAP_SYS_ADMIN))
1710 		return -EPERM;
1711 
1712 	/* copy search header and buffer size */
1713 	if (copy_from_user(&args, uarg, sizeof(args)))
1714 		return -EFAULT;
1715 
1716 	buf_size = args.buf_size;
1717 
1718 	/* limit result size to 16MB */
1719 	if (buf_size > buf_limit)
1720 		buf_size = buf_limit;
1721 
1722 	ret = search_ioctl(root, &args.key, &buf_size,
1723 			   (char __user *)(&uarg->buf[0]));
1724 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1725 		ret = -EFAULT;
1726 	else if (ret == -EOVERFLOW &&
1727 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1728 		ret = -EFAULT;
1729 
1730 	return ret;
1731 }
1732 
1733 /*
1734  * Search INODE_REFs to identify path name of 'dirid' directory
1735  * in a 'tree_id' tree. and sets path name to 'name'.
1736  */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)1737 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1738 				u64 tree_id, u64 dirid, char *name)
1739 {
1740 	struct btrfs_root *root;
1741 	struct btrfs_key key;
1742 	char *ptr;
1743 	int ret = -1;
1744 	int slot;
1745 	int len;
1746 	int total_len = 0;
1747 	struct btrfs_inode_ref *iref;
1748 	struct extent_buffer *l;
1749 	struct btrfs_path *path;
1750 
1751 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1752 		name[0]='\0';
1753 		return 0;
1754 	}
1755 
1756 	path = btrfs_alloc_path();
1757 	if (!path)
1758 		return -ENOMEM;
1759 
1760 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1761 
1762 	root = btrfs_get_fs_root(info, tree_id, true);
1763 	if (IS_ERR(root)) {
1764 		ret = PTR_ERR(root);
1765 		root = NULL;
1766 		goto out;
1767 	}
1768 
1769 	key.objectid = dirid;
1770 	key.type = BTRFS_INODE_REF_KEY;
1771 	key.offset = (u64)-1;
1772 
1773 	while (1) {
1774 		ret = btrfs_search_backwards(root, &key, path);
1775 		if (ret < 0)
1776 			goto out;
1777 		else if (ret > 0) {
1778 			ret = -ENOENT;
1779 			goto out;
1780 		}
1781 
1782 		l = path->nodes[0];
1783 		slot = path->slots[0];
1784 
1785 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1786 		len = btrfs_inode_ref_name_len(l, iref);
1787 		ptr -= len + 1;
1788 		total_len += len + 1;
1789 		if (ptr < name) {
1790 			ret = -ENAMETOOLONG;
1791 			goto out;
1792 		}
1793 
1794 		*(ptr + len) = '/';
1795 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1796 
1797 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1798 			break;
1799 
1800 		btrfs_release_path(path);
1801 		key.objectid = key.offset;
1802 		key.offset = (u64)-1;
1803 		dirid = key.objectid;
1804 	}
1805 	memmove(name, ptr, total_len);
1806 	name[total_len] = '\0';
1807 	ret = 0;
1808 out:
1809 	btrfs_put_root(root);
1810 	btrfs_free_path(path);
1811 	return ret;
1812 }
1813 
btrfs_search_path_in_tree_user(struct mnt_idmap * idmap,struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)1814 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1815 				struct inode *inode,
1816 				struct btrfs_ioctl_ino_lookup_user_args *args)
1817 {
1818 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1819 	u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1820 	u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
1821 	u64 dirid = args->dirid;
1822 	unsigned long item_off;
1823 	unsigned long item_len;
1824 	struct btrfs_inode_ref *iref;
1825 	struct btrfs_root_ref *rref;
1826 	struct btrfs_root *root = NULL;
1827 	struct btrfs_path *path;
1828 	struct btrfs_key key, key2;
1829 	struct extent_buffer *leaf;
1830 	char *ptr;
1831 	int slot;
1832 	int len;
1833 	int total_len = 0;
1834 	int ret;
1835 
1836 	path = btrfs_alloc_path();
1837 	if (!path)
1838 		return -ENOMEM;
1839 
1840 	/*
1841 	 * If the bottom subvolume does not exist directly under upper_limit,
1842 	 * construct the path in from the bottom up.
1843 	 */
1844 	if (dirid != upper_limit) {
1845 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1846 
1847 		root = btrfs_get_fs_root(fs_info, treeid, true);
1848 		if (IS_ERR(root)) {
1849 			ret = PTR_ERR(root);
1850 			goto out;
1851 		}
1852 
1853 		key.objectid = dirid;
1854 		key.type = BTRFS_INODE_REF_KEY;
1855 		key.offset = (u64)-1;
1856 		while (1) {
1857 			struct btrfs_inode *temp_inode;
1858 
1859 			ret = btrfs_search_backwards(root, &key, path);
1860 			if (ret < 0)
1861 				goto out_put;
1862 			else if (ret > 0) {
1863 				ret = -ENOENT;
1864 				goto out_put;
1865 			}
1866 
1867 			leaf = path->nodes[0];
1868 			slot = path->slots[0];
1869 
1870 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1871 			len = btrfs_inode_ref_name_len(leaf, iref);
1872 			ptr -= len + 1;
1873 			total_len += len + 1;
1874 			if (ptr < args->path) {
1875 				ret = -ENAMETOOLONG;
1876 				goto out_put;
1877 			}
1878 
1879 			*(ptr + len) = '/';
1880 			read_extent_buffer(leaf, ptr,
1881 					(unsigned long)(iref + 1), len);
1882 
1883 			/* Check the read+exec permission of this directory */
1884 			ret = btrfs_previous_item(root, path, dirid,
1885 						  BTRFS_INODE_ITEM_KEY);
1886 			if (ret < 0) {
1887 				goto out_put;
1888 			} else if (ret > 0) {
1889 				ret = -ENOENT;
1890 				goto out_put;
1891 			}
1892 
1893 			leaf = path->nodes[0];
1894 			slot = path->slots[0];
1895 			btrfs_item_key_to_cpu(leaf, &key2, slot);
1896 			if (key2.objectid != dirid) {
1897 				ret = -ENOENT;
1898 				goto out_put;
1899 			}
1900 
1901 			/*
1902 			 * We don't need the path anymore, so release it and
1903 			 * avoid deadlocks and lockdep warnings in case
1904 			 * btrfs_iget() needs to lookup the inode from its root
1905 			 * btree and lock the same leaf.
1906 			 */
1907 			btrfs_release_path(path);
1908 			temp_inode = btrfs_iget(key2.objectid, root);
1909 			if (IS_ERR(temp_inode)) {
1910 				ret = PTR_ERR(temp_inode);
1911 				goto out_put;
1912 			}
1913 			ret = inode_permission(idmap, &temp_inode->vfs_inode,
1914 					       MAY_READ | MAY_EXEC);
1915 			iput(&temp_inode->vfs_inode);
1916 			if (ret) {
1917 				ret = -EACCES;
1918 				goto out_put;
1919 			}
1920 
1921 			if (key.offset == upper_limit)
1922 				break;
1923 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1924 				ret = -EACCES;
1925 				goto out_put;
1926 			}
1927 
1928 			key.objectid = key.offset;
1929 			key.offset = (u64)-1;
1930 			dirid = key.objectid;
1931 		}
1932 
1933 		memmove(args->path, ptr, total_len);
1934 		args->path[total_len] = '\0';
1935 		btrfs_put_root(root);
1936 		root = NULL;
1937 		btrfs_release_path(path);
1938 	}
1939 
1940 	/* Get the bottom subvolume's name from ROOT_REF */
1941 	key.objectid = treeid;
1942 	key.type = BTRFS_ROOT_REF_KEY;
1943 	key.offset = args->treeid;
1944 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1945 	if (ret < 0) {
1946 		goto out;
1947 	} else if (ret > 0) {
1948 		ret = -ENOENT;
1949 		goto out;
1950 	}
1951 
1952 	leaf = path->nodes[0];
1953 	slot = path->slots[0];
1954 	btrfs_item_key_to_cpu(leaf, &key, slot);
1955 
1956 	item_off = btrfs_item_ptr_offset(leaf, slot);
1957 	item_len = btrfs_item_size(leaf, slot);
1958 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
1959 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
1960 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
1961 		ret = -EINVAL;
1962 		goto out;
1963 	}
1964 
1965 	/* Copy subvolume's name */
1966 	item_off += sizeof(struct btrfs_root_ref);
1967 	item_len -= sizeof(struct btrfs_root_ref);
1968 	read_extent_buffer(leaf, args->name, item_off, item_len);
1969 	args->name[item_len] = 0;
1970 
1971 out_put:
1972 	btrfs_put_root(root);
1973 out:
1974 	btrfs_free_path(path);
1975 	return ret;
1976 }
1977 
btrfs_ioctl_ino_lookup(struct btrfs_root * root,void __user * argp)1978 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
1979 					   void __user *argp)
1980 {
1981 	struct btrfs_ioctl_ino_lookup_args *args;
1982 	int ret = 0;
1983 
1984 	args = memdup_user(argp, sizeof(*args));
1985 	if (IS_ERR(args))
1986 		return PTR_ERR(args);
1987 
1988 	/*
1989 	 * Unprivileged query to obtain the containing subvolume root id. The
1990 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
1991 	 */
1992 	if (args->treeid == 0)
1993 		args->treeid = btrfs_root_id(root);
1994 
1995 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
1996 		args->name[0] = 0;
1997 		goto out;
1998 	}
1999 
2000 	if (!capable(CAP_SYS_ADMIN)) {
2001 		ret = -EPERM;
2002 		goto out;
2003 	}
2004 
2005 	ret = btrfs_search_path_in_tree(root->fs_info,
2006 					args->treeid, args->objectid,
2007 					args->name);
2008 
2009 out:
2010 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2011 		ret = -EFAULT;
2012 
2013 	kfree(args);
2014 	return ret;
2015 }
2016 
2017 /*
2018  * Version of ino_lookup ioctl (unprivileged)
2019  *
2020  * The main differences from ino_lookup ioctl are:
2021  *
2022  *   1. Read + Exec permission will be checked using inode_permission() during
2023  *      path construction. -EACCES will be returned in case of failure.
2024  *   2. Path construction will be stopped at the inode number which corresponds
2025  *      to the fd with which this ioctl is called. If constructed path does not
2026  *      exist under fd's inode, -EACCES will be returned.
2027  *   3. The name of bottom subvolume is also searched and filled.
2028  */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2029 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2030 {
2031 	struct btrfs_ioctl_ino_lookup_user_args *args;
2032 	struct inode *inode;
2033 	int ret;
2034 
2035 	args = memdup_user(argp, sizeof(*args));
2036 	if (IS_ERR(args))
2037 		return PTR_ERR(args);
2038 
2039 	inode = file_inode(file);
2040 
2041 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2042 	    btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2043 		/*
2044 		 * The subvolume does not exist under fd with which this is
2045 		 * called
2046 		 */
2047 		kfree(args);
2048 		return -EACCES;
2049 	}
2050 
2051 	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2052 
2053 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2054 		ret = -EFAULT;
2055 
2056 	kfree(args);
2057 	return ret;
2058 }
2059 
2060 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct inode * inode,void __user * argp)2061 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2062 {
2063 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2064 	struct btrfs_fs_info *fs_info;
2065 	struct btrfs_root *root;
2066 	struct btrfs_path *path;
2067 	struct btrfs_key key;
2068 	struct btrfs_root_item *root_item;
2069 	struct btrfs_root_ref *rref;
2070 	struct extent_buffer *leaf;
2071 	unsigned long item_off;
2072 	unsigned long item_len;
2073 	int slot;
2074 	int ret = 0;
2075 
2076 	path = btrfs_alloc_path();
2077 	if (!path)
2078 		return -ENOMEM;
2079 
2080 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2081 	if (!subvol_info) {
2082 		btrfs_free_path(path);
2083 		return -ENOMEM;
2084 	}
2085 
2086 	fs_info = BTRFS_I(inode)->root->fs_info;
2087 
2088 	/* Get root_item of inode's subvolume */
2089 	key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
2090 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2091 	if (IS_ERR(root)) {
2092 		ret = PTR_ERR(root);
2093 		goto out_free;
2094 	}
2095 	root_item = &root->root_item;
2096 
2097 	subvol_info->treeid = key.objectid;
2098 
2099 	subvol_info->generation = btrfs_root_generation(root_item);
2100 	subvol_info->flags = btrfs_root_flags(root_item);
2101 
2102 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2103 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2104 						    BTRFS_UUID_SIZE);
2105 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2106 						    BTRFS_UUID_SIZE);
2107 
2108 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2109 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2110 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2111 
2112 	subvol_info->otransid = btrfs_root_otransid(root_item);
2113 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2114 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2115 
2116 	subvol_info->stransid = btrfs_root_stransid(root_item);
2117 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2118 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2119 
2120 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2121 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2122 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2123 
2124 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2125 		/* Search root tree for ROOT_BACKREF of this subvolume */
2126 		key.type = BTRFS_ROOT_BACKREF_KEY;
2127 		key.offset = 0;
2128 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2129 		if (ret < 0) {
2130 			goto out;
2131 		} else if (path->slots[0] >=
2132 			   btrfs_header_nritems(path->nodes[0])) {
2133 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2134 			if (ret < 0) {
2135 				goto out;
2136 			} else if (ret > 0) {
2137 				ret = -EUCLEAN;
2138 				goto out;
2139 			}
2140 		}
2141 
2142 		leaf = path->nodes[0];
2143 		slot = path->slots[0];
2144 		btrfs_item_key_to_cpu(leaf, &key, slot);
2145 		if (key.objectid == subvol_info->treeid &&
2146 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2147 			subvol_info->parent_id = key.offset;
2148 
2149 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2150 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2151 
2152 			item_off = btrfs_item_ptr_offset(leaf, slot)
2153 					+ sizeof(struct btrfs_root_ref);
2154 			item_len = btrfs_item_size(leaf, slot)
2155 					- sizeof(struct btrfs_root_ref);
2156 			read_extent_buffer(leaf, subvol_info->name,
2157 					   item_off, item_len);
2158 		} else {
2159 			ret = -ENOENT;
2160 			goto out;
2161 		}
2162 	}
2163 
2164 	btrfs_free_path(path);
2165 	path = NULL;
2166 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2167 		ret = -EFAULT;
2168 
2169 out:
2170 	btrfs_put_root(root);
2171 out_free:
2172 	btrfs_free_path(path);
2173 	kfree(subvol_info);
2174 	return ret;
2175 }
2176 
2177 /*
2178  * Return ROOT_REF information of the subvolume containing this inode
2179  * except the subvolume name.
2180  */
btrfs_ioctl_get_subvol_rootref(struct btrfs_root * root,void __user * argp)2181 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2182 					  void __user *argp)
2183 {
2184 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2185 	struct btrfs_root_ref *rref;
2186 	struct btrfs_path *path;
2187 	struct btrfs_key key;
2188 	struct extent_buffer *leaf;
2189 	u64 objectid;
2190 	int slot;
2191 	int ret;
2192 	u8 found;
2193 
2194 	path = btrfs_alloc_path();
2195 	if (!path)
2196 		return -ENOMEM;
2197 
2198 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2199 	if (IS_ERR(rootrefs)) {
2200 		btrfs_free_path(path);
2201 		return PTR_ERR(rootrefs);
2202 	}
2203 
2204 	objectid = btrfs_root_id(root);
2205 	key.objectid = objectid;
2206 	key.type = BTRFS_ROOT_REF_KEY;
2207 	key.offset = rootrefs->min_treeid;
2208 	found = 0;
2209 
2210 	root = root->fs_info->tree_root;
2211 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2212 	if (ret < 0) {
2213 		goto out;
2214 	} else if (path->slots[0] >=
2215 		   btrfs_header_nritems(path->nodes[0])) {
2216 		ret = btrfs_next_leaf(root, path);
2217 		if (ret < 0) {
2218 			goto out;
2219 		} else if (ret > 0) {
2220 			ret = -EUCLEAN;
2221 			goto out;
2222 		}
2223 	}
2224 	while (1) {
2225 		leaf = path->nodes[0];
2226 		slot = path->slots[0];
2227 
2228 		btrfs_item_key_to_cpu(leaf, &key, slot);
2229 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2230 			ret = 0;
2231 			goto out;
2232 		}
2233 
2234 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2235 			ret = -EOVERFLOW;
2236 			goto out;
2237 		}
2238 
2239 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2240 		rootrefs->rootref[found].treeid = key.offset;
2241 		rootrefs->rootref[found].dirid =
2242 				  btrfs_root_ref_dirid(leaf, rref);
2243 		found++;
2244 
2245 		ret = btrfs_next_item(root, path);
2246 		if (ret < 0) {
2247 			goto out;
2248 		} else if (ret > 0) {
2249 			ret = -EUCLEAN;
2250 			goto out;
2251 		}
2252 	}
2253 
2254 out:
2255 	btrfs_free_path(path);
2256 
2257 	if (!ret || ret == -EOVERFLOW) {
2258 		rootrefs->num_items = found;
2259 		/* update min_treeid for next search */
2260 		if (found)
2261 			rootrefs->min_treeid =
2262 				rootrefs->rootref[found - 1].treeid + 1;
2263 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2264 			ret = -EFAULT;
2265 	}
2266 
2267 	kfree(rootrefs);
2268 
2269 	return ret;
2270 }
2271 
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)2272 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2273 					     void __user *arg,
2274 					     bool destroy_v2)
2275 {
2276 	struct dentry *parent = file->f_path.dentry;
2277 	struct dentry *dentry;
2278 	struct inode *dir = d_inode(parent);
2279 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2280 	struct inode *inode;
2281 	struct btrfs_root *root = BTRFS_I(dir)->root;
2282 	struct btrfs_root *dest = NULL;
2283 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2284 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2285 	struct mnt_idmap *idmap = file_mnt_idmap(file);
2286 	char *subvol_name, *subvol_name_ptr = NULL;
2287 	int ret = 0;
2288 	bool destroy_parent = false;
2289 
2290 	/* We don't support snapshots with extent tree v2 yet. */
2291 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2292 		btrfs_err(fs_info,
2293 			  "extent tree v2 doesn't support snapshot deletion yet");
2294 		return -EOPNOTSUPP;
2295 	}
2296 
2297 	if (destroy_v2) {
2298 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2299 		if (IS_ERR(vol_args2))
2300 			return PTR_ERR(vol_args2);
2301 
2302 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2303 			ret = -EOPNOTSUPP;
2304 			goto out;
2305 		}
2306 
2307 		/*
2308 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2309 		 * name, same as v1 currently does.
2310 		 */
2311 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2312 			ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2313 			if (ret < 0)
2314 				goto out;
2315 			subvol_name = vol_args2->name;
2316 
2317 			ret = mnt_want_write_file(file);
2318 			if (ret)
2319 				goto out;
2320 		} else {
2321 			struct inode *old_dir;
2322 
2323 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2324 				ret = -EINVAL;
2325 				goto out;
2326 			}
2327 
2328 			ret = mnt_want_write_file(file);
2329 			if (ret)
2330 				goto out;
2331 
2332 			dentry = btrfs_get_dentry(fs_info->sb,
2333 					BTRFS_FIRST_FREE_OBJECTID,
2334 					vol_args2->subvolid, 0);
2335 			if (IS_ERR(dentry)) {
2336 				ret = PTR_ERR(dentry);
2337 				goto out_drop_write;
2338 			}
2339 
2340 			/*
2341 			 * Change the default parent since the subvolume being
2342 			 * deleted can be outside of the current mount point.
2343 			 */
2344 			parent = btrfs_get_parent(dentry);
2345 
2346 			/*
2347 			 * At this point dentry->d_name can point to '/' if the
2348 			 * subvolume we want to destroy is outsite of the
2349 			 * current mount point, so we need to release the
2350 			 * current dentry and execute the lookup to return a new
2351 			 * one with ->d_name pointing to the
2352 			 * <mount point>/subvol_name.
2353 			 */
2354 			dput(dentry);
2355 			if (IS_ERR(parent)) {
2356 				ret = PTR_ERR(parent);
2357 				goto out_drop_write;
2358 			}
2359 			old_dir = dir;
2360 			dir = d_inode(parent);
2361 
2362 			/*
2363 			 * If v2 was used with SPEC_BY_ID, a new parent was
2364 			 * allocated since the subvolume can be outside of the
2365 			 * current mount point. Later on we need to release this
2366 			 * new parent dentry.
2367 			 */
2368 			destroy_parent = true;
2369 
2370 			/*
2371 			 * On idmapped mounts, deletion via subvolid is
2372 			 * restricted to subvolumes that are immediate
2373 			 * ancestors of the inode referenced by the file
2374 			 * descriptor in the ioctl. Otherwise the idmapping
2375 			 * could potentially be abused to delete subvolumes
2376 			 * anywhere in the filesystem the user wouldn't be able
2377 			 * to delete without an idmapped mount.
2378 			 */
2379 			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2380 				ret = -EOPNOTSUPP;
2381 				goto free_parent;
2382 			}
2383 
2384 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2385 						fs_info, vol_args2->subvolid);
2386 			if (IS_ERR(subvol_name_ptr)) {
2387 				ret = PTR_ERR(subvol_name_ptr);
2388 				goto free_parent;
2389 			}
2390 			/* subvol_name_ptr is already nul terminated */
2391 			subvol_name = (char *)kbasename(subvol_name_ptr);
2392 		}
2393 	} else {
2394 		vol_args = memdup_user(arg, sizeof(*vol_args));
2395 		if (IS_ERR(vol_args))
2396 			return PTR_ERR(vol_args);
2397 
2398 		ret = btrfs_check_ioctl_vol_args_path(vol_args);
2399 		if (ret < 0)
2400 			goto out;
2401 
2402 		subvol_name = vol_args->name;
2403 
2404 		ret = mnt_want_write_file(file);
2405 		if (ret)
2406 			goto out;
2407 	}
2408 
2409 	if (strchr(subvol_name, '/') ||
2410 	    strcmp(subvol_name, "..") == 0) {
2411 		ret = -EINVAL;
2412 		goto free_subvol_name;
2413 	}
2414 
2415 	if (!S_ISDIR(dir->i_mode)) {
2416 		ret = -ENOTDIR;
2417 		goto free_subvol_name;
2418 	}
2419 
2420 	ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2421 	if (ret == -EINTR)
2422 		goto free_subvol_name;
2423 	dentry = lookup_one(idmap, &QSTR(subvol_name), parent);
2424 	if (IS_ERR(dentry)) {
2425 		ret = PTR_ERR(dentry);
2426 		goto out_unlock_dir;
2427 	}
2428 
2429 	if (d_really_is_negative(dentry)) {
2430 		ret = -ENOENT;
2431 		goto out_dput;
2432 	}
2433 
2434 	inode = d_inode(dentry);
2435 	dest = BTRFS_I(inode)->root;
2436 	if (!capable(CAP_SYS_ADMIN)) {
2437 		/*
2438 		 * Regular user.  Only allow this with a special mount
2439 		 * option, when the user has write+exec access to the
2440 		 * subvol root, and when rmdir(2) would have been
2441 		 * allowed.
2442 		 *
2443 		 * Note that this is _not_ check that the subvol is
2444 		 * empty or doesn't contain data that we wouldn't
2445 		 * otherwise be able to delete.
2446 		 *
2447 		 * Users who want to delete empty subvols should try
2448 		 * rmdir(2).
2449 		 */
2450 		ret = -EPERM;
2451 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2452 			goto out_dput;
2453 
2454 		/*
2455 		 * Do not allow deletion if the parent dir is the same
2456 		 * as the dir to be deleted.  That means the ioctl
2457 		 * must be called on the dentry referencing the root
2458 		 * of the subvol, not a random directory contained
2459 		 * within it.
2460 		 */
2461 		ret = -EINVAL;
2462 		if (root == dest)
2463 			goto out_dput;
2464 
2465 		ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2466 		if (ret)
2467 			goto out_dput;
2468 	}
2469 
2470 	/* check if subvolume may be deleted by a user */
2471 	ret = btrfs_may_delete(idmap, dir, dentry, 1);
2472 	if (ret)
2473 		goto out_dput;
2474 
2475 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2476 		ret = -EINVAL;
2477 		goto out_dput;
2478 	}
2479 
2480 	btrfs_inode_lock(BTRFS_I(inode), 0);
2481 	ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2482 	btrfs_inode_unlock(BTRFS_I(inode), 0);
2483 	if (!ret)
2484 		d_delete_notify(dir, dentry);
2485 
2486 out_dput:
2487 	dput(dentry);
2488 out_unlock_dir:
2489 	btrfs_inode_unlock(BTRFS_I(dir), 0);
2490 free_subvol_name:
2491 	kfree(subvol_name_ptr);
2492 free_parent:
2493 	if (destroy_parent)
2494 		dput(parent);
2495 out_drop_write:
2496 	mnt_drop_write_file(file);
2497 out:
2498 	kfree(vol_args2);
2499 	kfree(vol_args);
2500 	return ret;
2501 }
2502 
btrfs_ioctl_defrag(struct file * file,void __user * argp)2503 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2504 {
2505 	struct inode *inode = file_inode(file);
2506 	struct btrfs_root *root = BTRFS_I(inode)->root;
2507 	struct btrfs_ioctl_defrag_range_args range = {0};
2508 	int ret;
2509 
2510 	ret = mnt_want_write_file(file);
2511 	if (ret)
2512 		return ret;
2513 
2514 	if (btrfs_root_readonly(root)) {
2515 		ret = -EROFS;
2516 		goto out;
2517 	}
2518 
2519 	switch (inode->i_mode & S_IFMT) {
2520 	case S_IFDIR:
2521 		if (!capable(CAP_SYS_ADMIN)) {
2522 			ret = -EPERM;
2523 			goto out;
2524 		}
2525 		ret = btrfs_defrag_root(root);
2526 		break;
2527 	case S_IFREG:
2528 		/*
2529 		 * Note that this does not check the file descriptor for write
2530 		 * access. This prevents defragmenting executables that are
2531 		 * running and allows defrag on files open in read-only mode.
2532 		 */
2533 		if (!capable(CAP_SYS_ADMIN) &&
2534 		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2535 			ret = -EPERM;
2536 			goto out;
2537 		}
2538 
2539 		/*
2540 		 * Don't allow defrag on pre-content watched files, as it could
2541 		 * populate the page cache with 0's via readahead.
2542 		 */
2543 		if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) {
2544 			ret = -EINVAL;
2545 			goto out;
2546 		}
2547 
2548 		if (argp) {
2549 			if (copy_from_user(&range, argp, sizeof(range))) {
2550 				ret = -EFAULT;
2551 				goto out;
2552 			}
2553 			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2554 				ret = -EOPNOTSUPP;
2555 				goto out;
2556 			}
2557 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS) &&
2558 			    (range.flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS)) {
2559 				ret = -EINVAL;
2560 				goto out;
2561 			}
2562 			/* Compression or no-compression require to start the IO. */
2563 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS) ||
2564 			    (range.flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS)) {
2565 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2566 				range.extent_thresh = (u32)-1;
2567 			}
2568 		} else {
2569 			/* the rest are all set to zero by kzalloc */
2570 			range.len = (u64)-1;
2571 		}
2572 		ret = btrfs_defrag_file(BTRFS_I(file_inode(file)), &file->f_ra,
2573 					&range, BTRFS_OLDEST_GENERATION, 0);
2574 		if (ret > 0)
2575 			ret = 0;
2576 		break;
2577 	default:
2578 		ret = -EINVAL;
2579 	}
2580 out:
2581 	mnt_drop_write_file(file);
2582 	return ret;
2583 }
2584 
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)2585 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2586 {
2587 	struct btrfs_ioctl_vol_args *vol_args;
2588 	bool restore_op = false;
2589 	int ret;
2590 
2591 	if (!capable(CAP_SYS_ADMIN))
2592 		return -EPERM;
2593 
2594 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2595 		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2596 		return -EINVAL;
2597 	}
2598 
2599 	if (fs_info->fs_devices->temp_fsid) {
2600 		btrfs_err(fs_info,
2601 			  "device add not supported on cloned temp-fsid mount");
2602 		return -EINVAL;
2603 	}
2604 
2605 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2606 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2607 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2608 
2609 		/*
2610 		 * We can do the device add because we have a paused balanced,
2611 		 * change the exclusive op type and remember we should bring
2612 		 * back the paused balance
2613 		 */
2614 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2615 		btrfs_exclop_start_unlock(fs_info);
2616 		restore_op = true;
2617 	}
2618 
2619 	vol_args = memdup_user(arg, sizeof(*vol_args));
2620 	if (IS_ERR(vol_args)) {
2621 		ret = PTR_ERR(vol_args);
2622 		goto out;
2623 	}
2624 
2625 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2626 	if (ret < 0)
2627 		goto out_free;
2628 
2629 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2630 
2631 	if (!ret)
2632 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2633 
2634 out_free:
2635 	kfree(vol_args);
2636 out:
2637 	if (restore_op)
2638 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2639 	else
2640 		btrfs_exclop_finish(fs_info);
2641 	return ret;
2642 }
2643 
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)2644 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2645 {
2646 	BTRFS_DEV_LOOKUP_ARGS(args);
2647 	struct inode *inode = file_inode(file);
2648 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2649 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2650 	struct file *bdev_file = NULL;
2651 	int ret;
2652 	bool cancel = false;
2653 
2654 	if (!capable(CAP_SYS_ADMIN))
2655 		return -EPERM;
2656 
2657 	vol_args = memdup_user(arg, sizeof(*vol_args));
2658 	if (IS_ERR(vol_args))
2659 		return PTR_ERR(vol_args);
2660 
2661 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2662 		ret = -EOPNOTSUPP;
2663 		goto out;
2664 	}
2665 
2666 	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2667 	if (ret < 0)
2668 		goto out;
2669 
2670 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2671 		args.devid = vol_args->devid;
2672 	} else if (!strcmp("cancel", vol_args->name)) {
2673 		cancel = true;
2674 	} else {
2675 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2676 		if (ret)
2677 			goto out;
2678 	}
2679 
2680 	ret = mnt_want_write_file(file);
2681 	if (ret)
2682 		goto out;
2683 
2684 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2685 					   cancel);
2686 	if (ret)
2687 		goto err_drop;
2688 
2689 	/* Exclusive operation is now claimed */
2690 	ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2691 
2692 	btrfs_exclop_finish(fs_info);
2693 
2694 	if (!ret) {
2695 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2696 			btrfs_info(fs_info, "device deleted: id %llu",
2697 					vol_args->devid);
2698 		else
2699 			btrfs_info(fs_info, "device deleted: %s",
2700 					vol_args->name);
2701 	}
2702 err_drop:
2703 	mnt_drop_write_file(file);
2704 	if (bdev_file)
2705 		bdev_fput(bdev_file);
2706 out:
2707 	btrfs_put_dev_args_from_path(&args);
2708 	kfree(vol_args);
2709 	return ret;
2710 }
2711 
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)2712 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2713 {
2714 	BTRFS_DEV_LOOKUP_ARGS(args);
2715 	struct inode *inode = file_inode(file);
2716 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2717 	struct btrfs_ioctl_vol_args *vol_args;
2718 	struct file *bdev_file = NULL;
2719 	int ret;
2720 	bool cancel = false;
2721 
2722 	if (!capable(CAP_SYS_ADMIN))
2723 		return -EPERM;
2724 
2725 	vol_args = memdup_user(arg, sizeof(*vol_args));
2726 	if (IS_ERR(vol_args))
2727 		return PTR_ERR(vol_args);
2728 
2729 	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2730 	if (ret < 0)
2731 		goto out_free;
2732 
2733 	if (!strcmp("cancel", vol_args->name)) {
2734 		cancel = true;
2735 	} else {
2736 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2737 		if (ret)
2738 			goto out;
2739 	}
2740 
2741 	ret = mnt_want_write_file(file);
2742 	if (ret)
2743 		goto out;
2744 
2745 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2746 					   cancel);
2747 	if (ret == 0) {
2748 		ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2749 		if (!ret)
2750 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2751 		btrfs_exclop_finish(fs_info);
2752 	}
2753 
2754 	mnt_drop_write_file(file);
2755 	if (bdev_file)
2756 		bdev_fput(bdev_file);
2757 out:
2758 	btrfs_put_dev_args_from_path(&args);
2759 out_free:
2760 	kfree(vol_args);
2761 	return ret;
2762 }
2763 
btrfs_ioctl_fs_info(const struct btrfs_fs_info * fs_info,void __user * arg)2764 static long btrfs_ioctl_fs_info(const struct btrfs_fs_info *fs_info,
2765 				void __user *arg)
2766 {
2767 	struct btrfs_ioctl_fs_info_args *fi_args;
2768 	struct btrfs_device *device;
2769 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2770 	u64 flags_in;
2771 	int ret = 0;
2772 
2773 	fi_args = memdup_user(arg, sizeof(*fi_args));
2774 	if (IS_ERR(fi_args))
2775 		return PTR_ERR(fi_args);
2776 
2777 	flags_in = fi_args->flags;
2778 	memset(fi_args, 0, sizeof(*fi_args));
2779 
2780 	rcu_read_lock();
2781 	fi_args->num_devices = fs_devices->num_devices;
2782 
2783 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2784 		if (device->devid > fi_args->max_id)
2785 			fi_args->max_id = device->devid;
2786 	}
2787 	rcu_read_unlock();
2788 
2789 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2790 	fi_args->nodesize = fs_info->nodesize;
2791 	fi_args->sectorsize = fs_info->sectorsize;
2792 	fi_args->clone_alignment = fs_info->sectorsize;
2793 
2794 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2795 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2796 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2797 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2798 	}
2799 
2800 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2801 		fi_args->generation = btrfs_get_fs_generation(fs_info);
2802 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2803 	}
2804 
2805 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2806 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2807 		       sizeof(fi_args->metadata_uuid));
2808 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2809 	}
2810 
2811 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2812 		ret = -EFAULT;
2813 
2814 	kfree(fi_args);
2815 	return ret;
2816 }
2817 
btrfs_ioctl_dev_info(const struct btrfs_fs_info * fs_info,void __user * arg)2818 static long btrfs_ioctl_dev_info(const struct btrfs_fs_info *fs_info,
2819 				 void __user *arg)
2820 {
2821 	BTRFS_DEV_LOOKUP_ARGS(args);
2822 	struct btrfs_ioctl_dev_info_args *di_args;
2823 	struct btrfs_device *dev;
2824 	int ret = 0;
2825 
2826 	di_args = memdup_user(arg, sizeof(*di_args));
2827 	if (IS_ERR(di_args))
2828 		return PTR_ERR(di_args);
2829 
2830 	args.devid = di_args->devid;
2831 	if (!btrfs_is_empty_uuid(di_args->uuid))
2832 		args.uuid = di_args->uuid;
2833 
2834 	rcu_read_lock();
2835 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2836 	if (!dev) {
2837 		ret = -ENODEV;
2838 		goto out;
2839 	}
2840 
2841 	di_args->devid = dev->devid;
2842 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2843 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2844 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2845 	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2846 	if (dev->name)
2847 		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2848 	else
2849 		di_args->path[0] = '\0';
2850 
2851 out:
2852 	rcu_read_unlock();
2853 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2854 		ret = -EFAULT;
2855 
2856 	kfree(di_args);
2857 	return ret;
2858 }
2859 
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)2860 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2861 {
2862 	struct inode *inode = file_inode(file);
2863 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2864 	struct btrfs_root *root = BTRFS_I(inode)->root;
2865 	struct btrfs_root *new_root;
2866 	struct btrfs_dir_item *di;
2867 	struct btrfs_trans_handle *trans;
2868 	struct btrfs_path *path = NULL;
2869 	struct btrfs_disk_key disk_key;
2870 	struct fscrypt_str name = FSTR_INIT("default", 7);
2871 	u64 objectid = 0;
2872 	u64 dir_id;
2873 	int ret;
2874 
2875 	if (!capable(CAP_SYS_ADMIN))
2876 		return -EPERM;
2877 
2878 	ret = mnt_want_write_file(file);
2879 	if (ret)
2880 		return ret;
2881 
2882 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2883 		ret = -EFAULT;
2884 		goto out;
2885 	}
2886 
2887 	if (!objectid)
2888 		objectid = BTRFS_FS_TREE_OBJECTID;
2889 
2890 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
2891 	if (IS_ERR(new_root)) {
2892 		ret = PTR_ERR(new_root);
2893 		goto out;
2894 	}
2895 	if (!btrfs_is_fstree(btrfs_root_id(new_root))) {
2896 		ret = -ENOENT;
2897 		goto out_free;
2898 	}
2899 
2900 	path = btrfs_alloc_path();
2901 	if (!path) {
2902 		ret = -ENOMEM;
2903 		goto out_free;
2904 	}
2905 
2906 	trans = btrfs_start_transaction(root, 1);
2907 	if (IS_ERR(trans)) {
2908 		ret = PTR_ERR(trans);
2909 		goto out_free;
2910 	}
2911 
2912 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
2913 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2914 				   dir_id, &name, 1);
2915 	if (IS_ERR_OR_NULL(di)) {
2916 		btrfs_release_path(path);
2917 		btrfs_end_transaction(trans);
2918 		btrfs_err(fs_info,
2919 			  "Umm, you don't have the default diritem, this isn't going to work");
2920 		ret = -ENOENT;
2921 		goto out_free;
2922 	}
2923 
2924 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2925 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2926 	btrfs_release_path(path);
2927 
2928 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2929 	btrfs_end_transaction(trans);
2930 out_free:
2931 	btrfs_put_root(new_root);
2932 	btrfs_free_path(path);
2933 out:
2934 	mnt_drop_write_file(file);
2935 	return ret;
2936 }
2937 
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)2938 static void get_block_group_info(struct list_head *groups_list,
2939 				 struct btrfs_ioctl_space_info *space)
2940 {
2941 	struct btrfs_block_group *block_group;
2942 
2943 	space->total_bytes = 0;
2944 	space->used_bytes = 0;
2945 	space->flags = 0;
2946 	list_for_each_entry(block_group, groups_list, list) {
2947 		space->flags = block_group->flags;
2948 		space->total_bytes += block_group->length;
2949 		space->used_bytes += block_group->used;
2950 	}
2951 }
2952 
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)2953 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2954 				   void __user *arg)
2955 {
2956 	struct btrfs_ioctl_space_args space_args = { 0 };
2957 	struct btrfs_ioctl_space_info space;
2958 	struct btrfs_ioctl_space_info *dest;
2959 	struct btrfs_ioctl_space_info *dest_orig;
2960 	struct btrfs_ioctl_space_info __user *user_dest;
2961 	struct btrfs_space_info *info;
2962 	static const u64 types[] = {
2963 		BTRFS_BLOCK_GROUP_DATA,
2964 		BTRFS_BLOCK_GROUP_SYSTEM,
2965 		BTRFS_BLOCK_GROUP_METADATA,
2966 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
2967 	};
2968 	int num_types = 4;
2969 	int alloc_size;
2970 	int ret = 0;
2971 	u64 slot_count = 0;
2972 	int i, c;
2973 
2974 	if (copy_from_user(&space_args,
2975 			   (struct btrfs_ioctl_space_args __user *)arg,
2976 			   sizeof(space_args)))
2977 		return -EFAULT;
2978 
2979 	for (i = 0; i < num_types; i++) {
2980 		struct btrfs_space_info *tmp;
2981 
2982 		info = NULL;
2983 		list_for_each_entry(tmp, &fs_info->space_info, list) {
2984 			if (tmp->flags == types[i]) {
2985 				info = tmp;
2986 				break;
2987 			}
2988 		}
2989 
2990 		if (!info)
2991 			continue;
2992 
2993 		down_read(&info->groups_sem);
2994 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2995 			if (!list_empty(&info->block_groups[c]))
2996 				slot_count++;
2997 		}
2998 		up_read(&info->groups_sem);
2999 	}
3000 
3001 	/*
3002 	 * Global block reserve, exported as a space_info
3003 	 */
3004 	slot_count++;
3005 
3006 	/* space_slots == 0 means they are asking for a count */
3007 	if (space_args.space_slots == 0) {
3008 		space_args.total_spaces = slot_count;
3009 		goto out;
3010 	}
3011 
3012 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3013 
3014 	alloc_size = sizeof(*dest) * slot_count;
3015 
3016 	/* we generally have at most 6 or so space infos, one for each raid
3017 	 * level.  So, a whole page should be more than enough for everyone
3018 	 */
3019 	if (alloc_size > PAGE_SIZE)
3020 		return -ENOMEM;
3021 
3022 	space_args.total_spaces = 0;
3023 	dest = kmalloc(alloc_size, GFP_KERNEL);
3024 	if (!dest)
3025 		return -ENOMEM;
3026 	dest_orig = dest;
3027 
3028 	/* now we have a buffer to copy into */
3029 	for (i = 0; i < num_types; i++) {
3030 		struct btrfs_space_info *tmp;
3031 
3032 		if (!slot_count)
3033 			break;
3034 
3035 		info = NULL;
3036 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3037 			if (tmp->flags == types[i]) {
3038 				info = tmp;
3039 				break;
3040 			}
3041 		}
3042 
3043 		if (!info)
3044 			continue;
3045 		down_read(&info->groups_sem);
3046 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3047 			if (!list_empty(&info->block_groups[c])) {
3048 				get_block_group_info(&info->block_groups[c],
3049 						     &space);
3050 				memcpy(dest, &space, sizeof(space));
3051 				dest++;
3052 				space_args.total_spaces++;
3053 				slot_count--;
3054 			}
3055 			if (!slot_count)
3056 				break;
3057 		}
3058 		up_read(&info->groups_sem);
3059 	}
3060 
3061 	/*
3062 	 * Add global block reserve
3063 	 */
3064 	if (slot_count) {
3065 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3066 
3067 		spin_lock(&block_rsv->lock);
3068 		space.total_bytes = block_rsv->size;
3069 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3070 		spin_unlock(&block_rsv->lock);
3071 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3072 		memcpy(dest, &space, sizeof(space));
3073 		space_args.total_spaces++;
3074 	}
3075 
3076 	user_dest = (struct btrfs_ioctl_space_info __user *)
3077 		(arg + sizeof(struct btrfs_ioctl_space_args));
3078 
3079 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3080 		ret = -EFAULT;
3081 
3082 	kfree(dest_orig);
3083 out:
3084 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3085 		ret = -EFAULT;
3086 
3087 	return ret;
3088 }
3089 
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)3090 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3091 					    void __user *argp)
3092 {
3093 	struct btrfs_trans_handle *trans;
3094 	u64 transid;
3095 
3096 	/*
3097 	 * Start orphan cleanup here for the given root in case it hasn't been
3098 	 * started already by other means. Errors are handled in the other
3099 	 * functions during transaction commit.
3100 	 */
3101 	btrfs_orphan_cleanup(root);
3102 
3103 	trans = btrfs_attach_transaction_barrier(root);
3104 	if (IS_ERR(trans)) {
3105 		if (PTR_ERR(trans) != -ENOENT)
3106 			return PTR_ERR(trans);
3107 
3108 		/* No running transaction, don't bother */
3109 		transid = btrfs_get_last_trans_committed(root->fs_info);
3110 		goto out;
3111 	}
3112 	transid = trans->transid;
3113 	btrfs_commit_transaction_async(trans);
3114 out:
3115 	if (argp)
3116 		if (copy_to_user(argp, &transid, sizeof(transid)))
3117 			return -EFAULT;
3118 	return 0;
3119 }
3120 
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)3121 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3122 					   void __user *argp)
3123 {
3124 	/* By default wait for the current transaction. */
3125 	u64 transid = 0;
3126 
3127 	if (argp)
3128 		if (copy_from_user(&transid, argp, sizeof(transid)))
3129 			return -EFAULT;
3130 
3131 	return btrfs_wait_for_commit(fs_info, transid);
3132 }
3133 
btrfs_ioctl_scrub(struct file * file,void __user * arg)3134 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3135 {
3136 	struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3137 	struct btrfs_ioctl_scrub_args *sa;
3138 	int ret;
3139 
3140 	if (!capable(CAP_SYS_ADMIN))
3141 		return -EPERM;
3142 
3143 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3144 		btrfs_err(fs_info, "scrub: extent tree v2 not yet supported");
3145 		return -EINVAL;
3146 	}
3147 
3148 	sa = memdup_user(arg, sizeof(*sa));
3149 	if (IS_ERR(sa))
3150 		return PTR_ERR(sa);
3151 
3152 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3153 		ret = -EOPNOTSUPP;
3154 		goto out;
3155 	}
3156 
3157 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3158 		ret = mnt_want_write_file(file);
3159 		if (ret)
3160 			goto out;
3161 	}
3162 
3163 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3164 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3165 			      0);
3166 
3167 	/*
3168 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3169 	 * error. This is important as it allows user space to know how much
3170 	 * progress scrub has done. For example, if scrub is canceled we get
3171 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3172 	 * space. Later user space can inspect the progress from the structure
3173 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3174 	 * previously (btrfs-progs does this).
3175 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3176 	 * then return -EFAULT to signal the structure was not copied or it may
3177 	 * be corrupt and unreliable due to a partial copy.
3178 	 */
3179 	if (copy_to_user(arg, sa, sizeof(*sa)))
3180 		ret = -EFAULT;
3181 
3182 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3183 		mnt_drop_write_file(file);
3184 out:
3185 	kfree(sa);
3186 	return ret;
3187 }
3188 
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)3189 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3190 {
3191 	if (!capable(CAP_SYS_ADMIN))
3192 		return -EPERM;
3193 
3194 	return btrfs_scrub_cancel(fs_info);
3195 }
3196 
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)3197 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3198 				       void __user *arg)
3199 {
3200 	struct btrfs_ioctl_scrub_args *sa;
3201 	int ret;
3202 
3203 	if (!capable(CAP_SYS_ADMIN))
3204 		return -EPERM;
3205 
3206 	sa = memdup_user(arg, sizeof(*sa));
3207 	if (IS_ERR(sa))
3208 		return PTR_ERR(sa);
3209 
3210 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3211 
3212 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3213 		ret = -EFAULT;
3214 
3215 	kfree(sa);
3216 	return ret;
3217 }
3218 
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)3219 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3220 				      void __user *arg)
3221 {
3222 	struct btrfs_ioctl_get_dev_stats *sa;
3223 	int ret;
3224 
3225 	sa = memdup_user(arg, sizeof(*sa));
3226 	if (IS_ERR(sa))
3227 		return PTR_ERR(sa);
3228 
3229 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3230 		kfree(sa);
3231 		return -EPERM;
3232 	}
3233 
3234 	ret = btrfs_get_dev_stats(fs_info, sa);
3235 
3236 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3237 		ret = -EFAULT;
3238 
3239 	kfree(sa);
3240 	return ret;
3241 }
3242 
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)3243 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3244 				    void __user *arg)
3245 {
3246 	struct btrfs_ioctl_dev_replace_args *p;
3247 	int ret;
3248 
3249 	if (!capable(CAP_SYS_ADMIN))
3250 		return -EPERM;
3251 
3252 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3253 		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3254 		return -EINVAL;
3255 	}
3256 
3257 	p = memdup_user(arg, sizeof(*p));
3258 	if (IS_ERR(p))
3259 		return PTR_ERR(p);
3260 
3261 	switch (p->cmd) {
3262 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3263 		if (sb_rdonly(fs_info->sb)) {
3264 			ret = -EROFS;
3265 			goto out;
3266 		}
3267 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3268 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3269 		} else {
3270 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3271 			btrfs_exclop_finish(fs_info);
3272 		}
3273 		break;
3274 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3275 		btrfs_dev_replace_status(fs_info, p);
3276 		ret = 0;
3277 		break;
3278 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3279 		p->result = btrfs_dev_replace_cancel(fs_info);
3280 		ret = 0;
3281 		break;
3282 	default:
3283 		ret = -EINVAL;
3284 		break;
3285 	}
3286 
3287 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3288 		ret = -EFAULT;
3289 out:
3290 	kfree(p);
3291 	return ret;
3292 }
3293 
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)3294 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3295 {
3296 	int ret = 0;
3297 	int i;
3298 	u64 rel_ptr;
3299 	int size;
3300 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3301 	struct inode_fs_paths *ipath = NULL;
3302 	struct btrfs_path *path;
3303 
3304 	if (!capable(CAP_DAC_READ_SEARCH))
3305 		return -EPERM;
3306 
3307 	path = btrfs_alloc_path();
3308 	if (!path) {
3309 		ret = -ENOMEM;
3310 		goto out;
3311 	}
3312 
3313 	ipa = memdup_user(arg, sizeof(*ipa));
3314 	if (IS_ERR(ipa)) {
3315 		ret = PTR_ERR(ipa);
3316 		ipa = NULL;
3317 		goto out;
3318 	}
3319 
3320 	size = min_t(u32, ipa->size, 4096);
3321 	ipath = init_ipath(size, root, path);
3322 	if (IS_ERR(ipath)) {
3323 		ret = PTR_ERR(ipath);
3324 		ipath = NULL;
3325 		goto out;
3326 	}
3327 
3328 	ret = paths_from_inode(ipa->inum, ipath);
3329 	if (ret < 0)
3330 		goto out;
3331 
3332 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3333 		rel_ptr = ipath->fspath->val[i] -
3334 			  (u64)(unsigned long)ipath->fspath->val;
3335 		ipath->fspath->val[i] = rel_ptr;
3336 	}
3337 
3338 	btrfs_free_path(path);
3339 	path = NULL;
3340 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3341 			   ipath->fspath, size);
3342 	if (ret) {
3343 		ret = -EFAULT;
3344 		goto out;
3345 	}
3346 
3347 out:
3348 	btrfs_free_path(path);
3349 	free_ipath(ipath);
3350 	kfree(ipa);
3351 
3352 	return ret;
3353 }
3354 
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)3355 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3356 					void __user *arg, int version)
3357 {
3358 	int ret = 0;
3359 	int size;
3360 	struct btrfs_ioctl_logical_ino_args *loi;
3361 	struct btrfs_data_container *inodes = NULL;
3362 	bool ignore_offset;
3363 
3364 	if (!capable(CAP_SYS_ADMIN))
3365 		return -EPERM;
3366 
3367 	loi = memdup_user(arg, sizeof(*loi));
3368 	if (IS_ERR(loi))
3369 		return PTR_ERR(loi);
3370 
3371 	if (version == 1) {
3372 		ignore_offset = false;
3373 		size = min_t(u32, loi->size, SZ_64K);
3374 	} else {
3375 		/* All reserved bits must be 0 for now */
3376 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3377 			ret = -EINVAL;
3378 			goto out_loi;
3379 		}
3380 		/* Only accept flags we have defined so far */
3381 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3382 			ret = -EINVAL;
3383 			goto out_loi;
3384 		}
3385 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3386 		size = min_t(u32, loi->size, SZ_16M);
3387 	}
3388 
3389 	inodes = init_data_container(size);
3390 	if (IS_ERR(inodes)) {
3391 		ret = PTR_ERR(inodes);
3392 		goto out_loi;
3393 	}
3394 
3395 	ret = iterate_inodes_from_logical(loi->logical, fs_info, inodes, ignore_offset);
3396 	if (ret == -EINVAL)
3397 		ret = -ENOENT;
3398 	if (ret < 0)
3399 		goto out;
3400 
3401 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3402 			   size);
3403 	if (ret)
3404 		ret = -EFAULT;
3405 
3406 out:
3407 	kvfree(inodes);
3408 out_loi:
3409 	kfree(loi);
3410 
3411 	return ret;
3412 }
3413 
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)3414 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3415 			       struct btrfs_ioctl_balance_args *bargs)
3416 {
3417 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3418 
3419 	bargs->flags = bctl->flags;
3420 
3421 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3422 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3423 	if (atomic_read(&fs_info->balance_pause_req))
3424 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3425 	if (atomic_read(&fs_info->balance_cancel_req))
3426 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3427 
3428 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3429 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3430 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3431 
3432 	spin_lock(&fs_info->balance_lock);
3433 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3434 	spin_unlock(&fs_info->balance_lock);
3435 }
3436 
3437 /*
3438  * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3439  * required.
3440  *
3441  * @fs_info:       the filesystem
3442  * @excl_acquired: ptr to boolean value which is set to false in case balance
3443  *                 is being resumed
3444  *
3445  * Return 0 on success in which case both fs_info::balance is acquired as well
3446  * as exclusive ops are blocked. In case of failure return an error code.
3447  */
btrfs_try_lock_balance(struct btrfs_fs_info * fs_info,bool * excl_acquired)3448 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3449 {
3450 	int ret;
3451 
3452 	/*
3453 	 * Exclusive operation is locked. Three possibilities:
3454 	 *   (1) some other op is running
3455 	 *   (2) balance is running
3456 	 *   (3) balance is paused -- special case (think resume)
3457 	 */
3458 	while (1) {
3459 		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3460 			*excl_acquired = true;
3461 			mutex_lock(&fs_info->balance_mutex);
3462 			return 0;
3463 		}
3464 
3465 		mutex_lock(&fs_info->balance_mutex);
3466 		if (fs_info->balance_ctl) {
3467 			/* This is either (2) or (3) */
3468 			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3469 				/* This is (2) */
3470 				ret = -EINPROGRESS;
3471 				goto out_failure;
3472 
3473 			} else {
3474 				mutex_unlock(&fs_info->balance_mutex);
3475 				/*
3476 				 * Lock released to allow other waiters to
3477 				 * continue, we'll reexamine the status again.
3478 				 */
3479 				mutex_lock(&fs_info->balance_mutex);
3480 
3481 				if (fs_info->balance_ctl &&
3482 				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3483 					/* This is (3) */
3484 					*excl_acquired = false;
3485 					return 0;
3486 				}
3487 			}
3488 		} else {
3489 			/* This is (1) */
3490 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3491 			goto out_failure;
3492 		}
3493 
3494 		mutex_unlock(&fs_info->balance_mutex);
3495 	}
3496 
3497 out_failure:
3498 	mutex_unlock(&fs_info->balance_mutex);
3499 	*excl_acquired = false;
3500 	return ret;
3501 }
3502 
btrfs_ioctl_balance(struct file * file,void __user * arg)3503 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3504 {
3505 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3506 	struct btrfs_fs_info *fs_info = root->fs_info;
3507 	struct btrfs_ioctl_balance_args *bargs;
3508 	struct btrfs_balance_control *bctl;
3509 	bool need_unlock = true;
3510 	int ret;
3511 
3512 	if (!capable(CAP_SYS_ADMIN))
3513 		return -EPERM;
3514 
3515 	ret = mnt_want_write_file(file);
3516 	if (ret)
3517 		return ret;
3518 
3519 	bargs = memdup_user(arg, sizeof(*bargs));
3520 	if (IS_ERR(bargs)) {
3521 		ret = PTR_ERR(bargs);
3522 		bargs = NULL;
3523 		goto out;
3524 	}
3525 
3526 	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3527 	if (ret)
3528 		goto out;
3529 
3530 	lockdep_assert_held(&fs_info->balance_mutex);
3531 
3532 	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3533 		if (!fs_info->balance_ctl) {
3534 			ret = -ENOTCONN;
3535 			goto out_unlock;
3536 		}
3537 
3538 		bctl = fs_info->balance_ctl;
3539 		spin_lock(&fs_info->balance_lock);
3540 		bctl->flags |= BTRFS_BALANCE_RESUME;
3541 		spin_unlock(&fs_info->balance_lock);
3542 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3543 
3544 		goto do_balance;
3545 	}
3546 
3547 	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3548 		ret = -EINVAL;
3549 		goto out_unlock;
3550 	}
3551 
3552 	if (fs_info->balance_ctl) {
3553 		ret = -EINPROGRESS;
3554 		goto out_unlock;
3555 	}
3556 
3557 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3558 	if (!bctl) {
3559 		ret = -ENOMEM;
3560 		goto out_unlock;
3561 	}
3562 
3563 	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3564 	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3565 	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3566 
3567 	bctl->flags = bargs->flags;
3568 do_balance:
3569 	/*
3570 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3571 	 * bctl is freed in reset_balance_state, or, if restriper was paused
3572 	 * all the way until unmount, in free_fs_info.  The flag should be
3573 	 * cleared after reset_balance_state.
3574 	 */
3575 	need_unlock = false;
3576 
3577 	ret = btrfs_balance(fs_info, bctl, bargs);
3578 	bctl = NULL;
3579 
3580 	if (ret == 0 || ret == -ECANCELED) {
3581 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3582 			ret = -EFAULT;
3583 	}
3584 
3585 	kfree(bctl);
3586 out_unlock:
3587 	mutex_unlock(&fs_info->balance_mutex);
3588 	if (need_unlock)
3589 		btrfs_exclop_finish(fs_info);
3590 out:
3591 	mnt_drop_write_file(file);
3592 	kfree(bargs);
3593 	return ret;
3594 }
3595 
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)3596 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3597 {
3598 	if (!capable(CAP_SYS_ADMIN))
3599 		return -EPERM;
3600 
3601 	switch (cmd) {
3602 	case BTRFS_BALANCE_CTL_PAUSE:
3603 		return btrfs_pause_balance(fs_info);
3604 	case BTRFS_BALANCE_CTL_CANCEL:
3605 		return btrfs_cancel_balance(fs_info);
3606 	}
3607 
3608 	return -EINVAL;
3609 }
3610 
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)3611 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3612 					 void __user *arg)
3613 {
3614 	struct btrfs_ioctl_balance_args *bargs;
3615 	int ret = 0;
3616 
3617 	if (!capable(CAP_SYS_ADMIN))
3618 		return -EPERM;
3619 
3620 	mutex_lock(&fs_info->balance_mutex);
3621 	if (!fs_info->balance_ctl) {
3622 		ret = -ENOTCONN;
3623 		goto out;
3624 	}
3625 
3626 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3627 	if (!bargs) {
3628 		ret = -ENOMEM;
3629 		goto out;
3630 	}
3631 
3632 	btrfs_update_ioctl_balance_args(fs_info, bargs);
3633 
3634 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3635 		ret = -EFAULT;
3636 
3637 	kfree(bargs);
3638 out:
3639 	mutex_unlock(&fs_info->balance_mutex);
3640 	return ret;
3641 }
3642 
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)3643 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3644 {
3645 	struct inode *inode = file_inode(file);
3646 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3647 	struct btrfs_ioctl_quota_ctl_args *sa;
3648 	int ret;
3649 
3650 	if (!capable(CAP_SYS_ADMIN))
3651 		return -EPERM;
3652 
3653 	ret = mnt_want_write_file(file);
3654 	if (ret)
3655 		return ret;
3656 
3657 	sa = memdup_user(arg, sizeof(*sa));
3658 	if (IS_ERR(sa)) {
3659 		ret = PTR_ERR(sa);
3660 		goto drop_write;
3661 	}
3662 
3663 	switch (sa->cmd) {
3664 	case BTRFS_QUOTA_CTL_ENABLE:
3665 	case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3666 		down_write(&fs_info->subvol_sem);
3667 		ret = btrfs_quota_enable(fs_info, sa);
3668 		up_write(&fs_info->subvol_sem);
3669 		break;
3670 	case BTRFS_QUOTA_CTL_DISABLE:
3671 		/*
3672 		 * Lock the cleaner mutex to prevent races with concurrent
3673 		 * relocation, because relocation may be building backrefs for
3674 		 * blocks of the quota root while we are deleting the root. This
3675 		 * is like dropping fs roots of deleted snapshots/subvolumes, we
3676 		 * need the same protection.
3677 		 *
3678 		 * This also prevents races between concurrent tasks trying to
3679 		 * disable quotas, because we will unlock and relock
3680 		 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3681 		 *
3682 		 * We take this here because we have the dependency of
3683 		 *
3684 		 * inode_lock -> subvol_sem
3685 		 *
3686 		 * because of rename.  With relocation we can prealloc extents,
3687 		 * so that makes the dependency chain
3688 		 *
3689 		 * cleaner_mutex -> inode_lock -> subvol_sem
3690 		 *
3691 		 * so we must take the cleaner_mutex here before we take the
3692 		 * subvol_sem.  The deadlock can't actually happen, but this
3693 		 * quiets lockdep.
3694 		 */
3695 		mutex_lock(&fs_info->cleaner_mutex);
3696 		down_write(&fs_info->subvol_sem);
3697 		ret = btrfs_quota_disable(fs_info);
3698 		up_write(&fs_info->subvol_sem);
3699 		mutex_unlock(&fs_info->cleaner_mutex);
3700 		break;
3701 	default:
3702 		ret = -EINVAL;
3703 		break;
3704 	}
3705 
3706 	kfree(sa);
3707 drop_write:
3708 	mnt_drop_write_file(file);
3709 	return ret;
3710 }
3711 
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)3712 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3713 {
3714 	struct inode *inode = file_inode(file);
3715 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3716 	struct btrfs_root *root = BTRFS_I(inode)->root;
3717 	struct btrfs_ioctl_qgroup_assign_args *sa;
3718 	struct btrfs_qgroup_list *prealloc = NULL;
3719 	struct btrfs_trans_handle *trans;
3720 	int ret;
3721 	int err;
3722 
3723 	if (!capable(CAP_SYS_ADMIN))
3724 		return -EPERM;
3725 
3726 	if (!btrfs_qgroup_enabled(fs_info))
3727 		return -ENOTCONN;
3728 
3729 	ret = mnt_want_write_file(file);
3730 	if (ret)
3731 		return ret;
3732 
3733 	sa = memdup_user(arg, sizeof(*sa));
3734 	if (IS_ERR(sa)) {
3735 		ret = PTR_ERR(sa);
3736 		goto drop_write;
3737 	}
3738 
3739 	if (sa->assign) {
3740 		prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3741 		if (!prealloc) {
3742 			ret = -ENOMEM;
3743 			goto drop_write;
3744 		}
3745 	}
3746 
3747 	trans = btrfs_join_transaction(root);
3748 	if (IS_ERR(trans)) {
3749 		ret = PTR_ERR(trans);
3750 		goto out;
3751 	}
3752 
3753 	/*
3754 	 * Prealloc ownership is moved to the relation handler, there it's used
3755 	 * or freed on error.
3756 	 */
3757 	if (sa->assign) {
3758 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3759 		prealloc = NULL;
3760 	} else {
3761 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3762 	}
3763 
3764 	/* update qgroup status and info */
3765 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3766 	err = btrfs_run_qgroups(trans);
3767 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3768 	if (err < 0)
3769 		btrfs_warn(fs_info,
3770 			   "qgroup status update failed after %s relation, marked as inconsistent",
3771 			   sa->assign ? "adding" : "deleting");
3772 	err = btrfs_end_transaction(trans);
3773 	if (err && !ret)
3774 		ret = err;
3775 
3776 out:
3777 	kfree(prealloc);
3778 	kfree(sa);
3779 drop_write:
3780 	mnt_drop_write_file(file);
3781 	return ret;
3782 }
3783 
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)3784 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3785 {
3786 	struct inode *inode = file_inode(file);
3787 	struct btrfs_root *root = BTRFS_I(inode)->root;
3788 	struct btrfs_ioctl_qgroup_create_args *sa;
3789 	struct btrfs_trans_handle *trans;
3790 	int ret;
3791 	int err;
3792 
3793 	if (!capable(CAP_SYS_ADMIN))
3794 		return -EPERM;
3795 
3796 	if (!btrfs_qgroup_enabled(root->fs_info))
3797 		return -ENOTCONN;
3798 
3799 	ret = mnt_want_write_file(file);
3800 	if (ret)
3801 		return ret;
3802 
3803 	sa = memdup_user(arg, sizeof(*sa));
3804 	if (IS_ERR(sa)) {
3805 		ret = PTR_ERR(sa);
3806 		goto drop_write;
3807 	}
3808 
3809 	if (!sa->qgroupid) {
3810 		ret = -EINVAL;
3811 		goto out;
3812 	}
3813 
3814 	if (sa->create && btrfs_is_fstree(sa->qgroupid)) {
3815 		ret = -EINVAL;
3816 		goto out;
3817 	}
3818 
3819 	trans = btrfs_join_transaction(root);
3820 	if (IS_ERR(trans)) {
3821 		ret = PTR_ERR(trans);
3822 		goto out;
3823 	}
3824 
3825 	if (sa->create) {
3826 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3827 	} else {
3828 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3829 	}
3830 
3831 	err = btrfs_end_transaction(trans);
3832 	if (err && !ret)
3833 		ret = err;
3834 
3835 out:
3836 	kfree(sa);
3837 drop_write:
3838 	mnt_drop_write_file(file);
3839 	return ret;
3840 }
3841 
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)3842 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3843 {
3844 	struct inode *inode = file_inode(file);
3845 	struct btrfs_root *root = BTRFS_I(inode)->root;
3846 	struct btrfs_ioctl_qgroup_limit_args *sa;
3847 	struct btrfs_trans_handle *trans;
3848 	int ret;
3849 	int err;
3850 	u64 qgroupid;
3851 
3852 	if (!capable(CAP_SYS_ADMIN))
3853 		return -EPERM;
3854 
3855 	if (!btrfs_qgroup_enabled(root->fs_info))
3856 		return -ENOTCONN;
3857 
3858 	ret = mnt_want_write_file(file);
3859 	if (ret)
3860 		return ret;
3861 
3862 	sa = memdup_user(arg, sizeof(*sa));
3863 	if (IS_ERR(sa)) {
3864 		ret = PTR_ERR(sa);
3865 		goto drop_write;
3866 	}
3867 
3868 	trans = btrfs_join_transaction(root);
3869 	if (IS_ERR(trans)) {
3870 		ret = PTR_ERR(trans);
3871 		goto out;
3872 	}
3873 
3874 	qgroupid = sa->qgroupid;
3875 	if (!qgroupid) {
3876 		/* take the current subvol as qgroup */
3877 		qgroupid = btrfs_root_id(root);
3878 	}
3879 
3880 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3881 
3882 	err = btrfs_end_transaction(trans);
3883 	if (err && !ret)
3884 		ret = err;
3885 
3886 out:
3887 	kfree(sa);
3888 drop_write:
3889 	mnt_drop_write_file(file);
3890 	return ret;
3891 }
3892 
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)3893 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3894 {
3895 	struct inode *inode = file_inode(file);
3896 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3897 	struct btrfs_ioctl_quota_rescan_args *qsa;
3898 	int ret;
3899 
3900 	if (!capable(CAP_SYS_ADMIN))
3901 		return -EPERM;
3902 
3903 	if (!btrfs_qgroup_enabled(fs_info))
3904 		return -ENOTCONN;
3905 
3906 	ret = mnt_want_write_file(file);
3907 	if (ret)
3908 		return ret;
3909 
3910 	qsa = memdup_user(arg, sizeof(*qsa));
3911 	if (IS_ERR(qsa)) {
3912 		ret = PTR_ERR(qsa);
3913 		goto drop_write;
3914 	}
3915 
3916 	if (qsa->flags) {
3917 		ret = -EINVAL;
3918 		goto out;
3919 	}
3920 
3921 	ret = btrfs_qgroup_rescan(fs_info);
3922 
3923 out:
3924 	kfree(qsa);
3925 drop_write:
3926 	mnt_drop_write_file(file);
3927 	return ret;
3928 }
3929 
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)3930 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3931 						void __user *arg)
3932 {
3933 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
3934 
3935 	if (!capable(CAP_SYS_ADMIN))
3936 		return -EPERM;
3937 
3938 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3939 		qsa.flags = 1;
3940 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3941 	}
3942 
3943 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
3944 		return -EFAULT;
3945 
3946 	return 0;
3947 }
3948 
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info)3949 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info)
3950 {
3951 	if (!capable(CAP_SYS_ADMIN))
3952 		return -EPERM;
3953 
3954 	return btrfs_qgroup_wait_for_completion(fs_info, true);
3955 }
3956 
_btrfs_ioctl_set_received_subvol(struct file * file,struct mnt_idmap * idmap,struct btrfs_ioctl_received_subvol_args * sa)3957 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3958 					    struct mnt_idmap *idmap,
3959 					    struct btrfs_ioctl_received_subvol_args *sa)
3960 {
3961 	struct inode *inode = file_inode(file);
3962 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3963 	struct btrfs_root *root = BTRFS_I(inode)->root;
3964 	struct btrfs_root_item *root_item = &root->root_item;
3965 	struct btrfs_trans_handle *trans;
3966 	struct timespec64 ct = current_time(inode);
3967 	int ret = 0;
3968 	int received_uuid_changed;
3969 
3970 	if (!inode_owner_or_capable(idmap, inode))
3971 		return -EPERM;
3972 
3973 	ret = mnt_want_write_file(file);
3974 	if (ret < 0)
3975 		return ret;
3976 
3977 	down_write(&fs_info->subvol_sem);
3978 
3979 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3980 		ret = -EINVAL;
3981 		goto out;
3982 	}
3983 
3984 	if (btrfs_root_readonly(root)) {
3985 		ret = -EROFS;
3986 		goto out;
3987 	}
3988 
3989 	/*
3990 	 * 1 - root item
3991 	 * 2 - uuid items (received uuid + subvol uuid)
3992 	 */
3993 	trans = btrfs_start_transaction(root, 3);
3994 	if (IS_ERR(trans)) {
3995 		ret = PTR_ERR(trans);
3996 		trans = NULL;
3997 		goto out;
3998 	}
3999 
4000 	sa->rtransid = trans->transid;
4001 	sa->rtime.sec = ct.tv_sec;
4002 	sa->rtime.nsec = ct.tv_nsec;
4003 
4004 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4005 				       BTRFS_UUID_SIZE);
4006 	if (received_uuid_changed &&
4007 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4008 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4009 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4010 					  btrfs_root_id(root));
4011 		if (ret && ret != -ENOENT) {
4012 		        btrfs_abort_transaction(trans, ret);
4013 		        btrfs_end_transaction(trans);
4014 		        goto out;
4015 		}
4016 	}
4017 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4018 	btrfs_set_root_stransid(root_item, sa->stransid);
4019 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4020 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4021 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4022 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4023 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4024 
4025 	ret = btrfs_update_root(trans, fs_info->tree_root,
4026 				&root->root_key, &root->root_item);
4027 	if (ret < 0) {
4028 		btrfs_end_transaction(trans);
4029 		goto out;
4030 	}
4031 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4032 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4033 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4034 					  btrfs_root_id(root));
4035 		if (ret < 0 && ret != -EEXIST) {
4036 			btrfs_abort_transaction(trans, ret);
4037 			btrfs_end_transaction(trans);
4038 			goto out;
4039 		}
4040 	}
4041 	ret = btrfs_commit_transaction(trans);
4042 out:
4043 	up_write(&fs_info->subvol_sem);
4044 	mnt_drop_write_file(file);
4045 	return ret;
4046 }
4047 
4048 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4049 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4050 						void __user *arg)
4051 {
4052 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4053 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4054 	int ret = 0;
4055 
4056 	args32 = memdup_user(arg, sizeof(*args32));
4057 	if (IS_ERR(args32))
4058 		return PTR_ERR(args32);
4059 
4060 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4061 	if (!args64) {
4062 		ret = -ENOMEM;
4063 		goto out;
4064 	}
4065 
4066 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4067 	args64->stransid = args32->stransid;
4068 	args64->rtransid = args32->rtransid;
4069 	args64->stime.sec = args32->stime.sec;
4070 	args64->stime.nsec = args32->stime.nsec;
4071 	args64->rtime.sec = args32->rtime.sec;
4072 	args64->rtime.nsec = args32->rtime.nsec;
4073 	args64->flags = args32->flags;
4074 
4075 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4076 	if (ret)
4077 		goto out;
4078 
4079 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4080 	args32->stransid = args64->stransid;
4081 	args32->rtransid = args64->rtransid;
4082 	args32->stime.sec = args64->stime.sec;
4083 	args32->stime.nsec = args64->stime.nsec;
4084 	args32->rtime.sec = args64->rtime.sec;
4085 	args32->rtime.nsec = args64->rtime.nsec;
4086 	args32->flags = args64->flags;
4087 
4088 	ret = copy_to_user(arg, args32, sizeof(*args32));
4089 	if (ret)
4090 		ret = -EFAULT;
4091 
4092 out:
4093 	kfree(args32);
4094 	kfree(args64);
4095 	return ret;
4096 }
4097 #endif
4098 
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4099 static long btrfs_ioctl_set_received_subvol(struct file *file,
4100 					    void __user *arg)
4101 {
4102 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4103 	int ret = 0;
4104 
4105 	sa = memdup_user(arg, sizeof(*sa));
4106 	if (IS_ERR(sa))
4107 		return PTR_ERR(sa);
4108 
4109 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4110 
4111 	if (ret)
4112 		goto out;
4113 
4114 	ret = copy_to_user(arg, sa, sizeof(*sa));
4115 	if (ret)
4116 		ret = -EFAULT;
4117 
4118 out:
4119 	kfree(sa);
4120 	return ret;
4121 }
4122 
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)4123 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4124 					void __user *arg)
4125 {
4126 	size_t len;
4127 	int ret;
4128 	char label[BTRFS_LABEL_SIZE];
4129 
4130 	spin_lock(&fs_info->super_lock);
4131 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4132 	spin_unlock(&fs_info->super_lock);
4133 
4134 	len = strnlen(label, BTRFS_LABEL_SIZE);
4135 
4136 	if (len == BTRFS_LABEL_SIZE) {
4137 		btrfs_warn(fs_info,
4138 			   "label is too long, return the first %zu bytes",
4139 			   --len);
4140 	}
4141 
4142 	ret = copy_to_user(arg, label, len);
4143 
4144 	return ret ? -EFAULT : 0;
4145 }
4146 
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)4147 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4148 {
4149 	struct inode *inode = file_inode(file);
4150 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4151 	struct btrfs_root *root = BTRFS_I(inode)->root;
4152 	struct btrfs_super_block *super_block = fs_info->super_copy;
4153 	struct btrfs_trans_handle *trans;
4154 	char label[BTRFS_LABEL_SIZE];
4155 	int ret;
4156 
4157 	if (!capable(CAP_SYS_ADMIN))
4158 		return -EPERM;
4159 
4160 	if (copy_from_user(label, arg, sizeof(label)))
4161 		return -EFAULT;
4162 
4163 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4164 		btrfs_err(fs_info,
4165 			  "unable to set label with more than %d bytes",
4166 			  BTRFS_LABEL_SIZE - 1);
4167 		return -EINVAL;
4168 	}
4169 
4170 	ret = mnt_want_write_file(file);
4171 	if (ret)
4172 		return ret;
4173 
4174 	trans = btrfs_start_transaction(root, 0);
4175 	if (IS_ERR(trans)) {
4176 		ret = PTR_ERR(trans);
4177 		goto out_unlock;
4178 	}
4179 
4180 	spin_lock(&fs_info->super_lock);
4181 	strscpy(super_block->label, label);
4182 	spin_unlock(&fs_info->super_lock);
4183 	ret = btrfs_commit_transaction(trans);
4184 
4185 out_unlock:
4186 	mnt_drop_write_file(file);
4187 	return ret;
4188 }
4189 
4190 #define INIT_FEATURE_FLAGS(suffix) \
4191 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4192 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4193 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4194 
btrfs_ioctl_get_supported_features(void __user * arg)4195 int btrfs_ioctl_get_supported_features(void __user *arg)
4196 {
4197 	static const struct btrfs_ioctl_feature_flags features[3] = {
4198 		INIT_FEATURE_FLAGS(SUPP),
4199 		INIT_FEATURE_FLAGS(SAFE_SET),
4200 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4201 	};
4202 
4203 	if (copy_to_user(arg, &features, sizeof(features)))
4204 		return -EFAULT;
4205 
4206 	return 0;
4207 }
4208 
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)4209 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4210 					void __user *arg)
4211 {
4212 	struct btrfs_super_block *super_block = fs_info->super_copy;
4213 	struct btrfs_ioctl_feature_flags features;
4214 
4215 	features.compat_flags = btrfs_super_compat_flags(super_block);
4216 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4217 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4218 
4219 	if (copy_to_user(arg, &features, sizeof(features)))
4220 		return -EFAULT;
4221 
4222 	return 0;
4223 }
4224 
check_feature_bits(const struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)4225 static int check_feature_bits(const struct btrfs_fs_info *fs_info,
4226 			      enum btrfs_feature_set set,
4227 			      u64 change_mask, u64 flags, u64 supported_flags,
4228 			      u64 safe_set, u64 safe_clear)
4229 {
4230 	const char *type = btrfs_feature_set_name(set);
4231 	char *names;
4232 	u64 disallowed, unsupported;
4233 	u64 set_mask = flags & change_mask;
4234 	u64 clear_mask = ~flags & change_mask;
4235 
4236 	unsupported = set_mask & ~supported_flags;
4237 	if (unsupported) {
4238 		names = btrfs_printable_features(set, unsupported);
4239 		if (names) {
4240 			btrfs_warn(fs_info,
4241 				   "this kernel does not support the %s feature bit%s",
4242 				   names, strchr(names, ',') ? "s" : "");
4243 			kfree(names);
4244 		} else
4245 			btrfs_warn(fs_info,
4246 				   "this kernel does not support %s bits 0x%llx",
4247 				   type, unsupported);
4248 		return -EOPNOTSUPP;
4249 	}
4250 
4251 	disallowed = set_mask & ~safe_set;
4252 	if (disallowed) {
4253 		names = btrfs_printable_features(set, disallowed);
4254 		if (names) {
4255 			btrfs_warn(fs_info,
4256 				   "can't set the %s feature bit%s while mounted",
4257 				   names, strchr(names, ',') ? "s" : "");
4258 			kfree(names);
4259 		} else
4260 			btrfs_warn(fs_info,
4261 				   "can't set %s bits 0x%llx while mounted",
4262 				   type, disallowed);
4263 		return -EPERM;
4264 	}
4265 
4266 	disallowed = clear_mask & ~safe_clear;
4267 	if (disallowed) {
4268 		names = btrfs_printable_features(set, disallowed);
4269 		if (names) {
4270 			btrfs_warn(fs_info,
4271 				   "can't clear the %s feature bit%s while mounted",
4272 				   names, strchr(names, ',') ? "s" : "");
4273 			kfree(names);
4274 		} else
4275 			btrfs_warn(fs_info,
4276 				   "can't clear %s bits 0x%llx while mounted",
4277 				   type, disallowed);
4278 		return -EPERM;
4279 	}
4280 
4281 	return 0;
4282 }
4283 
4284 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4285 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4286 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4287 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4288 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4289 
btrfs_ioctl_set_features(struct file * file,void __user * arg)4290 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4291 {
4292 	struct inode *inode = file_inode(file);
4293 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4294 	struct btrfs_root *root = BTRFS_I(inode)->root;
4295 	struct btrfs_super_block *super_block = fs_info->super_copy;
4296 	struct btrfs_ioctl_feature_flags flags[2];
4297 	struct btrfs_trans_handle *trans;
4298 	u64 newflags;
4299 	int ret;
4300 
4301 	if (!capable(CAP_SYS_ADMIN))
4302 		return -EPERM;
4303 
4304 	if (copy_from_user(flags, arg, sizeof(flags)))
4305 		return -EFAULT;
4306 
4307 	/* Nothing to do */
4308 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4309 	    !flags[0].incompat_flags)
4310 		return 0;
4311 
4312 	ret = check_feature(fs_info, flags[0].compat_flags,
4313 			    flags[1].compat_flags, COMPAT);
4314 	if (ret)
4315 		return ret;
4316 
4317 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4318 			    flags[1].compat_ro_flags, COMPAT_RO);
4319 	if (ret)
4320 		return ret;
4321 
4322 	ret = check_feature(fs_info, flags[0].incompat_flags,
4323 			    flags[1].incompat_flags, INCOMPAT);
4324 	if (ret)
4325 		return ret;
4326 
4327 	ret = mnt_want_write_file(file);
4328 	if (ret)
4329 		return ret;
4330 
4331 	trans = btrfs_start_transaction(root, 0);
4332 	if (IS_ERR(trans)) {
4333 		ret = PTR_ERR(trans);
4334 		goto out_drop_write;
4335 	}
4336 
4337 	spin_lock(&fs_info->super_lock);
4338 	newflags = btrfs_super_compat_flags(super_block);
4339 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4340 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4341 	btrfs_set_super_compat_flags(super_block, newflags);
4342 
4343 	newflags = btrfs_super_compat_ro_flags(super_block);
4344 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4345 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4346 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4347 
4348 	newflags = btrfs_super_incompat_flags(super_block);
4349 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4350 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4351 	btrfs_set_super_incompat_flags(super_block, newflags);
4352 	spin_unlock(&fs_info->super_lock);
4353 
4354 	ret = btrfs_commit_transaction(trans);
4355 out_drop_write:
4356 	mnt_drop_write_file(file);
4357 
4358 	return ret;
4359 }
4360 
_btrfs_ioctl_send(struct btrfs_root * root,void __user * argp,bool compat)4361 static int _btrfs_ioctl_send(struct btrfs_root *root, void __user *argp, bool compat)
4362 {
4363 	struct btrfs_ioctl_send_args *arg;
4364 	int ret;
4365 
4366 	if (compat) {
4367 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4368 		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4369 
4370 		ret = copy_from_user(&args32, argp, sizeof(args32));
4371 		if (ret)
4372 			return -EFAULT;
4373 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4374 		if (!arg)
4375 			return -ENOMEM;
4376 		arg->send_fd = args32.send_fd;
4377 		arg->clone_sources_count = args32.clone_sources_count;
4378 		arg->clone_sources = compat_ptr(args32.clone_sources);
4379 		arg->parent_root = args32.parent_root;
4380 		arg->flags = args32.flags;
4381 		arg->version = args32.version;
4382 		memcpy(arg->reserved, args32.reserved,
4383 		       sizeof(args32.reserved));
4384 #else
4385 		return -ENOTTY;
4386 #endif
4387 	} else {
4388 		arg = memdup_user(argp, sizeof(*arg));
4389 		if (IS_ERR(arg))
4390 			return PTR_ERR(arg);
4391 	}
4392 	ret = btrfs_ioctl_send(root, arg);
4393 	kfree(arg);
4394 	return ret;
4395 }
4396 
btrfs_ioctl_encoded_read(struct file * file,void __user * argp,bool compat)4397 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4398 				    bool compat)
4399 {
4400 	struct btrfs_ioctl_encoded_io_args args = { 0 };
4401 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4402 					     flags);
4403 	size_t copy_end;
4404 	struct btrfs_inode *inode = BTRFS_I(file_inode(file));
4405 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4406 	struct extent_io_tree *io_tree = &inode->io_tree;
4407 	struct iovec iovstack[UIO_FASTIOV];
4408 	struct iovec *iov = iovstack;
4409 	struct iov_iter iter;
4410 	loff_t pos;
4411 	struct kiocb kiocb;
4412 	ssize_t ret;
4413 	u64 disk_bytenr, disk_io_size;
4414 	struct extent_state *cached_state = NULL;
4415 
4416 	if (!capable(CAP_SYS_ADMIN)) {
4417 		ret = -EPERM;
4418 		goto out_acct;
4419 	}
4420 
4421 	if (compat) {
4422 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4423 		struct btrfs_ioctl_encoded_io_args_32 args32;
4424 
4425 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4426 				       flags);
4427 		if (copy_from_user(&args32, argp, copy_end)) {
4428 			ret = -EFAULT;
4429 			goto out_acct;
4430 		}
4431 		args.iov = compat_ptr(args32.iov);
4432 		args.iovcnt = args32.iovcnt;
4433 		args.offset = args32.offset;
4434 		args.flags = args32.flags;
4435 #else
4436 		return -ENOTTY;
4437 #endif
4438 	} else {
4439 		copy_end = copy_end_kernel;
4440 		if (copy_from_user(&args, argp, copy_end)) {
4441 			ret = -EFAULT;
4442 			goto out_acct;
4443 		}
4444 	}
4445 	if (args.flags != 0) {
4446 		ret = -EINVAL;
4447 		goto out_acct;
4448 	}
4449 
4450 	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4451 			   &iov, &iter);
4452 	if (ret < 0)
4453 		goto out_acct;
4454 
4455 	if (iov_iter_count(&iter) == 0) {
4456 		ret = 0;
4457 		goto out_iov;
4458 	}
4459 	pos = args.offset;
4460 	ret = rw_verify_area(READ, file, &pos, args.len);
4461 	if (ret < 0)
4462 		goto out_iov;
4463 
4464 	init_sync_kiocb(&kiocb, file);
4465 	kiocb.ki_pos = pos;
4466 
4467 	ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state,
4468 				 &disk_bytenr, &disk_io_size);
4469 
4470 	if (ret == -EIOCBQUEUED) {
4471 		bool unlocked = false;
4472 		u64 start, lockend, count;
4473 
4474 		start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize);
4475 		lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4476 
4477 		if (args.compression)
4478 			count = disk_io_size;
4479 		else
4480 			count = args.len;
4481 
4482 		ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend,
4483 						 &cached_state, disk_bytenr,
4484 						 disk_io_size, count,
4485 						 args.compression, &unlocked);
4486 
4487 		if (!unlocked) {
4488 			btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4489 			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4490 		}
4491 	}
4492 
4493 	if (ret >= 0) {
4494 		fsnotify_access(file);
4495 		if (copy_to_user(argp + copy_end,
4496 				 (char *)&args + copy_end_kernel,
4497 				 sizeof(args) - copy_end_kernel))
4498 			ret = -EFAULT;
4499 	}
4500 
4501 out_iov:
4502 	kfree(iov);
4503 out_acct:
4504 	if (ret > 0)
4505 		add_rchar(current, ret);
4506 	inc_syscr(current);
4507 	return ret;
4508 }
4509 
btrfs_ioctl_encoded_write(struct file * file,void __user * argp,bool compat)4510 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4511 {
4512 	struct btrfs_ioctl_encoded_io_args args;
4513 	struct iovec iovstack[UIO_FASTIOV];
4514 	struct iovec *iov = iovstack;
4515 	struct iov_iter iter;
4516 	loff_t pos;
4517 	struct kiocb kiocb;
4518 	ssize_t ret;
4519 
4520 	if (!capable(CAP_SYS_ADMIN)) {
4521 		ret = -EPERM;
4522 		goto out_acct;
4523 	}
4524 
4525 	if (!(file->f_mode & FMODE_WRITE)) {
4526 		ret = -EBADF;
4527 		goto out_acct;
4528 	}
4529 
4530 	if (compat) {
4531 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4532 		struct btrfs_ioctl_encoded_io_args_32 args32;
4533 
4534 		if (copy_from_user(&args32, argp, sizeof(args32))) {
4535 			ret = -EFAULT;
4536 			goto out_acct;
4537 		}
4538 		args.iov = compat_ptr(args32.iov);
4539 		args.iovcnt = args32.iovcnt;
4540 		args.offset = args32.offset;
4541 		args.flags = args32.flags;
4542 		args.len = args32.len;
4543 		args.unencoded_len = args32.unencoded_len;
4544 		args.unencoded_offset = args32.unencoded_offset;
4545 		args.compression = args32.compression;
4546 		args.encryption = args32.encryption;
4547 		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4548 #else
4549 		return -ENOTTY;
4550 #endif
4551 	} else {
4552 		if (copy_from_user(&args, argp, sizeof(args))) {
4553 			ret = -EFAULT;
4554 			goto out_acct;
4555 		}
4556 	}
4557 
4558 	ret = -EINVAL;
4559 	if (args.flags != 0)
4560 		goto out_acct;
4561 	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4562 		goto out_acct;
4563 	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4564 	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4565 		goto out_acct;
4566 	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4567 	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4568 		goto out_acct;
4569 	if (args.unencoded_offset > args.unencoded_len)
4570 		goto out_acct;
4571 	if (args.len > args.unencoded_len - args.unencoded_offset)
4572 		goto out_acct;
4573 
4574 	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4575 			   &iov, &iter);
4576 	if (ret < 0)
4577 		goto out_acct;
4578 
4579 	if (iov_iter_count(&iter) == 0) {
4580 		ret = 0;
4581 		goto out_iov;
4582 	}
4583 	pos = args.offset;
4584 	ret = rw_verify_area(WRITE, file, &pos, args.len);
4585 	if (ret < 0)
4586 		goto out_iov;
4587 
4588 	init_sync_kiocb(&kiocb, file);
4589 	ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4590 	if (ret)
4591 		goto out_iov;
4592 	kiocb.ki_pos = pos;
4593 
4594 	file_start_write(file);
4595 
4596 	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4597 	if (ret > 0)
4598 		fsnotify_modify(file);
4599 
4600 	file_end_write(file);
4601 out_iov:
4602 	kfree(iov);
4603 out_acct:
4604 	if (ret > 0)
4605 		add_wchar(current, ret);
4606 	inc_syscw(current);
4607 	return ret;
4608 }
4609 
4610 struct btrfs_uring_encoded_data {
4611 	struct btrfs_ioctl_encoded_io_args args;
4612 	struct iovec iovstack[UIO_FASTIOV];
4613 	struct iovec *iov;
4614 	struct iov_iter iter;
4615 };
4616 
4617 /*
4618  * Context that's attached to an encoded read io_uring command, in cmd->pdu. It
4619  * contains the fields in btrfs_uring_read_extent that are necessary to finish
4620  * off and cleanup the I/O in btrfs_uring_read_finished.
4621  */
4622 struct btrfs_uring_priv {
4623 	struct io_uring_cmd *cmd;
4624 	struct page **pages;
4625 	unsigned long nr_pages;
4626 	struct kiocb iocb;
4627 	struct iovec *iov;
4628 	struct iov_iter iter;
4629 	struct extent_state *cached_state;
4630 	u64 count;
4631 	u64 start;
4632 	u64 lockend;
4633 	int err;
4634 	bool compressed;
4635 };
4636 
4637 struct io_btrfs_cmd {
4638 	struct btrfs_uring_encoded_data *data;
4639 	struct btrfs_uring_priv *priv;
4640 };
4641 
btrfs_uring_read_finished(struct io_uring_cmd * cmd,unsigned int issue_flags)4642 static void btrfs_uring_read_finished(struct io_uring_cmd *cmd, unsigned int issue_flags)
4643 {
4644 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4645 	struct btrfs_uring_priv *priv = bc->priv;
4646 	struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp));
4647 	struct extent_io_tree *io_tree = &inode->io_tree;
4648 	pgoff_t index;
4649 	u64 cur;
4650 	size_t page_offset;
4651 	ssize_t ret;
4652 
4653 	/* The inode lock has already been acquired in btrfs_uring_read_extent.  */
4654 	btrfs_lockdep_inode_acquire(inode, i_rwsem);
4655 
4656 	if (priv->err) {
4657 		ret = priv->err;
4658 		goto out;
4659 	}
4660 
4661 	if (priv->compressed) {
4662 		index = 0;
4663 		page_offset = 0;
4664 	} else {
4665 		index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT;
4666 		page_offset = offset_in_page(priv->iocb.ki_pos - priv->start);
4667 	}
4668 	cur = 0;
4669 	while (cur < priv->count) {
4670 		size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset);
4671 
4672 		if (copy_page_to_iter(priv->pages[index], page_offset, bytes,
4673 				      &priv->iter) != bytes) {
4674 			ret = -EFAULT;
4675 			goto out;
4676 		}
4677 
4678 		index++;
4679 		cur += bytes;
4680 		page_offset = 0;
4681 	}
4682 	ret = priv->count;
4683 
4684 out:
4685 	btrfs_unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state);
4686 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4687 
4688 	io_uring_cmd_done(cmd, ret, 0, issue_flags);
4689 	add_rchar(current, ret);
4690 
4691 	for (index = 0; index < priv->nr_pages; index++)
4692 		__free_page(priv->pages[index]);
4693 
4694 	kfree(priv->pages);
4695 	kfree(priv->iov);
4696 	kfree(priv);
4697 	kfree(bc->data);
4698 }
4699 
btrfs_uring_read_extent_endio(void * ctx,int err)4700 void btrfs_uring_read_extent_endio(void *ctx, int err)
4701 {
4702 	struct btrfs_uring_priv *priv = ctx;
4703 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd);
4704 
4705 	priv->err = err;
4706 	bc->priv = priv;
4707 
4708 	io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished);
4709 }
4710 
btrfs_uring_read_extent(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state * cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,struct iovec * iov,struct io_uring_cmd * cmd)4711 static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter,
4712 				   u64 start, u64 lockend,
4713 				   struct extent_state *cached_state,
4714 				   u64 disk_bytenr, u64 disk_io_size,
4715 				   size_t count, bool compressed,
4716 				   struct iovec *iov, struct io_uring_cmd *cmd)
4717 {
4718 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
4719 	struct extent_io_tree *io_tree = &inode->io_tree;
4720 	struct page **pages;
4721 	struct btrfs_uring_priv *priv = NULL;
4722 	unsigned long nr_pages;
4723 	int ret;
4724 
4725 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
4726 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
4727 	if (!pages)
4728 		return -ENOMEM;
4729 	ret = btrfs_alloc_page_array(nr_pages, pages, 0);
4730 	if (ret) {
4731 		ret = -ENOMEM;
4732 		goto out_fail;
4733 	}
4734 
4735 	priv = kmalloc(sizeof(*priv), GFP_NOFS);
4736 	if (!priv) {
4737 		ret = -ENOMEM;
4738 		goto out_fail;
4739 	}
4740 
4741 	priv->iocb = *iocb;
4742 	priv->iov = iov;
4743 	priv->iter = *iter;
4744 	priv->count = count;
4745 	priv->cmd = cmd;
4746 	priv->cached_state = cached_state;
4747 	priv->compressed = compressed;
4748 	priv->nr_pages = nr_pages;
4749 	priv->pages = pages;
4750 	priv->start = start;
4751 	priv->lockend = lockend;
4752 	priv->err = 0;
4753 
4754 	ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
4755 						    disk_io_size, pages, priv);
4756 	if (ret && ret != -EIOCBQUEUED)
4757 		goto out_fail;
4758 
4759 	/*
4760 	 * If we return -EIOCBQUEUED, we're deferring the cleanup to
4761 	 * btrfs_uring_read_finished(), which will handle unlocking the extent
4762 	 * and inode and freeing the allocations.
4763 	 */
4764 
4765 	/*
4766 	 * We're returning to userspace with the inode lock held, and that's
4767 	 * okay - it'll get unlocked in a worker thread.  Call
4768 	 * btrfs_lockdep_inode_release() to avoid confusing lockdep.
4769 	 */
4770 	btrfs_lockdep_inode_release(inode, i_rwsem);
4771 
4772 	return -EIOCBQUEUED;
4773 
4774 out_fail:
4775 	btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4776 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4777 	kfree(priv);
4778 	return ret;
4779 }
4780 
btrfs_uring_encoded_read(struct io_uring_cmd * cmd,unsigned int issue_flags)4781 static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags)
4782 {
4783 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags);
4784 	size_t copy_end;
4785 	int ret;
4786 	u64 disk_bytenr, disk_io_size;
4787 	struct file *file;
4788 	struct btrfs_inode *inode;
4789 	struct btrfs_fs_info *fs_info;
4790 	struct extent_io_tree *io_tree;
4791 	loff_t pos;
4792 	struct kiocb kiocb;
4793 	struct extent_state *cached_state = NULL;
4794 	u64 start, lockend;
4795 	void __user *sqe_addr;
4796 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4797 	struct btrfs_uring_encoded_data *data = NULL;
4798 
4799 	if (cmd->flags & IORING_URING_CMD_REISSUE)
4800 		data = bc->data;
4801 
4802 	if (!capable(CAP_SYS_ADMIN)) {
4803 		ret = -EPERM;
4804 		goto out_acct;
4805 	}
4806 	file = cmd->file;
4807 	inode = BTRFS_I(file->f_inode);
4808 	fs_info = inode->root->fs_info;
4809 	io_tree = &inode->io_tree;
4810 	sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4811 
4812 	if (issue_flags & IO_URING_F_COMPAT) {
4813 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4814 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags);
4815 #else
4816 		ret = -ENOTTY;
4817 		goto out_acct;
4818 #endif
4819 	} else {
4820 		copy_end = copy_end_kernel;
4821 	}
4822 
4823 	if (!data) {
4824 		data = kzalloc(sizeof(*data), GFP_NOFS);
4825 		if (!data) {
4826 			ret = -ENOMEM;
4827 			goto out_acct;
4828 		}
4829 
4830 		bc->data = data;
4831 
4832 		if (issue_flags & IO_URING_F_COMPAT) {
4833 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4834 			struct btrfs_ioctl_encoded_io_args_32 args32;
4835 
4836 			if (copy_from_user(&args32, sqe_addr, copy_end)) {
4837 				ret = -EFAULT;
4838 				goto out_acct;
4839 			}
4840 
4841 			data->args.iov = compat_ptr(args32.iov);
4842 			data->args.iovcnt = args32.iovcnt;
4843 			data->args.offset = args32.offset;
4844 			data->args.flags = args32.flags;
4845 #endif
4846 		} else {
4847 			if (copy_from_user(&data->args, sqe_addr, copy_end)) {
4848 				ret = -EFAULT;
4849 				goto out_acct;
4850 			}
4851 		}
4852 
4853 		if (data->args.flags != 0) {
4854 			ret = -EINVAL;
4855 			goto out_acct;
4856 		}
4857 
4858 		data->iov = data->iovstack;
4859 		ret = import_iovec(ITER_DEST, data->args.iov, data->args.iovcnt,
4860 				   ARRAY_SIZE(data->iovstack), &data->iov,
4861 				   &data->iter);
4862 		if (ret < 0)
4863 			goto out_acct;
4864 
4865 		if (iov_iter_count(&data->iter) == 0) {
4866 			ret = 0;
4867 			goto out_free;
4868 		}
4869 	}
4870 
4871 	pos = data->args.offset;
4872 	ret = rw_verify_area(READ, file, &pos, data->args.len);
4873 	if (ret < 0)
4874 		goto out_free;
4875 
4876 	init_sync_kiocb(&kiocb, file);
4877 	kiocb.ki_pos = pos;
4878 
4879 	if (issue_flags & IO_URING_F_NONBLOCK)
4880 		kiocb.ki_flags |= IOCB_NOWAIT;
4881 
4882 	start = ALIGN_DOWN(pos, fs_info->sectorsize);
4883 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4884 
4885 	ret = btrfs_encoded_read(&kiocb, &data->iter, &data->args, &cached_state,
4886 				 &disk_bytenr, &disk_io_size);
4887 	if (ret == -EAGAIN)
4888 		goto out_acct;
4889 	if (ret < 0 && ret != -EIOCBQUEUED)
4890 		goto out_free;
4891 
4892 	file_accessed(file);
4893 
4894 	if (copy_to_user(sqe_addr + copy_end,
4895 			 (const char *)&data->args + copy_end_kernel,
4896 			 sizeof(data->args) - copy_end_kernel)) {
4897 		if (ret == -EIOCBQUEUED) {
4898 			btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4899 			btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4900 		}
4901 		ret = -EFAULT;
4902 		goto out_free;
4903 	}
4904 
4905 	if (ret == -EIOCBQUEUED) {
4906 		u64 count = min_t(u64, iov_iter_count(&data->iter), disk_io_size);
4907 
4908 		/* Match ioctl by not returning past EOF if uncompressed. */
4909 		if (!data->args.compression)
4910 			count = min_t(u64, count, data->args.len);
4911 
4912 		ret = btrfs_uring_read_extent(&kiocb, &data->iter, start, lockend,
4913 					      cached_state, disk_bytenr, disk_io_size,
4914 					      count, data->args.compression,
4915 					      data->iov, cmd);
4916 
4917 		goto out_acct;
4918 	}
4919 
4920 out_free:
4921 	kfree(data->iov);
4922 
4923 out_acct:
4924 	if (ret > 0)
4925 		add_rchar(current, ret);
4926 	inc_syscr(current);
4927 
4928 	if (ret != -EIOCBQUEUED && ret != -EAGAIN)
4929 		kfree(data);
4930 
4931 	return ret;
4932 }
4933 
btrfs_uring_encoded_write(struct io_uring_cmd * cmd,unsigned int issue_flags)4934 static int btrfs_uring_encoded_write(struct io_uring_cmd *cmd, unsigned int issue_flags)
4935 {
4936 	loff_t pos;
4937 	struct kiocb kiocb;
4938 	struct file *file;
4939 	ssize_t ret;
4940 	void __user *sqe_addr;
4941 	struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4942 	struct btrfs_uring_encoded_data *data = NULL;
4943 
4944 	if (cmd->flags & IORING_URING_CMD_REISSUE)
4945 		data = bc->data;
4946 
4947 	if (!capable(CAP_SYS_ADMIN)) {
4948 		ret = -EPERM;
4949 		goto out_acct;
4950 	}
4951 
4952 	file = cmd->file;
4953 	sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4954 
4955 	if (!(file->f_mode & FMODE_WRITE)) {
4956 		ret = -EBADF;
4957 		goto out_acct;
4958 	}
4959 
4960 	if (!data) {
4961 		data = kzalloc(sizeof(*data), GFP_NOFS);
4962 		if (!data) {
4963 			ret = -ENOMEM;
4964 			goto out_acct;
4965 		}
4966 
4967 		bc->data = data;
4968 
4969 		if (issue_flags & IO_URING_F_COMPAT) {
4970 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4971 			struct btrfs_ioctl_encoded_io_args_32 args32;
4972 
4973 			if (copy_from_user(&args32, sqe_addr, sizeof(args32))) {
4974 				ret = -EFAULT;
4975 				goto out_acct;
4976 			}
4977 			data->args.iov = compat_ptr(args32.iov);
4978 			data->args.iovcnt = args32.iovcnt;
4979 			data->args.offset = args32.offset;
4980 			data->args.flags = args32.flags;
4981 			data->args.len = args32.len;
4982 			data->args.unencoded_len = args32.unencoded_len;
4983 			data->args.unencoded_offset = args32.unencoded_offset;
4984 			data->args.compression = args32.compression;
4985 			data->args.encryption = args32.encryption;
4986 			memcpy(data->args.reserved, args32.reserved,
4987 			       sizeof(data->args.reserved));
4988 #else
4989 			ret = -ENOTTY;
4990 			goto out_acct;
4991 #endif
4992 		} else {
4993 			if (copy_from_user(&data->args, sqe_addr, sizeof(data->args))) {
4994 				ret = -EFAULT;
4995 				goto out_acct;
4996 			}
4997 		}
4998 
4999 		ret = -EINVAL;
5000 		if (data->args.flags != 0)
5001 			goto out_acct;
5002 		if (memchr_inv(data->args.reserved, 0, sizeof(data->args.reserved)))
5003 			goto out_acct;
5004 		if (data->args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
5005 		    data->args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
5006 			goto out_acct;
5007 		if (data->args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
5008 		    data->args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
5009 			goto out_acct;
5010 		if (data->args.unencoded_offset > data->args.unencoded_len)
5011 			goto out_acct;
5012 		if (data->args.len > data->args.unencoded_len - data->args.unencoded_offset)
5013 			goto out_acct;
5014 
5015 		data->iov = data->iovstack;
5016 		ret = import_iovec(ITER_SOURCE, data->args.iov, data->args.iovcnt,
5017 				   ARRAY_SIZE(data->iovstack), &data->iov,
5018 				   &data->iter);
5019 		if (ret < 0)
5020 			goto out_acct;
5021 
5022 		if (iov_iter_count(&data->iter) == 0) {
5023 			ret = 0;
5024 			goto out_iov;
5025 		}
5026 	}
5027 
5028 	if (issue_flags & IO_URING_F_NONBLOCK) {
5029 		ret = -EAGAIN;
5030 		goto out_acct;
5031 	}
5032 
5033 	pos = data->args.offset;
5034 	ret = rw_verify_area(WRITE, file, &pos, data->args.len);
5035 	if (ret < 0)
5036 		goto out_iov;
5037 
5038 	init_sync_kiocb(&kiocb, file);
5039 	ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
5040 	if (ret)
5041 		goto out_iov;
5042 	kiocb.ki_pos = pos;
5043 
5044 	file_start_write(file);
5045 
5046 	ret = btrfs_do_write_iter(&kiocb, &data->iter, &data->args);
5047 	if (ret > 0)
5048 		fsnotify_modify(file);
5049 
5050 	file_end_write(file);
5051 out_iov:
5052 	kfree(data->iov);
5053 out_acct:
5054 	if (ret > 0)
5055 		add_wchar(current, ret);
5056 	inc_syscw(current);
5057 
5058 	if (ret != -EAGAIN)
5059 		kfree(data);
5060 	return ret;
5061 }
5062 
btrfs_uring_cmd(struct io_uring_cmd * cmd,unsigned int issue_flags)5063 int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags)
5064 {
5065 	switch (cmd->cmd_op) {
5066 	case BTRFS_IOC_ENCODED_READ:
5067 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5068 	case BTRFS_IOC_ENCODED_READ_32:
5069 #endif
5070 		return btrfs_uring_encoded_read(cmd, issue_flags);
5071 
5072 	case BTRFS_IOC_ENCODED_WRITE:
5073 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5074 	case BTRFS_IOC_ENCODED_WRITE_32:
5075 #endif
5076 		return btrfs_uring_encoded_write(cmd, issue_flags);
5077 	}
5078 
5079 	return -EINVAL;
5080 }
5081 
btrfs_ioctl_subvol_sync(struct btrfs_fs_info * fs_info,void __user * argp)5082 static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp)
5083 {
5084 	struct btrfs_root *root;
5085 	struct btrfs_ioctl_subvol_wait args = { 0 };
5086 	signed long sched_ret;
5087 	int refs;
5088 	u64 root_flags;
5089 	bool wait_for_deletion = false;
5090 	bool found = false;
5091 
5092 	if (copy_from_user(&args, argp, sizeof(args)))
5093 		return -EFAULT;
5094 
5095 	switch (args.mode) {
5096 	case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED:
5097 		/*
5098 		 * Wait for the first one deleted that waits until all previous
5099 		 * are cleaned.
5100 		 */
5101 		spin_lock(&fs_info->trans_lock);
5102 		if (!list_empty(&fs_info->dead_roots)) {
5103 			root = list_last_entry(&fs_info->dead_roots,
5104 					       struct btrfs_root, root_list);
5105 			args.subvolid = btrfs_root_id(root);
5106 			found = true;
5107 		}
5108 		spin_unlock(&fs_info->trans_lock);
5109 		if (!found)
5110 			return -ENOENT;
5111 
5112 		fallthrough;
5113 	case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE:
5114 		if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) ||
5115 		    BTRFS_LAST_FREE_OBJECTID < args.subvolid)
5116 			return -EINVAL;
5117 		break;
5118 	case BTRFS_SUBVOL_SYNC_COUNT:
5119 		spin_lock(&fs_info->trans_lock);
5120 		args.count = list_count_nodes(&fs_info->dead_roots);
5121 		spin_unlock(&fs_info->trans_lock);
5122 		if (copy_to_user(argp, &args, sizeof(args)))
5123 			return -EFAULT;
5124 		return 0;
5125 	case BTRFS_SUBVOL_SYNC_PEEK_FIRST:
5126 		spin_lock(&fs_info->trans_lock);
5127 		/* Last in the list was deleted first. */
5128 		if (!list_empty(&fs_info->dead_roots)) {
5129 			root = list_last_entry(&fs_info->dead_roots,
5130 					       struct btrfs_root, root_list);
5131 			args.subvolid = btrfs_root_id(root);
5132 		} else {
5133 			args.subvolid = 0;
5134 		}
5135 		spin_unlock(&fs_info->trans_lock);
5136 		if (copy_to_user(argp, &args, sizeof(args)))
5137 			return -EFAULT;
5138 		return 0;
5139 	case BTRFS_SUBVOL_SYNC_PEEK_LAST:
5140 		spin_lock(&fs_info->trans_lock);
5141 		/* First in the list was deleted last. */
5142 		if (!list_empty(&fs_info->dead_roots)) {
5143 			root = list_first_entry(&fs_info->dead_roots,
5144 						struct btrfs_root, root_list);
5145 			args.subvolid = btrfs_root_id(root);
5146 		} else {
5147 			args.subvolid = 0;
5148 		}
5149 		spin_unlock(&fs_info->trans_lock);
5150 		if (copy_to_user(argp, &args, sizeof(args)))
5151 			return -EFAULT;
5152 		return 0;
5153 	default:
5154 		return -EINVAL;
5155 	}
5156 
5157 	/* 32bit limitation: fs_roots_radix key is not wide enough. */
5158 	if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX)
5159 		return -EOVERFLOW;
5160 
5161 	while (1) {
5162 		/* Wait for the specific one. */
5163 		if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR)
5164 			return -EINTR;
5165 		refs = -1;
5166 		spin_lock(&fs_info->fs_roots_radix_lock);
5167 		root = radix_tree_lookup(&fs_info->fs_roots_radix,
5168 					 (unsigned long)args.subvolid);
5169 		if (root) {
5170 			spin_lock(&root->root_item_lock);
5171 			refs = btrfs_root_refs(&root->root_item);
5172 			root_flags = btrfs_root_flags(&root->root_item);
5173 			spin_unlock(&root->root_item_lock);
5174 		}
5175 		spin_unlock(&fs_info->fs_roots_radix_lock);
5176 		up_read(&fs_info->subvol_sem);
5177 
5178 		/* Subvolume does not exist. */
5179 		if (!root)
5180 			return -ENOENT;
5181 
5182 		/* Subvolume not deleted at all. */
5183 		if (refs > 0)
5184 			return -EEXIST;
5185 		/* We've waited and now the subvolume is gone. */
5186 		if (wait_for_deletion && refs == -1) {
5187 			/* Return the one we waited for as the last one. */
5188 			if (copy_to_user(argp, &args, sizeof(args)))
5189 				return -EFAULT;
5190 			return 0;
5191 		}
5192 
5193 		/* Subvolume not found on the first try (deleted or never existed). */
5194 		if (refs == -1)
5195 			return -ENOENT;
5196 
5197 		wait_for_deletion = true;
5198 		ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD);
5199 		sched_ret = schedule_timeout_interruptible(HZ);
5200 		/* Early wake up or error. */
5201 		if (sched_ret != 0)
5202 			return -EINTR;
5203 	}
5204 
5205 	return 0;
5206 }
5207 
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5208 long btrfs_ioctl(struct file *file, unsigned int
5209 		cmd, unsigned long arg)
5210 {
5211 	struct inode *inode = file_inode(file);
5212 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5213 	struct btrfs_root *root = BTRFS_I(inode)->root;
5214 	void __user *argp = (void __user *)arg;
5215 
5216 	switch (cmd) {
5217 	case FS_IOC_GETVERSION:
5218 		return btrfs_ioctl_getversion(inode, argp);
5219 	case FS_IOC_GETFSLABEL:
5220 		return btrfs_ioctl_get_fslabel(fs_info, argp);
5221 	case FS_IOC_SETFSLABEL:
5222 		return btrfs_ioctl_set_fslabel(file, argp);
5223 	case FITRIM:
5224 		return btrfs_ioctl_fitrim(fs_info, argp);
5225 	case BTRFS_IOC_SNAP_CREATE:
5226 		return btrfs_ioctl_snap_create(file, argp, 0);
5227 	case BTRFS_IOC_SNAP_CREATE_V2:
5228 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5229 	case BTRFS_IOC_SUBVOL_CREATE:
5230 		return btrfs_ioctl_snap_create(file, argp, 1);
5231 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5232 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5233 	case BTRFS_IOC_SNAP_DESTROY:
5234 		return btrfs_ioctl_snap_destroy(file, argp, false);
5235 	case BTRFS_IOC_SNAP_DESTROY_V2:
5236 		return btrfs_ioctl_snap_destroy(file, argp, true);
5237 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5238 		return btrfs_ioctl_subvol_getflags(BTRFS_I(inode), argp);
5239 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5240 		return btrfs_ioctl_subvol_setflags(file, argp);
5241 	case BTRFS_IOC_DEFAULT_SUBVOL:
5242 		return btrfs_ioctl_default_subvol(file, argp);
5243 	case BTRFS_IOC_DEFRAG:
5244 		return btrfs_ioctl_defrag(file, NULL);
5245 	case BTRFS_IOC_DEFRAG_RANGE:
5246 		return btrfs_ioctl_defrag(file, argp);
5247 	case BTRFS_IOC_RESIZE:
5248 		return btrfs_ioctl_resize(file, argp);
5249 	case BTRFS_IOC_ADD_DEV:
5250 		return btrfs_ioctl_add_dev(fs_info, argp);
5251 	case BTRFS_IOC_RM_DEV:
5252 		return btrfs_ioctl_rm_dev(file, argp);
5253 	case BTRFS_IOC_RM_DEV_V2:
5254 		return btrfs_ioctl_rm_dev_v2(file, argp);
5255 	case BTRFS_IOC_FS_INFO:
5256 		return btrfs_ioctl_fs_info(fs_info, argp);
5257 	case BTRFS_IOC_DEV_INFO:
5258 		return btrfs_ioctl_dev_info(fs_info, argp);
5259 	case BTRFS_IOC_TREE_SEARCH:
5260 		return btrfs_ioctl_tree_search(root, argp);
5261 	case BTRFS_IOC_TREE_SEARCH_V2:
5262 		return btrfs_ioctl_tree_search_v2(root, argp);
5263 	case BTRFS_IOC_INO_LOOKUP:
5264 		return btrfs_ioctl_ino_lookup(root, argp);
5265 	case BTRFS_IOC_INO_PATHS:
5266 		return btrfs_ioctl_ino_to_path(root, argp);
5267 	case BTRFS_IOC_LOGICAL_INO:
5268 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5269 	case BTRFS_IOC_LOGICAL_INO_V2:
5270 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5271 	case BTRFS_IOC_SPACE_INFO:
5272 		return btrfs_ioctl_space_info(fs_info, argp);
5273 	case BTRFS_IOC_SYNC: {
5274 		int ret;
5275 
5276 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5277 		if (ret)
5278 			return ret;
5279 		ret = btrfs_sync_fs(inode->i_sb, 1);
5280 		/*
5281 		 * There may be work for the cleaner kthread to do (subvolume
5282 		 * deletion, delayed iputs, defrag inodes, etc), so wake it up.
5283 		 */
5284 		wake_up_process(fs_info->cleaner_kthread);
5285 		return ret;
5286 	}
5287 	case BTRFS_IOC_START_SYNC:
5288 		return btrfs_ioctl_start_sync(root, argp);
5289 	case BTRFS_IOC_WAIT_SYNC:
5290 		return btrfs_ioctl_wait_sync(fs_info, argp);
5291 	case BTRFS_IOC_SCRUB:
5292 		return btrfs_ioctl_scrub(file, argp);
5293 	case BTRFS_IOC_SCRUB_CANCEL:
5294 		return btrfs_ioctl_scrub_cancel(fs_info);
5295 	case BTRFS_IOC_SCRUB_PROGRESS:
5296 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5297 	case BTRFS_IOC_BALANCE_V2:
5298 		return btrfs_ioctl_balance(file, argp);
5299 	case BTRFS_IOC_BALANCE_CTL:
5300 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5301 	case BTRFS_IOC_BALANCE_PROGRESS:
5302 		return btrfs_ioctl_balance_progress(fs_info, argp);
5303 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5304 		return btrfs_ioctl_set_received_subvol(file, argp);
5305 #ifdef CONFIG_64BIT
5306 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5307 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5308 #endif
5309 	case BTRFS_IOC_SEND:
5310 		return _btrfs_ioctl_send(root, argp, false);
5311 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5312 	case BTRFS_IOC_SEND_32:
5313 		return _btrfs_ioctl_send(root, argp, true);
5314 #endif
5315 	case BTRFS_IOC_GET_DEV_STATS:
5316 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5317 	case BTRFS_IOC_QUOTA_CTL:
5318 		return btrfs_ioctl_quota_ctl(file, argp);
5319 	case BTRFS_IOC_QGROUP_ASSIGN:
5320 		return btrfs_ioctl_qgroup_assign(file, argp);
5321 	case BTRFS_IOC_QGROUP_CREATE:
5322 		return btrfs_ioctl_qgroup_create(file, argp);
5323 	case BTRFS_IOC_QGROUP_LIMIT:
5324 		return btrfs_ioctl_qgroup_limit(file, argp);
5325 	case BTRFS_IOC_QUOTA_RESCAN:
5326 		return btrfs_ioctl_quota_rescan(file, argp);
5327 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5328 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5329 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5330 		return btrfs_ioctl_quota_rescan_wait(fs_info);
5331 	case BTRFS_IOC_DEV_REPLACE:
5332 		return btrfs_ioctl_dev_replace(fs_info, argp);
5333 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5334 		return btrfs_ioctl_get_supported_features(argp);
5335 	case BTRFS_IOC_GET_FEATURES:
5336 		return btrfs_ioctl_get_features(fs_info, argp);
5337 	case BTRFS_IOC_SET_FEATURES:
5338 		return btrfs_ioctl_set_features(file, argp);
5339 	case BTRFS_IOC_GET_SUBVOL_INFO:
5340 		return btrfs_ioctl_get_subvol_info(inode, argp);
5341 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5342 		return btrfs_ioctl_get_subvol_rootref(root, argp);
5343 	case BTRFS_IOC_INO_LOOKUP_USER:
5344 		return btrfs_ioctl_ino_lookup_user(file, argp);
5345 	case FS_IOC_ENABLE_VERITY:
5346 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5347 	case FS_IOC_MEASURE_VERITY:
5348 		return fsverity_ioctl_measure(file, argp);
5349 	case FS_IOC_READ_VERITY_METADATA:
5350 		return fsverity_ioctl_read_metadata(file, argp);
5351 	case BTRFS_IOC_ENCODED_READ:
5352 		return btrfs_ioctl_encoded_read(file, argp, false);
5353 	case BTRFS_IOC_ENCODED_WRITE:
5354 		return btrfs_ioctl_encoded_write(file, argp, false);
5355 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5356 	case BTRFS_IOC_ENCODED_READ_32:
5357 		return btrfs_ioctl_encoded_read(file, argp, true);
5358 	case BTRFS_IOC_ENCODED_WRITE_32:
5359 		return btrfs_ioctl_encoded_write(file, argp, true);
5360 #endif
5361 	case BTRFS_IOC_SUBVOL_SYNC_WAIT:
5362 		return btrfs_ioctl_subvol_sync(fs_info, argp);
5363 	}
5364 
5365 	return -ENOTTY;
5366 }
5367 
5368 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5369 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5370 {
5371 	/*
5372 	 * These all access 32-bit values anyway so no further
5373 	 * handling is necessary.
5374 	 */
5375 	switch (cmd) {
5376 	case FS_IOC32_GETVERSION:
5377 		cmd = FS_IOC_GETVERSION;
5378 		break;
5379 	}
5380 
5381 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5382 }
5383 #endif
5384