xref: /linux/arch/arm64/Kconfig (revision 111b29599c189247919a514b6c3a93e828db27c2)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU
9	select ACPI_IORT if ACPI
10	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
11	select ACPI_MCFG if (ACPI && PCI)
12	select ACPI_SPCR_TABLE if ACPI
13	select ACPI_PPTT if ACPI
14	select ARCH_HAS_DEBUG_WX
15	select ARCH_BINFMT_ELF_EXTRA_PHDRS
16	select ARCH_BINFMT_ELF_STATE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CC_PLATFORM
24	select ARCH_HAS_CRC32
25	select ARCH_HAS_CRC_T10DIF if KERNEL_MODE_NEON
26	select ARCH_HAS_CURRENT_STACK_POINTER
27	select ARCH_HAS_DEBUG_VIRTUAL
28	select ARCH_HAS_DEBUG_VM_PGTABLE
29	select ARCH_HAS_DMA_OPS if XEN
30	select ARCH_HAS_DMA_PREP_COHERENT
31	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
32	select ARCH_HAS_FAST_MULTIPLIER
33	select ARCH_HAS_FORTIFY_SOURCE
34	select ARCH_HAS_GCOV_PROFILE_ALL
35	select ARCH_HAS_GIGANTIC_PAGE
36	select ARCH_HAS_KCOV
37	select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON
38	select ARCH_HAS_KEEPINITRD
39	select ARCH_HAS_MEMBARRIER_SYNC_CORE
40	select ARCH_HAS_MEM_ENCRYPT
41	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
42	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
43	select ARCH_HAS_NONLEAF_PMD_YOUNG if ARM64_HAFT
44	select ARCH_HAS_PTE_DEVMAP
45	select ARCH_HAS_PTE_SPECIAL
46	select ARCH_HAS_HW_PTE_YOUNG
47	select ARCH_HAS_SETUP_DMA_OPS
48	select ARCH_HAS_SET_DIRECT_MAP
49	select ARCH_HAS_SET_MEMORY
50	select ARCH_HAS_MEM_ENCRYPT
51	select ARCH_HAS_FORCE_DMA_UNENCRYPTED
52	select ARCH_STACKWALK
53	select ARCH_HAS_STRICT_KERNEL_RWX
54	select ARCH_HAS_STRICT_MODULE_RWX
55	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
56	select ARCH_HAS_SYNC_DMA_FOR_CPU
57	select ARCH_HAS_SYSCALL_WRAPPER
58	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
59	select ARCH_HAS_ZONE_DMA_SET if EXPERT
60	select ARCH_HAVE_ELF_PROT
61	select ARCH_HAVE_NMI_SAFE_CMPXCHG
62	select ARCH_HAVE_TRACE_MMIO_ACCESS
63	select ARCH_INLINE_READ_LOCK if !PREEMPTION
64	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
65	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
66	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
67	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
68	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
69	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
70	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
71	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
72	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
73	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
74	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
75	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
76	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
77	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
78	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
79	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
80	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
81	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
82	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
83	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
84	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
85	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
86	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
87	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
88	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
89	select ARCH_KEEP_MEMBLOCK
90	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
91	select ARCH_USE_CMPXCHG_LOCKREF
92	select ARCH_USE_GNU_PROPERTY
93	select ARCH_USE_MEMTEST
94	select ARCH_USE_QUEUED_RWLOCKS
95	select ARCH_USE_QUEUED_SPINLOCKS
96	select ARCH_USE_SYM_ANNOTATIONS
97	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
98	select ARCH_SUPPORTS_HUGETLBFS
99	select ARCH_SUPPORTS_MEMORY_FAILURE
100	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
101	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
102	select ARCH_SUPPORTS_LTO_CLANG_THIN
103	select ARCH_SUPPORTS_CFI_CLANG
104	select ARCH_SUPPORTS_ATOMIC_RMW
105	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
106	select ARCH_SUPPORTS_NUMA_BALANCING
107	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
108	select ARCH_SUPPORTS_PER_VMA_LOCK
109	select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE
110	select ARCH_SUPPORTS_RT
111	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
112	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
113	select ARCH_WANT_DEFAULT_BPF_JIT
114	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
115	select ARCH_WANT_FRAME_POINTERS
116	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
117	select ARCH_WANT_LD_ORPHAN_WARN
118	select ARCH_WANTS_EXECMEM_LATE
119	select ARCH_WANTS_NO_INSTR
120	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
121	select ARCH_HAS_UBSAN
122	select ARM_AMBA
123	select ARM_ARCH_TIMER
124	select ARM_GIC
125	select AUDIT_ARCH_COMPAT_GENERIC
126	select ARM_GIC_V2M if PCI
127	select ARM_GIC_V3
128	select ARM_GIC_V3_ITS if PCI
129	select ARM_PSCI_FW
130	select BUILDTIME_TABLE_SORT
131	select CLONE_BACKWARDS
132	select COMMON_CLK
133	select CPU_PM if (SUSPEND || CPU_IDLE)
134	select CPUMASK_OFFSTACK if NR_CPUS > 256
135	select CRC32
136	select DCACHE_WORD_ACCESS
137	select DYNAMIC_FTRACE if FUNCTION_TRACER
138	select DMA_BOUNCE_UNALIGNED_KMALLOC
139	select DMA_DIRECT_REMAP
140	select EDAC_SUPPORT
141	select FRAME_POINTER
142	select FUNCTION_ALIGNMENT_4B
143	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
144	select GENERIC_ALLOCATOR
145	select GENERIC_ARCH_TOPOLOGY
146	select GENERIC_CLOCKEVENTS_BROADCAST
147	select GENERIC_CPU_AUTOPROBE
148	select GENERIC_CPU_DEVICES
149	select GENERIC_CPU_VULNERABILITIES
150	select GENERIC_EARLY_IOREMAP
151	select GENERIC_IDLE_POLL_SETUP
152	select GENERIC_IOREMAP
153	select GENERIC_IRQ_IPI
154	select GENERIC_IRQ_KEXEC_CLEAR_VM_FORWARD
155	select GENERIC_IRQ_PROBE
156	select GENERIC_IRQ_SHOW
157	select GENERIC_IRQ_SHOW_LEVEL
158	select GENERIC_LIB_DEVMEM_IS_ALLOWED
159	select GENERIC_PCI_IOMAP
160	select GENERIC_PTDUMP
161	select GENERIC_SCHED_CLOCK
162	select GENERIC_SMP_IDLE_THREAD
163	select GENERIC_TIME_VSYSCALL
164	select GENERIC_GETTIMEOFDAY
165	select GENERIC_VDSO_TIME_NS
166	select HARDIRQS_SW_RESEND
167	select HAS_IOPORT
168	select HAVE_MOVE_PMD
169	select HAVE_MOVE_PUD
170	select HAVE_PCI
171	select HAVE_ACPI_APEI if (ACPI && EFI)
172	select HAVE_ALIGNED_STRUCT_PAGE
173	select HAVE_ARCH_AUDITSYSCALL
174	select HAVE_ARCH_BITREVERSE
175	select HAVE_ARCH_COMPILER_H
176	select HAVE_ARCH_HUGE_VMALLOC
177	select HAVE_ARCH_HUGE_VMAP
178	select HAVE_ARCH_JUMP_LABEL
179	select HAVE_ARCH_JUMP_LABEL_RELATIVE
180	select HAVE_ARCH_KASAN
181	select HAVE_ARCH_KASAN_VMALLOC
182	select HAVE_ARCH_KASAN_SW_TAGS
183	select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE
184	# Some instrumentation may be unsound, hence EXPERT
185	select HAVE_ARCH_KCSAN if EXPERT
186	select HAVE_ARCH_KFENCE
187	select HAVE_ARCH_KGDB
188	select HAVE_ARCH_MMAP_RND_BITS
189	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
190	select HAVE_ARCH_PREL32_RELOCATIONS
191	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
192	select HAVE_ARCH_SECCOMP_FILTER
193	select HAVE_ARCH_STACKLEAK
194	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
195	select HAVE_ARCH_TRACEHOOK
196	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
197	select HAVE_ARCH_VMAP_STACK
198	select HAVE_ARM_SMCCC
199	select HAVE_ASM_MODVERSIONS
200	select HAVE_EBPF_JIT
201	select HAVE_C_RECORDMCOUNT
202	select HAVE_CMPXCHG_DOUBLE
203	select HAVE_CMPXCHG_LOCAL
204	select HAVE_CONTEXT_TRACKING_USER
205	select HAVE_DEBUG_KMEMLEAK
206	select HAVE_DMA_CONTIGUOUS
207	select HAVE_DYNAMIC_FTRACE
208	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
209		if (GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS || \
210		    CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS)
211	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
212		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
213	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
214		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
215		    (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
216	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
217		if DYNAMIC_FTRACE_WITH_ARGS
218	select HAVE_SAMPLE_FTRACE_DIRECT
219	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
220	select HAVE_EFFICIENT_UNALIGNED_ACCESS
221	select HAVE_GUP_FAST
222	select HAVE_FTRACE_GRAPH_FUNC
223	select HAVE_FTRACE_MCOUNT_RECORD
224	select HAVE_FUNCTION_TRACER
225	select HAVE_FUNCTION_ERROR_INJECTION
226	select HAVE_FUNCTION_GRAPH_FREGS
227	select HAVE_FUNCTION_GRAPH_TRACER
228	select HAVE_GCC_PLUGINS
229	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
230		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
231	select HAVE_HW_BREAKPOINT if PERF_EVENTS
232	select HAVE_IOREMAP_PROT
233	select HAVE_IRQ_TIME_ACCOUNTING
234	select HAVE_MOD_ARCH_SPECIFIC
235	select HAVE_NMI
236	select HAVE_PERF_EVENTS
237	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
238	select HAVE_PERF_REGS
239	select HAVE_PERF_USER_STACK_DUMP
240	select HAVE_PREEMPT_DYNAMIC_KEY
241	select HAVE_REGS_AND_STACK_ACCESS_API
242	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
243	select HAVE_FUNCTION_ARG_ACCESS_API
244	select MMU_GATHER_RCU_TABLE_FREE
245	select HAVE_RSEQ
246	select HAVE_RUST if RUSTC_SUPPORTS_ARM64
247	select HAVE_STACKPROTECTOR
248	select HAVE_SYSCALL_TRACEPOINTS
249	select HAVE_KPROBES
250	select HAVE_KRETPROBES
251	select HAVE_GENERIC_VDSO
252	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
253	select IRQ_DOMAIN
254	select IRQ_FORCED_THREADING
255	select KASAN_VMALLOC if KASAN
256	select LOCK_MM_AND_FIND_VMA
257	select MODULES_USE_ELF_RELA
258	select NEED_DMA_MAP_STATE
259	select NEED_SG_DMA_LENGTH
260	select OF
261	select OF_EARLY_FLATTREE
262	select PCI_DOMAINS_GENERIC if PCI
263	select PCI_ECAM if (ACPI && PCI)
264	select PCI_SYSCALL if PCI
265	select POWER_RESET
266	select POWER_SUPPLY
267	select SPARSE_IRQ
268	select SWIOTLB
269	select SYSCTL_EXCEPTION_TRACE
270	select THREAD_INFO_IN_TASK
271	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
272	select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD
273	select TRACE_IRQFLAGS_SUPPORT
274	select TRACE_IRQFLAGS_NMI_SUPPORT
275	select HAVE_SOFTIRQ_ON_OWN_STACK
276	select USER_STACKTRACE_SUPPORT
277	select VDSO_GETRANDOM
278	help
279	  ARM 64-bit (AArch64) Linux support.
280
281config RUSTC_SUPPORTS_ARM64
282	def_bool y
283	depends on CPU_LITTLE_ENDIAN
284	# Shadow call stack is only supported on certain rustc versions.
285	#
286	# When using the UNWIND_PATCH_PAC_INTO_SCS option, rustc version 1.80+ is
287	# required due to use of the -Zfixed-x18 flag.
288	#
289	# Otherwise, rustc version 1.82+ is required due to use of the
290	# -Zsanitizer=shadow-call-stack flag.
291	depends on !SHADOW_CALL_STACK || RUSTC_VERSION >= 108200 || RUSTC_VERSION >= 108000 && UNWIND_PATCH_PAC_INTO_SCS
292
293config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
294	def_bool CC_IS_CLANG
295	# https://github.com/ClangBuiltLinux/linux/issues/1507
296	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
297
298config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
299	def_bool CC_IS_GCC
300	depends on $(cc-option,-fpatchable-function-entry=2)
301
302config 64BIT
303	def_bool y
304
305config MMU
306	def_bool y
307
308config ARM64_CONT_PTE_SHIFT
309	int
310	default 5 if PAGE_SIZE_64KB
311	default 7 if PAGE_SIZE_16KB
312	default 4
313
314config ARM64_CONT_PMD_SHIFT
315	int
316	default 5 if PAGE_SIZE_64KB
317	default 5 if PAGE_SIZE_16KB
318	default 4
319
320config ARCH_MMAP_RND_BITS_MIN
321	default 14 if PAGE_SIZE_64KB
322	default 16 if PAGE_SIZE_16KB
323	default 18
324
325# max bits determined by the following formula:
326#  VA_BITS - PAGE_SHIFT - 3
327config ARCH_MMAP_RND_BITS_MAX
328	default 19 if ARM64_VA_BITS=36
329	default 24 if ARM64_VA_BITS=39
330	default 27 if ARM64_VA_BITS=42
331	default 30 if ARM64_VA_BITS=47
332	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
333	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
334	default 33 if ARM64_VA_BITS=48
335	default 14 if ARM64_64K_PAGES
336	default 16 if ARM64_16K_PAGES
337	default 18
338
339config ARCH_MMAP_RND_COMPAT_BITS_MIN
340	default 7 if ARM64_64K_PAGES
341	default 9 if ARM64_16K_PAGES
342	default 11
343
344config ARCH_MMAP_RND_COMPAT_BITS_MAX
345	default 16
346
347config NO_IOPORT_MAP
348	def_bool y if !PCI
349
350config STACKTRACE_SUPPORT
351	def_bool y
352
353config ILLEGAL_POINTER_VALUE
354	hex
355	default 0xdead000000000000
356
357config LOCKDEP_SUPPORT
358	def_bool y
359
360config GENERIC_BUG
361	def_bool y
362	depends on BUG
363
364config GENERIC_BUG_RELATIVE_POINTERS
365	def_bool y
366	depends on GENERIC_BUG
367
368config GENERIC_HWEIGHT
369	def_bool y
370
371config GENERIC_CSUM
372	def_bool y
373
374config GENERIC_CALIBRATE_DELAY
375	def_bool y
376
377config SMP
378	def_bool y
379
380config KERNEL_MODE_NEON
381	def_bool y
382
383config FIX_EARLYCON_MEM
384	def_bool y
385
386config PGTABLE_LEVELS
387	int
388	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
389	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
390	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
391	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
392	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
393	default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
394	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
395	default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
396
397config ARCH_SUPPORTS_UPROBES
398	def_bool y
399
400config ARCH_PROC_KCORE_TEXT
401	def_bool y
402
403config BROKEN_GAS_INST
404	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
405
406config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
407	bool
408	# Clang's __builtin_return_address() strips the PAC since 12.0.0
409	# https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
410	default y if CC_IS_CLANG
411	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
412	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
413	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
414	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
415	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
416	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
417	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
418	default n
419
420config KASAN_SHADOW_OFFSET
421	hex
422	depends on KASAN_GENERIC || KASAN_SW_TAGS
423	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
424	default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
425	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
426	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
427	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
428	default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
429	default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
430	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
431	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
432	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
433	default 0xffffffffffffffff
434
435config UNWIND_TABLES
436	bool
437
438source "arch/arm64/Kconfig.platforms"
439
440menu "Kernel Features"
441
442menu "ARM errata workarounds via the alternatives framework"
443
444config AMPERE_ERRATUM_AC03_CPU_38
445        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
446	default y
447	help
448	  This option adds an alternative code sequence to work around Ampere
449	  errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne.
450
451	  The affected design reports FEAT_HAFDBS as not implemented in
452	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
453	  as required by the architecture. The unadvertised HAFDBS
454	  implementation suffers from an additional erratum where hardware
455	  A/D updates can occur after a PTE has been marked invalid.
456
457	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
458	  which avoids enabling unadvertised hardware Access Flag management
459	  at stage-2.
460
461	  If unsure, say Y.
462
463config ARM64_WORKAROUND_CLEAN_CACHE
464	bool
465
466config ARM64_ERRATUM_826319
467	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
468	default y
469	select ARM64_WORKAROUND_CLEAN_CACHE
470	help
471	  This option adds an alternative code sequence to work around ARM
472	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
473	  AXI master interface and an L2 cache.
474
475	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
476	  and is unable to accept a certain write via this interface, it will
477	  not progress on read data presented on the read data channel and the
478	  system can deadlock.
479
480	  The workaround promotes data cache clean instructions to
481	  data cache clean-and-invalidate.
482	  Please note that this does not necessarily enable the workaround,
483	  as it depends on the alternative framework, which will only patch
484	  the kernel if an affected CPU is detected.
485
486	  If unsure, say Y.
487
488config ARM64_ERRATUM_827319
489	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
490	default y
491	select ARM64_WORKAROUND_CLEAN_CACHE
492	help
493	  This option adds an alternative code sequence to work around ARM
494	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
495	  master interface and an L2 cache.
496
497	  Under certain conditions this erratum can cause a clean line eviction
498	  to occur at the same time as another transaction to the same address
499	  on the AMBA 5 CHI interface, which can cause data corruption if the
500	  interconnect reorders the two transactions.
501
502	  The workaround promotes data cache clean instructions to
503	  data cache clean-and-invalidate.
504	  Please note that this does not necessarily enable the workaround,
505	  as it depends on the alternative framework, which will only patch
506	  the kernel if an affected CPU is detected.
507
508	  If unsure, say Y.
509
510config ARM64_ERRATUM_824069
511	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
512	default y
513	select ARM64_WORKAROUND_CLEAN_CACHE
514	help
515	  This option adds an alternative code sequence to work around ARM
516	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
517	  to a coherent interconnect.
518
519	  If a Cortex-A53 processor is executing a store or prefetch for
520	  write instruction at the same time as a processor in another
521	  cluster is executing a cache maintenance operation to the same
522	  address, then this erratum might cause a clean cache line to be
523	  incorrectly marked as dirty.
524
525	  The workaround promotes data cache clean instructions to
526	  data cache clean-and-invalidate.
527	  Please note that this option does not necessarily enable the
528	  workaround, as it depends on the alternative framework, which will
529	  only patch the kernel if an affected CPU is detected.
530
531	  If unsure, say Y.
532
533config ARM64_ERRATUM_819472
534	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
535	default y
536	select ARM64_WORKAROUND_CLEAN_CACHE
537	help
538	  This option adds an alternative code sequence to work around ARM
539	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
540	  present when it is connected to a coherent interconnect.
541
542	  If the processor is executing a load and store exclusive sequence at
543	  the same time as a processor in another cluster is executing a cache
544	  maintenance operation to the same address, then this erratum might
545	  cause data corruption.
546
547	  The workaround promotes data cache clean instructions to
548	  data cache clean-and-invalidate.
549	  Please note that this does not necessarily enable the workaround,
550	  as it depends on the alternative framework, which will only patch
551	  the kernel if an affected CPU is detected.
552
553	  If unsure, say Y.
554
555config ARM64_ERRATUM_832075
556	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
557	default y
558	help
559	  This option adds an alternative code sequence to work around ARM
560	  erratum 832075 on Cortex-A57 parts up to r1p2.
561
562	  Affected Cortex-A57 parts might deadlock when exclusive load/store
563	  instructions to Write-Back memory are mixed with Device loads.
564
565	  The workaround is to promote device loads to use Load-Acquire
566	  semantics.
567	  Please note that this does not necessarily enable the workaround,
568	  as it depends on the alternative framework, which will only patch
569	  the kernel if an affected CPU is detected.
570
571	  If unsure, say Y.
572
573config ARM64_ERRATUM_834220
574	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
575	depends on KVM
576	help
577	  This option adds an alternative code sequence to work around ARM
578	  erratum 834220 on Cortex-A57 parts up to r1p2.
579
580	  Affected Cortex-A57 parts might report a Stage 2 translation
581	  fault as the result of a Stage 1 fault for load crossing a
582	  page boundary when there is a permission or device memory
583	  alignment fault at Stage 1 and a translation fault at Stage 2.
584
585	  The workaround is to verify that the Stage 1 translation
586	  doesn't generate a fault before handling the Stage 2 fault.
587	  Please note that this does not necessarily enable the workaround,
588	  as it depends on the alternative framework, which will only patch
589	  the kernel if an affected CPU is detected.
590
591	  If unsure, say N.
592
593config ARM64_ERRATUM_1742098
594	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
595	depends on COMPAT
596	default y
597	help
598	  This option removes the AES hwcap for aarch32 user-space to
599	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
600
601	  Affected parts may corrupt the AES state if an interrupt is
602	  taken between a pair of AES instructions. These instructions
603	  are only present if the cryptography extensions are present.
604	  All software should have a fallback implementation for CPUs
605	  that don't implement the cryptography extensions.
606
607	  If unsure, say Y.
608
609config ARM64_ERRATUM_845719
610	bool "Cortex-A53: 845719: a load might read incorrect data"
611	depends on COMPAT
612	default y
613	help
614	  This option adds an alternative code sequence to work around ARM
615	  erratum 845719 on Cortex-A53 parts up to r0p4.
616
617	  When running a compat (AArch32) userspace on an affected Cortex-A53
618	  part, a load at EL0 from a virtual address that matches the bottom 32
619	  bits of the virtual address used by a recent load at (AArch64) EL1
620	  might return incorrect data.
621
622	  The workaround is to write the contextidr_el1 register on exception
623	  return to a 32-bit task.
624	  Please note that this does not necessarily enable the workaround,
625	  as it depends on the alternative framework, which will only patch
626	  the kernel if an affected CPU is detected.
627
628	  If unsure, say Y.
629
630config ARM64_ERRATUM_843419
631	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
632	default y
633	help
634	  This option links the kernel with '--fix-cortex-a53-843419' and
635	  enables PLT support to replace certain ADRP instructions, which can
636	  cause subsequent memory accesses to use an incorrect address on
637	  Cortex-A53 parts up to r0p4.
638
639	  If unsure, say Y.
640
641config ARM64_LD_HAS_FIX_ERRATUM_843419
642	def_bool $(ld-option,--fix-cortex-a53-843419)
643
644config ARM64_ERRATUM_1024718
645	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
646	default y
647	help
648	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
649
650	  Affected Cortex-A55 cores (all revisions) could cause incorrect
651	  update of the hardware dirty bit when the DBM/AP bits are updated
652	  without a break-before-make. The workaround is to disable the usage
653	  of hardware DBM locally on the affected cores. CPUs not affected by
654	  this erratum will continue to use the feature.
655
656	  If unsure, say Y.
657
658config ARM64_ERRATUM_1418040
659	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
660	default y
661	depends on COMPAT
662	help
663	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
664	  errata 1188873 and 1418040.
665
666	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
667	  cause register corruption when accessing the timer registers
668	  from AArch32 userspace.
669
670	  If unsure, say Y.
671
672config ARM64_WORKAROUND_SPECULATIVE_AT
673	bool
674
675config ARM64_ERRATUM_1165522
676	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
677	default y
678	select ARM64_WORKAROUND_SPECULATIVE_AT
679	help
680	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
681
682	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
683	  corrupted TLBs by speculating an AT instruction during a guest
684	  context switch.
685
686	  If unsure, say Y.
687
688config ARM64_ERRATUM_1319367
689	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
690	default y
691	select ARM64_WORKAROUND_SPECULATIVE_AT
692	help
693	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
694	  and A72 erratum 1319367
695
696	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
697	  speculating an AT instruction during a guest context switch.
698
699	  If unsure, say Y.
700
701config ARM64_ERRATUM_1530923
702	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
703	default y
704	select ARM64_WORKAROUND_SPECULATIVE_AT
705	help
706	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
707
708	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
709	  corrupted TLBs by speculating an AT instruction during a guest
710	  context switch.
711
712	  If unsure, say Y.
713
714config ARM64_WORKAROUND_REPEAT_TLBI
715	bool
716
717config ARM64_ERRATUM_2441007
718	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
719	select ARM64_WORKAROUND_REPEAT_TLBI
720	help
721	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
722
723	  Under very rare circumstances, affected Cortex-A55 CPUs
724	  may not handle a race between a break-before-make sequence on one
725	  CPU, and another CPU accessing the same page. This could allow a
726	  store to a page that has been unmapped.
727
728	  Work around this by adding the affected CPUs to the list that needs
729	  TLB sequences to be done twice.
730
731	  If unsure, say N.
732
733config ARM64_ERRATUM_1286807
734	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
735	select ARM64_WORKAROUND_REPEAT_TLBI
736	help
737	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
738
739	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
740	  address for a cacheable mapping of a location is being
741	  accessed by a core while another core is remapping the virtual
742	  address to a new physical page using the recommended
743	  break-before-make sequence, then under very rare circumstances
744	  TLBI+DSB completes before a read using the translation being
745	  invalidated has been observed by other observers. The
746	  workaround repeats the TLBI+DSB operation.
747
748	  If unsure, say N.
749
750config ARM64_ERRATUM_1463225
751	bool "Cortex-A76: Software Step might prevent interrupt recognition"
752	default y
753	help
754	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
755
756	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
757	  of a system call instruction (SVC) can prevent recognition of
758	  subsequent interrupts when software stepping is disabled in the
759	  exception handler of the system call and either kernel debugging
760	  is enabled or VHE is in use.
761
762	  Work around the erratum by triggering a dummy step exception
763	  when handling a system call from a task that is being stepped
764	  in a VHE configuration of the kernel.
765
766	  If unsure, say Y.
767
768config ARM64_ERRATUM_1542419
769	bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
770	help
771	  This option adds a workaround for ARM Neoverse-N1 erratum
772	  1542419.
773
774	  Affected Neoverse-N1 cores could execute a stale instruction when
775	  modified by another CPU. The workaround depends on a firmware
776	  counterpart.
777
778	  Workaround the issue by hiding the DIC feature from EL0. This
779	  forces user-space to perform cache maintenance.
780
781	  If unsure, say N.
782
783config ARM64_ERRATUM_1508412
784	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
785	default y
786	help
787	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
788
789	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
790	  of a store-exclusive or read of PAR_EL1 and a load with device or
791	  non-cacheable memory attributes. The workaround depends on a firmware
792	  counterpart.
793
794	  KVM guests must also have the workaround implemented or they can
795	  deadlock the system.
796
797	  Work around the issue by inserting DMB SY barriers around PAR_EL1
798	  register reads and warning KVM users. The DMB barrier is sufficient
799	  to prevent a speculative PAR_EL1 read.
800
801	  If unsure, say Y.
802
803config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
804	bool
805
806config ARM64_ERRATUM_2051678
807	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
808	default y
809	help
810	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
811	  Affected Cortex-A510 might not respect the ordering rules for
812	  hardware update of the page table's dirty bit. The workaround
813	  is to not enable the feature on affected CPUs.
814
815	  If unsure, say Y.
816
817config ARM64_ERRATUM_2077057
818	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
819	default y
820	help
821	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
822	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
823	  expected, but a Pointer Authentication trap is taken instead. The
824	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
825	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
826
827	  This can only happen when EL2 is stepping EL1.
828
829	  When these conditions occur, the SPSR_EL2 value is unchanged from the
830	  previous guest entry, and can be restored from the in-memory copy.
831
832	  If unsure, say Y.
833
834config ARM64_ERRATUM_2658417
835	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
836	default y
837	help
838	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
839	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
840	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
841	  A510 CPUs are using shared neon hardware. As the sharing is not
842	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
843	  user-space should not be using these instructions.
844
845	  If unsure, say Y.
846
847config ARM64_ERRATUM_2119858
848	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
849	default y
850	depends on CORESIGHT_TRBE
851	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
852	help
853	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
854
855	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
856	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
857	  the event of a WRAP event.
858
859	  Work around the issue by always making sure we move the TRBPTR_EL1 by
860	  256 bytes before enabling the buffer and filling the first 256 bytes of
861	  the buffer with ETM ignore packets upon disabling.
862
863	  If unsure, say Y.
864
865config ARM64_ERRATUM_2139208
866	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
867	default y
868	depends on CORESIGHT_TRBE
869	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
870	help
871	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
872
873	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
874	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
875	  the event of a WRAP event.
876
877	  Work around the issue by always making sure we move the TRBPTR_EL1 by
878	  256 bytes before enabling the buffer and filling the first 256 bytes of
879	  the buffer with ETM ignore packets upon disabling.
880
881	  If unsure, say Y.
882
883config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
884	bool
885
886config ARM64_ERRATUM_2054223
887	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
888	default y
889	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
890	help
891	  Enable workaround for ARM Cortex-A710 erratum 2054223
892
893	  Affected cores may fail to flush the trace data on a TSB instruction, when
894	  the PE is in trace prohibited state. This will cause losing a few bytes
895	  of the trace cached.
896
897	  Workaround is to issue two TSB consecutively on affected cores.
898
899	  If unsure, say Y.
900
901config ARM64_ERRATUM_2067961
902	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
903	default y
904	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
905	help
906	  Enable workaround for ARM Neoverse-N2 erratum 2067961
907
908	  Affected cores may fail to flush the trace data on a TSB instruction, when
909	  the PE is in trace prohibited state. This will cause losing a few bytes
910	  of the trace cached.
911
912	  Workaround is to issue two TSB consecutively on affected cores.
913
914	  If unsure, say Y.
915
916config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
917	bool
918
919config ARM64_ERRATUM_2253138
920	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
921	depends on CORESIGHT_TRBE
922	default y
923	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
924	help
925	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
926
927	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
928	  for TRBE. Under some conditions, the TRBE might generate a write to the next
929	  virtually addressed page following the last page of the TRBE address space
930	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
931
932	  Work around this in the driver by always making sure that there is a
933	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
934
935	  If unsure, say Y.
936
937config ARM64_ERRATUM_2224489
938	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
939	depends on CORESIGHT_TRBE
940	default y
941	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
942	help
943	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
944
945	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
946	  for TRBE. Under some conditions, the TRBE might generate a write to the next
947	  virtually addressed page following the last page of the TRBE address space
948	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
949
950	  Work around this in the driver by always making sure that there is a
951	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
952
953	  If unsure, say Y.
954
955config ARM64_ERRATUM_2441009
956	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
957	select ARM64_WORKAROUND_REPEAT_TLBI
958	help
959	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
960
961	  Under very rare circumstances, affected Cortex-A510 CPUs
962	  may not handle a race between a break-before-make sequence on one
963	  CPU, and another CPU accessing the same page. This could allow a
964	  store to a page that has been unmapped.
965
966	  Work around this by adding the affected CPUs to the list that needs
967	  TLB sequences to be done twice.
968
969	  If unsure, say N.
970
971config ARM64_ERRATUM_2064142
972	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
973	depends on CORESIGHT_TRBE
974	default y
975	help
976	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
977
978	  Affected Cortex-A510 core might fail to write into system registers after the
979	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
980	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
981	  and TRBTRG_EL1 will be ignored and will not be effected.
982
983	  Work around this in the driver by executing TSB CSYNC and DSB after collection
984	  is stopped and before performing a system register write to one of the affected
985	  registers.
986
987	  If unsure, say Y.
988
989config ARM64_ERRATUM_2038923
990	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
991	depends on CORESIGHT_TRBE
992	default y
993	help
994	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
995
996	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
997	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
998	  might be corrupted. This happens after TRBE buffer has been enabled by setting
999	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
1000	  execution changes from a context, in which trace is prohibited to one where it
1001	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
1002	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
1003	  the trace buffer state might be corrupted.
1004
1005	  Work around this in the driver by preventing an inconsistent view of whether the
1006	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
1007	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
1008	  two ISB instructions if no ERET is to take place.
1009
1010	  If unsure, say Y.
1011
1012config ARM64_ERRATUM_1902691
1013	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
1014	depends on CORESIGHT_TRBE
1015	default y
1016	help
1017	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
1018
1019	  Affected Cortex-A510 core might cause trace data corruption, when being written
1020	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
1021	  trace data.
1022
1023	  Work around this problem in the driver by just preventing TRBE initialization on
1024	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
1025	  on such implementations. This will cover the kernel for any firmware that doesn't
1026	  do this already.
1027
1028	  If unsure, say Y.
1029
1030config ARM64_ERRATUM_2457168
1031	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1032	depends on ARM64_AMU_EXTN
1033	default y
1034	help
1035	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1036
1037	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1038	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1039	  incorrectly giving a significantly higher output value.
1040
1041	  Work around this problem by returning 0 when reading the affected counter in
1042	  key locations that results in disabling all users of this counter. This effect
1043	  is the same to firmware disabling affected counters.
1044
1045	  If unsure, say Y.
1046
1047config ARM64_ERRATUM_2645198
1048	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1049	default y
1050	help
1051	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1052
1053	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1054	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1055	  next instruction abort caused by permission fault.
1056
1057	  Only user-space does executable to non-executable permission transition via
1058	  mprotect() system call. Workaround the problem by doing a break-before-make
1059	  TLB invalidation, for all changes to executable user space mappings.
1060
1061	  If unsure, say Y.
1062
1063config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1064	bool
1065
1066config ARM64_ERRATUM_2966298
1067	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1068	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1069	default y
1070	help
1071	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1072
1073	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1074	  load might leak data from a privileged level via a cache side channel.
1075
1076	  Work around this problem by executing a TLBI before returning to EL0.
1077
1078	  If unsure, say Y.
1079
1080config ARM64_ERRATUM_3117295
1081	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1082	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1083	default y
1084	help
1085	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1086
1087	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1088	  load might leak data from a privileged level via a cache side channel.
1089
1090	  Work around this problem by executing a TLBI before returning to EL0.
1091
1092	  If unsure, say Y.
1093
1094config ARM64_ERRATUM_3194386
1095	bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing"
1096	default y
1097	help
1098	  This option adds the workaround for the following errata:
1099
1100	  * ARM Cortex-A76 erratum 3324349
1101	  * ARM Cortex-A77 erratum 3324348
1102	  * ARM Cortex-A78 erratum 3324344
1103	  * ARM Cortex-A78C erratum 3324346
1104	  * ARM Cortex-A78C erratum 3324347
1105	  * ARM Cortex-A710 erratam 3324338
1106	  * ARM Cortex-A715 errartum 3456084
1107	  * ARM Cortex-A720 erratum 3456091
1108	  * ARM Cortex-A725 erratum 3456106
1109	  * ARM Cortex-X1 erratum 3324344
1110	  * ARM Cortex-X1C erratum 3324346
1111	  * ARM Cortex-X2 erratum 3324338
1112	  * ARM Cortex-X3 erratum 3324335
1113	  * ARM Cortex-X4 erratum 3194386
1114	  * ARM Cortex-X925 erratum 3324334
1115	  * ARM Neoverse-N1 erratum 3324349
1116	  * ARM Neoverse N2 erratum 3324339
1117	  * ARM Neoverse-N3 erratum 3456111
1118	  * ARM Neoverse-V1 erratum 3324341
1119	  * ARM Neoverse V2 erratum 3324336
1120	  * ARM Neoverse-V3 erratum 3312417
1121
1122	  On affected cores "MSR SSBS, #0" instructions may not affect
1123	  subsequent speculative instructions, which may permit unexepected
1124	  speculative store bypassing.
1125
1126	  Work around this problem by placing a Speculation Barrier (SB) or
1127	  Instruction Synchronization Barrier (ISB) after kernel changes to
1128	  SSBS. The presence of the SSBS special-purpose register is hidden
1129	  from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace
1130	  will use the PR_SPEC_STORE_BYPASS prctl to change SSBS.
1131
1132	  If unsure, say Y.
1133
1134config CAVIUM_ERRATUM_22375
1135	bool "Cavium erratum 22375, 24313"
1136	default y
1137	help
1138	  Enable workaround for errata 22375 and 24313.
1139
1140	  This implements two gicv3-its errata workarounds for ThunderX. Both
1141	  with a small impact affecting only ITS table allocation.
1142
1143	    erratum 22375: only alloc 8MB table size
1144	    erratum 24313: ignore memory access type
1145
1146	  The fixes are in ITS initialization and basically ignore memory access
1147	  type and table size provided by the TYPER and BASER registers.
1148
1149	  If unsure, say Y.
1150
1151config CAVIUM_ERRATUM_23144
1152	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1153	depends on NUMA
1154	default y
1155	help
1156	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1157
1158	  If unsure, say Y.
1159
1160config CAVIUM_ERRATUM_23154
1161	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1162	default y
1163	help
1164	  The ThunderX GICv3 implementation requires a modified version for
1165	  reading the IAR status to ensure data synchronization
1166	  (access to icc_iar1_el1 is not sync'ed before and after).
1167
1168	  It also suffers from erratum 38545 (also present on Marvell's
1169	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1170	  spuriously presented to the CPU interface.
1171
1172	  If unsure, say Y.
1173
1174config CAVIUM_ERRATUM_27456
1175	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1176	default y
1177	help
1178	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1179	  instructions may cause the icache to become corrupted if it
1180	  contains data for a non-current ASID.  The fix is to
1181	  invalidate the icache when changing the mm context.
1182
1183	  If unsure, say Y.
1184
1185config CAVIUM_ERRATUM_30115
1186	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1187	default y
1188	help
1189	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1190	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1191	  interrupts in host. Trapping both GICv3 group-0 and group-1
1192	  accesses sidesteps the issue.
1193
1194	  If unsure, say Y.
1195
1196config CAVIUM_TX2_ERRATUM_219
1197	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1198	default y
1199	help
1200	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1201	  TTBR update and the corresponding context synchronizing operation can
1202	  cause a spurious Data Abort to be delivered to any hardware thread in
1203	  the CPU core.
1204
1205	  Work around the issue by avoiding the problematic code sequence and
1206	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1207	  trap handler performs the corresponding register access, skips the
1208	  instruction and ensures context synchronization by virtue of the
1209	  exception return.
1210
1211	  If unsure, say Y.
1212
1213config FUJITSU_ERRATUM_010001
1214	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1215	default y
1216	help
1217	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1218	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1219	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1220	  This fault occurs under a specific hardware condition when a
1221	  load/store instruction performs an address translation using:
1222	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1223	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1224	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1225	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1226
1227	  The workaround is to ensure these bits are clear in TCR_ELx.
1228	  The workaround only affects the Fujitsu-A64FX.
1229
1230	  If unsure, say Y.
1231
1232config HISILICON_ERRATUM_161600802
1233	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1234	default y
1235	help
1236	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1237	  when issued ITS commands such as VMOVP and VMAPP, and requires
1238	  a 128kB offset to be applied to the target address in this commands.
1239
1240	  If unsure, say Y.
1241
1242config HISILICON_ERRATUM_162100801
1243	bool "Hip09 162100801 erratum support"
1244	default y
1245	help
1246	  When enabling GICv4.1 in hip09, VMAPP will fail to clear some caches
1247	  during unmapping operation, which will cause some vSGIs lost.
1248	  To fix the issue, invalidate related vPE cache through GICR_INVALLR
1249	  after VMOVP.
1250
1251	  If unsure, say Y.
1252
1253config QCOM_FALKOR_ERRATUM_1003
1254	bool "Falkor E1003: Incorrect translation due to ASID change"
1255	default y
1256	help
1257	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1258	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1259	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1260	  then only for entries in the walk cache, since the leaf translation
1261	  is unchanged. Work around the erratum by invalidating the walk cache
1262	  entries for the trampoline before entering the kernel proper.
1263
1264config QCOM_FALKOR_ERRATUM_1009
1265	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1266	default y
1267	select ARM64_WORKAROUND_REPEAT_TLBI
1268	help
1269	  On Falkor v1, the CPU may prematurely complete a DSB following a
1270	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1271	  one more time to fix the issue.
1272
1273	  If unsure, say Y.
1274
1275config QCOM_QDF2400_ERRATUM_0065
1276	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1277	default y
1278	help
1279	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1280	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1281	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1282
1283	  If unsure, say Y.
1284
1285config QCOM_FALKOR_ERRATUM_E1041
1286	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1287	default y
1288	help
1289	  Falkor CPU may speculatively fetch instructions from an improper
1290	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1291	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1292
1293	  If unsure, say Y.
1294
1295config NVIDIA_CARMEL_CNP_ERRATUM
1296	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1297	default y
1298	help
1299	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1300	  invalidate shared TLB entries installed by a different core, as it would
1301	  on standard ARM cores.
1302
1303	  If unsure, say Y.
1304
1305config ROCKCHIP_ERRATUM_3588001
1306	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1307	default y
1308	help
1309	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1310	  This means, that its sharability feature may not be used, even though it
1311	  is supported by the IP itself.
1312
1313	  If unsure, say Y.
1314
1315config SOCIONEXT_SYNQUACER_PREITS
1316	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1317	default y
1318	help
1319	  Socionext Synquacer SoCs implement a separate h/w block to generate
1320	  MSI doorbell writes with non-zero values for the device ID.
1321
1322	  If unsure, say Y.
1323
1324endmenu # "ARM errata workarounds via the alternatives framework"
1325
1326choice
1327	prompt "Page size"
1328	default ARM64_4K_PAGES
1329	help
1330	  Page size (translation granule) configuration.
1331
1332config ARM64_4K_PAGES
1333	bool "4KB"
1334	select HAVE_PAGE_SIZE_4KB
1335	help
1336	  This feature enables 4KB pages support.
1337
1338config ARM64_16K_PAGES
1339	bool "16KB"
1340	select HAVE_PAGE_SIZE_16KB
1341	help
1342	  The system will use 16KB pages support. AArch32 emulation
1343	  requires applications compiled with 16K (or a multiple of 16K)
1344	  aligned segments.
1345
1346config ARM64_64K_PAGES
1347	bool "64KB"
1348	select HAVE_PAGE_SIZE_64KB
1349	help
1350	  This feature enables 64KB pages support (4KB by default)
1351	  allowing only two levels of page tables and faster TLB
1352	  look-up. AArch32 emulation requires applications compiled
1353	  with 64K aligned segments.
1354
1355endchoice
1356
1357choice
1358	prompt "Virtual address space size"
1359	default ARM64_VA_BITS_52
1360	help
1361	  Allows choosing one of multiple possible virtual address
1362	  space sizes. The level of translation table is determined by
1363	  a combination of page size and virtual address space size.
1364
1365config ARM64_VA_BITS_36
1366	bool "36-bit" if EXPERT
1367	depends on PAGE_SIZE_16KB
1368
1369config ARM64_VA_BITS_39
1370	bool "39-bit"
1371	depends on PAGE_SIZE_4KB
1372
1373config ARM64_VA_BITS_42
1374	bool "42-bit"
1375	depends on PAGE_SIZE_64KB
1376
1377config ARM64_VA_BITS_47
1378	bool "47-bit"
1379	depends on PAGE_SIZE_16KB
1380
1381config ARM64_VA_BITS_48
1382	bool "48-bit"
1383
1384config ARM64_VA_BITS_52
1385	bool "52-bit"
1386	help
1387	  Enable 52-bit virtual addressing for userspace when explicitly
1388	  requested via a hint to mmap(). The kernel will also use 52-bit
1389	  virtual addresses for its own mappings (provided HW support for
1390	  this feature is available, otherwise it reverts to 48-bit).
1391
1392	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1393	  ARMv8.3 Pointer Authentication will result in the PAC being
1394	  reduced from 7 bits to 3 bits, which may have a significant
1395	  impact on its susceptibility to brute-force attacks.
1396
1397	  If unsure, select 48-bit virtual addressing instead.
1398
1399endchoice
1400
1401config ARM64_FORCE_52BIT
1402	bool "Force 52-bit virtual addresses for userspace"
1403	depends on ARM64_VA_BITS_52 && EXPERT
1404	help
1405	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1406	  to maintain compatibility with older software by providing 48-bit VAs
1407	  unless a hint is supplied to mmap.
1408
1409	  This configuration option disables the 48-bit compatibility logic, and
1410	  forces all userspace addresses to be 52-bit on HW that supports it. One
1411	  should only enable this configuration option for stress testing userspace
1412	  memory management code. If unsure say N here.
1413
1414config ARM64_VA_BITS
1415	int
1416	default 36 if ARM64_VA_BITS_36
1417	default 39 if ARM64_VA_BITS_39
1418	default 42 if ARM64_VA_BITS_42
1419	default 47 if ARM64_VA_BITS_47
1420	default 48 if ARM64_VA_BITS_48
1421	default 52 if ARM64_VA_BITS_52
1422
1423choice
1424	prompt "Physical address space size"
1425	default ARM64_PA_BITS_48
1426	help
1427	  Choose the maximum physical address range that the kernel will
1428	  support.
1429
1430config ARM64_PA_BITS_48
1431	bool "48-bit"
1432	depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1433
1434config ARM64_PA_BITS_52
1435	bool "52-bit"
1436	depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1437	help
1438	  Enable support for a 52-bit physical address space, introduced as
1439	  part of the ARMv8.2-LPA extension.
1440
1441	  With this enabled, the kernel will also continue to work on CPUs that
1442	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1443	  minor performance overhead).
1444
1445endchoice
1446
1447config ARM64_PA_BITS
1448	int
1449	default 48 if ARM64_PA_BITS_48
1450	default 52 if ARM64_PA_BITS_52
1451
1452config ARM64_LPA2
1453	def_bool y
1454	depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1455
1456choice
1457	prompt "Endianness"
1458	default CPU_LITTLE_ENDIAN
1459	help
1460	  Select the endianness of data accesses performed by the CPU. Userspace
1461	  applications will need to be compiled and linked for the endianness
1462	  that is selected here.
1463
1464config CPU_BIG_ENDIAN
1465	bool "Build big-endian kernel"
1466	# https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1467	depends on AS_IS_GNU || AS_VERSION >= 150000
1468	help
1469	  Say Y if you plan on running a kernel with a big-endian userspace.
1470
1471config CPU_LITTLE_ENDIAN
1472	bool "Build little-endian kernel"
1473	help
1474	  Say Y if you plan on running a kernel with a little-endian userspace.
1475	  This is usually the case for distributions targeting arm64.
1476
1477endchoice
1478
1479config SCHED_MC
1480	bool "Multi-core scheduler support"
1481	help
1482	  Multi-core scheduler support improves the CPU scheduler's decision
1483	  making when dealing with multi-core CPU chips at a cost of slightly
1484	  increased overhead in some places. If unsure say N here.
1485
1486config SCHED_CLUSTER
1487	bool "Cluster scheduler support"
1488	help
1489	  Cluster scheduler support improves the CPU scheduler's decision
1490	  making when dealing with machines that have clusters of CPUs.
1491	  Cluster usually means a couple of CPUs which are placed closely
1492	  by sharing mid-level caches, last-level cache tags or internal
1493	  busses.
1494
1495config SCHED_SMT
1496	bool "SMT scheduler support"
1497	help
1498	  Improves the CPU scheduler's decision making when dealing with
1499	  MultiThreading at a cost of slightly increased overhead in some
1500	  places. If unsure say N here.
1501
1502config NR_CPUS
1503	int "Maximum number of CPUs (2-4096)"
1504	range 2 4096
1505	default "512"
1506
1507config HOTPLUG_CPU
1508	bool "Support for hot-pluggable CPUs"
1509	select GENERIC_IRQ_MIGRATION
1510	help
1511	  Say Y here to experiment with turning CPUs off and on.  CPUs
1512	  can be controlled through /sys/devices/system/cpu.
1513
1514# Common NUMA Features
1515config NUMA
1516	bool "NUMA Memory Allocation and Scheduler Support"
1517	select GENERIC_ARCH_NUMA
1518	select OF_NUMA
1519	select HAVE_SETUP_PER_CPU_AREA
1520	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1521	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1522	select USE_PERCPU_NUMA_NODE_ID
1523	help
1524	  Enable NUMA (Non-Uniform Memory Access) support.
1525
1526	  The kernel will try to allocate memory used by a CPU on the
1527	  local memory of the CPU and add some more
1528	  NUMA awareness to the kernel.
1529
1530config NODES_SHIFT
1531	int "Maximum NUMA Nodes (as a power of 2)"
1532	range 1 10
1533	default "4"
1534	depends on NUMA
1535	help
1536	  Specify the maximum number of NUMA Nodes available on the target
1537	  system.  Increases memory reserved to accommodate various tables.
1538
1539source "kernel/Kconfig.hz"
1540
1541config ARCH_SPARSEMEM_ENABLE
1542	def_bool y
1543	select SPARSEMEM_VMEMMAP_ENABLE
1544	select SPARSEMEM_VMEMMAP
1545
1546config HW_PERF_EVENTS
1547	def_bool y
1548	depends on ARM_PMU
1549
1550# Supported by clang >= 7.0 or GCC >= 12.0.0
1551config CC_HAVE_SHADOW_CALL_STACK
1552	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1553
1554config PARAVIRT
1555	bool "Enable paravirtualization code"
1556	help
1557	  This changes the kernel so it can modify itself when it is run
1558	  under a hypervisor, potentially improving performance significantly
1559	  over full virtualization.
1560
1561config PARAVIRT_TIME_ACCOUNTING
1562	bool "Paravirtual steal time accounting"
1563	select PARAVIRT
1564	help
1565	  Select this option to enable fine granularity task steal time
1566	  accounting. Time spent executing other tasks in parallel with
1567	  the current vCPU is discounted from the vCPU power. To account for
1568	  that, there can be a small performance impact.
1569
1570	  If in doubt, say N here.
1571
1572config ARCH_SUPPORTS_KEXEC
1573	def_bool PM_SLEEP_SMP
1574
1575config ARCH_SUPPORTS_KEXEC_FILE
1576	def_bool y
1577
1578config ARCH_SELECTS_KEXEC_FILE
1579	def_bool y
1580	depends on KEXEC_FILE
1581	select HAVE_IMA_KEXEC if IMA
1582
1583config ARCH_SUPPORTS_KEXEC_SIG
1584	def_bool y
1585
1586config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1587	def_bool y
1588
1589config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1590	def_bool y
1591
1592config ARCH_SUPPORTS_CRASH_DUMP
1593	def_bool y
1594
1595config ARCH_DEFAULT_CRASH_DUMP
1596	def_bool y
1597
1598config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1599	def_bool CRASH_RESERVE
1600
1601config TRANS_TABLE
1602	def_bool y
1603	depends on HIBERNATION || KEXEC_CORE
1604
1605config XEN_DOM0
1606	def_bool y
1607	depends on XEN
1608
1609config XEN
1610	bool "Xen guest support on ARM64"
1611	depends on ARM64 && OF
1612	select SWIOTLB_XEN
1613	select PARAVIRT
1614	help
1615	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1616
1617# include/linux/mmzone.h requires the following to be true:
1618#
1619#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1620#
1621# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1622#
1623#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1624# ----+-------------------+--------------+----------------------+-------------------------+
1625# 4K  |       27          |      12      |       15             |         10              |
1626# 16K |       27          |      14      |       13             |         11              |
1627# 64K |       29          |      16      |       13             |         13              |
1628config ARCH_FORCE_MAX_ORDER
1629	int
1630	default "13" if ARM64_64K_PAGES
1631	default "11" if ARM64_16K_PAGES
1632	default "10"
1633	help
1634	  The kernel page allocator limits the size of maximal physically
1635	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1636	  defines the maximal power of two of number of pages that can be
1637	  allocated as a single contiguous block. This option allows
1638	  overriding the default setting when ability to allocate very
1639	  large blocks of physically contiguous memory is required.
1640
1641	  The maximal size of allocation cannot exceed the size of the
1642	  section, so the value of MAX_PAGE_ORDER should satisfy
1643
1644	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1645
1646	  Don't change if unsure.
1647
1648config UNMAP_KERNEL_AT_EL0
1649	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1650	default y
1651	help
1652	  Speculation attacks against some high-performance processors can
1653	  be used to bypass MMU permission checks and leak kernel data to
1654	  userspace. This can be defended against by unmapping the kernel
1655	  when running in userspace, mapping it back in on exception entry
1656	  via a trampoline page in the vector table.
1657
1658	  If unsure, say Y.
1659
1660config MITIGATE_SPECTRE_BRANCH_HISTORY
1661	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1662	default y
1663	help
1664	  Speculation attacks against some high-performance processors can
1665	  make use of branch history to influence future speculation.
1666	  When taking an exception from user-space, a sequence of branches
1667	  or a firmware call overwrites the branch history.
1668
1669config RODATA_FULL_DEFAULT_ENABLED
1670	bool "Apply r/o permissions of VM areas also to their linear aliases"
1671	default y
1672	help
1673	  Apply read-only attributes of VM areas to the linear alias of
1674	  the backing pages as well. This prevents code or read-only data
1675	  from being modified (inadvertently or intentionally) via another
1676	  mapping of the same memory page. This additional enhancement can
1677	  be turned off at runtime by passing rodata=[off|on] (and turned on
1678	  with rodata=full if this option is set to 'n')
1679
1680	  This requires the linear region to be mapped down to pages,
1681	  which may adversely affect performance in some cases.
1682
1683config ARM64_SW_TTBR0_PAN
1684	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1685	depends on !KCSAN
1686	select ARM64_PAN
1687	help
1688	  Enabling this option prevents the kernel from accessing
1689	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1690	  zeroed area and reserved ASID. The user access routines
1691	  restore the valid TTBR0_EL1 temporarily.
1692
1693config ARM64_TAGGED_ADDR_ABI
1694	bool "Enable the tagged user addresses syscall ABI"
1695	default y
1696	help
1697	  When this option is enabled, user applications can opt in to a
1698	  relaxed ABI via prctl() allowing tagged addresses to be passed
1699	  to system calls as pointer arguments. For details, see
1700	  Documentation/arch/arm64/tagged-address-abi.rst.
1701
1702menuconfig COMPAT
1703	bool "Kernel support for 32-bit EL0"
1704	depends on ARM64_4K_PAGES || EXPERT
1705	select HAVE_UID16
1706	select OLD_SIGSUSPEND3
1707	select COMPAT_OLD_SIGACTION
1708	help
1709	  This option enables support for a 32-bit EL0 running under a 64-bit
1710	  kernel at EL1. AArch32-specific components such as system calls,
1711	  the user helper functions, VFP support and the ptrace interface are
1712	  handled appropriately by the kernel.
1713
1714	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1715	  that you will only be able to execute AArch32 binaries that were compiled
1716	  with page size aligned segments.
1717
1718	  If you want to execute 32-bit userspace applications, say Y.
1719
1720if COMPAT
1721
1722config KUSER_HELPERS
1723	bool "Enable kuser helpers page for 32-bit applications"
1724	default y
1725	help
1726	  Warning: disabling this option may break 32-bit user programs.
1727
1728	  Provide kuser helpers to compat tasks. The kernel provides
1729	  helper code to userspace in read only form at a fixed location
1730	  to allow userspace to be independent of the CPU type fitted to
1731	  the system. This permits binaries to be run on ARMv4 through
1732	  to ARMv8 without modification.
1733
1734	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1735
1736	  However, the fixed address nature of these helpers can be used
1737	  by ROP (return orientated programming) authors when creating
1738	  exploits.
1739
1740	  If all of the binaries and libraries which run on your platform
1741	  are built specifically for your platform, and make no use of
1742	  these helpers, then you can turn this option off to hinder
1743	  such exploits. However, in that case, if a binary or library
1744	  relying on those helpers is run, it will not function correctly.
1745
1746	  Say N here only if you are absolutely certain that you do not
1747	  need these helpers; otherwise, the safe option is to say Y.
1748
1749config COMPAT_VDSO
1750	bool "Enable vDSO for 32-bit applications"
1751	depends on !CPU_BIG_ENDIAN
1752	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1753	select GENERIC_COMPAT_VDSO
1754	default y
1755	help
1756	  Place in the process address space of 32-bit applications an
1757	  ELF shared object providing fast implementations of gettimeofday
1758	  and clock_gettime.
1759
1760	  You must have a 32-bit build of glibc 2.22 or later for programs
1761	  to seamlessly take advantage of this.
1762
1763config THUMB2_COMPAT_VDSO
1764	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1765	depends on COMPAT_VDSO
1766	default y
1767	help
1768	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1769	  otherwise with '-marm'.
1770
1771config COMPAT_ALIGNMENT_FIXUPS
1772	bool "Fix up misaligned multi-word loads and stores in user space"
1773
1774menuconfig ARMV8_DEPRECATED
1775	bool "Emulate deprecated/obsolete ARMv8 instructions"
1776	depends on SYSCTL
1777	help
1778	  Legacy software support may require certain instructions
1779	  that have been deprecated or obsoleted in the architecture.
1780
1781	  Enable this config to enable selective emulation of these
1782	  features.
1783
1784	  If unsure, say Y
1785
1786if ARMV8_DEPRECATED
1787
1788config SWP_EMULATION
1789	bool "Emulate SWP/SWPB instructions"
1790	help
1791	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1792	  they are always undefined. Say Y here to enable software
1793	  emulation of these instructions for userspace using LDXR/STXR.
1794	  This feature can be controlled at runtime with the abi.swp
1795	  sysctl which is disabled by default.
1796
1797	  In some older versions of glibc [<=2.8] SWP is used during futex
1798	  trylock() operations with the assumption that the code will not
1799	  be preempted. This invalid assumption may be more likely to fail
1800	  with SWP emulation enabled, leading to deadlock of the user
1801	  application.
1802
1803	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1804	  on an external transaction monitoring block called a global
1805	  monitor to maintain update atomicity. If your system does not
1806	  implement a global monitor, this option can cause programs that
1807	  perform SWP operations to uncached memory to deadlock.
1808
1809	  If unsure, say Y
1810
1811config CP15_BARRIER_EMULATION
1812	bool "Emulate CP15 Barrier instructions"
1813	help
1814	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1815	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1816	  strongly recommended to use the ISB, DSB, and DMB
1817	  instructions instead.
1818
1819	  Say Y here to enable software emulation of these
1820	  instructions for AArch32 userspace code. When this option is
1821	  enabled, CP15 barrier usage is traced which can help
1822	  identify software that needs updating. This feature can be
1823	  controlled at runtime with the abi.cp15_barrier sysctl.
1824
1825	  If unsure, say Y
1826
1827config SETEND_EMULATION
1828	bool "Emulate SETEND instruction"
1829	help
1830	  The SETEND instruction alters the data-endianness of the
1831	  AArch32 EL0, and is deprecated in ARMv8.
1832
1833	  Say Y here to enable software emulation of the instruction
1834	  for AArch32 userspace code. This feature can be controlled
1835	  at runtime with the abi.setend sysctl.
1836
1837	  Note: All the cpus on the system must have mixed endian support at EL0
1838	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1839	  endian - is hotplugged in after this feature has been enabled, there could
1840	  be unexpected results in the applications.
1841
1842	  If unsure, say Y
1843endif # ARMV8_DEPRECATED
1844
1845endif # COMPAT
1846
1847menu "ARMv8.1 architectural features"
1848
1849config ARM64_HW_AFDBM
1850	bool "Support for hardware updates of the Access and Dirty page flags"
1851	default y
1852	help
1853	  The ARMv8.1 architecture extensions introduce support for
1854	  hardware updates of the access and dirty information in page
1855	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1856	  capable processors, accesses to pages with PTE_AF cleared will
1857	  set this bit instead of raising an access flag fault.
1858	  Similarly, writes to read-only pages with the DBM bit set will
1859	  clear the read-only bit (AP[2]) instead of raising a
1860	  permission fault.
1861
1862	  Kernels built with this configuration option enabled continue
1863	  to work on pre-ARMv8.1 hardware and the performance impact is
1864	  minimal. If unsure, say Y.
1865
1866config ARM64_PAN
1867	bool "Enable support for Privileged Access Never (PAN)"
1868	default y
1869	help
1870	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1871	  prevents the kernel or hypervisor from accessing user-space (EL0)
1872	  memory directly.
1873
1874	  Choosing this option will cause any unprotected (not using
1875	  copy_to_user et al) memory access to fail with a permission fault.
1876
1877	  The feature is detected at runtime, and will remain as a 'nop'
1878	  instruction if the cpu does not implement the feature.
1879
1880config AS_HAS_LSE_ATOMICS
1881	def_bool $(as-instr,.arch_extension lse)
1882
1883config ARM64_LSE_ATOMICS
1884	bool
1885	default ARM64_USE_LSE_ATOMICS
1886	depends on AS_HAS_LSE_ATOMICS
1887
1888config ARM64_USE_LSE_ATOMICS
1889	bool "Atomic instructions"
1890	default y
1891	help
1892	  As part of the Large System Extensions, ARMv8.1 introduces new
1893	  atomic instructions that are designed specifically to scale in
1894	  very large systems.
1895
1896	  Say Y here to make use of these instructions for the in-kernel
1897	  atomic routines. This incurs a small overhead on CPUs that do
1898	  not support these instructions and requires the kernel to be
1899	  built with binutils >= 2.25 in order for the new instructions
1900	  to be used.
1901
1902endmenu # "ARMv8.1 architectural features"
1903
1904menu "ARMv8.2 architectural features"
1905
1906config AS_HAS_ARMV8_2
1907	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1908
1909config AS_HAS_SHA3
1910	def_bool $(as-instr,.arch armv8.2-a+sha3)
1911
1912config ARM64_PMEM
1913	bool "Enable support for persistent memory"
1914	select ARCH_HAS_PMEM_API
1915	select ARCH_HAS_UACCESS_FLUSHCACHE
1916	help
1917	  Say Y to enable support for the persistent memory API based on the
1918	  ARMv8.2 DCPoP feature.
1919
1920	  The feature is detected at runtime, and the kernel will use DC CVAC
1921	  operations if DC CVAP is not supported (following the behaviour of
1922	  DC CVAP itself if the system does not define a point of persistence).
1923
1924config ARM64_RAS_EXTN
1925	bool "Enable support for RAS CPU Extensions"
1926	default y
1927	help
1928	  CPUs that support the Reliability, Availability and Serviceability
1929	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1930	  errors, classify them and report them to software.
1931
1932	  On CPUs with these extensions system software can use additional
1933	  barriers to determine if faults are pending and read the
1934	  classification from a new set of registers.
1935
1936	  Selecting this feature will allow the kernel to use these barriers
1937	  and access the new registers if the system supports the extension.
1938	  Platform RAS features may additionally depend on firmware support.
1939
1940config ARM64_CNP
1941	bool "Enable support for Common Not Private (CNP) translations"
1942	default y
1943	help
1944	  Common Not Private (CNP) allows translation table entries to
1945	  be shared between different PEs in the same inner shareable
1946	  domain, so the hardware can use this fact to optimise the
1947	  caching of such entries in the TLB.
1948
1949	  Selecting this option allows the CNP feature to be detected
1950	  at runtime, and does not affect PEs that do not implement
1951	  this feature.
1952
1953endmenu # "ARMv8.2 architectural features"
1954
1955menu "ARMv8.3 architectural features"
1956
1957config ARM64_PTR_AUTH
1958	bool "Enable support for pointer authentication"
1959	default y
1960	help
1961	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1962	  instructions for signing and authenticating pointers against secret
1963	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1964	  and other attacks.
1965
1966	  This option enables these instructions at EL0 (i.e. for userspace).
1967	  Choosing this option will cause the kernel to initialise secret keys
1968	  for each process at exec() time, with these keys being
1969	  context-switched along with the process.
1970
1971	  The feature is detected at runtime. If the feature is not present in
1972	  hardware it will not be advertised to userspace/KVM guest nor will it
1973	  be enabled.
1974
1975	  If the feature is present on the boot CPU but not on a late CPU, then
1976	  the late CPU will be parked. Also, if the boot CPU does not have
1977	  address auth and the late CPU has then the late CPU will still boot
1978	  but with the feature disabled. On such a system, this option should
1979	  not be selected.
1980
1981config ARM64_PTR_AUTH_KERNEL
1982	bool "Use pointer authentication for kernel"
1983	default y
1984	depends on ARM64_PTR_AUTH
1985	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1986	# Modern compilers insert a .note.gnu.property section note for PAC
1987	# which is only understood by binutils starting with version 2.33.1.
1988	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1989	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1990	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1991	help
1992	  If the compiler supports the -mbranch-protection or
1993	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1994	  will cause the kernel itself to be compiled with return address
1995	  protection. In this case, and if the target hardware is known to
1996	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1997	  disabled with minimal loss of protection.
1998
1999	  This feature works with FUNCTION_GRAPH_TRACER option only if
2000	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
2001
2002config CC_HAS_BRANCH_PROT_PAC_RET
2003	# GCC 9 or later, clang 8 or later
2004	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
2005
2006config CC_HAS_SIGN_RETURN_ADDRESS
2007	# GCC 7, 8
2008	def_bool $(cc-option,-msign-return-address=all)
2009
2010config AS_HAS_ARMV8_3
2011	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
2012
2013config AS_HAS_CFI_NEGATE_RA_STATE
2014	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
2015
2016config AS_HAS_LDAPR
2017	def_bool $(as-instr,.arch_extension rcpc)
2018
2019endmenu # "ARMv8.3 architectural features"
2020
2021menu "ARMv8.4 architectural features"
2022
2023config ARM64_AMU_EXTN
2024	bool "Enable support for the Activity Monitors Unit CPU extension"
2025	default y
2026	help
2027	  The activity monitors extension is an optional extension introduced
2028	  by the ARMv8.4 CPU architecture. This enables support for version 1
2029	  of the activity monitors architecture, AMUv1.
2030
2031	  To enable the use of this extension on CPUs that implement it, say Y.
2032
2033	  Note that for architectural reasons, firmware _must_ implement AMU
2034	  support when running on CPUs that present the activity monitors
2035	  extension. The required support is present in:
2036	    * Version 1.5 and later of the ARM Trusted Firmware
2037
2038	  For kernels that have this configuration enabled but boot with broken
2039	  firmware, you may need to say N here until the firmware is fixed.
2040	  Otherwise you may experience firmware panics or lockups when
2041	  accessing the counter registers. Even if you are not observing these
2042	  symptoms, the values returned by the register reads might not
2043	  correctly reflect reality. Most commonly, the value read will be 0,
2044	  indicating that the counter is not enabled.
2045
2046config AS_HAS_ARMV8_4
2047	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
2048
2049config ARM64_TLB_RANGE
2050	bool "Enable support for tlbi range feature"
2051	default y
2052	depends on AS_HAS_ARMV8_4
2053	help
2054	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
2055	  range of input addresses.
2056
2057	  The feature introduces new assembly instructions, and they were
2058	  support when binutils >= 2.30.
2059
2060endmenu # "ARMv8.4 architectural features"
2061
2062menu "ARMv8.5 architectural features"
2063
2064config AS_HAS_ARMV8_5
2065	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
2066
2067config ARM64_BTI
2068	bool "Branch Target Identification support"
2069	default y
2070	help
2071	  Branch Target Identification (part of the ARMv8.5 Extensions)
2072	  provides a mechanism to limit the set of locations to which computed
2073	  branch instructions such as BR or BLR can jump.
2074
2075	  To make use of BTI on CPUs that support it, say Y.
2076
2077	  BTI is intended to provide complementary protection to other control
2078	  flow integrity protection mechanisms, such as the Pointer
2079	  authentication mechanism provided as part of the ARMv8.3 Extensions.
2080	  For this reason, it does not make sense to enable this option without
2081	  also enabling support for pointer authentication.  Thus, when
2082	  enabling this option you should also select ARM64_PTR_AUTH=y.
2083
2084	  Userspace binaries must also be specifically compiled to make use of
2085	  this mechanism.  If you say N here or the hardware does not support
2086	  BTI, such binaries can still run, but you get no additional
2087	  enforcement of branch destinations.
2088
2089config ARM64_BTI_KERNEL
2090	bool "Use Branch Target Identification for kernel"
2091	default y
2092	depends on ARM64_BTI
2093	depends on ARM64_PTR_AUTH_KERNEL
2094	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2095	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2096	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2097	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2098	depends on !CC_IS_GCC
2099	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2100	help
2101	  Build the kernel with Branch Target Identification annotations
2102	  and enable enforcement of this for kernel code. When this option
2103	  is enabled and the system supports BTI all kernel code including
2104	  modular code must have BTI enabled.
2105
2106config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2107	# GCC 9 or later, clang 8 or later
2108	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2109
2110config ARM64_E0PD
2111	bool "Enable support for E0PD"
2112	default y
2113	help
2114	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2115	  that EL0 accesses made via TTBR1 always fault in constant time,
2116	  providing similar benefits to KASLR as those provided by KPTI, but
2117	  with lower overhead and without disrupting legitimate access to
2118	  kernel memory such as SPE.
2119
2120	  This option enables E0PD for TTBR1 where available.
2121
2122config ARM64_AS_HAS_MTE
2123	# Initial support for MTE went in binutils 2.32.0, checked with
2124	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2125	# as a late addition to the final architecture spec (LDGM/STGM)
2126	# is only supported in the newer 2.32.x and 2.33 binutils
2127	# versions, hence the extra "stgm" instruction check below.
2128	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2129
2130config ARM64_MTE
2131	bool "Memory Tagging Extension support"
2132	default y
2133	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2134	depends on AS_HAS_ARMV8_5
2135	depends on AS_HAS_LSE_ATOMICS
2136	# Required for tag checking in the uaccess routines
2137	select ARM64_PAN
2138	select ARCH_HAS_SUBPAGE_FAULTS
2139	select ARCH_USES_HIGH_VMA_FLAGS
2140	select ARCH_USES_PG_ARCH_2
2141	select ARCH_USES_PG_ARCH_3
2142	help
2143	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2144	  architectural support for run-time, always-on detection of
2145	  various classes of memory error to aid with software debugging
2146	  to eliminate vulnerabilities arising from memory-unsafe
2147	  languages.
2148
2149	  This option enables the support for the Memory Tagging
2150	  Extension at EL0 (i.e. for userspace).
2151
2152	  Selecting this option allows the feature to be detected at
2153	  runtime. Any secondary CPU not implementing this feature will
2154	  not be allowed a late bring-up.
2155
2156	  Userspace binaries that want to use this feature must
2157	  explicitly opt in. The mechanism for the userspace is
2158	  described in:
2159
2160	  Documentation/arch/arm64/memory-tagging-extension.rst.
2161
2162endmenu # "ARMv8.5 architectural features"
2163
2164menu "ARMv8.7 architectural features"
2165
2166config ARM64_EPAN
2167	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2168	default y
2169	depends on ARM64_PAN
2170	help
2171	  Enhanced Privileged Access Never (EPAN) allows Privileged
2172	  Access Never to be used with Execute-only mappings.
2173
2174	  The feature is detected at runtime, and will remain disabled
2175	  if the cpu does not implement the feature.
2176endmenu # "ARMv8.7 architectural features"
2177
2178config AS_HAS_MOPS
2179	def_bool $(as-instr,.arch_extension mops)
2180
2181menu "ARMv8.9 architectural features"
2182
2183config ARM64_POE
2184	prompt "Permission Overlay Extension"
2185	def_bool y
2186	select ARCH_USES_HIGH_VMA_FLAGS
2187	select ARCH_HAS_PKEYS
2188	help
2189	  The Permission Overlay Extension is used to implement Memory
2190	  Protection Keys. Memory Protection Keys provides a mechanism for
2191	  enforcing page-based protections, but without requiring modification
2192	  of the page tables when an application changes protection domains.
2193
2194	  For details, see Documentation/core-api/protection-keys.rst
2195
2196	  If unsure, say y.
2197
2198config ARCH_PKEY_BITS
2199	int
2200	default 3
2201
2202config ARM64_HAFT
2203	bool "Support for Hardware managed Access Flag for Table Descriptors"
2204	depends on ARM64_HW_AFDBM
2205	default y
2206	help
2207	  The ARMv8.9/ARMv9.5 introduces the feature Hardware managed Access
2208	  Flag for Table descriptors. When enabled an architectural executed
2209	  memory access will update the Access Flag in each Table descriptor
2210	  which is accessed during the translation table walk and for which
2211	  the Access Flag is 0. The Access Flag of the Table descriptor use
2212	  the same bit of PTE_AF.
2213
2214	  The feature will only be enabled if all the CPUs in the system
2215	  support this feature. If unsure, say Y.
2216
2217endmenu # "ARMv8.9 architectural features"
2218
2219menu "v9.4 architectural features"
2220
2221config ARM64_GCS
2222	bool "Enable support for Guarded Control Stack (GCS)"
2223	default y
2224	select ARCH_HAS_USER_SHADOW_STACK
2225	select ARCH_USES_HIGH_VMA_FLAGS
2226	depends on !UPROBES
2227	help
2228	  Guarded Control Stack (GCS) provides support for a separate
2229	  stack with restricted access which contains only return
2230	  addresses.  This can be used to harden against some attacks
2231	  by comparing return address used by the program with what is
2232	  stored in the GCS, and may also be used to efficiently obtain
2233	  the call stack for applications such as profiling.
2234
2235	  The feature is detected at runtime, and will remain disabled
2236	  if the system does not implement the feature.
2237
2238endmenu # "v9.4 architectural features"
2239
2240config ARM64_SVE
2241	bool "ARM Scalable Vector Extension support"
2242	default y
2243	help
2244	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2245	  execution state which complements and extends the SIMD functionality
2246	  of the base architecture to support much larger vectors and to enable
2247	  additional vectorisation opportunities.
2248
2249	  To enable use of this extension on CPUs that implement it, say Y.
2250
2251	  On CPUs that support the SVE2 extensions, this option will enable
2252	  those too.
2253
2254	  Note that for architectural reasons, firmware _must_ implement SVE
2255	  support when running on SVE capable hardware.  The required support
2256	  is present in:
2257
2258	    * version 1.5 and later of the ARM Trusted Firmware
2259	    * the AArch64 boot wrapper since commit 5e1261e08abf
2260	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2261
2262	  For other firmware implementations, consult the firmware documentation
2263	  or vendor.
2264
2265	  If you need the kernel to boot on SVE-capable hardware with broken
2266	  firmware, you may need to say N here until you get your firmware
2267	  fixed.  Otherwise, you may experience firmware panics or lockups when
2268	  booting the kernel.  If unsure and you are not observing these
2269	  symptoms, you should assume that it is safe to say Y.
2270
2271config ARM64_SME
2272	bool "ARM Scalable Matrix Extension support"
2273	default y
2274	depends on ARM64_SVE
2275	depends on BROKEN
2276	help
2277	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2278	  execution state which utilises a substantial subset of the SVE
2279	  instruction set, together with the addition of new architectural
2280	  register state capable of holding two dimensional matrix tiles to
2281	  enable various matrix operations.
2282
2283config ARM64_PSEUDO_NMI
2284	bool "Support for NMI-like interrupts"
2285	select ARM_GIC_V3
2286	help
2287	  Adds support for mimicking Non-Maskable Interrupts through the use of
2288	  GIC interrupt priority. This support requires version 3 or later of
2289	  ARM GIC.
2290
2291	  This high priority configuration for interrupts needs to be
2292	  explicitly enabled by setting the kernel parameter
2293	  "irqchip.gicv3_pseudo_nmi" to 1.
2294
2295	  If unsure, say N
2296
2297if ARM64_PSEUDO_NMI
2298config ARM64_DEBUG_PRIORITY_MASKING
2299	bool "Debug interrupt priority masking"
2300	help
2301	  This adds runtime checks to functions enabling/disabling
2302	  interrupts when using priority masking. The additional checks verify
2303	  the validity of ICC_PMR_EL1 when calling concerned functions.
2304
2305	  If unsure, say N
2306endif # ARM64_PSEUDO_NMI
2307
2308config RELOCATABLE
2309	bool "Build a relocatable kernel image" if EXPERT
2310	select ARCH_HAS_RELR
2311	default y
2312	help
2313	  This builds the kernel as a Position Independent Executable (PIE),
2314	  which retains all relocation metadata required to relocate the
2315	  kernel binary at runtime to a different virtual address than the
2316	  address it was linked at.
2317	  Since AArch64 uses the RELA relocation format, this requires a
2318	  relocation pass at runtime even if the kernel is loaded at the
2319	  same address it was linked at.
2320
2321config RANDOMIZE_BASE
2322	bool "Randomize the address of the kernel image"
2323	select RELOCATABLE
2324	help
2325	  Randomizes the virtual address at which the kernel image is
2326	  loaded, as a security feature that deters exploit attempts
2327	  relying on knowledge of the location of kernel internals.
2328
2329	  It is the bootloader's job to provide entropy, by passing a
2330	  random u64 value in /chosen/kaslr-seed at kernel entry.
2331
2332	  When booting via the UEFI stub, it will invoke the firmware's
2333	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2334	  to the kernel proper. In addition, it will randomise the physical
2335	  location of the kernel Image as well.
2336
2337	  If unsure, say N.
2338
2339config RANDOMIZE_MODULE_REGION_FULL
2340	bool "Randomize the module region over a 2 GB range"
2341	depends on RANDOMIZE_BASE
2342	default y
2343	help
2344	  Randomizes the location of the module region inside a 2 GB window
2345	  covering the core kernel. This way, it is less likely for modules
2346	  to leak information about the location of core kernel data structures
2347	  but it does imply that function calls between modules and the core
2348	  kernel will need to be resolved via veneers in the module PLT.
2349
2350	  When this option is not set, the module region will be randomized over
2351	  a limited range that contains the [_stext, _etext] interval of the
2352	  core kernel, so branch relocations are almost always in range unless
2353	  the region is exhausted. In this particular case of region
2354	  exhaustion, modules might be able to fall back to a larger 2GB area.
2355
2356config CC_HAVE_STACKPROTECTOR_SYSREG
2357	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2358
2359config STACKPROTECTOR_PER_TASK
2360	def_bool y
2361	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2362
2363config UNWIND_PATCH_PAC_INTO_SCS
2364	bool "Enable shadow call stack dynamically using code patching"
2365	# needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated
2366	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2367	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2368	depends on SHADOW_CALL_STACK
2369	select UNWIND_TABLES
2370	select DYNAMIC_SCS
2371
2372config ARM64_CONTPTE
2373	bool "Contiguous PTE mappings for user memory" if EXPERT
2374	depends on TRANSPARENT_HUGEPAGE
2375	default y
2376	help
2377	  When enabled, user mappings are configured using the PTE contiguous
2378	  bit, for any mappings that meet the size and alignment requirements.
2379	  This reduces TLB pressure and improves performance.
2380
2381endmenu # "Kernel Features"
2382
2383menu "Boot options"
2384
2385config ARM64_ACPI_PARKING_PROTOCOL
2386	bool "Enable support for the ARM64 ACPI parking protocol"
2387	depends on ACPI
2388	help
2389	  Enable support for the ARM64 ACPI parking protocol. If disabled
2390	  the kernel will not allow booting through the ARM64 ACPI parking
2391	  protocol even if the corresponding data is present in the ACPI
2392	  MADT table.
2393
2394config CMDLINE
2395	string "Default kernel command string"
2396	default ""
2397	help
2398	  Provide a set of default command-line options at build time by
2399	  entering them here. As a minimum, you should specify the the
2400	  root device (e.g. root=/dev/nfs).
2401
2402choice
2403	prompt "Kernel command line type"
2404	depends on CMDLINE != ""
2405	default CMDLINE_FROM_BOOTLOADER
2406	help
2407	  Choose how the kernel will handle the provided default kernel
2408	  command line string.
2409
2410config CMDLINE_FROM_BOOTLOADER
2411	bool "Use bootloader kernel arguments if available"
2412	help
2413	  Uses the command-line options passed by the boot loader. If
2414	  the boot loader doesn't provide any, the default kernel command
2415	  string provided in CMDLINE will be used.
2416
2417config CMDLINE_FORCE
2418	bool "Always use the default kernel command string"
2419	help
2420	  Always use the default kernel command string, even if the boot
2421	  loader passes other arguments to the kernel.
2422	  This is useful if you cannot or don't want to change the
2423	  command-line options your boot loader passes to the kernel.
2424
2425endchoice
2426
2427config EFI_STUB
2428	bool
2429
2430config EFI
2431	bool "UEFI runtime support"
2432	depends on OF && !CPU_BIG_ENDIAN
2433	depends on KERNEL_MODE_NEON
2434	select ARCH_SUPPORTS_ACPI
2435	select LIBFDT
2436	select UCS2_STRING
2437	select EFI_PARAMS_FROM_FDT
2438	select EFI_RUNTIME_WRAPPERS
2439	select EFI_STUB
2440	select EFI_GENERIC_STUB
2441	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2442	default y
2443	help
2444	  This option provides support for runtime services provided
2445	  by UEFI firmware (such as non-volatile variables, realtime
2446	  clock, and platform reset). A UEFI stub is also provided to
2447	  allow the kernel to be booted as an EFI application. This
2448	  is only useful on systems that have UEFI firmware.
2449
2450config COMPRESSED_INSTALL
2451	bool "Install compressed image by default"
2452	help
2453	  This makes the regular "make install" install the compressed
2454	  image we built, not the legacy uncompressed one.
2455
2456	  You can check that a compressed image works for you by doing
2457	  "make zinstall" first, and verifying that everything is fine
2458	  in your environment before making "make install" do this for
2459	  you.
2460
2461config DMI
2462	bool "Enable support for SMBIOS (DMI) tables"
2463	depends on EFI
2464	default y
2465	help
2466	  This enables SMBIOS/DMI feature for systems.
2467
2468	  This option is only useful on systems that have UEFI firmware.
2469	  However, even with this option, the resultant kernel should
2470	  continue to boot on existing non-UEFI platforms.
2471
2472endmenu # "Boot options"
2473
2474menu "Power management options"
2475
2476source "kernel/power/Kconfig"
2477
2478config ARCH_HIBERNATION_POSSIBLE
2479	def_bool y
2480	depends on CPU_PM
2481
2482config ARCH_HIBERNATION_HEADER
2483	def_bool y
2484	depends on HIBERNATION
2485
2486config ARCH_SUSPEND_POSSIBLE
2487	def_bool y
2488
2489endmenu # "Power management options"
2490
2491menu "CPU Power Management"
2492
2493source "drivers/cpuidle/Kconfig"
2494
2495source "drivers/cpufreq/Kconfig"
2496
2497endmenu # "CPU Power Management"
2498
2499source "drivers/acpi/Kconfig"
2500
2501source "arch/arm64/kvm/Kconfig"
2502
2503