History log of /linux/arch/x86/lib/crc-pclmul-template.h (Results 1 – 11 of 11)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
# 4f978603 02-Jun-2025 Dmitry Torokhov <dmitry.torokhov@gmail.com>

Merge branch 'next' into for-linus

Prepare input updates for 6.16 merge window.


Revision tags: v6.15, v6.15-rc7
# d51b9d81 16-May-2025 Dmitry Torokhov <dmitry.torokhov@gmail.com>

Merge tag 'v6.15-rc6' into next

Sync up with mainline to bring in xpad controller changes.


Revision tags: v6.15-rc6, v6.15-rc5
# 844e31bb 29-Apr-2025 Rob Clark <robdclark@chromium.org>

Merge remote-tracking branch 'drm-misc/drm-misc-next' into msm-next

Merge drm-misc-next to get commit Fixes: fec450ca15af ("drm/display:
hdmi: provide central data authority for ACR params").

Signe

Merge remote-tracking branch 'drm-misc/drm-misc-next' into msm-next

Merge drm-misc-next to get commit Fixes: fec450ca15af ("drm/display:
hdmi: provide central data authority for ACR params").

Signed-off-by: Rob Clark <robdclark@chromium.org>

show more ...


Revision tags: v6.15-rc4
# 3ab7ae8e 24-Apr-2025 Thomas Hellström <thomas.hellstrom@linux.intel.com>

Merge drm/drm-next into drm-xe-next

Backmerge to bring in linux 6.15-rc.

Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>


Revision tags: v6.15-rc3, v6.15-rc2
# 1afba39f 07-Apr-2025 Thomas Zimmermann <tzimmermann@suse.de>

Merge drm/drm-next into drm-misc-next

Backmerging to get v6.15-rc1 into drm-misc-next. Also fixes a
build issue when enabling CONFIG_DRM_SCHED_KUNIT_TEST.

Signed-off-by: Thomas Zimmermann <tzimmerm

Merge drm/drm-next into drm-misc-next

Backmerging to get v6.15-rc1 into drm-misc-next. Also fixes a
build issue when enabling CONFIG_DRM_SCHED_KUNIT_TEST.

Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de>

show more ...


# 9f13acb2 11-Apr-2025 Ingo Molnar <mingo@kernel.org>

Merge tag 'v6.15-rc1' into x86/cpu, to refresh the branch with upstream changes

Signed-off-by: Ingo Molnar <mingo@kernel.org>


# 6ce0fdaa 09-Apr-2025 Ingo Molnar <mingo@kernel.org>

Merge tag 'v6.15-rc1' into x86/asm, to refresh the branch

Signed-off-by: Ingo Molnar <mingo@kernel.org>


# 1260ed77 08-Apr-2025 Thomas Zimmermann <tzimmermann@suse.de>

Merge drm/drm-fixes into drm-misc-fixes

Backmerging to get updates from v6.15-rc1.

Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de>


Revision tags: v6.15-rc1
# ee6740fd 26-Mar-2025 Linus Torvalds <torvalds@linux-foundation.org>

Merge tag 'crc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/linux

Pull CRC updates from Eric Biggers:
"Another set of improvements to the kernel's CRC (cyclic redundancy
c

Merge tag 'crc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/linux

Pull CRC updates from Eric Biggers:
"Another set of improvements to the kernel's CRC (cyclic redundancy
check) code:

- Rework the CRC64 library functions to be directly optimized, like
what I did last cycle for the CRC32 and CRC-T10DIF library
functions

- Rewrite the x86 PCLMULQDQ-optimized CRC code, and add VPCLMULQDQ
support and acceleration for crc64_be and crc64_nvme

- Rewrite the riscv Zbc-optimized CRC code, and add acceleration for
crc_t10dif, crc64_be, and crc64_nvme

- Remove crc_t10dif and crc64_rocksoft from the crypto API, since
they are no longer needed there

- Rename crc64_rocksoft to crc64_nvme, as the old name was incorrect

- Add kunit test cases for crc64_nvme and crc7

- Eliminate redundant functions for calculating the Castagnoli CRC32,
settling on just crc32c()

- Remove unnecessary prompts from some of the CRC kconfig options

- Further optimize the x86 crc32c code"

* tag 'crc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/linux: (36 commits)
x86/crc: drop the avx10_256 functions and rename avx10_512 to avx512
lib/crc: remove unnecessary prompt for CONFIG_CRC64
lib/crc: remove unnecessary prompt for CONFIG_LIBCRC32C
lib/crc: remove unnecessary prompt for CONFIG_CRC8
lib/crc: remove unnecessary prompt for CONFIG_CRC7
lib/crc: remove unnecessary prompt for CONFIG_CRC4
lib/crc7: unexport crc7_be_syndrome_table
lib/crc_kunit.c: update comment in crc_benchmark()
lib/crc_kunit.c: add test and benchmark for crc7_be()
x86/crc32: optimize tail handling for crc32c short inputs
riscv/crc64: add Zbc optimized CRC64 functions
riscv/crc-t10dif: add Zbc optimized CRC-T10DIF function
riscv/crc32: reimplement the CRC32 functions using new template
riscv/crc: add "template" for Zbc optimized CRC functions
x86/crc: add ANNOTATE_NOENDBR to suppress objtool warnings
x86/crc32: improve crc32c_arch() code generation with clang
x86/crc64: implement crc64_be and crc64_nvme using new template
x86/crc-t10dif: implement crc_t10dif using new template
x86/crc32: implement crc32_le using new template
x86/crc: add "template" for [V]PCLMULQDQ based CRC functions
...

show more ...


Revision tags: v6.14
# acf9f8da 19-Mar-2025 Eric Biggers <ebiggers@google.com>

x86/crc: drop the avx10_256 functions and rename avx10_512 to avx512

Intel made a late change to the AVX10 specification that removes support
for a 256-bit maximum vector length and enumeration of t

x86/crc: drop the avx10_256 functions and rename avx10_512 to avx512

Intel made a late change to the AVX10 specification that removes support
for a 256-bit maximum vector length and enumeration of the maximum
vector length. AVX10 will imply a maximum vector length of 512 bits.
I.e. there won't be any such thing as AVX10/256 or AVX10/512; there will
just be AVX10, and it will essentially just consolidate AVX512 features.

As a result of this new development, my strategy of providing both
*_avx10_256 and *_avx10_512 functions didn't turn out to be that useful.
The only remaining motivation for the 256-bit AVX512 / AVX10 functions
is to avoid downclocking on older Intel CPUs. But I already wrote
*_avx2 code too (primarily to support CPUs without AVX512), which
performs almost as well as *_avx10_256. So we should just use that.

Therefore, remove the *_avx10_256 CRC functions, and rename the
*_avx10_512 CRC functions to *_avx512. Make Ice Lake and Tiger Lake use
the *_avx2 functions instead of *_avx10_256 which they previously used.

Link: https://lore.kernel.org/r/20250319181316.91271-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>

show more ...


Revision tags: v6.14-rc7, v6.14-rc6, v6.14-rc5, v6.14-rc4, v6.14-rc3
# 8d2d3e72 10-Feb-2025 Eric Biggers <ebiggers@google.com>

x86/crc: add "template" for [V]PCLMULQDQ based CRC functions

The Linux kernel implements many variants of CRC, such as crc16,
crc_t10dif, crc32_le, crc32c, crc32_be, crc64_nvme, and crc64_be. On
x8

x86/crc: add "template" for [V]PCLMULQDQ based CRC functions

The Linux kernel implements many variants of CRC, such as crc16,
crc_t10dif, crc32_le, crc32c, crc32_be, crc64_nvme, and crc64_be. On
x86, except for crc32c which has special scalar instructions, the
fastest way to compute any of these CRCs on any message of length
roughly >= 16 bytes is to use the SIMD carryless multiplication
instructions PCLMULQDQ or VPCLMULQDQ. Depending on the available CPU
features this can mean PCLMULQDQ+SSE4.1, VPCLMULQDQ+AVX2,
VPCLMULQDQ+AVX10/256, or VPCLMULQDQ+AVX10/512 (or the AVX512 equivalents
to AVX10/*). This results in a total of 20+ CRC implementations being
potentially needed to properly optimize all CRCs that someone cares
about for x86. Besides crc32c, currently only crc32_le and crc_t10dif
are actually optimized for x86, and they only use PCLMULQDQ, which means
they can be 2-4x slower than what is possible with VPCLMULQDQ.

Fortunately, at a high level the code that is needed for any
[V]PCLMULQDQ based CRC implementation is mostly the same. Therefore,
this patch introduces an assembly macro that expands into the body of a
[V]PCLMULQDQ based CRC function for a given number of bits (8, 16, 32,
or 64), bit order (lsb or msb-first), vector length, and AVX level.

The function expects to be passed a constants table, specific to the
polynomial desired, that was generated by the script previously added.
When two CRC variants share the same number of bits and bit order, the
same functions can be reused, with only the constants table differing.

A new C header is also added to make it easy to integrate the new
assembly code using a static call.

The result is that it becomes straightforward to wire up an optimized
implementation of any CRC-8, CRC-16, CRC-32, or CRC-64 for x86. Later
patches will wire up specific CRC variants.

Although this new template allows easily generating many functions, care
was taken to still keep the binary size fairly low. Each generated
function is only 550 to 850 bytes depending on the CRC variant and
target CPU features. And only one function per CRC variant is actually
used at runtime (since all functions support all lengths >= 16 bytes).

Note that a similar approach should also work for other architectures
that have carryless multiplication instructions, such as arm64.

Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Keith Busch <kbusch@kernel.org>
Link: https://lore.kernel.org/r/20250210174540.161705-4-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>

show more ...