History log of /linux/Documentation/filesystems/multigrain-ts.rst (Results 1 – 4 of 4)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
# c34e9ab9 05-Dec-2024 Takashi Iwai <tiwai@suse.de>

Merge tag 'asoc-fix-v6.13-rc1' of https://git.kernel.org/pub/scm/linux/kernel/git/broonie/sound into for-linus

ASoC: Fixes for v6.13

A few small fixes for v6.13, all system specific - the biggest t

Merge tag 'asoc-fix-v6.13-rc1' of https://git.kernel.org/pub/scm/linux/kernel/git/broonie/sound into for-linus

ASoC: Fixes for v6.13

A few small fixes for v6.13, all system specific - the biggest thing is
the fix for jack handling over suspend on some Intel laptops.

show more ...


Revision tags: v6.13-rc1
# 6ac81fd5 18-Nov-2024 Linus Torvalds <torvalds@linux-foundation.org>

Merge tag 'vfs-6.13.mgtime' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs

Pull vfs multigrain timestamps from Christian Brauner:
"This is another try at implementing multigrain timestamp

Merge tag 'vfs-6.13.mgtime' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs

Pull vfs multigrain timestamps from Christian Brauner:
"This is another try at implementing multigrain timestamps. This time
with significant help from the timekeeping maintainers to reduce the
performance impact.

Thomas provided a base branch that contains the required timekeeping
interfaces for the VFS. It serves as the base for the multi-grain
timestamp work:

- Multigrain timestamps allow the kernel to use fine-grained
timestamps when an inode's attributes is being actively observed
via ->getattr(). With this support, it's possible for a file to get
a fine-grained timestamp, and another modified after it to get a
coarse-grained stamp that is earlier than the fine-grained time. If
this happens then the files can appear to have been modified in
reverse order, which breaks VFS ordering guarantees.

To prevent this, a floor value is maintained for multigrain
timestamps. Whenever a fine-grained timestamp is handed out, record
it, and when later coarse-grained stamps are handed out, ensure
they are not earlier than that value. If the coarse-grained
timestamp is earlier than the fine-grained floor, return the floor
value instead.

The timekeeper changes add a static singleton atomic64_t into
timekeeper.c that is used to keep track of the latest fine-grained
time ever handed out. This is tracked as a monotonic ktime_t value
to ensure that it isn't affected by clock jumps. Because it is
updated at different times than the rest of the timekeeper object,
the floor value is managed independently of the timekeeper via a
cmpxchg() operation, and sits on its own cacheline.

Two new public timekeeper interfaces are added:

(1) ktime_get_coarse_real_ts64_mg() fills a timespec64 with the
later of the coarse-grained clock and the floor time

(2) ktime_get_real_ts64_mg() gets the fine-grained clock value,
and tries to swap it into the floor. A timespec64 is filled
with the result.

- The VFS has always used coarse-grained timestamps when updating the
ctime and mtime after a change. This has the benefit of allowing
filesystems to optimize away a lot metadata updates, down to around
1 per jiffy, even when a file is under heavy writes.

Unfortunately, this has always been an issue when we're exporting
via NFSv3, which relies on timestamps to validate caches. A lot of
changes can happen in a jiffy, so timestamps aren't sufficient to
help the client decide when to invalidate the cache. Even with
NFSv4, a lot of exported filesystems don't properly support a
change attribute and are subject to the same problems with
timestamp granularity. Other applications have similar issues with
timestamps (e.g backup applications).

If we were to always use fine-grained timestamps, that would
improve the situation, but that becomes rather expensive, as the
underlying filesystem would have to log a lot more metadata
updates.

This adds a way to only use fine-grained timestamps when they are
being actively queried. Use the (unused) top bit in
inode->i_ctime_nsec as a flag that indicates whether the current
timestamps have been queried via stat() or the like. When it's set,
we allow the kernel to use a fine-grained timestamp iff it's
necessary to make the ctime show a different value.

This solves the problem of being able to distinguish the timestamp
between updates, but introduces a new problem: it's now possible
for a file being changed to get a fine-grained timestamp. A file
that is altered just a bit later can then get a coarse-grained one
that appears older than the earlier fine-grained time. This
violates timestamp ordering guarantees.

This is where the earlier mentioned timkeeping interfaces help. A
global monotonic atomic64_t value is kept that acts as a timestamp
floor. When we go to stamp a file, we first get the latter of the
current floor value and the current coarse-grained time. If the
inode ctime hasn't been queried then we just attempt to stamp it
with that value.

If it has been queried, then first see whether the current coarse
time is later than the existing ctime. If it is, then we accept
that value. If it isn't, then we get a fine-grained time and try to
swap that into the global floor. Whether that succeeds or fails, we
take the resulting floor time, convert it to realtime and try to
swap that into the ctime.

We take the result of the ctime swap whether it succeeds or fails,
since either is just as valid.

Filesystems can opt into this by setting the FS_MGTIME fstype flag.
Others should be unaffected (other than being subject to the same
floor value as multigrain filesystems)"

* tag 'vfs-6.13.mgtime' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
fs: reduce pointer chasing in is_mgtime() test
tmpfs: add support for multigrain timestamps
btrfs: convert to multigrain timestamps
ext4: switch to multigrain timestamps
xfs: switch to multigrain timestamps
Documentation: add a new file documenting multigrain timestamps
fs: add percpu counters for significant multigrain timestamp events
fs: tracepoints around multigrain timestamp events
fs: handle delegated timestamps in setattr_copy_mgtime
timekeeping: Add percpu counter for tracking floor swap events
timekeeping: Add interfaces for handling timestamps with a floor value
fs: have setattr_copy handle multigrain timestamps appropriately
fs: add infrastructure for multigrain timestamps

show more ...


Revision tags: v6.12, v6.12-rc7, v6.12-rc6, v6.12-rc5, v6.12-rc4, v6.12-rc3
# b40508ca 07-Oct-2024 Christian Brauner <brauner@kernel.org>

Merge patch series "timekeeping/fs: multigrain timestamp redux"

Jeff Layton <jlayton@kernel.org> says:

The VFS has always used coarse-grained timestamps when updating the
ctime and mtime after a ch

Merge patch series "timekeeping/fs: multigrain timestamp redux"

Jeff Layton <jlayton@kernel.org> says:

The VFS has always used coarse-grained timestamps when updating the
ctime and mtime after a change. This has the benefit of allowing
filesystems to optimize away a lot metadata updates, down to around 1
per jiffy, even when a file is under heavy writes.

Unfortunately, this has always been an issue when we're exporting via
NFSv3, which relies on timestamps to validate caches. A lot of changes
can happen in a jiffy, so timestamps aren't sufficient to help the
client decide when to invalidate the cache. Even with NFSv4, a lot of
exported filesystems don't properly support a change attribute and are
subject to the same problems with timestamp granularity. Other
applications have similar issues with timestamps (e.g backup
applications).

If we were to always use fine-grained timestamps, that would improve the
situation, but that becomes rather expensive, as the underlying
filesystem would have to log a lot more metadata updates.

What we need is a way to only use fine-grained timestamps when they are
being actively queried. Use the (unused) top bit in inode->i_ctime_nsec
as a flag that indicates whether the current timestamps have been
queried via stat() or the like. When it's set, we allow the kernel to
use a fine-grained timestamp iff it's necessary to make the ctime show
a different value.

This solves the problem of being able to distinguish the timestamp
between updates, but introduces a new problem: it's now possible for a
file being changed to get a fine-grained timestamp. A file that is
altered just a bit later can then get a coarse-grained one that appears
older than the earlier fine-grained time. This violates timestamp
ordering guarantees.

To remedy this, keep a global monotonic atomic64_t value that acts as a
timestamp floor. When we go to stamp a file, we first get the latter of
the current floor value and the current coarse-grained time. If the
inode ctime hasn't been queried then we just attempt to stamp it with
that value.

If it has been queried, then first see whether the current coarse time
is later than the existing ctime. If it is, then we accept that value.
If it isn't, then we get a fine-grained time and try to swap that into
the global floor. Whether that succeeds or fails, we take the resulting
floor time, convert it to realtime and try to swap that into the ctime.

We take the result of the ctime swap whether it succeeds or fails, since
either is just as valid.

Filesystems can opt into this by setting the FS_MGTIME fstype flag.
Others should be unaffected (other than being subject to the same floor
value as multigrain filesystems).

* patches from https://lore.kernel.org/r/20241002-mgtime-v10-0-d1c4717f5284@kernel.org:
tmpfs: add support for multigrain timestamps
btrfs: convert to multigrain timestamps
ext4: switch to multigrain timestamps
xfs: switch to multigrain timestamps
Documentation: add a new file documenting multigrain timestamps
fs: add percpu counters for significant multigrain timestamp events
fs: tracepoints around multigrain timestamp events
fs: handle delegated timestamps in setattr_copy_mgtime
fs: have setattr_copy handle multigrain timestamps appropriately
fs: add infrastructure for multigrain timestamps

Link: https://lore.kernel.org/r/20241002-mgtime-v10-0-d1c4717f5284@kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>

show more ...


Revision tags: v6.12-rc2
# e3fad037 02-Oct-2024 Jeff Layton <jlayton@kernel.org>

Documentation: add a new file documenting multigrain timestamps

Add a high-level document that describes how multigrain timestamps work,
rationale for them, and some info about implementation and tr

Documentation: add a new file documenting multigrain timestamps

Add a high-level document that describes how multigrain timestamps work,
rationale for them, and some info about implementation and tradeoffs.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Tested-by: Randy Dunlap <rdunlap@infradead.org> # documentation bits
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20241002-mgtime-v10-8-d1c4717f5284@kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>

show more ...