#
785cdec4 |
| 27-May-2025 |
Linus Torvalds <torvalds@linux-foundation.org> |
Merge tag 'x86-core-2025-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core x86 updates from Ingo Molnar: "Boot code changes:
- A large series of changes to reorganize th
Merge tag 'x86-core-2025-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core x86 updates from Ingo Molnar: "Boot code changes:
- A large series of changes to reorganize the x86 boot code into a better isolated and easier to maintain base of PIC early startup code in arch/x86/boot/startup/, by Ard Biesheuvel.
Motivation & background:
| Since commit | | c88d71508e36 ("x86/boot/64: Rewrite startup_64() in C") | | dated Jun 6 2017, we have been using C code on the boot path in a way | that is not supported by the toolchain, i.e., to execute non-PIC C | code from a mapping of memory that is different from the one provided | to the linker. It should have been obvious at the time that this was a | bad idea, given the need to sprinkle fixup_pointer() calls left and | right to manipulate global variables (including non-pointer variables) | without crashing. | | This C startup code has been expanding, and in particular, the SEV-SNP | startup code has been expanding over the past couple of years, and | grown many of these warts, where the C code needs to use special | annotations or helpers to access global objects.
This tree includes the first phase of this work-in-progress x86 boot code reorganization.
Scalability enhancements and micro-optimizations:
- Improve code-patching scalability (Eric Dumazet)
- Remove MFENCEs for X86_BUG_CLFLUSH_MONITOR (Andrew Cooper)
CPU features enumeration updates:
- Thorough reorganization and cleanup of CPUID parsing APIs (Ahmed S. Darwish)
- Fix, refactor and clean up the cacheinfo code (Ahmed S. Darwish, Thomas Gleixner)
- Update CPUID bitfields to x86-cpuid-db v2.3 (Ahmed S. Darwish)
Memory management changes:
- Allow temporary MMs when IRQs are on (Andy Lutomirski)
- Opt-in to IRQs-off activate_mm() (Andy Lutomirski)
- Simplify choose_new_asid() and generate better code (Borislav Petkov)
- Simplify 32-bit PAE page table handling (Dave Hansen)
- Always use dynamic memory layout (Kirill A. Shutemov)
- Make SPARSEMEM_VMEMMAP the only memory model (Kirill A. Shutemov)
- Make 5-level paging support unconditional (Kirill A. Shutemov)
- Stop prefetching current->mm->mmap_lock on page faults (Mateusz Guzik)
- Predict valid_user_address() returning true (Mateusz Guzik)
- Consolidate initmem_init() (Mike Rapoport)
FPU support and vector computing:
- Enable Intel APX support (Chang S. Bae)
- Reorgnize and clean up the xstate code (Chang S. Bae)
- Make task_struct::thread constant size (Ingo Molnar)
- Restore fpu_thread_struct_whitelist() to fix CONFIG_HARDENED_USERCOPY=y (Kees Cook)
- Simplify the switch_fpu_prepare() + switch_fpu_finish() logic (Oleg Nesterov)
- Always preserve non-user xfeatures/flags in __state_perm (Sean Christopherson)
Microcode loader changes:
- Help users notice when running old Intel microcode (Dave Hansen)
- AMD: Do not return error when microcode update is not necessary (Annie Li)
- AMD: Clean the cache if update did not load microcode (Boris Ostrovsky)
Code patching (alternatives) changes:
- Simplify, reorganize and clean up the x86 text-patching code (Ingo Molnar)
- Make smp_text_poke_batch_process() subsume smp_text_poke_batch_finish() (Nikolay Borisov)
- Refactor the {,un}use_temporary_mm() code (Peter Zijlstra)
Debugging support:
- Add early IDT and GDT loading to debug relocate_kernel() bugs (David Woodhouse)
- Print the reason for the last reset on modern AMD CPUs (Yazen Ghannam)
- Add AMD Zen debugging document (Mario Limonciello)
- Fix opcode map (!REX2) superscript tags (Masami Hiramatsu)
- Stop decoding i64 instructions in x86-64 mode at opcode (Masami Hiramatsu)
CPU bugs and bug mitigations:
- Remove X86_BUG_MMIO_UNKNOWN (Borislav Petkov)
- Fix SRSO reporting on Zen1/2 with SMT disabled (Borislav Petkov)
- Restructure and harmonize the various CPU bug mitigation methods (David Kaplan)
- Fix spectre_v2 mitigation default on Intel (Pawan Gupta)
MSR API:
- Large MSR code and API cleanup (Xin Li)
- In-kernel MSR API type cleanups and renames (Ingo Molnar)
PKEYS:
- Simplify PKRU update in signal frame (Chang S. Bae)
NMI handling code:
- Clean up, refactor and simplify the NMI handling code (Sohil Mehta)
- Improve NMI duration console printouts (Sohil Mehta)
Paravirt guests interface:
- Restrict PARAVIRT_XXL to 64-bit only (Kirill A. Shutemov)
SEV support:
- Share the sev_secrets_pa value again (Tom Lendacky)
x86 platform changes:
- Introduce the <asm/amd/> header namespace (Ingo Molnar)
- i2c: piix4, x86/platform: Move the SB800 PIIX4 FCH definitions to <asm/amd/fch.h> (Mario Limonciello)
Fixes and cleanups:
- x86 assembly code cleanups and fixes (Uros Bizjak)
- Misc fixes and cleanups (Andi Kleen, Andy Lutomirski, Andy Shevchenko, Ard Biesheuvel, Bagas Sanjaya, Baoquan He, Borislav Petkov, Chang S. Bae, Chao Gao, Dan Williams, Dave Hansen, David Kaplan, David Woodhouse, Eric Biggers, Ingo Molnar, Josh Poimboeuf, Juergen Gross, Malaya Kumar Rout, Mario Limonciello, Nathan Chancellor, Oleg Nesterov, Pawan Gupta, Peter Zijlstra, Shivank Garg, Sohil Mehta, Thomas Gleixner, Uros Bizjak, Xin Li)"
* tag 'x86-core-2025-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (331 commits) x86/bugs: Fix spectre_v2 mitigation default on Intel x86/bugs: Restructure ITS mitigation x86/xen/msr: Fix uninitialized variable 'err' x86/msr: Remove a superfluous inclusion of <asm/asm.h> x86/paravirt: Restrict PARAVIRT_XXL to 64-bit only x86/mm/64: Make 5-level paging support unconditional x86/mm/64: Make SPARSEMEM_VMEMMAP the only memory model x86/mm/64: Always use dynamic memory layout x86/bugs: Fix indentation due to ITS merge x86/cpuid: Rename hypervisor_cpuid_base()/for_each_possible_hypervisor_cpuid_base() to cpuid_base_hypervisor()/for_each_possible_cpuid_base_hypervisor() x86/cpu/intel: Rename CPUID(0x2) descriptors iterator parameter x86/cacheinfo: Rename CPUID(0x2) descriptors iterator parameter x86/cpuid: Rename cpuid_get_leaf_0x2_regs() to cpuid_leaf_0x2() x86/cpuid: Rename have_cpuid_p() to cpuid_feature() x86/cpuid: Set <asm/cpuid/api.h> as the main CPUID header x86/cpuid: Move CPUID(0x2) APIs into <cpuid/api.h> x86/msr: Add rdmsrl_on_cpu() compatibility wrapper x86/mm: Fix kernel-doc descriptions of various pgtable methods x86/asm-offsets: Export certain 'struct cpuinfo_x86' fields for 64-bit asm use too x86/boot: Defer initialization of VM space related global variables ...
show more ...
|
#
4e2c7197 |
| 22-Apr-2025 |
Dave Hansen <dave.hansen@linux.intel.com> |
x86/cpu: Help users notice when running old Intel microcode
Old microcode is bad for users and for kernel developers.
For users, it exposes them to known fixed security and/or functional issues. Th
x86/cpu: Help users notice when running old Intel microcode
Old microcode is bad for users and for kernel developers.
For users, it exposes them to known fixed security and/or functional issues. These obviously rarely result in instant dumpster fires in every environment. But it is as important to keep your microcode up to date as it is to keep your kernel up to date.
Old microcode also makes kernels harder to debug. A developer looking at an oops need to consider kernel bugs, known CPU issues and unknown CPU issues as possible causes. If they know the microcode is up to date, they can mostly eliminate known CPU issues as the cause.
Make it easier to tell if CPU microcode is out of date. Add a list of released microcode. If the loaded microcode is older than the release, tell users in a place that folks can find it:
/sys/devices/system/cpu/vulnerabilities/old_microcode
Tell kernel kernel developers about it with the existing taint flag:
TAINT_CPU_OUT_OF_SPEC
== Discussion ==
When a user reports a potential kernel issue, it is very common to ask them to reproduce the issue on mainline. Running mainline, they will (independently from the distro) acquire a more up-to-date microcode version list. If their microcode is old, they will get a warning about the taint and kernel developers can take that into consideration when debugging.
Just like any other entry in "vulnerabilities/", users are free to make their own assessment of their exposure.
== Microcode Revision Discussion ==
The microcode versions in the table were generated from the Intel microcode git repo:
8ac9378a8487 ("microcode-20241112 Release")
which as of this writing lags behind the latest microcode-20250211.
It can be argued that the versions that the kernel picks to call "old" should be a revision or two old. Which specific version is picked is less important to me than picking *a* version and enforcing it.
This repository contains only microcode versions that Intel has deemed to be OS-loadable. It is quite possible that the BIOS has loaded a newer microcode than the latest in this repo. If this happens, the system is considered to have new microcode, not old.
Specifically, the sysfs file and taint flag answer the question:
Is the CPU running on the latest OS-loadable microcode, or something even later that the BIOS loaded?
In other words, Intel never publishes an authoritative list of CPUs and latest microcode revisions. Until it does, this is the best that Linux can do.
Also note that the "intel-ucode-defs.h" file is simple, ugly and has lots of magic numbers. That's on purpose and should allow a single file to be shared across lots of stable kernel regardless of if they have the new "VFM" infrastructure or not. It was generated with a dumb script.
== FAQ ==
Q: Does this tell me if my system is secure or insecure? A: No. It only tells you if your microcode was old when the system booted.
Q: Should the kernel warn if the microcode list itself is too old? A: No. New kernels will get new microcode lists, both mainline and stable. The only way to have an old list is to be running an old kernel in which case you have bigger problems.
Q: Is this for security or functional issues? A: Both.
Q: If a given microcode update only has functional problems but no security issues, will it be considered old? A: Yes. All microcode image versions within a microcode release are treated identically. Intel appears to make security updates without disclosing them in the release notes. Thus, all updates are considered to be security-relevant.
Q: Who runs old microcode? A: Anybody with an old distro. This happens all the time inside of Intel where there are lots of weird systems in labs that might not be getting regular distro updates and might also be running rather exotic microcode images.
Q: If I update my microcode after booting will it stop saying "Vulnerable"? A: No. Just like all the other vulnerabilies, you need to reboot before the kernel will reassess your vulnerability.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: "Ahmed S. Darwish" <darwi@linutronix.de> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: John Ogness <john.ogness@linutronix.de> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/all/20250421195659.CF426C07%40davehans-spike.ostc.intel.com (cherry picked from commit 9127865b15eb0a1bd05ad7efe29489c44394bdc1)
show more ...
|