arm-cci.c (ce8ee02d519ab20c5b87d3b3929b5e44ad89e26f) | arm-cci.c (3de6be7a3dd8934e59d85fc60a170d4ab2f0a0f2) |
---|---|
1/* 2 * CCI cache coherent interconnect driver 3 * 4 * Copyright (C) 2013 ARM Ltd. 5 * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 12 * kind, whether express or implied; without even the implied warranty 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 */ 16 17#include <linux/arm-cci.h> 18#include <linux/io.h> | 1/* 2 * CCI cache coherent interconnect driver 3 * 4 * Copyright (C) 2013 ARM Ltd. 5 * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 12 * kind, whether express or implied; without even the implied warranty 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 */ 16 17#include <linux/arm-cci.h> 18#include <linux/io.h> |
19#include <linux/interrupt.h> | |
20#include <linux/module.h> 21#include <linux/of_address.h> | 19#include <linux/module.h> 20#include <linux/of_address.h> |
22#include <linux/of_irq.h> | |
23#include <linux/of_platform.h> | 21#include <linux/of_platform.h> |
24#include <linux/perf_event.h> | |
25#include <linux/platform_device.h> 26#include <linux/slab.h> | 22#include <linux/platform_device.h> 23#include <linux/slab.h> |
27#include <linux/spinlock.h> | |
28 29#include <asm/cacheflush.h> 30#include <asm/smp_plat.h> 31 | 24 25#include <asm/cacheflush.h> 26#include <asm/smp_plat.h> 27 |
32static void __iomem *cci_ctrl_base; | 28/* Referenced read-only by the PMU driver; see drivers/perf/arm-cci.c */ 29void __iomem *cci_ctrl_base; |
33static unsigned long cci_ctrl_phys; 34 35#ifdef CONFIG_ARM_CCI400_PORT_CTRL 36struct cci_nb_ports { 37 unsigned int nb_ace; 38 unsigned int nb_ace_lite; 39}; 40 --- 13 unchanged lines hidden (view full) --- 54#endif 55#ifdef CONFIG_ARM_CCI5xx_PMU 56 { .compatible = "arm,cci-500", }, 57 { .compatible = "arm,cci-550", }, 58#endif 59 {}, 60}; 61 | 30static unsigned long cci_ctrl_phys; 31 32#ifdef CONFIG_ARM_CCI400_PORT_CTRL 33struct cci_nb_ports { 34 unsigned int nb_ace; 35 unsigned int nb_ace_lite; 36}; 37 --- 13 unchanged lines hidden (view full) --- 51#endif 52#ifdef CONFIG_ARM_CCI5xx_PMU 53 { .compatible = "arm,cci-500", }, 54 { .compatible = "arm,cci-550", }, 55#endif 56 {}, 57}; 58 |
62#ifdef CONFIG_ARM_CCI_PMU 63 | |
64#define DRIVER_NAME "ARM-CCI" | 59#define DRIVER_NAME "ARM-CCI" |
65#define DRIVER_NAME_PMU DRIVER_NAME " PMU" | |
66 | 60 |
67#define CCI_PMCR 0x0100 68#define CCI_PID2 0x0fe8 69 70#define CCI_PMCR_CEN 0x00000001 71#define CCI_PMCR_NCNT_MASK 0x0000f800 72#define CCI_PMCR_NCNT_SHIFT 11 73 74#define CCI_PID2_REV_MASK 0xf0 75#define CCI_PID2_REV_SHIFT 4 76 77#define CCI_PMU_EVT_SEL 0x000 78#define CCI_PMU_CNTR 0x004 79#define CCI_PMU_CNTR_CTRL 0x008 80#define CCI_PMU_OVRFLW 0x00c 81 82#define CCI_PMU_OVRFLW_FLAG 1 83 84#define CCI_PMU_CNTR_SIZE(model) ((model)->cntr_size) 85#define CCI_PMU_CNTR_BASE(model, idx) ((idx) * CCI_PMU_CNTR_SIZE(model)) 86#define CCI_PMU_CNTR_MASK ((1ULL << 32) -1) 87#define CCI_PMU_CNTR_LAST(cci_pmu) (cci_pmu->num_cntrs - 1) 88 89#define CCI_PMU_MAX_HW_CNTRS(model) \ 90 ((model)->num_hw_cntrs + (model)->fixed_hw_cntrs) 91 92/* Types of interfaces that can generate events */ 93enum { 94 CCI_IF_SLAVE, 95 CCI_IF_MASTER, 96#ifdef CONFIG_ARM_CCI5xx_PMU 97 CCI_IF_GLOBAL, 98#endif 99 CCI_IF_MAX, 100}; 101 102struct event_range { 103 u32 min; 104 u32 max; 105}; 106 107struct cci_pmu_hw_events { 108 struct perf_event **events; 109 unsigned long *used_mask; 110 raw_spinlock_t pmu_lock; 111}; 112 113struct cci_pmu; 114/* 115 * struct cci_pmu_model: 116 * @fixed_hw_cntrs - Number of fixed event counters 117 * @num_hw_cntrs - Maximum number of programmable event counters 118 * @cntr_size - Size of an event counter mapping 119 */ 120struct cci_pmu_model { 121 char *name; 122 u32 fixed_hw_cntrs; 123 u32 num_hw_cntrs; 124 u32 cntr_size; 125 struct attribute **format_attrs; 126 struct attribute **event_attrs; 127 struct event_range event_ranges[CCI_IF_MAX]; 128 int (*validate_hw_event)(struct cci_pmu *, unsigned long); 129 int (*get_event_idx)(struct cci_pmu *, struct cci_pmu_hw_events *, unsigned long); 130 void (*write_counters)(struct cci_pmu *, unsigned long *); 131}; 132 133static struct cci_pmu_model cci_pmu_models[]; 134 135struct cci_pmu { 136 void __iomem *base; 137 struct pmu pmu; 138 int nr_irqs; 139 int *irqs; 140 unsigned long active_irqs; 141 const struct cci_pmu_model *model; 142 struct cci_pmu_hw_events hw_events; 143 struct platform_device *plat_device; 144 int num_cntrs; 145 atomic_t active_events; 146 struct mutex reserve_mutex; 147 struct hlist_node node; 148 cpumask_t cpus; 149}; 150 151#define to_cci_pmu(c) (container_of(c, struct cci_pmu, pmu)) 152 153enum cci_models { 154#ifdef CONFIG_ARM_CCI400_PMU 155 CCI400_R0, 156 CCI400_R1, 157#endif 158#ifdef CONFIG_ARM_CCI5xx_PMU 159 CCI500_R0, 160 CCI550_R0, 161#endif 162 CCI_MODEL_MAX 163}; 164 165static void pmu_write_counters(struct cci_pmu *cci_pmu, 166 unsigned long *mask); 167static ssize_t cci_pmu_format_show(struct device *dev, 168 struct device_attribute *attr, char *buf); 169static ssize_t cci_pmu_event_show(struct device *dev, 170 struct device_attribute *attr, char *buf); 171 172#define CCI_EXT_ATTR_ENTRY(_name, _func, _config) \ 173 &((struct dev_ext_attribute[]) { \ 174 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config } \ 175 })[0].attr.attr 176 177#define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \ 178 CCI_EXT_ATTR_ENTRY(_name, cci_pmu_format_show, (char *)_config) 179#define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \ 180 CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config) 181 182/* CCI400 PMU Specific definitions */ 183 184#ifdef CONFIG_ARM_CCI400_PMU 185 186/* Port ids */ 187#define CCI400_PORT_S0 0 188#define CCI400_PORT_S1 1 189#define CCI400_PORT_S2 2 190#define CCI400_PORT_S3 3 191#define CCI400_PORT_S4 4 192#define CCI400_PORT_M0 5 193#define CCI400_PORT_M1 6 194#define CCI400_PORT_M2 7 195 196#define CCI400_R1_PX 5 197 198/* 199 * Instead of an event id to monitor CCI cycles, a dedicated counter is 200 * provided. Use 0xff to represent CCI cycles and hope that no future revisions 201 * make use of this event in hardware. 202 */ 203enum cci400_perf_events { 204 CCI400_PMU_CYCLES = 0xff 205}; 206 207#define CCI400_PMU_CYCLE_CNTR_IDX 0 208#define CCI400_PMU_CNTR0_IDX 1 209 210/* 211 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8 212 * ports and bits 4:0 are event codes. There are different event codes 213 * associated with each port type. 214 * 215 * Additionally, the range of events associated with the port types changed 216 * between Rev0 and Rev1. 217 * 218 * The constants below define the range of valid codes for each port type for 219 * the different revisions and are used to validate the event to be monitored. 220 */ 221 222#define CCI400_PMU_EVENT_MASK 0xffUL 223#define CCI400_PMU_EVENT_SOURCE_SHIFT 5 224#define CCI400_PMU_EVENT_SOURCE_MASK 0x7 225#define CCI400_PMU_EVENT_CODE_SHIFT 0 226#define CCI400_PMU_EVENT_CODE_MASK 0x1f 227#define CCI400_PMU_EVENT_SOURCE(event) \ 228 ((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \ 229 CCI400_PMU_EVENT_SOURCE_MASK) 230#define CCI400_PMU_EVENT_CODE(event) \ 231 ((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK) 232 233#define CCI400_R0_SLAVE_PORT_MIN_EV 0x00 234#define CCI400_R0_SLAVE_PORT_MAX_EV 0x13 235#define CCI400_R0_MASTER_PORT_MIN_EV 0x14 236#define CCI400_R0_MASTER_PORT_MAX_EV 0x1a 237 238#define CCI400_R1_SLAVE_PORT_MIN_EV 0x00 239#define CCI400_R1_SLAVE_PORT_MAX_EV 0x14 240#define CCI400_R1_MASTER_PORT_MIN_EV 0x00 241#define CCI400_R1_MASTER_PORT_MAX_EV 0x11 242 243#define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \ 244 CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \ 245 (unsigned long)_config) 246 247static ssize_t cci400_pmu_cycle_event_show(struct device *dev, 248 struct device_attribute *attr, char *buf); 249 250static struct attribute *cci400_pmu_format_attrs[] = { 251 CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"), 252 CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-7"), 253 NULL 254}; 255 256static struct attribute *cci400_r0_pmu_event_attrs[] = { 257 /* Slave events */ 258 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0), 259 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01), 260 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2), 261 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3), 262 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4), 263 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5), 264 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6), 265 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7), 266 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8), 267 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9), 268 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA), 269 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB), 270 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC), 271 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD), 272 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE), 273 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF), 274 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10), 275 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11), 276 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12), 277 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13), 278 /* Master events */ 279 CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x14), 280 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard, 0x15), 281 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard, 0x16), 282 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full, 0x17), 283 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x18), 284 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x19), 285 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full, 0x1A), 286 /* Special event for cycles counter */ 287 CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff), 288 NULL 289}; 290 291static struct attribute *cci400_r1_pmu_event_attrs[] = { 292 /* Slave events */ 293 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0), 294 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01), 295 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2), 296 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3), 297 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4), 298 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5), 299 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6), 300 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7), 301 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8), 302 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9), 303 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA), 304 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB), 305 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC), 306 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD), 307 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE), 308 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF), 309 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10), 310 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11), 311 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12), 312 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13), 313 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard, 0x14), 314 /* Master events */ 315 CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x0), 316 CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard, 0x1), 317 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard, 0x2), 318 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full, 0x3), 319 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x4), 320 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x5), 321 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full, 0x6), 322 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full, 0x7), 323 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full, 0x8), 324 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0, 0x9), 325 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1, 0xA), 326 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2, 0xB), 327 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3, 0xC), 328 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0, 0xD), 329 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1, 0xE), 330 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2, 0xF), 331 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3, 0x10), 332 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard, 0x11), 333 /* Special event for cycles counter */ 334 CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff), 335 NULL 336}; 337 338static ssize_t cci400_pmu_cycle_event_show(struct device *dev, 339 struct device_attribute *attr, char *buf) 340{ 341 struct dev_ext_attribute *eattr = container_of(attr, 342 struct dev_ext_attribute, attr); 343 return snprintf(buf, PAGE_SIZE, "config=0x%lx\n", (unsigned long)eattr->var); 344} 345 346static int cci400_get_event_idx(struct cci_pmu *cci_pmu, 347 struct cci_pmu_hw_events *hw, 348 unsigned long cci_event) 349{ 350 int idx; 351 352 /* cycles event idx is fixed */ 353 if (cci_event == CCI400_PMU_CYCLES) { 354 if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX, hw->used_mask)) 355 return -EAGAIN; 356 357 return CCI400_PMU_CYCLE_CNTR_IDX; 358 } 359 360 for (idx = CCI400_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx) 361 if (!test_and_set_bit(idx, hw->used_mask)) 362 return idx; 363 364 /* No counters available */ 365 return -EAGAIN; 366} 367 368static int cci400_validate_hw_event(struct cci_pmu *cci_pmu, unsigned long hw_event) 369{ 370 u8 ev_source = CCI400_PMU_EVENT_SOURCE(hw_event); 371 u8 ev_code = CCI400_PMU_EVENT_CODE(hw_event); 372 int if_type; 373 374 if (hw_event & ~CCI400_PMU_EVENT_MASK) 375 return -ENOENT; 376 377 if (hw_event == CCI400_PMU_CYCLES) 378 return hw_event; 379 380 switch (ev_source) { 381 case CCI400_PORT_S0: 382 case CCI400_PORT_S1: 383 case CCI400_PORT_S2: 384 case CCI400_PORT_S3: 385 case CCI400_PORT_S4: 386 /* Slave Interface */ 387 if_type = CCI_IF_SLAVE; 388 break; 389 case CCI400_PORT_M0: 390 case CCI400_PORT_M1: 391 case CCI400_PORT_M2: 392 /* Master Interface */ 393 if_type = CCI_IF_MASTER; 394 break; 395 default: 396 return -ENOENT; 397 } 398 399 if (ev_code >= cci_pmu->model->event_ranges[if_type].min && 400 ev_code <= cci_pmu->model->event_ranges[if_type].max) 401 return hw_event; 402 403 return -ENOENT; 404} 405 406static int probe_cci400_revision(void) 407{ 408 int rev; 409 rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK; 410 rev >>= CCI_PID2_REV_SHIFT; 411 412 if (rev < CCI400_R1_PX) 413 return CCI400_R0; 414 else 415 return CCI400_R1; 416} 417 418static const struct cci_pmu_model *probe_cci_model(struct platform_device *pdev) 419{ 420 if (platform_has_secure_cci_access()) 421 return &cci_pmu_models[probe_cci400_revision()]; 422 return NULL; 423} 424#else /* !CONFIG_ARM_CCI400_PMU */ 425static inline struct cci_pmu_model *probe_cci_model(struct platform_device *pdev) 426{ 427 return NULL; 428} 429#endif /* CONFIG_ARM_CCI400_PMU */ 430 431#ifdef CONFIG_ARM_CCI5xx_PMU 432 433/* 434 * CCI5xx PMU event id is an 9-bit value made of two parts. 435 * bits [8:5] - Source for the event 436 * bits [4:0] - Event code (specific to type of interface) 437 * 438 * 439 */ 440 441/* Port ids */ 442#define CCI5xx_PORT_S0 0x0 443#define CCI5xx_PORT_S1 0x1 444#define CCI5xx_PORT_S2 0x2 445#define CCI5xx_PORT_S3 0x3 446#define CCI5xx_PORT_S4 0x4 447#define CCI5xx_PORT_S5 0x5 448#define CCI5xx_PORT_S6 0x6 449 450#define CCI5xx_PORT_M0 0x8 451#define CCI5xx_PORT_M1 0x9 452#define CCI5xx_PORT_M2 0xa 453#define CCI5xx_PORT_M3 0xb 454#define CCI5xx_PORT_M4 0xc 455#define CCI5xx_PORT_M5 0xd 456#define CCI5xx_PORT_M6 0xe 457 458#define CCI5xx_PORT_GLOBAL 0xf 459 460#define CCI5xx_PMU_EVENT_MASK 0x1ffUL 461#define CCI5xx_PMU_EVENT_SOURCE_SHIFT 0x5 462#define CCI5xx_PMU_EVENT_SOURCE_MASK 0xf 463#define CCI5xx_PMU_EVENT_CODE_SHIFT 0x0 464#define CCI5xx_PMU_EVENT_CODE_MASK 0x1f 465 466#define CCI5xx_PMU_EVENT_SOURCE(event) \ 467 ((event >> CCI5xx_PMU_EVENT_SOURCE_SHIFT) & CCI5xx_PMU_EVENT_SOURCE_MASK) 468#define CCI5xx_PMU_EVENT_CODE(event) \ 469 ((event >> CCI5xx_PMU_EVENT_CODE_SHIFT) & CCI5xx_PMU_EVENT_CODE_MASK) 470 471#define CCI5xx_SLAVE_PORT_MIN_EV 0x00 472#define CCI5xx_SLAVE_PORT_MAX_EV 0x1f 473#define CCI5xx_MASTER_PORT_MIN_EV 0x00 474#define CCI5xx_MASTER_PORT_MAX_EV 0x06 475#define CCI5xx_GLOBAL_PORT_MIN_EV 0x00 476#define CCI5xx_GLOBAL_PORT_MAX_EV 0x0f 477 478 479#define CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \ 480 CCI_EXT_ATTR_ENTRY(_name, cci5xx_pmu_global_event_show, \ 481 (unsigned long) _config) 482 483static ssize_t cci5xx_pmu_global_event_show(struct device *dev, 484 struct device_attribute *attr, char *buf); 485 486static struct attribute *cci5xx_pmu_format_attrs[] = { 487 CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"), 488 CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-8"), 489 NULL, 490}; 491 492static struct attribute *cci5xx_pmu_event_attrs[] = { 493 /* Slave events */ 494 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid, 0x0), 495 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev, 0x1), 496 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable, 0x2), 497 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc, 0x3), 498 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc, 0x4), 499 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate, 0x5), 500 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint, 0x6), 501 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7), 502 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval, 0x8), 503 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop, 0x9), 504 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid, 0xA), 505 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev, 0xB), 506 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable, 0xC), 507 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb, 0xD), 508 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu, 0xE), 509 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique, 0xF), 510 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict, 0x10), 511 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict, 0x11), 512 CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat, 0x12), 513 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid, 0x13), 514 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read, 0x14), 515 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean, 0x15), 516 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low, 0x16), 517 CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid, 0x17), 518 CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall, 0x18), 519 CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall, 0x19), 520 CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall, 0x1A), 521 CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall, 0x1B), 522 CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall, 0x1C), 523 CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall, 0x1D), 524 CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit, 0x1E), 525 CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit, 0x1F), 526 527 /* Master events */ 528 CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any, 0x0), 529 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any, 0x1), 530 CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall, 0x2), 531 CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall, 0x3), 532 CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall, 0x4), 533 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall, 0x5), 534 CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall, 0x6), 535 536 /* Global events */ 537 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1, 0x0), 538 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3, 0x1), 539 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5, 0x2), 540 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7, 0x3), 541 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1, 0x4), 542 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3, 0x5), 543 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5, 0x6), 544 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7, 0x7), 545 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation, 0x8), 546 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy, 0x9), 547 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full, 0xA), 548 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq, 0xB), 549 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs, 0xC), 550 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard, 0xD), 551 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_stall_tt_full, 0xE), 552 CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot, 0xF), 553 NULL 554}; 555 556static ssize_t cci5xx_pmu_global_event_show(struct device *dev, 557 struct device_attribute *attr, char *buf) 558{ 559 struct dev_ext_attribute *eattr = container_of(attr, 560 struct dev_ext_attribute, attr); 561 /* Global events have single fixed source code */ 562 return snprintf(buf, PAGE_SIZE, "event=0x%lx,source=0x%x\n", 563 (unsigned long)eattr->var, CCI5xx_PORT_GLOBAL); 564} 565 566/* 567 * CCI500 provides 8 independent event counters that can count 568 * any of the events available. 569 * CCI500 PMU event source ids 570 * 0x0-0x6 - Slave interfaces 571 * 0x8-0xD - Master interfaces 572 * 0xf - Global Events 573 * 0x7,0xe - Reserved 574 */ 575static int cci500_validate_hw_event(struct cci_pmu *cci_pmu, 576 unsigned long hw_event) 577{ 578 u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event); 579 u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event); 580 int if_type; 581 582 if (hw_event & ~CCI5xx_PMU_EVENT_MASK) 583 return -ENOENT; 584 585 switch (ev_source) { 586 case CCI5xx_PORT_S0: 587 case CCI5xx_PORT_S1: 588 case CCI5xx_PORT_S2: 589 case CCI5xx_PORT_S3: 590 case CCI5xx_PORT_S4: 591 case CCI5xx_PORT_S5: 592 case CCI5xx_PORT_S6: 593 if_type = CCI_IF_SLAVE; 594 break; 595 case CCI5xx_PORT_M0: 596 case CCI5xx_PORT_M1: 597 case CCI5xx_PORT_M2: 598 case CCI5xx_PORT_M3: 599 case CCI5xx_PORT_M4: 600 case CCI5xx_PORT_M5: 601 if_type = CCI_IF_MASTER; 602 break; 603 case CCI5xx_PORT_GLOBAL: 604 if_type = CCI_IF_GLOBAL; 605 break; 606 default: 607 return -ENOENT; 608 } 609 610 if (ev_code >= cci_pmu->model->event_ranges[if_type].min && 611 ev_code <= cci_pmu->model->event_ranges[if_type].max) 612 return hw_event; 613 614 return -ENOENT; 615} 616 617/* 618 * CCI550 provides 8 independent event counters that can count 619 * any of the events available. 620 * CCI550 PMU event source ids 621 * 0x0-0x6 - Slave interfaces 622 * 0x8-0xe - Master interfaces 623 * 0xf - Global Events 624 * 0x7 - Reserved 625 */ 626static int cci550_validate_hw_event(struct cci_pmu *cci_pmu, 627 unsigned long hw_event) 628{ 629 u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event); 630 u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event); 631 int if_type; 632 633 if (hw_event & ~CCI5xx_PMU_EVENT_MASK) 634 return -ENOENT; 635 636 switch (ev_source) { 637 case CCI5xx_PORT_S0: 638 case CCI5xx_PORT_S1: 639 case CCI5xx_PORT_S2: 640 case CCI5xx_PORT_S3: 641 case CCI5xx_PORT_S4: 642 case CCI5xx_PORT_S5: 643 case CCI5xx_PORT_S6: 644 if_type = CCI_IF_SLAVE; 645 break; 646 case CCI5xx_PORT_M0: 647 case CCI5xx_PORT_M1: 648 case CCI5xx_PORT_M2: 649 case CCI5xx_PORT_M3: 650 case CCI5xx_PORT_M4: 651 case CCI5xx_PORT_M5: 652 case CCI5xx_PORT_M6: 653 if_type = CCI_IF_MASTER; 654 break; 655 case CCI5xx_PORT_GLOBAL: 656 if_type = CCI_IF_GLOBAL; 657 break; 658 default: 659 return -ENOENT; 660 } 661 662 if (ev_code >= cci_pmu->model->event_ranges[if_type].min && 663 ev_code <= cci_pmu->model->event_ranges[if_type].max) 664 return hw_event; 665 666 return -ENOENT; 667} 668 669#endif /* CONFIG_ARM_CCI5xx_PMU */ 670 671/* 672 * Program the CCI PMU counters which have PERF_HES_ARCH set 673 * with the event period and mark them ready before we enable 674 * PMU. 675 */ 676static void cci_pmu_sync_counters(struct cci_pmu *cci_pmu) 677{ 678 int i; 679 struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events; 680 681 DECLARE_BITMAP(mask, cci_pmu->num_cntrs); 682 683 bitmap_zero(mask, cci_pmu->num_cntrs); 684 for_each_set_bit(i, cci_pmu->hw_events.used_mask, cci_pmu->num_cntrs) { 685 struct perf_event *event = cci_hw->events[i]; 686 687 if (WARN_ON(!event)) 688 continue; 689 690 /* Leave the events which are not counting */ 691 if (event->hw.state & PERF_HES_STOPPED) 692 continue; 693 if (event->hw.state & PERF_HES_ARCH) { 694 set_bit(i, mask); 695 event->hw.state &= ~PERF_HES_ARCH; 696 } 697 } 698 699 pmu_write_counters(cci_pmu, mask); 700} 701 702/* Should be called with cci_pmu->hw_events->pmu_lock held */ 703static void __cci_pmu_enable_nosync(struct cci_pmu *cci_pmu) 704{ 705 u32 val; 706 707 /* Enable all the PMU counters. */ 708 val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN; 709 writel(val, cci_ctrl_base + CCI_PMCR); 710} 711 712/* Should be called with cci_pmu->hw_events->pmu_lock held */ 713static void __cci_pmu_enable_sync(struct cci_pmu *cci_pmu) 714{ 715 cci_pmu_sync_counters(cci_pmu); 716 __cci_pmu_enable_nosync(cci_pmu); 717} 718 719/* Should be called with cci_pmu->hw_events->pmu_lock held */ 720static void __cci_pmu_disable(void) 721{ 722 u32 val; 723 724 /* Disable all the PMU counters. */ 725 val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN; 726 writel(val, cci_ctrl_base + CCI_PMCR); 727} 728 729static ssize_t cci_pmu_format_show(struct device *dev, 730 struct device_attribute *attr, char *buf) 731{ 732 struct dev_ext_attribute *eattr = container_of(attr, 733 struct dev_ext_attribute, attr); 734 return snprintf(buf, PAGE_SIZE, "%s\n", (char *)eattr->var); 735} 736 737static ssize_t cci_pmu_event_show(struct device *dev, 738 struct device_attribute *attr, char *buf) 739{ 740 struct dev_ext_attribute *eattr = container_of(attr, 741 struct dev_ext_attribute, attr); 742 /* source parameter is mandatory for normal PMU events */ 743 return snprintf(buf, PAGE_SIZE, "source=?,event=0x%lx\n", 744 (unsigned long)eattr->var); 745} 746 747static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx) 748{ 749 return 0 <= idx && idx <= CCI_PMU_CNTR_LAST(cci_pmu); 750} 751 752static u32 pmu_read_register(struct cci_pmu *cci_pmu, int idx, unsigned int offset) 753{ 754 return readl_relaxed(cci_pmu->base + 755 CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset); 756} 757 758static void pmu_write_register(struct cci_pmu *cci_pmu, u32 value, 759 int idx, unsigned int offset) 760{ 761 writel_relaxed(value, cci_pmu->base + 762 CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset); 763} 764 765static void pmu_disable_counter(struct cci_pmu *cci_pmu, int idx) 766{ 767 pmu_write_register(cci_pmu, 0, idx, CCI_PMU_CNTR_CTRL); 768} 769 770static void pmu_enable_counter(struct cci_pmu *cci_pmu, int idx) 771{ 772 pmu_write_register(cci_pmu, 1, idx, CCI_PMU_CNTR_CTRL); 773} 774 775static bool __maybe_unused 776pmu_counter_is_enabled(struct cci_pmu *cci_pmu, int idx) 777{ 778 return (pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR_CTRL) & 0x1) != 0; 779} 780 781static void pmu_set_event(struct cci_pmu *cci_pmu, int idx, unsigned long event) 782{ 783 pmu_write_register(cci_pmu, event, idx, CCI_PMU_EVT_SEL); 784} 785 786/* 787 * For all counters on the CCI-PMU, disable any 'enabled' counters, 788 * saving the changed counters in the mask, so that we can restore 789 * it later using pmu_restore_counters. The mask is private to the 790 * caller. We cannot rely on the used_mask maintained by the CCI_PMU 791 * as it only tells us if the counter is assigned to perf_event or not. 792 * The state of the perf_event cannot be locked by the PMU layer, hence 793 * we check the individual counter status (which can be locked by 794 * cci_pm->hw_events->pmu_lock). 795 * 796 * @mask should be initialised to empty by the caller. 797 */ 798static void __maybe_unused 799pmu_save_counters(struct cci_pmu *cci_pmu, unsigned long *mask) 800{ 801 int i; 802 803 for (i = 0; i < cci_pmu->num_cntrs; i++) { 804 if (pmu_counter_is_enabled(cci_pmu, i)) { 805 set_bit(i, mask); 806 pmu_disable_counter(cci_pmu, i); 807 } 808 } 809} 810 811/* 812 * Restore the status of the counters. Reversal of the pmu_save_counters(). 813 * For each counter set in the mask, enable the counter back. 814 */ 815static void __maybe_unused 816pmu_restore_counters(struct cci_pmu *cci_pmu, unsigned long *mask) 817{ 818 int i; 819 820 for_each_set_bit(i, mask, cci_pmu->num_cntrs) 821 pmu_enable_counter(cci_pmu, i); 822} 823 824/* 825 * Returns the number of programmable counters actually implemented 826 * by the cci 827 */ 828static u32 pmu_get_max_counters(void) 829{ 830 return (readl_relaxed(cci_ctrl_base + CCI_PMCR) & 831 CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT; 832} 833 834static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event) 835{ 836 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 837 unsigned long cci_event = event->hw.config_base; 838 int idx; 839 840 if (cci_pmu->model->get_event_idx) 841 return cci_pmu->model->get_event_idx(cci_pmu, hw, cci_event); 842 843 /* Generic code to find an unused idx from the mask */ 844 for(idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) 845 if (!test_and_set_bit(idx, hw->used_mask)) 846 return idx; 847 848 /* No counters available */ 849 return -EAGAIN; 850} 851 852static int pmu_map_event(struct perf_event *event) 853{ 854 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 855 856 if (event->attr.type < PERF_TYPE_MAX || 857 !cci_pmu->model->validate_hw_event) 858 return -ENOENT; 859 860 return cci_pmu->model->validate_hw_event(cci_pmu, event->attr.config); 861} 862 863static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler) 864{ 865 int i; 866 struct platform_device *pmu_device = cci_pmu->plat_device; 867 868 if (unlikely(!pmu_device)) 869 return -ENODEV; 870 871 if (cci_pmu->nr_irqs < 1) { 872 dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n"); 873 return -ENODEV; 874 } 875 876 /* 877 * Register all available CCI PMU interrupts. In the interrupt handler 878 * we iterate over the counters checking for interrupt source (the 879 * overflowing counter) and clear it. 880 * 881 * This should allow handling of non-unique interrupt for the counters. 882 */ 883 for (i = 0; i < cci_pmu->nr_irqs; i++) { 884 int err = request_irq(cci_pmu->irqs[i], handler, IRQF_SHARED, 885 "arm-cci-pmu", cci_pmu); 886 if (err) { 887 dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n", 888 cci_pmu->irqs[i]); 889 return err; 890 } 891 892 set_bit(i, &cci_pmu->active_irqs); 893 } 894 895 return 0; 896} 897 898static void pmu_free_irq(struct cci_pmu *cci_pmu) 899{ 900 int i; 901 902 for (i = 0; i < cci_pmu->nr_irqs; i++) { 903 if (!test_and_clear_bit(i, &cci_pmu->active_irqs)) 904 continue; 905 906 free_irq(cci_pmu->irqs[i], cci_pmu); 907 } 908} 909 910static u32 pmu_read_counter(struct perf_event *event) 911{ 912 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 913 struct hw_perf_event *hw_counter = &event->hw; 914 int idx = hw_counter->idx; 915 u32 value; 916 917 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { 918 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); 919 return 0; 920 } 921 value = pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR); 922 923 return value; 924} 925 926static void pmu_write_counter(struct cci_pmu *cci_pmu, u32 value, int idx) 927{ 928 pmu_write_register(cci_pmu, value, idx, CCI_PMU_CNTR); 929} 930 931static void __pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask) 932{ 933 int i; 934 struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events; 935 936 for_each_set_bit(i, mask, cci_pmu->num_cntrs) { 937 struct perf_event *event = cci_hw->events[i]; 938 939 if (WARN_ON(!event)) 940 continue; 941 pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i); 942 } 943} 944 945static void pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask) 946{ 947 if (cci_pmu->model->write_counters) 948 cci_pmu->model->write_counters(cci_pmu, mask); 949 else 950 __pmu_write_counters(cci_pmu, mask); 951} 952 953#ifdef CONFIG_ARM_CCI5xx_PMU 954 955/* 956 * CCI-500/CCI-550 has advanced power saving policies, which could gate the 957 * clocks to the PMU counters, which makes the writes to them ineffective. 958 * The only way to write to those counters is when the global counters 959 * are enabled and the particular counter is enabled. 960 * 961 * So we do the following : 962 * 963 * 1) Disable all the PMU counters, saving their current state 964 * 2) Enable the global PMU profiling, now that all counters are 965 * disabled. 966 * 967 * For each counter to be programmed, repeat steps 3-7: 968 * 969 * 3) Write an invalid event code to the event control register for the 970 counter, so that the counters are not modified. 971 * 4) Enable the counter control for the counter. 972 * 5) Set the counter value 973 * 6) Disable the counter 974 * 7) Restore the event in the target counter 975 * 976 * 8) Disable the global PMU. 977 * 9) Restore the status of the rest of the counters. 978 * 979 * We choose an event which for CCI-5xx is guaranteed not to count. 980 * We use the highest possible event code (0x1f) for the master interface 0. 981 */ 982#define CCI5xx_INVALID_EVENT ((CCI5xx_PORT_M0 << CCI5xx_PMU_EVENT_SOURCE_SHIFT) | \ 983 (CCI5xx_PMU_EVENT_CODE_MASK << CCI5xx_PMU_EVENT_CODE_SHIFT)) 984static void cci5xx_pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask) 985{ 986 int i; 987 DECLARE_BITMAP(saved_mask, cci_pmu->num_cntrs); 988 989 bitmap_zero(saved_mask, cci_pmu->num_cntrs); 990 pmu_save_counters(cci_pmu, saved_mask); 991 992 /* 993 * Now that all the counters are disabled, we can safely turn the PMU on, 994 * without syncing the status of the counters 995 */ 996 __cci_pmu_enable_nosync(cci_pmu); 997 998 for_each_set_bit(i, mask, cci_pmu->num_cntrs) { 999 struct perf_event *event = cci_pmu->hw_events.events[i]; 1000 1001 if (WARN_ON(!event)) 1002 continue; 1003 1004 pmu_set_event(cci_pmu, i, CCI5xx_INVALID_EVENT); 1005 pmu_enable_counter(cci_pmu, i); 1006 pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i); 1007 pmu_disable_counter(cci_pmu, i); 1008 pmu_set_event(cci_pmu, i, event->hw.config_base); 1009 } 1010 1011 __cci_pmu_disable(); 1012 1013 pmu_restore_counters(cci_pmu, saved_mask); 1014} 1015 1016#endif /* CONFIG_ARM_CCI5xx_PMU */ 1017 1018static u64 pmu_event_update(struct perf_event *event) 1019{ 1020 struct hw_perf_event *hwc = &event->hw; 1021 u64 delta, prev_raw_count, new_raw_count; 1022 1023 do { 1024 prev_raw_count = local64_read(&hwc->prev_count); 1025 new_raw_count = pmu_read_counter(event); 1026 } while (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 1027 new_raw_count) != prev_raw_count); 1028 1029 delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK; 1030 1031 local64_add(delta, &event->count); 1032 1033 return new_raw_count; 1034} 1035 1036static void pmu_read(struct perf_event *event) 1037{ 1038 pmu_event_update(event); 1039} 1040 1041static void pmu_event_set_period(struct perf_event *event) 1042{ 1043 struct hw_perf_event *hwc = &event->hw; 1044 /* 1045 * The CCI PMU counters have a period of 2^32. To account for the 1046 * possiblity of extreme interrupt latency we program for a period of 1047 * half that. Hopefully we can handle the interrupt before another 2^31 1048 * events occur and the counter overtakes its previous value. 1049 */ 1050 u64 val = 1ULL << 31; 1051 local64_set(&hwc->prev_count, val); 1052 1053 /* 1054 * CCI PMU uses PERF_HES_ARCH to keep track of the counters, whose 1055 * values needs to be sync-ed with the s/w state before the PMU is 1056 * enabled. 1057 * Mark this counter for sync. 1058 */ 1059 hwc->state |= PERF_HES_ARCH; 1060} 1061 1062static irqreturn_t pmu_handle_irq(int irq_num, void *dev) 1063{ 1064 unsigned long flags; 1065 struct cci_pmu *cci_pmu = dev; 1066 struct cci_pmu_hw_events *events = &cci_pmu->hw_events; 1067 int idx, handled = IRQ_NONE; 1068 1069 raw_spin_lock_irqsave(&events->pmu_lock, flags); 1070 1071 /* Disable the PMU while we walk through the counters */ 1072 __cci_pmu_disable(); 1073 /* 1074 * Iterate over counters and update the corresponding perf events. 1075 * This should work regardless of whether we have per-counter overflow 1076 * interrupt or a combined overflow interrupt. 1077 */ 1078 for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) { 1079 struct perf_event *event = events->events[idx]; 1080 1081 if (!event) 1082 continue; 1083 1084 /* Did this counter overflow? */ 1085 if (!(pmu_read_register(cci_pmu, idx, CCI_PMU_OVRFLW) & 1086 CCI_PMU_OVRFLW_FLAG)) 1087 continue; 1088 1089 pmu_write_register(cci_pmu, CCI_PMU_OVRFLW_FLAG, idx, 1090 CCI_PMU_OVRFLW); 1091 1092 pmu_event_update(event); 1093 pmu_event_set_period(event); 1094 handled = IRQ_HANDLED; 1095 } 1096 1097 /* Enable the PMU and sync possibly overflowed counters */ 1098 __cci_pmu_enable_sync(cci_pmu); 1099 raw_spin_unlock_irqrestore(&events->pmu_lock, flags); 1100 1101 return IRQ_RETVAL(handled); 1102} 1103 1104static int cci_pmu_get_hw(struct cci_pmu *cci_pmu) 1105{ 1106 int ret = pmu_request_irq(cci_pmu, pmu_handle_irq); 1107 if (ret) { 1108 pmu_free_irq(cci_pmu); 1109 return ret; 1110 } 1111 return 0; 1112} 1113 1114static void cci_pmu_put_hw(struct cci_pmu *cci_pmu) 1115{ 1116 pmu_free_irq(cci_pmu); 1117} 1118 1119static void hw_perf_event_destroy(struct perf_event *event) 1120{ 1121 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 1122 atomic_t *active_events = &cci_pmu->active_events; 1123 struct mutex *reserve_mutex = &cci_pmu->reserve_mutex; 1124 1125 if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) { 1126 cci_pmu_put_hw(cci_pmu); 1127 mutex_unlock(reserve_mutex); 1128 } 1129} 1130 1131static void cci_pmu_enable(struct pmu *pmu) 1132{ 1133 struct cci_pmu *cci_pmu = to_cci_pmu(pmu); 1134 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 1135 int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_cntrs); 1136 unsigned long flags; 1137 1138 if (!enabled) 1139 return; 1140 1141 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags); 1142 __cci_pmu_enable_sync(cci_pmu); 1143 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); 1144 1145} 1146 1147static void cci_pmu_disable(struct pmu *pmu) 1148{ 1149 struct cci_pmu *cci_pmu = to_cci_pmu(pmu); 1150 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 1151 unsigned long flags; 1152 1153 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags); 1154 __cci_pmu_disable(); 1155 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); 1156} 1157 1158/* 1159 * Check if the idx represents a non-programmable counter. 1160 * All the fixed event counters are mapped before the programmable 1161 * counters. 1162 */ 1163static bool pmu_fixed_hw_idx(struct cci_pmu *cci_pmu, int idx) 1164{ 1165 return (idx >= 0) && (idx < cci_pmu->model->fixed_hw_cntrs); 1166} 1167 1168static void cci_pmu_start(struct perf_event *event, int pmu_flags) 1169{ 1170 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 1171 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 1172 struct hw_perf_event *hwc = &event->hw; 1173 int idx = hwc->idx; 1174 unsigned long flags; 1175 1176 /* 1177 * To handle interrupt latency, we always reprogram the period 1178 * regardlesss of PERF_EF_RELOAD. 1179 */ 1180 if (pmu_flags & PERF_EF_RELOAD) 1181 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 1182 1183 hwc->state = 0; 1184 1185 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { 1186 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); 1187 return; 1188 } 1189 1190 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags); 1191 1192 /* Configure the counter unless you are counting a fixed event */ 1193 if (!pmu_fixed_hw_idx(cci_pmu, idx)) 1194 pmu_set_event(cci_pmu, idx, hwc->config_base); 1195 1196 pmu_event_set_period(event); 1197 pmu_enable_counter(cci_pmu, idx); 1198 1199 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); 1200} 1201 1202static void cci_pmu_stop(struct perf_event *event, int pmu_flags) 1203{ 1204 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 1205 struct hw_perf_event *hwc = &event->hw; 1206 int idx = hwc->idx; 1207 1208 if (hwc->state & PERF_HES_STOPPED) 1209 return; 1210 1211 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { 1212 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); 1213 return; 1214 } 1215 1216 /* 1217 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See 1218 * cci_pmu_start() 1219 */ 1220 pmu_disable_counter(cci_pmu, idx); 1221 pmu_event_update(event); 1222 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1223} 1224 1225static int cci_pmu_add(struct perf_event *event, int flags) 1226{ 1227 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 1228 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 1229 struct hw_perf_event *hwc = &event->hw; 1230 int idx; 1231 int err = 0; 1232 1233 perf_pmu_disable(event->pmu); 1234 1235 /* If we don't have a space for the counter then finish early. */ 1236 idx = pmu_get_event_idx(hw_events, event); 1237 if (idx < 0) { 1238 err = idx; 1239 goto out; 1240 } 1241 1242 event->hw.idx = idx; 1243 hw_events->events[idx] = event; 1244 1245 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1246 if (flags & PERF_EF_START) 1247 cci_pmu_start(event, PERF_EF_RELOAD); 1248 1249 /* Propagate our changes to the userspace mapping. */ 1250 perf_event_update_userpage(event); 1251 1252out: 1253 perf_pmu_enable(event->pmu); 1254 return err; 1255} 1256 1257static void cci_pmu_del(struct perf_event *event, int flags) 1258{ 1259 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 1260 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 1261 struct hw_perf_event *hwc = &event->hw; 1262 int idx = hwc->idx; 1263 1264 cci_pmu_stop(event, PERF_EF_UPDATE); 1265 hw_events->events[idx] = NULL; 1266 clear_bit(idx, hw_events->used_mask); 1267 1268 perf_event_update_userpage(event); 1269} 1270 1271static int 1272validate_event(struct pmu *cci_pmu, 1273 struct cci_pmu_hw_events *hw_events, 1274 struct perf_event *event) 1275{ 1276 if (is_software_event(event)) 1277 return 1; 1278 1279 /* 1280 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The 1281 * core perf code won't check that the pmu->ctx == leader->ctx 1282 * until after pmu->event_init(event). 1283 */ 1284 if (event->pmu != cci_pmu) 1285 return 0; 1286 1287 if (event->state < PERF_EVENT_STATE_OFF) 1288 return 1; 1289 1290 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) 1291 return 1; 1292 1293 return pmu_get_event_idx(hw_events, event) >= 0; 1294} 1295 1296static int 1297validate_group(struct perf_event *event) 1298{ 1299 struct perf_event *sibling, *leader = event->group_leader; 1300 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 1301 unsigned long mask[BITS_TO_LONGS(cci_pmu->num_cntrs)]; 1302 struct cci_pmu_hw_events fake_pmu = { 1303 /* 1304 * Initialise the fake PMU. We only need to populate the 1305 * used_mask for the purposes of validation. 1306 */ 1307 .used_mask = mask, 1308 }; 1309 memset(mask, 0, BITS_TO_LONGS(cci_pmu->num_cntrs) * sizeof(unsigned long)); 1310 1311 if (!validate_event(event->pmu, &fake_pmu, leader)) 1312 return -EINVAL; 1313 1314 list_for_each_entry(sibling, &leader->sibling_list, group_entry) { 1315 if (!validate_event(event->pmu, &fake_pmu, sibling)) 1316 return -EINVAL; 1317 } 1318 1319 if (!validate_event(event->pmu, &fake_pmu, event)) 1320 return -EINVAL; 1321 1322 return 0; 1323} 1324 1325static int 1326__hw_perf_event_init(struct perf_event *event) 1327{ 1328 struct hw_perf_event *hwc = &event->hw; 1329 int mapping; 1330 1331 mapping = pmu_map_event(event); 1332 1333 if (mapping < 0) { 1334 pr_debug("event %x:%llx not supported\n", event->attr.type, 1335 event->attr.config); 1336 return mapping; 1337 } 1338 1339 /* 1340 * We don't assign an index until we actually place the event onto 1341 * hardware. Use -1 to signify that we haven't decided where to put it 1342 * yet. 1343 */ 1344 hwc->idx = -1; 1345 hwc->config_base = 0; 1346 hwc->config = 0; 1347 hwc->event_base = 0; 1348 1349 /* 1350 * Store the event encoding into the config_base field. 1351 */ 1352 hwc->config_base |= (unsigned long)mapping; 1353 1354 /* 1355 * Limit the sample_period to half of the counter width. That way, the 1356 * new counter value is far less likely to overtake the previous one 1357 * unless you have some serious IRQ latency issues. 1358 */ 1359 hwc->sample_period = CCI_PMU_CNTR_MASK >> 1; 1360 hwc->last_period = hwc->sample_period; 1361 local64_set(&hwc->period_left, hwc->sample_period); 1362 1363 if (event->group_leader != event) { 1364 if (validate_group(event) != 0) 1365 return -EINVAL; 1366 } 1367 1368 return 0; 1369} 1370 1371static int cci_pmu_event_init(struct perf_event *event) 1372{ 1373 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 1374 atomic_t *active_events = &cci_pmu->active_events; 1375 int err = 0; 1376 int cpu; 1377 1378 if (event->attr.type != event->pmu->type) 1379 return -ENOENT; 1380 1381 /* Shared by all CPUs, no meaningful state to sample */ 1382 if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK) 1383 return -EOPNOTSUPP; 1384 1385 /* We have no filtering of any kind */ 1386 if (event->attr.exclude_user || 1387 event->attr.exclude_kernel || 1388 event->attr.exclude_hv || 1389 event->attr.exclude_idle || 1390 event->attr.exclude_host || 1391 event->attr.exclude_guest) 1392 return -EINVAL; 1393 1394 /* 1395 * Following the example set by other "uncore" PMUs, we accept any CPU 1396 * and rewrite its affinity dynamically rather than having perf core 1397 * handle cpu == -1 and pid == -1 for this case. 1398 * 1399 * The perf core will pin online CPUs for the duration of this call and 1400 * the event being installed into its context, so the PMU's CPU can't 1401 * change under our feet. 1402 */ 1403 cpu = cpumask_first(&cci_pmu->cpus); 1404 if (event->cpu < 0 || cpu < 0) 1405 return -EINVAL; 1406 event->cpu = cpu; 1407 1408 event->destroy = hw_perf_event_destroy; 1409 if (!atomic_inc_not_zero(active_events)) { 1410 mutex_lock(&cci_pmu->reserve_mutex); 1411 if (atomic_read(active_events) == 0) 1412 err = cci_pmu_get_hw(cci_pmu); 1413 if (!err) 1414 atomic_inc(active_events); 1415 mutex_unlock(&cci_pmu->reserve_mutex); 1416 } 1417 if (err) 1418 return err; 1419 1420 err = __hw_perf_event_init(event); 1421 if (err) 1422 hw_perf_event_destroy(event); 1423 1424 return err; 1425} 1426 1427static ssize_t pmu_cpumask_attr_show(struct device *dev, 1428 struct device_attribute *attr, char *buf) 1429{ 1430 struct pmu *pmu = dev_get_drvdata(dev); 1431 struct cci_pmu *cci_pmu = to_cci_pmu(pmu); 1432 1433 int n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl", 1434 cpumask_pr_args(&cci_pmu->cpus)); 1435 buf[n++] = '\n'; 1436 buf[n] = '\0'; 1437 return n; 1438} 1439 1440static struct device_attribute pmu_cpumask_attr = 1441 __ATTR(cpumask, S_IRUGO, pmu_cpumask_attr_show, NULL); 1442 1443static struct attribute *pmu_attrs[] = { 1444 &pmu_cpumask_attr.attr, 1445 NULL, 1446}; 1447 1448static struct attribute_group pmu_attr_group = { 1449 .attrs = pmu_attrs, 1450}; 1451 1452static struct attribute_group pmu_format_attr_group = { 1453 .name = "format", 1454 .attrs = NULL, /* Filled in cci_pmu_init_attrs */ 1455}; 1456 1457static struct attribute_group pmu_event_attr_group = { 1458 .name = "events", 1459 .attrs = NULL, /* Filled in cci_pmu_init_attrs */ 1460}; 1461 1462static const struct attribute_group *pmu_attr_groups[] = { 1463 &pmu_attr_group, 1464 &pmu_format_attr_group, 1465 &pmu_event_attr_group, 1466 NULL 1467}; 1468 1469static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev) 1470{ 1471 const struct cci_pmu_model *model = cci_pmu->model; 1472 char *name = model->name; 1473 u32 num_cntrs; 1474 1475 pmu_event_attr_group.attrs = model->event_attrs; 1476 pmu_format_attr_group.attrs = model->format_attrs; 1477 1478 cci_pmu->pmu = (struct pmu) { 1479 .name = cci_pmu->model->name, 1480 .task_ctx_nr = perf_invalid_context, 1481 .pmu_enable = cci_pmu_enable, 1482 .pmu_disable = cci_pmu_disable, 1483 .event_init = cci_pmu_event_init, 1484 .add = cci_pmu_add, 1485 .del = cci_pmu_del, 1486 .start = cci_pmu_start, 1487 .stop = cci_pmu_stop, 1488 .read = pmu_read, 1489 .attr_groups = pmu_attr_groups, 1490 }; 1491 1492 cci_pmu->plat_device = pdev; 1493 num_cntrs = pmu_get_max_counters(); 1494 if (num_cntrs > cci_pmu->model->num_hw_cntrs) { 1495 dev_warn(&pdev->dev, 1496 "PMU implements more counters(%d) than supported by" 1497 " the model(%d), truncated.", 1498 num_cntrs, cci_pmu->model->num_hw_cntrs); 1499 num_cntrs = cci_pmu->model->num_hw_cntrs; 1500 } 1501 cci_pmu->num_cntrs = num_cntrs + cci_pmu->model->fixed_hw_cntrs; 1502 1503 return perf_pmu_register(&cci_pmu->pmu, name, -1); 1504} 1505 1506static int cci_pmu_offline_cpu(unsigned int cpu, struct hlist_node *node) 1507{ 1508 struct cci_pmu *cci_pmu = hlist_entry_safe(node, struct cci_pmu, node); 1509 unsigned int target; 1510 1511 if (!cpumask_test_and_clear_cpu(cpu, &cci_pmu->cpus)) 1512 return 0; 1513 target = cpumask_any_but(cpu_online_mask, cpu); 1514 if (target >= nr_cpu_ids) 1515 return 0; 1516 /* 1517 * TODO: migrate context once core races on event->ctx have 1518 * been fixed. 1519 */ 1520 cpumask_set_cpu(target, &cci_pmu->cpus); 1521 return 0; 1522} 1523 1524static struct cci_pmu_model cci_pmu_models[] = { 1525#ifdef CONFIG_ARM_CCI400_PMU 1526 [CCI400_R0] = { 1527 .name = "CCI_400", 1528 .fixed_hw_cntrs = 1, /* Cycle counter */ 1529 .num_hw_cntrs = 4, 1530 .cntr_size = SZ_4K, 1531 .format_attrs = cci400_pmu_format_attrs, 1532 .event_attrs = cci400_r0_pmu_event_attrs, 1533 .event_ranges = { 1534 [CCI_IF_SLAVE] = { 1535 CCI400_R0_SLAVE_PORT_MIN_EV, 1536 CCI400_R0_SLAVE_PORT_MAX_EV, 1537 }, 1538 [CCI_IF_MASTER] = { 1539 CCI400_R0_MASTER_PORT_MIN_EV, 1540 CCI400_R0_MASTER_PORT_MAX_EV, 1541 }, 1542 }, 1543 .validate_hw_event = cci400_validate_hw_event, 1544 .get_event_idx = cci400_get_event_idx, 1545 }, 1546 [CCI400_R1] = { 1547 .name = "CCI_400_r1", 1548 .fixed_hw_cntrs = 1, /* Cycle counter */ 1549 .num_hw_cntrs = 4, 1550 .cntr_size = SZ_4K, 1551 .format_attrs = cci400_pmu_format_attrs, 1552 .event_attrs = cci400_r1_pmu_event_attrs, 1553 .event_ranges = { 1554 [CCI_IF_SLAVE] = { 1555 CCI400_R1_SLAVE_PORT_MIN_EV, 1556 CCI400_R1_SLAVE_PORT_MAX_EV, 1557 }, 1558 [CCI_IF_MASTER] = { 1559 CCI400_R1_MASTER_PORT_MIN_EV, 1560 CCI400_R1_MASTER_PORT_MAX_EV, 1561 }, 1562 }, 1563 .validate_hw_event = cci400_validate_hw_event, 1564 .get_event_idx = cci400_get_event_idx, 1565 }, 1566#endif 1567#ifdef CONFIG_ARM_CCI5xx_PMU 1568 [CCI500_R0] = { 1569 .name = "CCI_500", 1570 .fixed_hw_cntrs = 0, 1571 .num_hw_cntrs = 8, 1572 .cntr_size = SZ_64K, 1573 .format_attrs = cci5xx_pmu_format_attrs, 1574 .event_attrs = cci5xx_pmu_event_attrs, 1575 .event_ranges = { 1576 [CCI_IF_SLAVE] = { 1577 CCI5xx_SLAVE_PORT_MIN_EV, 1578 CCI5xx_SLAVE_PORT_MAX_EV, 1579 }, 1580 [CCI_IF_MASTER] = { 1581 CCI5xx_MASTER_PORT_MIN_EV, 1582 CCI5xx_MASTER_PORT_MAX_EV, 1583 }, 1584 [CCI_IF_GLOBAL] = { 1585 CCI5xx_GLOBAL_PORT_MIN_EV, 1586 CCI5xx_GLOBAL_PORT_MAX_EV, 1587 }, 1588 }, 1589 .validate_hw_event = cci500_validate_hw_event, 1590 .write_counters = cci5xx_pmu_write_counters, 1591 }, 1592 [CCI550_R0] = { 1593 .name = "CCI_550", 1594 .fixed_hw_cntrs = 0, 1595 .num_hw_cntrs = 8, 1596 .cntr_size = SZ_64K, 1597 .format_attrs = cci5xx_pmu_format_attrs, 1598 .event_attrs = cci5xx_pmu_event_attrs, 1599 .event_ranges = { 1600 [CCI_IF_SLAVE] = { 1601 CCI5xx_SLAVE_PORT_MIN_EV, 1602 CCI5xx_SLAVE_PORT_MAX_EV, 1603 }, 1604 [CCI_IF_MASTER] = { 1605 CCI5xx_MASTER_PORT_MIN_EV, 1606 CCI5xx_MASTER_PORT_MAX_EV, 1607 }, 1608 [CCI_IF_GLOBAL] = { 1609 CCI5xx_GLOBAL_PORT_MIN_EV, 1610 CCI5xx_GLOBAL_PORT_MAX_EV, 1611 }, 1612 }, 1613 .validate_hw_event = cci550_validate_hw_event, 1614 .write_counters = cci5xx_pmu_write_counters, 1615 }, 1616#endif 1617}; 1618 1619static const struct of_device_id arm_cci_pmu_matches[] = { 1620#ifdef CONFIG_ARM_CCI400_PMU 1621 { 1622 .compatible = "arm,cci-400-pmu", 1623 .data = NULL, 1624 }, 1625 { 1626 .compatible = "arm,cci-400-pmu,r0", 1627 .data = &cci_pmu_models[CCI400_R0], 1628 }, 1629 { 1630 .compatible = "arm,cci-400-pmu,r1", 1631 .data = &cci_pmu_models[CCI400_R1], 1632 }, 1633#endif 1634#ifdef CONFIG_ARM_CCI5xx_PMU 1635 { 1636 .compatible = "arm,cci-500-pmu,r0", 1637 .data = &cci_pmu_models[CCI500_R0], 1638 }, 1639 { 1640 .compatible = "arm,cci-550-pmu,r0", 1641 .data = &cci_pmu_models[CCI550_R0], 1642 }, 1643#endif 1644 {}, 1645}; 1646 1647static inline const struct cci_pmu_model *get_cci_model(struct platform_device *pdev) 1648{ 1649 const struct of_device_id *match = of_match_node(arm_cci_pmu_matches, 1650 pdev->dev.of_node); 1651 if (!match) 1652 return NULL; 1653 if (match->data) 1654 return match->data; 1655 1656 dev_warn(&pdev->dev, "DEPRECATED compatible property," 1657 "requires secure access to CCI registers"); 1658 return probe_cci_model(pdev); 1659} 1660 1661static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs) 1662{ 1663 int i; 1664 1665 for (i = 0; i < nr_irqs; i++) 1666 if (irq == irqs[i]) 1667 return true; 1668 1669 return false; 1670} 1671 1672static struct cci_pmu *cci_pmu_alloc(struct platform_device *pdev) 1673{ 1674 struct cci_pmu *cci_pmu; 1675 const struct cci_pmu_model *model; 1676 1677 /* 1678 * All allocations are devm_* hence we don't have to free 1679 * them explicitly on an error, as it would end up in driver 1680 * detach. 1681 */ 1682 model = get_cci_model(pdev); 1683 if (!model) { 1684 dev_warn(&pdev->dev, "CCI PMU version not supported\n"); 1685 return ERR_PTR(-ENODEV); 1686 } 1687 1688 cci_pmu = devm_kzalloc(&pdev->dev, sizeof(*cci_pmu), GFP_KERNEL); 1689 if (!cci_pmu) 1690 return ERR_PTR(-ENOMEM); 1691 1692 cci_pmu->model = model; 1693 cci_pmu->irqs = devm_kcalloc(&pdev->dev, CCI_PMU_MAX_HW_CNTRS(model), 1694 sizeof(*cci_pmu->irqs), GFP_KERNEL); 1695 if (!cci_pmu->irqs) 1696 return ERR_PTR(-ENOMEM); 1697 cci_pmu->hw_events.events = devm_kcalloc(&pdev->dev, 1698 CCI_PMU_MAX_HW_CNTRS(model), 1699 sizeof(*cci_pmu->hw_events.events), 1700 GFP_KERNEL); 1701 if (!cci_pmu->hw_events.events) 1702 return ERR_PTR(-ENOMEM); 1703 cci_pmu->hw_events.used_mask = devm_kcalloc(&pdev->dev, 1704 BITS_TO_LONGS(CCI_PMU_MAX_HW_CNTRS(model)), 1705 sizeof(*cci_pmu->hw_events.used_mask), 1706 GFP_KERNEL); 1707 if (!cci_pmu->hw_events.used_mask) 1708 return ERR_PTR(-ENOMEM); 1709 1710 return cci_pmu; 1711} 1712 1713 1714static int cci_pmu_probe(struct platform_device *pdev) 1715{ 1716 struct resource *res; 1717 struct cci_pmu *cci_pmu; 1718 int i, ret, irq; 1719 1720 cci_pmu = cci_pmu_alloc(pdev); 1721 if (IS_ERR(cci_pmu)) 1722 return PTR_ERR(cci_pmu); 1723 1724 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1725 cci_pmu->base = devm_ioremap_resource(&pdev->dev, res); 1726 if (IS_ERR(cci_pmu->base)) 1727 return -ENOMEM; 1728 1729 /* 1730 * CCI PMU has one overflow interrupt per counter; but some may be tied 1731 * together to a common interrupt. 1732 */ 1733 cci_pmu->nr_irqs = 0; 1734 for (i = 0; i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model); i++) { 1735 irq = platform_get_irq(pdev, i); 1736 if (irq < 0) 1737 break; 1738 1739 if (is_duplicate_irq(irq, cci_pmu->irqs, cci_pmu->nr_irqs)) 1740 continue; 1741 1742 cci_pmu->irqs[cci_pmu->nr_irqs++] = irq; 1743 } 1744 1745 /* 1746 * Ensure that the device tree has as many interrupts as the number 1747 * of counters. 1748 */ 1749 if (i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)) { 1750 dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n", 1751 i, CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)); 1752 return -EINVAL; 1753 } 1754 1755 raw_spin_lock_init(&cci_pmu->hw_events.pmu_lock); 1756 mutex_init(&cci_pmu->reserve_mutex); 1757 atomic_set(&cci_pmu->active_events, 0); 1758 cpumask_set_cpu(get_cpu(), &cci_pmu->cpus); 1759 1760 ret = cci_pmu_init(cci_pmu, pdev); 1761 if (ret) { 1762 put_cpu(); 1763 return ret; 1764 } 1765 1766 cpuhp_state_add_instance_nocalls(CPUHP_AP_PERF_ARM_CCI_ONLINE, 1767 &cci_pmu->node); 1768 put_cpu(); 1769 pr_info("ARM %s PMU driver probed", cci_pmu->model->name); 1770 return 0; 1771} 1772 | |
1773static int cci_platform_probe(struct platform_device *pdev) 1774{ 1775 if (!cci_probed()) 1776 return -ENODEV; 1777 1778 return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev); 1779} 1780 | 61static int cci_platform_probe(struct platform_device *pdev) 62{ 63 if (!cci_probed()) 64 return -ENODEV; 65 66 return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev); 67} 68 |
1781static struct platform_driver cci_pmu_driver = { 1782 .driver = { 1783 .name = DRIVER_NAME_PMU, 1784 .of_match_table = arm_cci_pmu_matches, 1785 }, 1786 .probe = cci_pmu_probe, 1787}; 1788 | |
1789static struct platform_driver cci_platform_driver = { 1790 .driver = { 1791 .name = DRIVER_NAME, 1792 .of_match_table = arm_cci_matches, 1793 }, 1794 .probe = cci_platform_probe, 1795}; 1796 1797static int __init cci_platform_init(void) 1798{ | 69static struct platform_driver cci_platform_driver = { 70 .driver = { 71 .name = DRIVER_NAME, 72 .of_match_table = arm_cci_matches, 73 }, 74 .probe = cci_platform_probe, 75}; 76 77static int __init cci_platform_init(void) 78{ |
1799 int ret; 1800 1801 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_CCI_ONLINE, 1802 "perf/arm/cci:online", NULL, 1803 cci_pmu_offline_cpu); 1804 if (ret) 1805 return ret; 1806 1807 ret = platform_driver_register(&cci_pmu_driver); 1808 if (ret) 1809 return ret; 1810 | |
1811 return platform_driver_register(&cci_platform_driver); 1812} 1813 | 79 return platform_driver_register(&cci_platform_driver); 80} 81 |
1814#else /* !CONFIG_ARM_CCI_PMU */ 1815 1816static int __init cci_platform_init(void) 1817{ 1818 return 0; 1819} 1820 1821#endif /* CONFIG_ARM_CCI_PMU */ 1822 | |
1823#ifdef CONFIG_ARM_CCI400_PORT_CTRL 1824 1825#define CCI_PORT_CTRL 0x0 1826#define CCI_CTRL_STATUS 0xc 1827 1828#define CCI_ENABLE_SNOOP_REQ 0x1 1829#define CCI_ENABLE_DVM_REQ 0x2 1830#define CCI_ENABLE_REQ (CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ) --- 494 unchanged lines hidden --- | 82#ifdef CONFIG_ARM_CCI400_PORT_CTRL 83 84#define CCI_PORT_CTRL 0x0 85#define CCI_CTRL_STATUS 0xc 86 87#define CCI_ENABLE_SNOOP_REQ 0x1 88#define CCI_ENABLE_DVM_REQ 0x2 89#define CCI_ENABLE_REQ (CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ) --- 494 unchanged lines hidden --- |