xref: /linux/drivers/bus/arm-cci.c (revision ce8ee02d519ab20c5b87d3b3929b5e44ad89e26f)
1 /*
2  * CCI cache coherent interconnect driver
3  *
4  * Copyright (C) 2013 ARM Ltd.
5  * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12  * kind, whether express or implied; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/arm-cci.h>
18 #include <linux/io.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/perf_event.h>
25 #include <linux/platform_device.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 
29 #include <asm/cacheflush.h>
30 #include <asm/smp_plat.h>
31 
32 static void __iomem *cci_ctrl_base;
33 static unsigned long cci_ctrl_phys;
34 
35 #ifdef CONFIG_ARM_CCI400_PORT_CTRL
36 struct cci_nb_ports {
37 	unsigned int nb_ace;
38 	unsigned int nb_ace_lite;
39 };
40 
41 static const struct cci_nb_ports cci400_ports = {
42 	.nb_ace = 2,
43 	.nb_ace_lite = 3
44 };
45 
46 #define CCI400_PORTS_DATA	(&cci400_ports)
47 #else
48 #define CCI400_PORTS_DATA	(NULL)
49 #endif
50 
51 static const struct of_device_id arm_cci_matches[] = {
52 #ifdef CONFIG_ARM_CCI400_COMMON
53 	{.compatible = "arm,cci-400", .data = CCI400_PORTS_DATA },
54 #endif
55 #ifdef CONFIG_ARM_CCI5xx_PMU
56 	{ .compatible = "arm,cci-500", },
57 	{ .compatible = "arm,cci-550", },
58 #endif
59 	{},
60 };
61 
62 #ifdef CONFIG_ARM_CCI_PMU
63 
64 #define DRIVER_NAME		"ARM-CCI"
65 #define DRIVER_NAME_PMU		DRIVER_NAME " PMU"
66 
67 #define CCI_PMCR		0x0100
68 #define CCI_PID2		0x0fe8
69 
70 #define CCI_PMCR_CEN		0x00000001
71 #define CCI_PMCR_NCNT_MASK	0x0000f800
72 #define CCI_PMCR_NCNT_SHIFT	11
73 
74 #define CCI_PID2_REV_MASK	0xf0
75 #define CCI_PID2_REV_SHIFT	4
76 
77 #define CCI_PMU_EVT_SEL		0x000
78 #define CCI_PMU_CNTR		0x004
79 #define CCI_PMU_CNTR_CTRL	0x008
80 #define CCI_PMU_OVRFLW		0x00c
81 
82 #define CCI_PMU_OVRFLW_FLAG	1
83 
84 #define CCI_PMU_CNTR_SIZE(model)	((model)->cntr_size)
85 #define CCI_PMU_CNTR_BASE(model, idx)	((idx) * CCI_PMU_CNTR_SIZE(model))
86 #define CCI_PMU_CNTR_MASK		((1ULL << 32) -1)
87 #define CCI_PMU_CNTR_LAST(cci_pmu)	(cci_pmu->num_cntrs - 1)
88 
89 #define CCI_PMU_MAX_HW_CNTRS(model) \
90 	((model)->num_hw_cntrs + (model)->fixed_hw_cntrs)
91 
92 /* Types of interfaces that can generate events */
93 enum {
94 	CCI_IF_SLAVE,
95 	CCI_IF_MASTER,
96 #ifdef CONFIG_ARM_CCI5xx_PMU
97 	CCI_IF_GLOBAL,
98 #endif
99 	CCI_IF_MAX,
100 };
101 
102 struct event_range {
103 	u32 min;
104 	u32 max;
105 };
106 
107 struct cci_pmu_hw_events {
108 	struct perf_event **events;
109 	unsigned long *used_mask;
110 	raw_spinlock_t pmu_lock;
111 };
112 
113 struct cci_pmu;
114 /*
115  * struct cci_pmu_model:
116  * @fixed_hw_cntrs - Number of fixed event counters
117  * @num_hw_cntrs - Maximum number of programmable event counters
118  * @cntr_size - Size of an event counter mapping
119  */
120 struct cci_pmu_model {
121 	char *name;
122 	u32 fixed_hw_cntrs;
123 	u32 num_hw_cntrs;
124 	u32 cntr_size;
125 	struct attribute **format_attrs;
126 	struct attribute **event_attrs;
127 	struct event_range event_ranges[CCI_IF_MAX];
128 	int (*validate_hw_event)(struct cci_pmu *, unsigned long);
129 	int (*get_event_idx)(struct cci_pmu *, struct cci_pmu_hw_events *, unsigned long);
130 	void (*write_counters)(struct cci_pmu *, unsigned long *);
131 };
132 
133 static struct cci_pmu_model cci_pmu_models[];
134 
135 struct cci_pmu {
136 	void __iomem *base;
137 	struct pmu pmu;
138 	int nr_irqs;
139 	int *irqs;
140 	unsigned long active_irqs;
141 	const struct cci_pmu_model *model;
142 	struct cci_pmu_hw_events hw_events;
143 	struct platform_device *plat_device;
144 	int num_cntrs;
145 	atomic_t active_events;
146 	struct mutex reserve_mutex;
147 	struct hlist_node node;
148 	cpumask_t cpus;
149 };
150 
151 #define to_cci_pmu(c)	(container_of(c, struct cci_pmu, pmu))
152 
153 enum cci_models {
154 #ifdef CONFIG_ARM_CCI400_PMU
155 	CCI400_R0,
156 	CCI400_R1,
157 #endif
158 #ifdef CONFIG_ARM_CCI5xx_PMU
159 	CCI500_R0,
160 	CCI550_R0,
161 #endif
162 	CCI_MODEL_MAX
163 };
164 
165 static void pmu_write_counters(struct cci_pmu *cci_pmu,
166 				 unsigned long *mask);
167 static ssize_t cci_pmu_format_show(struct device *dev,
168 			struct device_attribute *attr, char *buf);
169 static ssize_t cci_pmu_event_show(struct device *dev,
170 			struct device_attribute *attr, char *buf);
171 
172 #define CCI_EXT_ATTR_ENTRY(_name, _func, _config) 				\
173 	&((struct dev_ext_attribute[]) {					\
174 		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config }	\
175 	})[0].attr.attr
176 
177 #define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \
178 	CCI_EXT_ATTR_ENTRY(_name, cci_pmu_format_show, (char *)_config)
179 #define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \
180 	CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config)
181 
182 /* CCI400 PMU Specific definitions */
183 
184 #ifdef CONFIG_ARM_CCI400_PMU
185 
186 /* Port ids */
187 #define CCI400_PORT_S0		0
188 #define CCI400_PORT_S1		1
189 #define CCI400_PORT_S2		2
190 #define CCI400_PORT_S3		3
191 #define CCI400_PORT_S4		4
192 #define CCI400_PORT_M0		5
193 #define CCI400_PORT_M1		6
194 #define CCI400_PORT_M2		7
195 
196 #define CCI400_R1_PX		5
197 
198 /*
199  * Instead of an event id to monitor CCI cycles, a dedicated counter is
200  * provided. Use 0xff to represent CCI cycles and hope that no future revisions
201  * make use of this event in hardware.
202  */
203 enum cci400_perf_events {
204 	CCI400_PMU_CYCLES = 0xff
205 };
206 
207 #define CCI400_PMU_CYCLE_CNTR_IDX	0
208 #define CCI400_PMU_CNTR0_IDX		1
209 
210 /*
211  * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
212  * ports and bits 4:0 are event codes. There are different event codes
213  * associated with each port type.
214  *
215  * Additionally, the range of events associated with the port types changed
216  * between Rev0 and Rev1.
217  *
218  * The constants below define the range of valid codes for each port type for
219  * the different revisions and are used to validate the event to be monitored.
220  */
221 
222 #define CCI400_PMU_EVENT_MASK		0xffUL
223 #define CCI400_PMU_EVENT_SOURCE_SHIFT	5
224 #define CCI400_PMU_EVENT_SOURCE_MASK	0x7
225 #define CCI400_PMU_EVENT_CODE_SHIFT	0
226 #define CCI400_PMU_EVENT_CODE_MASK	0x1f
227 #define CCI400_PMU_EVENT_SOURCE(event) \
228 	((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \
229 			CCI400_PMU_EVENT_SOURCE_MASK)
230 #define CCI400_PMU_EVENT_CODE(event) \
231 	((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK)
232 
233 #define CCI400_R0_SLAVE_PORT_MIN_EV	0x00
234 #define CCI400_R0_SLAVE_PORT_MAX_EV	0x13
235 #define CCI400_R0_MASTER_PORT_MIN_EV	0x14
236 #define CCI400_R0_MASTER_PORT_MAX_EV	0x1a
237 
238 #define CCI400_R1_SLAVE_PORT_MIN_EV	0x00
239 #define CCI400_R1_SLAVE_PORT_MAX_EV	0x14
240 #define CCI400_R1_MASTER_PORT_MIN_EV	0x00
241 #define CCI400_R1_MASTER_PORT_MAX_EV	0x11
242 
243 #define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \
244 	CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \
245 					(unsigned long)_config)
246 
247 static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
248 			struct device_attribute *attr, char *buf);
249 
250 static struct attribute *cci400_pmu_format_attrs[] = {
251 	CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
252 	CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-7"),
253 	NULL
254 };
255 
256 static struct attribute *cci400_r0_pmu_event_attrs[] = {
257 	/* Slave events */
258 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
259 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
260 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
261 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
262 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
263 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
264 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
265 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
266 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
267 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
268 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
269 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
270 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
271 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
272 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
273 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
274 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
275 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
276 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
277 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
278 	/* Master events */
279 	CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x14),
280 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard, 0x15),
281 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard, 0x16),
282 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full, 0x17),
283 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x18),
284 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x19),
285 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full, 0x1A),
286 	/* Special event for cycles counter */
287 	CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
288 	NULL
289 };
290 
291 static struct attribute *cci400_r1_pmu_event_attrs[] = {
292 	/* Slave events */
293 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
294 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
295 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
296 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
297 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
298 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
299 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
300 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
301 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
302 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
303 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
304 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
305 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
306 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
307 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
308 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
309 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
310 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
311 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
312 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
313 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard, 0x14),
314 	/* Master events */
315 	CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x0),
316 	CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard, 0x1),
317 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard, 0x2),
318 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full, 0x3),
319 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x4),
320 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x5),
321 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full, 0x6),
322 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full, 0x7),
323 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full, 0x8),
324 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0, 0x9),
325 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1, 0xA),
326 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2, 0xB),
327 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3, 0xC),
328 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0, 0xD),
329 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1, 0xE),
330 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2, 0xF),
331 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3, 0x10),
332 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard, 0x11),
333 	/* Special event for cycles counter */
334 	CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
335 	NULL
336 };
337 
338 static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
339 			struct device_attribute *attr, char *buf)
340 {
341 	struct dev_ext_attribute *eattr = container_of(attr,
342 				struct dev_ext_attribute, attr);
343 	return snprintf(buf, PAGE_SIZE, "config=0x%lx\n", (unsigned long)eattr->var);
344 }
345 
346 static int cci400_get_event_idx(struct cci_pmu *cci_pmu,
347 				struct cci_pmu_hw_events *hw,
348 				unsigned long cci_event)
349 {
350 	int idx;
351 
352 	/* cycles event idx is fixed */
353 	if (cci_event == CCI400_PMU_CYCLES) {
354 		if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX, hw->used_mask))
355 			return -EAGAIN;
356 
357 		return CCI400_PMU_CYCLE_CNTR_IDX;
358 	}
359 
360 	for (idx = CCI400_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
361 		if (!test_and_set_bit(idx, hw->used_mask))
362 			return idx;
363 
364 	/* No counters available */
365 	return -EAGAIN;
366 }
367 
368 static int cci400_validate_hw_event(struct cci_pmu *cci_pmu, unsigned long hw_event)
369 {
370 	u8 ev_source = CCI400_PMU_EVENT_SOURCE(hw_event);
371 	u8 ev_code = CCI400_PMU_EVENT_CODE(hw_event);
372 	int if_type;
373 
374 	if (hw_event & ~CCI400_PMU_EVENT_MASK)
375 		return -ENOENT;
376 
377 	if (hw_event == CCI400_PMU_CYCLES)
378 		return hw_event;
379 
380 	switch (ev_source) {
381 	case CCI400_PORT_S0:
382 	case CCI400_PORT_S1:
383 	case CCI400_PORT_S2:
384 	case CCI400_PORT_S3:
385 	case CCI400_PORT_S4:
386 		/* Slave Interface */
387 		if_type = CCI_IF_SLAVE;
388 		break;
389 	case CCI400_PORT_M0:
390 	case CCI400_PORT_M1:
391 	case CCI400_PORT_M2:
392 		/* Master Interface */
393 		if_type = CCI_IF_MASTER;
394 		break;
395 	default:
396 		return -ENOENT;
397 	}
398 
399 	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
400 		ev_code <= cci_pmu->model->event_ranges[if_type].max)
401 		return hw_event;
402 
403 	return -ENOENT;
404 }
405 
406 static int probe_cci400_revision(void)
407 {
408 	int rev;
409 	rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
410 	rev >>= CCI_PID2_REV_SHIFT;
411 
412 	if (rev < CCI400_R1_PX)
413 		return CCI400_R0;
414 	else
415 		return CCI400_R1;
416 }
417 
418 static const struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
419 {
420 	if (platform_has_secure_cci_access())
421 		return &cci_pmu_models[probe_cci400_revision()];
422 	return NULL;
423 }
424 #else	/* !CONFIG_ARM_CCI400_PMU */
425 static inline struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
426 {
427 	return NULL;
428 }
429 #endif	/* CONFIG_ARM_CCI400_PMU */
430 
431 #ifdef CONFIG_ARM_CCI5xx_PMU
432 
433 /*
434  * CCI5xx PMU event id is an 9-bit value made of two parts.
435  *	 bits [8:5] - Source for the event
436  *	 bits [4:0] - Event code (specific to type of interface)
437  *
438  *
439  */
440 
441 /* Port ids */
442 #define CCI5xx_PORT_S0			0x0
443 #define CCI5xx_PORT_S1			0x1
444 #define CCI5xx_PORT_S2			0x2
445 #define CCI5xx_PORT_S3			0x3
446 #define CCI5xx_PORT_S4			0x4
447 #define CCI5xx_PORT_S5			0x5
448 #define CCI5xx_PORT_S6			0x6
449 
450 #define CCI5xx_PORT_M0			0x8
451 #define CCI5xx_PORT_M1			0x9
452 #define CCI5xx_PORT_M2			0xa
453 #define CCI5xx_PORT_M3			0xb
454 #define CCI5xx_PORT_M4			0xc
455 #define CCI5xx_PORT_M5			0xd
456 #define CCI5xx_PORT_M6			0xe
457 
458 #define CCI5xx_PORT_GLOBAL		0xf
459 
460 #define CCI5xx_PMU_EVENT_MASK		0x1ffUL
461 #define CCI5xx_PMU_EVENT_SOURCE_SHIFT	0x5
462 #define CCI5xx_PMU_EVENT_SOURCE_MASK	0xf
463 #define CCI5xx_PMU_EVENT_CODE_SHIFT	0x0
464 #define CCI5xx_PMU_EVENT_CODE_MASK	0x1f
465 
466 #define CCI5xx_PMU_EVENT_SOURCE(event)	\
467 	((event >> CCI5xx_PMU_EVENT_SOURCE_SHIFT) & CCI5xx_PMU_EVENT_SOURCE_MASK)
468 #define CCI5xx_PMU_EVENT_CODE(event)	\
469 	((event >> CCI5xx_PMU_EVENT_CODE_SHIFT) & CCI5xx_PMU_EVENT_CODE_MASK)
470 
471 #define CCI5xx_SLAVE_PORT_MIN_EV	0x00
472 #define CCI5xx_SLAVE_PORT_MAX_EV	0x1f
473 #define CCI5xx_MASTER_PORT_MIN_EV	0x00
474 #define CCI5xx_MASTER_PORT_MAX_EV	0x06
475 #define CCI5xx_GLOBAL_PORT_MIN_EV	0x00
476 #define CCI5xx_GLOBAL_PORT_MAX_EV	0x0f
477 
478 
479 #define CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \
480 	CCI_EXT_ATTR_ENTRY(_name, cci5xx_pmu_global_event_show, \
481 					(unsigned long) _config)
482 
483 static ssize_t cci5xx_pmu_global_event_show(struct device *dev,
484 				struct device_attribute *attr, char *buf);
485 
486 static struct attribute *cci5xx_pmu_format_attrs[] = {
487 	CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
488 	CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-8"),
489 	NULL,
490 };
491 
492 static struct attribute *cci5xx_pmu_event_attrs[] = {
493 	/* Slave events */
494 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid, 0x0),
495 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev, 0x1),
496 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable, 0x2),
497 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc, 0x3),
498 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc, 0x4),
499 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate, 0x5),
500 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint, 0x6),
501 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
502 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval, 0x8),
503 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop, 0x9),
504 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid, 0xA),
505 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev, 0xB),
506 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable, 0xC),
507 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb, 0xD),
508 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu, 0xE),
509 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique, 0xF),
510 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict, 0x10),
511 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict, 0x11),
512 	CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat, 0x12),
513 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid, 0x13),
514 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read, 0x14),
515 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean, 0x15),
516 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low, 0x16),
517 	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid, 0x17),
518 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall, 0x18),
519 	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall, 0x19),
520 	CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall, 0x1A),
521 	CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall, 0x1B),
522 	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall, 0x1C),
523 	CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall, 0x1D),
524 	CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit, 0x1E),
525 	CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit, 0x1F),
526 
527 	/* Master events */
528 	CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any, 0x0),
529 	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any, 0x1),
530 	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall, 0x2),
531 	CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall, 0x3),
532 	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall, 0x4),
533 	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall, 0x5),
534 	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall, 0x6),
535 
536 	/* Global events */
537 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1, 0x0),
538 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3, 0x1),
539 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5, 0x2),
540 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7, 0x3),
541 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1, 0x4),
542 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3, 0x5),
543 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5, 0x6),
544 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7, 0x7),
545 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation, 0x8),
546 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy, 0x9),
547 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full, 0xA),
548 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq, 0xB),
549 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs, 0xC),
550 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard, 0xD),
551 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_stall_tt_full, 0xE),
552 	CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot, 0xF),
553 	NULL
554 };
555 
556 static ssize_t cci5xx_pmu_global_event_show(struct device *dev,
557 				struct device_attribute *attr, char *buf)
558 {
559 	struct dev_ext_attribute *eattr = container_of(attr,
560 					struct dev_ext_attribute, attr);
561 	/* Global events have single fixed source code */
562 	return snprintf(buf, PAGE_SIZE, "event=0x%lx,source=0x%x\n",
563 				(unsigned long)eattr->var, CCI5xx_PORT_GLOBAL);
564 }
565 
566 /*
567  * CCI500 provides 8 independent event counters that can count
568  * any of the events available.
569  * CCI500 PMU event source ids
570  *	0x0-0x6 - Slave interfaces
571  *	0x8-0xD - Master interfaces
572  *	0xf     - Global Events
573  *	0x7,0xe - Reserved
574  */
575 static int cci500_validate_hw_event(struct cci_pmu *cci_pmu,
576 					unsigned long hw_event)
577 {
578 	u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event);
579 	u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event);
580 	int if_type;
581 
582 	if (hw_event & ~CCI5xx_PMU_EVENT_MASK)
583 		return -ENOENT;
584 
585 	switch (ev_source) {
586 	case CCI5xx_PORT_S0:
587 	case CCI5xx_PORT_S1:
588 	case CCI5xx_PORT_S2:
589 	case CCI5xx_PORT_S3:
590 	case CCI5xx_PORT_S4:
591 	case CCI5xx_PORT_S5:
592 	case CCI5xx_PORT_S6:
593 		if_type = CCI_IF_SLAVE;
594 		break;
595 	case CCI5xx_PORT_M0:
596 	case CCI5xx_PORT_M1:
597 	case CCI5xx_PORT_M2:
598 	case CCI5xx_PORT_M3:
599 	case CCI5xx_PORT_M4:
600 	case CCI5xx_PORT_M5:
601 		if_type = CCI_IF_MASTER;
602 		break;
603 	case CCI5xx_PORT_GLOBAL:
604 		if_type = CCI_IF_GLOBAL;
605 		break;
606 	default:
607 		return -ENOENT;
608 	}
609 
610 	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
611 		ev_code <= cci_pmu->model->event_ranges[if_type].max)
612 		return hw_event;
613 
614 	return -ENOENT;
615 }
616 
617 /*
618  * CCI550 provides 8 independent event counters that can count
619  * any of the events available.
620  * CCI550 PMU event source ids
621  *	0x0-0x6 - Slave interfaces
622  *	0x8-0xe - Master interfaces
623  *	0xf     - Global Events
624  *	0x7	- Reserved
625  */
626 static int cci550_validate_hw_event(struct cci_pmu *cci_pmu,
627 					unsigned long hw_event)
628 {
629 	u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event);
630 	u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event);
631 	int if_type;
632 
633 	if (hw_event & ~CCI5xx_PMU_EVENT_MASK)
634 		return -ENOENT;
635 
636 	switch (ev_source) {
637 	case CCI5xx_PORT_S0:
638 	case CCI5xx_PORT_S1:
639 	case CCI5xx_PORT_S2:
640 	case CCI5xx_PORT_S3:
641 	case CCI5xx_PORT_S4:
642 	case CCI5xx_PORT_S5:
643 	case CCI5xx_PORT_S6:
644 		if_type = CCI_IF_SLAVE;
645 		break;
646 	case CCI5xx_PORT_M0:
647 	case CCI5xx_PORT_M1:
648 	case CCI5xx_PORT_M2:
649 	case CCI5xx_PORT_M3:
650 	case CCI5xx_PORT_M4:
651 	case CCI5xx_PORT_M5:
652 	case CCI5xx_PORT_M6:
653 		if_type = CCI_IF_MASTER;
654 		break;
655 	case CCI5xx_PORT_GLOBAL:
656 		if_type = CCI_IF_GLOBAL;
657 		break;
658 	default:
659 		return -ENOENT;
660 	}
661 
662 	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
663 		ev_code <= cci_pmu->model->event_ranges[if_type].max)
664 		return hw_event;
665 
666 	return -ENOENT;
667 }
668 
669 #endif	/* CONFIG_ARM_CCI5xx_PMU */
670 
671 /*
672  * Program the CCI PMU counters which have PERF_HES_ARCH set
673  * with the event period and mark them ready before we enable
674  * PMU.
675  */
676 static void cci_pmu_sync_counters(struct cci_pmu *cci_pmu)
677 {
678 	int i;
679 	struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
680 
681 	DECLARE_BITMAP(mask, cci_pmu->num_cntrs);
682 
683 	bitmap_zero(mask, cci_pmu->num_cntrs);
684 	for_each_set_bit(i, cci_pmu->hw_events.used_mask, cci_pmu->num_cntrs) {
685 		struct perf_event *event = cci_hw->events[i];
686 
687 		if (WARN_ON(!event))
688 			continue;
689 
690 		/* Leave the events which are not counting */
691 		if (event->hw.state & PERF_HES_STOPPED)
692 			continue;
693 		if (event->hw.state & PERF_HES_ARCH) {
694 			set_bit(i, mask);
695 			event->hw.state &= ~PERF_HES_ARCH;
696 		}
697 	}
698 
699 	pmu_write_counters(cci_pmu, mask);
700 }
701 
702 /* Should be called with cci_pmu->hw_events->pmu_lock held */
703 static void __cci_pmu_enable_nosync(struct cci_pmu *cci_pmu)
704 {
705 	u32 val;
706 
707 	/* Enable all the PMU counters. */
708 	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
709 	writel(val, cci_ctrl_base + CCI_PMCR);
710 }
711 
712 /* Should be called with cci_pmu->hw_events->pmu_lock held */
713 static void __cci_pmu_enable_sync(struct cci_pmu *cci_pmu)
714 {
715 	cci_pmu_sync_counters(cci_pmu);
716 	__cci_pmu_enable_nosync(cci_pmu);
717 }
718 
719 /* Should be called with cci_pmu->hw_events->pmu_lock held */
720 static void __cci_pmu_disable(void)
721 {
722 	u32 val;
723 
724 	/* Disable all the PMU counters. */
725 	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
726 	writel(val, cci_ctrl_base + CCI_PMCR);
727 }
728 
729 static ssize_t cci_pmu_format_show(struct device *dev,
730 			struct device_attribute *attr, char *buf)
731 {
732 	struct dev_ext_attribute *eattr = container_of(attr,
733 				struct dev_ext_attribute, attr);
734 	return snprintf(buf, PAGE_SIZE, "%s\n", (char *)eattr->var);
735 }
736 
737 static ssize_t cci_pmu_event_show(struct device *dev,
738 			struct device_attribute *attr, char *buf)
739 {
740 	struct dev_ext_attribute *eattr = container_of(attr,
741 				struct dev_ext_attribute, attr);
742 	/* source parameter is mandatory for normal PMU events */
743 	return snprintf(buf, PAGE_SIZE, "source=?,event=0x%lx\n",
744 					 (unsigned long)eattr->var);
745 }
746 
747 static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
748 {
749 	return 0 <= idx && idx <= CCI_PMU_CNTR_LAST(cci_pmu);
750 }
751 
752 static u32 pmu_read_register(struct cci_pmu *cci_pmu, int idx, unsigned int offset)
753 {
754 	return readl_relaxed(cci_pmu->base +
755 			     CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
756 }
757 
758 static void pmu_write_register(struct cci_pmu *cci_pmu, u32 value,
759 			       int idx, unsigned int offset)
760 {
761 	writel_relaxed(value, cci_pmu->base +
762 		       CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
763 }
764 
765 static void pmu_disable_counter(struct cci_pmu *cci_pmu, int idx)
766 {
767 	pmu_write_register(cci_pmu, 0, idx, CCI_PMU_CNTR_CTRL);
768 }
769 
770 static void pmu_enable_counter(struct cci_pmu *cci_pmu, int idx)
771 {
772 	pmu_write_register(cci_pmu, 1, idx, CCI_PMU_CNTR_CTRL);
773 }
774 
775 static bool __maybe_unused
776 pmu_counter_is_enabled(struct cci_pmu *cci_pmu, int idx)
777 {
778 	return (pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR_CTRL) & 0x1) != 0;
779 }
780 
781 static void pmu_set_event(struct cci_pmu *cci_pmu, int idx, unsigned long event)
782 {
783 	pmu_write_register(cci_pmu, event, idx, CCI_PMU_EVT_SEL);
784 }
785 
786 /*
787  * For all counters on the CCI-PMU, disable any 'enabled' counters,
788  * saving the changed counters in the mask, so that we can restore
789  * it later using pmu_restore_counters. The mask is private to the
790  * caller. We cannot rely on the used_mask maintained by the CCI_PMU
791  * as it only tells us if the counter is assigned to perf_event or not.
792  * The state of the perf_event cannot be locked by the PMU layer, hence
793  * we check the individual counter status (which can be locked by
794  * cci_pm->hw_events->pmu_lock).
795  *
796  * @mask should be initialised to empty by the caller.
797  */
798 static void __maybe_unused
799 pmu_save_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
800 {
801 	int i;
802 
803 	for (i = 0; i < cci_pmu->num_cntrs; i++) {
804 		if (pmu_counter_is_enabled(cci_pmu, i)) {
805 			set_bit(i, mask);
806 			pmu_disable_counter(cci_pmu, i);
807 		}
808 	}
809 }
810 
811 /*
812  * Restore the status of the counters. Reversal of the pmu_save_counters().
813  * For each counter set in the mask, enable the counter back.
814  */
815 static void __maybe_unused
816 pmu_restore_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
817 {
818 	int i;
819 
820 	for_each_set_bit(i, mask, cci_pmu->num_cntrs)
821 		pmu_enable_counter(cci_pmu, i);
822 }
823 
824 /*
825  * Returns the number of programmable counters actually implemented
826  * by the cci
827  */
828 static u32 pmu_get_max_counters(void)
829 {
830 	return (readl_relaxed(cci_ctrl_base + CCI_PMCR) &
831 		CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
832 }
833 
834 static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
835 {
836 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
837 	unsigned long cci_event = event->hw.config_base;
838 	int idx;
839 
840 	if (cci_pmu->model->get_event_idx)
841 		return cci_pmu->model->get_event_idx(cci_pmu, hw, cci_event);
842 
843 	/* Generic code to find an unused idx from the mask */
844 	for(idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++)
845 		if (!test_and_set_bit(idx, hw->used_mask))
846 			return idx;
847 
848 	/* No counters available */
849 	return -EAGAIN;
850 }
851 
852 static int pmu_map_event(struct perf_event *event)
853 {
854 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
855 
856 	if (event->attr.type < PERF_TYPE_MAX ||
857 			!cci_pmu->model->validate_hw_event)
858 		return -ENOENT;
859 
860 	return	cci_pmu->model->validate_hw_event(cci_pmu, event->attr.config);
861 }
862 
863 static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
864 {
865 	int i;
866 	struct platform_device *pmu_device = cci_pmu->plat_device;
867 
868 	if (unlikely(!pmu_device))
869 		return -ENODEV;
870 
871 	if (cci_pmu->nr_irqs < 1) {
872 		dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
873 		return -ENODEV;
874 	}
875 
876 	/*
877 	 * Register all available CCI PMU interrupts. In the interrupt handler
878 	 * we iterate over the counters checking for interrupt source (the
879 	 * overflowing counter) and clear it.
880 	 *
881 	 * This should allow handling of non-unique interrupt for the counters.
882 	 */
883 	for (i = 0; i < cci_pmu->nr_irqs; i++) {
884 		int err = request_irq(cci_pmu->irqs[i], handler, IRQF_SHARED,
885 				"arm-cci-pmu", cci_pmu);
886 		if (err) {
887 			dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
888 				cci_pmu->irqs[i]);
889 			return err;
890 		}
891 
892 		set_bit(i, &cci_pmu->active_irqs);
893 	}
894 
895 	return 0;
896 }
897 
898 static void pmu_free_irq(struct cci_pmu *cci_pmu)
899 {
900 	int i;
901 
902 	for (i = 0; i < cci_pmu->nr_irqs; i++) {
903 		if (!test_and_clear_bit(i, &cci_pmu->active_irqs))
904 			continue;
905 
906 		free_irq(cci_pmu->irqs[i], cci_pmu);
907 	}
908 }
909 
910 static u32 pmu_read_counter(struct perf_event *event)
911 {
912 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
913 	struct hw_perf_event *hw_counter = &event->hw;
914 	int idx = hw_counter->idx;
915 	u32 value;
916 
917 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
918 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
919 		return 0;
920 	}
921 	value = pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR);
922 
923 	return value;
924 }
925 
926 static void pmu_write_counter(struct cci_pmu *cci_pmu, u32 value, int idx)
927 {
928 	pmu_write_register(cci_pmu, value, idx, CCI_PMU_CNTR);
929 }
930 
931 static void __pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
932 {
933 	int i;
934 	struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
935 
936 	for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
937 		struct perf_event *event = cci_hw->events[i];
938 
939 		if (WARN_ON(!event))
940 			continue;
941 		pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
942 	}
943 }
944 
945 static void pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
946 {
947 	if (cci_pmu->model->write_counters)
948 		cci_pmu->model->write_counters(cci_pmu, mask);
949 	else
950 		__pmu_write_counters(cci_pmu, mask);
951 }
952 
953 #ifdef CONFIG_ARM_CCI5xx_PMU
954 
955 /*
956  * CCI-500/CCI-550 has advanced power saving policies, which could gate the
957  * clocks to the PMU counters, which makes the writes to them ineffective.
958  * The only way to write to those counters is when the global counters
959  * are enabled and the particular counter is enabled.
960  *
961  * So we do the following :
962  *
963  * 1) Disable all the PMU counters, saving their current state
964  * 2) Enable the global PMU profiling, now that all counters are
965  *    disabled.
966  *
967  * For each counter to be programmed, repeat steps 3-7:
968  *
969  * 3) Write an invalid event code to the event control register for the
970       counter, so that the counters are not modified.
971  * 4) Enable the counter control for the counter.
972  * 5) Set the counter value
973  * 6) Disable the counter
974  * 7) Restore the event in the target counter
975  *
976  * 8) Disable the global PMU.
977  * 9) Restore the status of the rest of the counters.
978  *
979  * We choose an event which for CCI-5xx is guaranteed not to count.
980  * We use the highest possible event code (0x1f) for the master interface 0.
981  */
982 #define CCI5xx_INVALID_EVENT	((CCI5xx_PORT_M0 << CCI5xx_PMU_EVENT_SOURCE_SHIFT) | \
983 				 (CCI5xx_PMU_EVENT_CODE_MASK << CCI5xx_PMU_EVENT_CODE_SHIFT))
984 static void cci5xx_pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
985 {
986 	int i;
987 	DECLARE_BITMAP(saved_mask, cci_pmu->num_cntrs);
988 
989 	bitmap_zero(saved_mask, cci_pmu->num_cntrs);
990 	pmu_save_counters(cci_pmu, saved_mask);
991 
992 	/*
993 	 * Now that all the counters are disabled, we can safely turn the PMU on,
994 	 * without syncing the status of the counters
995 	 */
996 	__cci_pmu_enable_nosync(cci_pmu);
997 
998 	for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
999 		struct perf_event *event = cci_pmu->hw_events.events[i];
1000 
1001 		if (WARN_ON(!event))
1002 			continue;
1003 
1004 		pmu_set_event(cci_pmu, i, CCI5xx_INVALID_EVENT);
1005 		pmu_enable_counter(cci_pmu, i);
1006 		pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
1007 		pmu_disable_counter(cci_pmu, i);
1008 		pmu_set_event(cci_pmu, i, event->hw.config_base);
1009 	}
1010 
1011 	__cci_pmu_disable();
1012 
1013 	pmu_restore_counters(cci_pmu, saved_mask);
1014 }
1015 
1016 #endif	/* CONFIG_ARM_CCI5xx_PMU */
1017 
1018 static u64 pmu_event_update(struct perf_event *event)
1019 {
1020 	struct hw_perf_event *hwc = &event->hw;
1021 	u64 delta, prev_raw_count, new_raw_count;
1022 
1023 	do {
1024 		prev_raw_count = local64_read(&hwc->prev_count);
1025 		new_raw_count = pmu_read_counter(event);
1026 	} while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
1027 		 new_raw_count) != prev_raw_count);
1028 
1029 	delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK;
1030 
1031 	local64_add(delta, &event->count);
1032 
1033 	return new_raw_count;
1034 }
1035 
1036 static void pmu_read(struct perf_event *event)
1037 {
1038 	pmu_event_update(event);
1039 }
1040 
1041 static void pmu_event_set_period(struct perf_event *event)
1042 {
1043 	struct hw_perf_event *hwc = &event->hw;
1044 	/*
1045 	 * The CCI PMU counters have a period of 2^32. To account for the
1046 	 * possiblity of extreme interrupt latency we program for a period of
1047 	 * half that. Hopefully we can handle the interrupt before another 2^31
1048 	 * events occur and the counter overtakes its previous value.
1049 	 */
1050 	u64 val = 1ULL << 31;
1051 	local64_set(&hwc->prev_count, val);
1052 
1053 	/*
1054 	 * CCI PMU uses PERF_HES_ARCH to keep track of the counters, whose
1055 	 * values needs to be sync-ed with the s/w state before the PMU is
1056 	 * enabled.
1057 	 * Mark this counter for sync.
1058 	 */
1059 	hwc->state |= PERF_HES_ARCH;
1060 }
1061 
1062 static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
1063 {
1064 	unsigned long flags;
1065 	struct cci_pmu *cci_pmu = dev;
1066 	struct cci_pmu_hw_events *events = &cci_pmu->hw_events;
1067 	int idx, handled = IRQ_NONE;
1068 
1069 	raw_spin_lock_irqsave(&events->pmu_lock, flags);
1070 
1071 	/* Disable the PMU while we walk through the counters */
1072 	__cci_pmu_disable();
1073 	/*
1074 	 * Iterate over counters and update the corresponding perf events.
1075 	 * This should work regardless of whether we have per-counter overflow
1076 	 * interrupt or a combined overflow interrupt.
1077 	 */
1078 	for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
1079 		struct perf_event *event = events->events[idx];
1080 
1081 		if (!event)
1082 			continue;
1083 
1084 		/* Did this counter overflow? */
1085 		if (!(pmu_read_register(cci_pmu, idx, CCI_PMU_OVRFLW) &
1086 		      CCI_PMU_OVRFLW_FLAG))
1087 			continue;
1088 
1089 		pmu_write_register(cci_pmu, CCI_PMU_OVRFLW_FLAG, idx,
1090 							CCI_PMU_OVRFLW);
1091 
1092 		pmu_event_update(event);
1093 		pmu_event_set_period(event);
1094 		handled = IRQ_HANDLED;
1095 	}
1096 
1097 	/* Enable the PMU and sync possibly overflowed counters */
1098 	__cci_pmu_enable_sync(cci_pmu);
1099 	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1100 
1101 	return IRQ_RETVAL(handled);
1102 }
1103 
1104 static int cci_pmu_get_hw(struct cci_pmu *cci_pmu)
1105 {
1106 	int ret = pmu_request_irq(cci_pmu, pmu_handle_irq);
1107 	if (ret) {
1108 		pmu_free_irq(cci_pmu);
1109 		return ret;
1110 	}
1111 	return 0;
1112 }
1113 
1114 static void cci_pmu_put_hw(struct cci_pmu *cci_pmu)
1115 {
1116 	pmu_free_irq(cci_pmu);
1117 }
1118 
1119 static void hw_perf_event_destroy(struct perf_event *event)
1120 {
1121 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1122 	atomic_t *active_events = &cci_pmu->active_events;
1123 	struct mutex *reserve_mutex = &cci_pmu->reserve_mutex;
1124 
1125 	if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) {
1126 		cci_pmu_put_hw(cci_pmu);
1127 		mutex_unlock(reserve_mutex);
1128 	}
1129 }
1130 
1131 static void cci_pmu_enable(struct pmu *pmu)
1132 {
1133 	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1134 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1135 	int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_cntrs);
1136 	unsigned long flags;
1137 
1138 	if (!enabled)
1139 		return;
1140 
1141 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1142 	__cci_pmu_enable_sync(cci_pmu);
1143 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1144 
1145 }
1146 
1147 static void cci_pmu_disable(struct pmu *pmu)
1148 {
1149 	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1150 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1151 	unsigned long flags;
1152 
1153 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1154 	__cci_pmu_disable();
1155 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1156 }
1157 
1158 /*
1159  * Check if the idx represents a non-programmable counter.
1160  * All the fixed event counters are mapped before the programmable
1161  * counters.
1162  */
1163 static bool pmu_fixed_hw_idx(struct cci_pmu *cci_pmu, int idx)
1164 {
1165 	return (idx >= 0) && (idx < cci_pmu->model->fixed_hw_cntrs);
1166 }
1167 
1168 static void cci_pmu_start(struct perf_event *event, int pmu_flags)
1169 {
1170 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1171 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1172 	struct hw_perf_event *hwc = &event->hw;
1173 	int idx = hwc->idx;
1174 	unsigned long flags;
1175 
1176 	/*
1177 	 * To handle interrupt latency, we always reprogram the period
1178 	 * regardlesss of PERF_EF_RELOAD.
1179 	 */
1180 	if (pmu_flags & PERF_EF_RELOAD)
1181 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
1182 
1183 	hwc->state = 0;
1184 
1185 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
1186 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
1187 		return;
1188 	}
1189 
1190 	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
1191 
1192 	/* Configure the counter unless you are counting a fixed event */
1193 	if (!pmu_fixed_hw_idx(cci_pmu, idx))
1194 		pmu_set_event(cci_pmu, idx, hwc->config_base);
1195 
1196 	pmu_event_set_period(event);
1197 	pmu_enable_counter(cci_pmu, idx);
1198 
1199 	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
1200 }
1201 
1202 static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
1203 {
1204 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1205 	struct hw_perf_event *hwc = &event->hw;
1206 	int idx = hwc->idx;
1207 
1208 	if (hwc->state & PERF_HES_STOPPED)
1209 		return;
1210 
1211 	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
1212 		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
1213 		return;
1214 	}
1215 
1216 	/*
1217 	 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
1218 	 * cci_pmu_start()
1219 	 */
1220 	pmu_disable_counter(cci_pmu, idx);
1221 	pmu_event_update(event);
1222 	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1223 }
1224 
1225 static int cci_pmu_add(struct perf_event *event, int flags)
1226 {
1227 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1228 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1229 	struct hw_perf_event *hwc = &event->hw;
1230 	int idx;
1231 	int err = 0;
1232 
1233 	perf_pmu_disable(event->pmu);
1234 
1235 	/* If we don't have a space for the counter then finish early. */
1236 	idx = pmu_get_event_idx(hw_events, event);
1237 	if (idx < 0) {
1238 		err = idx;
1239 		goto out;
1240 	}
1241 
1242 	event->hw.idx = idx;
1243 	hw_events->events[idx] = event;
1244 
1245 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1246 	if (flags & PERF_EF_START)
1247 		cci_pmu_start(event, PERF_EF_RELOAD);
1248 
1249 	/* Propagate our changes to the userspace mapping. */
1250 	perf_event_update_userpage(event);
1251 
1252 out:
1253 	perf_pmu_enable(event->pmu);
1254 	return err;
1255 }
1256 
1257 static void cci_pmu_del(struct perf_event *event, int flags)
1258 {
1259 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1260 	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1261 	struct hw_perf_event *hwc = &event->hw;
1262 	int idx = hwc->idx;
1263 
1264 	cci_pmu_stop(event, PERF_EF_UPDATE);
1265 	hw_events->events[idx] = NULL;
1266 	clear_bit(idx, hw_events->used_mask);
1267 
1268 	perf_event_update_userpage(event);
1269 }
1270 
1271 static int
1272 validate_event(struct pmu *cci_pmu,
1273                struct cci_pmu_hw_events *hw_events,
1274                struct perf_event *event)
1275 {
1276 	if (is_software_event(event))
1277 		return 1;
1278 
1279 	/*
1280 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
1281 	 * core perf code won't check that the pmu->ctx == leader->ctx
1282 	 * until after pmu->event_init(event).
1283 	 */
1284 	if (event->pmu != cci_pmu)
1285 		return 0;
1286 
1287 	if (event->state < PERF_EVENT_STATE_OFF)
1288 		return 1;
1289 
1290 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
1291 		return 1;
1292 
1293 	return pmu_get_event_idx(hw_events, event) >= 0;
1294 }
1295 
1296 static int
1297 validate_group(struct perf_event *event)
1298 {
1299 	struct perf_event *sibling, *leader = event->group_leader;
1300 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1301 	unsigned long mask[BITS_TO_LONGS(cci_pmu->num_cntrs)];
1302 	struct cci_pmu_hw_events fake_pmu = {
1303 		/*
1304 		 * Initialise the fake PMU. We only need to populate the
1305 		 * used_mask for the purposes of validation.
1306 		 */
1307 		.used_mask = mask,
1308 	};
1309 	memset(mask, 0, BITS_TO_LONGS(cci_pmu->num_cntrs) * sizeof(unsigned long));
1310 
1311 	if (!validate_event(event->pmu, &fake_pmu, leader))
1312 		return -EINVAL;
1313 
1314 	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
1315 		if (!validate_event(event->pmu, &fake_pmu, sibling))
1316 			return -EINVAL;
1317 	}
1318 
1319 	if (!validate_event(event->pmu, &fake_pmu, event))
1320 		return -EINVAL;
1321 
1322 	return 0;
1323 }
1324 
1325 static int
1326 __hw_perf_event_init(struct perf_event *event)
1327 {
1328 	struct hw_perf_event *hwc = &event->hw;
1329 	int mapping;
1330 
1331 	mapping = pmu_map_event(event);
1332 
1333 	if (mapping < 0) {
1334 		pr_debug("event %x:%llx not supported\n", event->attr.type,
1335 			 event->attr.config);
1336 		return mapping;
1337 	}
1338 
1339 	/*
1340 	 * We don't assign an index until we actually place the event onto
1341 	 * hardware. Use -1 to signify that we haven't decided where to put it
1342 	 * yet.
1343 	 */
1344 	hwc->idx		= -1;
1345 	hwc->config_base	= 0;
1346 	hwc->config		= 0;
1347 	hwc->event_base		= 0;
1348 
1349 	/*
1350 	 * Store the event encoding into the config_base field.
1351 	 */
1352 	hwc->config_base	    |= (unsigned long)mapping;
1353 
1354 	/*
1355 	 * Limit the sample_period to half of the counter width. That way, the
1356 	 * new counter value is far less likely to overtake the previous one
1357 	 * unless you have some serious IRQ latency issues.
1358 	 */
1359 	hwc->sample_period  = CCI_PMU_CNTR_MASK >> 1;
1360 	hwc->last_period    = hwc->sample_period;
1361 	local64_set(&hwc->period_left, hwc->sample_period);
1362 
1363 	if (event->group_leader != event) {
1364 		if (validate_group(event) != 0)
1365 			return -EINVAL;
1366 	}
1367 
1368 	return 0;
1369 }
1370 
1371 static int cci_pmu_event_init(struct perf_event *event)
1372 {
1373 	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1374 	atomic_t *active_events = &cci_pmu->active_events;
1375 	int err = 0;
1376 	int cpu;
1377 
1378 	if (event->attr.type != event->pmu->type)
1379 		return -ENOENT;
1380 
1381 	/* Shared by all CPUs, no meaningful state to sample */
1382 	if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
1383 		return -EOPNOTSUPP;
1384 
1385 	/* We have no filtering of any kind */
1386 	if (event->attr.exclude_user	||
1387 	    event->attr.exclude_kernel	||
1388 	    event->attr.exclude_hv	||
1389 	    event->attr.exclude_idle	||
1390 	    event->attr.exclude_host	||
1391 	    event->attr.exclude_guest)
1392 		return -EINVAL;
1393 
1394 	/*
1395 	 * Following the example set by other "uncore" PMUs, we accept any CPU
1396 	 * and rewrite its affinity dynamically rather than having perf core
1397 	 * handle cpu == -1 and pid == -1 for this case.
1398 	 *
1399 	 * The perf core will pin online CPUs for the duration of this call and
1400 	 * the event being installed into its context, so the PMU's CPU can't
1401 	 * change under our feet.
1402 	 */
1403 	cpu = cpumask_first(&cci_pmu->cpus);
1404 	if (event->cpu < 0 || cpu < 0)
1405 		return -EINVAL;
1406 	event->cpu = cpu;
1407 
1408 	event->destroy = hw_perf_event_destroy;
1409 	if (!atomic_inc_not_zero(active_events)) {
1410 		mutex_lock(&cci_pmu->reserve_mutex);
1411 		if (atomic_read(active_events) == 0)
1412 			err = cci_pmu_get_hw(cci_pmu);
1413 		if (!err)
1414 			atomic_inc(active_events);
1415 		mutex_unlock(&cci_pmu->reserve_mutex);
1416 	}
1417 	if (err)
1418 		return err;
1419 
1420 	err = __hw_perf_event_init(event);
1421 	if (err)
1422 		hw_perf_event_destroy(event);
1423 
1424 	return err;
1425 }
1426 
1427 static ssize_t pmu_cpumask_attr_show(struct device *dev,
1428 				     struct device_attribute *attr, char *buf)
1429 {
1430 	struct pmu *pmu = dev_get_drvdata(dev);
1431 	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
1432 
1433 	int n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
1434 			  cpumask_pr_args(&cci_pmu->cpus));
1435 	buf[n++] = '\n';
1436 	buf[n] = '\0';
1437 	return n;
1438 }
1439 
1440 static struct device_attribute pmu_cpumask_attr =
1441 	__ATTR(cpumask, S_IRUGO, pmu_cpumask_attr_show, NULL);
1442 
1443 static struct attribute *pmu_attrs[] = {
1444 	&pmu_cpumask_attr.attr,
1445 	NULL,
1446 };
1447 
1448 static struct attribute_group pmu_attr_group = {
1449 	.attrs = pmu_attrs,
1450 };
1451 
1452 static struct attribute_group pmu_format_attr_group = {
1453 	.name = "format",
1454 	.attrs = NULL,		/* Filled in cci_pmu_init_attrs */
1455 };
1456 
1457 static struct attribute_group pmu_event_attr_group = {
1458 	.name = "events",
1459 	.attrs = NULL,		/* Filled in cci_pmu_init_attrs */
1460 };
1461 
1462 static const struct attribute_group *pmu_attr_groups[] = {
1463 	&pmu_attr_group,
1464 	&pmu_format_attr_group,
1465 	&pmu_event_attr_group,
1466 	NULL
1467 };
1468 
1469 static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
1470 {
1471 	const struct cci_pmu_model *model = cci_pmu->model;
1472 	char *name = model->name;
1473 	u32 num_cntrs;
1474 
1475 	pmu_event_attr_group.attrs = model->event_attrs;
1476 	pmu_format_attr_group.attrs = model->format_attrs;
1477 
1478 	cci_pmu->pmu = (struct pmu) {
1479 		.name		= cci_pmu->model->name,
1480 		.task_ctx_nr	= perf_invalid_context,
1481 		.pmu_enable	= cci_pmu_enable,
1482 		.pmu_disable	= cci_pmu_disable,
1483 		.event_init	= cci_pmu_event_init,
1484 		.add		= cci_pmu_add,
1485 		.del		= cci_pmu_del,
1486 		.start		= cci_pmu_start,
1487 		.stop		= cci_pmu_stop,
1488 		.read		= pmu_read,
1489 		.attr_groups	= pmu_attr_groups,
1490 	};
1491 
1492 	cci_pmu->plat_device = pdev;
1493 	num_cntrs = pmu_get_max_counters();
1494 	if (num_cntrs > cci_pmu->model->num_hw_cntrs) {
1495 		dev_warn(&pdev->dev,
1496 			"PMU implements more counters(%d) than supported by"
1497 			" the model(%d), truncated.",
1498 			num_cntrs, cci_pmu->model->num_hw_cntrs);
1499 		num_cntrs = cci_pmu->model->num_hw_cntrs;
1500 	}
1501 	cci_pmu->num_cntrs = num_cntrs + cci_pmu->model->fixed_hw_cntrs;
1502 
1503 	return perf_pmu_register(&cci_pmu->pmu, name, -1);
1504 }
1505 
1506 static int cci_pmu_offline_cpu(unsigned int cpu, struct hlist_node *node)
1507 {
1508 	struct cci_pmu *cci_pmu = hlist_entry_safe(node, struct cci_pmu, node);
1509 	unsigned int target;
1510 
1511 	if (!cpumask_test_and_clear_cpu(cpu, &cci_pmu->cpus))
1512 		return 0;
1513 	target = cpumask_any_but(cpu_online_mask, cpu);
1514 	if (target >= nr_cpu_ids)
1515 		return 0;
1516 	/*
1517 	 * TODO: migrate context once core races on event->ctx have
1518 	 * been fixed.
1519 	 */
1520 	cpumask_set_cpu(target, &cci_pmu->cpus);
1521 	return 0;
1522 }
1523 
1524 static struct cci_pmu_model cci_pmu_models[] = {
1525 #ifdef CONFIG_ARM_CCI400_PMU
1526 	[CCI400_R0] = {
1527 		.name = "CCI_400",
1528 		.fixed_hw_cntrs = 1,	/* Cycle counter */
1529 		.num_hw_cntrs = 4,
1530 		.cntr_size = SZ_4K,
1531 		.format_attrs = cci400_pmu_format_attrs,
1532 		.event_attrs = cci400_r0_pmu_event_attrs,
1533 		.event_ranges = {
1534 			[CCI_IF_SLAVE] = {
1535 				CCI400_R0_SLAVE_PORT_MIN_EV,
1536 				CCI400_R0_SLAVE_PORT_MAX_EV,
1537 			},
1538 			[CCI_IF_MASTER] = {
1539 				CCI400_R0_MASTER_PORT_MIN_EV,
1540 				CCI400_R0_MASTER_PORT_MAX_EV,
1541 			},
1542 		},
1543 		.validate_hw_event = cci400_validate_hw_event,
1544 		.get_event_idx = cci400_get_event_idx,
1545 	},
1546 	[CCI400_R1] = {
1547 		.name = "CCI_400_r1",
1548 		.fixed_hw_cntrs = 1,	/* Cycle counter */
1549 		.num_hw_cntrs = 4,
1550 		.cntr_size = SZ_4K,
1551 		.format_attrs = cci400_pmu_format_attrs,
1552 		.event_attrs = cci400_r1_pmu_event_attrs,
1553 		.event_ranges = {
1554 			[CCI_IF_SLAVE] = {
1555 				CCI400_R1_SLAVE_PORT_MIN_EV,
1556 				CCI400_R1_SLAVE_PORT_MAX_EV,
1557 			},
1558 			[CCI_IF_MASTER] = {
1559 				CCI400_R1_MASTER_PORT_MIN_EV,
1560 				CCI400_R1_MASTER_PORT_MAX_EV,
1561 			},
1562 		},
1563 		.validate_hw_event = cci400_validate_hw_event,
1564 		.get_event_idx = cci400_get_event_idx,
1565 	},
1566 #endif
1567 #ifdef CONFIG_ARM_CCI5xx_PMU
1568 	[CCI500_R0] = {
1569 		.name = "CCI_500",
1570 		.fixed_hw_cntrs = 0,
1571 		.num_hw_cntrs = 8,
1572 		.cntr_size = SZ_64K,
1573 		.format_attrs = cci5xx_pmu_format_attrs,
1574 		.event_attrs = cci5xx_pmu_event_attrs,
1575 		.event_ranges = {
1576 			[CCI_IF_SLAVE] = {
1577 				CCI5xx_SLAVE_PORT_MIN_EV,
1578 				CCI5xx_SLAVE_PORT_MAX_EV,
1579 			},
1580 			[CCI_IF_MASTER] = {
1581 				CCI5xx_MASTER_PORT_MIN_EV,
1582 				CCI5xx_MASTER_PORT_MAX_EV,
1583 			},
1584 			[CCI_IF_GLOBAL] = {
1585 				CCI5xx_GLOBAL_PORT_MIN_EV,
1586 				CCI5xx_GLOBAL_PORT_MAX_EV,
1587 			},
1588 		},
1589 		.validate_hw_event = cci500_validate_hw_event,
1590 		.write_counters	= cci5xx_pmu_write_counters,
1591 	},
1592 	[CCI550_R0] = {
1593 		.name = "CCI_550",
1594 		.fixed_hw_cntrs = 0,
1595 		.num_hw_cntrs = 8,
1596 		.cntr_size = SZ_64K,
1597 		.format_attrs = cci5xx_pmu_format_attrs,
1598 		.event_attrs = cci5xx_pmu_event_attrs,
1599 		.event_ranges = {
1600 			[CCI_IF_SLAVE] = {
1601 				CCI5xx_SLAVE_PORT_MIN_EV,
1602 				CCI5xx_SLAVE_PORT_MAX_EV,
1603 			},
1604 			[CCI_IF_MASTER] = {
1605 				CCI5xx_MASTER_PORT_MIN_EV,
1606 				CCI5xx_MASTER_PORT_MAX_EV,
1607 			},
1608 			[CCI_IF_GLOBAL] = {
1609 				CCI5xx_GLOBAL_PORT_MIN_EV,
1610 				CCI5xx_GLOBAL_PORT_MAX_EV,
1611 			},
1612 		},
1613 		.validate_hw_event = cci550_validate_hw_event,
1614 		.write_counters	= cci5xx_pmu_write_counters,
1615 	},
1616 #endif
1617 };
1618 
1619 static const struct of_device_id arm_cci_pmu_matches[] = {
1620 #ifdef CONFIG_ARM_CCI400_PMU
1621 	{
1622 		.compatible = "arm,cci-400-pmu",
1623 		.data	= NULL,
1624 	},
1625 	{
1626 		.compatible = "arm,cci-400-pmu,r0",
1627 		.data	= &cci_pmu_models[CCI400_R0],
1628 	},
1629 	{
1630 		.compatible = "arm,cci-400-pmu,r1",
1631 		.data	= &cci_pmu_models[CCI400_R1],
1632 	},
1633 #endif
1634 #ifdef CONFIG_ARM_CCI5xx_PMU
1635 	{
1636 		.compatible = "arm,cci-500-pmu,r0",
1637 		.data = &cci_pmu_models[CCI500_R0],
1638 	},
1639 	{
1640 		.compatible = "arm,cci-550-pmu,r0",
1641 		.data = &cci_pmu_models[CCI550_R0],
1642 	},
1643 #endif
1644 	{},
1645 };
1646 
1647 static inline const struct cci_pmu_model *get_cci_model(struct platform_device *pdev)
1648 {
1649 	const struct of_device_id *match = of_match_node(arm_cci_pmu_matches,
1650 							pdev->dev.of_node);
1651 	if (!match)
1652 		return NULL;
1653 	if (match->data)
1654 		return match->data;
1655 
1656 	dev_warn(&pdev->dev, "DEPRECATED compatible property,"
1657 			 "requires secure access to CCI registers");
1658 	return probe_cci_model(pdev);
1659 }
1660 
1661 static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
1662 {
1663 	int i;
1664 
1665 	for (i = 0; i < nr_irqs; i++)
1666 		if (irq == irqs[i])
1667 			return true;
1668 
1669 	return false;
1670 }
1671 
1672 static struct cci_pmu *cci_pmu_alloc(struct platform_device *pdev)
1673 {
1674 	struct cci_pmu *cci_pmu;
1675 	const struct cci_pmu_model *model;
1676 
1677 	/*
1678 	 * All allocations are devm_* hence we don't have to free
1679 	 * them explicitly on an error, as it would end up in driver
1680 	 * detach.
1681 	 */
1682 	model = get_cci_model(pdev);
1683 	if (!model) {
1684 		dev_warn(&pdev->dev, "CCI PMU version not supported\n");
1685 		return ERR_PTR(-ENODEV);
1686 	}
1687 
1688 	cci_pmu = devm_kzalloc(&pdev->dev, sizeof(*cci_pmu), GFP_KERNEL);
1689 	if (!cci_pmu)
1690 		return ERR_PTR(-ENOMEM);
1691 
1692 	cci_pmu->model = model;
1693 	cci_pmu->irqs = devm_kcalloc(&pdev->dev, CCI_PMU_MAX_HW_CNTRS(model),
1694 					sizeof(*cci_pmu->irqs), GFP_KERNEL);
1695 	if (!cci_pmu->irqs)
1696 		return ERR_PTR(-ENOMEM);
1697 	cci_pmu->hw_events.events = devm_kcalloc(&pdev->dev,
1698 					     CCI_PMU_MAX_HW_CNTRS(model),
1699 					     sizeof(*cci_pmu->hw_events.events),
1700 					     GFP_KERNEL);
1701 	if (!cci_pmu->hw_events.events)
1702 		return ERR_PTR(-ENOMEM);
1703 	cci_pmu->hw_events.used_mask = devm_kcalloc(&pdev->dev,
1704 						BITS_TO_LONGS(CCI_PMU_MAX_HW_CNTRS(model)),
1705 						sizeof(*cci_pmu->hw_events.used_mask),
1706 						GFP_KERNEL);
1707 	if (!cci_pmu->hw_events.used_mask)
1708 		return ERR_PTR(-ENOMEM);
1709 
1710 	return cci_pmu;
1711 }
1712 
1713 
1714 static int cci_pmu_probe(struct platform_device *pdev)
1715 {
1716 	struct resource *res;
1717 	struct cci_pmu *cci_pmu;
1718 	int i, ret, irq;
1719 
1720 	cci_pmu = cci_pmu_alloc(pdev);
1721 	if (IS_ERR(cci_pmu))
1722 		return PTR_ERR(cci_pmu);
1723 
1724 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1725 	cci_pmu->base = devm_ioremap_resource(&pdev->dev, res);
1726 	if (IS_ERR(cci_pmu->base))
1727 		return -ENOMEM;
1728 
1729 	/*
1730 	 * CCI PMU has one overflow interrupt per counter; but some may be tied
1731 	 * together to a common interrupt.
1732 	 */
1733 	cci_pmu->nr_irqs = 0;
1734 	for (i = 0; i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model); i++) {
1735 		irq = platform_get_irq(pdev, i);
1736 		if (irq < 0)
1737 			break;
1738 
1739 		if (is_duplicate_irq(irq, cci_pmu->irqs, cci_pmu->nr_irqs))
1740 			continue;
1741 
1742 		cci_pmu->irqs[cci_pmu->nr_irqs++] = irq;
1743 	}
1744 
1745 	/*
1746 	 * Ensure that the device tree has as many interrupts as the number
1747 	 * of counters.
1748 	 */
1749 	if (i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)) {
1750 		dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
1751 			i, CCI_PMU_MAX_HW_CNTRS(cci_pmu->model));
1752 		return -EINVAL;
1753 	}
1754 
1755 	raw_spin_lock_init(&cci_pmu->hw_events.pmu_lock);
1756 	mutex_init(&cci_pmu->reserve_mutex);
1757 	atomic_set(&cci_pmu->active_events, 0);
1758 	cpumask_set_cpu(get_cpu(), &cci_pmu->cpus);
1759 
1760 	ret = cci_pmu_init(cci_pmu, pdev);
1761 	if (ret) {
1762 		put_cpu();
1763 		return ret;
1764 	}
1765 
1766 	cpuhp_state_add_instance_nocalls(CPUHP_AP_PERF_ARM_CCI_ONLINE,
1767 					 &cci_pmu->node);
1768 	put_cpu();
1769 	pr_info("ARM %s PMU driver probed", cci_pmu->model->name);
1770 	return 0;
1771 }
1772 
1773 static int cci_platform_probe(struct platform_device *pdev)
1774 {
1775 	if (!cci_probed())
1776 		return -ENODEV;
1777 
1778 	return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
1779 }
1780 
1781 static struct platform_driver cci_pmu_driver = {
1782 	.driver = {
1783 		   .name = DRIVER_NAME_PMU,
1784 		   .of_match_table = arm_cci_pmu_matches,
1785 		  },
1786 	.probe = cci_pmu_probe,
1787 };
1788 
1789 static struct platform_driver cci_platform_driver = {
1790 	.driver = {
1791 		   .name = DRIVER_NAME,
1792 		   .of_match_table = arm_cci_matches,
1793 		  },
1794 	.probe = cci_platform_probe,
1795 };
1796 
1797 static int __init cci_platform_init(void)
1798 {
1799 	int ret;
1800 
1801 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_CCI_ONLINE,
1802 				      "perf/arm/cci:online", NULL,
1803 				      cci_pmu_offline_cpu);
1804 	if (ret)
1805 		return ret;
1806 
1807 	ret = platform_driver_register(&cci_pmu_driver);
1808 	if (ret)
1809 		return ret;
1810 
1811 	return platform_driver_register(&cci_platform_driver);
1812 }
1813 
1814 #else /* !CONFIG_ARM_CCI_PMU */
1815 
1816 static int __init cci_platform_init(void)
1817 {
1818 	return 0;
1819 }
1820 
1821 #endif /* CONFIG_ARM_CCI_PMU */
1822 
1823 #ifdef CONFIG_ARM_CCI400_PORT_CTRL
1824 
1825 #define CCI_PORT_CTRL		0x0
1826 #define CCI_CTRL_STATUS		0xc
1827 
1828 #define CCI_ENABLE_SNOOP_REQ	0x1
1829 #define CCI_ENABLE_DVM_REQ	0x2
1830 #define CCI_ENABLE_REQ		(CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
1831 
1832 enum cci_ace_port_type {
1833 	ACE_INVALID_PORT = 0x0,
1834 	ACE_PORT,
1835 	ACE_LITE_PORT,
1836 };
1837 
1838 struct cci_ace_port {
1839 	void __iomem *base;
1840 	unsigned long phys;
1841 	enum cci_ace_port_type type;
1842 	struct device_node *dn;
1843 };
1844 
1845 static struct cci_ace_port *ports;
1846 static unsigned int nb_cci_ports;
1847 
1848 struct cpu_port {
1849 	u64 mpidr;
1850 	u32 port;
1851 };
1852 
1853 /*
1854  * Use the port MSB as valid flag, shift can be made dynamic
1855  * by computing number of bits required for port indexes.
1856  * Code disabling CCI cpu ports runs with D-cache invalidated
1857  * and SCTLR bit clear so data accesses must be kept to a minimum
1858  * to improve performance; for now shift is left static to
1859  * avoid one more data access while disabling the CCI port.
1860  */
1861 #define PORT_VALID_SHIFT	31
1862 #define PORT_VALID		(0x1 << PORT_VALID_SHIFT)
1863 
1864 static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr)
1865 {
1866 	port->port = PORT_VALID | index;
1867 	port->mpidr = mpidr;
1868 }
1869 
1870 static inline bool cpu_port_is_valid(struct cpu_port *port)
1871 {
1872 	return !!(port->port & PORT_VALID);
1873 }
1874 
1875 static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr)
1876 {
1877 	return port->mpidr == (mpidr & MPIDR_HWID_BITMASK);
1878 }
1879 
1880 static struct cpu_port cpu_port[NR_CPUS];
1881 
1882 /**
1883  * __cci_ace_get_port - Function to retrieve the port index connected to
1884  *			a cpu or device.
1885  *
1886  * @dn: device node of the device to look-up
1887  * @type: port type
1888  *
1889  * Return value:
1890  *	- CCI port index if success
1891  *	- -ENODEV if failure
1892  */
1893 static int __cci_ace_get_port(struct device_node *dn, int type)
1894 {
1895 	int i;
1896 	bool ace_match;
1897 	struct device_node *cci_portn;
1898 
1899 	cci_portn = of_parse_phandle(dn, "cci-control-port", 0);
1900 	for (i = 0; i < nb_cci_ports; i++) {
1901 		ace_match = ports[i].type == type;
1902 		if (ace_match && cci_portn == ports[i].dn)
1903 			return i;
1904 	}
1905 	return -ENODEV;
1906 }
1907 
1908 int cci_ace_get_port(struct device_node *dn)
1909 {
1910 	return __cci_ace_get_port(dn, ACE_LITE_PORT);
1911 }
1912 EXPORT_SYMBOL_GPL(cci_ace_get_port);
1913 
1914 static void cci_ace_init_ports(void)
1915 {
1916 	int port, cpu;
1917 	struct device_node *cpun;
1918 
1919 	/*
1920 	 * Port index look-up speeds up the function disabling ports by CPU,
1921 	 * since the logical to port index mapping is done once and does
1922 	 * not change after system boot.
1923 	 * The stashed index array is initialized for all possible CPUs
1924 	 * at probe time.
1925 	 */
1926 	for_each_possible_cpu(cpu) {
1927 		/* too early to use cpu->of_node */
1928 		cpun = of_get_cpu_node(cpu, NULL);
1929 
1930 		if (WARN(!cpun, "Missing cpu device node\n"))
1931 			continue;
1932 
1933 		port = __cci_ace_get_port(cpun, ACE_PORT);
1934 		if (port < 0)
1935 			continue;
1936 
1937 		init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu));
1938 	}
1939 
1940 	for_each_possible_cpu(cpu) {
1941 		WARN(!cpu_port_is_valid(&cpu_port[cpu]),
1942 			"CPU %u does not have an associated CCI port\n",
1943 			cpu);
1944 	}
1945 }
1946 /*
1947  * Functions to enable/disable a CCI interconnect slave port
1948  *
1949  * They are called by low-level power management code to disable slave
1950  * interfaces snoops and DVM broadcast.
1951  * Since they may execute with cache data allocation disabled and
1952  * after the caches have been cleaned and invalidated the functions provide
1953  * no explicit locking since they may run with D-cache disabled, so normal
1954  * cacheable kernel locks based on ldrex/strex may not work.
1955  * Locking has to be provided by BSP implementations to ensure proper
1956  * operations.
1957  */
1958 
1959 /**
1960  * cci_port_control() - function to control a CCI port
1961  *
1962  * @port: index of the port to setup
1963  * @enable: if true enables the port, if false disables it
1964  */
1965 static void notrace cci_port_control(unsigned int port, bool enable)
1966 {
1967 	void __iomem *base = ports[port].base;
1968 
1969 	writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL);
1970 	/*
1971 	 * This function is called from power down procedures
1972 	 * and must not execute any instruction that might
1973 	 * cause the processor to be put in a quiescent state
1974 	 * (eg wfi). Hence, cpu_relax() can not be added to this
1975 	 * read loop to optimize power, since it might hide possibly
1976 	 * disruptive operations.
1977 	 */
1978 	while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1)
1979 			;
1980 }
1981 
1982 /**
1983  * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
1984  *			       reference
1985  *
1986  * @mpidr: mpidr of the CPU whose CCI port should be disabled
1987  *
1988  * Disabling a CCI port for a CPU implies disabling the CCI port
1989  * controlling that CPU cluster. Code disabling CPU CCI ports
1990  * must make sure that the CPU running the code is the last active CPU
1991  * in the cluster ie all other CPUs are quiescent in a low power state.
1992  *
1993  * Return:
1994  *	0 on success
1995  *	-ENODEV on port look-up failure
1996  */
1997 int notrace cci_disable_port_by_cpu(u64 mpidr)
1998 {
1999 	int cpu;
2000 	bool is_valid;
2001 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
2002 		is_valid = cpu_port_is_valid(&cpu_port[cpu]);
2003 		if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) {
2004 			cci_port_control(cpu_port[cpu].port, false);
2005 			return 0;
2006 		}
2007 	}
2008 	return -ENODEV;
2009 }
2010 EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu);
2011 
2012 /**
2013  * cci_enable_port_for_self() - enable a CCI port for calling CPU
2014  *
2015  * Enabling a CCI port for the calling CPU implies enabling the CCI
2016  * port controlling that CPU's cluster. Caller must make sure that the
2017  * CPU running the code is the first active CPU in the cluster and all
2018  * other CPUs are quiescent in a low power state  or waiting for this CPU
2019  * to complete the CCI initialization.
2020  *
2021  * Because this is called when the MMU is still off and with no stack,
2022  * the code must be position independent and ideally rely on callee
2023  * clobbered registers only.  To achieve this we must code this function
2024  * entirely in assembler.
2025  *
2026  * On success this returns with the proper CCI port enabled.  In case of
2027  * any failure this never returns as the inability to enable the CCI is
2028  * fatal and there is no possible recovery at this stage.
2029  */
2030 asmlinkage void __naked cci_enable_port_for_self(void)
2031 {
2032 	asm volatile ("\n"
2033 "	.arch armv7-a\n"
2034 "	mrc	p15, 0, r0, c0, c0, 5	@ get MPIDR value \n"
2035 "	and	r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n"
2036 "	adr	r1, 5f \n"
2037 "	ldr	r2, [r1] \n"
2038 "	add	r1, r1, r2		@ &cpu_port \n"
2039 "	add	ip, r1, %[sizeof_cpu_port] \n"
2040 
2041 	/* Loop over the cpu_port array looking for a matching MPIDR */
2042 "1:	ldr	r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
2043 "	cmp	r2, r0 			@ compare MPIDR \n"
2044 "	bne	2f \n"
2045 
2046 	/* Found a match, now test port validity */
2047 "	ldr	r3, [r1, %[offsetof_cpu_port_port]] \n"
2048 "	tst	r3, #"__stringify(PORT_VALID)" \n"
2049 "	bne	3f \n"
2050 
2051 	/* no match, loop with the next cpu_port entry */
2052 "2:	add	r1, r1, %[sizeof_struct_cpu_port] \n"
2053 "	cmp	r1, ip			@ done? \n"
2054 "	blo	1b \n"
2055 
2056 	/* CCI port not found -- cheaply try to stall this CPU */
2057 "cci_port_not_found: \n"
2058 "	wfi \n"
2059 "	wfe \n"
2060 "	b	cci_port_not_found \n"
2061 
2062 	/* Use matched port index to look up the corresponding ports entry */
2063 "3:	bic	r3, r3, #"__stringify(PORT_VALID)" \n"
2064 "	adr	r0, 6f \n"
2065 "	ldmia	r0, {r1, r2} \n"
2066 "	sub	r1, r1, r0 		@ virt - phys \n"
2067 "	ldr	r0, [r0, r2] 		@ *(&ports) \n"
2068 "	mov	r2, %[sizeof_struct_ace_port] \n"
2069 "	mla	r0, r2, r3, r0		@ &ports[index] \n"
2070 "	sub	r0, r0, r1		@ virt_to_phys() \n"
2071 
2072 	/* Enable the CCI port */
2073 "	ldr	r0, [r0, %[offsetof_port_phys]] \n"
2074 "	mov	r3, %[cci_enable_req]\n"
2075 "	str	r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n"
2076 
2077 	/* poll the status reg for completion */
2078 "	adr	r1, 7f \n"
2079 "	ldr	r0, [r1] \n"
2080 "	ldr	r0, [r0, r1]		@ cci_ctrl_base \n"
2081 "4:	ldr	r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n"
2082 "	tst	r1, %[cci_control_status_bits] \n"
2083 "	bne	4b \n"
2084 
2085 "	mov	r0, #0 \n"
2086 "	bx	lr \n"
2087 
2088 "	.align	2 \n"
2089 "5:	.word	cpu_port - . \n"
2090 "6:	.word	. \n"
2091 "	.word	ports - 6b \n"
2092 "7:	.word	cci_ctrl_phys - . \n"
2093 	: :
2094 	[sizeof_cpu_port] "i" (sizeof(cpu_port)),
2095 	[cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ),
2096 	[cci_control_status_bits] "i" cpu_to_le32(1),
2097 #ifndef __ARMEB__
2098 	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)),
2099 #else
2100 	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4),
2101 #endif
2102 	[offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)),
2103 	[sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)),
2104 	[sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)),
2105 	[offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) );
2106 
2107 	unreachable();
2108 }
2109 
2110 /**
2111  * __cci_control_port_by_device() - function to control a CCI port by device
2112  *				    reference
2113  *
2114  * @dn: device node pointer of the device whose CCI port should be
2115  *      controlled
2116  * @enable: if true enables the port, if false disables it
2117  *
2118  * Return:
2119  *	0 on success
2120  *	-ENODEV on port look-up failure
2121  */
2122 int notrace __cci_control_port_by_device(struct device_node *dn, bool enable)
2123 {
2124 	int port;
2125 
2126 	if (!dn)
2127 		return -ENODEV;
2128 
2129 	port = __cci_ace_get_port(dn, ACE_LITE_PORT);
2130 	if (WARN_ONCE(port < 0, "node %pOF ACE lite port look-up failure\n",
2131 				dn))
2132 		return -ENODEV;
2133 	cci_port_control(port, enable);
2134 	return 0;
2135 }
2136 EXPORT_SYMBOL_GPL(__cci_control_port_by_device);
2137 
2138 /**
2139  * __cci_control_port_by_index() - function to control a CCI port by port index
2140  *
2141  * @port: port index previously retrieved with cci_ace_get_port()
2142  * @enable: if true enables the port, if false disables it
2143  *
2144  * Return:
2145  *	0 on success
2146  *	-ENODEV on port index out of range
2147  *	-EPERM if operation carried out on an ACE PORT
2148  */
2149 int notrace __cci_control_port_by_index(u32 port, bool enable)
2150 {
2151 	if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT)
2152 		return -ENODEV;
2153 	/*
2154 	 * CCI control for ports connected to CPUS is extremely fragile
2155 	 * and must be made to go through a specific and controlled
2156 	 * interface (ie cci_disable_port_by_cpu(); control by general purpose
2157 	 * indexing is therefore disabled for ACE ports.
2158 	 */
2159 	if (ports[port].type == ACE_PORT)
2160 		return -EPERM;
2161 
2162 	cci_port_control(port, enable);
2163 	return 0;
2164 }
2165 EXPORT_SYMBOL_GPL(__cci_control_port_by_index);
2166 
2167 static const struct of_device_id arm_cci_ctrl_if_matches[] = {
2168 	{.compatible = "arm,cci-400-ctrl-if", },
2169 	{},
2170 };
2171 
2172 static int cci_probe_ports(struct device_node *np)
2173 {
2174 	struct cci_nb_ports const *cci_config;
2175 	int ret, i, nb_ace = 0, nb_ace_lite = 0;
2176 	struct device_node *cp;
2177 	struct resource res;
2178 	const char *match_str;
2179 	bool is_ace;
2180 
2181 
2182 	cci_config = of_match_node(arm_cci_matches, np)->data;
2183 	if (!cci_config)
2184 		return -ENODEV;
2185 
2186 	nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite;
2187 
2188 	ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL);
2189 	if (!ports)
2190 		return -ENOMEM;
2191 
2192 	for_each_child_of_node(np, cp) {
2193 		if (!of_match_node(arm_cci_ctrl_if_matches, cp))
2194 			continue;
2195 
2196 		if (!of_device_is_available(cp))
2197 			continue;
2198 
2199 		i = nb_ace + nb_ace_lite;
2200 
2201 		if (i >= nb_cci_ports)
2202 			break;
2203 
2204 		if (of_property_read_string(cp, "interface-type",
2205 					&match_str)) {
2206 			WARN(1, "node %pOF missing interface-type property\n",
2207 				  cp);
2208 			continue;
2209 		}
2210 		is_ace = strcmp(match_str, "ace") == 0;
2211 		if (!is_ace && strcmp(match_str, "ace-lite")) {
2212 			WARN(1, "node %pOF containing invalid interface-type property, skipping it\n",
2213 					cp);
2214 			continue;
2215 		}
2216 
2217 		ret = of_address_to_resource(cp, 0, &res);
2218 		if (!ret) {
2219 			ports[i].base = ioremap(res.start, resource_size(&res));
2220 			ports[i].phys = res.start;
2221 		}
2222 		if (ret || !ports[i].base) {
2223 			WARN(1, "unable to ioremap CCI port %d\n", i);
2224 			continue;
2225 		}
2226 
2227 		if (is_ace) {
2228 			if (WARN_ON(nb_ace >= cci_config->nb_ace))
2229 				continue;
2230 			ports[i].type = ACE_PORT;
2231 			++nb_ace;
2232 		} else {
2233 			if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite))
2234 				continue;
2235 			ports[i].type = ACE_LITE_PORT;
2236 			++nb_ace_lite;
2237 		}
2238 		ports[i].dn = cp;
2239 	}
2240 
2241 	/*
2242 	 * If there is no CCI port that is under kernel control
2243 	 * return early and report probe status.
2244 	 */
2245 	if (!nb_ace && !nb_ace_lite)
2246 		return -ENODEV;
2247 
2248 	 /* initialize a stashed array of ACE ports to speed-up look-up */
2249 	cci_ace_init_ports();
2250 
2251 	/*
2252 	 * Multi-cluster systems may need this data when non-coherent, during
2253 	 * cluster power-up/power-down. Make sure it reaches main memory.
2254 	 */
2255 	sync_cache_w(&cci_ctrl_base);
2256 	sync_cache_w(&cci_ctrl_phys);
2257 	sync_cache_w(&ports);
2258 	sync_cache_w(&cpu_port);
2259 	__sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports);
2260 	pr_info("ARM CCI driver probed\n");
2261 
2262 	return 0;
2263 }
2264 #else /* !CONFIG_ARM_CCI400_PORT_CTRL */
2265 static inline int cci_probe_ports(struct device_node *np)
2266 {
2267 	return 0;
2268 }
2269 #endif /* CONFIG_ARM_CCI400_PORT_CTRL */
2270 
2271 static int cci_probe(void)
2272 {
2273 	int ret;
2274 	struct device_node *np;
2275 	struct resource res;
2276 
2277 	np = of_find_matching_node(NULL, arm_cci_matches);
2278 	if(!np || !of_device_is_available(np))
2279 		return -ENODEV;
2280 
2281 	ret = of_address_to_resource(np, 0, &res);
2282 	if (!ret) {
2283 		cci_ctrl_base = ioremap(res.start, resource_size(&res));
2284 		cci_ctrl_phys =	res.start;
2285 	}
2286 	if (ret || !cci_ctrl_base) {
2287 		WARN(1, "unable to ioremap CCI ctrl\n");
2288 		return -ENXIO;
2289 	}
2290 
2291 	return cci_probe_ports(np);
2292 }
2293 
2294 static int cci_init_status = -EAGAIN;
2295 static DEFINE_MUTEX(cci_probing);
2296 
2297 static int cci_init(void)
2298 {
2299 	if (cci_init_status != -EAGAIN)
2300 		return cci_init_status;
2301 
2302 	mutex_lock(&cci_probing);
2303 	if (cci_init_status == -EAGAIN)
2304 		cci_init_status = cci_probe();
2305 	mutex_unlock(&cci_probing);
2306 	return cci_init_status;
2307 }
2308 
2309 /*
2310  * To sort out early init calls ordering a helper function is provided to
2311  * check if the CCI driver has beed initialized. Function check if the driver
2312  * has been initialized, if not it calls the init function that probes
2313  * the driver and updates the return value.
2314  */
2315 bool cci_probed(void)
2316 {
2317 	return cci_init() == 0;
2318 }
2319 EXPORT_SYMBOL_GPL(cci_probed);
2320 
2321 early_initcall(cci_init);
2322 core_initcall(cci_platform_init);
2323 MODULE_LICENSE("GPL");
2324 MODULE_DESCRIPTION("ARM CCI support");
2325