1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 /*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size. So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes). We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74 /*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2. We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state. When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()). Note however that the data associated
105 * with the buffer may be evicted prior to the callback. The callback
106 * must be made with *no locks held* (to prevent deadlock). Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
113 *
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
115 *
116 * - L2ARC buflist creation
117 * - L2ARC buflist eviction
118 * - L2ARC write completion, which walks L2ARC buflists
119 * - ARC header destruction, as it removes from L2ARC buflists
120 * - ARC header release, as it removes from L2ARC buflists
121 */
122
123 #include <sys/spa.h>
124 #include <sys/zio.h>
125 #include <sys/zio_compress.h>
126 #include <sys/zfs_context.h>
127 #include <sys/arc.h>
128 #include <sys/refcount.h>
129 #include <sys/vdev.h>
130 #include <sys/vdev_impl.h>
131 #include <sys/dsl_pool.h>
132 #include <sys/multilist.h>
133 #ifdef _KERNEL
134 #include <sys/vmsystm.h>
135 #include <vm/anon.h>
136 #include <sys/fs/swapnode.h>
137 #include <sys/dnlc.h>
138 #endif
139 #include <sys/callb.h>
140 #include <sys/kstat.h>
141 #include <zfs_fletcher.h>
142 #include <sys/zfs_ioctl.h>
143
144 #ifndef _KERNEL
145 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
146 boolean_t arc_watch = B_FALSE;
147 int arc_procfd;
148 #endif
149
150 static kmutex_t arc_reclaim_lock;
151 static kcondvar_t arc_reclaim_thread_cv;
152 static boolean_t arc_reclaim_thread_exit;
153 static kcondvar_t arc_reclaim_waiters_cv;
154
155 static kmutex_t arc_user_evicts_lock;
156 static kcondvar_t arc_user_evicts_cv;
157 static boolean_t arc_user_evicts_thread_exit;
158
159 uint_t arc_reduce_dnlc_percent = 3;
160
161 /*
162 * The number of headers to evict in arc_evict_state_impl() before
163 * dropping the sublist lock and evicting from another sublist. A lower
164 * value means we're more likely to evict the "correct" header (i.e. the
165 * oldest header in the arc state), but comes with higher overhead
166 * (i.e. more invocations of arc_evict_state_impl()).
167 */
168 int zfs_arc_evict_batch_limit = 10;
169
170 /*
171 * The number of sublists used for each of the arc state lists. If this
172 * is not set to a suitable value by the user, it will be configured to
173 * the number of CPUs on the system in arc_init().
174 */
175 int zfs_arc_num_sublists_per_state = 0;
176
177 /* number of seconds before growing cache again */
178 static int arc_grow_retry = 60;
179
180 /* shift of arc_c for calculating overflow limit in arc_get_data_buf */
181 int zfs_arc_overflow_shift = 8;
182
183 /* shift of arc_c for calculating both min and max arc_p */
184 static int arc_p_min_shift = 4;
185
186 /* log2(fraction of arc to reclaim) */
187 static int arc_shrink_shift = 7;
188
189 /*
190 * log2(fraction of ARC which must be free to allow growing).
191 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
192 * when reading a new block into the ARC, we will evict an equal-sized block
193 * from the ARC.
194 *
195 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
196 * we will still not allow it to grow.
197 */
198 int arc_no_grow_shift = 5;
199
200
201 /*
202 * minimum lifespan of a prefetch block in clock ticks
203 * (initialized in arc_init())
204 */
205 static int arc_min_prefetch_lifespan;
206
207 /*
208 * If this percent of memory is free, don't throttle.
209 */
210 int arc_lotsfree_percent = 10;
211
212 static int arc_dead;
213
214 /*
215 * The arc has filled available memory and has now warmed up.
216 */
217 static boolean_t arc_warm;
218
219 /*
220 * These tunables are for performance analysis.
221 */
222 uint64_t zfs_arc_max;
223 uint64_t zfs_arc_min;
224 uint64_t zfs_arc_meta_limit = 0;
225 uint64_t zfs_arc_meta_min = 0;
226 int zfs_arc_grow_retry = 0;
227 int zfs_arc_shrink_shift = 0;
228 int zfs_arc_p_min_shift = 0;
229 int zfs_disable_dup_eviction = 0;
230 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
231
232 /*
233 * Note that buffers can be in one of 6 states:
234 * ARC_anon - anonymous (discussed below)
235 * ARC_mru - recently used, currently cached
236 * ARC_mru_ghost - recentely used, no longer in cache
237 * ARC_mfu - frequently used, currently cached
238 * ARC_mfu_ghost - frequently used, no longer in cache
239 * ARC_l2c_only - exists in L2ARC but not other states
240 * When there are no active references to the buffer, they are
241 * are linked onto a list in one of these arc states. These are
242 * the only buffers that can be evicted or deleted. Within each
243 * state there are multiple lists, one for meta-data and one for
244 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
245 * etc.) is tracked separately so that it can be managed more
246 * explicitly: favored over data, limited explicitly.
247 *
248 * Anonymous buffers are buffers that are not associated with
249 * a DVA. These are buffers that hold dirty block copies
250 * before they are written to stable storage. By definition,
251 * they are "ref'd" and are considered part of arc_mru
252 * that cannot be freed. Generally, they will aquire a DVA
253 * as they are written and migrate onto the arc_mru list.
254 *
255 * The ARC_l2c_only state is for buffers that are in the second
256 * level ARC but no longer in any of the ARC_m* lists. The second
257 * level ARC itself may also contain buffers that are in any of
258 * the ARC_m* states - meaning that a buffer can exist in two
259 * places. The reason for the ARC_l2c_only state is to keep the
260 * buffer header in the hash table, so that reads that hit the
261 * second level ARC benefit from these fast lookups.
262 */
263
264 typedef struct arc_state {
265 /*
266 * list of evictable buffers
267 */
268 multilist_t arcs_list[ARC_BUFC_NUMTYPES];
269 /*
270 * total amount of evictable data in this state
271 */
272 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];
273 /*
274 * total amount of data in this state; this includes: evictable,
275 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
276 */
277 refcount_t arcs_size;
278 } arc_state_t;
279
280 /* The 6 states: */
281 static arc_state_t ARC_anon;
282 static arc_state_t ARC_mru;
283 static arc_state_t ARC_mru_ghost;
284 static arc_state_t ARC_mfu;
285 static arc_state_t ARC_mfu_ghost;
286 static arc_state_t ARC_l2c_only;
287
288 typedef struct arc_stats {
289 kstat_named_t arcstat_hits;
290 kstat_named_t arcstat_misses;
291 kstat_named_t arcstat_demand_data_hits;
292 kstat_named_t arcstat_demand_data_misses;
293 kstat_named_t arcstat_demand_metadata_hits;
294 kstat_named_t arcstat_demand_metadata_misses;
295 kstat_named_t arcstat_prefetch_data_hits;
296 kstat_named_t arcstat_prefetch_data_misses;
297 kstat_named_t arcstat_prefetch_metadata_hits;
298 kstat_named_t arcstat_prefetch_metadata_misses;
299 kstat_named_t arcstat_mru_hits;
300 kstat_named_t arcstat_mru_ghost_hits;
301 kstat_named_t arcstat_mfu_hits;
302 kstat_named_t arcstat_mfu_ghost_hits;
303 kstat_named_t arcstat_deleted;
304 /*
305 * Number of buffers that could not be evicted because the hash lock
306 * was held by another thread. The lock may not necessarily be held
307 * by something using the same buffer, since hash locks are shared
308 * by multiple buffers.
309 */
310 kstat_named_t arcstat_mutex_miss;
311 /*
312 * Number of buffers skipped because they have I/O in progress, are
313 * indrect prefetch buffers that have not lived long enough, or are
314 * not from the spa we're trying to evict from.
315 */
316 kstat_named_t arcstat_evict_skip;
317 /*
318 * Number of times arc_evict_state() was unable to evict enough
319 * buffers to reach it's target amount.
320 */
321 kstat_named_t arcstat_evict_not_enough;
322 kstat_named_t arcstat_evict_l2_cached;
323 kstat_named_t arcstat_evict_l2_eligible;
324 kstat_named_t arcstat_evict_l2_ineligible;
325 kstat_named_t arcstat_evict_l2_skip;
326 kstat_named_t arcstat_hash_elements;
327 kstat_named_t arcstat_hash_elements_max;
328 kstat_named_t arcstat_hash_collisions;
329 kstat_named_t arcstat_hash_chains;
330 kstat_named_t arcstat_hash_chain_max;
331 kstat_named_t arcstat_p;
332 kstat_named_t arcstat_c;
333 kstat_named_t arcstat_c_min;
334 kstat_named_t arcstat_c_max;
335 kstat_named_t arcstat_size;
336 /*
337 * Number of bytes consumed by internal ARC structures necessary
338 * for tracking purposes; these structures are not actually
339 * backed by ARC buffers. This includes arc_buf_hdr_t structures
340 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
341 * caches), and arc_buf_t structures (allocated via arc_buf_t
342 * cache).
343 */
344 kstat_named_t arcstat_hdr_size;
345 /*
346 * Number of bytes consumed by ARC buffers of type equal to
347 * ARC_BUFC_DATA. This is generally consumed by buffers backing
348 * on disk user data (e.g. plain file contents).
349 */
350 kstat_named_t arcstat_data_size;
351 /*
352 * Number of bytes consumed by ARC buffers of type equal to
353 * ARC_BUFC_METADATA. This is generally consumed by buffers
354 * backing on disk data that is used for internal ZFS
355 * structures (e.g. ZAP, dnode, indirect blocks, etc).
356 */
357 kstat_named_t arcstat_metadata_size;
358 /*
359 * Number of bytes consumed by various buffers and structures
360 * not actually backed with ARC buffers. This includes bonus
361 * buffers (allocated directly via zio_buf_* functions),
362 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
363 * cache), and dnode_t structures (allocated via dnode_t cache).
364 */
365 kstat_named_t arcstat_other_size;
366 /*
367 * Total number of bytes consumed by ARC buffers residing in the
368 * arc_anon state. This includes *all* buffers in the arc_anon
369 * state; e.g. data, metadata, evictable, and unevictable buffers
370 * are all included in this value.
371 */
372 kstat_named_t arcstat_anon_size;
373 /*
374 * Number of bytes consumed by ARC buffers that meet the
375 * following criteria: backing buffers of type ARC_BUFC_DATA,
376 * residing in the arc_anon state, and are eligible for eviction
377 * (e.g. have no outstanding holds on the buffer).
378 */
379 kstat_named_t arcstat_anon_evictable_data;
380 /*
381 * Number of bytes consumed by ARC buffers that meet the
382 * following criteria: backing buffers of type ARC_BUFC_METADATA,
383 * residing in the arc_anon state, and are eligible for eviction
384 * (e.g. have no outstanding holds on the buffer).
385 */
386 kstat_named_t arcstat_anon_evictable_metadata;
387 /*
388 * Total number of bytes consumed by ARC buffers residing in the
389 * arc_mru state. This includes *all* buffers in the arc_mru
390 * state; e.g. data, metadata, evictable, and unevictable buffers
391 * are all included in this value.
392 */
393 kstat_named_t arcstat_mru_size;
394 /*
395 * Number of bytes consumed by ARC buffers that meet the
396 * following criteria: backing buffers of type ARC_BUFC_DATA,
397 * residing in the arc_mru state, and are eligible for eviction
398 * (e.g. have no outstanding holds on the buffer).
399 */
400 kstat_named_t arcstat_mru_evictable_data;
401 /*
402 * Number of bytes consumed by ARC buffers that meet the
403 * following criteria: backing buffers of type ARC_BUFC_METADATA,
404 * residing in the arc_mru state, and are eligible for eviction
405 * (e.g. have no outstanding holds on the buffer).
406 */
407 kstat_named_t arcstat_mru_evictable_metadata;
408 /*
409 * Total number of bytes that *would have been* consumed by ARC
410 * buffers in the arc_mru_ghost state. The key thing to note
411 * here, is the fact that this size doesn't actually indicate
412 * RAM consumption. The ghost lists only consist of headers and
413 * don't actually have ARC buffers linked off of these headers.
414 * Thus, *if* the headers had associated ARC buffers, these
415 * buffers *would have* consumed this number of bytes.
416 */
417 kstat_named_t arcstat_mru_ghost_size;
418 /*
419 * Number of bytes that *would have been* consumed by ARC
420 * buffers that are eligible for eviction, of type
421 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
422 */
423 kstat_named_t arcstat_mru_ghost_evictable_data;
424 /*
425 * Number of bytes that *would have been* consumed by ARC
426 * buffers that are eligible for eviction, of type
427 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
428 */
429 kstat_named_t arcstat_mru_ghost_evictable_metadata;
430 /*
431 * Total number of bytes consumed by ARC buffers residing in the
432 * arc_mfu state. This includes *all* buffers in the arc_mfu
433 * state; e.g. data, metadata, evictable, and unevictable buffers
434 * are all included in this value.
435 */
436 kstat_named_t arcstat_mfu_size;
437 /*
438 * Number of bytes consumed by ARC buffers that are eligible for
439 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
440 * state.
441 */
442 kstat_named_t arcstat_mfu_evictable_data;
443 /*
444 * Number of bytes consumed by ARC buffers that are eligible for
445 * eviction, of type ARC_BUFC_METADATA, and reside in the
446 * arc_mfu state.
447 */
448 kstat_named_t arcstat_mfu_evictable_metadata;
449 /*
450 * Total number of bytes that *would have been* consumed by ARC
451 * buffers in the arc_mfu_ghost state. See the comment above
452 * arcstat_mru_ghost_size for more details.
453 */
454 kstat_named_t arcstat_mfu_ghost_size;
455 /*
456 * Number of bytes that *would have been* consumed by ARC
457 * buffers that are eligible for eviction, of type
458 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
459 */
460 kstat_named_t arcstat_mfu_ghost_evictable_data;
461 /*
462 * Number of bytes that *would have been* consumed by ARC
463 * buffers that are eligible for eviction, of type
464 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
465 */
466 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
467 kstat_named_t arcstat_l2_hits;
468 kstat_named_t arcstat_l2_misses;
469 kstat_named_t arcstat_l2_feeds;
470 kstat_named_t arcstat_l2_rw_clash;
471 kstat_named_t arcstat_l2_read_bytes;
472 kstat_named_t arcstat_l2_write_bytes;
473 kstat_named_t arcstat_l2_writes_sent;
474 kstat_named_t arcstat_l2_writes_done;
475 kstat_named_t arcstat_l2_writes_error;
476 kstat_named_t arcstat_l2_writes_lock_retry;
477 kstat_named_t arcstat_l2_evict_lock_retry;
478 kstat_named_t arcstat_l2_evict_reading;
479 kstat_named_t arcstat_l2_evict_l1cached;
480 kstat_named_t arcstat_l2_free_on_write;
481 kstat_named_t arcstat_l2_cdata_free_on_write;
482 kstat_named_t arcstat_l2_abort_lowmem;
483 kstat_named_t arcstat_l2_cksum_bad;
484 kstat_named_t arcstat_l2_io_error;
485 kstat_named_t arcstat_l2_size;
486 kstat_named_t arcstat_l2_asize;
487 kstat_named_t arcstat_l2_hdr_size;
488 kstat_named_t arcstat_l2_compress_successes;
489 kstat_named_t arcstat_l2_compress_zeros;
490 kstat_named_t arcstat_l2_compress_failures;
491 kstat_named_t arcstat_memory_throttle_count;
492 kstat_named_t arcstat_duplicate_buffers;
493 kstat_named_t arcstat_duplicate_buffers_size;
494 kstat_named_t arcstat_duplicate_reads;
495 kstat_named_t arcstat_meta_used;
496 kstat_named_t arcstat_meta_limit;
497 kstat_named_t arcstat_meta_max;
498 kstat_named_t arcstat_meta_min;
499 kstat_named_t arcstat_sync_wait_for_async;
500 kstat_named_t arcstat_demand_hit_predictive_prefetch;
501 } arc_stats_t;
502
503 static arc_stats_t arc_stats = {
504 { "hits", KSTAT_DATA_UINT64 },
505 { "misses", KSTAT_DATA_UINT64 },
506 { "demand_data_hits", KSTAT_DATA_UINT64 },
507 { "demand_data_misses", KSTAT_DATA_UINT64 },
508 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
509 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
510 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
511 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
512 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
513 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
514 { "mru_hits", KSTAT_DATA_UINT64 },
515 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
516 { "mfu_hits", KSTAT_DATA_UINT64 },
517 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
518 { "deleted", KSTAT_DATA_UINT64 },
519 { "mutex_miss", KSTAT_DATA_UINT64 },
520 { "evict_skip", KSTAT_DATA_UINT64 },
521 { "evict_not_enough", KSTAT_DATA_UINT64 },
522 { "evict_l2_cached", KSTAT_DATA_UINT64 },
523 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
524 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
525 { "evict_l2_skip", KSTAT_DATA_UINT64 },
526 { "hash_elements", KSTAT_DATA_UINT64 },
527 { "hash_elements_max", KSTAT_DATA_UINT64 },
528 { "hash_collisions", KSTAT_DATA_UINT64 },
529 { "hash_chains", KSTAT_DATA_UINT64 },
530 { "hash_chain_max", KSTAT_DATA_UINT64 },
531 { "p", KSTAT_DATA_UINT64 },
532 { "c", KSTAT_DATA_UINT64 },
533 { "c_min", KSTAT_DATA_UINT64 },
534 { "c_max", KSTAT_DATA_UINT64 },
535 { "size", KSTAT_DATA_UINT64 },
536 { "hdr_size", KSTAT_DATA_UINT64 },
537 { "data_size", KSTAT_DATA_UINT64 },
538 { "metadata_size", KSTAT_DATA_UINT64 },
539 { "other_size", KSTAT_DATA_UINT64 },
540 { "anon_size", KSTAT_DATA_UINT64 },
541 { "anon_evictable_data", KSTAT_DATA_UINT64 },
542 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
543 { "mru_size", KSTAT_DATA_UINT64 },
544 { "mru_evictable_data", KSTAT_DATA_UINT64 },
545 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
546 { "mru_ghost_size", KSTAT_DATA_UINT64 },
547 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
548 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
549 { "mfu_size", KSTAT_DATA_UINT64 },
550 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
551 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
552 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
553 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
554 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
555 { "l2_hits", KSTAT_DATA_UINT64 },
556 { "l2_misses", KSTAT_DATA_UINT64 },
557 { "l2_feeds", KSTAT_DATA_UINT64 },
558 { "l2_rw_clash", KSTAT_DATA_UINT64 },
559 { "l2_read_bytes", KSTAT_DATA_UINT64 },
560 { "l2_write_bytes", KSTAT_DATA_UINT64 },
561 { "l2_writes_sent", KSTAT_DATA_UINT64 },
562 { "l2_writes_done", KSTAT_DATA_UINT64 },
563 { "l2_writes_error", KSTAT_DATA_UINT64 },
564 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
565 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
566 { "l2_evict_reading", KSTAT_DATA_UINT64 },
567 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
568 { "l2_free_on_write", KSTAT_DATA_UINT64 },
569 { "l2_cdata_free_on_write", KSTAT_DATA_UINT64 },
570 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
571 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
572 { "l2_io_error", KSTAT_DATA_UINT64 },
573 { "l2_size", KSTAT_DATA_UINT64 },
574 { "l2_asize", KSTAT_DATA_UINT64 },
575 { "l2_hdr_size", KSTAT_DATA_UINT64 },
576 { "l2_compress_successes", KSTAT_DATA_UINT64 },
577 { "l2_compress_zeros", KSTAT_DATA_UINT64 },
578 { "l2_compress_failures", KSTAT_DATA_UINT64 },
579 { "memory_throttle_count", KSTAT_DATA_UINT64 },
580 { "duplicate_buffers", KSTAT_DATA_UINT64 },
581 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
582 { "duplicate_reads", KSTAT_DATA_UINT64 },
583 { "arc_meta_used", KSTAT_DATA_UINT64 },
584 { "arc_meta_limit", KSTAT_DATA_UINT64 },
585 { "arc_meta_max", KSTAT_DATA_UINT64 },
586 { "arc_meta_min", KSTAT_DATA_UINT64 },
587 { "sync_wait_for_async", KSTAT_DATA_UINT64 },
588 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
589 };
590
591 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
592
593 #define ARCSTAT_INCR(stat, val) \
594 atomic_add_64(&arc_stats.stat.value.ui64, (val))
595
596 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
597 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
598
599 #define ARCSTAT_MAX(stat, val) { \
600 uint64_t m; \
601 while ((val) > (m = arc_stats.stat.value.ui64) && \
602 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
603 continue; \
604 }
605
606 #define ARCSTAT_MAXSTAT(stat) \
607 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
608
609 /*
610 * We define a macro to allow ARC hits/misses to be easily broken down by
611 * two separate conditions, giving a total of four different subtypes for
612 * each of hits and misses (so eight statistics total).
613 */
614 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
615 if (cond1) { \
616 if (cond2) { \
617 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
618 } else { \
619 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
620 } \
621 } else { \
622 if (cond2) { \
623 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
624 } else { \
625 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
626 } \
627 }
628
629 kstat_t *arc_ksp;
630 static arc_state_t *arc_anon;
631 static arc_state_t *arc_mru;
632 static arc_state_t *arc_mru_ghost;
633 static arc_state_t *arc_mfu;
634 static arc_state_t *arc_mfu_ghost;
635 static arc_state_t *arc_l2c_only;
636
637 /*
638 * There are several ARC variables that are critical to export as kstats --
639 * but we don't want to have to grovel around in the kstat whenever we wish to
640 * manipulate them. For these variables, we therefore define them to be in
641 * terms of the statistic variable. This assures that we are not introducing
642 * the possibility of inconsistency by having shadow copies of the variables,
643 * while still allowing the code to be readable.
644 */
645 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
646 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
647 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
648 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
649 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
650 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
651 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
652 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
653 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
654
655 #define L2ARC_IS_VALID_COMPRESS(_c_) \
656 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
657
658 static int arc_no_grow; /* Don't try to grow cache size */
659 static uint64_t arc_tempreserve;
660 static uint64_t arc_loaned_bytes;
661
662 typedef struct arc_callback arc_callback_t;
663
664 struct arc_callback {
665 void *acb_private;
666 arc_done_func_t *acb_done;
667 arc_buf_t *acb_buf;
668 zio_t *acb_zio_dummy;
669 arc_callback_t *acb_next;
670 };
671
672 typedef struct arc_write_callback arc_write_callback_t;
673
674 struct arc_write_callback {
675 void *awcb_private;
676 arc_done_func_t *awcb_ready;
677 arc_done_func_t *awcb_physdone;
678 arc_done_func_t *awcb_done;
679 arc_buf_t *awcb_buf;
680 };
681
682 /*
683 * ARC buffers are separated into multiple structs as a memory saving measure:
684 * - Common fields struct, always defined, and embedded within it:
685 * - L2-only fields, always allocated but undefined when not in L2ARC
686 * - L1-only fields, only allocated when in L1ARC
687 *
688 * Buffer in L1 Buffer only in L2
689 * +------------------------+ +------------------------+
690 * | arc_buf_hdr_t | | arc_buf_hdr_t |
691 * | | | |
692 * | | | |
693 * | | | |
694 * +------------------------+ +------------------------+
695 * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t |
696 * | (undefined if L1-only) | | |
697 * +------------------------+ +------------------------+
698 * | l1arc_buf_hdr_t |
699 * | |
700 * | |
701 * | |
702 * | |
703 * +------------------------+
704 *
705 * Because it's possible for the L2ARC to become extremely large, we can wind
706 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
707 * is minimized by only allocating the fields necessary for an L1-cached buffer
708 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
709 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
710 * words in pointers. arc_hdr_realloc() is used to switch a header between
711 * these two allocation states.
712 */
713 typedef struct l1arc_buf_hdr {
714 kmutex_t b_freeze_lock;
715 #ifdef ZFS_DEBUG
716 /*
717 * used for debugging wtih kmem_flags - by allocating and freeing
718 * b_thawed when the buffer is thawed, we get a record of the stack
719 * trace that thawed it.
720 */
721 void *b_thawed;
722 #endif
723
724 arc_buf_t *b_buf;
725 uint32_t b_datacnt;
726 /* for waiting on writes to complete */
727 kcondvar_t b_cv;
728
729 /* protected by arc state mutex */
730 arc_state_t *b_state;
731 multilist_node_t b_arc_node;
732
733 /* updated atomically */
734 clock_t b_arc_access;
735
736 /* self protecting */
737 refcount_t b_refcnt;
738
739 arc_callback_t *b_acb;
740 /* temporary buffer holder for in-flight compressed data */
741 void *b_tmp_cdata;
742 } l1arc_buf_hdr_t;
743
744 typedef struct l2arc_dev l2arc_dev_t;
745
746 typedef struct l2arc_buf_hdr {
747 /* protected by arc_buf_hdr mutex */
748 l2arc_dev_t *b_dev; /* L2ARC device */
749 uint64_t b_daddr; /* disk address, offset byte */
750 /* real alloc'd buffer size depending on b_compress applied */
751 int32_t b_asize;
752 uint8_t b_compress;
753
754 list_node_t b_l2node;
755 } l2arc_buf_hdr_t;
756
757 struct arc_buf_hdr {
758 /* protected by hash lock */
759 dva_t b_dva;
760 uint64_t b_birth;
761 /*
762 * Even though this checksum is only set/verified when a buffer is in
763 * the L1 cache, it needs to be in the set of common fields because it
764 * must be preserved from the time before a buffer is written out to
765 * L2ARC until after it is read back in.
766 */
767 zio_cksum_t *b_freeze_cksum;
768
769 arc_buf_hdr_t *b_hash_next;
770 arc_flags_t b_flags;
771
772 /* immutable */
773 int32_t b_size;
774 uint64_t b_spa;
775
776 /* L2ARC fields. Undefined when not in L2ARC. */
777 l2arc_buf_hdr_t b_l2hdr;
778 /* L1ARC fields. Undefined when in l2arc_only state */
779 l1arc_buf_hdr_t b_l1hdr;
780 };
781
782 static arc_buf_t *arc_eviction_list;
783 static arc_buf_hdr_t arc_eviction_hdr;
784
785 #define GHOST_STATE(state) \
786 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
787 (state) == arc_l2c_only)
788
789 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
790 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
791 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
792 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
793 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
794 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
795
796 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
797 #define HDR_L2COMPRESS(hdr) ((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
798 #define HDR_L2_READING(hdr) \
799 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
800 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
801 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
802 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
803 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
804
805 #define HDR_ISTYPE_METADATA(hdr) \
806 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
807 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
808
809 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
810 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
811
812 /*
813 * Other sizes
814 */
815
816 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
817 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
818
819 /*
820 * Hash table routines
821 */
822
823 #define HT_LOCK_PAD 64
824
825 struct ht_lock {
826 kmutex_t ht_lock;
827 #ifdef _KERNEL
828 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
829 #endif
830 };
831
832 #define BUF_LOCKS 256
833 typedef struct buf_hash_table {
834 uint64_t ht_mask;
835 arc_buf_hdr_t **ht_table;
836 struct ht_lock ht_locks[BUF_LOCKS];
837 } buf_hash_table_t;
838
839 static buf_hash_table_t buf_hash_table;
840
841 #define BUF_HASH_INDEX(spa, dva, birth) \
842 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
843 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
844 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
845 #define HDR_LOCK(hdr) \
846 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
847
848 uint64_t zfs_crc64_table[256];
849
850 /*
851 * Level 2 ARC
852 */
853
854 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
855 #define L2ARC_HEADROOM 2 /* num of writes */
856 /*
857 * If we discover during ARC scan any buffers to be compressed, we boost
858 * our headroom for the next scanning cycle by this percentage multiple.
859 */
860 #define L2ARC_HEADROOM_BOOST 200
861 #define L2ARC_FEED_SECS 1 /* caching interval secs */
862 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
863
864 /*
865 * Used to distinguish headers that are being process by
866 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
867 * address. This can happen when the header is added to the l2arc's list
868 * of buffers to write in the first stage of l2arc_write_buffers(), but
869 * has not yet been written out which happens in the second stage of
870 * l2arc_write_buffers().
871 */
872 #define L2ARC_ADDR_UNSET ((uint64_t)(-1))
873
874 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
875 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
876
877 /* L2ARC Performance Tunables */
878 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */
879 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */
880 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */
881 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
882 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
883 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
884 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
885 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */
886 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */
887
888 /*
889 * L2ARC Internals
890 */
891 struct l2arc_dev {
892 vdev_t *l2ad_vdev; /* vdev */
893 spa_t *l2ad_spa; /* spa */
894 uint64_t l2ad_hand; /* next write location */
895 uint64_t l2ad_start; /* first addr on device */
896 uint64_t l2ad_end; /* last addr on device */
897 boolean_t l2ad_first; /* first sweep through */
898 boolean_t l2ad_writing; /* currently writing */
899 kmutex_t l2ad_mtx; /* lock for buffer list */
900 list_t l2ad_buflist; /* buffer list */
901 list_node_t l2ad_node; /* device list node */
902 refcount_t l2ad_alloc; /* allocated bytes */
903 };
904
905 static list_t L2ARC_dev_list; /* device list */
906 static list_t *l2arc_dev_list; /* device list pointer */
907 static kmutex_t l2arc_dev_mtx; /* device list mutex */
908 static l2arc_dev_t *l2arc_dev_last; /* last device used */
909 static list_t L2ARC_free_on_write; /* free after write buf list */
910 static list_t *l2arc_free_on_write; /* free after write list ptr */
911 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
912 static uint64_t l2arc_ndev; /* number of devices */
913
914 typedef struct l2arc_read_callback {
915 arc_buf_t *l2rcb_buf; /* read buffer */
916 spa_t *l2rcb_spa; /* spa */
917 blkptr_t l2rcb_bp; /* original blkptr */
918 zbookmark_phys_t l2rcb_zb; /* original bookmark */
919 int l2rcb_flags; /* original flags */
920 enum zio_compress l2rcb_compress; /* applied compress */
921 } l2arc_read_callback_t;
922
923 typedef struct l2arc_write_callback {
924 l2arc_dev_t *l2wcb_dev; /* device info */
925 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
926 } l2arc_write_callback_t;
927
928 typedef struct l2arc_data_free {
929 /* protected by l2arc_free_on_write_mtx */
930 void *l2df_data;
931 size_t l2df_size;
932 void (*l2df_func)(void *, size_t);
933 list_node_t l2df_list_node;
934 } l2arc_data_free_t;
935
936 static kmutex_t l2arc_feed_thr_lock;
937 static kcondvar_t l2arc_feed_thr_cv;
938 static uint8_t l2arc_thread_exit;
939
940 static void arc_get_data_buf(arc_buf_t *);
941 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
942 static boolean_t arc_is_overflowing();
943 static void arc_buf_watch(arc_buf_t *);
944
945 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
946 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
947
948 static boolean_t l2arc_write_eligible(uint64_t, uint64_t, arc_buf_hdr_t *);
949 static void l2arc_read_done(zio_t *);
950
951 static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
952 static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
953 static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
954
955 static uint64_t
buf_hash(uint64_t spa,const dva_t * dva,uint64_t birth)956 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
957 {
958 uint8_t *vdva = (uint8_t *)dva;
959 uint64_t crc = -1ULL;
960 int i;
961
962 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
963
964 for (i = 0; i < sizeof (dva_t); i++)
965 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
966
967 crc ^= (spa>>8) ^ birth;
968
969 return (crc);
970 }
971
972 #define BUF_EMPTY(buf) \
973 ((buf)->b_dva.dva_word[0] == 0 && \
974 (buf)->b_dva.dva_word[1] == 0)
975
976 #define BUF_EQUAL(spa, dva, birth, buf) \
977 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
978 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
979 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
980
981 static void
buf_discard_identity(arc_buf_hdr_t * hdr)982 buf_discard_identity(arc_buf_hdr_t *hdr)
983 {
984 hdr->b_dva.dva_word[0] = 0;
985 hdr->b_dva.dva_word[1] = 0;
986 hdr->b_birth = 0;
987 }
988
989 static arc_buf_hdr_t *
buf_hash_find(uint64_t spa,const blkptr_t * bp,kmutex_t ** lockp)990 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
991 {
992 const dva_t *dva = BP_IDENTITY(bp);
993 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
994 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
995 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
996 arc_buf_hdr_t *hdr;
997
998 mutex_enter(hash_lock);
999 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1000 hdr = hdr->b_hash_next) {
1001 if (BUF_EQUAL(spa, dva, birth, hdr)) {
1002 *lockp = hash_lock;
1003 return (hdr);
1004 }
1005 }
1006 mutex_exit(hash_lock);
1007 *lockp = NULL;
1008 return (NULL);
1009 }
1010
1011 /*
1012 * Insert an entry into the hash table. If there is already an element
1013 * equal to elem in the hash table, then the already existing element
1014 * will be returned and the new element will not be inserted.
1015 * Otherwise returns NULL.
1016 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1017 */
1018 static arc_buf_hdr_t *
buf_hash_insert(arc_buf_hdr_t * hdr,kmutex_t ** lockp)1019 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1020 {
1021 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1022 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1023 arc_buf_hdr_t *fhdr;
1024 uint32_t i;
1025
1026 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1027 ASSERT(hdr->b_birth != 0);
1028 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1029
1030 if (lockp != NULL) {
1031 *lockp = hash_lock;
1032 mutex_enter(hash_lock);
1033 } else {
1034 ASSERT(MUTEX_HELD(hash_lock));
1035 }
1036
1037 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1038 fhdr = fhdr->b_hash_next, i++) {
1039 if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1040 return (fhdr);
1041 }
1042
1043 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1044 buf_hash_table.ht_table[idx] = hdr;
1045 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
1046
1047 /* collect some hash table performance data */
1048 if (i > 0) {
1049 ARCSTAT_BUMP(arcstat_hash_collisions);
1050 if (i == 1)
1051 ARCSTAT_BUMP(arcstat_hash_chains);
1052
1053 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1054 }
1055
1056 ARCSTAT_BUMP(arcstat_hash_elements);
1057 ARCSTAT_MAXSTAT(arcstat_hash_elements);
1058
1059 return (NULL);
1060 }
1061
1062 static void
buf_hash_remove(arc_buf_hdr_t * hdr)1063 buf_hash_remove(arc_buf_hdr_t *hdr)
1064 {
1065 arc_buf_hdr_t *fhdr, **hdrp;
1066 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1067
1068 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1069 ASSERT(HDR_IN_HASH_TABLE(hdr));
1070
1071 hdrp = &buf_hash_table.ht_table[idx];
1072 while ((fhdr = *hdrp) != hdr) {
1073 ASSERT(fhdr != NULL);
1074 hdrp = &fhdr->b_hash_next;
1075 }
1076 *hdrp = hdr->b_hash_next;
1077 hdr->b_hash_next = NULL;
1078 hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
1079
1080 /* collect some hash table performance data */
1081 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1082
1083 if (buf_hash_table.ht_table[idx] &&
1084 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1085 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1086 }
1087
1088 /*
1089 * Global data structures and functions for the buf kmem cache.
1090 */
1091 static kmem_cache_t *hdr_full_cache;
1092 static kmem_cache_t *hdr_l2only_cache;
1093 static kmem_cache_t *buf_cache;
1094
1095 static void
buf_fini(void)1096 buf_fini(void)
1097 {
1098 int i;
1099
1100 kmem_free(buf_hash_table.ht_table,
1101 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1102 for (i = 0; i < BUF_LOCKS; i++)
1103 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1104 kmem_cache_destroy(hdr_full_cache);
1105 kmem_cache_destroy(hdr_l2only_cache);
1106 kmem_cache_destroy(buf_cache);
1107 }
1108
1109 /*
1110 * Constructor callback - called when the cache is empty
1111 * and a new buf is requested.
1112 */
1113 /* ARGSUSED */
1114 static int
hdr_full_cons(void * vbuf,void * unused,int kmflag)1115 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1116 {
1117 arc_buf_hdr_t *hdr = vbuf;
1118
1119 bzero(hdr, HDR_FULL_SIZE);
1120 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1121 refcount_create(&hdr->b_l1hdr.b_refcnt);
1122 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1123 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1124 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1125
1126 return (0);
1127 }
1128
1129 /* ARGSUSED */
1130 static int
hdr_l2only_cons(void * vbuf,void * unused,int kmflag)1131 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1132 {
1133 arc_buf_hdr_t *hdr = vbuf;
1134
1135 bzero(hdr, HDR_L2ONLY_SIZE);
1136 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1137
1138 return (0);
1139 }
1140
1141 /* ARGSUSED */
1142 static int
buf_cons(void * vbuf,void * unused,int kmflag)1143 buf_cons(void *vbuf, void *unused, int kmflag)
1144 {
1145 arc_buf_t *buf = vbuf;
1146
1147 bzero(buf, sizeof (arc_buf_t));
1148 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1149 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1150
1151 return (0);
1152 }
1153
1154 /*
1155 * Destructor callback - called when a cached buf is
1156 * no longer required.
1157 */
1158 /* ARGSUSED */
1159 static void
hdr_full_dest(void * vbuf,void * unused)1160 hdr_full_dest(void *vbuf, void *unused)
1161 {
1162 arc_buf_hdr_t *hdr = vbuf;
1163
1164 ASSERT(BUF_EMPTY(hdr));
1165 cv_destroy(&hdr->b_l1hdr.b_cv);
1166 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1167 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1168 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1169 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1170 }
1171
1172 /* ARGSUSED */
1173 static void
hdr_l2only_dest(void * vbuf,void * unused)1174 hdr_l2only_dest(void *vbuf, void *unused)
1175 {
1176 arc_buf_hdr_t *hdr = vbuf;
1177
1178 ASSERT(BUF_EMPTY(hdr));
1179 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1180 }
1181
1182 /* ARGSUSED */
1183 static void
buf_dest(void * vbuf,void * unused)1184 buf_dest(void *vbuf, void *unused)
1185 {
1186 arc_buf_t *buf = vbuf;
1187
1188 mutex_destroy(&buf->b_evict_lock);
1189 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1190 }
1191
1192 /*
1193 * Reclaim callback -- invoked when memory is low.
1194 */
1195 /* ARGSUSED */
1196 static void
hdr_recl(void * unused)1197 hdr_recl(void *unused)
1198 {
1199 dprintf("hdr_recl called\n");
1200 /*
1201 * umem calls the reclaim func when we destroy the buf cache,
1202 * which is after we do arc_fini().
1203 */
1204 if (!arc_dead)
1205 cv_signal(&arc_reclaim_thread_cv);
1206 }
1207
1208 static void
buf_init(void)1209 buf_init(void)
1210 {
1211 uint64_t *ct;
1212 uint64_t hsize = 1ULL << 12;
1213 int i, j;
1214
1215 /*
1216 * The hash table is big enough to fill all of physical memory
1217 * with an average block size of zfs_arc_average_blocksize (default 8K).
1218 * By default, the table will take up
1219 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1220 */
1221 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1222 hsize <<= 1;
1223 retry:
1224 buf_hash_table.ht_mask = hsize - 1;
1225 buf_hash_table.ht_table =
1226 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1227 if (buf_hash_table.ht_table == NULL) {
1228 ASSERT(hsize > (1ULL << 8));
1229 hsize >>= 1;
1230 goto retry;
1231 }
1232
1233 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1234 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1235 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1236 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1237 NULL, NULL, 0);
1238 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1239 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1240
1241 for (i = 0; i < 256; i++)
1242 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1243 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1244
1245 for (i = 0; i < BUF_LOCKS; i++) {
1246 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1247 NULL, MUTEX_DEFAULT, NULL);
1248 }
1249 }
1250
1251 /*
1252 * Transition between the two allocation states for the arc_buf_hdr struct.
1253 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1254 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1255 * version is used when a cache buffer is only in the L2ARC in order to reduce
1256 * memory usage.
1257 */
1258 static arc_buf_hdr_t *
arc_hdr_realloc(arc_buf_hdr_t * hdr,kmem_cache_t * old,kmem_cache_t * new)1259 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1260 {
1261 ASSERT(HDR_HAS_L2HDR(hdr));
1262
1263 arc_buf_hdr_t *nhdr;
1264 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1265
1266 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1267 (old == hdr_l2only_cache && new == hdr_full_cache));
1268
1269 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1270
1271 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1272 buf_hash_remove(hdr);
1273
1274 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1275
1276 if (new == hdr_full_cache) {
1277 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1278 /*
1279 * arc_access and arc_change_state need to be aware that a
1280 * header has just come out of L2ARC, so we set its state to
1281 * l2c_only even though it's about to change.
1282 */
1283 nhdr->b_l1hdr.b_state = arc_l2c_only;
1284
1285 /* Verify previous threads set to NULL before freeing */
1286 ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1287 } else {
1288 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1289 ASSERT0(hdr->b_l1hdr.b_datacnt);
1290
1291 /*
1292 * If we've reached here, We must have been called from
1293 * arc_evict_hdr(), as such we should have already been
1294 * removed from any ghost list we were previously on
1295 * (which protects us from racing with arc_evict_state),
1296 * thus no locking is needed during this check.
1297 */
1298 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1299
1300 /*
1301 * A buffer must not be moved into the arc_l2c_only
1302 * state if it's not finished being written out to the
1303 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1304 * might try to be accessed, even though it was removed.
1305 */
1306 VERIFY(!HDR_L2_WRITING(hdr));
1307 VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1308
1309 #ifdef ZFS_DEBUG
1310 if (hdr->b_l1hdr.b_thawed != NULL) {
1311 kmem_free(hdr->b_l1hdr.b_thawed, 1);
1312 hdr->b_l1hdr.b_thawed = NULL;
1313 }
1314 #endif
1315
1316 nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1317 }
1318 /*
1319 * The header has been reallocated so we need to re-insert it into any
1320 * lists it was on.
1321 */
1322 (void) buf_hash_insert(nhdr, NULL);
1323
1324 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1325
1326 mutex_enter(&dev->l2ad_mtx);
1327
1328 /*
1329 * We must place the realloc'ed header back into the list at
1330 * the same spot. Otherwise, if it's placed earlier in the list,
1331 * l2arc_write_buffers() could find it during the function's
1332 * write phase, and try to write it out to the l2arc.
1333 */
1334 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1335 list_remove(&dev->l2ad_buflist, hdr);
1336
1337 mutex_exit(&dev->l2ad_mtx);
1338
1339 /*
1340 * Since we're using the pointer address as the tag when
1341 * incrementing and decrementing the l2ad_alloc refcount, we
1342 * must remove the old pointer (that we're about to destroy) and
1343 * add the new pointer to the refcount. Otherwise we'd remove
1344 * the wrong pointer address when calling arc_hdr_destroy() later.
1345 */
1346
1347 (void) refcount_remove_many(&dev->l2ad_alloc,
1348 hdr->b_l2hdr.b_asize, hdr);
1349
1350 (void) refcount_add_many(&dev->l2ad_alloc,
1351 nhdr->b_l2hdr.b_asize, nhdr);
1352
1353 buf_discard_identity(hdr);
1354 hdr->b_freeze_cksum = NULL;
1355 kmem_cache_free(old, hdr);
1356
1357 return (nhdr);
1358 }
1359
1360
1361 #define ARC_MINTIME (hz>>4) /* 62 ms */
1362
1363 static void
arc_cksum_verify(arc_buf_t * buf)1364 arc_cksum_verify(arc_buf_t *buf)
1365 {
1366 zio_cksum_t zc;
1367
1368 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1369 return;
1370
1371 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1372 if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1373 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1374 return;
1375 }
1376 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, NULL, &zc);
1377 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1378 panic("buffer modified while frozen!");
1379 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1380 }
1381
1382 static int
arc_cksum_equal(arc_buf_t * buf)1383 arc_cksum_equal(arc_buf_t *buf)
1384 {
1385 zio_cksum_t zc;
1386 int equal;
1387
1388 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1389 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, NULL, &zc);
1390 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1391 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1392
1393 return (equal);
1394 }
1395
1396 static void
arc_cksum_compute(arc_buf_t * buf,boolean_t force)1397 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1398 {
1399 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1400 return;
1401
1402 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1403 if (buf->b_hdr->b_freeze_cksum != NULL) {
1404 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1405 return;
1406 }
1407 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1408 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1409 NULL, buf->b_hdr->b_freeze_cksum);
1410 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1411 arc_buf_watch(buf);
1412 }
1413
1414 #ifndef _KERNEL
1415 typedef struct procctl {
1416 long cmd;
1417 prwatch_t prwatch;
1418 } procctl_t;
1419 #endif
1420
1421 /* ARGSUSED */
1422 static void
arc_buf_unwatch(arc_buf_t * buf)1423 arc_buf_unwatch(arc_buf_t *buf)
1424 {
1425 #ifndef _KERNEL
1426 if (arc_watch) {
1427 int result;
1428 procctl_t ctl;
1429 ctl.cmd = PCWATCH;
1430 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1431 ctl.prwatch.pr_size = 0;
1432 ctl.prwatch.pr_wflags = 0;
1433 result = write(arc_procfd, &ctl, sizeof (ctl));
1434 ASSERT3U(result, ==, sizeof (ctl));
1435 }
1436 #endif
1437 }
1438
1439 /* ARGSUSED */
1440 static void
arc_buf_watch(arc_buf_t * buf)1441 arc_buf_watch(arc_buf_t *buf)
1442 {
1443 #ifndef _KERNEL
1444 if (arc_watch) {
1445 int result;
1446 procctl_t ctl;
1447 ctl.cmd = PCWATCH;
1448 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1449 ctl.prwatch.pr_size = buf->b_hdr->b_size;
1450 ctl.prwatch.pr_wflags = WA_WRITE;
1451 result = write(arc_procfd, &ctl, sizeof (ctl));
1452 ASSERT3U(result, ==, sizeof (ctl));
1453 }
1454 #endif
1455 }
1456
1457 static arc_buf_contents_t
arc_buf_type(arc_buf_hdr_t * hdr)1458 arc_buf_type(arc_buf_hdr_t *hdr)
1459 {
1460 if (HDR_ISTYPE_METADATA(hdr)) {
1461 return (ARC_BUFC_METADATA);
1462 } else {
1463 return (ARC_BUFC_DATA);
1464 }
1465 }
1466
1467 static uint32_t
arc_bufc_to_flags(arc_buf_contents_t type)1468 arc_bufc_to_flags(arc_buf_contents_t type)
1469 {
1470 switch (type) {
1471 case ARC_BUFC_DATA:
1472 /* metadata field is 0 if buffer contains normal data */
1473 return (0);
1474 case ARC_BUFC_METADATA:
1475 return (ARC_FLAG_BUFC_METADATA);
1476 default:
1477 break;
1478 }
1479 panic("undefined ARC buffer type!");
1480 return ((uint32_t)-1);
1481 }
1482
1483 void
arc_buf_thaw(arc_buf_t * buf)1484 arc_buf_thaw(arc_buf_t *buf)
1485 {
1486 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1487 if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1488 panic("modifying non-anon buffer!");
1489 if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1490 panic("modifying buffer while i/o in progress!");
1491 arc_cksum_verify(buf);
1492 }
1493
1494 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1495 if (buf->b_hdr->b_freeze_cksum != NULL) {
1496 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1497 buf->b_hdr->b_freeze_cksum = NULL;
1498 }
1499
1500 #ifdef ZFS_DEBUG
1501 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1502 if (buf->b_hdr->b_l1hdr.b_thawed != NULL)
1503 kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1);
1504 buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1505 }
1506 #endif
1507
1508 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1509
1510 arc_buf_unwatch(buf);
1511 }
1512
1513 void
arc_buf_freeze(arc_buf_t * buf)1514 arc_buf_freeze(arc_buf_t *buf)
1515 {
1516 kmutex_t *hash_lock;
1517
1518 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1519 return;
1520
1521 hash_lock = HDR_LOCK(buf->b_hdr);
1522 mutex_enter(hash_lock);
1523
1524 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1525 buf->b_hdr->b_l1hdr.b_state == arc_anon);
1526 arc_cksum_compute(buf, B_FALSE);
1527 mutex_exit(hash_lock);
1528
1529 }
1530
1531 static void
add_reference(arc_buf_hdr_t * hdr,kmutex_t * hash_lock,void * tag)1532 add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1533 {
1534 ASSERT(HDR_HAS_L1HDR(hdr));
1535 ASSERT(MUTEX_HELD(hash_lock));
1536 arc_state_t *state = hdr->b_l1hdr.b_state;
1537
1538 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1539 (state != arc_anon)) {
1540 /* We don't use the L2-only state list. */
1541 if (state != arc_l2c_only) {
1542 arc_buf_contents_t type = arc_buf_type(hdr);
1543 uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1544 multilist_t *list = &state->arcs_list[type];
1545 uint64_t *size = &state->arcs_lsize[type];
1546
1547 multilist_remove(list, hdr);
1548
1549 if (GHOST_STATE(state)) {
1550 ASSERT0(hdr->b_l1hdr.b_datacnt);
1551 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1552 delta = hdr->b_size;
1553 }
1554 ASSERT(delta > 0);
1555 ASSERT3U(*size, >=, delta);
1556 atomic_add_64(size, -delta);
1557 }
1558 /* remove the prefetch flag if we get a reference */
1559 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1560 }
1561 }
1562
1563 static int
remove_reference(arc_buf_hdr_t * hdr,kmutex_t * hash_lock,void * tag)1564 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1565 {
1566 int cnt;
1567 arc_state_t *state = hdr->b_l1hdr.b_state;
1568
1569 ASSERT(HDR_HAS_L1HDR(hdr));
1570 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1571 ASSERT(!GHOST_STATE(state));
1572
1573 /*
1574 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1575 * check to prevent usage of the arc_l2c_only list.
1576 */
1577 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1578 (state != arc_anon)) {
1579 arc_buf_contents_t type = arc_buf_type(hdr);
1580 multilist_t *list = &state->arcs_list[type];
1581 uint64_t *size = &state->arcs_lsize[type];
1582
1583 multilist_insert(list, hdr);
1584
1585 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1586 atomic_add_64(size, hdr->b_size *
1587 hdr->b_l1hdr.b_datacnt);
1588 }
1589 return (cnt);
1590 }
1591
1592 /*
1593 * Move the supplied buffer to the indicated state. The hash lock
1594 * for the buffer must be held by the caller.
1595 */
1596 static void
arc_change_state(arc_state_t * new_state,arc_buf_hdr_t * hdr,kmutex_t * hash_lock)1597 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1598 kmutex_t *hash_lock)
1599 {
1600 arc_state_t *old_state;
1601 int64_t refcnt;
1602 uint32_t datacnt;
1603 uint64_t from_delta, to_delta;
1604 arc_buf_contents_t buftype = arc_buf_type(hdr);
1605
1606 /*
1607 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1608 * in arc_read() when bringing a buffer out of the L2ARC. However, the
1609 * L1 hdr doesn't always exist when we change state to arc_anon before
1610 * destroying a header, in which case reallocating to add the L1 hdr is
1611 * pointless.
1612 */
1613 if (HDR_HAS_L1HDR(hdr)) {
1614 old_state = hdr->b_l1hdr.b_state;
1615 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1616 datacnt = hdr->b_l1hdr.b_datacnt;
1617 } else {
1618 old_state = arc_l2c_only;
1619 refcnt = 0;
1620 datacnt = 0;
1621 }
1622
1623 ASSERT(MUTEX_HELD(hash_lock));
1624 ASSERT3P(new_state, !=, old_state);
1625 ASSERT(refcnt == 0 || datacnt > 0);
1626 ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1627 ASSERT(old_state != arc_anon || datacnt <= 1);
1628
1629 from_delta = to_delta = datacnt * hdr->b_size;
1630
1631 /*
1632 * If this buffer is evictable, transfer it from the
1633 * old state list to the new state list.
1634 */
1635 if (refcnt == 0) {
1636 if (old_state != arc_anon && old_state != arc_l2c_only) {
1637 uint64_t *size = &old_state->arcs_lsize[buftype];
1638
1639 ASSERT(HDR_HAS_L1HDR(hdr));
1640 multilist_remove(&old_state->arcs_list[buftype], hdr);
1641
1642 /*
1643 * If prefetching out of the ghost cache,
1644 * we will have a non-zero datacnt.
1645 */
1646 if (GHOST_STATE(old_state) && datacnt == 0) {
1647 /* ghost elements have a ghost size */
1648 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1649 from_delta = hdr->b_size;
1650 }
1651 ASSERT3U(*size, >=, from_delta);
1652 atomic_add_64(size, -from_delta);
1653 }
1654 if (new_state != arc_anon && new_state != arc_l2c_only) {
1655 uint64_t *size = &new_state->arcs_lsize[buftype];
1656
1657 /*
1658 * An L1 header always exists here, since if we're
1659 * moving to some L1-cached state (i.e. not l2c_only or
1660 * anonymous), we realloc the header to add an L1hdr
1661 * beforehand.
1662 */
1663 ASSERT(HDR_HAS_L1HDR(hdr));
1664 multilist_insert(&new_state->arcs_list[buftype], hdr);
1665
1666 /* ghost elements have a ghost size */
1667 if (GHOST_STATE(new_state)) {
1668 ASSERT0(datacnt);
1669 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1670 to_delta = hdr->b_size;
1671 }
1672 atomic_add_64(size, to_delta);
1673 }
1674 }
1675
1676 ASSERT(!BUF_EMPTY(hdr));
1677 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1678 buf_hash_remove(hdr);
1679
1680 /* adjust state sizes (ignore arc_l2c_only) */
1681
1682 if (to_delta && new_state != arc_l2c_only) {
1683 ASSERT(HDR_HAS_L1HDR(hdr));
1684 if (GHOST_STATE(new_state)) {
1685 ASSERT0(datacnt);
1686
1687 /*
1688 * We moving a header to a ghost state, we first
1689 * remove all arc buffers. Thus, we'll have a
1690 * datacnt of zero, and no arc buffer to use for
1691 * the reference. As a result, we use the arc
1692 * header pointer for the reference.
1693 */
1694 (void) refcount_add_many(&new_state->arcs_size,
1695 hdr->b_size, hdr);
1696 } else {
1697 ASSERT3U(datacnt, !=, 0);
1698
1699 /*
1700 * Each individual buffer holds a unique reference,
1701 * thus we must remove each of these references one
1702 * at a time.
1703 */
1704 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1705 buf = buf->b_next) {
1706 (void) refcount_add_many(&new_state->arcs_size,
1707 hdr->b_size, buf);
1708 }
1709 }
1710 }
1711
1712 if (from_delta && old_state != arc_l2c_only) {
1713 ASSERT(HDR_HAS_L1HDR(hdr));
1714 if (GHOST_STATE(old_state)) {
1715 /*
1716 * When moving a header off of a ghost state,
1717 * there's the possibility for datacnt to be
1718 * non-zero. This is because we first add the
1719 * arc buffer to the header prior to changing
1720 * the header's state. Since we used the header
1721 * for the reference when putting the header on
1722 * the ghost state, we must balance that and use
1723 * the header when removing off the ghost state
1724 * (even though datacnt is non zero).
1725 */
1726
1727 IMPLY(datacnt == 0, new_state == arc_anon ||
1728 new_state == arc_l2c_only);
1729
1730 (void) refcount_remove_many(&old_state->arcs_size,
1731 hdr->b_size, hdr);
1732 } else {
1733 ASSERT3P(datacnt, !=, 0);
1734
1735 /*
1736 * Each individual buffer holds a unique reference,
1737 * thus we must remove each of these references one
1738 * at a time.
1739 */
1740 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
1741 buf = buf->b_next) {
1742 (void) refcount_remove_many(
1743 &old_state->arcs_size, hdr->b_size, buf);
1744 }
1745 }
1746 }
1747
1748 if (HDR_HAS_L1HDR(hdr))
1749 hdr->b_l1hdr.b_state = new_state;
1750
1751 /*
1752 * L2 headers should never be on the L2 state list since they don't
1753 * have L1 headers allocated.
1754 */
1755 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
1756 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
1757 }
1758
1759 void
arc_space_consume(uint64_t space,arc_space_type_t type)1760 arc_space_consume(uint64_t space, arc_space_type_t type)
1761 {
1762 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1763
1764 switch (type) {
1765 case ARC_SPACE_DATA:
1766 ARCSTAT_INCR(arcstat_data_size, space);
1767 break;
1768 case ARC_SPACE_META:
1769 ARCSTAT_INCR(arcstat_metadata_size, space);
1770 break;
1771 case ARC_SPACE_OTHER:
1772 ARCSTAT_INCR(arcstat_other_size, space);
1773 break;
1774 case ARC_SPACE_HDRS:
1775 ARCSTAT_INCR(arcstat_hdr_size, space);
1776 break;
1777 case ARC_SPACE_L2HDRS:
1778 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1779 break;
1780 }
1781
1782 if (type != ARC_SPACE_DATA)
1783 ARCSTAT_INCR(arcstat_meta_used, space);
1784
1785 atomic_add_64(&arc_size, space);
1786 }
1787
1788 void
arc_space_return(uint64_t space,arc_space_type_t type)1789 arc_space_return(uint64_t space, arc_space_type_t type)
1790 {
1791 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1792
1793 switch (type) {
1794 case ARC_SPACE_DATA:
1795 ARCSTAT_INCR(arcstat_data_size, -space);
1796 break;
1797 case ARC_SPACE_META:
1798 ARCSTAT_INCR(arcstat_metadata_size, -space);
1799 break;
1800 case ARC_SPACE_OTHER:
1801 ARCSTAT_INCR(arcstat_other_size, -space);
1802 break;
1803 case ARC_SPACE_HDRS:
1804 ARCSTAT_INCR(arcstat_hdr_size, -space);
1805 break;
1806 case ARC_SPACE_L2HDRS:
1807 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1808 break;
1809 }
1810
1811 if (type != ARC_SPACE_DATA) {
1812 ASSERT(arc_meta_used >= space);
1813 if (arc_meta_max < arc_meta_used)
1814 arc_meta_max = arc_meta_used;
1815 ARCSTAT_INCR(arcstat_meta_used, -space);
1816 }
1817
1818 ASSERT(arc_size >= space);
1819 atomic_add_64(&arc_size, -space);
1820 }
1821
1822 arc_buf_t *
arc_buf_alloc(spa_t * spa,int32_t size,void * tag,arc_buf_contents_t type)1823 arc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
1824 {
1825 arc_buf_hdr_t *hdr;
1826 arc_buf_t *buf;
1827
1828 ASSERT3U(size, >, 0);
1829 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
1830 ASSERT(BUF_EMPTY(hdr));
1831 ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
1832 hdr->b_size = size;
1833 hdr->b_spa = spa_load_guid(spa);
1834
1835 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1836 buf->b_hdr = hdr;
1837 buf->b_data = NULL;
1838 buf->b_efunc = NULL;
1839 buf->b_private = NULL;
1840 buf->b_next = NULL;
1841
1842 hdr->b_flags = arc_bufc_to_flags(type);
1843 hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1844
1845 hdr->b_l1hdr.b_buf = buf;
1846 hdr->b_l1hdr.b_state = arc_anon;
1847 hdr->b_l1hdr.b_arc_access = 0;
1848 hdr->b_l1hdr.b_datacnt = 1;
1849 hdr->b_l1hdr.b_tmp_cdata = NULL;
1850
1851 arc_get_data_buf(buf);
1852 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1853 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1854
1855 return (buf);
1856 }
1857
1858 static char *arc_onloan_tag = "onloan";
1859
1860 /*
1861 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1862 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1863 * buffers must be returned to the arc before they can be used by the DMU or
1864 * freed.
1865 */
1866 arc_buf_t *
arc_loan_buf(spa_t * spa,int size)1867 arc_loan_buf(spa_t *spa, int size)
1868 {
1869 arc_buf_t *buf;
1870
1871 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1872
1873 atomic_add_64(&arc_loaned_bytes, size);
1874 return (buf);
1875 }
1876
1877 /*
1878 * Return a loaned arc buffer to the arc.
1879 */
1880 void
arc_return_buf(arc_buf_t * buf,void * tag)1881 arc_return_buf(arc_buf_t *buf, void *tag)
1882 {
1883 arc_buf_hdr_t *hdr = buf->b_hdr;
1884
1885 ASSERT(buf->b_data != NULL);
1886 ASSERT(HDR_HAS_L1HDR(hdr));
1887 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1888 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
1889
1890 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1891 }
1892
1893 /* Detach an arc_buf from a dbuf (tag) */
1894 void
arc_loan_inuse_buf(arc_buf_t * buf,void * tag)1895 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1896 {
1897 arc_buf_hdr_t *hdr = buf->b_hdr;
1898
1899 ASSERT(buf->b_data != NULL);
1900 ASSERT(HDR_HAS_L1HDR(hdr));
1901 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
1902 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
1903 buf->b_efunc = NULL;
1904 buf->b_private = NULL;
1905
1906 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1907 }
1908
1909 static arc_buf_t *
arc_buf_clone(arc_buf_t * from)1910 arc_buf_clone(arc_buf_t *from)
1911 {
1912 arc_buf_t *buf;
1913 arc_buf_hdr_t *hdr = from->b_hdr;
1914 uint64_t size = hdr->b_size;
1915
1916 ASSERT(HDR_HAS_L1HDR(hdr));
1917 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
1918
1919 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1920 buf->b_hdr = hdr;
1921 buf->b_data = NULL;
1922 buf->b_efunc = NULL;
1923 buf->b_private = NULL;
1924 buf->b_next = hdr->b_l1hdr.b_buf;
1925 hdr->b_l1hdr.b_buf = buf;
1926 arc_get_data_buf(buf);
1927 bcopy(from->b_data, buf->b_data, size);
1928
1929 /*
1930 * This buffer already exists in the arc so create a duplicate
1931 * copy for the caller. If the buffer is associated with user data
1932 * then track the size and number of duplicates. These stats will be
1933 * updated as duplicate buffers are created and destroyed.
1934 */
1935 if (HDR_ISTYPE_DATA(hdr)) {
1936 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1937 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1938 }
1939 hdr->b_l1hdr.b_datacnt += 1;
1940 return (buf);
1941 }
1942
1943 void
arc_buf_add_ref(arc_buf_t * buf,void * tag)1944 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1945 {
1946 arc_buf_hdr_t *hdr;
1947 kmutex_t *hash_lock;
1948
1949 /*
1950 * Check to see if this buffer is evicted. Callers
1951 * must verify b_data != NULL to know if the add_ref
1952 * was successful.
1953 */
1954 mutex_enter(&buf->b_evict_lock);
1955 if (buf->b_data == NULL) {
1956 mutex_exit(&buf->b_evict_lock);
1957 return;
1958 }
1959 hash_lock = HDR_LOCK(buf->b_hdr);
1960 mutex_enter(hash_lock);
1961 hdr = buf->b_hdr;
1962 ASSERT(HDR_HAS_L1HDR(hdr));
1963 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1964 mutex_exit(&buf->b_evict_lock);
1965
1966 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
1967 hdr->b_l1hdr.b_state == arc_mfu);
1968
1969 add_reference(hdr, hash_lock, tag);
1970 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1971 arc_access(hdr, hash_lock);
1972 mutex_exit(hash_lock);
1973 ARCSTAT_BUMP(arcstat_hits);
1974 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
1975 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
1976 data, metadata, hits);
1977 }
1978
1979 static void
arc_buf_free_on_write(void * data,size_t size,void (* free_func)(void *,size_t))1980 arc_buf_free_on_write(void *data, size_t size,
1981 void (*free_func)(void *, size_t))
1982 {
1983 l2arc_data_free_t *df;
1984
1985 df = kmem_alloc(sizeof (*df), KM_SLEEP);
1986 df->l2df_data = data;
1987 df->l2df_size = size;
1988 df->l2df_func = free_func;
1989 mutex_enter(&l2arc_free_on_write_mtx);
1990 list_insert_head(l2arc_free_on_write, df);
1991 mutex_exit(&l2arc_free_on_write_mtx);
1992 }
1993
1994 /*
1995 * Free the arc data buffer. If it is an l2arc write in progress,
1996 * the buffer is placed on l2arc_free_on_write to be freed later.
1997 */
1998 static void
arc_buf_data_free(arc_buf_t * buf,void (* free_func)(void *,size_t))1999 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
2000 {
2001 arc_buf_hdr_t *hdr = buf->b_hdr;
2002
2003 if (HDR_L2_WRITING(hdr)) {
2004 arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
2005 ARCSTAT_BUMP(arcstat_l2_free_on_write);
2006 } else {
2007 free_func(buf->b_data, hdr->b_size);
2008 }
2009 }
2010
2011 static void
arc_buf_l2_cdata_free(arc_buf_hdr_t * hdr)2012 arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
2013 {
2014 ASSERT(HDR_HAS_L2HDR(hdr));
2015 ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
2016
2017 /*
2018 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
2019 * that doesn't exist, the header is in the arc_l2c_only state,
2020 * and there isn't anything to free (it's already been freed).
2021 */
2022 if (!HDR_HAS_L1HDR(hdr))
2023 return;
2024
2025 /*
2026 * The header isn't being written to the l2arc device, thus it
2027 * shouldn't have a b_tmp_cdata to free.
2028 */
2029 if (!HDR_L2_WRITING(hdr)) {
2030 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2031 return;
2032 }
2033
2034 /*
2035 * The header does not have compression enabled. This can be due
2036 * to the buffer not being compressible, or because we're
2037 * freeing the buffer before the second phase of
2038 * l2arc_write_buffer() has started (which does the compression
2039 * step). In either case, b_tmp_cdata does not point to a
2040 * separately compressed buffer, so there's nothing to free (it
2041 * points to the same buffer as the arc_buf_t's b_data field).
2042 */
2043 if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_OFF) {
2044 hdr->b_l1hdr.b_tmp_cdata = NULL;
2045 return;
2046 }
2047
2048 /*
2049 * There's nothing to free since the buffer was all zero's and
2050 * compressed to a zero length buffer.
2051 */
2052 if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_EMPTY) {
2053 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2054 return;
2055 }
2056
2057 ASSERT(L2ARC_IS_VALID_COMPRESS(hdr->b_l2hdr.b_compress));
2058
2059 arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
2060 hdr->b_size, zio_data_buf_free);
2061
2062 ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
2063 hdr->b_l1hdr.b_tmp_cdata = NULL;
2064 }
2065
2066 /*
2067 * Free up buf->b_data and if 'remove' is set, then pull the
2068 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2069 */
2070 static void
arc_buf_destroy(arc_buf_t * buf,boolean_t remove)2071 arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
2072 {
2073 arc_buf_t **bufp;
2074
2075 /* free up data associated with the buf */
2076 if (buf->b_data != NULL) {
2077 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
2078 uint64_t size = buf->b_hdr->b_size;
2079 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
2080
2081 arc_cksum_verify(buf);
2082 arc_buf_unwatch(buf);
2083
2084 if (type == ARC_BUFC_METADATA) {
2085 arc_buf_data_free(buf, zio_buf_free);
2086 arc_space_return(size, ARC_SPACE_META);
2087 } else {
2088 ASSERT(type == ARC_BUFC_DATA);
2089 arc_buf_data_free(buf, zio_data_buf_free);
2090 arc_space_return(size, ARC_SPACE_DATA);
2091 }
2092
2093 /* protected by hash lock, if in the hash table */
2094 if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
2095 uint64_t *cnt = &state->arcs_lsize[type];
2096
2097 ASSERT(refcount_is_zero(
2098 &buf->b_hdr->b_l1hdr.b_refcnt));
2099 ASSERT(state != arc_anon && state != arc_l2c_only);
2100
2101 ASSERT3U(*cnt, >=, size);
2102 atomic_add_64(cnt, -size);
2103 }
2104
2105 (void) refcount_remove_many(&state->arcs_size, size, buf);
2106 buf->b_data = NULL;
2107
2108 /*
2109 * If we're destroying a duplicate buffer make sure
2110 * that the appropriate statistics are updated.
2111 */
2112 if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2113 HDR_ISTYPE_DATA(buf->b_hdr)) {
2114 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2115 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2116 }
2117 ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2118 buf->b_hdr->b_l1hdr.b_datacnt -= 1;
2119 }
2120
2121 /* only remove the buf if requested */
2122 if (!remove)
2123 return;
2124
2125 /* remove the buf from the hdr list */
2126 for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2127 bufp = &(*bufp)->b_next)
2128 continue;
2129 *bufp = buf->b_next;
2130 buf->b_next = NULL;
2131
2132 ASSERT(buf->b_efunc == NULL);
2133
2134 /* clean up the buf */
2135 buf->b_hdr = NULL;
2136 kmem_cache_free(buf_cache, buf);
2137 }
2138
2139 static void
arc_hdr_l2hdr_destroy(arc_buf_hdr_t * hdr)2140 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2141 {
2142 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2143 l2arc_dev_t *dev = l2hdr->b_dev;
2144
2145 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2146 ASSERT(HDR_HAS_L2HDR(hdr));
2147
2148 list_remove(&dev->l2ad_buflist, hdr);
2149
2150 /*
2151 * We don't want to leak the b_tmp_cdata buffer that was
2152 * allocated in l2arc_write_buffers()
2153 */
2154 arc_buf_l2_cdata_free(hdr);
2155
2156 /*
2157 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2158 * this header is being processed by l2arc_write_buffers() (i.e.
2159 * it's in the first stage of l2arc_write_buffers()).
2160 * Re-affirming that truth here, just to serve as a reminder. If
2161 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2162 * may not have its HDR_L2_WRITING flag set. (the write may have
2163 * completed, in which case HDR_L2_WRITING will be false and the
2164 * b_daddr field will point to the address of the buffer on disk).
2165 */
2166 IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2167
2168 /*
2169 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2170 * l2arc_write_buffers(). Since we've just removed this header
2171 * from the l2arc buffer list, this header will never reach the
2172 * second stage of l2arc_write_buffers(), which increments the
2173 * accounting stats for this header. Thus, we must be careful
2174 * not to decrement them for this header either.
2175 */
2176 if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2177 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2178 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2179
2180 vdev_space_update(dev->l2ad_vdev,
2181 -l2hdr->b_asize, 0, 0);
2182
2183 (void) refcount_remove_many(&dev->l2ad_alloc,
2184 l2hdr->b_asize, hdr);
2185 }
2186
2187 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2188 }
2189
2190 static void
arc_hdr_destroy(arc_buf_hdr_t * hdr)2191 arc_hdr_destroy(arc_buf_hdr_t *hdr)
2192 {
2193 if (HDR_HAS_L1HDR(hdr)) {
2194 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2195 hdr->b_l1hdr.b_datacnt > 0);
2196 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2197 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2198 }
2199 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2200 ASSERT(!HDR_IN_HASH_TABLE(hdr));
2201
2202 if (HDR_HAS_L2HDR(hdr)) {
2203 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2204 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
2205
2206 if (!buflist_held)
2207 mutex_enter(&dev->l2ad_mtx);
2208
2209 /*
2210 * Even though we checked this conditional above, we
2211 * need to check this again now that we have the
2212 * l2ad_mtx. This is because we could be racing with
2213 * another thread calling l2arc_evict() which might have
2214 * destroyed this header's L2 portion as we were waiting
2215 * to acquire the l2ad_mtx. If that happens, we don't
2216 * want to re-destroy the header's L2 portion.
2217 */
2218 if (HDR_HAS_L2HDR(hdr))
2219 arc_hdr_l2hdr_destroy(hdr);
2220
2221 if (!buflist_held)
2222 mutex_exit(&dev->l2ad_mtx);
2223 }
2224
2225 if (!BUF_EMPTY(hdr))
2226 buf_discard_identity(hdr);
2227
2228 if (hdr->b_freeze_cksum != NULL) {
2229 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2230 hdr->b_freeze_cksum = NULL;
2231 }
2232
2233 if (HDR_HAS_L1HDR(hdr)) {
2234 while (hdr->b_l1hdr.b_buf) {
2235 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2236
2237 if (buf->b_efunc != NULL) {
2238 mutex_enter(&arc_user_evicts_lock);
2239 mutex_enter(&buf->b_evict_lock);
2240 ASSERT(buf->b_hdr != NULL);
2241 arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
2242 hdr->b_l1hdr.b_buf = buf->b_next;
2243 buf->b_hdr = &arc_eviction_hdr;
2244 buf->b_next = arc_eviction_list;
2245 arc_eviction_list = buf;
2246 mutex_exit(&buf->b_evict_lock);
2247 cv_signal(&arc_user_evicts_cv);
2248 mutex_exit(&arc_user_evicts_lock);
2249 } else {
2250 arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
2251 }
2252 }
2253 #ifdef ZFS_DEBUG
2254 if (hdr->b_l1hdr.b_thawed != NULL) {
2255 kmem_free(hdr->b_l1hdr.b_thawed, 1);
2256 hdr->b_l1hdr.b_thawed = NULL;
2257 }
2258 #endif
2259 }
2260
2261 ASSERT3P(hdr->b_hash_next, ==, NULL);
2262 if (HDR_HAS_L1HDR(hdr)) {
2263 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2264 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2265 kmem_cache_free(hdr_full_cache, hdr);
2266 } else {
2267 kmem_cache_free(hdr_l2only_cache, hdr);
2268 }
2269 }
2270
2271 void
arc_buf_free(arc_buf_t * buf,void * tag)2272 arc_buf_free(arc_buf_t *buf, void *tag)
2273 {
2274 arc_buf_hdr_t *hdr = buf->b_hdr;
2275 int hashed = hdr->b_l1hdr.b_state != arc_anon;
2276
2277 ASSERT(buf->b_efunc == NULL);
2278 ASSERT(buf->b_data != NULL);
2279
2280 if (hashed) {
2281 kmutex_t *hash_lock = HDR_LOCK(hdr);
2282
2283 mutex_enter(hash_lock);
2284 hdr = buf->b_hdr;
2285 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2286
2287 (void) remove_reference(hdr, hash_lock, tag);
2288 if (hdr->b_l1hdr.b_datacnt > 1) {
2289 arc_buf_destroy(buf, TRUE);
2290 } else {
2291 ASSERT(buf == hdr->b_l1hdr.b_buf);
2292 ASSERT(buf->b_efunc == NULL);
2293 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2294 }
2295 mutex_exit(hash_lock);
2296 } else if (HDR_IO_IN_PROGRESS(hdr)) {
2297 int destroy_hdr;
2298 /*
2299 * We are in the middle of an async write. Don't destroy
2300 * this buffer unless the write completes before we finish
2301 * decrementing the reference count.
2302 */
2303 mutex_enter(&arc_user_evicts_lock);
2304 (void) remove_reference(hdr, NULL, tag);
2305 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2306 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
2307 mutex_exit(&arc_user_evicts_lock);
2308 if (destroy_hdr)
2309 arc_hdr_destroy(hdr);
2310 } else {
2311 if (remove_reference(hdr, NULL, tag) > 0)
2312 arc_buf_destroy(buf, TRUE);
2313 else
2314 arc_hdr_destroy(hdr);
2315 }
2316 }
2317
2318 boolean_t
arc_buf_remove_ref(arc_buf_t * buf,void * tag)2319 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2320 {
2321 arc_buf_hdr_t *hdr = buf->b_hdr;
2322 kmutex_t *hash_lock = HDR_LOCK(hdr);
2323 boolean_t no_callback = (buf->b_efunc == NULL);
2324
2325 if (hdr->b_l1hdr.b_state == arc_anon) {
2326 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2327 arc_buf_free(buf, tag);
2328 return (no_callback);
2329 }
2330
2331 mutex_enter(hash_lock);
2332 hdr = buf->b_hdr;
2333 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
2334 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2335 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2336 ASSERT(buf->b_data != NULL);
2337
2338 (void) remove_reference(hdr, hash_lock, tag);
2339 if (hdr->b_l1hdr.b_datacnt > 1) {
2340 if (no_callback)
2341 arc_buf_destroy(buf, TRUE);
2342 } else if (no_callback) {
2343 ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
2344 ASSERT(buf->b_efunc == NULL);
2345 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2346 }
2347 ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2348 refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2349 mutex_exit(hash_lock);
2350 return (no_callback);
2351 }
2352
2353 int32_t
arc_buf_size(arc_buf_t * buf)2354 arc_buf_size(arc_buf_t *buf)
2355 {
2356 return (buf->b_hdr->b_size);
2357 }
2358
2359 /*
2360 * Called from the DMU to determine if the current buffer should be
2361 * evicted. In order to ensure proper locking, the eviction must be initiated
2362 * from the DMU. Return true if the buffer is associated with user data and
2363 * duplicate buffers still exist.
2364 */
2365 boolean_t
arc_buf_eviction_needed(arc_buf_t * buf)2366 arc_buf_eviction_needed(arc_buf_t *buf)
2367 {
2368 arc_buf_hdr_t *hdr;
2369 boolean_t evict_needed = B_FALSE;
2370
2371 if (zfs_disable_dup_eviction)
2372 return (B_FALSE);
2373
2374 mutex_enter(&buf->b_evict_lock);
2375 hdr = buf->b_hdr;
2376 if (hdr == NULL) {
2377 /*
2378 * We are in arc_do_user_evicts(); let that function
2379 * perform the eviction.
2380 */
2381 ASSERT(buf->b_data == NULL);
2382 mutex_exit(&buf->b_evict_lock);
2383 return (B_FALSE);
2384 } else if (buf->b_data == NULL) {
2385 /*
2386 * We have already been added to the arc eviction list;
2387 * recommend eviction.
2388 */
2389 ASSERT3P(hdr, ==, &arc_eviction_hdr);
2390 mutex_exit(&buf->b_evict_lock);
2391 return (B_TRUE);
2392 }
2393
2394 if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2395 evict_needed = B_TRUE;
2396
2397 mutex_exit(&buf->b_evict_lock);
2398 return (evict_needed);
2399 }
2400
2401 /*
2402 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2403 * state of the header is dependent on it's state prior to entering this
2404 * function. The following transitions are possible:
2405 *
2406 * - arc_mru -> arc_mru_ghost
2407 * - arc_mfu -> arc_mfu_ghost
2408 * - arc_mru_ghost -> arc_l2c_only
2409 * - arc_mru_ghost -> deleted
2410 * - arc_mfu_ghost -> arc_l2c_only
2411 * - arc_mfu_ghost -> deleted
2412 */
2413 static int64_t
arc_evict_hdr(arc_buf_hdr_t * hdr,kmutex_t * hash_lock)2414 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
2415 {
2416 arc_state_t *evicted_state, *state;
2417 int64_t bytes_evicted = 0;
2418
2419 ASSERT(MUTEX_HELD(hash_lock));
2420 ASSERT(HDR_HAS_L1HDR(hdr));
2421
2422 state = hdr->b_l1hdr.b_state;
2423 if (GHOST_STATE(state)) {
2424 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2425 ASSERT(hdr->b_l1hdr.b_buf == NULL);
2426
2427 /*
2428 * l2arc_write_buffers() relies on a header's L1 portion
2429 * (i.e. it's b_tmp_cdata field) during it's write phase.
2430 * Thus, we cannot push a header onto the arc_l2c_only
2431 * state (removing it's L1 piece) until the header is
2432 * done being written to the l2arc.
2433 */
2434 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2435 ARCSTAT_BUMP(arcstat_evict_l2_skip);
2436 return (bytes_evicted);
2437 }
2438
2439 ARCSTAT_BUMP(arcstat_deleted);
2440 bytes_evicted += hdr->b_size;
2441
2442 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2443
2444 if (HDR_HAS_L2HDR(hdr)) {
2445 /*
2446 * This buffer is cached on the 2nd Level ARC;
2447 * don't destroy the header.
2448 */
2449 arc_change_state(arc_l2c_only, hdr, hash_lock);
2450 /*
2451 * dropping from L1+L2 cached to L2-only,
2452 * realloc to remove the L1 header.
2453 */
2454 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2455 hdr_l2only_cache);
2456 } else {
2457 arc_change_state(arc_anon, hdr, hash_lock);
2458 arc_hdr_destroy(hdr);
2459 }
2460 return (bytes_evicted);
2461 }
2462
2463 ASSERT(state == arc_mru || state == arc_mfu);
2464 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2465
2466 /* prefetch buffers have a minimum lifespan */
2467 if (HDR_IO_IN_PROGRESS(hdr) ||
2468 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2469 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2470 arc_min_prefetch_lifespan)) {
2471 ARCSTAT_BUMP(arcstat_evict_skip);
2472 return (bytes_evicted);
2473 }
2474
2475 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2476 ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2477 while (hdr->b_l1hdr.b_buf) {
2478 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2479 if (!mutex_tryenter(&buf->b_evict_lock)) {
2480 ARCSTAT_BUMP(arcstat_mutex_miss);
2481 break;
2482 }
2483 if (buf->b_data != NULL)
2484 bytes_evicted += hdr->b_size;
2485 if (buf->b_efunc != NULL) {
2486 mutex_enter(&arc_user_evicts_lock);
2487 arc_buf_destroy(buf, FALSE);
2488 hdr->b_l1hdr.b_buf = buf->b_next;
2489 buf->b_hdr = &arc_eviction_hdr;
2490 buf->b_next = arc_eviction_list;
2491 arc_eviction_list = buf;
2492 cv_signal(&arc_user_evicts_cv);
2493 mutex_exit(&arc_user_evicts_lock);
2494 mutex_exit(&buf->b_evict_lock);
2495 } else {
2496 mutex_exit(&buf->b_evict_lock);
2497 arc_buf_destroy(buf, TRUE);
2498 }
2499 }
2500
2501 if (HDR_HAS_L2HDR(hdr)) {
2502 ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2503 } else {
2504 if (l2arc_write_eligible(hdr->b_spa, UINT64_MAX, hdr))
2505 ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2506 else
2507 ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2508 }
2509
2510 if (hdr->b_l1hdr.b_datacnt == 0) {
2511 arc_change_state(evicted_state, hdr, hash_lock);
2512 ASSERT(HDR_IN_HASH_TABLE(hdr));
2513 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2514 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2515 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2516 }
2517
2518 return (bytes_evicted);
2519 }
2520
2521 static uint64_t
arc_evict_state_impl(multilist_t * ml,int idx,arc_buf_hdr_t * marker,uint64_t spa,int64_t bytes)2522 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2523 uint64_t spa, int64_t bytes)
2524 {
2525 multilist_sublist_t *mls;
2526 uint64_t bytes_evicted = 0;
2527 arc_buf_hdr_t *hdr;
2528 kmutex_t *hash_lock;
2529 int evict_count = 0;
2530
2531 ASSERT3P(marker, !=, NULL);
2532 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2533
2534 mls = multilist_sublist_lock(ml, idx);
2535
2536 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2537 hdr = multilist_sublist_prev(mls, marker)) {
2538 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2539 (evict_count >= zfs_arc_evict_batch_limit))
2540 break;
2541
2542 /*
2543 * To keep our iteration location, move the marker
2544 * forward. Since we're not holding hdr's hash lock, we
2545 * must be very careful and not remove 'hdr' from the
2546 * sublist. Otherwise, other consumers might mistake the
2547 * 'hdr' as not being on a sublist when they call the
2548 * multilist_link_active() function (they all rely on
2549 * the hash lock protecting concurrent insertions and
2550 * removals). multilist_sublist_move_forward() was
2551 * specifically implemented to ensure this is the case
2552 * (only 'marker' will be removed and re-inserted).
2553 */
2554 multilist_sublist_move_forward(mls, marker);
2555
2556 /*
2557 * The only case where the b_spa field should ever be
2558 * zero, is the marker headers inserted by
2559 * arc_evict_state(). It's possible for multiple threads
2560 * to be calling arc_evict_state() concurrently (e.g.
2561 * dsl_pool_close() and zio_inject_fault()), so we must
2562 * skip any markers we see from these other threads.
2563 */
2564 if (hdr->b_spa == 0)
2565 continue;
2566
2567 /* we're only interested in evicting buffers of a certain spa */
2568 if (spa != 0 && hdr->b_spa != spa) {
2569 ARCSTAT_BUMP(arcstat_evict_skip);
2570 continue;
2571 }
2572
2573 hash_lock = HDR_LOCK(hdr);
2574
2575 /*
2576 * We aren't calling this function from any code path
2577 * that would already be holding a hash lock, so we're
2578 * asserting on this assumption to be defensive in case
2579 * this ever changes. Without this check, it would be
2580 * possible to incorrectly increment arcstat_mutex_miss
2581 * below (e.g. if the code changed such that we called
2582 * this function with a hash lock held).
2583 */
2584 ASSERT(!MUTEX_HELD(hash_lock));
2585
2586 if (mutex_tryenter(hash_lock)) {
2587 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2588 mutex_exit(hash_lock);
2589
2590 bytes_evicted += evicted;
2591
2592 /*
2593 * If evicted is zero, arc_evict_hdr() must have
2594 * decided to skip this header, don't increment
2595 * evict_count in this case.
2596 */
2597 if (evicted != 0)
2598 evict_count++;
2599
2600 /*
2601 * If arc_size isn't overflowing, signal any
2602 * threads that might happen to be waiting.
2603 *
2604 * For each header evicted, we wake up a single
2605 * thread. If we used cv_broadcast, we could
2606 * wake up "too many" threads causing arc_size
2607 * to significantly overflow arc_c; since
2608 * arc_get_data_buf() doesn't check for overflow
2609 * when it's woken up (it doesn't because it's
2610 * possible for the ARC to be overflowing while
2611 * full of un-evictable buffers, and the
2612 * function should proceed in this case).
2613 *
2614 * If threads are left sleeping, due to not
2615 * using cv_broadcast, they will be woken up
2616 * just before arc_reclaim_thread() sleeps.
2617 */
2618 mutex_enter(&arc_reclaim_lock);
2619 if (!arc_is_overflowing())
2620 cv_signal(&arc_reclaim_waiters_cv);
2621 mutex_exit(&arc_reclaim_lock);
2622 } else {
2623 ARCSTAT_BUMP(arcstat_mutex_miss);
2624 }
2625 }
2626
2627 multilist_sublist_unlock(mls);
2628
2629 return (bytes_evicted);
2630 }
2631
2632 /*
2633 * Evict buffers from the given arc state, until we've removed the
2634 * specified number of bytes. Move the removed buffers to the
2635 * appropriate evict state.
2636 *
2637 * This function makes a "best effort". It skips over any buffers
2638 * it can't get a hash_lock on, and so, may not catch all candidates.
2639 * It may also return without evicting as much space as requested.
2640 *
2641 * If bytes is specified using the special value ARC_EVICT_ALL, this
2642 * will evict all available (i.e. unlocked and evictable) buffers from
2643 * the given arc state; which is used by arc_flush().
2644 */
2645 static uint64_t
arc_evict_state(arc_state_t * state,uint64_t spa,int64_t bytes,arc_buf_contents_t type)2646 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2647 arc_buf_contents_t type)
2648 {
2649 uint64_t total_evicted = 0;
2650 multilist_t *ml = &state->arcs_list[type];
2651 int num_sublists;
2652 arc_buf_hdr_t **markers;
2653
2654 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2655
2656 num_sublists = multilist_get_num_sublists(ml);
2657
2658 /*
2659 * If we've tried to evict from each sublist, made some
2660 * progress, but still have not hit the target number of bytes
2661 * to evict, we want to keep trying. The markers allow us to
2662 * pick up where we left off for each individual sublist, rather
2663 * than starting from the tail each time.
2664 */
2665 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2666 for (int i = 0; i < num_sublists; i++) {
2667 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2668
2669 /*
2670 * A b_spa of 0 is used to indicate that this header is
2671 * a marker. This fact is used in arc_adjust_type() and
2672 * arc_evict_state_impl().
2673 */
2674 markers[i]->b_spa = 0;
2675
2676 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2677 multilist_sublist_insert_tail(mls, markers[i]);
2678 multilist_sublist_unlock(mls);
2679 }
2680
2681 /*
2682 * While we haven't hit our target number of bytes to evict, or
2683 * we're evicting all available buffers.
2684 */
2685 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2686 /*
2687 * Start eviction using a randomly selected sublist,
2688 * this is to try and evenly balance eviction across all
2689 * sublists. Always starting at the same sublist
2690 * (e.g. index 0) would cause evictions to favor certain
2691 * sublists over others.
2692 */
2693 int sublist_idx = multilist_get_random_index(ml);
2694 uint64_t scan_evicted = 0;
2695
2696 for (int i = 0; i < num_sublists; i++) {
2697 uint64_t bytes_remaining;
2698 uint64_t bytes_evicted;
2699
2700 if (bytes == ARC_EVICT_ALL)
2701 bytes_remaining = ARC_EVICT_ALL;
2702 else if (total_evicted < bytes)
2703 bytes_remaining = bytes - total_evicted;
2704 else
2705 break;
2706
2707 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
2708 markers[sublist_idx], spa, bytes_remaining);
2709
2710 scan_evicted += bytes_evicted;
2711 total_evicted += bytes_evicted;
2712
2713 /* we've reached the end, wrap to the beginning */
2714 if (++sublist_idx >= num_sublists)
2715 sublist_idx = 0;
2716 }
2717
2718 /*
2719 * If we didn't evict anything during this scan, we have
2720 * no reason to believe we'll evict more during another
2721 * scan, so break the loop.
2722 */
2723 if (scan_evicted == 0) {
2724 /* This isn't possible, let's make that obvious */
2725 ASSERT3S(bytes, !=, 0);
2726
2727 /*
2728 * When bytes is ARC_EVICT_ALL, the only way to
2729 * break the loop is when scan_evicted is zero.
2730 * In that case, we actually have evicted enough,
2731 * so we don't want to increment the kstat.
2732 */
2733 if (bytes != ARC_EVICT_ALL) {
2734 ASSERT3S(total_evicted, <, bytes);
2735 ARCSTAT_BUMP(arcstat_evict_not_enough);
2736 }
2737
2738 break;
2739 }
2740 }
2741
2742 for (int i = 0; i < num_sublists; i++) {
2743 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2744 multilist_sublist_remove(mls, markers[i]);
2745 multilist_sublist_unlock(mls);
2746
2747 kmem_cache_free(hdr_full_cache, markers[i]);
2748 }
2749 kmem_free(markers, sizeof (*markers) * num_sublists);
2750
2751 return (total_evicted);
2752 }
2753
2754 /*
2755 * Flush all "evictable" data of the given type from the arc state
2756 * specified. This will not evict any "active" buffers (i.e. referenced).
2757 *
2758 * When 'retry' is set to FALSE, the function will make a single pass
2759 * over the state and evict any buffers that it can. Since it doesn't
2760 * continually retry the eviction, it might end up leaving some buffers
2761 * in the ARC due to lock misses.
2762 *
2763 * When 'retry' is set to TRUE, the function will continually retry the
2764 * eviction until *all* evictable buffers have been removed from the
2765 * state. As a result, if concurrent insertions into the state are
2766 * allowed (e.g. if the ARC isn't shutting down), this function might
2767 * wind up in an infinite loop, continually trying to evict buffers.
2768 */
2769 static uint64_t
arc_flush_state(arc_state_t * state,uint64_t spa,arc_buf_contents_t type,boolean_t retry)2770 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
2771 boolean_t retry)
2772 {
2773 uint64_t evicted = 0;
2774
2775 while (state->arcs_lsize[type] != 0) {
2776 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
2777
2778 if (!retry)
2779 break;
2780 }
2781
2782 return (evicted);
2783 }
2784
2785 /*
2786 * Evict the specified number of bytes from the state specified,
2787 * restricting eviction to the spa and type given. This function
2788 * prevents us from trying to evict more from a state's list than
2789 * is "evictable", and to skip evicting altogether when passed a
2790 * negative value for "bytes". In contrast, arc_evict_state() will
2791 * evict everything it can, when passed a negative value for "bytes".
2792 */
2793 static uint64_t
arc_adjust_impl(arc_state_t * state,uint64_t spa,int64_t bytes,arc_buf_contents_t type)2794 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
2795 arc_buf_contents_t type)
2796 {
2797 int64_t delta;
2798
2799 if (bytes > 0 && state->arcs_lsize[type] > 0) {
2800 delta = MIN(state->arcs_lsize[type], bytes);
2801 return (arc_evict_state(state, spa, delta, type));
2802 }
2803
2804 return (0);
2805 }
2806
2807 /*
2808 * Evict metadata buffers from the cache, such that arc_meta_used is
2809 * capped by the arc_meta_limit tunable.
2810 */
2811 static uint64_t
arc_adjust_meta(void)2812 arc_adjust_meta(void)
2813 {
2814 uint64_t total_evicted = 0;
2815 int64_t target;
2816
2817 /*
2818 * If we're over the meta limit, we want to evict enough
2819 * metadata to get back under the meta limit. We don't want to
2820 * evict so much that we drop the MRU below arc_p, though. If
2821 * we're over the meta limit more than we're over arc_p, we
2822 * evict some from the MRU here, and some from the MFU below.
2823 */
2824 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2825 (int64_t)(refcount_count(&arc_anon->arcs_size) +
2826 refcount_count(&arc_mru->arcs_size) - arc_p));
2827
2828 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2829
2830 /*
2831 * Similar to the above, we want to evict enough bytes to get us
2832 * below the meta limit, but not so much as to drop us below the
2833 * space alloted to the MFU (which is defined as arc_c - arc_p).
2834 */
2835 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
2836 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
2837
2838 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2839
2840 return (total_evicted);
2841 }
2842
2843 /*
2844 * Return the type of the oldest buffer in the given arc state
2845 *
2846 * This function will select a random sublist of type ARC_BUFC_DATA and
2847 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
2848 * is compared, and the type which contains the "older" buffer will be
2849 * returned.
2850 */
2851 static arc_buf_contents_t
arc_adjust_type(arc_state_t * state)2852 arc_adjust_type(arc_state_t *state)
2853 {
2854 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
2855 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
2856 int data_idx = multilist_get_random_index(data_ml);
2857 int meta_idx = multilist_get_random_index(meta_ml);
2858 multilist_sublist_t *data_mls;
2859 multilist_sublist_t *meta_mls;
2860 arc_buf_contents_t type;
2861 arc_buf_hdr_t *data_hdr;
2862 arc_buf_hdr_t *meta_hdr;
2863
2864 /*
2865 * We keep the sublist lock until we're finished, to prevent
2866 * the headers from being destroyed via arc_evict_state().
2867 */
2868 data_mls = multilist_sublist_lock(data_ml, data_idx);
2869 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
2870
2871 /*
2872 * These two loops are to ensure we skip any markers that
2873 * might be at the tail of the lists due to arc_evict_state().
2874 */
2875
2876 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
2877 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
2878 if (data_hdr->b_spa != 0)
2879 break;
2880 }
2881
2882 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
2883 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
2884 if (meta_hdr->b_spa != 0)
2885 break;
2886 }
2887
2888 if (data_hdr == NULL && meta_hdr == NULL) {
2889 type = ARC_BUFC_DATA;
2890 } else if (data_hdr == NULL) {
2891 ASSERT3P(meta_hdr, !=, NULL);
2892 type = ARC_BUFC_METADATA;
2893 } else if (meta_hdr == NULL) {
2894 ASSERT3P(data_hdr, !=, NULL);
2895 type = ARC_BUFC_DATA;
2896 } else {
2897 ASSERT3P(data_hdr, !=, NULL);
2898 ASSERT3P(meta_hdr, !=, NULL);
2899
2900 /* The headers can't be on the sublist without an L1 header */
2901 ASSERT(HDR_HAS_L1HDR(data_hdr));
2902 ASSERT(HDR_HAS_L1HDR(meta_hdr));
2903
2904 if (data_hdr->b_l1hdr.b_arc_access <
2905 meta_hdr->b_l1hdr.b_arc_access) {
2906 type = ARC_BUFC_DATA;
2907 } else {
2908 type = ARC_BUFC_METADATA;
2909 }
2910 }
2911
2912 multilist_sublist_unlock(meta_mls);
2913 multilist_sublist_unlock(data_mls);
2914
2915 return (type);
2916 }
2917
2918 /*
2919 * Evict buffers from the cache, such that arc_size is capped by arc_c.
2920 */
2921 static uint64_t
arc_adjust(void)2922 arc_adjust(void)
2923 {
2924 uint64_t total_evicted = 0;
2925 uint64_t bytes;
2926 int64_t target;
2927
2928 /*
2929 * If we're over arc_meta_limit, we want to correct that before
2930 * potentially evicting data buffers below.
2931 */
2932 total_evicted += arc_adjust_meta();
2933
2934 /*
2935 * Adjust MRU size
2936 *
2937 * If we're over the target cache size, we want to evict enough
2938 * from the list to get back to our target size. We don't want
2939 * to evict too much from the MRU, such that it drops below
2940 * arc_p. So, if we're over our target cache size more than
2941 * the MRU is over arc_p, we'll evict enough to get back to
2942 * arc_p here, and then evict more from the MFU below.
2943 */
2944 target = MIN((int64_t)(arc_size - arc_c),
2945 (int64_t)(refcount_count(&arc_anon->arcs_size) +
2946 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
2947
2948 /*
2949 * If we're below arc_meta_min, always prefer to evict data.
2950 * Otherwise, try to satisfy the requested number of bytes to
2951 * evict from the type which contains older buffers; in an
2952 * effort to keep newer buffers in the cache regardless of their
2953 * type. If we cannot satisfy the number of bytes from this
2954 * type, spill over into the next type.
2955 */
2956 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
2957 arc_meta_used > arc_meta_min) {
2958 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2959 total_evicted += bytes;
2960
2961 /*
2962 * If we couldn't evict our target number of bytes from
2963 * metadata, we try to get the rest from data.
2964 */
2965 target -= bytes;
2966
2967 total_evicted +=
2968 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
2969 } else {
2970 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
2971 total_evicted += bytes;
2972
2973 /*
2974 * If we couldn't evict our target number of bytes from
2975 * data, we try to get the rest from metadata.
2976 */
2977 target -= bytes;
2978
2979 total_evicted +=
2980 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2981 }
2982
2983 /*
2984 * Adjust MFU size
2985 *
2986 * Now that we've tried to evict enough from the MRU to get its
2987 * size back to arc_p, if we're still above the target cache
2988 * size, we evict the rest from the MFU.
2989 */
2990 target = arc_size - arc_c;
2991
2992 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
2993 arc_meta_used > arc_meta_min) {
2994 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2995 total_evicted += bytes;
2996
2997 /*
2998 * If we couldn't evict our target number of bytes from
2999 * metadata, we try to get the rest from data.
3000 */
3001 target -= bytes;
3002
3003 total_evicted +=
3004 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3005 } else {
3006 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3007 total_evicted += bytes;
3008
3009 /*
3010 * If we couldn't evict our target number of bytes from
3011 * data, we try to get the rest from data.
3012 */
3013 target -= bytes;
3014
3015 total_evicted +=
3016 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3017 }
3018
3019 /*
3020 * Adjust ghost lists
3021 *
3022 * In addition to the above, the ARC also defines target values
3023 * for the ghost lists. The sum of the mru list and mru ghost
3024 * list should never exceed the target size of the cache, and
3025 * the sum of the mru list, mfu list, mru ghost list, and mfu
3026 * ghost list should never exceed twice the target size of the
3027 * cache. The following logic enforces these limits on the ghost
3028 * caches, and evicts from them as needed.
3029 */
3030 target = refcount_count(&arc_mru->arcs_size) +
3031 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3032
3033 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3034 total_evicted += bytes;
3035
3036 target -= bytes;
3037
3038 total_evicted +=
3039 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3040
3041 /*
3042 * We assume the sum of the mru list and mfu list is less than
3043 * or equal to arc_c (we enforced this above), which means we
3044 * can use the simpler of the two equations below:
3045 *
3046 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3047 * mru ghost + mfu ghost <= arc_c
3048 */
3049 target = refcount_count(&arc_mru_ghost->arcs_size) +
3050 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3051
3052 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3053 total_evicted += bytes;
3054
3055 target -= bytes;
3056
3057 total_evicted +=
3058 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3059
3060 return (total_evicted);
3061 }
3062
3063 static void
arc_do_user_evicts(void)3064 arc_do_user_evicts(void)
3065 {
3066 mutex_enter(&arc_user_evicts_lock);
3067 while (arc_eviction_list != NULL) {
3068 arc_buf_t *buf = arc_eviction_list;
3069 arc_eviction_list = buf->b_next;
3070 mutex_enter(&buf->b_evict_lock);
3071 buf->b_hdr = NULL;
3072 mutex_exit(&buf->b_evict_lock);
3073 mutex_exit(&arc_user_evicts_lock);
3074
3075 if (buf->b_efunc != NULL)
3076 VERIFY0(buf->b_efunc(buf->b_private));
3077
3078 buf->b_efunc = NULL;
3079 buf->b_private = NULL;
3080 kmem_cache_free(buf_cache, buf);
3081 mutex_enter(&arc_user_evicts_lock);
3082 }
3083 mutex_exit(&arc_user_evicts_lock);
3084 }
3085
3086 void
arc_flush(spa_t * spa,boolean_t retry)3087 arc_flush(spa_t *spa, boolean_t retry)
3088 {
3089 uint64_t guid = 0;
3090
3091 /*
3092 * If retry is TRUE, a spa must not be specified since we have
3093 * no good way to determine if all of a spa's buffers have been
3094 * evicted from an arc state.
3095 */
3096 ASSERT(!retry || spa == 0);
3097
3098 if (spa != NULL)
3099 guid = spa_load_guid(spa);
3100
3101 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3102 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3103
3104 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3105 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3106
3107 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3108 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3109
3110 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3111 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3112
3113 arc_do_user_evicts();
3114 ASSERT(spa || arc_eviction_list == NULL);
3115 }
3116
3117 void
arc_shrink(int64_t to_free)3118 arc_shrink(int64_t to_free)
3119 {
3120 if (arc_c > arc_c_min) {
3121
3122 if (arc_c > arc_c_min + to_free)
3123 atomic_add_64(&arc_c, -to_free);
3124 else
3125 arc_c = arc_c_min;
3126
3127 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3128 if (arc_c > arc_size)
3129 arc_c = MAX(arc_size, arc_c_min);
3130 if (arc_p > arc_c)
3131 arc_p = (arc_c >> 1);
3132 ASSERT(arc_c >= arc_c_min);
3133 ASSERT((int64_t)arc_p >= 0);
3134 }
3135
3136 if (arc_size > arc_c)
3137 (void) arc_adjust();
3138 }
3139
3140 typedef enum free_memory_reason_t {
3141 FMR_UNKNOWN,
3142 FMR_NEEDFREE,
3143 FMR_LOTSFREE,
3144 FMR_SWAPFS_MINFREE,
3145 FMR_PAGES_PP_MAXIMUM,
3146 FMR_HEAP_ARENA,
3147 FMR_ZIO_ARENA,
3148 } free_memory_reason_t;
3149
3150 int64_t last_free_memory;
3151 free_memory_reason_t last_free_reason;
3152
3153 /*
3154 * Additional reserve of pages for pp_reserve.
3155 */
3156 int64_t arc_pages_pp_reserve = 64;
3157
3158 /*
3159 * Additional reserve of pages for swapfs.
3160 */
3161 int64_t arc_swapfs_reserve = 64;
3162
3163 /*
3164 * Return the amount of memory that can be consumed before reclaim will be
3165 * needed. Positive if there is sufficient free memory, negative indicates
3166 * the amount of memory that needs to be freed up.
3167 */
3168 static int64_t
arc_available_memory(void)3169 arc_available_memory(void)
3170 {
3171 int64_t lowest = INT64_MAX;
3172 int64_t n;
3173 free_memory_reason_t r = FMR_UNKNOWN;
3174
3175 #ifdef _KERNEL
3176 if (needfree > 0) {
3177 n = PAGESIZE * (-needfree);
3178 if (n < lowest) {
3179 lowest = n;
3180 r = FMR_NEEDFREE;
3181 }
3182 }
3183
3184 /*
3185 * check that we're out of range of the pageout scanner. It starts to
3186 * schedule paging if freemem is less than lotsfree and needfree.
3187 * lotsfree is the high-water mark for pageout, and needfree is the
3188 * number of needed free pages. We add extra pages here to make sure
3189 * the scanner doesn't start up while we're freeing memory.
3190 */
3191 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3192 if (n < lowest) {
3193 lowest = n;
3194 r = FMR_LOTSFREE;
3195 }
3196
3197 /*
3198 * check to make sure that swapfs has enough space so that anon
3199 * reservations can still succeed. anon_resvmem() checks that the
3200 * availrmem is greater than swapfs_minfree, and the number of reserved
3201 * swap pages. We also add a bit of extra here just to prevent
3202 * circumstances from getting really dire.
3203 */
3204 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3205 desfree - arc_swapfs_reserve);
3206 if (n < lowest) {
3207 lowest = n;
3208 r = FMR_SWAPFS_MINFREE;
3209 }
3210
3211
3212 /*
3213 * Check that we have enough availrmem that memory locking (e.g., via
3214 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
3215 * stores the number of pages that cannot be locked; when availrmem
3216 * drops below pages_pp_maximum, page locking mechanisms such as
3217 * page_pp_lock() will fail.)
3218 */
3219 n = PAGESIZE * (availrmem - pages_pp_maximum -
3220 arc_pages_pp_reserve);
3221 if (n < lowest) {
3222 lowest = n;
3223 r = FMR_PAGES_PP_MAXIMUM;
3224 }
3225
3226 #if defined(__i386)
3227 /*
3228 * If we're on an i386 platform, it's possible that we'll exhaust the
3229 * kernel heap space before we ever run out of available physical
3230 * memory. Most checks of the size of the heap_area compare against
3231 * tune.t_minarmem, which is the minimum available real memory that we
3232 * can have in the system. However, this is generally fixed at 25 pages
3233 * which is so low that it's useless. In this comparison, we seek to
3234 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3235 * heap is allocated. (Or, in the calculation, if less than 1/4th is
3236 * free)
3237 */
3238 n = vmem_size(heap_arena, VMEM_FREE) -
3239 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3240 if (n < lowest) {
3241 lowest = n;
3242 r = FMR_HEAP_ARENA;
3243 }
3244 #endif
3245
3246 /*
3247 * If zio data pages are being allocated out of a separate heap segment,
3248 * then enforce that the size of available vmem for this arena remains
3249 * above about 1/16th free.
3250 *
3251 * Note: The 1/16th arena free requirement was put in place
3252 * to aggressively evict memory from the arc in order to avoid
3253 * memory fragmentation issues.
3254 */
3255 if (zio_arena != NULL) {
3256 n = vmem_size(zio_arena, VMEM_FREE) -
3257 (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3258 if (n < lowest) {
3259 lowest = n;
3260 r = FMR_ZIO_ARENA;
3261 }
3262 }
3263 #else
3264 /* Every 100 calls, free a small amount */
3265 if (spa_get_random(100) == 0)
3266 lowest = -1024;
3267 #endif
3268
3269 last_free_memory = lowest;
3270 last_free_reason = r;
3271
3272 return (lowest);
3273 }
3274
3275
3276 /*
3277 * Determine if the system is under memory pressure and is asking
3278 * to reclaim memory. A return value of TRUE indicates that the system
3279 * is under memory pressure and that the arc should adjust accordingly.
3280 */
3281 static boolean_t
arc_reclaim_needed(void)3282 arc_reclaim_needed(void)
3283 {
3284 return (arc_available_memory() < 0);
3285 }
3286
3287 static void
arc_kmem_reap_now(void)3288 arc_kmem_reap_now(void)
3289 {
3290 size_t i;
3291 kmem_cache_t *prev_cache = NULL;
3292 kmem_cache_t *prev_data_cache = NULL;
3293 extern kmem_cache_t *zio_buf_cache[];
3294 extern kmem_cache_t *zio_data_buf_cache[];
3295 extern kmem_cache_t *range_seg_cache;
3296
3297 #ifdef _KERNEL
3298 if (arc_meta_used >= arc_meta_limit) {
3299 /*
3300 * We are exceeding our meta-data cache limit.
3301 * Purge some DNLC entries to release holds on meta-data.
3302 */
3303 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
3304 }
3305 #if defined(__i386)
3306 /*
3307 * Reclaim unused memory from all kmem caches.
3308 */
3309 kmem_reap();
3310 #endif
3311 #endif
3312
3313 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3314 if (zio_buf_cache[i] != prev_cache) {
3315 prev_cache = zio_buf_cache[i];
3316 kmem_cache_reap_now(zio_buf_cache[i]);
3317 }
3318 if (zio_data_buf_cache[i] != prev_data_cache) {
3319 prev_data_cache = zio_data_buf_cache[i];
3320 kmem_cache_reap_now(zio_data_buf_cache[i]);
3321 }
3322 }
3323 kmem_cache_reap_now(buf_cache);
3324 kmem_cache_reap_now(hdr_full_cache);
3325 kmem_cache_reap_now(hdr_l2only_cache);
3326 kmem_cache_reap_now(range_seg_cache);
3327
3328 if (zio_arena != NULL) {
3329 /*
3330 * Ask the vmem arena to reclaim unused memory from its
3331 * quantum caches.
3332 */
3333 vmem_qcache_reap(zio_arena);
3334 }
3335 }
3336
3337 /*
3338 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3339 * enough data and signal them to proceed. When this happens, the threads in
3340 * arc_get_data_buf() are sleeping while holding the hash lock for their
3341 * particular arc header. Thus, we must be careful to never sleep on a
3342 * hash lock in this thread. This is to prevent the following deadlock:
3343 *
3344 * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3345 * waiting for the reclaim thread to signal it.
3346 *
3347 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3348 * fails, and goes to sleep forever.
3349 *
3350 * This possible deadlock is avoided by always acquiring a hash lock
3351 * using mutex_tryenter() from arc_reclaim_thread().
3352 */
3353 static void
arc_reclaim_thread(void)3354 arc_reclaim_thread(void)
3355 {
3356 hrtime_t growtime = 0;
3357 callb_cpr_t cpr;
3358
3359 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
3360
3361 mutex_enter(&arc_reclaim_lock);
3362 while (!arc_reclaim_thread_exit) {
3363 int64_t free_memory = arc_available_memory();
3364 uint64_t evicted = 0;
3365
3366 mutex_exit(&arc_reclaim_lock);
3367
3368 if (free_memory < 0) {
3369
3370 arc_no_grow = B_TRUE;
3371 arc_warm = B_TRUE;
3372
3373 /*
3374 * Wait at least zfs_grow_retry (default 60) seconds
3375 * before considering growing.
3376 */
3377 growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
3378
3379 arc_kmem_reap_now();
3380
3381 /*
3382 * If we are still low on memory, shrink the ARC
3383 * so that we have arc_shrink_min free space.
3384 */
3385 free_memory = arc_available_memory();
3386
3387 int64_t to_free =
3388 (arc_c >> arc_shrink_shift) - free_memory;
3389 if (to_free > 0) {
3390 #ifdef _KERNEL
3391 to_free = MAX(to_free, ptob(needfree));
3392 #endif
3393 arc_shrink(to_free);
3394 }
3395 } else if (free_memory < arc_c >> arc_no_grow_shift) {
3396 arc_no_grow = B_TRUE;
3397 } else if (gethrtime() >= growtime) {
3398 arc_no_grow = B_FALSE;
3399 }
3400
3401 evicted = arc_adjust();
3402
3403 mutex_enter(&arc_reclaim_lock);
3404
3405 /*
3406 * If evicted is zero, we couldn't evict anything via
3407 * arc_adjust(). This could be due to hash lock
3408 * collisions, but more likely due to the majority of
3409 * arc buffers being unevictable. Therefore, even if
3410 * arc_size is above arc_c, another pass is unlikely to
3411 * be helpful and could potentially cause us to enter an
3412 * infinite loop.
3413 */
3414 if (arc_size <= arc_c || evicted == 0) {
3415 /*
3416 * We're either no longer overflowing, or we
3417 * can't evict anything more, so we should wake
3418 * up any threads before we go to sleep.
3419 */
3420 cv_broadcast(&arc_reclaim_waiters_cv);
3421
3422 /*
3423 * Block until signaled, or after one second (we
3424 * might need to perform arc_kmem_reap_now()
3425 * even if we aren't being signalled)
3426 */
3427 CALLB_CPR_SAFE_BEGIN(&cpr);
3428 (void) cv_timedwait_hires(&arc_reclaim_thread_cv,
3429 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
3430 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3431 }
3432 }
3433
3434 arc_reclaim_thread_exit = FALSE;
3435 cv_broadcast(&arc_reclaim_thread_cv);
3436 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
3437 thread_exit();
3438 }
3439
3440 static void
arc_user_evicts_thread(void)3441 arc_user_evicts_thread(void)
3442 {
3443 callb_cpr_t cpr;
3444
3445 CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
3446
3447 mutex_enter(&arc_user_evicts_lock);
3448 while (!arc_user_evicts_thread_exit) {
3449 mutex_exit(&arc_user_evicts_lock);
3450
3451 arc_do_user_evicts();
3452
3453 /*
3454 * This is necessary in order for the mdb ::arc dcmd to
3455 * show up to date information. Since the ::arc command
3456 * does not call the kstat's update function, without
3457 * this call, the command may show stale stats for the
3458 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3459 * with this change, the data might be up to 1 second
3460 * out of date; but that should suffice. The arc_state_t
3461 * structures can be queried directly if more accurate
3462 * information is needed.
3463 */
3464 if (arc_ksp != NULL)
3465 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3466
3467 mutex_enter(&arc_user_evicts_lock);
3468
3469 /*
3470 * Block until signaled, or after one second (we need to
3471 * call the arc's kstat update function regularly).
3472 */
3473 CALLB_CPR_SAFE_BEGIN(&cpr);
3474 (void) cv_timedwait(&arc_user_evicts_cv,
3475 &arc_user_evicts_lock, ddi_get_lbolt() + hz);
3476 CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
3477 }
3478
3479 arc_user_evicts_thread_exit = FALSE;
3480 cv_broadcast(&arc_user_evicts_cv);
3481 CALLB_CPR_EXIT(&cpr); /* drops arc_user_evicts_lock */
3482 thread_exit();
3483 }
3484
3485 /*
3486 * Adapt arc info given the number of bytes we are trying to add and
3487 * the state that we are comming from. This function is only called
3488 * when we are adding new content to the cache.
3489 */
3490 static void
arc_adapt(int bytes,arc_state_t * state)3491 arc_adapt(int bytes, arc_state_t *state)
3492 {
3493 int mult;
3494 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
3495 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
3496 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
3497
3498 if (state == arc_l2c_only)
3499 return;
3500
3501 ASSERT(bytes > 0);
3502 /*
3503 * Adapt the target size of the MRU list:
3504 * - if we just hit in the MRU ghost list, then increase
3505 * the target size of the MRU list.
3506 * - if we just hit in the MFU ghost list, then increase
3507 * the target size of the MFU list by decreasing the
3508 * target size of the MRU list.
3509 */
3510 if (state == arc_mru_ghost) {
3511 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
3512 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3513
3514 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
3515 } else if (state == arc_mfu_ghost) {
3516 uint64_t delta;
3517
3518 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
3519 mult = MIN(mult, 10);
3520
3521 delta = MIN(bytes * mult, arc_p);
3522 arc_p = MAX(arc_p_min, arc_p - delta);
3523 }
3524 ASSERT((int64_t)arc_p >= 0);
3525
3526 if (arc_reclaim_needed()) {
3527 cv_signal(&arc_reclaim_thread_cv);
3528 return;
3529 }
3530
3531 if (arc_no_grow)
3532 return;
3533
3534 if (arc_c >= arc_c_max)
3535 return;
3536
3537 /*
3538 * If we're within (2 * maxblocksize) bytes of the target
3539 * cache size, increment the target cache size
3540 */
3541 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3542 atomic_add_64(&arc_c, (int64_t)bytes);
3543 if (arc_c > arc_c_max)
3544 arc_c = arc_c_max;
3545 else if (state == arc_anon)
3546 atomic_add_64(&arc_p, (int64_t)bytes);
3547 if (arc_p > arc_c)
3548 arc_p = arc_c;
3549 }
3550 ASSERT((int64_t)arc_p >= 0);
3551 }
3552
3553 /*
3554 * Check if arc_size has grown past our upper threshold, determined by
3555 * zfs_arc_overflow_shift.
3556 */
3557 static boolean_t
arc_is_overflowing(void)3558 arc_is_overflowing(void)
3559 {
3560 /* Always allow at least one block of overflow */
3561 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3562 arc_c >> zfs_arc_overflow_shift);
3563
3564 return (arc_size >= arc_c + overflow);
3565 }
3566
3567 /*
3568 * The buffer, supplied as the first argument, needs a data block. If we
3569 * are hitting the hard limit for the cache size, we must sleep, waiting
3570 * for the eviction thread to catch up. If we're past the target size
3571 * but below the hard limit, we'll only signal the reclaim thread and
3572 * continue on.
3573 */
3574 static void
arc_get_data_buf(arc_buf_t * buf)3575 arc_get_data_buf(arc_buf_t *buf)
3576 {
3577 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
3578 uint64_t size = buf->b_hdr->b_size;
3579 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
3580
3581 arc_adapt(size, state);
3582
3583 /*
3584 * If arc_size is currently overflowing, and has grown past our
3585 * upper limit, we must be adding data faster than the evict
3586 * thread can evict. Thus, to ensure we don't compound the
3587 * problem by adding more data and forcing arc_size to grow even
3588 * further past it's target size, we halt and wait for the
3589 * eviction thread to catch up.
3590 *
3591 * It's also possible that the reclaim thread is unable to evict
3592 * enough buffers to get arc_size below the overflow limit (e.g.
3593 * due to buffers being un-evictable, or hash lock collisions).
3594 * In this case, we want to proceed regardless if we're
3595 * overflowing; thus we don't use a while loop here.
3596 */
3597 if (arc_is_overflowing()) {
3598 mutex_enter(&arc_reclaim_lock);
3599
3600 /*
3601 * Now that we've acquired the lock, we may no longer be
3602 * over the overflow limit, lets check.
3603 *
3604 * We're ignoring the case of spurious wake ups. If that
3605 * were to happen, it'd let this thread consume an ARC
3606 * buffer before it should have (i.e. before we're under
3607 * the overflow limit and were signalled by the reclaim
3608 * thread). As long as that is a rare occurrence, it
3609 * shouldn't cause any harm.
3610 */
3611 if (arc_is_overflowing()) {
3612 cv_signal(&arc_reclaim_thread_cv);
3613 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
3614 }
3615
3616 mutex_exit(&arc_reclaim_lock);
3617 }
3618
3619 if (type == ARC_BUFC_METADATA) {
3620 buf->b_data = zio_buf_alloc(size);
3621 arc_space_consume(size, ARC_SPACE_META);
3622 } else {
3623 ASSERT(type == ARC_BUFC_DATA);
3624 buf->b_data = zio_data_buf_alloc(size);
3625 arc_space_consume(size, ARC_SPACE_DATA);
3626 }
3627
3628 /*
3629 * Update the state size. Note that ghost states have a
3630 * "ghost size" and so don't need to be updated.
3631 */
3632 if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
3633 arc_buf_hdr_t *hdr = buf->b_hdr;
3634 arc_state_t *state = hdr->b_l1hdr.b_state;
3635
3636 (void) refcount_add_many(&state->arcs_size, size, buf);
3637
3638 /*
3639 * If this is reached via arc_read, the link is
3640 * protected by the hash lock. If reached via
3641 * arc_buf_alloc, the header should not be accessed by
3642 * any other thread. And, if reached via arc_read_done,
3643 * the hash lock will protect it if it's found in the
3644 * hash table; otherwise no other thread should be
3645 * trying to [add|remove]_reference it.
3646 */
3647 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3648 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3649 atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
3650 size);
3651 }
3652 /*
3653 * If we are growing the cache, and we are adding anonymous
3654 * data, and we have outgrown arc_p, update arc_p
3655 */
3656 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
3657 (refcount_count(&arc_anon->arcs_size) +
3658 refcount_count(&arc_mru->arcs_size) > arc_p))
3659 arc_p = MIN(arc_c, arc_p + size);
3660 }
3661 }
3662
3663 /*
3664 * This routine is called whenever a buffer is accessed.
3665 * NOTE: the hash lock is dropped in this function.
3666 */
3667 static void
arc_access(arc_buf_hdr_t * hdr,kmutex_t * hash_lock)3668 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3669 {
3670 clock_t now;
3671
3672 ASSERT(MUTEX_HELD(hash_lock));
3673 ASSERT(HDR_HAS_L1HDR(hdr));
3674
3675 if (hdr->b_l1hdr.b_state == arc_anon) {
3676 /*
3677 * This buffer is not in the cache, and does not
3678 * appear in our "ghost" list. Add the new buffer
3679 * to the MRU state.
3680 */
3681
3682 ASSERT0(hdr->b_l1hdr.b_arc_access);
3683 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3684 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3685 arc_change_state(arc_mru, hdr, hash_lock);
3686
3687 } else if (hdr->b_l1hdr.b_state == arc_mru) {
3688 now = ddi_get_lbolt();
3689
3690 /*
3691 * If this buffer is here because of a prefetch, then either:
3692 * - clear the flag if this is a "referencing" read
3693 * (any subsequent access will bump this into the MFU state).
3694 * or
3695 * - move the buffer to the head of the list if this is
3696 * another prefetch (to make it less likely to be evicted).
3697 */
3698 if (HDR_PREFETCH(hdr)) {
3699 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
3700 /* link protected by hash lock */
3701 ASSERT(multilist_link_active(
3702 &hdr->b_l1hdr.b_arc_node));
3703 } else {
3704 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3705 ARCSTAT_BUMP(arcstat_mru_hits);
3706 }
3707 hdr->b_l1hdr.b_arc_access = now;
3708 return;
3709 }
3710
3711 /*
3712 * This buffer has been "accessed" only once so far,
3713 * but it is still in the cache. Move it to the MFU
3714 * state.
3715 */
3716 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
3717 /*
3718 * More than 125ms have passed since we
3719 * instantiated this buffer. Move it to the
3720 * most frequently used state.
3721 */
3722 hdr->b_l1hdr.b_arc_access = now;
3723 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3724 arc_change_state(arc_mfu, hdr, hash_lock);
3725 }
3726 ARCSTAT_BUMP(arcstat_mru_hits);
3727 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
3728 arc_state_t *new_state;
3729 /*
3730 * This buffer has been "accessed" recently, but
3731 * was evicted from the cache. Move it to the
3732 * MFU state.
3733 */
3734
3735 if (HDR_PREFETCH(hdr)) {
3736 new_state = arc_mru;
3737 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
3738 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3739 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3740 } else {
3741 new_state = arc_mfu;
3742 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3743 }
3744
3745 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3746 arc_change_state(new_state, hdr, hash_lock);
3747
3748 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
3749 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
3750 /*
3751 * This buffer has been accessed more than once and is
3752 * still in the cache. Keep it in the MFU state.
3753 *
3754 * NOTE: an add_reference() that occurred when we did
3755 * the arc_read() will have kicked this off the list.
3756 * If it was a prefetch, we will explicitly move it to
3757 * the head of the list now.
3758 */
3759 if ((HDR_PREFETCH(hdr)) != 0) {
3760 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3761 /* link protected by hash_lock */
3762 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3763 }
3764 ARCSTAT_BUMP(arcstat_mfu_hits);
3765 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3766 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
3767 arc_state_t *new_state = arc_mfu;
3768 /*
3769 * This buffer has been accessed more than once but has
3770 * been evicted from the cache. Move it back to the
3771 * MFU state.
3772 */
3773
3774 if (HDR_PREFETCH(hdr)) {
3775 /*
3776 * This is a prefetch access...
3777 * move this block back to the MRU state.
3778 */
3779 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3780 new_state = arc_mru;
3781 }
3782
3783 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3784 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3785 arc_change_state(new_state, hdr, hash_lock);
3786
3787 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
3788 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
3789 /*
3790 * This buffer is on the 2nd Level ARC.
3791 */
3792
3793 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
3794 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3795 arc_change_state(arc_mfu, hdr, hash_lock);
3796 } else {
3797 ASSERT(!"invalid arc state");
3798 }
3799 }
3800
3801 /* a generic arc_done_func_t which you can use */
3802 /* ARGSUSED */
3803 void
arc_bcopy_func(zio_t * zio,arc_buf_t * buf,void * arg)3804 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
3805 {
3806 if (zio == NULL || zio->io_error == 0)
3807 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
3808 VERIFY(arc_buf_remove_ref(buf, arg));
3809 }
3810
3811 /* a generic arc_done_func_t */
3812 void
arc_getbuf_func(zio_t * zio,arc_buf_t * buf,void * arg)3813 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
3814 {
3815 arc_buf_t **bufp = arg;
3816 if (zio && zio->io_error) {
3817 VERIFY(arc_buf_remove_ref(buf, arg));
3818 *bufp = NULL;
3819 } else {
3820 *bufp = buf;
3821 ASSERT(buf->b_data);
3822 }
3823 }
3824
3825 static void
arc_read_done(zio_t * zio)3826 arc_read_done(zio_t *zio)
3827 {
3828 arc_buf_hdr_t *hdr;
3829 arc_buf_t *buf;
3830 arc_buf_t *abuf; /* buffer we're assigning to callback */
3831 kmutex_t *hash_lock = NULL;
3832 arc_callback_t *callback_list, *acb;
3833 int freeable = FALSE;
3834
3835 buf = zio->io_private;
3836 hdr = buf->b_hdr;
3837
3838 /*
3839 * The hdr was inserted into hash-table and removed from lists
3840 * prior to starting I/O. We should find this header, since
3841 * it's in the hash table, and it should be legit since it's
3842 * not possible to evict it during the I/O. The only possible
3843 * reason for it not to be found is if we were freed during the
3844 * read.
3845 */
3846 if (HDR_IN_HASH_TABLE(hdr)) {
3847 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
3848 ASSERT3U(hdr->b_dva.dva_word[0], ==,
3849 BP_IDENTITY(zio->io_bp)->dva_word[0]);
3850 ASSERT3U(hdr->b_dva.dva_word[1], ==,
3851 BP_IDENTITY(zio->io_bp)->dva_word[1]);
3852
3853 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
3854 &hash_lock);
3855
3856 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
3857 hash_lock == NULL) ||
3858 (found == hdr &&
3859 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
3860 (found == hdr && HDR_L2_READING(hdr)));
3861 }
3862
3863 hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
3864 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
3865 hdr->b_flags &= ~ARC_FLAG_L2CACHE;
3866
3867 /* byteswap if necessary */
3868 callback_list = hdr->b_l1hdr.b_acb;
3869 ASSERT(callback_list != NULL);
3870 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
3871 dmu_object_byteswap_t bswap =
3872 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
3873 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
3874 byteswap_uint64_array :
3875 dmu_ot_byteswap[bswap].ob_func;
3876 func(buf->b_data, hdr->b_size);
3877 }
3878
3879 arc_cksum_compute(buf, B_FALSE);
3880 arc_buf_watch(buf);
3881
3882 if (hash_lock && zio->io_error == 0 &&
3883 hdr->b_l1hdr.b_state == arc_anon) {
3884 /*
3885 * Only call arc_access on anonymous buffers. This is because
3886 * if we've issued an I/O for an evicted buffer, we've already
3887 * called arc_access (to prevent any simultaneous readers from
3888 * getting confused).
3889 */
3890 arc_access(hdr, hash_lock);
3891 }
3892
3893 /* create copies of the data buffer for the callers */
3894 abuf = buf;
3895 for (acb = callback_list; acb; acb = acb->acb_next) {
3896 if (acb->acb_done) {
3897 if (abuf == NULL) {
3898 ARCSTAT_BUMP(arcstat_duplicate_reads);
3899 abuf = arc_buf_clone(buf);
3900 }
3901 acb->acb_buf = abuf;
3902 abuf = NULL;
3903 }
3904 }
3905 hdr->b_l1hdr.b_acb = NULL;
3906 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
3907 ASSERT(!HDR_BUF_AVAILABLE(hdr));
3908 if (abuf == buf) {
3909 ASSERT(buf->b_efunc == NULL);
3910 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
3911 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
3912 }
3913
3914 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
3915 callback_list != NULL);
3916
3917 if (zio->io_error != 0) {
3918 hdr->b_flags |= ARC_FLAG_IO_ERROR;
3919 if (hdr->b_l1hdr.b_state != arc_anon)
3920 arc_change_state(arc_anon, hdr, hash_lock);
3921 if (HDR_IN_HASH_TABLE(hdr))
3922 buf_hash_remove(hdr);
3923 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
3924 }
3925
3926 /*
3927 * Broadcast before we drop the hash_lock to avoid the possibility
3928 * that the hdr (and hence the cv) might be freed before we get to
3929 * the cv_broadcast().
3930 */
3931 cv_broadcast(&hdr->b_l1hdr.b_cv);
3932
3933 if (hash_lock != NULL) {
3934 mutex_exit(hash_lock);
3935 } else {
3936 /*
3937 * This block was freed while we waited for the read to
3938 * complete. It has been removed from the hash table and
3939 * moved to the anonymous state (so that it won't show up
3940 * in the cache).
3941 */
3942 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3943 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
3944 }
3945
3946 /* execute each callback and free its structure */
3947 while ((acb = callback_list) != NULL) {
3948 if (acb->acb_done)
3949 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
3950
3951 if (acb->acb_zio_dummy != NULL) {
3952 acb->acb_zio_dummy->io_error = zio->io_error;
3953 zio_nowait(acb->acb_zio_dummy);
3954 }
3955
3956 callback_list = acb->acb_next;
3957 kmem_free(acb, sizeof (arc_callback_t));
3958 }
3959
3960 if (freeable)
3961 arc_hdr_destroy(hdr);
3962 }
3963
3964 /*
3965 * "Read" the block at the specified DVA (in bp) via the
3966 * cache. If the block is found in the cache, invoke the provided
3967 * callback immediately and return. Note that the `zio' parameter
3968 * in the callback will be NULL in this case, since no IO was
3969 * required. If the block is not in the cache pass the read request
3970 * on to the spa with a substitute callback function, so that the
3971 * requested block will be added to the cache.
3972 *
3973 * If a read request arrives for a block that has a read in-progress,
3974 * either wait for the in-progress read to complete (and return the
3975 * results); or, if this is a read with a "done" func, add a record
3976 * to the read to invoke the "done" func when the read completes,
3977 * and return; or just return.
3978 *
3979 * arc_read_done() will invoke all the requested "done" functions
3980 * for readers of this block.
3981 */
3982 int
arc_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,arc_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,arc_flags_t * arc_flags,const zbookmark_phys_t * zb)3983 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
3984 void *private, zio_priority_t priority, int zio_flags,
3985 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
3986 {
3987 arc_buf_hdr_t *hdr = NULL;
3988 arc_buf_t *buf = NULL;
3989 kmutex_t *hash_lock = NULL;
3990 zio_t *rzio;
3991 uint64_t guid = spa_load_guid(spa);
3992
3993 ASSERT(!BP_IS_EMBEDDED(bp) ||
3994 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
3995
3996 top:
3997 if (!BP_IS_EMBEDDED(bp)) {
3998 /*
3999 * Embedded BP's have no DVA and require no I/O to "read".
4000 * Create an anonymous arc buf to back it.
4001 */
4002 hdr = buf_hash_find(guid, bp, &hash_lock);
4003 }
4004
4005 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
4006
4007 *arc_flags |= ARC_FLAG_CACHED;
4008
4009 if (HDR_IO_IN_PROGRESS(hdr)) {
4010
4011 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4012 priority == ZIO_PRIORITY_SYNC_READ) {
4013 /*
4014 * This sync read must wait for an
4015 * in-progress async read (e.g. a predictive
4016 * prefetch). Async reads are queued
4017 * separately at the vdev_queue layer, so
4018 * this is a form of priority inversion.
4019 * Ideally, we would "inherit" the demand
4020 * i/o's priority by moving the i/o from
4021 * the async queue to the synchronous queue,
4022 * but there is currently no mechanism to do
4023 * so. Track this so that we can evaluate
4024 * the magnitude of this potential performance
4025 * problem.
4026 *
4027 * Note that if the prefetch i/o is already
4028 * active (has been issued to the device),
4029 * the prefetch improved performance, because
4030 * we issued it sooner than we would have
4031 * without the prefetch.
4032 */
4033 DTRACE_PROBE1(arc__sync__wait__for__async,
4034 arc_buf_hdr_t *, hdr);
4035 ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4036 }
4037 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4038 hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4039 }
4040
4041 if (*arc_flags & ARC_FLAG_WAIT) {
4042 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4043 mutex_exit(hash_lock);
4044 goto top;
4045 }
4046 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4047
4048 if (done) {
4049 arc_callback_t *acb = NULL;
4050
4051 acb = kmem_zalloc(sizeof (arc_callback_t),
4052 KM_SLEEP);
4053 acb->acb_done = done;
4054 acb->acb_private = private;
4055 if (pio != NULL)
4056 acb->acb_zio_dummy = zio_null(pio,
4057 spa, NULL, NULL, NULL, zio_flags);
4058
4059 ASSERT(acb->acb_done != NULL);
4060 acb->acb_next = hdr->b_l1hdr.b_acb;
4061 hdr->b_l1hdr.b_acb = acb;
4062 add_reference(hdr, hash_lock, private);
4063 mutex_exit(hash_lock);
4064 return (0);
4065 }
4066 mutex_exit(hash_lock);
4067 return (0);
4068 }
4069
4070 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4071 hdr->b_l1hdr.b_state == arc_mfu);
4072
4073 if (done) {
4074 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4075 /*
4076 * This is a demand read which does not have to
4077 * wait for i/o because we did a predictive
4078 * prefetch i/o for it, which has completed.
4079 */
4080 DTRACE_PROBE1(
4081 arc__demand__hit__predictive__prefetch,
4082 arc_buf_hdr_t *, hdr);
4083 ARCSTAT_BUMP(
4084 arcstat_demand_hit_predictive_prefetch);
4085 hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4086 }
4087 add_reference(hdr, hash_lock, private);
4088 /*
4089 * If this block is already in use, create a new
4090 * copy of the data so that we will be guaranteed
4091 * that arc_release() will always succeed.
4092 */
4093 buf = hdr->b_l1hdr.b_buf;
4094 ASSERT(buf);
4095 ASSERT(buf->b_data);
4096 if (HDR_BUF_AVAILABLE(hdr)) {
4097 ASSERT(buf->b_efunc == NULL);
4098 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4099 } else {
4100 buf = arc_buf_clone(buf);
4101 }
4102
4103 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
4104 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4105 hdr->b_flags |= ARC_FLAG_PREFETCH;
4106 }
4107 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4108 arc_access(hdr, hash_lock);
4109 if (*arc_flags & ARC_FLAG_L2CACHE)
4110 hdr->b_flags |= ARC_FLAG_L2CACHE;
4111 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4112 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4113 mutex_exit(hash_lock);
4114 ARCSTAT_BUMP(arcstat_hits);
4115 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4116 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4117 data, metadata, hits);
4118
4119 if (done)
4120 done(NULL, buf, private);
4121 } else {
4122 uint64_t size = BP_GET_LSIZE(bp);
4123 arc_callback_t *acb;
4124 vdev_t *vd = NULL;
4125 uint64_t addr = 0;
4126 boolean_t devw = B_FALSE;
4127 enum zio_compress b_compress = ZIO_COMPRESS_OFF;
4128 int32_t b_asize = 0;
4129
4130 if (hdr == NULL) {
4131 /* this block is not in the cache */
4132 arc_buf_hdr_t *exists = NULL;
4133 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4134 buf = arc_buf_alloc(spa, size, private, type);
4135 hdr = buf->b_hdr;
4136 if (!BP_IS_EMBEDDED(bp)) {
4137 hdr->b_dva = *BP_IDENTITY(bp);
4138 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4139 exists = buf_hash_insert(hdr, &hash_lock);
4140 }
4141 if (exists != NULL) {
4142 /* somebody beat us to the hash insert */
4143 mutex_exit(hash_lock);
4144 buf_discard_identity(hdr);
4145 (void) arc_buf_remove_ref(buf, private);
4146 goto top; /* restart the IO request */
4147 }
4148
4149 /*
4150 * If there is a callback, we pass our reference to
4151 * it; otherwise we remove our reference.
4152 */
4153 if (done == NULL) {
4154 (void) remove_reference(hdr, hash_lock,
4155 private);
4156 }
4157 if (*arc_flags & ARC_FLAG_PREFETCH)
4158 hdr->b_flags |= ARC_FLAG_PREFETCH;
4159 if (*arc_flags & ARC_FLAG_L2CACHE)
4160 hdr->b_flags |= ARC_FLAG_L2CACHE;
4161 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4162 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4163 if (BP_GET_LEVEL(bp) > 0)
4164 hdr->b_flags |= ARC_FLAG_INDIRECT;
4165 } else {
4166 /*
4167 * This block is in the ghost cache. If it was L2-only
4168 * (and thus didn't have an L1 hdr), we realloc the
4169 * header to add an L1 hdr.
4170 */
4171 if (!HDR_HAS_L1HDR(hdr)) {
4172 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4173 hdr_full_cache);
4174 }
4175
4176 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4177 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4178 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4179 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4180
4181 /*
4182 * If there is a callback, we pass a reference to it.
4183 */
4184 if (done != NULL)
4185 add_reference(hdr, hash_lock, private);
4186 if (*arc_flags & ARC_FLAG_PREFETCH)
4187 hdr->b_flags |= ARC_FLAG_PREFETCH;
4188 if (*arc_flags & ARC_FLAG_L2CACHE)
4189 hdr->b_flags |= ARC_FLAG_L2CACHE;
4190 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4191 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4192 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4193 buf->b_hdr = hdr;
4194 buf->b_data = NULL;
4195 buf->b_efunc = NULL;
4196 buf->b_private = NULL;
4197 buf->b_next = NULL;
4198 hdr->b_l1hdr.b_buf = buf;
4199 ASSERT0(hdr->b_l1hdr.b_datacnt);
4200 hdr->b_l1hdr.b_datacnt = 1;
4201 arc_get_data_buf(buf);
4202 arc_access(hdr, hash_lock);
4203 }
4204
4205 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
4206 hdr->b_flags |= ARC_FLAG_PREDICTIVE_PREFETCH;
4207 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4208
4209 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4210 acb->acb_done = done;
4211 acb->acb_private = private;
4212
4213 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4214 hdr->b_l1hdr.b_acb = acb;
4215 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4216
4217 if (HDR_HAS_L2HDR(hdr) &&
4218 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4219 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4220 addr = hdr->b_l2hdr.b_daddr;
4221 b_compress = hdr->b_l2hdr.b_compress;
4222 b_asize = hdr->b_l2hdr.b_asize;
4223 /*
4224 * Lock out device removal.
4225 */
4226 if (vdev_is_dead(vd) ||
4227 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4228 vd = NULL;
4229 }
4230
4231 if (hash_lock != NULL)
4232 mutex_exit(hash_lock);
4233
4234 /*
4235 * At this point, we have a level 1 cache miss. Try again in
4236 * L2ARC if possible.
4237 */
4238 ASSERT3U(hdr->b_size, ==, size);
4239 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4240 uint64_t, size, zbookmark_phys_t *, zb);
4241 ARCSTAT_BUMP(arcstat_misses);
4242 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4243 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4244 data, metadata, misses);
4245
4246 if (priority == ZIO_PRIORITY_ASYNC_READ)
4247 hdr->b_flags |= ARC_FLAG_PRIO_ASYNC_READ;
4248 else
4249 hdr->b_flags &= ~ARC_FLAG_PRIO_ASYNC_READ;
4250
4251 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4252 /*
4253 * Read from the L2ARC if the following are true:
4254 * 1. The L2ARC vdev was previously cached.
4255 * 2. This buffer still has L2ARC metadata.
4256 * 3. This buffer isn't currently writing to the L2ARC.
4257 * 4. The L2ARC entry wasn't evicted, which may
4258 * also have invalidated the vdev.
4259 * 5. This isn't prefetch and l2arc_noprefetch is set.
4260 */
4261 if (HDR_HAS_L2HDR(hdr) &&
4262 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4263 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4264 l2arc_read_callback_t *cb;
4265
4266 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4267 ARCSTAT_BUMP(arcstat_l2_hits);
4268
4269 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4270 KM_SLEEP);
4271 cb->l2rcb_buf = buf;
4272 cb->l2rcb_spa = spa;
4273 cb->l2rcb_bp = *bp;
4274 cb->l2rcb_zb = *zb;
4275 cb->l2rcb_flags = zio_flags;
4276 cb->l2rcb_compress = b_compress;
4277
4278 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4279 addr + size < vd->vdev_psize -
4280 VDEV_LABEL_END_SIZE);
4281
4282 /*
4283 * l2arc read. The SCL_L2ARC lock will be
4284 * released by l2arc_read_done().
4285 * Issue a null zio if the underlying buffer
4286 * was squashed to zero size by compression.
4287 */
4288 if (b_compress == ZIO_COMPRESS_EMPTY) {
4289 rzio = zio_null(pio, spa, vd,
4290 l2arc_read_done, cb,
4291 zio_flags | ZIO_FLAG_DONT_CACHE |
4292 ZIO_FLAG_CANFAIL |
4293 ZIO_FLAG_DONT_PROPAGATE |
4294 ZIO_FLAG_DONT_RETRY);
4295 } else {
4296 rzio = zio_read_phys(pio, vd, addr,
4297 b_asize, buf->b_data,
4298 ZIO_CHECKSUM_OFF,
4299 l2arc_read_done, cb, priority,
4300 zio_flags | ZIO_FLAG_DONT_CACHE |
4301 ZIO_FLAG_CANFAIL |
4302 ZIO_FLAG_DONT_PROPAGATE |
4303 ZIO_FLAG_DONT_RETRY, B_FALSE);
4304 }
4305 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4306 zio_t *, rzio);
4307 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4308
4309 if (*arc_flags & ARC_FLAG_NOWAIT) {
4310 zio_nowait(rzio);
4311 return (0);
4312 }
4313
4314 ASSERT(*arc_flags & ARC_FLAG_WAIT);
4315 if (zio_wait(rzio) == 0)
4316 return (0);
4317
4318 /* l2arc read error; goto zio_read() */
4319 } else {
4320 DTRACE_PROBE1(l2arc__miss,
4321 arc_buf_hdr_t *, hdr);
4322 ARCSTAT_BUMP(arcstat_l2_misses);
4323 if (HDR_L2_WRITING(hdr))
4324 ARCSTAT_BUMP(arcstat_l2_rw_clash);
4325 spa_config_exit(spa, SCL_L2ARC, vd);
4326 }
4327 } else {
4328 if (vd != NULL)
4329 spa_config_exit(spa, SCL_L2ARC, vd);
4330 if (l2arc_ndev != 0) {
4331 DTRACE_PROBE1(l2arc__miss,
4332 arc_buf_hdr_t *, hdr);
4333 ARCSTAT_BUMP(arcstat_l2_misses);
4334 }
4335 }
4336
4337 rzio = zio_read(pio, spa, bp, buf->b_data, size,
4338 arc_read_done, buf, priority, zio_flags, zb);
4339
4340 if (*arc_flags & ARC_FLAG_WAIT)
4341 return (zio_wait(rzio));
4342
4343 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4344 zio_nowait(rzio);
4345 }
4346 return (0);
4347 }
4348
4349 void
arc_set_callback(arc_buf_t * buf,arc_evict_func_t * func,void * private)4350 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4351 {
4352 ASSERT(buf->b_hdr != NULL);
4353 ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4354 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4355 func == NULL);
4356 ASSERT(buf->b_efunc == NULL);
4357 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4358
4359 buf->b_efunc = func;
4360 buf->b_private = private;
4361 }
4362
4363 /*
4364 * Notify the arc that a block was freed, and thus will never be used again.
4365 */
4366 void
arc_freed(spa_t * spa,const blkptr_t * bp)4367 arc_freed(spa_t *spa, const blkptr_t *bp)
4368 {
4369 arc_buf_hdr_t *hdr;
4370 kmutex_t *hash_lock;
4371 uint64_t guid = spa_load_guid(spa);
4372
4373 ASSERT(!BP_IS_EMBEDDED(bp));
4374
4375 hdr = buf_hash_find(guid, bp, &hash_lock);
4376 if (hdr == NULL)
4377 return;
4378 if (HDR_BUF_AVAILABLE(hdr)) {
4379 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4380 add_reference(hdr, hash_lock, FTAG);
4381 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4382 mutex_exit(hash_lock);
4383
4384 arc_release(buf, FTAG);
4385 (void) arc_buf_remove_ref(buf, FTAG);
4386 } else {
4387 mutex_exit(hash_lock);
4388 }
4389
4390 }
4391
4392 /*
4393 * Clear the user eviction callback set by arc_set_callback(), first calling
4394 * it if it exists. Because the presence of a callback keeps an arc_buf cached
4395 * clearing the callback may result in the arc_buf being destroyed. However,
4396 * it will not result in the *last* arc_buf being destroyed, hence the data
4397 * will remain cached in the ARC. We make a copy of the arc buffer here so
4398 * that we can process the callback without holding any locks.
4399 *
4400 * It's possible that the callback is already in the process of being cleared
4401 * by another thread. In this case we can not clear the callback.
4402 *
4403 * Returns B_TRUE if the callback was successfully called and cleared.
4404 */
4405 boolean_t
arc_clear_callback(arc_buf_t * buf)4406 arc_clear_callback(arc_buf_t *buf)
4407 {
4408 arc_buf_hdr_t *hdr;
4409 kmutex_t *hash_lock;
4410 arc_evict_func_t *efunc = buf->b_efunc;
4411 void *private = buf->b_private;
4412
4413 mutex_enter(&buf->b_evict_lock);
4414 hdr = buf->b_hdr;
4415 if (hdr == NULL) {
4416 /*
4417 * We are in arc_do_user_evicts().
4418 */
4419 ASSERT(buf->b_data == NULL);
4420 mutex_exit(&buf->b_evict_lock);
4421 return (B_FALSE);
4422 } else if (buf->b_data == NULL) {
4423 /*
4424 * We are on the eviction list; process this buffer now
4425 * but let arc_do_user_evicts() do the reaping.
4426 */
4427 buf->b_efunc = NULL;
4428 mutex_exit(&buf->b_evict_lock);
4429 VERIFY0(efunc(private));
4430 return (B_TRUE);
4431 }
4432 hash_lock = HDR_LOCK(hdr);
4433 mutex_enter(hash_lock);
4434 hdr = buf->b_hdr;
4435 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4436
4437 ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4438 hdr->b_l1hdr.b_datacnt);
4439 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4440 hdr->b_l1hdr.b_state == arc_mfu);
4441
4442 buf->b_efunc = NULL;
4443 buf->b_private = NULL;
4444
4445 if (hdr->b_l1hdr.b_datacnt > 1) {
4446 mutex_exit(&buf->b_evict_lock);
4447 arc_buf_destroy(buf, TRUE);
4448 } else {
4449 ASSERT(buf == hdr->b_l1hdr.b_buf);
4450 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4451 mutex_exit(&buf->b_evict_lock);
4452 }
4453
4454 mutex_exit(hash_lock);
4455 VERIFY0(efunc(private));
4456 return (B_TRUE);
4457 }
4458
4459 /*
4460 * Release this buffer from the cache, making it an anonymous buffer. This
4461 * must be done after a read and prior to modifying the buffer contents.
4462 * If the buffer has more than one reference, we must make
4463 * a new hdr for the buffer.
4464 */
4465 void
arc_release(arc_buf_t * buf,void * tag)4466 arc_release(arc_buf_t *buf, void *tag)
4467 {
4468 arc_buf_hdr_t *hdr = buf->b_hdr;
4469
4470 /*
4471 * It would be nice to assert that if it's DMU metadata (level >
4472 * 0 || it's the dnode file), then it must be syncing context.
4473 * But we don't know that information at this level.
4474 */
4475
4476 mutex_enter(&buf->b_evict_lock);
4477
4478 ASSERT(HDR_HAS_L1HDR(hdr));
4479
4480 /*
4481 * We don't grab the hash lock prior to this check, because if
4482 * the buffer's header is in the arc_anon state, it won't be
4483 * linked into the hash table.
4484 */
4485 if (hdr->b_l1hdr.b_state == arc_anon) {
4486 mutex_exit(&buf->b_evict_lock);
4487 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4488 ASSERT(!HDR_IN_HASH_TABLE(hdr));
4489 ASSERT(!HDR_HAS_L2HDR(hdr));
4490 ASSERT(BUF_EMPTY(hdr));
4491
4492 ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4493 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4494 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4495
4496 ASSERT3P(buf->b_efunc, ==, NULL);
4497 ASSERT3P(buf->b_private, ==, NULL);
4498
4499 hdr->b_l1hdr.b_arc_access = 0;
4500 arc_buf_thaw(buf);
4501
4502 return;
4503 }
4504
4505 kmutex_t *hash_lock = HDR_LOCK(hdr);
4506 mutex_enter(hash_lock);
4507
4508 /*
4509 * This assignment is only valid as long as the hash_lock is
4510 * held, we must be careful not to reference state or the
4511 * b_state field after dropping the lock.
4512 */
4513 arc_state_t *state = hdr->b_l1hdr.b_state;
4514 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4515 ASSERT3P(state, !=, arc_anon);
4516
4517 /* this buffer is not on any list */
4518 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4519
4520 if (HDR_HAS_L2HDR(hdr)) {
4521 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4522
4523 /*
4524 * We have to recheck this conditional again now that
4525 * we're holding the l2ad_mtx to prevent a race with
4526 * another thread which might be concurrently calling
4527 * l2arc_evict(). In that case, l2arc_evict() might have
4528 * destroyed the header's L2 portion as we were waiting
4529 * to acquire the l2ad_mtx.
4530 */
4531 if (HDR_HAS_L2HDR(hdr))
4532 arc_hdr_l2hdr_destroy(hdr);
4533
4534 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4535 }
4536
4537 /*
4538 * Do we have more than one buf?
4539 */
4540 if (hdr->b_l1hdr.b_datacnt > 1) {
4541 arc_buf_hdr_t *nhdr;
4542 arc_buf_t **bufp;
4543 uint64_t blksz = hdr->b_size;
4544 uint64_t spa = hdr->b_spa;
4545 arc_buf_contents_t type = arc_buf_type(hdr);
4546 uint32_t flags = hdr->b_flags;
4547
4548 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4549 /*
4550 * Pull the data off of this hdr and attach it to
4551 * a new anonymous hdr.
4552 */
4553 (void) remove_reference(hdr, hash_lock, tag);
4554 bufp = &hdr->b_l1hdr.b_buf;
4555 while (*bufp != buf)
4556 bufp = &(*bufp)->b_next;
4557 *bufp = buf->b_next;
4558 buf->b_next = NULL;
4559
4560 ASSERT3P(state, !=, arc_l2c_only);
4561
4562 (void) refcount_remove_many(
4563 &state->arcs_size, hdr->b_size, buf);
4564
4565 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4566 ASSERT3P(state, !=, arc_l2c_only);
4567 uint64_t *size = &state->arcs_lsize[type];
4568 ASSERT3U(*size, >=, hdr->b_size);
4569 atomic_add_64(size, -hdr->b_size);
4570 }
4571
4572 /*
4573 * We're releasing a duplicate user data buffer, update
4574 * our statistics accordingly.
4575 */
4576 if (HDR_ISTYPE_DATA(hdr)) {
4577 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4578 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4579 -hdr->b_size);
4580 }
4581 hdr->b_l1hdr.b_datacnt -= 1;
4582 arc_cksum_verify(buf);
4583 arc_buf_unwatch(buf);
4584
4585 mutex_exit(hash_lock);
4586
4587 nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
4588 nhdr->b_size = blksz;
4589 nhdr->b_spa = spa;
4590
4591 nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
4592 nhdr->b_flags |= arc_bufc_to_flags(type);
4593 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4594
4595 nhdr->b_l1hdr.b_buf = buf;
4596 nhdr->b_l1hdr.b_datacnt = 1;
4597 nhdr->b_l1hdr.b_state = arc_anon;
4598 nhdr->b_l1hdr.b_arc_access = 0;
4599 nhdr->b_l1hdr.b_tmp_cdata = NULL;
4600 nhdr->b_freeze_cksum = NULL;
4601
4602 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
4603 buf->b_hdr = nhdr;
4604 mutex_exit(&buf->b_evict_lock);
4605 (void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
4606 } else {
4607 mutex_exit(&buf->b_evict_lock);
4608 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
4609 /* protected by hash lock, or hdr is on arc_anon */
4610 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4611 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4612 arc_change_state(arc_anon, hdr, hash_lock);
4613 hdr->b_l1hdr.b_arc_access = 0;
4614 mutex_exit(hash_lock);
4615
4616 buf_discard_identity(hdr);
4617 arc_buf_thaw(buf);
4618 }
4619 buf->b_efunc = NULL;
4620 buf->b_private = NULL;
4621 }
4622
4623 int
arc_released(arc_buf_t * buf)4624 arc_released(arc_buf_t *buf)
4625 {
4626 int released;
4627
4628 mutex_enter(&buf->b_evict_lock);
4629 released = (buf->b_data != NULL &&
4630 buf->b_hdr->b_l1hdr.b_state == arc_anon);
4631 mutex_exit(&buf->b_evict_lock);
4632 return (released);
4633 }
4634
4635 #ifdef ZFS_DEBUG
4636 int
arc_referenced(arc_buf_t * buf)4637 arc_referenced(arc_buf_t *buf)
4638 {
4639 int referenced;
4640
4641 mutex_enter(&buf->b_evict_lock);
4642 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
4643 mutex_exit(&buf->b_evict_lock);
4644 return (referenced);
4645 }
4646 #endif
4647
4648 static void
arc_write_ready(zio_t * zio)4649 arc_write_ready(zio_t *zio)
4650 {
4651 arc_write_callback_t *callback = zio->io_private;
4652 arc_buf_t *buf = callback->awcb_buf;
4653 arc_buf_hdr_t *hdr = buf->b_hdr;
4654
4655 ASSERT(HDR_HAS_L1HDR(hdr));
4656 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
4657 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4658 callback->awcb_ready(zio, buf, callback->awcb_private);
4659
4660 /*
4661 * If the IO is already in progress, then this is a re-write
4662 * attempt, so we need to thaw and re-compute the cksum.
4663 * It is the responsibility of the callback to handle the
4664 * accounting for any re-write attempt.
4665 */
4666 if (HDR_IO_IN_PROGRESS(hdr)) {
4667 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
4668 if (hdr->b_freeze_cksum != NULL) {
4669 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
4670 hdr->b_freeze_cksum = NULL;
4671 }
4672 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
4673 }
4674 arc_cksum_compute(buf, B_FALSE);
4675 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4676 }
4677
4678 /*
4679 * The SPA calls this callback for each physical write that happens on behalf
4680 * of a logical write. See the comment in dbuf_write_physdone() for details.
4681 */
4682 static void
arc_write_physdone(zio_t * zio)4683 arc_write_physdone(zio_t *zio)
4684 {
4685 arc_write_callback_t *cb = zio->io_private;
4686 if (cb->awcb_physdone != NULL)
4687 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
4688 }
4689
4690 static void
arc_write_done(zio_t * zio)4691 arc_write_done(zio_t *zio)
4692 {
4693 arc_write_callback_t *callback = zio->io_private;
4694 arc_buf_t *buf = callback->awcb_buf;
4695 arc_buf_hdr_t *hdr = buf->b_hdr;
4696
4697 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4698
4699 if (zio->io_error == 0) {
4700 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
4701 buf_discard_identity(hdr);
4702 } else {
4703 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
4704 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
4705 }
4706 } else {
4707 ASSERT(BUF_EMPTY(hdr));
4708 }
4709
4710 /*
4711 * If the block to be written was all-zero or compressed enough to be
4712 * embedded in the BP, no write was performed so there will be no
4713 * dva/birth/checksum. The buffer must therefore remain anonymous
4714 * (and uncached).
4715 */
4716 if (!BUF_EMPTY(hdr)) {
4717 arc_buf_hdr_t *exists;
4718 kmutex_t *hash_lock;
4719
4720 ASSERT(zio->io_error == 0);
4721
4722 arc_cksum_verify(buf);
4723
4724 exists = buf_hash_insert(hdr, &hash_lock);
4725 if (exists != NULL) {
4726 /*
4727 * This can only happen if we overwrite for
4728 * sync-to-convergence, because we remove
4729 * buffers from the hash table when we arc_free().
4730 */
4731 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
4732 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4733 panic("bad overwrite, hdr=%p exists=%p",
4734 (void *)hdr, (void *)exists);
4735 ASSERT(refcount_is_zero(
4736 &exists->b_l1hdr.b_refcnt));
4737 arc_change_state(arc_anon, exists, hash_lock);
4738 mutex_exit(hash_lock);
4739 arc_hdr_destroy(exists);
4740 exists = buf_hash_insert(hdr, &hash_lock);
4741 ASSERT3P(exists, ==, NULL);
4742 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
4743 /* nopwrite */
4744 ASSERT(zio->io_prop.zp_nopwrite);
4745 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4746 panic("bad nopwrite, hdr=%p exists=%p",
4747 (void *)hdr, (void *)exists);
4748 } else {
4749 /* Dedup */
4750 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4751 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
4752 ASSERT(BP_GET_DEDUP(zio->io_bp));
4753 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
4754 }
4755 }
4756 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4757 /* if it's not anon, we are doing a scrub */
4758 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
4759 arc_access(hdr, hash_lock);
4760 mutex_exit(hash_lock);
4761 } else {
4762 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4763 }
4764
4765 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4766 callback->awcb_done(zio, buf, callback->awcb_private);
4767
4768 kmem_free(callback, sizeof (arc_write_callback_t));
4769 }
4770
4771 zio_t *
arc_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,arc_buf_t * buf,boolean_t l2arc,boolean_t l2arc_compress,const zio_prop_t * zp,arc_done_func_t * ready,arc_done_func_t * physdone,arc_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,const zbookmark_phys_t * zb)4772 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
4773 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
4774 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
4775 arc_done_func_t *done, void *private, zio_priority_t priority,
4776 int zio_flags, const zbookmark_phys_t *zb)
4777 {
4778 arc_buf_hdr_t *hdr = buf->b_hdr;
4779 arc_write_callback_t *callback;
4780 zio_t *zio;
4781
4782 ASSERT(ready != NULL);
4783 ASSERT(done != NULL);
4784 ASSERT(!HDR_IO_ERROR(hdr));
4785 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4786 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4787 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4788 if (l2arc)
4789 hdr->b_flags |= ARC_FLAG_L2CACHE;
4790 if (l2arc_compress)
4791 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4792 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
4793 callback->awcb_ready = ready;
4794 callback->awcb_physdone = physdone;
4795 callback->awcb_done = done;
4796 callback->awcb_private = private;
4797 callback->awcb_buf = buf;
4798
4799 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
4800 arc_write_ready, arc_write_physdone, arc_write_done, callback,
4801 priority, zio_flags, zb);
4802
4803 return (zio);
4804 }
4805
4806 static int
arc_memory_throttle(uint64_t reserve,uint64_t txg)4807 arc_memory_throttle(uint64_t reserve, uint64_t txg)
4808 {
4809 #ifdef _KERNEL
4810 uint64_t available_memory = ptob(freemem);
4811 static uint64_t page_load = 0;
4812 static uint64_t last_txg = 0;
4813
4814 #if defined(__i386)
4815 available_memory =
4816 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
4817 #endif
4818
4819 if (freemem > physmem * arc_lotsfree_percent / 100)
4820 return (0);
4821
4822 if (txg > last_txg) {
4823 last_txg = txg;
4824 page_load = 0;
4825 }
4826 /*
4827 * If we are in pageout, we know that memory is already tight,
4828 * the arc is already going to be evicting, so we just want to
4829 * continue to let page writes occur as quickly as possible.
4830 */
4831 if (curproc == proc_pageout) {
4832 if (page_load > MAX(ptob(minfree), available_memory) / 4)
4833 return (SET_ERROR(ERESTART));
4834 /* Note: reserve is inflated, so we deflate */
4835 page_load += reserve / 8;
4836 return (0);
4837 } else if (page_load > 0 && arc_reclaim_needed()) {
4838 /* memory is low, delay before restarting */
4839 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
4840 return (SET_ERROR(EAGAIN));
4841 }
4842 page_load = 0;
4843 #endif
4844 return (0);
4845 }
4846
4847 void
arc_tempreserve_clear(uint64_t reserve)4848 arc_tempreserve_clear(uint64_t reserve)
4849 {
4850 atomic_add_64(&arc_tempreserve, -reserve);
4851 ASSERT((int64_t)arc_tempreserve >= 0);
4852 }
4853
4854 int
arc_tempreserve_space(uint64_t reserve,uint64_t txg)4855 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
4856 {
4857 int error;
4858 uint64_t anon_size;
4859
4860 if (reserve > arc_c/4 && !arc_no_grow)
4861 arc_c = MIN(arc_c_max, reserve * 4);
4862 if (reserve > arc_c)
4863 return (SET_ERROR(ENOMEM));
4864
4865 /*
4866 * Don't count loaned bufs as in flight dirty data to prevent long
4867 * network delays from blocking transactions that are ready to be
4868 * assigned to a txg.
4869 */
4870 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
4871 arc_loaned_bytes), 0);
4872
4873 /*
4874 * Writes will, almost always, require additional memory allocations
4875 * in order to compress/encrypt/etc the data. We therefore need to
4876 * make sure that there is sufficient available memory for this.
4877 */
4878 error = arc_memory_throttle(reserve, txg);
4879 if (error != 0)
4880 return (error);
4881
4882 /*
4883 * Throttle writes when the amount of dirty data in the cache
4884 * gets too large. We try to keep the cache less than half full
4885 * of dirty blocks so that our sync times don't grow too large.
4886 * Note: if two requests come in concurrently, we might let them
4887 * both succeed, when one of them should fail. Not a huge deal.
4888 */
4889
4890 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
4891 anon_size > arc_c / 4) {
4892 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
4893 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
4894 arc_tempreserve>>10,
4895 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
4896 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
4897 reserve>>10, arc_c>>10);
4898 return (SET_ERROR(ERESTART));
4899 }
4900 atomic_add_64(&arc_tempreserve, reserve);
4901 return (0);
4902 }
4903
4904 static void
arc_kstat_update_state(arc_state_t * state,kstat_named_t * size,kstat_named_t * evict_data,kstat_named_t * evict_metadata)4905 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
4906 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
4907 {
4908 size->value.ui64 = refcount_count(&state->arcs_size);
4909 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
4910 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
4911 }
4912
4913 static int
arc_kstat_update(kstat_t * ksp,int rw)4914 arc_kstat_update(kstat_t *ksp, int rw)
4915 {
4916 arc_stats_t *as = ksp->ks_data;
4917
4918 if (rw == KSTAT_WRITE) {
4919 return (EACCES);
4920 } else {
4921 arc_kstat_update_state(arc_anon,
4922 &as->arcstat_anon_size,
4923 &as->arcstat_anon_evictable_data,
4924 &as->arcstat_anon_evictable_metadata);
4925 arc_kstat_update_state(arc_mru,
4926 &as->arcstat_mru_size,
4927 &as->arcstat_mru_evictable_data,
4928 &as->arcstat_mru_evictable_metadata);
4929 arc_kstat_update_state(arc_mru_ghost,
4930 &as->arcstat_mru_ghost_size,
4931 &as->arcstat_mru_ghost_evictable_data,
4932 &as->arcstat_mru_ghost_evictable_metadata);
4933 arc_kstat_update_state(arc_mfu,
4934 &as->arcstat_mfu_size,
4935 &as->arcstat_mfu_evictable_data,
4936 &as->arcstat_mfu_evictable_metadata);
4937 arc_kstat_update_state(arc_mfu_ghost,
4938 &as->arcstat_mfu_ghost_size,
4939 &as->arcstat_mfu_ghost_evictable_data,
4940 &as->arcstat_mfu_ghost_evictable_metadata);
4941 }
4942
4943 return (0);
4944 }
4945
4946 /*
4947 * This function *must* return indices evenly distributed between all
4948 * sublists of the multilist. This is needed due to how the ARC eviction
4949 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
4950 * distributed between all sublists and uses this assumption when
4951 * deciding which sublist to evict from and how much to evict from it.
4952 */
4953 unsigned int
arc_state_multilist_index_func(multilist_t * ml,void * obj)4954 arc_state_multilist_index_func(multilist_t *ml, void *obj)
4955 {
4956 arc_buf_hdr_t *hdr = obj;
4957
4958 /*
4959 * We rely on b_dva to generate evenly distributed index
4960 * numbers using buf_hash below. So, as an added precaution,
4961 * let's make sure we never add empty buffers to the arc lists.
4962 */
4963 ASSERT(!BUF_EMPTY(hdr));
4964
4965 /*
4966 * The assumption here, is the hash value for a given
4967 * arc_buf_hdr_t will remain constant throughout it's lifetime
4968 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
4969 * Thus, we don't need to store the header's sublist index
4970 * on insertion, as this index can be recalculated on removal.
4971 *
4972 * Also, the low order bits of the hash value are thought to be
4973 * distributed evenly. Otherwise, in the case that the multilist
4974 * has a power of two number of sublists, each sublists' usage
4975 * would not be evenly distributed.
4976 */
4977 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
4978 multilist_get_num_sublists(ml));
4979 }
4980
4981 void
arc_init(void)4982 arc_init(void)
4983 {
4984 /*
4985 * allmem is "all memory that we could possibly use".
4986 */
4987 #ifdef _KERNEL
4988 uint64_t allmem = ptob(physmem - swapfs_minfree);
4989 #else
4990 uint64_t allmem = (physmem * PAGESIZE) / 2;
4991 #endif
4992
4993 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
4994 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
4995 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
4996
4997 mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
4998 cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
4999
5000 /* Convert seconds to clock ticks */
5001 arc_min_prefetch_lifespan = 1 * hz;
5002
5003 /* Start out with 1/8 of all memory */
5004 arc_c = allmem / 8;
5005
5006 #ifdef _KERNEL
5007 /*
5008 * On architectures where the physical memory can be larger
5009 * than the addressable space (intel in 32-bit mode), we may
5010 * need to limit the cache to 1/8 of VM size.
5011 */
5012 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
5013 #endif
5014
5015 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
5016 arc_c_min = MAX(allmem / 32, 64 << 20);
5017 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
5018 if (allmem >= 1 << 30)
5019 arc_c_max = allmem - (1 << 30);
5020 else
5021 arc_c_max = arc_c_min;
5022 arc_c_max = MAX(allmem * 3 / 4, arc_c_max);
5023
5024 /*
5025 * In userland, there's only the memory pressure that we artificially
5026 * create (see arc_available_memory()). Don't let arc_c get too
5027 * small, because it can cause transactions to be larger than
5028 * arc_c, causing arc_tempreserve_space() to fail.
5029 */
5030 #ifndef _KERNEL
5031 arc_c_min = arc_c_max / 2;
5032 #endif
5033
5034 /*
5035 * Allow the tunables to override our calculations if they are
5036 * reasonable (ie. over 64MB)
5037 */
5038 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem)
5039 arc_c_max = zfs_arc_max;
5040 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max)
5041 arc_c_min = zfs_arc_min;
5042
5043 arc_c = arc_c_max;
5044 arc_p = (arc_c >> 1);
5045
5046 /* limit meta-data to 1/4 of the arc capacity */
5047 arc_meta_limit = arc_c_max / 4;
5048
5049 /* Allow the tunable to override if it is reasonable */
5050 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
5051 arc_meta_limit = zfs_arc_meta_limit;
5052
5053 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
5054 arc_c_min = arc_meta_limit / 2;
5055
5056 if (zfs_arc_meta_min > 0) {
5057 arc_meta_min = zfs_arc_meta_min;
5058 } else {
5059 arc_meta_min = arc_c_min / 2;
5060 }
5061
5062 if (zfs_arc_grow_retry > 0)
5063 arc_grow_retry = zfs_arc_grow_retry;
5064
5065 if (zfs_arc_shrink_shift > 0)
5066 arc_shrink_shift = zfs_arc_shrink_shift;
5067
5068 /*
5069 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
5070 */
5071 if (arc_no_grow_shift >= arc_shrink_shift)
5072 arc_no_grow_shift = arc_shrink_shift - 1;
5073
5074 if (zfs_arc_p_min_shift > 0)
5075 arc_p_min_shift = zfs_arc_p_min_shift;
5076
5077 if (zfs_arc_num_sublists_per_state < 1)
5078 zfs_arc_num_sublists_per_state = MAX(boot_ncpus, 1);
5079
5080 /* if kmem_flags are set, lets try to use less memory */
5081 if (kmem_debugging())
5082 arc_c = arc_c / 2;
5083 if (arc_c < arc_c_min)
5084 arc_c = arc_c_min;
5085
5086 arc_anon = &ARC_anon;
5087 arc_mru = &ARC_mru;
5088 arc_mru_ghost = &ARC_mru_ghost;
5089 arc_mfu = &ARC_mfu;
5090 arc_mfu_ghost = &ARC_mfu_ghost;
5091 arc_l2c_only = &ARC_l2c_only;
5092 arc_size = 0;
5093
5094 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5095 sizeof (arc_buf_hdr_t),
5096 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5097 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5098 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5099 sizeof (arc_buf_hdr_t),
5100 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5101 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5102 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5103 sizeof (arc_buf_hdr_t),
5104 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5105 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5106 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5107 sizeof (arc_buf_hdr_t),
5108 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5109 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5110 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5111 sizeof (arc_buf_hdr_t),
5112 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5113 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5114 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5115 sizeof (arc_buf_hdr_t),
5116 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5117 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5118 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5119 sizeof (arc_buf_hdr_t),
5120 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5121 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5122 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5123 sizeof (arc_buf_hdr_t),
5124 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5125 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5126 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5127 sizeof (arc_buf_hdr_t),
5128 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5129 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5130 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5131 sizeof (arc_buf_hdr_t),
5132 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5133 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5134
5135 refcount_create(&arc_anon->arcs_size);
5136 refcount_create(&arc_mru->arcs_size);
5137 refcount_create(&arc_mru_ghost->arcs_size);
5138 refcount_create(&arc_mfu->arcs_size);
5139 refcount_create(&arc_mfu_ghost->arcs_size);
5140 refcount_create(&arc_l2c_only->arcs_size);
5141
5142 buf_init();
5143
5144 arc_reclaim_thread_exit = FALSE;
5145 arc_user_evicts_thread_exit = FALSE;
5146 arc_eviction_list = NULL;
5147 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5148
5149 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5150 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5151
5152 if (arc_ksp != NULL) {
5153 arc_ksp->ks_data = &arc_stats;
5154 arc_ksp->ks_update = arc_kstat_update;
5155 kstat_install(arc_ksp);
5156 }
5157
5158 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
5159 TS_RUN, minclsyspri);
5160
5161 (void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
5162 TS_RUN, minclsyspri);
5163
5164 arc_dead = FALSE;
5165 arc_warm = B_FALSE;
5166
5167 /*
5168 * Calculate maximum amount of dirty data per pool.
5169 *
5170 * If it has been set by /etc/system, take that.
5171 * Otherwise, use a percentage of physical memory defined by
5172 * zfs_dirty_data_max_percent (default 10%) with a cap at
5173 * zfs_dirty_data_max_max (default 4GB).
5174 */
5175 if (zfs_dirty_data_max == 0) {
5176 zfs_dirty_data_max = physmem * PAGESIZE *
5177 zfs_dirty_data_max_percent / 100;
5178 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5179 zfs_dirty_data_max_max);
5180 }
5181 }
5182
5183 void
arc_fini(void)5184 arc_fini(void)
5185 {
5186 mutex_enter(&arc_reclaim_lock);
5187 arc_reclaim_thread_exit = TRUE;
5188 /*
5189 * The reclaim thread will set arc_reclaim_thread_exit back to
5190 * FALSE when it is finished exiting; we're waiting for that.
5191 */
5192 while (arc_reclaim_thread_exit) {
5193 cv_signal(&arc_reclaim_thread_cv);
5194 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5195 }
5196 mutex_exit(&arc_reclaim_lock);
5197
5198 mutex_enter(&arc_user_evicts_lock);
5199 arc_user_evicts_thread_exit = TRUE;
5200 /*
5201 * The user evicts thread will set arc_user_evicts_thread_exit
5202 * to FALSE when it is finished exiting; we're waiting for that.
5203 */
5204 while (arc_user_evicts_thread_exit) {
5205 cv_signal(&arc_user_evicts_cv);
5206 cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5207 }
5208 mutex_exit(&arc_user_evicts_lock);
5209
5210 /* Use TRUE to ensure *all* buffers are evicted */
5211 arc_flush(NULL, TRUE);
5212
5213 arc_dead = TRUE;
5214
5215 if (arc_ksp != NULL) {
5216 kstat_delete(arc_ksp);
5217 arc_ksp = NULL;
5218 }
5219
5220 mutex_destroy(&arc_reclaim_lock);
5221 cv_destroy(&arc_reclaim_thread_cv);
5222 cv_destroy(&arc_reclaim_waiters_cv);
5223
5224 mutex_destroy(&arc_user_evicts_lock);
5225 cv_destroy(&arc_user_evicts_cv);
5226
5227 refcount_destroy(&arc_anon->arcs_size);
5228 refcount_destroy(&arc_mru->arcs_size);
5229 refcount_destroy(&arc_mru_ghost->arcs_size);
5230 refcount_destroy(&arc_mfu->arcs_size);
5231 refcount_destroy(&arc_mfu_ghost->arcs_size);
5232 refcount_destroy(&arc_l2c_only->arcs_size);
5233
5234 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5235 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5236 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5237 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5238 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
5239 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5240 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5241 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5242 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5243 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
5244
5245 buf_fini();
5246
5247 ASSERT0(arc_loaned_bytes);
5248 }
5249
5250 /*
5251 * Level 2 ARC
5252 *
5253 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5254 * It uses dedicated storage devices to hold cached data, which are populated
5255 * using large infrequent writes. The main role of this cache is to boost
5256 * the performance of random read workloads. The intended L2ARC devices
5257 * include short-stroked disks, solid state disks, and other media with
5258 * substantially faster read latency than disk.
5259 *
5260 * +-----------------------+
5261 * | ARC |
5262 * +-----------------------+
5263 * | ^ ^
5264 * | | |
5265 * l2arc_feed_thread() arc_read()
5266 * | | |
5267 * | l2arc read |
5268 * V | |
5269 * +---------------+ |
5270 * | L2ARC | |
5271 * +---------------+ |
5272 * | ^ |
5273 * l2arc_write() | |
5274 * | | |
5275 * V | |
5276 * +-------+ +-------+
5277 * | vdev | | vdev |
5278 * | cache | | cache |
5279 * +-------+ +-------+
5280 * +=========+ .-----.
5281 * : L2ARC : |-_____-|
5282 * : devices : | Disks |
5283 * +=========+ `-_____-'
5284 *
5285 * Read requests are satisfied from the following sources, in order:
5286 *
5287 * 1) ARC
5288 * 2) vdev cache of L2ARC devices
5289 * 3) L2ARC devices
5290 * 4) vdev cache of disks
5291 * 5) disks
5292 *
5293 * Some L2ARC device types exhibit extremely slow write performance.
5294 * To accommodate for this there are some significant differences between
5295 * the L2ARC and traditional cache design:
5296 *
5297 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
5298 * the ARC behave as usual, freeing buffers and placing headers on ghost
5299 * lists. The ARC does not send buffers to the L2ARC during eviction as
5300 * this would add inflated write latencies for all ARC memory pressure.
5301 *
5302 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5303 * It does this by periodically scanning buffers from the eviction-end of
5304 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5305 * not already there. It scans until a headroom of buffers is satisfied,
5306 * which itself is a buffer for ARC eviction. If a compressible buffer is
5307 * found during scanning and selected for writing to an L2ARC device, we
5308 * temporarily boost scanning headroom during the next scan cycle to make
5309 * sure we adapt to compression effects (which might significantly reduce
5310 * the data volume we write to L2ARC). The thread that does this is
5311 * l2arc_feed_thread(), illustrated below; example sizes are included to
5312 * provide a better sense of ratio than this diagram:
5313 *
5314 * head --> tail
5315 * +---------------------+----------+
5316 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
5317 * +---------------------+----------+ | o L2ARC eligible
5318 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
5319 * +---------------------+----------+ |
5320 * 15.9 Gbytes ^ 32 Mbytes |
5321 * headroom |
5322 * l2arc_feed_thread()
5323 * |
5324 * l2arc write hand <--[oooo]--'
5325 * | 8 Mbyte
5326 * | write max
5327 * V
5328 * +==============================+
5329 * L2ARC dev |####|#|###|###| |####| ... |
5330 * +==============================+
5331 * 32 Gbytes
5332 *
5333 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5334 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5335 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
5336 * safe to say that this is an uncommon case, since buffers at the end of
5337 * the ARC lists have moved there due to inactivity.
5338 *
5339 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5340 * then the L2ARC simply misses copying some buffers. This serves as a
5341 * pressure valve to prevent heavy read workloads from both stalling the ARC
5342 * with waits and clogging the L2ARC with writes. This also helps prevent
5343 * the potential for the L2ARC to churn if it attempts to cache content too
5344 * quickly, such as during backups of the entire pool.
5345 *
5346 * 5. After system boot and before the ARC has filled main memory, there are
5347 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5348 * lists can remain mostly static. Instead of searching from tail of these
5349 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5350 * for eligible buffers, greatly increasing its chance of finding them.
5351 *
5352 * The L2ARC device write speed is also boosted during this time so that
5353 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
5354 * there are no L2ARC reads, and no fear of degrading read performance
5355 * through increased writes.
5356 *
5357 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5358 * the vdev queue can aggregate them into larger and fewer writes. Each
5359 * device is written to in a rotor fashion, sweeping writes through
5360 * available space then repeating.
5361 *
5362 * 7. The L2ARC does not store dirty content. It never needs to flush
5363 * write buffers back to disk based storage.
5364 *
5365 * 8. If an ARC buffer is written (and dirtied) which also exists in the
5366 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5367 *
5368 * The performance of the L2ARC can be tweaked by a number of tunables, which
5369 * may be necessary for different workloads:
5370 *
5371 * l2arc_write_max max write bytes per interval
5372 * l2arc_write_boost extra write bytes during device warmup
5373 * l2arc_noprefetch skip caching prefetched buffers
5374 * l2arc_headroom number of max device writes to precache
5375 * l2arc_headroom_boost when we find compressed buffers during ARC
5376 * scanning, we multiply headroom by this
5377 * percentage factor for the next scan cycle,
5378 * since more compressed buffers are likely to
5379 * be present
5380 * l2arc_feed_secs seconds between L2ARC writing
5381 *
5382 * Tunables may be removed or added as future performance improvements are
5383 * integrated, and also may become zpool properties.
5384 *
5385 * There are three key functions that control how the L2ARC warms up:
5386 *
5387 * l2arc_write_eligible() check if a buffer is eligible to cache
5388 * l2arc_write_size() calculate how much to write
5389 * l2arc_write_interval() calculate sleep delay between writes
5390 *
5391 * These three functions determine what to write, how much, and how quickly
5392 * to send writes.
5393 */
5394
5395 static boolean_t
l2arc_write_eligible(uint64_t spa_guid,uint64_t sync_txg,arc_buf_hdr_t * hdr)5396 l2arc_write_eligible(uint64_t spa_guid, uint64_t sync_txg, arc_buf_hdr_t *hdr)
5397 {
5398 /*
5399 * A buffer is *not* eligible for the L2ARC if it:
5400 * 1. belongs to a different spa.
5401 * 2. is already cached on the L2ARC.
5402 * 3. has an I/O in progress (it may be an incomplete read).
5403 * 4. is flagged not eligible (zfs property).
5404 * 5. is part of the syncing txg (and thus subject to change).
5405 */
5406 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
5407 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr) ||
5408 hdr->b_birth >= sync_txg)
5409 return (B_FALSE);
5410
5411 return (B_TRUE);
5412 }
5413
5414 static uint64_t
l2arc_write_size(void)5415 l2arc_write_size(void)
5416 {
5417 uint64_t size;
5418
5419 /*
5420 * Make sure our globals have meaningful values in case the user
5421 * altered them.
5422 */
5423 size = l2arc_write_max;
5424 if (size == 0) {
5425 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5426 "be greater than zero, resetting it to the default (%d)",
5427 L2ARC_WRITE_SIZE);
5428 size = l2arc_write_max = L2ARC_WRITE_SIZE;
5429 }
5430
5431 if (arc_warm == B_FALSE)
5432 size += l2arc_write_boost;
5433
5434 return (size);
5435
5436 }
5437
5438 static clock_t
l2arc_write_interval(clock_t began,uint64_t wanted,uint64_t wrote)5439 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5440 {
5441 clock_t interval, next, now;
5442
5443 /*
5444 * If the ARC lists are busy, increase our write rate; if the
5445 * lists are stale, idle back. This is achieved by checking
5446 * how much we previously wrote - if it was more than half of
5447 * what we wanted, schedule the next write much sooner.
5448 */
5449 if (l2arc_feed_again && wrote > (wanted / 2))
5450 interval = (hz * l2arc_feed_min_ms) / 1000;
5451 else
5452 interval = hz * l2arc_feed_secs;
5453
5454 now = ddi_get_lbolt();
5455 next = MAX(now, MIN(now + interval, began + interval));
5456
5457 return (next);
5458 }
5459
5460 /*
5461 * Cycle through L2ARC devices. This is how L2ARC load balances.
5462 * If a device is returned, this also returns holding the spa config lock.
5463 */
5464 static l2arc_dev_t *
l2arc_dev_get_next(void)5465 l2arc_dev_get_next(void)
5466 {
5467 l2arc_dev_t *first, *next = NULL;
5468
5469 /*
5470 * Lock out the removal of spas (spa_namespace_lock), then removal
5471 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
5472 * both locks will be dropped and a spa config lock held instead.
5473 */
5474 mutex_enter(&spa_namespace_lock);
5475 mutex_enter(&l2arc_dev_mtx);
5476
5477 /* if there are no vdevs, there is nothing to do */
5478 if (l2arc_ndev == 0)
5479 goto out;
5480
5481 first = NULL;
5482 next = l2arc_dev_last;
5483 do {
5484 /* loop around the list looking for a non-faulted vdev */
5485 if (next == NULL) {
5486 next = list_head(l2arc_dev_list);
5487 } else {
5488 next = list_next(l2arc_dev_list, next);
5489 if (next == NULL)
5490 next = list_head(l2arc_dev_list);
5491 }
5492
5493 /* if we have come back to the start, bail out */
5494 if (first == NULL)
5495 first = next;
5496 else if (next == first)
5497 break;
5498
5499 } while (vdev_is_dead(next->l2ad_vdev));
5500
5501 /* if we were unable to find any usable vdevs, return NULL */
5502 if (vdev_is_dead(next->l2ad_vdev))
5503 next = NULL;
5504
5505 l2arc_dev_last = next;
5506
5507 out:
5508 mutex_exit(&l2arc_dev_mtx);
5509
5510 /*
5511 * Grab the config lock to prevent the 'next' device from being
5512 * removed while we are writing to it.
5513 */
5514 if (next != NULL)
5515 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5516 mutex_exit(&spa_namespace_lock);
5517
5518 return (next);
5519 }
5520
5521 /*
5522 * Free buffers that were tagged for destruction.
5523 */
5524 static void
l2arc_do_free_on_write()5525 l2arc_do_free_on_write()
5526 {
5527 list_t *buflist;
5528 l2arc_data_free_t *df, *df_prev;
5529
5530 mutex_enter(&l2arc_free_on_write_mtx);
5531 buflist = l2arc_free_on_write;
5532
5533 for (df = list_tail(buflist); df; df = df_prev) {
5534 df_prev = list_prev(buflist, df);
5535 ASSERT(df->l2df_data != NULL);
5536 ASSERT(df->l2df_func != NULL);
5537 df->l2df_func(df->l2df_data, df->l2df_size);
5538 list_remove(buflist, df);
5539 kmem_free(df, sizeof (l2arc_data_free_t));
5540 }
5541
5542 mutex_exit(&l2arc_free_on_write_mtx);
5543 }
5544
5545 /*
5546 * A write to a cache device has completed. Update all headers to allow
5547 * reads from these buffers to begin.
5548 */
5549 static void
l2arc_write_done(zio_t * zio)5550 l2arc_write_done(zio_t *zio)
5551 {
5552 l2arc_write_callback_t *cb;
5553 l2arc_dev_t *dev;
5554 list_t *buflist;
5555 arc_buf_hdr_t *head, *hdr, *hdr_prev;
5556 kmutex_t *hash_lock;
5557 int64_t bytes_dropped = 0;
5558
5559 cb = zio->io_private;
5560 ASSERT(cb != NULL);
5561 dev = cb->l2wcb_dev;
5562 ASSERT(dev != NULL);
5563 head = cb->l2wcb_head;
5564 ASSERT(head != NULL);
5565 buflist = &dev->l2ad_buflist;
5566 ASSERT(buflist != NULL);
5567 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
5568 l2arc_write_callback_t *, cb);
5569
5570 if (zio->io_error != 0)
5571 ARCSTAT_BUMP(arcstat_l2_writes_error);
5572
5573 /*
5574 * All writes completed, or an error was hit.
5575 */
5576 top:
5577 mutex_enter(&dev->l2ad_mtx);
5578 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
5579 hdr_prev = list_prev(buflist, hdr);
5580
5581 hash_lock = HDR_LOCK(hdr);
5582
5583 /*
5584 * We cannot use mutex_enter or else we can deadlock
5585 * with l2arc_write_buffers (due to swapping the order
5586 * the hash lock and l2ad_mtx are taken).
5587 */
5588 if (!mutex_tryenter(hash_lock)) {
5589 /*
5590 * Missed the hash lock. We must retry so we
5591 * don't leave the ARC_FLAG_L2_WRITING bit set.
5592 */
5593 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
5594
5595 /*
5596 * We don't want to rescan the headers we've
5597 * already marked as having been written out, so
5598 * we reinsert the head node so we can pick up
5599 * where we left off.
5600 */
5601 list_remove(buflist, head);
5602 list_insert_after(buflist, hdr, head);
5603
5604 mutex_exit(&dev->l2ad_mtx);
5605
5606 /*
5607 * We wait for the hash lock to become available
5608 * to try and prevent busy waiting, and increase
5609 * the chance we'll be able to acquire the lock
5610 * the next time around.
5611 */
5612 mutex_enter(hash_lock);
5613 mutex_exit(hash_lock);
5614 goto top;
5615 }
5616
5617 /*
5618 * We could not have been moved into the arc_l2c_only
5619 * state while in-flight due to our ARC_FLAG_L2_WRITING
5620 * bit being set. Let's just ensure that's being enforced.
5621 */
5622 ASSERT(HDR_HAS_L1HDR(hdr));
5623
5624 /*
5625 * We may have allocated a buffer for L2ARC compression,
5626 * we must release it to avoid leaking this data.
5627 */
5628 l2arc_release_cdata_buf(hdr);
5629
5630 if (zio->io_error != 0) {
5631 /*
5632 * Error - drop L2ARC entry.
5633 */
5634 list_remove(buflist, hdr);
5635 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5636
5637 ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
5638 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
5639
5640 bytes_dropped += hdr->b_l2hdr.b_asize;
5641 (void) refcount_remove_many(&dev->l2ad_alloc,
5642 hdr->b_l2hdr.b_asize, hdr);
5643 }
5644
5645 /*
5646 * Allow ARC to begin reads and ghost list evictions to
5647 * this L2ARC entry.
5648 */
5649 hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
5650
5651 mutex_exit(hash_lock);
5652 }
5653
5654 atomic_inc_64(&l2arc_writes_done);
5655 list_remove(buflist, head);
5656 ASSERT(!HDR_HAS_L1HDR(head));
5657 kmem_cache_free(hdr_l2only_cache, head);
5658 mutex_exit(&dev->l2ad_mtx);
5659
5660 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
5661
5662 l2arc_do_free_on_write();
5663
5664 kmem_free(cb, sizeof (l2arc_write_callback_t));
5665 }
5666
5667 /*
5668 * A read to a cache device completed. Validate buffer contents before
5669 * handing over to the regular ARC routines.
5670 */
5671 static void
l2arc_read_done(zio_t * zio)5672 l2arc_read_done(zio_t *zio)
5673 {
5674 l2arc_read_callback_t *cb;
5675 arc_buf_hdr_t *hdr;
5676 arc_buf_t *buf;
5677 kmutex_t *hash_lock;
5678 int equal;
5679
5680 ASSERT(zio->io_vd != NULL);
5681 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
5682
5683 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
5684
5685 cb = zio->io_private;
5686 ASSERT(cb != NULL);
5687 buf = cb->l2rcb_buf;
5688 ASSERT(buf != NULL);
5689
5690 hash_lock = HDR_LOCK(buf->b_hdr);
5691 mutex_enter(hash_lock);
5692 hdr = buf->b_hdr;
5693 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5694
5695 /*
5696 * If the buffer was compressed, decompress it first.
5697 */
5698 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
5699 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
5700 ASSERT(zio->io_data != NULL);
5701 ASSERT3U(zio->io_size, ==, hdr->b_size);
5702 ASSERT3U(BP_GET_LSIZE(&cb->l2rcb_bp), ==, hdr->b_size);
5703
5704 /*
5705 * Check this survived the L2ARC journey.
5706 */
5707 equal = arc_cksum_equal(buf);
5708 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
5709 mutex_exit(hash_lock);
5710 zio->io_private = buf;
5711 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
5712 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
5713 arc_read_done(zio);
5714 } else {
5715 mutex_exit(hash_lock);
5716 /*
5717 * Buffer didn't survive caching. Increment stats and
5718 * reissue to the original storage device.
5719 */
5720 if (zio->io_error != 0) {
5721 ARCSTAT_BUMP(arcstat_l2_io_error);
5722 } else {
5723 zio->io_error = SET_ERROR(EIO);
5724 }
5725 if (!equal)
5726 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
5727
5728 /*
5729 * If there's no waiter, issue an async i/o to the primary
5730 * storage now. If there *is* a waiter, the caller must
5731 * issue the i/o in a context where it's OK to block.
5732 */
5733 if (zio->io_waiter == NULL) {
5734 zio_t *pio = zio_unique_parent(zio);
5735
5736 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
5737
5738 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
5739 buf->b_data, hdr->b_size, arc_read_done, buf,
5740 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
5741 }
5742 }
5743
5744 kmem_free(cb, sizeof (l2arc_read_callback_t));
5745 }
5746
5747 /*
5748 * This is the list priority from which the L2ARC will search for pages to
5749 * cache. This is used within loops (0..3) to cycle through lists in the
5750 * desired order. This order can have a significant effect on cache
5751 * performance.
5752 *
5753 * Currently the metadata lists are hit first, MFU then MRU, followed by
5754 * the data lists. This function returns a locked list, and also returns
5755 * the lock pointer.
5756 */
5757 static multilist_sublist_t *
l2arc_sublist_lock(int list_num)5758 l2arc_sublist_lock(int list_num)
5759 {
5760 multilist_t *ml = NULL;
5761 unsigned int idx;
5762
5763 ASSERT(list_num >= 0 && list_num <= 3);
5764
5765 switch (list_num) {
5766 case 0:
5767 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
5768 break;
5769 case 1:
5770 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
5771 break;
5772 case 2:
5773 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
5774 break;
5775 case 3:
5776 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
5777 break;
5778 }
5779
5780 /*
5781 * Return a randomly-selected sublist. This is acceptable
5782 * because the caller feeds only a little bit of data for each
5783 * call (8MB). Subsequent calls will result in different
5784 * sublists being selected.
5785 */
5786 idx = multilist_get_random_index(ml);
5787 return (multilist_sublist_lock(ml, idx));
5788 }
5789
5790 /*
5791 * Evict buffers from the device write hand to the distance specified in
5792 * bytes. This distance may span populated buffers, it may span nothing.
5793 * This is clearing a region on the L2ARC device ready for writing.
5794 * If the 'all' boolean is set, every buffer is evicted.
5795 */
5796 static void
l2arc_evict(l2arc_dev_t * dev,uint64_t distance,boolean_t all)5797 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
5798 {
5799 list_t *buflist;
5800 arc_buf_hdr_t *hdr, *hdr_prev;
5801 kmutex_t *hash_lock;
5802 uint64_t taddr;
5803
5804 buflist = &dev->l2ad_buflist;
5805
5806 if (!all && dev->l2ad_first) {
5807 /*
5808 * This is the first sweep through the device. There is
5809 * nothing to evict.
5810 */
5811 return;
5812 }
5813
5814 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
5815 /*
5816 * When nearing the end of the device, evict to the end
5817 * before the device write hand jumps to the start.
5818 */
5819 taddr = dev->l2ad_end;
5820 } else {
5821 taddr = dev->l2ad_hand + distance;
5822 }
5823 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
5824 uint64_t, taddr, boolean_t, all);
5825
5826 top:
5827 mutex_enter(&dev->l2ad_mtx);
5828 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
5829 hdr_prev = list_prev(buflist, hdr);
5830
5831 hash_lock = HDR_LOCK(hdr);
5832
5833 /*
5834 * We cannot use mutex_enter or else we can deadlock
5835 * with l2arc_write_buffers (due to swapping the order
5836 * the hash lock and l2ad_mtx are taken).
5837 */
5838 if (!mutex_tryenter(hash_lock)) {
5839 /*
5840 * Missed the hash lock. Retry.
5841 */
5842 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
5843 mutex_exit(&dev->l2ad_mtx);
5844 mutex_enter(hash_lock);
5845 mutex_exit(hash_lock);
5846 goto top;
5847 }
5848
5849 if (HDR_L2_WRITE_HEAD(hdr)) {
5850 /*
5851 * We hit a write head node. Leave it for
5852 * l2arc_write_done().
5853 */
5854 list_remove(buflist, hdr);
5855 mutex_exit(hash_lock);
5856 continue;
5857 }
5858
5859 if (!all && HDR_HAS_L2HDR(hdr) &&
5860 (hdr->b_l2hdr.b_daddr > taddr ||
5861 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
5862 /*
5863 * We've evicted to the target address,
5864 * or the end of the device.
5865 */
5866 mutex_exit(hash_lock);
5867 break;
5868 }
5869
5870 ASSERT(HDR_HAS_L2HDR(hdr));
5871 if (!HDR_HAS_L1HDR(hdr)) {
5872 ASSERT(!HDR_L2_READING(hdr));
5873 /*
5874 * This doesn't exist in the ARC. Destroy.
5875 * arc_hdr_destroy() will call list_remove()
5876 * and decrement arcstat_l2_size.
5877 */
5878 arc_change_state(arc_anon, hdr, hash_lock);
5879 arc_hdr_destroy(hdr);
5880 } else {
5881 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
5882 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
5883 /*
5884 * Invalidate issued or about to be issued
5885 * reads, since we may be about to write
5886 * over this location.
5887 */
5888 if (HDR_L2_READING(hdr)) {
5889 ARCSTAT_BUMP(arcstat_l2_evict_reading);
5890 hdr->b_flags |= ARC_FLAG_L2_EVICTED;
5891 }
5892
5893 /* Ensure this header has finished being written */
5894 ASSERT(!HDR_L2_WRITING(hdr));
5895 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
5896
5897 arc_hdr_l2hdr_destroy(hdr);
5898 }
5899 mutex_exit(hash_lock);
5900 }
5901 mutex_exit(&dev->l2ad_mtx);
5902 }
5903
5904 /*
5905 * Find and write ARC buffers to the L2ARC device.
5906 *
5907 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
5908 * for reading until they have completed writing.
5909 * The headroom_boost is an in-out parameter used to maintain headroom boost
5910 * state between calls to this function.
5911 *
5912 * Returns the number of bytes actually written (which may be smaller than
5913 * the delta by which the device hand has changed due to alignment).
5914 */
5915 static uint64_t
l2arc_write_buffers(spa_t * spa,l2arc_dev_t * dev,uint64_t target_sz,boolean_t * headroom_boost)5916 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
5917 boolean_t *headroom_boost)
5918 {
5919 arc_buf_hdr_t *hdr, *hdr_prev, *head;
5920 uint64_t write_asize, write_sz, headroom,
5921 buf_compress_minsz;
5922 void *buf_data;
5923 boolean_t full;
5924 l2arc_write_callback_t *cb;
5925 zio_t *pio, *wzio;
5926 uint64_t guid = spa_load_guid(spa);
5927 uint64_t sync_txg = spa_syncing_txg(spa);
5928 const boolean_t do_headroom_boost = *headroom_boost;
5929
5930 ASSERT(dev->l2ad_vdev != NULL);
5931
5932 /* Lower the flag now, we might want to raise it again later. */
5933 *headroom_boost = B_FALSE;
5934
5935 pio = NULL;
5936 write_sz = write_asize = 0;
5937 full = B_FALSE;
5938 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
5939 head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
5940 head->b_flags |= ARC_FLAG_HAS_L2HDR;
5941
5942 /*
5943 * We will want to try to compress buffers that are at least 2x the
5944 * device sector size.
5945 */
5946 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
5947
5948 /*
5949 * Copy buffers for L2ARC writing.
5950 */
5951 for (int try = 0; try <= 3; try++) {
5952 multilist_sublist_t *mls = l2arc_sublist_lock(try);
5953 uint64_t passed_sz = 0;
5954
5955 /*
5956 * L2ARC fast warmup.
5957 *
5958 * Until the ARC is warm and starts to evict, read from the
5959 * head of the ARC lists rather than the tail.
5960 */
5961 if (arc_warm == B_FALSE)
5962 hdr = multilist_sublist_head(mls);
5963 else
5964 hdr = multilist_sublist_tail(mls);
5965
5966 headroom = target_sz * l2arc_headroom;
5967 if (do_headroom_boost)
5968 headroom = (headroom * l2arc_headroom_boost) / 100;
5969
5970 for (; hdr; hdr = hdr_prev) {
5971 kmutex_t *hash_lock;
5972 uint64_t buf_sz;
5973 uint64_t buf_a_sz;
5974
5975 if (arc_warm == B_FALSE)
5976 hdr_prev = multilist_sublist_next(mls, hdr);
5977 else
5978 hdr_prev = multilist_sublist_prev(mls, hdr);
5979
5980 hash_lock = HDR_LOCK(hdr);
5981 if (!mutex_tryenter(hash_lock)) {
5982 /*
5983 * Skip this buffer rather than waiting.
5984 */
5985 continue;
5986 }
5987
5988 passed_sz += hdr->b_size;
5989 if (passed_sz > headroom) {
5990 /*
5991 * Searched too far.
5992 */
5993 mutex_exit(hash_lock);
5994 break;
5995 }
5996
5997 if (!l2arc_write_eligible(guid, sync_txg, hdr)) {
5998 mutex_exit(hash_lock);
5999 continue;
6000 }
6001
6002 /*
6003 * Assume that the buffer is not going to be compressed
6004 * and could take more space on disk because of a larger
6005 * disk block size.
6006 */
6007 buf_sz = hdr->b_size;
6008 buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6009
6010 if ((write_asize + buf_a_sz) > target_sz) {
6011 full = B_TRUE;
6012 mutex_exit(hash_lock);
6013 break;
6014 }
6015
6016 if (pio == NULL) {
6017 /*
6018 * Insert a dummy header on the buflist so
6019 * l2arc_write_done() can find where the
6020 * write buffers begin without searching.
6021 */
6022 mutex_enter(&dev->l2ad_mtx);
6023 list_insert_head(&dev->l2ad_buflist, head);
6024 mutex_exit(&dev->l2ad_mtx);
6025
6026 cb = kmem_alloc(
6027 sizeof (l2arc_write_callback_t), KM_SLEEP);
6028 cb->l2wcb_dev = dev;
6029 cb->l2wcb_head = head;
6030 pio = zio_root(spa, l2arc_write_done, cb,
6031 ZIO_FLAG_CANFAIL);
6032 }
6033
6034 /*
6035 * Create and add a new L2ARC header.
6036 */
6037 hdr->b_l2hdr.b_dev = dev;
6038 hdr->b_flags |= ARC_FLAG_L2_WRITING;
6039 /*
6040 * Temporarily stash the data buffer in b_tmp_cdata.
6041 * The subsequent write step will pick it up from
6042 * there. This is because can't access b_l1hdr.b_buf
6043 * without holding the hash_lock, which we in turn
6044 * can't access without holding the ARC list locks
6045 * (which we want to avoid during compression/writing).
6046 */
6047 hdr->b_l2hdr.b_compress = ZIO_COMPRESS_OFF;
6048 hdr->b_l2hdr.b_asize = hdr->b_size;
6049 hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
6050
6051 /*
6052 * Explicitly set the b_daddr field to a known
6053 * value which means "invalid address". This
6054 * enables us to differentiate which stage of
6055 * l2arc_write_buffers() the particular header
6056 * is in (e.g. this loop, or the one below).
6057 * ARC_FLAG_L2_WRITING is not enough to make
6058 * this distinction, and we need to know in
6059 * order to do proper l2arc vdev accounting in
6060 * arc_release() and arc_hdr_destroy().
6061 *
6062 * Note, we can't use a new flag to distinguish
6063 * the two stages because we don't hold the
6064 * header's hash_lock below, in the second stage
6065 * of this function. Thus, we can't simply
6066 * change the b_flags field to denote that the
6067 * IO has been sent. We can change the b_daddr
6068 * field of the L2 portion, though, since we'll
6069 * be holding the l2ad_mtx; which is why we're
6070 * using it to denote the header's state change.
6071 */
6072 hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
6073
6074 hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
6075
6076 mutex_enter(&dev->l2ad_mtx);
6077 list_insert_head(&dev->l2ad_buflist, hdr);
6078 mutex_exit(&dev->l2ad_mtx);
6079
6080 /*
6081 * Compute and store the buffer cksum before
6082 * writing. On debug the cksum is verified first.
6083 */
6084 arc_cksum_verify(hdr->b_l1hdr.b_buf);
6085 arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
6086
6087 mutex_exit(hash_lock);
6088
6089 write_sz += buf_sz;
6090 write_asize += buf_a_sz;
6091 }
6092
6093 multilist_sublist_unlock(mls);
6094
6095 if (full == B_TRUE)
6096 break;
6097 }
6098
6099 /* No buffers selected for writing? */
6100 if (pio == NULL) {
6101 ASSERT0(write_sz);
6102 ASSERT(!HDR_HAS_L1HDR(head));
6103 kmem_cache_free(hdr_l2only_cache, head);
6104 return (0);
6105 }
6106
6107 mutex_enter(&dev->l2ad_mtx);
6108
6109 /*
6110 * Note that elsewhere in this file arcstat_l2_asize
6111 * and the used space on l2ad_vdev are updated using b_asize,
6112 * which is not necessarily rounded up to the device block size.
6113 * Too keep accounting consistent we do the same here as well:
6114 * stats_size accumulates the sum of b_asize of the written buffers,
6115 * while write_asize accumulates the sum of b_asize rounded up
6116 * to the device block size.
6117 * The latter sum is used only to validate the corectness of the code.
6118 */
6119 uint64_t stats_size = 0;
6120 write_asize = 0;
6121
6122 /*
6123 * Now start writing the buffers. We're starting at the write head
6124 * and work backwards, retracing the course of the buffer selector
6125 * loop above.
6126 */
6127 for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6128 hdr = list_prev(&dev->l2ad_buflist, hdr)) {
6129 uint64_t buf_sz;
6130
6131 /*
6132 * We rely on the L1 portion of the header below, so
6133 * it's invalid for this header to have been evicted out
6134 * of the ghost cache, prior to being written out. The
6135 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6136 */
6137 ASSERT(HDR_HAS_L1HDR(hdr));
6138
6139 /*
6140 * We shouldn't need to lock the buffer here, since we flagged
6141 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6142 * take care to only access its L2 cache parameters. In
6143 * particular, hdr->l1hdr.b_buf may be invalid by now due to
6144 * ARC eviction.
6145 */
6146 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6147
6148 if ((HDR_L2COMPRESS(hdr)) &&
6149 hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
6150 if (l2arc_compress_buf(hdr)) {
6151 /*
6152 * If compression succeeded, enable headroom
6153 * boost on the next scan cycle.
6154 */
6155 *headroom_boost = B_TRUE;
6156 }
6157 }
6158
6159 /*
6160 * Pick up the buffer data we had previously stashed away
6161 * (and now potentially also compressed).
6162 */
6163 buf_data = hdr->b_l1hdr.b_tmp_cdata;
6164 buf_sz = hdr->b_l2hdr.b_asize;
6165
6166 /*
6167 * We need to do this regardless if buf_sz is zero or
6168 * not, otherwise, when this l2hdr is evicted we'll
6169 * remove a reference that was never added.
6170 */
6171 (void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6172
6173 /* Compression may have squashed the buffer to zero length. */
6174 if (buf_sz != 0) {
6175 uint64_t buf_a_sz;
6176
6177 wzio = zio_write_phys(pio, dev->l2ad_vdev,
6178 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6179 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6180 ZIO_FLAG_CANFAIL, B_FALSE);
6181
6182 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6183 zio_t *, wzio);
6184 (void) zio_nowait(wzio);
6185
6186 stats_size += buf_sz;
6187
6188 /*
6189 * Keep the clock hand suitably device-aligned.
6190 */
6191 buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6192 write_asize += buf_a_sz;
6193 dev->l2ad_hand += buf_a_sz;
6194 }
6195 }
6196
6197 mutex_exit(&dev->l2ad_mtx);
6198
6199 ASSERT3U(write_asize, <=, target_sz);
6200 ARCSTAT_BUMP(arcstat_l2_writes_sent);
6201 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
6202 ARCSTAT_INCR(arcstat_l2_size, write_sz);
6203 ARCSTAT_INCR(arcstat_l2_asize, stats_size);
6204 vdev_space_update(dev->l2ad_vdev, stats_size, 0, 0);
6205
6206 /*
6207 * Bump device hand to the device start if it is approaching the end.
6208 * l2arc_evict() will already have evicted ahead for this case.
6209 */
6210 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
6211 dev->l2ad_hand = dev->l2ad_start;
6212 dev->l2ad_first = B_FALSE;
6213 }
6214
6215 dev->l2ad_writing = B_TRUE;
6216 (void) zio_wait(pio);
6217 dev->l2ad_writing = B_FALSE;
6218
6219 return (write_asize);
6220 }
6221
6222 /*
6223 * Compresses an L2ARC buffer.
6224 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
6225 * size in l2hdr->b_asize. This routine tries to compress the data and
6226 * depending on the compression result there are three possible outcomes:
6227 * *) The buffer was incompressible. The original l2hdr contents were left
6228 * untouched and are ready for writing to an L2 device.
6229 * *) The buffer was all-zeros, so there is no need to write it to an L2
6230 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6231 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6232 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6233 * data buffer which holds the compressed data to be written, and b_asize
6234 * tells us how much data there is. b_compress is set to the appropriate
6235 * compression algorithm. Once writing is done, invoke
6236 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6237 *
6238 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6239 * buffer was incompressible).
6240 */
6241 static boolean_t
l2arc_compress_buf(arc_buf_hdr_t * hdr)6242 l2arc_compress_buf(arc_buf_hdr_t *hdr)
6243 {
6244 void *cdata;
6245 size_t csize, len, rounded;
6246 ASSERT(HDR_HAS_L2HDR(hdr));
6247 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
6248
6249 ASSERT(HDR_HAS_L1HDR(hdr));
6250 ASSERT3S(l2hdr->b_compress, ==, ZIO_COMPRESS_OFF);
6251 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6252
6253 len = l2hdr->b_asize;
6254 cdata = zio_data_buf_alloc(len);
6255 ASSERT3P(cdata, !=, NULL);
6256 csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
6257 cdata, l2hdr->b_asize);
6258
6259 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
6260 if (rounded > csize) {
6261 bzero((char *)cdata + csize, rounded - csize);
6262 csize = rounded;
6263 }
6264
6265 if (csize == 0) {
6266 /* zero block, indicate that there's nothing to write */
6267 zio_data_buf_free(cdata, len);
6268 l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
6269 l2hdr->b_asize = 0;
6270 hdr->b_l1hdr.b_tmp_cdata = NULL;
6271 ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6272 return (B_TRUE);
6273 } else if (csize > 0 && csize < len) {
6274 /*
6275 * Compression succeeded, we'll keep the cdata around for
6276 * writing and release it afterwards.
6277 */
6278 l2hdr->b_compress = ZIO_COMPRESS_LZ4;
6279 l2hdr->b_asize = csize;
6280 hdr->b_l1hdr.b_tmp_cdata = cdata;
6281 ARCSTAT_BUMP(arcstat_l2_compress_successes);
6282 return (B_TRUE);
6283 } else {
6284 /*
6285 * Compression failed, release the compressed buffer.
6286 * l2hdr will be left unmodified.
6287 */
6288 zio_data_buf_free(cdata, len);
6289 ARCSTAT_BUMP(arcstat_l2_compress_failures);
6290 return (B_FALSE);
6291 }
6292 }
6293
6294 /*
6295 * Decompresses a zio read back from an l2arc device. On success, the
6296 * underlying zio's io_data buffer is overwritten by the uncompressed
6297 * version. On decompression error (corrupt compressed stream), the
6298 * zio->io_error value is set to signal an I/O error.
6299 *
6300 * Please note that the compressed data stream is not checksummed, so
6301 * if the underlying device is experiencing data corruption, we may feed
6302 * corrupt data to the decompressor, so the decompressor needs to be
6303 * able to handle this situation (LZ4 does).
6304 */
6305 static void
l2arc_decompress_zio(zio_t * zio,arc_buf_hdr_t * hdr,enum zio_compress c)6306 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6307 {
6308 ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6309
6310 if (zio->io_error != 0) {
6311 /*
6312 * An io error has occured, just restore the original io
6313 * size in preparation for a main pool read.
6314 */
6315 zio->io_orig_size = zio->io_size = hdr->b_size;
6316 return;
6317 }
6318
6319 if (c == ZIO_COMPRESS_EMPTY) {
6320 /*
6321 * An empty buffer results in a null zio, which means we
6322 * need to fill its io_data after we're done restoring the
6323 * buffer's contents.
6324 */
6325 ASSERT(hdr->b_l1hdr.b_buf != NULL);
6326 bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6327 zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6328 } else {
6329 ASSERT(zio->io_data != NULL);
6330 /*
6331 * We copy the compressed data from the start of the arc buffer
6332 * (the zio_read will have pulled in only what we need, the
6333 * rest is garbage which we will overwrite at decompression)
6334 * and then decompress back to the ARC data buffer. This way we
6335 * can minimize copying by simply decompressing back over the
6336 * original compressed data (rather than decompressing to an
6337 * aux buffer and then copying back the uncompressed buffer,
6338 * which is likely to be much larger).
6339 */
6340 uint64_t csize;
6341 void *cdata;
6342
6343 csize = zio->io_size;
6344 cdata = zio_data_buf_alloc(csize);
6345 bcopy(zio->io_data, cdata, csize);
6346 if (zio_decompress_data(c, cdata, zio->io_data, csize,
6347 hdr->b_size) != 0)
6348 zio->io_error = EIO;
6349 zio_data_buf_free(cdata, csize);
6350 }
6351
6352 /* Restore the expected uncompressed IO size. */
6353 zio->io_orig_size = zio->io_size = hdr->b_size;
6354 }
6355
6356 /*
6357 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6358 * This buffer serves as a temporary holder of compressed data while
6359 * the buffer entry is being written to an l2arc device. Once that is
6360 * done, we can dispose of it.
6361 */
6362 static void
l2arc_release_cdata_buf(arc_buf_hdr_t * hdr)6363 l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6364 {
6365 ASSERT(HDR_HAS_L2HDR(hdr));
6366 enum zio_compress comp = hdr->b_l2hdr.b_compress;
6367
6368 ASSERT(HDR_HAS_L1HDR(hdr));
6369 ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6370
6371 if (comp == ZIO_COMPRESS_OFF) {
6372 /*
6373 * In this case, b_tmp_cdata points to the same buffer
6374 * as the arc_buf_t's b_data field. We don't want to
6375 * free it, since the arc_buf_t will handle that.
6376 */
6377 hdr->b_l1hdr.b_tmp_cdata = NULL;
6378 } else if (comp == ZIO_COMPRESS_EMPTY) {
6379 /*
6380 * In this case, b_tmp_cdata was compressed to an empty
6381 * buffer, thus there's nothing to free and b_tmp_cdata
6382 * should have been set to NULL in l2arc_write_buffers().
6383 */
6384 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6385 } else {
6386 /*
6387 * If the data was compressed, then we've allocated a
6388 * temporary buffer for it, so now we need to release it.
6389 */
6390 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6391 zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6392 hdr->b_size);
6393 hdr->b_l1hdr.b_tmp_cdata = NULL;
6394 }
6395
6396 }
6397
6398 /*
6399 * This thread feeds the L2ARC at regular intervals. This is the beating
6400 * heart of the L2ARC.
6401 */
6402 static void
l2arc_feed_thread(void)6403 l2arc_feed_thread(void)
6404 {
6405 callb_cpr_t cpr;
6406 l2arc_dev_t *dev;
6407 spa_t *spa;
6408 uint64_t size, wrote;
6409 clock_t begin, next = ddi_get_lbolt();
6410 boolean_t headroom_boost = B_FALSE;
6411
6412 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6413
6414 mutex_enter(&l2arc_feed_thr_lock);
6415
6416 while (l2arc_thread_exit == 0) {
6417 CALLB_CPR_SAFE_BEGIN(&cpr);
6418 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
6419 next);
6420 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
6421 next = ddi_get_lbolt() + hz;
6422
6423 /*
6424 * Quick check for L2ARC devices.
6425 */
6426 mutex_enter(&l2arc_dev_mtx);
6427 if (l2arc_ndev == 0) {
6428 mutex_exit(&l2arc_dev_mtx);
6429 continue;
6430 }
6431 mutex_exit(&l2arc_dev_mtx);
6432 begin = ddi_get_lbolt();
6433
6434 /*
6435 * This selects the next l2arc device to write to, and in
6436 * doing so the next spa to feed from: dev->l2ad_spa. This
6437 * will return NULL if there are now no l2arc devices or if
6438 * they are all faulted.
6439 *
6440 * If a device is returned, its spa's config lock is also
6441 * held to prevent device removal. l2arc_dev_get_next()
6442 * will grab and release l2arc_dev_mtx.
6443 */
6444 if ((dev = l2arc_dev_get_next()) == NULL)
6445 continue;
6446
6447 spa = dev->l2ad_spa;
6448 ASSERT(spa != NULL);
6449
6450 /*
6451 * If the pool is read-only then force the feed thread to
6452 * sleep a little longer.
6453 */
6454 if (!spa_writeable(spa)) {
6455 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6456 spa_config_exit(spa, SCL_L2ARC, dev);
6457 continue;
6458 }
6459
6460 /*
6461 * Avoid contributing to memory pressure.
6462 */
6463 if (arc_reclaim_needed()) {
6464 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6465 spa_config_exit(spa, SCL_L2ARC, dev);
6466 continue;
6467 }
6468
6469 ARCSTAT_BUMP(arcstat_l2_feeds);
6470
6471 size = l2arc_write_size();
6472
6473 /*
6474 * Evict L2ARC buffers that will be overwritten.
6475 */
6476 l2arc_evict(dev, size, B_FALSE);
6477
6478 /*
6479 * Write ARC buffers.
6480 */
6481 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
6482
6483 /*
6484 * Calculate interval between writes.
6485 */
6486 next = l2arc_write_interval(begin, size, wrote);
6487 spa_config_exit(spa, SCL_L2ARC, dev);
6488 }
6489
6490 l2arc_thread_exit = 0;
6491 cv_broadcast(&l2arc_feed_thr_cv);
6492 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
6493 thread_exit();
6494 }
6495
6496 boolean_t
l2arc_vdev_present(vdev_t * vd)6497 l2arc_vdev_present(vdev_t *vd)
6498 {
6499 l2arc_dev_t *dev;
6500
6501 mutex_enter(&l2arc_dev_mtx);
6502 for (dev = list_head(l2arc_dev_list); dev != NULL;
6503 dev = list_next(l2arc_dev_list, dev)) {
6504 if (dev->l2ad_vdev == vd)
6505 break;
6506 }
6507 mutex_exit(&l2arc_dev_mtx);
6508
6509 return (dev != NULL);
6510 }
6511
6512 /*
6513 * Add a vdev for use by the L2ARC. By this point the spa has already
6514 * validated the vdev and opened it.
6515 */
6516 void
l2arc_add_vdev(spa_t * spa,vdev_t * vd)6517 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
6518 {
6519 l2arc_dev_t *adddev;
6520
6521 ASSERT(!l2arc_vdev_present(vd));
6522
6523 /*
6524 * Create a new l2arc device entry.
6525 */
6526 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
6527 adddev->l2ad_spa = spa;
6528 adddev->l2ad_vdev = vd;
6529 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
6530 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
6531 adddev->l2ad_hand = adddev->l2ad_start;
6532 adddev->l2ad_first = B_TRUE;
6533 adddev->l2ad_writing = B_FALSE;
6534
6535 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
6536 /*
6537 * This is a list of all ARC buffers that are still valid on the
6538 * device.
6539 */
6540 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
6541 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
6542
6543 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
6544 refcount_create(&adddev->l2ad_alloc);
6545
6546 /*
6547 * Add device to global list
6548 */
6549 mutex_enter(&l2arc_dev_mtx);
6550 list_insert_head(l2arc_dev_list, adddev);
6551 atomic_inc_64(&l2arc_ndev);
6552 mutex_exit(&l2arc_dev_mtx);
6553 }
6554
6555 /*
6556 * Remove a vdev from the L2ARC.
6557 */
6558 void
l2arc_remove_vdev(vdev_t * vd)6559 l2arc_remove_vdev(vdev_t *vd)
6560 {
6561 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
6562
6563 /*
6564 * Find the device by vdev
6565 */
6566 mutex_enter(&l2arc_dev_mtx);
6567 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
6568 nextdev = list_next(l2arc_dev_list, dev);
6569 if (vd == dev->l2ad_vdev) {
6570 remdev = dev;
6571 break;
6572 }
6573 }
6574 ASSERT(remdev != NULL);
6575
6576 /*
6577 * Remove device from global list
6578 */
6579 list_remove(l2arc_dev_list, remdev);
6580 l2arc_dev_last = NULL; /* may have been invalidated */
6581 atomic_dec_64(&l2arc_ndev);
6582 mutex_exit(&l2arc_dev_mtx);
6583
6584 /*
6585 * Clear all buflists and ARC references. L2ARC device flush.
6586 */
6587 l2arc_evict(remdev, 0, B_TRUE);
6588 list_destroy(&remdev->l2ad_buflist);
6589 mutex_destroy(&remdev->l2ad_mtx);
6590 refcount_destroy(&remdev->l2ad_alloc);
6591 kmem_free(remdev, sizeof (l2arc_dev_t));
6592 }
6593
6594 void
l2arc_init(void)6595 l2arc_init(void)
6596 {
6597 l2arc_thread_exit = 0;
6598 l2arc_ndev = 0;
6599 l2arc_writes_sent = 0;
6600 l2arc_writes_done = 0;
6601
6602 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
6603 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
6604 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
6605 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
6606
6607 l2arc_dev_list = &L2ARC_dev_list;
6608 l2arc_free_on_write = &L2ARC_free_on_write;
6609 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
6610 offsetof(l2arc_dev_t, l2ad_node));
6611 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
6612 offsetof(l2arc_data_free_t, l2df_list_node));
6613 }
6614
6615 void
l2arc_fini(void)6616 l2arc_fini(void)
6617 {
6618 /*
6619 * This is called from dmu_fini(), which is called from spa_fini();
6620 * Because of this, we can assume that all l2arc devices have
6621 * already been removed when the pools themselves were removed.
6622 */
6623
6624 l2arc_do_free_on_write();
6625
6626 mutex_destroy(&l2arc_feed_thr_lock);
6627 cv_destroy(&l2arc_feed_thr_cv);
6628 mutex_destroy(&l2arc_dev_mtx);
6629 mutex_destroy(&l2arc_free_on_write_mtx);
6630
6631 list_destroy(l2arc_dev_list);
6632 list_destroy(l2arc_free_on_write);
6633 }
6634
6635 void
l2arc_start(void)6636 l2arc_start(void)
6637 {
6638 if (!(spa_mode_global & FWRITE))
6639 return;
6640
6641 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
6642 TS_RUN, minclsyspri);
6643 }
6644
6645 void
l2arc_stop(void)6646 l2arc_stop(void)
6647 {
6648 if (!(spa_mode_global & FWRITE))
6649 return;
6650
6651 mutex_enter(&l2arc_feed_thr_lock);
6652 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
6653 l2arc_thread_exit = 1;
6654 while (l2arc_thread_exit != 0)
6655 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
6656 mutex_exit(&l2arc_feed_thr_lock);
6657 }
6658
6659 /*
6660 * dump arc cache to user mode for debugging purposes
6661 */
6662 static void
arc_dump_entry(arc_buf_hdr_t * entry,arc_info_t * outp)6663 arc_dump_entry(arc_buf_hdr_t *entry, arc_info_t *outp)
6664 {
6665 outp->ai_dva = entry->b_dva;
6666 outp->ai_birth = entry->b_birth;
6667 outp->ai_flags = entry->b_flags;
6668 outp->ai_spa = entry->b_spa;
6669 outp->ai_size = entry->b_size;
6670 if (HDR_HAS_L1HDR(entry)) {
6671 arc_state_t *state = entry->b_l1hdr.b_state;
6672 if (state == arc_anon)
6673 outp->ai_state = AIS_ANON;
6674 else if (state == arc_mru)
6675 outp->ai_state = AIS_MRU;
6676 else if (state == arc_mru_ghost)
6677 outp->ai_state = AIS_MRU_GHOST;
6678 else if (state == arc_mfu)
6679 outp->ai_state = AIS_MFU;
6680 else if (state == arc_mfu_ghost)
6681 outp->ai_state = AIS_MFU_GHOST;
6682 else if (state == arc_l2c_only)
6683 outp->ai_state = AIS_L2C_ONLY;
6684 else
6685 outp->ai_state = AIS_UNKNOWN;
6686 } else {
6687 outp->ai_state = AIS_NO_L1HDR;
6688 }
6689 }
6690
6691 int
arc_dump(int start_bucket,void * buf,size_t bufsize,size_t * returned_bytes)6692 arc_dump(int start_bucket, void *buf, size_t bufsize, size_t *returned_bytes)
6693 {
6694 int i;
6695 arc_info_t *outp = buf + sizeof(arc_info_hdr_t);
6696 arc_info_t *maxp = buf + bufsize;
6697 arc_info_hdr_t *aih = buf;
6698 size_t nbuckets = buf_hash_table.ht_mask + 1;
6699 size_t bph = nbuckets / BUF_LOCKS; /* buckets per hash */
6700 kmutex_t *last_lock = NULL;
6701
6702 if (bufsize < sizeof(arc_info_hdr_t))
6703 return (ENOMEM);
6704
6705 aih->aih_buckets = nbuckets;
6706 aih->aih_buf_locks = BUF_LOCKS;
6707
6708 ASSERT(start_bucket >= 0);
6709 ASSERT(start_bucket < nbuckets);
6710
6711 for (i = start_bucket; i < nbuckets; ++i) {
6712 kmutex_t *hash_lock;
6713 arc_buf_hdr_t *entry;
6714 arc_info_t *dryrun = outp;
6715 int bucket;
6716
6717 /*
6718 * transform index. We want to enumerate the buckets in an
6719 * order that allows us to keep the mutex as long as possible
6720 */
6721 bucket = (i / bph) + (i % bph) * BUF_LOCKS;
6722
6723 hash_lock = BUF_HASH_LOCK(bucket);
6724 if (hash_lock != last_lock) {
6725 if (last_lock)
6726 mutex_exit(last_lock);
6727 mutex_enter(hash_lock);
6728 }
6729 last_lock = hash_lock;
6730 /* count entries to see if they will fit */
6731 entry = buf_hash_table.ht_table[bucket];
6732 while (entry != NULL) {
6733 ++dryrun;
6734 entry = entry->b_hash_next;
6735 }
6736 if (dryrun > maxp) {
6737 break;
6738 }
6739 /* actually copy entries */
6740 entry = buf_hash_table.ht_table[bucket];
6741 while (entry != NULL) {
6742 arc_dump_entry(entry, outp);
6743 ++outp;
6744 entry = entry->b_hash_next;
6745 }
6746 }
6747 if (last_lock)
6748 mutex_exit(last_lock);
6749
6750 *returned_bytes = (void *)outp - buf;
6751 aih->aih_entries = (*returned_bytes - sizeof(*aih)) / sizeof(*outp);
6752
6753 if (i <= buf_hash_table.ht_mask)
6754 aih->aih_next = i;
6755 else
6756 aih->aih_next = 0;
6757
6758 return (0);
6759 }
6760