1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
25 * Copyright 2017 RackTop Systems.
26 * Copyright 2016 Nexenta Systems, Inc.
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 */
29
30 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
31 /* All Rights Reserved */
32
33 /*
34 * University Copyright- Copyright (c) 1982, 1986, 1988
35 * The Regents of the University of California
36 * All Rights Reserved
37 *
38 * University Acknowledgment- Portions of this document are derived from
39 * software developed by the University of California, Berkeley, and its
40 * contributors.
41 */
42
43 #include <sys/types.h>
44 #include <sys/t_lock.h>
45 #include <sys/param.h>
46 #include <sys/errno.h>
47 #include <sys/user.h>
48 #include <sys/fstyp.h>
49 #include <sys/kmem.h>
50 #include <sys/systm.h>
51 #include <sys/proc.h>
52 #include <sys/mount.h>
53 #include <sys/vfs.h>
54 #include <sys/vfs_opreg.h>
55 #include <sys/fem.h>
56 #include <sys/mntent.h>
57 #include <sys/stat.h>
58 #include <sys/statvfs.h>
59 #include <sys/statfs.h>
60 #include <sys/cred.h>
61 #include <sys/vnode.h>
62 #include <sys/rwstlock.h>
63 #include <sys/dnlc.h>
64 #include <sys/file.h>
65 #include <sys/time.h>
66 #include <sys/atomic.h>
67 #include <sys/cmn_err.h>
68 #include <sys/buf.h>
69 #include <sys/swap.h>
70 #include <sys/debug.h>
71 #include <sys/vnode.h>
72 #include <sys/modctl.h>
73 #include <sys/ddi.h>
74 #include <sys/pathname.h>
75 #include <sys/bootconf.h>
76 #include <sys/dumphdr.h>
77 #include <sys/dc_ki.h>
78 #include <sys/poll.h>
79 #include <sys/sunddi.h>
80 #include <sys/sysmacros.h>
81 #include <sys/zone.h>
82 #include <sys/policy.h>
83 #include <sys/ctfs.h>
84 #include <sys/objfs.h>
85 #include <sys/console.h>
86 #include <sys/reboot.h>
87 #include <sys/attr.h>
88 #include <sys/zio.h>
89 #include <sys/spa.h>
90 #include <sys/lofi.h>
91 #include <sys/bootprops.h>
92 #include <sys/avl.h>
93
94 #include <vm/page.h>
95
96 #include <fs/fs_subr.h>
97 /* Private interfaces to create vopstats-related data structures */
98 extern void initialize_vopstats(vopstats_t *);
99 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *);
100 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *);
101
102 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
103 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
104 const char *, int, int);
105 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
106 static void vfs_freemnttab(struct vfs *);
107 static void vfs_freeopt(mntopt_t *);
108 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
109 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
110 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
111 static void vfs_createopttbl_extend(mntopts_t *, const char *,
112 const mntopts_t *);
113 static char **vfs_copycancelopt_extend(char **const, int);
114 static void vfs_freecancelopt(char **);
115 static void getrootfs(char **, char **);
116 static int getmacpath(dev_info_t *, void *);
117 static void vfs_mnttabvp_setup(void);
118
119 struct ipmnt {
120 struct ipmnt *mip_next;
121 dev_t mip_dev;
122 struct vfs *mip_vfsp;
123 };
124
125 static kmutex_t vfs_miplist_mutex;
126 static struct ipmnt *vfs_miplist = NULL;
127 static struct ipmnt *vfs_miplist_end = NULL;
128
129 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */
130
131 /*
132 * VFS global data.
133 */
134 vnode_t *rootdir; /* pointer to root inode vnode. */
135 vnode_t *devicesdir; /* pointer to inode of devices root */
136 vnode_t *devdir; /* pointer to inode of dev root */
137
138 char *server_rootpath; /* root path for diskless clients */
139 char *server_hostname; /* hostname of diskless server */
140
141 static struct vfs root;
142 static struct vfs devices;
143 static struct vfs dev;
144 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */
145 avl_tree_t vfs_by_dev; /* avl tree to index mounted VFSs by dev */
146 avl_tree_t vfs_by_mntpnt; /* avl tree to index mounted VFSs by mntpnt */
147 uint64_t vfs_curr_mntix; /* counter to provide a unique mntix for
148 * entries in the above avl trees.
149 * protected by vfslist lock */
150 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */
151 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */
152 /* must be power of 2! */
153 timespec_t vfs_mnttab_ctime; /* mnttab created time */
154 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */
155 char *vfs_dummyfstype = "\0";
156 struct pollhead vfs_pollhd; /* for mnttab pollers */
157 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */
158 int mntfstype; /* will be set once mnt fs is mounted */
159
160 /*
161 * Table for generic options recognized in the VFS layer and acted
162 * on at this level before parsing file system specific options.
163 * The nosuid option is stronger than any of the devices and setuid
164 * options, so those are canceled when nosuid is seen.
165 *
166 * All options which are added here need to be added to the
167 * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
168 */
169 /*
170 * VFS Mount options table
171 */
172 static char *ro_cancel[] = { MNTOPT_RW, NULL };
173 static char *rw_cancel[] = { MNTOPT_RO, NULL };
174 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
175 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
176 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
177 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
178 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
179 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
180 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
181 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
182 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
183 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
184 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
185 static char *follow_cancel[] = { MNTOPT_NOFOLLOW, NULL };
186 static char *nofollow_cancel[] = { MNTOPT_FOLLOW, NULL };
187
188 static const mntopt_t mntopts[] = {
189 /*
190 * option name cancel options default arg flags
191 */
192 { MNTOPT_REMOUNT, NULL, NULL,
193 MO_NODISPLAY, (void *)0 },
194 { MNTOPT_RO, ro_cancel, NULL, 0,
195 (void *)0 },
196 { MNTOPT_RW, rw_cancel, NULL, 0,
197 (void *)0 },
198 { MNTOPT_SUID, suid_cancel, NULL, 0,
199 (void *)0 },
200 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0,
201 (void *)0 },
202 { MNTOPT_DEVICES, devices_cancel, NULL, 0,
203 (void *)0 },
204 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0,
205 (void *)0 },
206 { MNTOPT_SETUID, setuid_cancel, NULL, 0,
207 (void *)0 },
208 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0,
209 (void *)0 },
210 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0,
211 (void *)0 },
212 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0,
213 (void *)0 },
214 { MNTOPT_EXEC, exec_cancel, NULL, 0,
215 (void *)0 },
216 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0,
217 (void *)0 },
218 { MNTOPT_FOLLOW, follow_cancel, NULL, 0,
219 (void *)0 },
220 { MNTOPT_NOFOLLOW, nofollow_cancel, NULL, 0,
221 (void *)0 },
222 };
223
224 const mntopts_t vfs_mntopts = {
225 sizeof (mntopts) / sizeof (mntopt_t),
226 (mntopt_t *)&mntopts[0]
227 };
228
229 /*
230 * File system operation dispatch functions.
231 */
232
233 int
fsop_mount(vfs_t * vfsp,vnode_t * mvp,struct mounta * uap,cred_t * cr)234 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
235 {
236 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
237 }
238
239 int
fsop_unmount(vfs_t * vfsp,int flag,cred_t * cr)240 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
241 {
242 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
243 }
244
245 int
fsop_root(vfs_t * vfsp,vnode_t ** vpp)246 fsop_root(vfs_t *vfsp, vnode_t **vpp)
247 {
248 refstr_t *mntpt;
249 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
250 /*
251 * Make sure this root has a path. With lofs, it is possible to have
252 * a NULL mountpoint.
253 */
254 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
255 mntpt = vfs_getmntpoint(vfsp);
256 vn_setpath_str(*vpp, refstr_value(mntpt),
257 strlen(refstr_value(mntpt)));
258 refstr_rele(mntpt);
259 }
260
261 return (ret);
262 }
263
264 int
fsop_statfs(vfs_t * vfsp,statvfs64_t * sp)265 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
266 {
267 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
268 }
269
270 int
fsop_sync(vfs_t * vfsp,short flag,cred_t * cr)271 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
272 {
273 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
274 }
275
276 int
fsop_vget(vfs_t * vfsp,vnode_t ** vpp,fid_t * fidp)277 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
278 {
279 /*
280 * In order to handle system attribute fids in a manner
281 * transparent to the underlying fs, we embed the fid for
282 * the sysattr parent object in the sysattr fid and tack on
283 * some extra bytes that only the sysattr layer knows about.
284 *
285 * This guarantees that sysattr fids are larger than other fids
286 * for this vfs. If the vfs supports the sysattr view interface
287 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
288 * collision with XATTR_FIDSZ.
289 */
290 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
291 fidp->fid_len == XATTR_FIDSZ)
292 return (xattr_dir_vget(vfsp, vpp, fidp));
293
294 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
295 }
296
297 int
fsop_mountroot(vfs_t * vfsp,enum whymountroot reason)298 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
299 {
300 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
301 }
302
303 void
fsop_freefs(vfs_t * vfsp)304 fsop_freefs(vfs_t *vfsp)
305 {
306 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
307 }
308
309 int
fsop_vnstate(vfs_t * vfsp,vnode_t * vp,vntrans_t nstate)310 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
311 {
312 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
313 }
314
315 int
fsop_sync_by_kind(int fstype,short flag,cred_t * cr)316 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
317 {
318 ASSERT((fstype >= 0) && (fstype < nfstype));
319
320 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
321 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
322 else
323 return (ENOTSUP);
324 }
325
326 /*
327 * File system initialization. vfs_setfsops() must be called from a file
328 * system's init routine.
329 */
330
331 static int
fs_copyfsops(const fs_operation_def_t * template,vfsops_t * actual,int * unused_ops)332 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
333 int *unused_ops)
334 {
335 static const fs_operation_trans_def_t vfs_ops_table[] = {
336 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
337 fs_nosys, fs_nosys,
338
339 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
340 fs_nosys, fs_nosys,
341
342 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
343 fs_nosys, fs_nosys,
344
345 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
346 fs_nosys, fs_nosys,
347
348 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
349 (fs_generic_func_p) fs_sync,
350 (fs_generic_func_p) fs_sync, /* No errors allowed */
351
352 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
353 fs_nosys, fs_nosys,
354
355 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
356 fs_nosys, fs_nosys,
357
358 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
359 (fs_generic_func_p)fs_freevfs,
360 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */
361
362 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
363 (fs_generic_func_p)fs_nosys,
364 (fs_generic_func_p)fs_nosys,
365
366 NULL, 0, NULL, NULL
367 };
368
369 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
370 }
371
372 void
zfs_boot_init(void)373 zfs_boot_init(void)
374 {
375 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
376 spa_boot_init();
377 }
378
379 int
vfs_setfsops(int fstype,const fs_operation_def_t * template,vfsops_t ** actual)380 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
381 {
382 int error;
383 int unused_ops;
384
385 /*
386 * Verify that fstype refers to a valid fs. Note that
387 * 0 is valid since it's used to set "stray" ops.
388 */
389 if ((fstype < 0) || (fstype >= nfstype))
390 return (EINVAL);
391
392 if (!ALLOCATED_VFSSW(&vfssw[fstype]))
393 return (EINVAL);
394
395 /* Set up the operations vector. */
396
397 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
398
399 if (error != 0)
400 return (error);
401
402 vfssw[fstype].vsw_flag |= VSW_INSTALLED;
403
404 if (actual != NULL)
405 *actual = &vfssw[fstype].vsw_vfsops;
406
407 #if DEBUG
408 if (unused_ops != 0)
409 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
410 "but not used", vfssw[fstype].vsw_name, unused_ops);
411 #endif
412
413 return (0);
414 }
415
416 int
vfs_makefsops(const fs_operation_def_t * template,vfsops_t ** actual)417 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
418 {
419 int error;
420 int unused_ops;
421
422 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
423
424 error = fs_copyfsops(template, *actual, &unused_ops);
425 if (error != 0) {
426 kmem_free(*actual, sizeof (vfsops_t));
427 *actual = NULL;
428 return (error);
429 }
430
431 return (0);
432 }
433
434 /*
435 * Free a vfsops structure created as a result of vfs_makefsops().
436 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
437 * vfs_freevfsops_by_type().
438 */
439 void
vfs_freevfsops(vfsops_t * vfsops)440 vfs_freevfsops(vfsops_t *vfsops)
441 {
442 kmem_free(vfsops, sizeof (vfsops_t));
443 }
444
445 /*
446 * Since the vfsops structure is part of the vfssw table and wasn't
447 * really allocated, we're not really freeing anything. We keep
448 * the name for consistency with vfs_freevfsops(). We do, however,
449 * need to take care of a little bookkeeping.
450 * NOTE: For a vfsops structure created by vfs_setfsops(), use
451 * vfs_freevfsops_by_type().
452 */
453 int
vfs_freevfsops_by_type(int fstype)454 vfs_freevfsops_by_type(int fstype)
455 {
456
457 /* Verify that fstype refers to a loaded fs (and not fsid 0). */
458 if ((fstype <= 0) || (fstype >= nfstype))
459 return (EINVAL);
460
461 WLOCK_VFSSW();
462 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
463 WUNLOCK_VFSSW();
464 return (EINVAL);
465 }
466
467 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
468 WUNLOCK_VFSSW();
469
470 return (0);
471 }
472
473 /* Support routines used to reference vfs_op */
474
475 /* Set the operations vector for a vfs */
476 void
vfs_setops(vfs_t * vfsp,vfsops_t * vfsops)477 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
478 {
479 vfsops_t *op;
480
481 ASSERT(vfsp != NULL);
482 ASSERT(vfsops != NULL);
483
484 op = vfsp->vfs_op;
485 membar_consumer();
486 if (vfsp->vfs_femhead == NULL &&
487 atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
488 return;
489 }
490 fsem_setvfsops(vfsp, vfsops);
491 }
492
493 /* Retrieve the operations vector for a vfs */
494 vfsops_t *
vfs_getops(vfs_t * vfsp)495 vfs_getops(vfs_t *vfsp)
496 {
497 vfsops_t *op;
498
499 ASSERT(vfsp != NULL);
500
501 op = vfsp->vfs_op;
502 membar_consumer();
503 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
504 return (op);
505 } else {
506 return (fsem_getvfsops(vfsp));
507 }
508 }
509
510 /*
511 * Returns non-zero (1) if the vfsops matches that of the vfs.
512 * Returns zero (0) if not.
513 */
514 int
vfs_matchops(vfs_t * vfsp,vfsops_t * vfsops)515 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
516 {
517 return (vfs_getops(vfsp) == vfsops);
518 }
519
520 /*
521 * Returns non-zero (1) if the file system has installed a non-default,
522 * non-error vfs_sync routine. Returns zero (0) otherwise.
523 */
524 int
vfs_can_sync(vfs_t * vfsp)525 vfs_can_sync(vfs_t *vfsp)
526 {
527 /* vfs_sync() routine is not the default/error function */
528 return (vfs_getops(vfsp)->vfs_sync != fs_sync);
529 }
530
531 /*
532 * Initialize a vfs structure.
533 */
534 void
vfs_init(vfs_t * vfsp,vfsops_t * op,void * data)535 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
536 {
537 /* Other initialization has been moved to vfs_alloc() */
538 vfsp->vfs_count = 0;
539 vfsp->vfs_next = vfsp;
540 vfsp->vfs_prev = vfsp;
541 vfsp->vfs_zone_next = vfsp;
542 vfsp->vfs_zone_prev = vfsp;
543 vfsp->vfs_lofi_id = 0;
544 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
545 vfsimpl_setup(vfsp);
546 vfsp->vfs_data = (data);
547 vfs_setops((vfsp), (op));
548 }
549
550 /*
551 * Allocate and initialize the vfs implementation private data
552 * structure, vfs_impl_t.
553 */
554 void
vfsimpl_setup(vfs_t * vfsp)555 vfsimpl_setup(vfs_t *vfsp)
556 {
557 int i;
558
559 if (vfsp->vfs_implp != NULL) {
560 return;
561 }
562
563 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
564 /* Note that these are #define'd in vfs.h */
565 vfsp->vfs_vskap = NULL;
566 vfsp->vfs_fstypevsp = NULL;
567
568 /* Set size of counted array, then zero the array */
569 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
570 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) {
571 vfsp->vfs_featureset[i] = 0;
572 }
573 }
574
575 /*
576 * Release the vfs_impl_t structure, if it exists. Some unbundled
577 * filesystems may not use the newer version of vfs and thus
578 * would not contain this implementation private data structure.
579 */
580 void
vfsimpl_teardown(vfs_t * vfsp)581 vfsimpl_teardown(vfs_t *vfsp)
582 {
583 vfs_impl_t *vip = vfsp->vfs_implp;
584
585 if (vip == NULL)
586 return;
587
588 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
589 vfsp->vfs_implp = NULL;
590 }
591
592 /*
593 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
594 * fstatvfs, and sysfs moved to common/syscall.
595 */
596
597 /*
598 * Update every mounted file system. We call the vfs_sync operation of
599 * each file system type, passing it a NULL vfsp to indicate that all
600 * mounted file systems of that type should be updated.
601 */
602 void
vfs_sync(int flag)603 vfs_sync(int flag)
604 {
605 struct vfssw *vswp;
606 RLOCK_VFSSW();
607 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
608 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
609 vfs_refvfssw(vswp);
610 RUNLOCK_VFSSW();
611 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
612 CRED());
613 vfs_unrefvfssw(vswp);
614 RLOCK_VFSSW();
615 }
616 }
617 RUNLOCK_VFSSW();
618 }
619
620 void
sync(void)621 sync(void)
622 {
623 vfs_sync(0);
624 }
625
626 /*
627 * compare function for vfs_by_dev avl tree. compare dev first, then mntix
628 */
629 static int
vfs_cmp_dev(const void * aa,const void * bb)630 vfs_cmp_dev(const void *aa, const void *bb)
631 {
632 const vfs_t *a = aa;
633 const vfs_t *b = bb;
634
635 if (a->vfs_dev < b->vfs_dev)
636 return (-1);
637 if (a->vfs_dev > b->vfs_dev)
638 return (1);
639 if (a->vfs_mntix < b->vfs_mntix)
640 return (-1);
641 if (a->vfs_mntix > b->vfs_mntix)
642 return (1);
643 return (0);
644 }
645
646 /*
647 * compare function for vfs_by_mntpnt avl tree. compare mntpnt first, then mntix
648 */
649 static int
vfs_cmp_mntpnt(const void * aa,const void * bb)650 vfs_cmp_mntpnt(const void *aa, const void *bb)
651 {
652 const vfs_t *a = aa;
653 const vfs_t *b = bb;
654 int ret;
655
656 ret = strcmp(refstr_value(a->vfs_mntpt), refstr_value(b->vfs_mntpt));
657 if (ret < 0)
658 return (-1);
659 if (ret > 0)
660 return (1);
661 if (a->vfs_mntix < b->vfs_mntix)
662 return (-1);
663 if (a->vfs_mntix > b->vfs_mntix)
664 return (1);
665 return (0);
666 }
667
668 /*
669 * External routines.
670 */
671
672 krwlock_t vfssw_lock; /* lock accesses to vfssw */
673
674 /*
675 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(),
676 * but otherwise should be accessed only via vfs_list_lock() and
677 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list.
678 */
679 static krwlock_t vfslist;
680
681 /*
682 * Mount devfs on /devices. This is done right after root is mounted
683 * to provide device access support for the system
684 */
685 static void
vfs_mountdevices(void)686 vfs_mountdevices(void)
687 {
688 struct vfssw *vsw;
689 struct vnode *mvp;
690 struct mounta mounta = { /* fake mounta for devfs_mount() */
691 NULL,
692 NULL,
693 MS_SYSSPACE,
694 NULL,
695 NULL,
696 0,
697 NULL,
698 0
699 };
700
701 /*
702 * _init devfs module to fill in the vfssw
703 */
704 if (modload("fs", "devfs") == -1)
705 panic("Cannot _init devfs module");
706
707 /*
708 * Hold vfs
709 */
710 RLOCK_VFSSW();
711 vsw = vfs_getvfsswbyname("devfs");
712 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
713 VFS_HOLD(&devices);
714
715 /*
716 * Locate mount point
717 */
718 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
719 panic("Cannot find /devices");
720
721 /*
722 * Perform the mount of /devices
723 */
724 if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
725 panic("Cannot mount /devices");
726
727 RUNLOCK_VFSSW();
728
729 /*
730 * Set appropriate members and add to vfs list for mnttab display
731 */
732 vfs_setresource(&devices, "/devices", 0);
733 vfs_setmntpoint(&devices, "/devices", 0);
734
735 /*
736 * Hold the root of /devices so it won't go away
737 */
738 if (VFS_ROOT(&devices, &devicesdir))
739 panic("vfs_mountdevices: not devices root");
740
741 if (vfs_lock(&devices) != 0) {
742 VN_RELE(devicesdir);
743 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
744 return;
745 }
746
747 if (vn_vfswlock(mvp) != 0) {
748 vfs_unlock(&devices);
749 VN_RELE(devicesdir);
750 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
751 return;
752 }
753
754 vfs_add(mvp, &devices, 0);
755 vn_vfsunlock(mvp);
756 vfs_unlock(&devices);
757 VN_RELE(devicesdir);
758 }
759
760 /*
761 * mount the first instance of /dev to root and remain mounted
762 */
763 static void
vfs_mountdev1(void)764 vfs_mountdev1(void)
765 {
766 struct vfssw *vsw;
767 struct vnode *mvp;
768 struct mounta mounta = { /* fake mounta for sdev_mount() */
769 NULL,
770 NULL,
771 MS_SYSSPACE | MS_OVERLAY,
772 NULL,
773 NULL,
774 0,
775 NULL,
776 0
777 };
778
779 /*
780 * _init dev module to fill in the vfssw
781 */
782 if (modload("fs", "dev") == -1)
783 cmn_err(CE_PANIC, "Cannot _init dev module\n");
784
785 /*
786 * Hold vfs
787 */
788 RLOCK_VFSSW();
789 vsw = vfs_getvfsswbyname("dev");
790 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
791 VFS_HOLD(&dev);
792
793 /*
794 * Locate mount point
795 */
796 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
797 cmn_err(CE_PANIC, "Cannot find /dev\n");
798
799 /*
800 * Perform the mount of /dev
801 */
802 if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
803 cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
804
805 RUNLOCK_VFSSW();
806
807 /*
808 * Set appropriate members and add to vfs list for mnttab display
809 */
810 vfs_setresource(&dev, "/dev", 0);
811 vfs_setmntpoint(&dev, "/dev", 0);
812
813 /*
814 * Hold the root of /dev so it won't go away
815 */
816 if (VFS_ROOT(&dev, &devdir))
817 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
818
819 if (vfs_lock(&dev) != 0) {
820 VN_RELE(devdir);
821 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
822 return;
823 }
824
825 if (vn_vfswlock(mvp) != 0) {
826 vfs_unlock(&dev);
827 VN_RELE(devdir);
828 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
829 return;
830 }
831
832 vfs_add(mvp, &dev, 0);
833 vn_vfsunlock(mvp);
834 vfs_unlock(&dev);
835 VN_RELE(devdir);
836 }
837
838 /*
839 * Mount required filesystem. This is done right after root is mounted.
840 */
841 static void
vfs_mountfs(char * module,char * spec,char * path)842 vfs_mountfs(char *module, char *spec, char *path)
843 {
844 struct vnode *mvp;
845 struct mounta mounta;
846 vfs_t *vfsp;
847
848 bzero(&mounta, sizeof (mounta));
849 mounta.flags = MS_SYSSPACE | MS_DATA;
850 mounta.fstype = module;
851 mounta.spec = spec;
852 mounta.dir = path;
853 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
854 cmn_err(CE_WARN, "Cannot find %s", path);
855 return;
856 }
857 if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
858 cmn_err(CE_WARN, "Cannot mount %s", path);
859 else
860 VFS_RELE(vfsp);
861 VN_RELE(mvp);
862 }
863
864 /*
865 * vfs_mountroot is called by main() to mount the root filesystem.
866 */
867 void
vfs_mountroot(void)868 vfs_mountroot(void)
869 {
870 struct vnode *rvp = NULL;
871 char *path;
872 size_t plen;
873 struct vfssw *vswp;
874 proc_t *p;
875
876 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
877 rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
878
879 /*
880 * Alloc the avl trees for quick indexing via dev and mountpoint
881 */
882 avl_create(&vfs_by_dev, vfs_cmp_dev, sizeof(vfs_t),
883 offsetof(vfs_t, vfs_avldev));
884 avl_create(&vfs_by_mntpnt, vfs_cmp_mntpnt, sizeof(vfs_t),
885 offsetof(vfs_t, vfs_avlmntpnt));
886
887 /*
888 * Alloc the vfs hash bucket array and locks
889 */
890 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
891
892 /*
893 * Call machine-dependent routine "rootconf" to choose a root
894 * file system type.
895 */
896 if (rootconf())
897 panic("vfs_mountroot: cannot mount root");
898 /*
899 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir
900 * to point to it. These are used by lookuppn() so that it
901 * knows where to start from ('/' or '.').
902 */
903 vfs_setmntpoint(rootvfs, "/", 0);
904 if (VFS_ROOT(rootvfs, &rootdir))
905 panic("vfs_mountroot: no root vnode");
906
907 /*
908 * At this point, the process tree consists of p0 and possibly some
909 * direct children of p0. (i.e. there are no grandchildren)
910 *
911 * Walk through them all, setting their current directory.
912 */
913 mutex_enter(&pidlock);
914 for (p = practive; p != NULL; p = p->p_next) {
915 ASSERT(p == &p0 || p->p_parent == &p0);
916
917 PTOU(p)->u_cdir = rootdir;
918 VN_HOLD(PTOU(p)->u_cdir);
919 PTOU(p)->u_rdir = NULL;
920 }
921 mutex_exit(&pidlock);
922
923 /*
924 * Setup the global zone's rootvp, now that it exists.
925 */
926 global_zone->zone_rootvp = rootdir;
927 VN_HOLD(global_zone->zone_rootvp);
928
929 /*
930 * Notify the module code that it can begin using the
931 * root filesystem instead of the boot program's services.
932 */
933 modrootloaded = 1;
934
935 /*
936 * Special handling for a ZFS root file system.
937 */
938 zfs_boot_init();
939
940 /*
941 * Set up mnttab information for root
942 */
943 vfs_setresource(rootvfs, rootfs.bo_name, 0);
944
945 /*
946 * Notify cluster software that the root filesystem is available.
947 */
948 clboot_mountroot();
949
950 /* Now that we're all done with the root FS, set up its vopstats */
951 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
952 /* Set flag for statistics collection */
953 if (vswp->vsw_flag & VSW_STATS) {
954 initialize_vopstats(&rootvfs->vfs_vopstats);
955 rootvfs->vfs_flag |= VFS_STATS;
956 rootvfs->vfs_fstypevsp =
957 get_fstype_vopstats(rootvfs, vswp);
958 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
959 }
960 vfs_unrefvfssw(vswp);
961 }
962
963 /*
964 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
965 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
966 */
967 vfs_mountdevices();
968 vfs_mountdev1();
969
970 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
971 vfs_mountfs("proc", "/proc", "/proc");
972 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
973 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
974 vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
975 vfs_mountfs("bootfs", "bootfs", "/system/boot");
976
977 if (getzoneid() == GLOBAL_ZONEID) {
978 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
979 }
980
981 if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
982 /*
983 * Look up the root device via devfs so that a dv_node is
984 * created for it. The vnode is never VN_RELE()ed.
985 * We allocate more than MAXPATHLEN so that the
986 * buffer passed to i_ddi_prompath_to_devfspath() is
987 * exactly MAXPATHLEN (the function expects a buffer
988 * of that length).
989 */
990 plen = strlen("/devices");
991 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
992 (void) strcpy(path, "/devices");
993
994 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
995 != DDI_SUCCESS ||
996 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
997
998 /* NUL terminate in case "path" has garbage */
999 path[plen + MAXPATHLEN - 1] = '\0';
1000 #ifdef DEBUG
1001 cmn_err(CE_WARN, "!Cannot lookup root device: %s",
1002 path);
1003 #endif
1004 }
1005 kmem_free(path, plen + MAXPATHLEN);
1006 }
1007
1008 vfs_mnttabvp_setup();
1009 }
1010
1011 /*
1012 * Check to see if our "block device" is actually a file. If so,
1013 * automatically add a lofi device, and keep track of this fact.
1014 */
1015 static int
lofi_add(const char * fsname,struct vfs * vfsp,mntopts_t * mntopts,struct mounta * uap)1016 lofi_add(const char *fsname, struct vfs *vfsp,
1017 mntopts_t *mntopts, struct mounta *uap)
1018 {
1019 int fromspace = (uap->flags & MS_SYSSPACE) ?
1020 UIO_SYSSPACE : UIO_USERSPACE;
1021 struct lofi_ioctl *li = NULL;
1022 struct vnode *vp = NULL;
1023 struct pathname pn = { NULL };
1024 ldi_ident_t ldi_id;
1025 ldi_handle_t ldi_hdl;
1026 vfssw_t *vfssw;
1027 int id;
1028 int err = 0;
1029
1030 if ((vfssw = vfs_getvfssw(fsname)) == NULL)
1031 return (0);
1032
1033 if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
1034 vfs_unrefvfssw(vfssw);
1035 return (0);
1036 }
1037
1038 vfs_unrefvfssw(vfssw);
1039 vfssw = NULL;
1040
1041 if (pn_get(uap->spec, fromspace, &pn) != 0)
1042 return (0);
1043
1044 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
1045 goto out;
1046
1047 if (vp->v_type != VREG)
1048 goto out;
1049
1050 /* OK, this is a lofi mount. */
1051
1052 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
1053 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
1054 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
1055 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
1056 err = EINVAL;
1057 goto out;
1058 }
1059
1060 ldi_id = ldi_ident_from_anon();
1061 li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1062 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1063
1064 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1065 &ldi_hdl, ldi_id);
1066
1067 if (err)
1068 goto out2;
1069
1070 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1071 FREAD | FWRITE | FKIOCTL, kcred, &id);
1072
1073 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1074
1075 if (!err)
1076 vfsp->vfs_lofi_id = id;
1077
1078 out2:
1079 ldi_ident_release(ldi_id);
1080 out:
1081 if (li != NULL)
1082 kmem_free(li, sizeof (*li));
1083 if (vp != NULL)
1084 VN_RELE(vp);
1085 pn_free(&pn);
1086 return (err);
1087 }
1088
1089 static void
lofi_remove(struct vfs * vfsp)1090 lofi_remove(struct vfs *vfsp)
1091 {
1092 struct lofi_ioctl *li = NULL;
1093 ldi_ident_t ldi_id;
1094 ldi_handle_t ldi_hdl;
1095 int err;
1096
1097 if (vfsp->vfs_lofi_id == 0)
1098 return;
1099
1100 ldi_id = ldi_ident_from_anon();
1101
1102 li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1103 li->li_id = vfsp->vfs_lofi_id;
1104 li->li_cleanup = B_TRUE;
1105
1106 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1107 &ldi_hdl, ldi_id);
1108
1109 if (err)
1110 goto out;
1111
1112 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1113 FREAD | FWRITE | FKIOCTL, kcred, NULL);
1114
1115 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1116
1117 if (!err)
1118 vfsp->vfs_lofi_id = 0;
1119
1120 out:
1121 ldi_ident_release(ldi_id);
1122 if (li != NULL)
1123 kmem_free(li, sizeof (*li));
1124 }
1125
1126 /*
1127 * Common mount code. Called from the system call entry point, from autofs,
1128 * nfsv4 trigger mounts, and from pxfs.
1129 *
1130 * Takes the effective file system type, mount arguments, the mount point
1131 * vnode, flags specifying whether the mount is a remount and whether it
1132 * should be entered into the vfs list, and credentials. Fills in its vfspp
1133 * parameter with the mounted file system instance's vfs.
1134 *
1135 * Note that the effective file system type is specified as a string. It may
1136 * be null, in which case it's determined from the mount arguments, and may
1137 * differ from the type specified in the mount arguments; this is a hook to
1138 * allow interposition when instantiating file system instances.
1139 *
1140 * The caller is responsible for releasing its own hold on the mount point
1141 * vp (this routine does its own hold when necessary).
1142 * Also note that for remounts, the mount point vp should be the vnode for
1143 * the root of the file system rather than the vnode that the file system
1144 * is mounted on top of.
1145 */
1146 int
domount(char * fsname,struct mounta * uap,vnode_t * vp,struct cred * credp,struct vfs ** vfspp)1147 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1148 struct vfs **vfspp)
1149 {
1150 struct vfssw *vswp;
1151 vfsops_t *vfsops;
1152 struct vfs *vfsp;
1153 struct vnode *bvp;
1154 dev_t bdev = 0;
1155 mntopts_t mnt_mntopts;
1156 int error = 0;
1157 int copyout_error = 0;
1158 int ovflags;
1159 char *opts = uap->optptr;
1160 char *inargs = opts;
1161 int optlen = uap->optlen;
1162 int remount;
1163 int rdonly;
1164 int nbmand = 0;
1165 int delmip = 0;
1166 int addmip = 0;
1167 int splice = ((uap->flags & MS_NOSPLICE) == 0);
1168 int fromspace = (uap->flags & MS_SYSSPACE) ?
1169 UIO_SYSSPACE : UIO_USERSPACE;
1170 char *resource = NULL, *mountpt = NULL;
1171 refstr_t *oldresource, *oldmntpt;
1172 struct pathname pn, rpn;
1173 vsk_anchor_t *vskap;
1174 char fstname[FSTYPSZ];
1175 zone_t *zone;
1176
1177 /*
1178 * The v_flag value for the mount point vp is permanently set
1179 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1180 * for mount point locking.
1181 */
1182 mutex_enter(&vp->v_lock);
1183 vp->v_flag |= VVFSLOCK;
1184 mutex_exit(&vp->v_lock);
1185
1186 mnt_mntopts.mo_count = 0;
1187 /*
1188 * Find the ops vector to use to invoke the file system-specific mount
1189 * method. If the fsname argument is non-NULL, use it directly.
1190 * Otherwise, dig the file system type information out of the mount
1191 * arguments.
1192 *
1193 * A side effect is to hold the vfssw entry.
1194 *
1195 * Mount arguments can be specified in several ways, which are
1196 * distinguished by flag bit settings. The preferred way is to set
1197 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1198 * type supplied as a character string and the last two arguments
1199 * being a pointer to a character buffer and the size of the buffer.
1200 * On entry, the buffer holds a null terminated list of options; on
1201 * return, the string is the list of options the file system
1202 * recognized. If MS_DATA is set arguments five and six point to a
1203 * block of binary data which the file system interprets.
1204 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1205 * consistently with these conventions. To handle them, we check to
1206 * see whether the pointer to the file system name has a numeric value
1207 * less than 256. If so, we treat it as an index.
1208 */
1209 if (fsname != NULL) {
1210 if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1211 return (EINVAL);
1212 }
1213 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1214 size_t n;
1215 uint_t fstype;
1216
1217 fsname = fstname;
1218
1219 if ((fstype = (uintptr_t)uap->fstype) < 256) {
1220 RLOCK_VFSSW();
1221 if (fstype == 0 || fstype >= nfstype ||
1222 !ALLOCATED_VFSSW(&vfssw[fstype])) {
1223 RUNLOCK_VFSSW();
1224 return (EINVAL);
1225 }
1226 (void) strcpy(fsname, vfssw[fstype].vsw_name);
1227 RUNLOCK_VFSSW();
1228 if ((vswp = vfs_getvfssw(fsname)) == NULL)
1229 return (EINVAL);
1230 } else {
1231 /*
1232 * Handle either kernel or user address space.
1233 */
1234 if (uap->flags & MS_SYSSPACE) {
1235 error = copystr(uap->fstype, fsname,
1236 FSTYPSZ, &n);
1237 } else {
1238 error = copyinstr(uap->fstype, fsname,
1239 FSTYPSZ, &n);
1240 }
1241 if (error) {
1242 if (error == ENAMETOOLONG)
1243 return (EINVAL);
1244 return (error);
1245 }
1246 if ((vswp = vfs_getvfssw(fsname)) == NULL)
1247 return (EINVAL);
1248 }
1249 } else {
1250 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1251 return (EINVAL);
1252 fsname = vswp->vsw_name;
1253 }
1254 if (!VFS_INSTALLED(vswp))
1255 return (EINVAL);
1256
1257 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) {
1258 vfs_unrefvfssw(vswp);
1259 return (error);
1260 }
1261
1262 vfsops = &vswp->vsw_vfsops;
1263
1264 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1265 /*
1266 * Fetch mount options and parse them for generic vfs options
1267 */
1268 if (uap->flags & MS_OPTIONSTR) {
1269 /*
1270 * Limit the buffer size
1271 */
1272 if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1273 error = EINVAL;
1274 goto errout;
1275 }
1276 if ((uap->flags & MS_SYSSPACE) == 0) {
1277 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1278 inargs[0] = '\0';
1279 if (optlen) {
1280 error = copyinstr(opts, inargs, (size_t)optlen,
1281 NULL);
1282 if (error) {
1283 goto errout;
1284 }
1285 }
1286 }
1287 vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1288 }
1289 /*
1290 * Flag bits override the options string.
1291 */
1292 if (uap->flags & MS_REMOUNT)
1293 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1294 if (uap->flags & MS_RDONLY)
1295 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1296 if (uap->flags & MS_NOSUID)
1297 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1298
1299 /*
1300 * Check if this is a remount; must be set in the option string and
1301 * the file system must support a remount option.
1302 */
1303 if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1304 MNTOPT_REMOUNT, NULL)) {
1305 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1306 error = ENOTSUP;
1307 goto errout;
1308 }
1309 uap->flags |= MS_REMOUNT;
1310 }
1311
1312 /*
1313 * uap->flags and vfs_optionisset() should agree.
1314 */
1315 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1316 uap->flags |= MS_RDONLY;
1317 }
1318 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1319 uap->flags |= MS_NOSUID;
1320 }
1321 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1322 ASSERT(splice || !remount);
1323 /*
1324 * If we are splicing the fs into the namespace,
1325 * perform mount point checks.
1326 *
1327 * We want to resolve the path for the mount point to eliminate
1328 * '.' and ".." and symlinks in mount points; we can't do the
1329 * same for the resource string, since it would turn
1330 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do
1331 * this before grabbing vn_vfswlock(), because otherwise we
1332 * would deadlock with lookuppn().
1333 */
1334 if (splice) {
1335 ASSERT(vp->v_count > 0);
1336
1337 /*
1338 * Pick up mount point and device from appropriate space.
1339 */
1340 if (pn_get(uap->spec, fromspace, &pn) == 0) {
1341 resource = kmem_alloc(pn.pn_pathlen + 1,
1342 KM_SLEEP);
1343 (void) strcpy(resource, pn.pn_path);
1344 pn_free(&pn);
1345 }
1346 /*
1347 * Do a lookupname prior to taking the
1348 * writelock. Mark this as completed if
1349 * successful for later cleanup and addition to
1350 * the mount in progress table.
1351 */
1352 if ((uap->flags & MS_GLOBAL) == 0 &&
1353 lookupname(uap->spec, fromspace,
1354 FOLLOW, NULL, &bvp) == 0) {
1355 addmip = 1;
1356 }
1357
1358 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1359 pathname_t *pnp;
1360
1361 if (*pn.pn_path != '/') {
1362 error = EINVAL;
1363 pn_free(&pn);
1364 goto errout;
1365 }
1366 pn_alloc(&rpn);
1367 /*
1368 * Kludge to prevent autofs from deadlocking with
1369 * itself when it calls domount().
1370 *
1371 * If autofs is calling, it is because it is doing
1372 * (autofs) mounts in the process of an NFS mount. A
1373 * lookuppn() here would cause us to block waiting for
1374 * said NFS mount to complete, which can't since this
1375 * is the thread that was supposed to doing it.
1376 */
1377 if (fromspace == UIO_USERSPACE) {
1378 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1379 NULL)) == 0) {
1380 pnp = &rpn;
1381 } else {
1382 /*
1383 * The file disappeared or otherwise
1384 * became inaccessible since we opened
1385 * it; might as well fail the mount
1386 * since the mount point is no longer
1387 * accessible.
1388 */
1389 pn_free(&rpn);
1390 pn_free(&pn);
1391 goto errout;
1392 }
1393 } else {
1394 pnp = &pn;
1395 }
1396 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1397 (void) strcpy(mountpt, pnp->pn_path);
1398
1399 /*
1400 * If the addition of the zone's rootpath
1401 * would push us over a total path length
1402 * of MAXPATHLEN, we fail the mount with
1403 * ENAMETOOLONG, which is what we would have
1404 * gotten if we were trying to perform the same
1405 * mount in the global zone.
1406 *
1407 * strlen() doesn't count the trailing
1408 * '\0', but zone_rootpathlen counts both a
1409 * trailing '/' and the terminating '\0'.
1410 */
1411 if ((curproc->p_zone->zone_rootpathlen - 1 +
1412 strlen(mountpt)) > MAXPATHLEN ||
1413 (resource != NULL &&
1414 (curproc->p_zone->zone_rootpathlen - 1 +
1415 strlen(resource)) > MAXPATHLEN)) {
1416 error = ENAMETOOLONG;
1417 }
1418
1419 pn_free(&rpn);
1420 pn_free(&pn);
1421 }
1422
1423 if (error)
1424 goto errout;
1425
1426 /*
1427 * Prevent path name resolution from proceeding past
1428 * the mount point.
1429 */
1430 if (vn_vfswlock(vp) != 0) {
1431 error = EBUSY;
1432 goto errout;
1433 }
1434
1435 /*
1436 * Verify that it's legitimate to establish a mount on
1437 * the prospective mount point.
1438 */
1439 if (vn_mountedvfs(vp) != NULL) {
1440 /*
1441 * The mount point lock was obtained after some
1442 * other thread raced through and established a mount.
1443 */
1444 vn_vfsunlock(vp);
1445 error = EBUSY;
1446 goto errout;
1447 }
1448 if (vp->v_flag & VNOMOUNT) {
1449 vn_vfsunlock(vp);
1450 error = EINVAL;
1451 goto errout;
1452 }
1453 }
1454 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1455 uap->dataptr = NULL;
1456 uap->datalen = 0;
1457 }
1458
1459 /*
1460 * If this is a remount, we don't want to create a new VFS.
1461 * Instead, we pass the existing one with a remount flag.
1462 */
1463 if (remount) {
1464 /*
1465 * Confirm that the mount point is the root vnode of the
1466 * file system that is being remounted.
1467 * This can happen if the user specifies a different
1468 * mount point directory pathname in the (re)mount command.
1469 *
1470 * Code below can only be reached if splice is true, so it's
1471 * safe to do vn_vfsunlock() here.
1472 */
1473 if ((vp->v_flag & VROOT) == 0) {
1474 vn_vfsunlock(vp);
1475 error = ENOENT;
1476 goto errout;
1477 }
1478 /*
1479 * Disallow making file systems read-only unless file system
1480 * explicitly allows it in its vfssw. Ignore other flags.
1481 */
1482 if (rdonly && vn_is_readonly(vp) == 0 &&
1483 (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1484 vn_vfsunlock(vp);
1485 error = EINVAL;
1486 goto errout;
1487 }
1488 /*
1489 * Disallow changing the NBMAND disposition of the file
1490 * system on remounts.
1491 */
1492 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1493 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1494 vn_vfsunlock(vp);
1495 error = EINVAL;
1496 goto errout;
1497 }
1498 vfsp = vp->v_vfsp;
1499 ovflags = vfsp->vfs_flag;
1500 vfsp->vfs_flag |= VFS_REMOUNT;
1501 vfsp->vfs_flag &= ~VFS_RDONLY;
1502 } else {
1503 vfsp = vfs_alloc(KM_SLEEP);
1504 VFS_INIT(vfsp, vfsops, NULL);
1505 }
1506
1507 VFS_HOLD(vfsp);
1508
1509 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1510 if (!remount) {
1511 if (splice)
1512 vn_vfsunlock(vp);
1513 vfs_free(vfsp);
1514 } else {
1515 vn_vfsunlock(vp);
1516 VFS_RELE(vfsp);
1517 }
1518 goto errout;
1519 }
1520
1521 /*
1522 * PRIV_SYS_MOUNT doesn't mean you can become root.
1523 */
1524 if (vfsp->vfs_lofi_id != 0) {
1525 uap->flags |= MS_NOSUID;
1526 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1527 }
1528
1529 /*
1530 * The vfs_reflock is not used anymore the code below explicitly
1531 * holds it preventing others accesing it directly.
1532 */
1533 if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1534 !(vfsp->vfs_flag & VFS_REMOUNT))
1535 cmn_err(CE_WARN,
1536 "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1537
1538 /*
1539 * Lock the vfs. If this is a remount we want to avoid spurious umount
1540 * failures that happen as a side-effect of fsflush() and other mount
1541 * and unmount operations that might be going on simultaneously and
1542 * may have locked the vfs currently. To not return EBUSY immediately
1543 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1544 */
1545 if (!remount) {
1546 if (error = vfs_lock(vfsp)) {
1547 vfsp->vfs_flag = ovflags;
1548
1549 lofi_remove(vfsp);
1550
1551 if (splice)
1552 vn_vfsunlock(vp);
1553 vfs_free(vfsp);
1554 goto errout;
1555 }
1556 } else {
1557 vfs_lock_wait(vfsp);
1558 }
1559
1560 /*
1561 * Add device to mount in progress table, global mounts require special
1562 * handling. It is possible that we have already done the lookupname
1563 * on a spliced, non-global fs. If so, we don't want to do it again
1564 * since we cannot do a lookupname after taking the
1565 * wlock above. This case is for a non-spliced, non-global filesystem.
1566 */
1567 if (!addmip) {
1568 if ((uap->flags & MS_GLOBAL) == 0 &&
1569 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1570 addmip = 1;
1571 }
1572 }
1573
1574 if (addmip) {
1575 vnode_t *lvp = NULL;
1576
1577 error = vfs_get_lofi(vfsp, &lvp);
1578 if (error > 0) {
1579 lofi_remove(vfsp);
1580
1581 if (splice)
1582 vn_vfsunlock(vp);
1583 vfs_unlock(vfsp);
1584
1585 if (remount) {
1586 VFS_RELE(vfsp);
1587 } else {
1588 vfs_free(vfsp);
1589 }
1590
1591 goto errout;
1592 } else if (error == -1) {
1593 bdev = bvp->v_rdev;
1594 VN_RELE(bvp);
1595 } else {
1596 bdev = lvp->v_rdev;
1597 VN_RELE(lvp);
1598 VN_RELE(bvp);
1599 }
1600
1601 vfs_addmip(bdev, vfsp);
1602 addmip = 0;
1603 delmip = 1;
1604 }
1605 /*
1606 * Invalidate cached entry for the mount point.
1607 */
1608 if (splice)
1609 dnlc_purge_vp(vp);
1610
1611 /*
1612 * If have an option string but the filesystem doesn't supply a
1613 * prototype options table, create a table with the global
1614 * options and sufficient room to accept all the options in the
1615 * string. Then parse the passed in option string
1616 * accepting all the options in the string. This gives us an
1617 * option table with all the proper cancel properties for the
1618 * global options.
1619 *
1620 * Filesystems that supply a prototype options table are handled
1621 * earlier in this function.
1622 */
1623 if (uap->flags & MS_OPTIONSTR) {
1624 if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1625 mntopts_t tmp_mntopts;
1626
1627 tmp_mntopts.mo_count = 0;
1628 vfs_createopttbl_extend(&tmp_mntopts, inargs,
1629 &mnt_mntopts);
1630 vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1631 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1632 vfs_freeopttbl(&tmp_mntopts);
1633 }
1634 }
1635
1636 /*
1637 * Serialize with zone state transitions.
1638 * See vfs_list_add; zone mounted into is:
1639 * zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1640 * not the zone doing the mount (curproc->p_zone), but if we're already
1641 * inside a NGZ, then we know what zone we are.
1642 */
1643 if (INGLOBALZONE(curproc)) {
1644 zone = zone_find_by_path(mountpt);
1645 ASSERT(zone != NULL);
1646 } else {
1647 zone = curproc->p_zone;
1648 /*
1649 * zone_find_by_path does a hold, so do one here too so that
1650 * we can do a zone_rele after mount_completed.
1651 */
1652 zone_hold(zone);
1653 }
1654 mount_in_progress(zone);
1655 /*
1656 * Instantiate (or reinstantiate) the file system. If appropriate,
1657 * splice it into the file system name space.
1658 *
1659 * We want VFS_MOUNT() to be able to override the vfs_resource
1660 * string if necessary (ie, mntfs), and also for a remount to
1661 * change the same (necessary when remounting '/' during boot).
1662 * So we set up vfs_mntpt and vfs_resource to what we think they
1663 * should be, then hand off control to VFS_MOUNT() which can
1664 * override this.
1665 *
1666 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1667 * a vfs which is on the vfs list (i.e. during a remount), we must
1668 * never set those fields to NULL. Several bits of code make
1669 * assumptions that the fields are always valid.
1670 */
1671 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1672 if (remount) {
1673 if ((oldresource = vfsp->vfs_resource) != NULL)
1674 refstr_hold(oldresource);
1675 if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1676 refstr_hold(oldmntpt);
1677 }
1678 vfs_setresource(vfsp, resource, 0);
1679 vfs_setmntpoint(vfsp, mountpt, 0);
1680
1681 /*
1682 * going to mount on this vnode, so notify.
1683 */
1684 vnevent_mountedover(vp, NULL);
1685 error = VFS_MOUNT(vfsp, vp, uap, credp);
1686
1687 if (uap->flags & MS_RDONLY)
1688 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1689 if (uap->flags & MS_NOSUID)
1690 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1691 if (uap->flags & MS_GLOBAL)
1692 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1693
1694 if (error) {
1695 lofi_remove(vfsp);
1696
1697 if (remount) {
1698 /* put back pre-remount options */
1699 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1700 vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1701 VFSSP_VERBATIM);
1702 if (oldmntpt)
1703 refstr_rele(oldmntpt);
1704 vfs_setresource(vfsp, refstr_value(oldresource),
1705 VFSSP_VERBATIM);
1706 if (oldresource)
1707 refstr_rele(oldresource);
1708 vfsp->vfs_flag = ovflags;
1709 vfs_unlock(vfsp);
1710 VFS_RELE(vfsp);
1711 } else {
1712 vfs_unlock(vfsp);
1713 vfs_freemnttab(vfsp);
1714 vfs_free(vfsp);
1715 }
1716 } else {
1717 /*
1718 * Set the mount time to now
1719 */
1720 vfsp->vfs_mtime = ddi_get_time();
1721 if (remount) {
1722 vfsp->vfs_flag &= ~VFS_REMOUNT;
1723 if (oldresource)
1724 refstr_rele(oldresource);
1725 if (oldmntpt)
1726 refstr_rele(oldmntpt);
1727 } else if (splice) {
1728 /*
1729 * Link vfsp into the name space at the mount
1730 * point. Vfs_add() is responsible for
1731 * holding the mount point which will be
1732 * released when vfs_remove() is called.
1733 */
1734 vfs_add(vp, vfsp, uap->flags);
1735 } else {
1736 /*
1737 * Hold the reference to file system which is
1738 * not linked into the name space.
1739 */
1740 vfsp->vfs_zone = NULL;
1741 VFS_HOLD(vfsp);
1742 vfsp->vfs_vnodecovered = NULL;
1743 }
1744 /*
1745 * Set flags for global options encountered
1746 */
1747 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1748 vfsp->vfs_flag |= VFS_RDONLY;
1749 else
1750 vfsp->vfs_flag &= ~VFS_RDONLY;
1751 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1752 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1753 } else {
1754 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1755 vfsp->vfs_flag |= VFS_NODEVICES;
1756 else
1757 vfsp->vfs_flag &= ~VFS_NODEVICES;
1758 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1759 vfsp->vfs_flag |= VFS_NOSETUID;
1760 else
1761 vfsp->vfs_flag &= ~VFS_NOSETUID;
1762 }
1763 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1764 vfsp->vfs_flag |= VFS_NBMAND;
1765 else
1766 vfsp->vfs_flag &= ~VFS_NBMAND;
1767
1768 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1769 vfsp->vfs_flag |= VFS_XATTR;
1770 else
1771 vfsp->vfs_flag &= ~VFS_XATTR;
1772
1773 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1774 vfsp->vfs_flag |= VFS_NOEXEC;
1775 else
1776 vfsp->vfs_flag &= ~VFS_NOEXEC;
1777
1778 if (vfs_optionisset(vfsp, MNTOPT_NOFOLLOW, NULL))
1779 vfsp->vfs_flag |= VFS_NOFOLLOW;
1780 else
1781 vfsp->vfs_flag &= ~VFS_NOFOLLOW;
1782
1783 /*
1784 * Now construct the output option string of options
1785 * we recognized.
1786 */
1787 if (uap->flags & MS_OPTIONSTR) {
1788 vfs_list_read_lock();
1789 copyout_error = vfs_buildoptionstr(
1790 &vfsp->vfs_mntopts, inargs, optlen);
1791 vfs_list_unlock();
1792 if (copyout_error == 0 &&
1793 (uap->flags & MS_SYSSPACE) == 0) {
1794 copyout_error = copyoutstr(inargs, opts,
1795 optlen, NULL);
1796 }
1797 }
1798
1799 /*
1800 * If this isn't a remount, set up the vopstats before
1801 * anyone can touch this. We only allow spliced file
1802 * systems (file systems which are in the namespace) to
1803 * have the VFS_STATS flag set.
1804 * NOTE: PxFS mounts the underlying file system with
1805 * MS_NOSPLICE set and copies those vfs_flags to its private
1806 * vfs structure. As a result, PxFS should never have
1807 * the VFS_STATS flag or else we might access the vfs
1808 * statistics-related fields prior to them being
1809 * properly initialized.
1810 */
1811 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1812 initialize_vopstats(&vfsp->vfs_vopstats);
1813 /*
1814 * We need to set vfs_vskap to NULL because there's
1815 * a chance it won't be set below. This is checked
1816 * in teardown_vopstats() so we can't have garbage.
1817 */
1818 vfsp->vfs_vskap = NULL;
1819 vfsp->vfs_flag |= VFS_STATS;
1820 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1821 }
1822
1823 if (vswp->vsw_flag & VSW_XID)
1824 vfsp->vfs_flag |= VFS_XID;
1825
1826 vfs_unlock(vfsp);
1827 }
1828 mount_completed(zone);
1829 zone_rele(zone);
1830 if (splice)
1831 vn_vfsunlock(vp);
1832
1833 if ((error == 0) && (copyout_error == 0)) {
1834 if (!remount) {
1835 /*
1836 * Don't call get_vskstat_anchor() while holding
1837 * locks since it allocates memory and calls
1838 * VFS_STATVFS(). For NFS, the latter can generate
1839 * an over-the-wire call.
1840 */
1841 vskap = get_vskstat_anchor(vfsp);
1842 /* Only take the lock if we have something to do */
1843 if (vskap != NULL) {
1844 vfs_lock_wait(vfsp);
1845 if (vfsp->vfs_flag & VFS_STATS) {
1846 vfsp->vfs_vskap = vskap;
1847 }
1848 vfs_unlock(vfsp);
1849 }
1850 }
1851 /* Return vfsp to caller. */
1852 *vfspp = vfsp;
1853 }
1854 errout:
1855 vfs_freeopttbl(&mnt_mntopts);
1856 if (resource != NULL)
1857 kmem_free(resource, strlen(resource) + 1);
1858 if (mountpt != NULL)
1859 kmem_free(mountpt, strlen(mountpt) + 1);
1860 /*
1861 * It is possible we errored prior to adding to mount in progress
1862 * table. Must free vnode we acquired with successful lookupname.
1863 */
1864 if (addmip)
1865 VN_RELE(bvp);
1866 if (delmip)
1867 vfs_delmip(vfsp);
1868 ASSERT(vswp != NULL);
1869 vfs_unrefvfssw(vswp);
1870 if (inargs != opts)
1871 kmem_free(inargs, MAX_MNTOPT_STR);
1872 if (copyout_error) {
1873 lofi_remove(vfsp);
1874 VFS_RELE(vfsp);
1875 error = copyout_error;
1876 }
1877 return (error);
1878 }
1879
1880 static void
vfs_setpath(struct vfs * vfsp,refstr_t ** refp,const char * newpath,uint32_t flag)1881 vfs_setpath(
1882 struct vfs *vfsp, /* vfs being updated */
1883 refstr_t **refp, /* Ref-count string to contain the new path */
1884 const char *newpath, /* Path to add to refp (above) */
1885 uint32_t flag) /* flag */
1886 {
1887 size_t len;
1888 refstr_t *ref;
1889 zone_t *zone = curproc->p_zone;
1890 char *sp;
1891 int have_list_lock = 0;
1892
1893 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1894
1895 /*
1896 * New path must be less than MAXPATHLEN because mntfs
1897 * will only display up to MAXPATHLEN bytes. This is currently
1898 * safe, because domount() uses pn_get(), and other callers
1899 * similarly cap the size to fewer than MAXPATHLEN bytes.
1900 */
1901
1902 ASSERT(strlen(newpath) < MAXPATHLEN);
1903
1904 /* mntfs requires consistency while vfs list lock is held */
1905
1906 if (VFS_ON_LIST(vfsp)) {
1907 have_list_lock = 1;
1908 vfs_list_lock();
1909 }
1910
1911 if (*refp != NULL)
1912 refstr_rele(*refp);
1913
1914 /*
1915 * If we are in a non-global zone then we prefix the supplied path,
1916 * newpath, with the zone's root path, with two exceptions. The first
1917 * is where we have been explicitly directed to avoid doing so; this
1918 * will be the case following a failed remount, where the path supplied
1919 * will be a saved version which must now be restored. The second
1920 * exception is where newpath is not a pathname but a descriptive name,
1921 * e.g. "procfs".
1922 */
1923 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1924 ref = refstr_alloc(newpath);
1925 goto out;
1926 }
1927
1928 /*
1929 * Truncate the trailing '/' in the zoneroot, and merge
1930 * in the zone's rootpath with the "newpath" (resource
1931 * or mountpoint) passed in.
1932 *
1933 * The size of the required buffer is thus the size of
1934 * the buffer required for the passed-in newpath
1935 * (strlen(newpath) + 1), plus the size of the buffer
1936 * required to hold zone_rootpath (zone_rootpathlen)
1937 * minus one for one of the now-superfluous NUL
1938 * terminations, minus one for the trailing '/'.
1939 *
1940 * That gives us:
1941 *
1942 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1943 *
1944 * Which is what we have below.
1945 */
1946
1947 len = strlen(newpath) + zone->zone_rootpathlen - 1;
1948 sp = kmem_alloc(len, KM_SLEEP);
1949
1950 /*
1951 * Copy everything including the trailing slash, which
1952 * we then overwrite with the NUL character.
1953 */
1954
1955 (void) strcpy(sp, zone->zone_rootpath);
1956 sp[zone->zone_rootpathlen - 2] = '\0';
1957 (void) strcat(sp, newpath);
1958
1959 ref = refstr_alloc(sp);
1960 kmem_free(sp, len);
1961 out:
1962 *refp = ref;
1963
1964 if (have_list_lock) {
1965 vfs_mnttab_modtimeupd();
1966 vfs_list_unlock();
1967 }
1968 }
1969
1970 /*
1971 * Record a mounted resource name in a vfs structure.
1972 * If vfsp is already mounted, caller must hold the vfs lock.
1973 */
1974 void
vfs_setresource(struct vfs * vfsp,const char * resource,uint32_t flag)1975 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1976 {
1977 if (resource == NULL || resource[0] == '\0')
1978 resource = VFS_NORESOURCE;
1979 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1980 }
1981
1982 /*
1983 * Record a mount point name in a vfs structure.
1984 * If vfsp is already mounted, caller must hold the vfs lock.
1985 */
1986 void
vfs_setmntpoint(struct vfs * vfsp,const char * mntpt,uint32_t flag)1987 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1988 {
1989 if (mntpt == NULL || mntpt[0] == '\0')
1990 mntpt = VFS_NOMNTPT;
1991 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
1992 }
1993
1994 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1995
1996 refstr_t *
vfs_getresource(const struct vfs * vfsp)1997 vfs_getresource(const struct vfs *vfsp)
1998 {
1999 refstr_t *resource;
2000
2001 vfs_list_read_lock();
2002 resource = vfsp->vfs_resource;
2003 refstr_hold(resource);
2004 vfs_list_unlock();
2005
2006 return (resource);
2007 }
2008
2009 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
2010
2011 refstr_t *
vfs_getmntpoint(const struct vfs * vfsp)2012 vfs_getmntpoint(const struct vfs *vfsp)
2013 {
2014 refstr_t *mntpt;
2015
2016 vfs_list_read_lock();
2017 mntpt = vfsp->vfs_mntpt;
2018 refstr_hold(mntpt);
2019 vfs_list_unlock();
2020
2021 return (mntpt);
2022 }
2023
2024 /*
2025 * Create an empty options table with enough empty slots to hold all
2026 * The options in the options string passed as an argument.
2027 * Potentially prepend another options table.
2028 *
2029 * Note: caller is responsible for locking the vfs list, if needed,
2030 * to protect mops.
2031 */
2032 static void
vfs_createopttbl_extend(mntopts_t * mops,const char * opts,const mntopts_t * mtmpl)2033 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
2034 const mntopts_t *mtmpl)
2035 {
2036 const char *s = opts;
2037 uint_t count;
2038
2039 if (opts == NULL || *opts == '\0') {
2040 count = 0;
2041 } else {
2042 count = 1;
2043
2044 /*
2045 * Count number of options in the string
2046 */
2047 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
2048 count++;
2049 s++;
2050 }
2051 }
2052 vfs_copyopttbl_extend(mtmpl, mops, count);
2053 }
2054
2055 /*
2056 * Create an empty options table with enough empty slots to hold all
2057 * The options in the options string passed as an argument.
2058 *
2059 * This function is *not* for general use by filesystems.
2060 *
2061 * Note: caller is responsible for locking the vfs list, if needed,
2062 * to protect mops.
2063 */
2064 void
vfs_createopttbl(mntopts_t * mops,const char * opts)2065 vfs_createopttbl(mntopts_t *mops, const char *opts)
2066 {
2067 vfs_createopttbl_extend(mops, opts, NULL);
2068 }
2069
2070
2071 /*
2072 * Swap two mount options tables
2073 */
2074 static void
vfs_swapopttbl_nolock(mntopts_t * optbl1,mntopts_t * optbl2)2075 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2076 {
2077 uint_t tmpcnt;
2078 mntopt_t *tmplist;
2079
2080 tmpcnt = optbl2->mo_count;
2081 tmplist = optbl2->mo_list;
2082 optbl2->mo_count = optbl1->mo_count;
2083 optbl2->mo_list = optbl1->mo_list;
2084 optbl1->mo_count = tmpcnt;
2085 optbl1->mo_list = tmplist;
2086 }
2087
2088 static void
vfs_swapopttbl(mntopts_t * optbl1,mntopts_t * optbl2)2089 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2090 {
2091 vfs_list_lock();
2092 vfs_swapopttbl_nolock(optbl1, optbl2);
2093 vfs_mnttab_modtimeupd();
2094 vfs_list_unlock();
2095 }
2096
2097 static char **
vfs_copycancelopt_extend(char ** const moc,int extend)2098 vfs_copycancelopt_extend(char **const moc, int extend)
2099 {
2100 int i = 0;
2101 int j;
2102 char **result;
2103
2104 if (moc != NULL) {
2105 for (; moc[i] != NULL; i++)
2106 /* count number of options to cancel */;
2107 }
2108
2109 if (i + extend == 0)
2110 return (NULL);
2111
2112 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2113
2114 for (j = 0; j < i; j++) {
2115 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2116 (void) strcpy(result[j], moc[j]);
2117 }
2118 for (; j <= i + extend; j++)
2119 result[j] = NULL;
2120
2121 return (result);
2122 }
2123
2124 static void
vfs_copyopt(const mntopt_t * s,mntopt_t * d)2125 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2126 {
2127 char *sp, *dp;
2128
2129 d->mo_flags = s->mo_flags;
2130 d->mo_data = s->mo_data;
2131 sp = s->mo_name;
2132 if (sp != NULL) {
2133 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2134 (void) strcpy(dp, sp);
2135 d->mo_name = dp;
2136 } else {
2137 d->mo_name = NULL; /* should never happen */
2138 }
2139
2140 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2141
2142 sp = s->mo_arg;
2143 if (sp != NULL) {
2144 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2145 (void) strcpy(dp, sp);
2146 d->mo_arg = dp;
2147 } else {
2148 d->mo_arg = NULL;
2149 }
2150 }
2151
2152 /*
2153 * Copy a mount options table, possibly allocating some spare
2154 * slots at the end. It is permissible to copy_extend the NULL table.
2155 */
2156 static void
vfs_copyopttbl_extend(const mntopts_t * smo,mntopts_t * dmo,int extra)2157 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2158 {
2159 uint_t i, count;
2160 mntopt_t *motbl;
2161
2162 /*
2163 * Clear out any existing stuff in the options table being initialized
2164 */
2165 vfs_freeopttbl(dmo);
2166 count = (smo == NULL) ? 0 : smo->mo_count;
2167 if ((count + extra) == 0) /* nothing to do */
2168 return;
2169 dmo->mo_count = count + extra;
2170 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2171 dmo->mo_list = motbl;
2172 for (i = 0; i < count; i++) {
2173 vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2174 }
2175 for (i = count; i < count + extra; i++) {
2176 motbl[i].mo_flags = MO_EMPTY;
2177 }
2178 }
2179
2180 /*
2181 * Copy a mount options table.
2182 *
2183 * This function is *not* for general use by filesystems.
2184 *
2185 * Note: caller is responsible for locking the vfs list, if needed,
2186 * to protect smo and dmo.
2187 */
2188 void
vfs_copyopttbl(const mntopts_t * smo,mntopts_t * dmo)2189 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2190 {
2191 vfs_copyopttbl_extend(smo, dmo, 0);
2192 }
2193
2194 static char **
vfs_mergecancelopts(const mntopt_t * mop1,const mntopt_t * mop2)2195 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2196 {
2197 int c1 = 0;
2198 int c2 = 0;
2199 char **result;
2200 char **sp1, **sp2, **dp;
2201
2202 /*
2203 * First we count both lists of cancel options.
2204 * If either is NULL or has no elements, we return a copy of
2205 * the other.
2206 */
2207 if (mop1->mo_cancel != NULL) {
2208 for (; mop1->mo_cancel[c1] != NULL; c1++)
2209 /* count cancel options in mop1 */;
2210 }
2211
2212 if (c1 == 0)
2213 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2214
2215 if (mop2->mo_cancel != NULL) {
2216 for (; mop2->mo_cancel[c2] != NULL; c2++)
2217 /* count cancel options in mop2 */;
2218 }
2219
2220 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2221
2222 if (c2 == 0)
2223 return (result);
2224
2225 /*
2226 * When we get here, we've got two sets of cancel options;
2227 * we need to merge the two sets. We know that the result
2228 * array has "c1+c2+1" entries and in the end we might shrink
2229 * it.
2230 * Result now has a copy of the c1 entries from mop1; we'll
2231 * now lookup all the entries of mop2 in mop1 and copy it if
2232 * it is unique.
2233 * This operation is O(n^2) but it's only called once per
2234 * filesystem per duplicate option. This is a situation
2235 * which doesn't arise with the filesystems in ON and
2236 * n is generally 1.
2237 */
2238
2239 dp = &result[c1];
2240 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2241 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2242 if (strcmp(*sp1, *sp2) == 0)
2243 break;
2244 }
2245 if (*sp1 == NULL) {
2246 /*
2247 * Option *sp2 not found in mop1, so copy it.
2248 * The calls to vfs_copycancelopt_extend()
2249 * guarantee that there's enough room.
2250 */
2251 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2252 (void) strcpy(*dp++, *sp2);
2253 }
2254 }
2255 if (dp != &result[c1+c2]) {
2256 size_t bytes = (dp - result + 1) * sizeof (char *);
2257 char **nres = kmem_alloc(bytes, KM_SLEEP);
2258
2259 bcopy(result, nres, bytes);
2260 kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2261 result = nres;
2262 }
2263 return (result);
2264 }
2265
2266 /*
2267 * Merge two mount option tables (outer and inner) into one. This is very
2268 * similar to "merging" global variables and automatic variables in C.
2269 *
2270 * This isn't (and doesn't have to be) fast.
2271 *
2272 * This function is *not* for general use by filesystems.
2273 *
2274 * Note: caller is responsible for locking the vfs list, if needed,
2275 * to protect omo, imo & dmo.
2276 */
2277 void
vfs_mergeopttbl(const mntopts_t * omo,const mntopts_t * imo,mntopts_t * dmo)2278 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2279 {
2280 uint_t i, count;
2281 mntopt_t *mop, *motbl;
2282 uint_t freeidx;
2283
2284 /*
2285 * First determine how much space we need to allocate.
2286 */
2287 count = omo->mo_count;
2288 for (i = 0; i < imo->mo_count; i++) {
2289 if (imo->mo_list[i].mo_flags & MO_EMPTY)
2290 continue;
2291 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2292 count++;
2293 }
2294 ASSERT(count >= omo->mo_count &&
2295 count <= omo->mo_count + imo->mo_count);
2296 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2297 for (i = 0; i < omo->mo_count; i++)
2298 vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2299 freeidx = omo->mo_count;
2300 for (i = 0; i < imo->mo_count; i++) {
2301 if (imo->mo_list[i].mo_flags & MO_EMPTY)
2302 continue;
2303 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2304 char **newcanp;
2305 uint_t index = mop - omo->mo_list;
2306
2307 newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2308
2309 vfs_freeopt(&motbl[index]);
2310 vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2311
2312 vfs_freecancelopt(motbl[index].mo_cancel);
2313 motbl[index].mo_cancel = newcanp;
2314 } else {
2315 /*
2316 * If it's a new option, just copy it over to the first
2317 * free location.
2318 */
2319 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2320 }
2321 }
2322 dmo->mo_count = count;
2323 dmo->mo_list = motbl;
2324 }
2325
2326 /*
2327 * Functions to set and clear mount options in a mount options table.
2328 */
2329
2330 /*
2331 * Clear a mount option, if it exists.
2332 *
2333 * The update_mnttab arg indicates whether mops is part of a vfs that is on
2334 * the vfs list.
2335 */
2336 static void
vfs_clearmntopt_nolock(mntopts_t * mops,const char * opt,int update_mnttab)2337 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2338 {
2339 struct mntopt *mop;
2340 uint_t i, count;
2341
2342 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2343
2344 count = mops->mo_count;
2345 for (i = 0; i < count; i++) {
2346 mop = &mops->mo_list[i];
2347
2348 if (mop->mo_flags & MO_EMPTY)
2349 continue;
2350 if (strcmp(opt, mop->mo_name))
2351 continue;
2352 mop->mo_flags &= ~MO_SET;
2353 if (mop->mo_arg != NULL) {
2354 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2355 }
2356 mop->mo_arg = NULL;
2357 if (update_mnttab)
2358 vfs_mnttab_modtimeupd();
2359 break;
2360 }
2361 }
2362
2363 void
vfs_clearmntopt(struct vfs * vfsp,const char * opt)2364 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2365 {
2366 int gotlock = 0;
2367
2368 if (VFS_ON_LIST(vfsp)) {
2369 gotlock = 1;
2370 vfs_list_lock();
2371 }
2372 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2373 if (gotlock)
2374 vfs_list_unlock();
2375 }
2376
2377
2378 /*
2379 * Set a mount option on. If it's not found in the table, it's silently
2380 * ignored. If the option has MO_IGNORE set, it is still set unless the
2381 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag
2382 * bits can be used to toggle the MO_NODISPLAY bit for the option.
2383 * If the VFS_CREATEOPT flag bit is set then the first option slot with
2384 * MO_EMPTY set is created as the option passed in.
2385 *
2386 * The update_mnttab arg indicates whether mops is part of a vfs that is on
2387 * the vfs list.
2388 */
2389 static void
vfs_setmntopt_nolock(mntopts_t * mops,const char * opt,const char * arg,int flags,int update_mnttab)2390 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2391 const char *arg, int flags, int update_mnttab)
2392 {
2393 mntopt_t *mop;
2394 uint_t i, count;
2395 char *sp;
2396
2397 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2398
2399 if (flags & VFS_CREATEOPT) {
2400 if (vfs_hasopt(mops, opt) != NULL) {
2401 flags &= ~VFS_CREATEOPT;
2402 }
2403 }
2404 count = mops->mo_count;
2405 for (i = 0; i < count; i++) {
2406 mop = &mops->mo_list[i];
2407
2408 if (mop->mo_flags & MO_EMPTY) {
2409 if ((flags & VFS_CREATEOPT) == 0)
2410 continue;
2411 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2412 (void) strcpy(sp, opt);
2413 mop->mo_name = sp;
2414 if (arg != NULL)
2415 mop->mo_flags = MO_HASVALUE;
2416 else
2417 mop->mo_flags = 0;
2418 } else if (strcmp(opt, mop->mo_name)) {
2419 continue;
2420 }
2421 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2422 break;
2423 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2424 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2425 (void) strcpy(sp, arg);
2426 } else {
2427 sp = NULL;
2428 }
2429 if (mop->mo_arg != NULL)
2430 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2431 mop->mo_arg = sp;
2432 if (flags & VFS_DISPLAY)
2433 mop->mo_flags &= ~MO_NODISPLAY;
2434 if (flags & VFS_NODISPLAY)
2435 mop->mo_flags |= MO_NODISPLAY;
2436 mop->mo_flags |= MO_SET;
2437 if (mop->mo_cancel != NULL) {
2438 char **cp;
2439
2440 for (cp = mop->mo_cancel; *cp != NULL; cp++)
2441 vfs_clearmntopt_nolock(mops, *cp, 0);
2442 }
2443 if (update_mnttab)
2444 vfs_mnttab_modtimeupd();
2445 break;
2446 }
2447 }
2448
2449 void
vfs_setmntopt(struct vfs * vfsp,const char * opt,const char * arg,int flags)2450 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2451 {
2452 int gotlock = 0;
2453
2454 if (VFS_ON_LIST(vfsp)) {
2455 gotlock = 1;
2456 vfs_list_lock();
2457 }
2458 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2459 if (gotlock)
2460 vfs_list_unlock();
2461 }
2462
2463
2464 /*
2465 * Add a "tag" option to a mounted file system's options list.
2466 *
2467 * Note: caller is responsible for locking the vfs list, if needed,
2468 * to protect mops.
2469 */
2470 static mntopt_t *
vfs_addtag(mntopts_t * mops,const char * tag)2471 vfs_addtag(mntopts_t *mops, const char *tag)
2472 {
2473 uint_t count;
2474 mntopt_t *mop, *motbl;
2475
2476 count = mops->mo_count + 1;
2477 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2478 if (mops->mo_count) {
2479 size_t len = (count - 1) * sizeof (mntopt_t);
2480
2481 bcopy(mops->mo_list, motbl, len);
2482 kmem_free(mops->mo_list, len);
2483 }
2484 mops->mo_count = count;
2485 mops->mo_list = motbl;
2486 mop = &motbl[count - 1];
2487 mop->mo_flags = MO_TAG;
2488 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2489 (void) strcpy(mop->mo_name, tag);
2490 return (mop);
2491 }
2492
2493 /*
2494 * Allow users to set arbitrary "tags" in a vfs's mount options.
2495 * Broader use within the kernel is discouraged.
2496 */
2497 int
vfs_settag(uint_t major,uint_t minor,const char * mntpt,const char * tag,cred_t * cr)2498 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2499 cred_t *cr)
2500 {
2501 vfs_t *vfsp;
2502 mntopts_t *mops;
2503 mntopt_t *mop;
2504 int found = 0;
2505 dev_t dev = makedevice(major, minor);
2506 int err = 0;
2507 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2508
2509 /*
2510 * Find the desired mounted file system
2511 */
2512 vfs_list_lock();
2513 vfsp = rootvfs;
2514 do {
2515 if (vfsp->vfs_dev == dev &&
2516 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2517 found = 1;
2518 break;
2519 }
2520 vfsp = vfsp->vfs_next;
2521 } while (vfsp != rootvfs);
2522
2523 if (!found) {
2524 err = EINVAL;
2525 goto out;
2526 }
2527 err = secpolicy_fs_config(cr, vfsp);
2528 if (err != 0)
2529 goto out;
2530
2531 mops = &vfsp->vfs_mntopts;
2532 /*
2533 * Add tag if it doesn't already exist
2534 */
2535 if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2536 int len;
2537
2538 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2539 len = strlen(buf);
2540 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2541 err = ENAMETOOLONG;
2542 goto out;
2543 }
2544 mop = vfs_addtag(mops, tag);
2545 }
2546 if ((mop->mo_flags & MO_TAG) == 0) {
2547 err = EINVAL;
2548 goto out;
2549 }
2550 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2551 out:
2552 vfs_list_unlock();
2553 kmem_free(buf, MAX_MNTOPT_STR);
2554 return (err);
2555 }
2556
2557 /*
2558 * Allow users to remove arbitrary "tags" in a vfs's mount options.
2559 * Broader use within the kernel is discouraged.
2560 */
2561 int
vfs_clrtag(uint_t major,uint_t minor,const char * mntpt,const char * tag,cred_t * cr)2562 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2563 cred_t *cr)
2564 {
2565 vfs_t *vfsp;
2566 mntopt_t *mop;
2567 int found = 0;
2568 dev_t dev = makedevice(major, minor);
2569 int err = 0;
2570
2571 /*
2572 * Find the desired mounted file system
2573 */
2574 vfs_list_lock();
2575 vfsp = rootvfs;
2576 do {
2577 if (vfsp->vfs_dev == dev &&
2578 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2579 found = 1;
2580 break;
2581 }
2582 vfsp = vfsp->vfs_next;
2583 } while (vfsp != rootvfs);
2584
2585 if (!found) {
2586 err = EINVAL;
2587 goto out;
2588 }
2589 err = secpolicy_fs_config(cr, vfsp);
2590 if (err != 0)
2591 goto out;
2592
2593 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2594 err = EINVAL;
2595 goto out;
2596 }
2597 if ((mop->mo_flags & MO_TAG) == 0) {
2598 err = EINVAL;
2599 goto out;
2600 }
2601 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2602 out:
2603 vfs_list_unlock();
2604 return (err);
2605 }
2606
2607 /*
2608 * Function to parse an option string and fill in a mount options table.
2609 * Unknown options are silently ignored. The input option string is modified
2610 * by replacing separators with nulls. If the create flag is set, options
2611 * not found in the table are just added on the fly. The table must have
2612 * an option slot marked MO_EMPTY to add an option on the fly.
2613 *
2614 * This function is *not* for general use by filesystems.
2615 *
2616 * Note: caller is responsible for locking the vfs list, if needed,
2617 * to protect mops..
2618 */
2619 void
vfs_parsemntopts(mntopts_t * mops,char * osp,int create)2620 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2621 {
2622 char *s = osp, *p, *nextop, *valp, *cp, *ep;
2623 int setflg = VFS_NOFORCEOPT;
2624
2625 if (osp == NULL)
2626 return;
2627 while (*s != '\0') {
2628 p = strchr(s, ','); /* find next option */
2629 if (p == NULL) {
2630 cp = NULL;
2631 p = s + strlen(s);
2632 } else {
2633 cp = p; /* save location of comma */
2634 *p++ = '\0'; /* mark end and point to next option */
2635 }
2636 nextop = p;
2637 p = strchr(s, '='); /* look for value */
2638 if (p == NULL) {
2639 valp = NULL; /* no value supplied */
2640 } else {
2641 ep = p; /* save location of equals */
2642 *p++ = '\0'; /* end option and point to value */
2643 valp = p;
2644 }
2645 /*
2646 * set option into options table
2647 */
2648 if (create)
2649 setflg |= VFS_CREATEOPT;
2650 vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2651 if (cp != NULL)
2652 *cp = ','; /* restore the comma */
2653 if (valp != NULL)
2654 *ep = '='; /* restore the equals */
2655 s = nextop;
2656 }
2657 }
2658
2659 /*
2660 * Function to inquire if an option exists in a mount options table.
2661 * Returns a pointer to the option if it exists, else NULL.
2662 *
2663 * This function is *not* for general use by filesystems.
2664 *
2665 * Note: caller is responsible for locking the vfs list, if needed,
2666 * to protect mops.
2667 */
2668 struct mntopt *
vfs_hasopt(const mntopts_t * mops,const char * opt)2669 vfs_hasopt(const mntopts_t *mops, const char *opt)
2670 {
2671 struct mntopt *mop;
2672 uint_t i, count;
2673
2674 count = mops->mo_count;
2675 for (i = 0; i < count; i++) {
2676 mop = &mops->mo_list[i];
2677
2678 if (mop->mo_flags & MO_EMPTY)
2679 continue;
2680 if (strcmp(opt, mop->mo_name) == 0)
2681 return (mop);
2682 }
2683 return (NULL);
2684 }
2685
2686 /*
2687 * Function to inquire if an option is set in a mount options table.
2688 * Returns non-zero if set and fills in the arg pointer with a pointer to
2689 * the argument string or NULL if there is no argument string.
2690 */
2691 static int
vfs_optionisset_nolock(const mntopts_t * mops,const char * opt,char ** argp)2692 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2693 {
2694 struct mntopt *mop;
2695 uint_t i, count;
2696
2697 count = mops->mo_count;
2698 for (i = 0; i < count; i++) {
2699 mop = &mops->mo_list[i];
2700
2701 if (mop->mo_flags & MO_EMPTY)
2702 continue;
2703 if (strcmp(opt, mop->mo_name))
2704 continue;
2705 if ((mop->mo_flags & MO_SET) == 0)
2706 return (0);
2707 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2708 *argp = mop->mo_arg;
2709 return (1);
2710 }
2711 return (0);
2712 }
2713
2714
2715 int
vfs_optionisset(const struct vfs * vfsp,const char * opt,char ** argp)2716 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2717 {
2718 int ret;
2719
2720 vfs_list_read_lock();
2721 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2722 vfs_list_unlock();
2723 return (ret);
2724 }
2725
2726
2727 /*
2728 * Construct a comma separated string of the options set in the given
2729 * mount table, return the string in the given buffer. Return non-zero if
2730 * the buffer would overflow.
2731 *
2732 * This function is *not* for general use by filesystems.
2733 *
2734 * Note: caller is responsible for locking the vfs list, if needed,
2735 * to protect mp.
2736 */
2737 int
vfs_buildoptionstr(const mntopts_t * mp,char * buf,int len)2738 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2739 {
2740 char *cp;
2741 uint_t i;
2742
2743 buf[0] = '\0';
2744 cp = buf;
2745 for (i = 0; i < mp->mo_count; i++) {
2746 struct mntopt *mop;
2747
2748 mop = &mp->mo_list[i];
2749 if (mop->mo_flags & MO_SET) {
2750 int optlen, comma = 0;
2751
2752 if (buf[0] != '\0')
2753 comma = 1;
2754 optlen = strlen(mop->mo_name);
2755 if (strlen(buf) + comma + optlen + 1 > len)
2756 goto err;
2757 if (comma)
2758 *cp++ = ',';
2759 (void) strcpy(cp, mop->mo_name);
2760 cp += optlen;
2761 /*
2762 * Append option value if there is one
2763 */
2764 if (mop->mo_arg != NULL) {
2765 int arglen;
2766
2767 arglen = strlen(mop->mo_arg);
2768 if (strlen(buf) + arglen + 2 > len)
2769 goto err;
2770 *cp++ = '=';
2771 (void) strcpy(cp, mop->mo_arg);
2772 cp += arglen;
2773 }
2774 }
2775 }
2776 return (0);
2777 err:
2778 return (EOVERFLOW);
2779 }
2780
2781 static void
vfs_freecancelopt(char ** moc)2782 vfs_freecancelopt(char **moc)
2783 {
2784 if (moc != NULL) {
2785 int ccnt = 0;
2786 char **cp;
2787
2788 for (cp = moc; *cp != NULL; cp++) {
2789 kmem_free(*cp, strlen(*cp) + 1);
2790 ccnt++;
2791 }
2792 kmem_free(moc, (ccnt + 1) * sizeof (char *));
2793 }
2794 }
2795
2796 static void
vfs_freeopt(mntopt_t * mop)2797 vfs_freeopt(mntopt_t *mop)
2798 {
2799 if (mop->mo_name != NULL)
2800 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2801
2802 vfs_freecancelopt(mop->mo_cancel);
2803
2804 if (mop->mo_arg != NULL)
2805 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2806 }
2807
2808 /*
2809 * Free a mount options table
2810 *
2811 * This function is *not* for general use by filesystems.
2812 *
2813 * Note: caller is responsible for locking the vfs list, if needed,
2814 * to protect mp.
2815 */
2816 void
vfs_freeopttbl(mntopts_t * mp)2817 vfs_freeopttbl(mntopts_t *mp)
2818 {
2819 uint_t i, count;
2820
2821 count = mp->mo_count;
2822 for (i = 0; i < count; i++) {
2823 vfs_freeopt(&mp->mo_list[i]);
2824 }
2825 if (count) {
2826 kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2827 mp->mo_count = 0;
2828 mp->mo_list = NULL;
2829 }
2830 }
2831
2832
2833 /* ARGSUSED */
2834 static int
vfs_mntdummyread(vnode_t * vp,uio_t * uio,int ioflag,cred_t * cred,caller_context_t * ct)2835 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2836 caller_context_t *ct)
2837 {
2838 return (0);
2839 }
2840
2841 /* ARGSUSED */
2842 static int
vfs_mntdummywrite(vnode_t * vp,uio_t * uio,int ioflag,cred_t * cred,caller_context_t * ct)2843 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2844 caller_context_t *ct)
2845 {
2846 return (0);
2847 }
2848
2849 /*
2850 * The dummy vnode is currently used only by file events notification
2851 * module which is just interested in the timestamps.
2852 */
2853 /* ARGSUSED */
2854 static int
vfs_mntdummygetattr(vnode_t * vp,vattr_t * vap,int flags,cred_t * cr,caller_context_t * ct)2855 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2856 caller_context_t *ct)
2857 {
2858 bzero(vap, sizeof (vattr_t));
2859 vap->va_type = VREG;
2860 vap->va_nlink = 1;
2861 vap->va_ctime = vfs_mnttab_ctime;
2862 /*
2863 * it is ok to just copy mtime as the time will be monotonically
2864 * increasing.
2865 */
2866 vap->va_mtime = vfs_mnttab_mtime;
2867 vap->va_atime = vap->va_mtime;
2868 return (0);
2869 }
2870
2871 static void
vfs_mnttabvp_setup(void)2872 vfs_mnttabvp_setup(void)
2873 {
2874 vnode_t *tvp;
2875 vnodeops_t *vfs_mntdummyvnops;
2876 const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2877 VOPNAME_READ, { .vop_read = vfs_mntdummyread },
2878 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite },
2879 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr },
2880 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
2881 NULL, NULL
2882 };
2883
2884 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2885 &vfs_mntdummyvnops) != 0) {
2886 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2887 /* Shouldn't happen, but not bad enough to panic */
2888 return;
2889 }
2890
2891 /*
2892 * A global dummy vnode is allocated to represent mntfs files.
2893 * The mntfs file (/etc/mnttab) can be monitored for file events
2894 * and receive an event when mnttab changes. Dummy VOP calls
2895 * will be made on this vnode. The file events notification module
2896 * intercepts this vnode and delivers relevant events.
2897 */
2898 tvp = vn_alloc(KM_SLEEP);
2899 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2900 vn_setops(tvp, vfs_mntdummyvnops);
2901 tvp->v_type = VREG;
2902 /*
2903 * The mnt dummy ops do not reference v_data.
2904 * No other module intercepting this vnode should either.
2905 * Just set it to point to itself.
2906 */
2907 tvp->v_data = (caddr_t)tvp;
2908 tvp->v_vfsp = rootvfs;
2909 vfs_mntdummyvp = tvp;
2910 }
2911
2912 /*
2913 * performs fake read/write ops
2914 */
2915 static void
vfs_mnttab_rwop(int rw)2916 vfs_mnttab_rwop(int rw)
2917 {
2918 struct uio uio;
2919 struct iovec iov;
2920 char buf[1];
2921
2922 if (vfs_mntdummyvp == NULL)
2923 return;
2924
2925 bzero(&uio, sizeof (uio));
2926 bzero(&iov, sizeof (iov));
2927 iov.iov_base = buf;
2928 iov.iov_len = 0;
2929 uio.uio_iov = &iov;
2930 uio.uio_iovcnt = 1;
2931 uio.uio_loffset = 0;
2932 uio.uio_segflg = UIO_SYSSPACE;
2933 uio.uio_resid = 0;
2934 if (rw) {
2935 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2936 } else {
2937 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2938 }
2939 }
2940
2941 /*
2942 * Generate a write operation.
2943 */
2944 void
vfs_mnttab_writeop(void)2945 vfs_mnttab_writeop(void)
2946 {
2947 vfs_mnttab_rwop(1);
2948 }
2949
2950 /*
2951 * Generate a read operation.
2952 */
2953 void
vfs_mnttab_readop(void)2954 vfs_mnttab_readop(void)
2955 {
2956 vfs_mnttab_rwop(0);
2957 }
2958
2959 /*
2960 * Free any mnttab information recorded in the vfs struct.
2961 * The vfs must not be on the vfs list.
2962 */
2963 static void
vfs_freemnttab(struct vfs * vfsp)2964 vfs_freemnttab(struct vfs *vfsp)
2965 {
2966 ASSERT(!VFS_ON_LIST(vfsp));
2967
2968 /*
2969 * Free device and mount point information
2970 */
2971 if (vfsp->vfs_mntpt != NULL) {
2972 refstr_rele(vfsp->vfs_mntpt);
2973 vfsp->vfs_mntpt = NULL;
2974 }
2975 if (vfsp->vfs_resource != NULL) {
2976 refstr_rele(vfsp->vfs_resource);
2977 vfsp->vfs_resource = NULL;
2978 }
2979 /*
2980 * Now free mount options information
2981 */
2982 vfs_freeopttbl(&vfsp->vfs_mntopts);
2983 }
2984
2985 /*
2986 * Return the last mnttab modification time
2987 */
2988 void
vfs_mnttab_modtime(timespec_t * ts)2989 vfs_mnttab_modtime(timespec_t *ts)
2990 {
2991 ASSERT(RW_LOCK_HELD(&vfslist));
2992 *ts = vfs_mnttab_mtime;
2993 }
2994
2995 /*
2996 * See if mnttab is changed
2997 */
2998 void
vfs_mnttab_poll(timespec_t * old,struct pollhead ** phpp)2999 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
3000 {
3001 int changed;
3002
3003 *phpp = (struct pollhead *)NULL;
3004
3005 /*
3006 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
3007 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
3008 * to not grab the vfs list lock because tv_sec is monotonically
3009 * increasing.
3010 */
3011
3012 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
3013 (old->tv_sec != vfs_mnttab_mtime.tv_sec);
3014 if (!changed) {
3015 *phpp = &vfs_pollhd;
3016 }
3017 }
3018
3019 /* Provide a unique and monotonically-increasing timestamp. */
3020 void
vfs_mono_time(timespec_t * ts)3021 vfs_mono_time(timespec_t *ts)
3022 {
3023 static volatile hrtime_t hrt; /* The saved time. */
3024 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */
3025 timespec_t newts;
3026
3027 /*
3028 * Try gethrestime() first, but be prepared to fabricate a sensible
3029 * answer at the first sign of any trouble.
3030 */
3031 gethrestime(&newts);
3032 newhrt = ts2hrt(&newts);
3033 for (;;) {
3034 oldhrt = hrt;
3035 if (newhrt <= hrt)
3036 newhrt = hrt + 1;
3037 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
3038 break;
3039 }
3040 hrt2ts(newhrt, ts);
3041 }
3042
3043 /*
3044 * Update the mnttab modification time and wake up any waiters for
3045 * mnttab changes
3046 */
3047 void
vfs_mnttab_modtimeupd()3048 vfs_mnttab_modtimeupd()
3049 {
3050 hrtime_t oldhrt, newhrt;
3051
3052 ASSERT(RW_WRITE_HELD(&vfslist));
3053 oldhrt = ts2hrt(&vfs_mnttab_mtime);
3054 gethrestime(&vfs_mnttab_mtime);
3055 newhrt = ts2hrt(&vfs_mnttab_mtime);
3056 if (oldhrt == (hrtime_t)0)
3057 vfs_mnttab_ctime = vfs_mnttab_mtime;
3058 /*
3059 * Attempt to provide unique mtime (like uniqtime but not).
3060 */
3061 if (newhrt == oldhrt) {
3062 newhrt++;
3063 hrt2ts(newhrt, &vfs_mnttab_mtime);
3064 }
3065 pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3066 vfs_mnttab_writeop();
3067 }
3068
3069 int
dounmount(struct vfs * vfsp,int flag,cred_t * cr)3070 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3071 {
3072 vnode_t *coveredvp;
3073 int error;
3074 extern void teardown_vopstats(vfs_t *);
3075
3076 /*
3077 * Get covered vnode. This will be NULL if the vfs is not linked
3078 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3079 */
3080 coveredvp = vfsp->vfs_vnodecovered;
3081 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3082
3083 /*
3084 * Purge all dnlc entries for this vfs.
3085 */
3086 (void) dnlc_purge_vfsp(vfsp, 0);
3087
3088 /* For forcible umount, skip VFS_SYNC() since it may hang */
3089 if ((flag & MS_FORCE) == 0)
3090 (void) VFS_SYNC(vfsp, 0, cr);
3091
3092 /*
3093 * Lock the vfs to maintain fs status quo during unmount. This
3094 * has to be done after the sync because ufs_update tries to acquire
3095 * the vfs_reflock.
3096 */
3097 vfs_lock_wait(vfsp);
3098
3099 if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3100 vfs_unlock(vfsp);
3101 if (coveredvp != NULL)
3102 vn_vfsunlock(coveredvp);
3103 } else if (coveredvp != NULL) {
3104 teardown_vopstats(vfsp);
3105 /*
3106 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3107 * when it frees vfsp so we do a VN_HOLD() so we can
3108 * continue to use coveredvp afterwards.
3109 */
3110 VN_HOLD(coveredvp);
3111 vfs_remove(vfsp);
3112 vn_vfsunlock(coveredvp);
3113 VN_RELE(coveredvp);
3114 } else {
3115 teardown_vopstats(vfsp);
3116 /*
3117 * Release the reference to vfs that is not linked
3118 * into the name space.
3119 */
3120 vfs_unlock(vfsp);
3121 VFS_RELE(vfsp);
3122 }
3123 return (error);
3124 }
3125
3126
3127 /*
3128 * Vfs_unmountall() is called by uadmin() to unmount all
3129 * mounted file systems (except the root file system) during shutdown.
3130 * It follows the existing locking protocol when traversing the vfs list
3131 * to sync and unmount vfses. Even though there should be no
3132 * other thread running while the system is shutting down, it is prudent
3133 * to still follow the locking protocol.
3134 */
3135 void
vfs_unmountall(void)3136 vfs_unmountall(void)
3137 {
3138 struct vfs *vfsp;
3139 struct vfs *prev_vfsp = NULL;
3140 int error;
3141
3142 /*
3143 * Toss all dnlc entries now so that the per-vfs sync
3144 * and unmount operations don't have to slog through
3145 * a bunch of uninteresting vnodes over and over again.
3146 */
3147 dnlc_purge();
3148
3149 vfs_list_lock();
3150 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3151 prev_vfsp = vfsp->vfs_prev;
3152
3153 if (vfs_lock(vfsp) != 0)
3154 continue;
3155 error = vn_vfswlock(vfsp->vfs_vnodecovered);
3156 vfs_unlock(vfsp);
3157 if (error)
3158 continue;
3159
3160 vfs_list_unlock();
3161
3162 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3163 (void) dounmount(vfsp, 0, CRED());
3164
3165 /*
3166 * Since we dropped the vfslist lock above we must
3167 * verify that next_vfsp still exists, else start over.
3168 */
3169 vfs_list_lock();
3170 for (vfsp = rootvfs->vfs_prev;
3171 vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3172 if (vfsp == prev_vfsp)
3173 break;
3174 if (vfsp == rootvfs && prev_vfsp != rootvfs)
3175 prev_vfsp = rootvfs->vfs_prev;
3176 }
3177 vfs_list_unlock();
3178 }
3179
3180 /*
3181 * Called to add an entry to the end of the vfs mount in progress list
3182 */
3183 void
vfs_addmip(dev_t dev,struct vfs * vfsp)3184 vfs_addmip(dev_t dev, struct vfs *vfsp)
3185 {
3186 struct ipmnt *mipp;
3187
3188 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3189 mipp->mip_next = NULL;
3190 mipp->mip_dev = dev;
3191 mipp->mip_vfsp = vfsp;
3192 mutex_enter(&vfs_miplist_mutex);
3193 if (vfs_miplist_end != NULL)
3194 vfs_miplist_end->mip_next = mipp;
3195 else
3196 vfs_miplist = mipp;
3197 vfs_miplist_end = mipp;
3198 mutex_exit(&vfs_miplist_mutex);
3199 }
3200
3201 /*
3202 * Called to remove an entry from the mount in progress list
3203 * Either because the mount completed or it failed.
3204 */
3205 void
vfs_delmip(struct vfs * vfsp)3206 vfs_delmip(struct vfs *vfsp)
3207 {
3208 struct ipmnt *mipp, *mipprev;
3209
3210 mutex_enter(&vfs_miplist_mutex);
3211 mipprev = NULL;
3212 for (mipp = vfs_miplist;
3213 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3214 mipprev = mipp;
3215 }
3216 if (mipp == NULL)
3217 return; /* shouldn't happen */
3218 if (mipp == vfs_miplist_end)
3219 vfs_miplist_end = mipprev;
3220 if (mipprev == NULL)
3221 vfs_miplist = mipp->mip_next;
3222 else
3223 mipprev->mip_next = mipp->mip_next;
3224 mutex_exit(&vfs_miplist_mutex);
3225 kmem_free(mipp, sizeof (struct ipmnt));
3226 }
3227
3228 /*
3229 * vfs_add is called by a specific filesystem's mount routine to add
3230 * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3231 * The vfs should already have been locked by the caller.
3232 *
3233 * coveredvp is NULL if this is the root.
3234 */
3235 void
vfs_add(vnode_t * coveredvp,struct vfs * vfsp,int mflag)3236 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3237 {
3238 int newflag;
3239
3240 ASSERT(vfs_lock_held(vfsp));
3241 VFS_HOLD(vfsp);
3242 newflag = vfsp->vfs_flag;
3243 if (mflag & MS_RDONLY)
3244 newflag |= VFS_RDONLY;
3245 else
3246 newflag &= ~VFS_RDONLY;
3247 if (mflag & MS_NOSUID)
3248 newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3249 else
3250 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3251 if (mflag & MS_NOMNTTAB)
3252 newflag |= VFS_NOMNTTAB;
3253 else
3254 newflag &= ~VFS_NOMNTTAB;
3255
3256 if (coveredvp != NULL) {
3257 ASSERT(vn_vfswlock_held(coveredvp));
3258 coveredvp->v_vfsmountedhere = vfsp;
3259 VN_HOLD(coveredvp);
3260 }
3261 vfsp->vfs_vnodecovered = coveredvp;
3262 vfsp->vfs_flag = newflag;
3263
3264 vfs_list_add(vfsp);
3265 }
3266
3267 /*
3268 * Remove a vfs from the vfs list, null out the pointer from the
3269 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3270 * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3271 * reference to the vfs and to the covered vnode.
3272 *
3273 * Called from dounmount after it's confirmed with the file system
3274 * that the unmount is legal.
3275 */
3276 void
vfs_remove(struct vfs * vfsp)3277 vfs_remove(struct vfs *vfsp)
3278 {
3279 vnode_t *vp;
3280
3281 ASSERT(vfs_lock_held(vfsp));
3282
3283 /*
3284 * Can't unmount root. Should never happen because fs will
3285 * be busy.
3286 */
3287 if (vfsp == rootvfs)
3288 panic("vfs_remove: unmounting root");
3289
3290 vfs_list_remove(vfsp);
3291
3292 /*
3293 * Unhook from the file system name space.
3294 */
3295 vp = vfsp->vfs_vnodecovered;
3296 ASSERT(vn_vfswlock_held(vp));
3297 vp->v_vfsmountedhere = NULL;
3298 vfsp->vfs_vnodecovered = NULL;
3299 VN_RELE(vp);
3300
3301 /*
3302 * Release lock and wakeup anybody waiting.
3303 */
3304 vfs_unlock(vfsp);
3305 VFS_RELE(vfsp);
3306 }
3307
3308 /*
3309 * Lock a filesystem to prevent access to it while mounting,
3310 * unmounting and syncing. Return EBUSY immediately if lock
3311 * can't be acquired.
3312 */
3313 int
vfs_lock(vfs_t * vfsp)3314 vfs_lock(vfs_t *vfsp)
3315 {
3316 vn_vfslocks_entry_t *vpvfsentry;
3317
3318 vpvfsentry = vn_vfslocks_getlock(vfsp);
3319 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3320 return (0);
3321
3322 vn_vfslocks_rele(vpvfsentry);
3323 return (EBUSY);
3324 }
3325
3326 int
vfs_rlock(vfs_t * vfsp)3327 vfs_rlock(vfs_t *vfsp)
3328 {
3329 vn_vfslocks_entry_t *vpvfsentry;
3330
3331 vpvfsentry = vn_vfslocks_getlock(vfsp);
3332
3333 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3334 return (0);
3335
3336 vn_vfslocks_rele(vpvfsentry);
3337 return (EBUSY);
3338 }
3339
3340 void
vfs_lock_wait(vfs_t * vfsp)3341 vfs_lock_wait(vfs_t *vfsp)
3342 {
3343 vn_vfslocks_entry_t *vpvfsentry;
3344
3345 vpvfsentry = vn_vfslocks_getlock(vfsp);
3346 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3347 }
3348
3349 void
vfs_rlock_wait(vfs_t * vfsp)3350 vfs_rlock_wait(vfs_t *vfsp)
3351 {
3352 vn_vfslocks_entry_t *vpvfsentry;
3353
3354 vpvfsentry = vn_vfslocks_getlock(vfsp);
3355 rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3356 }
3357
3358 /*
3359 * Unlock a locked filesystem.
3360 */
3361 void
vfs_unlock(vfs_t * vfsp)3362 vfs_unlock(vfs_t *vfsp)
3363 {
3364 vn_vfslocks_entry_t *vpvfsentry;
3365
3366 /*
3367 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3368 * And these changes should remain for the patch changes as it is.
3369 */
3370 if (panicstr)
3371 return;
3372
3373 /*
3374 * ve_refcount needs to be dropped twice here.
3375 * 1. To release refernce after a call to vfs_locks_getlock()
3376 * 2. To release the reference from the locking routines like
3377 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3378 */
3379
3380 vpvfsentry = vn_vfslocks_getlock(vfsp);
3381 vn_vfslocks_rele(vpvfsentry);
3382
3383 rwst_exit(&vpvfsentry->ve_lock);
3384 vn_vfslocks_rele(vpvfsentry);
3385 }
3386
3387 /*
3388 * Utility routine that allows a filesystem to construct its
3389 * fsid in "the usual way" - by munging some underlying dev_t and
3390 * the filesystem type number into the 64-bit fsid. Note that
3391 * this implicitly relies on dev_t persistence to make filesystem
3392 * id's persistent.
3393 *
3394 * There's nothing to prevent an individual fs from constructing its
3395 * fsid in a different way, and indeed they should.
3396 *
3397 * Since we want fsids to be 32-bit quantities (so that they can be
3398 * exported identically by either 32-bit or 64-bit APIs, as well as
3399 * the fact that fsid's are "known" to NFS), we compress the device
3400 * number given down to 32-bits, and panic if that isn't possible.
3401 */
3402 void
vfs_make_fsid(fsid_t * fsi,dev_t dev,int val)3403 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3404 {
3405 if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3406 panic("device number too big for fsid!");
3407 fsi->val[1] = val;
3408 }
3409
3410 int
vfs_lock_held(vfs_t * vfsp)3411 vfs_lock_held(vfs_t *vfsp)
3412 {
3413 int held;
3414 vn_vfslocks_entry_t *vpvfsentry;
3415
3416 /*
3417 * vfs_lock_held will mimic sema_held behaviour
3418 * if panicstr is set. And these changes should remain
3419 * for the patch changes as it is.
3420 */
3421 if (panicstr)
3422 return (1);
3423
3424 vpvfsentry = vn_vfslocks_getlock(vfsp);
3425 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3426
3427 vn_vfslocks_rele(vpvfsentry);
3428 return (held);
3429 }
3430
3431 struct _kthread *
vfs_lock_owner(vfs_t * vfsp)3432 vfs_lock_owner(vfs_t *vfsp)
3433 {
3434 struct _kthread *owner;
3435 vn_vfslocks_entry_t *vpvfsentry;
3436
3437 /*
3438 * vfs_wlock_held will mimic sema_held behaviour
3439 * if panicstr is set. And these changes should remain
3440 * for the patch changes as it is.
3441 */
3442 if (panicstr)
3443 return (NULL);
3444
3445 vpvfsentry = vn_vfslocks_getlock(vfsp);
3446 owner = rwst_owner(&vpvfsentry->ve_lock);
3447
3448 vn_vfslocks_rele(vpvfsentry);
3449 return (owner);
3450 }
3451
3452 /*
3453 * vfs list locking.
3454 *
3455 * Rather than manipulate the vfslist lock directly, we abstract into lock
3456 * and unlock routines to allow the locking implementation to be changed for
3457 * clustering.
3458 *
3459 * Whenever the vfs list is modified through its hash links, the overall list
3460 * lock must be obtained before locking the relevant hash bucket. But to see
3461 * whether a given vfs is on the list, it suffices to obtain the lock for the
3462 * hash bucket without getting the overall list lock. (See getvfs() below.)
3463 */
3464
3465 void
vfs_list_lock()3466 vfs_list_lock()
3467 {
3468 rw_enter(&vfslist, RW_WRITER);
3469 }
3470
3471 void
vfs_list_read_lock()3472 vfs_list_read_lock()
3473 {
3474 rw_enter(&vfslist, RW_READER);
3475 }
3476
3477 void
vfs_list_unlock()3478 vfs_list_unlock()
3479 {
3480 rw_exit(&vfslist);
3481 }
3482
3483 /*
3484 * Low level worker routines for adding entries to and removing entries from
3485 * the vfs list.
3486 */
3487
3488 static void
vfs_hash_add(struct vfs * vfsp,int insert_at_head)3489 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3490 {
3491 int vhno;
3492 struct vfs **hp;
3493 dev_t dev;
3494
3495 ASSERT(RW_WRITE_HELD(&vfslist));
3496
3497 dev = expldev(vfsp->vfs_fsid.val[0]);
3498 vhno = VFSHASH(getmajor(dev), getminor(dev));
3499
3500 mutex_enter(&rvfs_list[vhno].rvfs_lock);
3501
3502 /*
3503 * Link into the hash table, inserting it at the end, so that LOFS
3504 * with the same fsid as UFS (or other) file systems will not hide the
3505 * UFS.
3506 */
3507 if (insert_at_head) {
3508 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3509 rvfs_list[vhno].rvfs_head = vfsp;
3510 } else {
3511 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3512 hp = &(*hp)->vfs_hash)
3513 continue;
3514 /*
3515 * hp now contains the address of the pointer to update
3516 * to effect the insertion.
3517 */
3518 vfsp->vfs_hash = NULL;
3519 *hp = vfsp;
3520 }
3521
3522 rvfs_list[vhno].rvfs_len++;
3523 mutex_exit(&rvfs_list[vhno].rvfs_lock);
3524 }
3525
3526
3527 static void
vfs_hash_remove(struct vfs * vfsp)3528 vfs_hash_remove(struct vfs *vfsp)
3529 {
3530 int vhno;
3531 struct vfs *tvfsp;
3532 dev_t dev;
3533
3534 ASSERT(RW_WRITE_HELD(&vfslist));
3535
3536 dev = expldev(vfsp->vfs_fsid.val[0]);
3537 vhno = VFSHASH(getmajor(dev), getminor(dev));
3538
3539 mutex_enter(&rvfs_list[vhno].rvfs_lock);
3540
3541 /*
3542 * Remove from hash.
3543 */
3544 if (rvfs_list[vhno].rvfs_head == vfsp) {
3545 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3546 rvfs_list[vhno].rvfs_len--;
3547 goto foundit;
3548 }
3549 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3550 tvfsp = tvfsp->vfs_hash) {
3551 if (tvfsp->vfs_hash == vfsp) {
3552 tvfsp->vfs_hash = vfsp->vfs_hash;
3553 rvfs_list[vhno].rvfs_len--;
3554 goto foundit;
3555 }
3556 }
3557 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3558
3559 foundit:
3560
3561 mutex_exit(&rvfs_list[vhno].rvfs_lock);
3562 }
3563
3564
3565 void
vfs_list_add(struct vfs * vfsp)3566 vfs_list_add(struct vfs *vfsp)
3567 {
3568 zone_t *zone;
3569
3570 /*
3571 * Typically, the vfs_t will have been created on behalf of the file
3572 * system in vfs_init, where it will have been provided with a
3573 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3574 * by an unbundled file system. We therefore check for such an example
3575 * before stamping the vfs_t with its creation time for the benefit of
3576 * mntfs.
3577 */
3578 if (vfsp->vfs_implp == NULL)
3579 vfsimpl_setup(vfsp);
3580 vfs_mono_time(&vfsp->vfs_hrctime);
3581
3582 /*
3583 * The zone that owns the mount is the one that performed the mount.
3584 * Note that this isn't necessarily the same as the zone mounted into.
3585 * The corresponding zone_rele_ref() will be done when the vfs_t
3586 * is being free'd.
3587 */
3588 vfsp->vfs_zone = curproc->p_zone;
3589 zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3590 zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3591 ZONE_REF_VFS);
3592
3593 /*
3594 * Find the zone mounted into, and put this mount on its vfs list.
3595 */
3596 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3597 ASSERT(zone != NULL);
3598 /*
3599 * Special casing for the root vfs. This structure is allocated
3600 * statically and hooked onto rootvfs at link time. During the
3601 * vfs_mountroot call at system startup time, the root file system's
3602 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3603 * as argument. The code below must detect and handle this special
3604 * case. The only apparent justification for this special casing is
3605 * to ensure that the root file system appears at the head of the
3606 * list.
3607 *
3608 * XXX: I'm assuming that it's ok to do normal list locking when
3609 * adding the entry for the root file system (this used to be
3610 * done with no locks held).
3611 */
3612 vfs_list_lock();
3613 /*
3614 * Link into the vfs list proper.
3615 */
3616 if (vfsp == &root) {
3617 /*
3618 * Assert: This vfs is already on the list as its first entry.
3619 * Thus, there's nothing to do.
3620 */
3621 ASSERT(rootvfs == vfsp);
3622 /*
3623 * Add it to the head of the global zone's vfslist.
3624 */
3625 ASSERT(zone == global_zone);
3626 ASSERT(zone->zone_vfslist == NULL);
3627 zone->zone_vfslist = vfsp;
3628 } else {
3629 /*
3630 * Link to end of list using vfs_prev (as rootvfs is now a
3631 * doubly linked circular list) so list is in mount order for
3632 * mnttab use.
3633 */
3634 rootvfs->vfs_prev->vfs_next = vfsp;
3635 vfsp->vfs_prev = rootvfs->vfs_prev;
3636 rootvfs->vfs_prev = vfsp;
3637 vfsp->vfs_next = rootvfs;
3638
3639 /*
3640 * Do it again for the zone-private list (which may be NULL).
3641 */
3642 if (zone->zone_vfslist == NULL) {
3643 ASSERT(zone != global_zone);
3644 zone->zone_vfslist = vfsp;
3645 } else {
3646 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3647 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3648 zone->zone_vfslist->vfs_zone_prev = vfsp;
3649 vfsp->vfs_zone_next = zone->zone_vfslist;
3650 }
3651 }
3652
3653 /*
3654 * Link into the hash table, inserting it at the end, so that LOFS
3655 * with the same fsid as UFS (or other) file systems will not hide
3656 * the UFS.
3657 */
3658 vfs_hash_add(vfsp, 0);
3659
3660 /*
3661 * Link into tree indexed by mntpoint, for vfs_mntpoint2vfsp
3662 * mntix discerns entries with the same key
3663 */
3664 vfsp->vfs_mntix = ++vfs_curr_mntix;
3665 avl_add(&vfs_by_dev, vfsp);
3666
3667 /*
3668 * Link into tree indexed by dev, for vfs_devismounted
3669 */
3670 avl_add(&vfs_by_mntpnt, vfsp);
3671
3672 /*
3673 * update the mnttab modification time
3674 */
3675 vfs_mnttab_modtimeupd();
3676 vfs_list_unlock();
3677 zone_rele(zone);
3678 }
3679
3680 void
vfs_list_remove(struct vfs * vfsp)3681 vfs_list_remove(struct vfs *vfsp)
3682 {
3683 zone_t *zone;
3684
3685 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3686 ASSERT(zone != NULL);
3687 /*
3688 * Callers are responsible for preventing attempts to unmount the
3689 * root.
3690 */
3691 ASSERT(vfsp != rootvfs);
3692
3693 vfs_list_lock();
3694
3695 /*
3696 * Remove from avl trees
3697 */
3698 avl_remove(&vfs_by_mntpnt, vfsp);
3699 avl_remove(&vfs_by_dev, vfsp);
3700
3701 /*
3702 * Remove from hash.
3703 */
3704 vfs_hash_remove(vfsp);
3705
3706 /*
3707 * Remove from vfs list.
3708 */
3709 vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3710 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3711 vfsp->vfs_next = vfsp->vfs_prev = NULL;
3712
3713 /*
3714 * Remove from zone-specific vfs list.
3715 */
3716 if (zone->zone_vfslist == vfsp)
3717 zone->zone_vfslist = vfsp->vfs_zone_next;
3718
3719 if (vfsp->vfs_zone_next == vfsp) {
3720 ASSERT(vfsp->vfs_zone_prev == vfsp);
3721 ASSERT(zone->zone_vfslist == vfsp);
3722 zone->zone_vfslist = NULL;
3723 }
3724
3725 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3726 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3727 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3728
3729 /*
3730 * update the mnttab modification time
3731 */
3732 vfs_mnttab_modtimeupd();
3733 vfs_list_unlock();
3734 zone_rele(zone);
3735 }
3736
3737 struct vfs *
getvfs(fsid_t * fsid)3738 getvfs(fsid_t *fsid)
3739 {
3740 struct vfs *vfsp;
3741 int val0 = fsid->val[0];
3742 int val1 = fsid->val[1];
3743 dev_t dev = expldev(val0);
3744 int vhno = VFSHASH(getmajor(dev), getminor(dev));
3745 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3746
3747 mutex_enter(hmp);
3748 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3749 if (vfsp->vfs_fsid.val[0] == val0 &&
3750 vfsp->vfs_fsid.val[1] == val1) {
3751 VFS_HOLD(vfsp);
3752 mutex_exit(hmp);
3753 return (vfsp);
3754 }
3755 }
3756 mutex_exit(hmp);
3757 return (NULL);
3758 }
3759
3760 /*
3761 * Search the vfs mount in progress list for a specified device/vfs entry.
3762 * Returns 0 if the first entry in the list that the device matches has the
3763 * given vfs pointer as well. If the device matches but a different vfs
3764 * pointer is encountered in the list before the given vfs pointer then
3765 * a 1 is returned.
3766 */
3767
3768 int
vfs_devmounting(dev_t dev,struct vfs * vfsp)3769 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3770 {
3771 int retval = 0;
3772 struct ipmnt *mipp;
3773
3774 mutex_enter(&vfs_miplist_mutex);
3775 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3776 if (mipp->mip_dev == dev) {
3777 if (mipp->mip_vfsp != vfsp)
3778 retval = 1;
3779 break;
3780 }
3781 }
3782 mutex_exit(&vfs_miplist_mutex);
3783 return (retval);
3784 }
3785
3786 /*
3787 * Search the vfs list for a specified device. Returns 1, if entry is found
3788 * or 0 if no suitable entry is found.
3789 */
3790
3791 int
vfs_devismounted(dev_t dev)3792 vfs_devismounted(dev_t dev)
3793 {
3794 struct vfs *vfsp;
3795 int found = 0;
3796 struct vfs search;
3797 avl_index_t index;
3798
3799 search.vfs_dev = dev;
3800 search.vfs_mntix = 0;
3801
3802 vfs_list_read_lock();
3803
3804 /*
3805 * there might be several entries with the same dev in the tree,
3806 * only discerned by mntix. To find the first, we start with a mntix
3807 * of 0. The search will fail. The following avl_nearest will give
3808 * us the actual first entry.
3809 */
3810 VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL);
3811 vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER);
3812
3813 if (vfsp != NULL && vfsp->vfs_dev == dev)
3814 found = 1;
3815
3816 vfs_list_unlock();
3817 return (found);
3818 }
3819
3820 /*
3821 * Search the vfs list for a specified device. Returns a pointer to it
3822 * or NULL if no suitable entry is found. The caller of this routine
3823 * is responsible for releasing the returned vfs pointer.
3824 */
3825 struct vfs *
vfs_dev2vfsp(dev_t dev)3826 vfs_dev2vfsp(dev_t dev)
3827 {
3828 struct vfs *vfsp;
3829 int found;
3830 struct vfs search;
3831 avl_index_t index;
3832
3833 search.vfs_dev = dev;
3834 search.vfs_mntix = 0;
3835
3836 vfs_list_read_lock();
3837
3838 /*
3839 * there might be several entries with the same dev in the tree,
3840 * only discerned by mntix. To find the first, we start with a mntix
3841 * of 0. The search will fail. The following avl_nearest will give
3842 * us the actual first entry.
3843 */
3844 VERIFY(avl_find(&vfs_by_dev, &search, &index) == NULL);
3845 vfsp = avl_nearest(&vfs_by_dev, index, AVL_AFTER);
3846
3847 found = 0;
3848 while (vfsp != NULL && vfsp->vfs_dev == dev) {
3849 /*
3850 * The following could be made more efficient by making
3851 * the entire loop use vfs_zone_next if the call is from
3852 * a zone. The only callers, however, ustat(2) and
3853 * umount2(2), don't seem to justify the added
3854 * complexity at present.
3855 */
3856 if (ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3857 curproc->p_zone)) {
3858 VFS_HOLD(vfsp);
3859 found = 1;
3860 break;
3861 }
3862 vfsp = AVL_NEXT(&vfs_by_dev, vfsp);
3863 }
3864 vfs_list_unlock();
3865 return (found ? vfsp : NULL);
3866 }
3867
3868 /*
3869 * Search the vfs list for a specified mntpoint. Returns a pointer to it
3870 * or NULL if no suitable entry is found. The caller of this routine
3871 * is responsible for releasing the returned vfs pointer.
3872 *
3873 * Note that if multiple mntpoints match, the last one matching is
3874 * returned in an attempt to return the "top" mount when overlay
3875 * mounts are covering the same mount point. This is accomplished by starting
3876 * at the end of the list and working our way backwards, stopping at the first
3877 * matching mount.
3878 */
3879 struct vfs *
vfs_mntpoint2vfsp(const char * mp)3880 vfs_mntpoint2vfsp(const char *mp)
3881 {
3882 struct vfs *vfsp;
3883 struct vfs *retvfsp = NULL;
3884 zone_t *zone = curproc->p_zone;
3885 struct vfs *list;
3886
3887 vfs_list_read_lock();
3888 if (getzoneid() == GLOBAL_ZONEID) {
3889 /*
3890 * The global zone may see filesystems in any zone.
3891 */
3892 struct vfs search;
3893 search.vfs_mntpt = refstr_alloc(mp);
3894 search.vfs_mntix = UINT64_MAX;
3895 avl_index_t index;
3896
3897 /*
3898 * there might be several entries with the same mntpnt in the
3899 * tree, only discerned by mntix. To find the last, we start
3900 * with a mntix of UINT64_MAX. The search will fail. The
3901 * following avl_nearest will give us the actual last entry
3902 * matching the mntpnt.
3903 */
3904 VERIFY(avl_find(&vfs_by_mntpnt, &search, &index) == 0);
3905 vfsp = avl_nearest(&vfs_by_mntpnt, index, AVL_BEFORE);
3906
3907 refstr_rele(search.vfs_mntpt);
3908
3909 if (vfsp != NULL &&
3910 strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0)
3911 retvfsp = vfsp;
3912 } else if ((list = zone->zone_vfslist) != NULL) {
3913 const char *mntpt;
3914
3915 vfsp = list->vfs_zone_prev;
3916 do {
3917 mntpt = refstr_value(vfsp->vfs_mntpt);
3918 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3919 if (strcmp(mntpt, mp) == 0) {
3920 retvfsp = vfsp;
3921 break;
3922 }
3923 vfsp = vfsp->vfs_zone_prev;
3924 } while (vfsp != list->vfs_zone_prev);
3925 }
3926 if (retvfsp)
3927 VFS_HOLD(retvfsp);
3928 vfs_list_unlock();
3929 return (retvfsp);
3930 }
3931
3932 /*
3933 * Search the vfs list for a specified vfsops.
3934 * if vfs entry is found then return 1, else 0.
3935 */
3936 int
vfs_opsinuse(vfsops_t * ops)3937 vfs_opsinuse(vfsops_t *ops)
3938 {
3939 struct vfs *vfsp;
3940 int found;
3941
3942 vfs_list_read_lock();
3943 vfsp = rootvfs;
3944 found = 0;
3945 do {
3946 if (vfs_getops(vfsp) == ops) {
3947 found = 1;
3948 break;
3949 }
3950 vfsp = vfsp->vfs_next;
3951 } while (vfsp != rootvfs);
3952 vfs_list_unlock();
3953 return (found);
3954 }
3955
3956 /*
3957 * Allocate an entry in vfssw for a file system type
3958 */
3959 struct vfssw *
allocate_vfssw(const char * type)3960 allocate_vfssw(const char *type)
3961 {
3962 struct vfssw *vswp;
3963
3964 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3965 /*
3966 * The vfssw table uses the empty string to identify an
3967 * available entry; we cannot add any type which has
3968 * a leading NUL. The string length is limited to
3969 * the size of the st_fstype array in struct stat.
3970 */
3971 return (NULL);
3972 }
3973
3974 ASSERT(VFSSW_WRITE_LOCKED());
3975 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3976 if (!ALLOCATED_VFSSW(vswp)) {
3977 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3978 (void) strcpy(vswp->vsw_name, type);
3979 ASSERT(vswp->vsw_count == 0);
3980 vswp->vsw_count = 1;
3981 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3982 return (vswp);
3983 }
3984 return (NULL);
3985 }
3986
3987 /*
3988 * Impose additional layer of translation between vfstype names
3989 * and module names in the filesystem.
3990 */
3991 static const char *
vfs_to_modname(const char * vfstype)3992 vfs_to_modname(const char *vfstype)
3993 {
3994 if (strcmp(vfstype, "proc") == 0) {
3995 vfstype = "procfs";
3996 } else if (strcmp(vfstype, "fd") == 0) {
3997 vfstype = "fdfs";
3998 } else if (strncmp(vfstype, "nfs", 3) == 0) {
3999 vfstype = "nfs";
4000 }
4001
4002 return (vfstype);
4003 }
4004
4005 /*
4006 * Find a vfssw entry given a file system type name.
4007 * Try to autoload the filesystem if it's not found.
4008 * If it's installed, return the vfssw locked to prevent unloading.
4009 */
4010 struct vfssw *
vfs_getvfssw(const char * type)4011 vfs_getvfssw(const char *type)
4012 {
4013 struct vfssw *vswp;
4014 const char *modname;
4015
4016 RLOCK_VFSSW();
4017 vswp = vfs_getvfsswbyname(type);
4018 modname = vfs_to_modname(type);
4019
4020 if (rootdir == NULL) {
4021 /*
4022 * If we haven't yet loaded the root file system, then our
4023 * _init won't be called until later. Allocate vfssw entry,
4024 * because mod_installfs won't be called.
4025 */
4026 if (vswp == NULL) {
4027 RUNLOCK_VFSSW();
4028 WLOCK_VFSSW();
4029 if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
4030 if ((vswp = allocate_vfssw(type)) == NULL) {
4031 WUNLOCK_VFSSW();
4032 return (NULL);
4033 }
4034 }
4035 WUNLOCK_VFSSW();
4036 RLOCK_VFSSW();
4037 }
4038 if (!VFS_INSTALLED(vswp)) {
4039 RUNLOCK_VFSSW();
4040 (void) modloadonly("fs", modname);
4041 } else
4042 RUNLOCK_VFSSW();
4043 return (vswp);
4044 }
4045
4046 /*
4047 * Try to load the filesystem. Before calling modload(), we drop
4048 * our lock on the VFS switch table, and pick it up after the
4049 * module is loaded. However, there is a potential race: the
4050 * module could be unloaded after the call to modload() completes
4051 * but before we pick up the lock and drive on. Therefore,
4052 * we keep reloading the module until we've loaded the module
4053 * _and_ we have the lock on the VFS switch table.
4054 */
4055 while (vswp == NULL || !VFS_INSTALLED(vswp)) {
4056 RUNLOCK_VFSSW();
4057 if (modload("fs", modname) == -1)
4058 return (NULL);
4059 RLOCK_VFSSW();
4060 if (vswp == NULL)
4061 if ((vswp = vfs_getvfsswbyname(type)) == NULL)
4062 break;
4063 }
4064 RUNLOCK_VFSSW();
4065
4066 return (vswp);
4067 }
4068
4069 /*
4070 * Find a vfssw entry given a file system type name.
4071 */
4072 struct vfssw *
vfs_getvfsswbyname(const char * type)4073 vfs_getvfsswbyname(const char *type)
4074 {
4075 struct vfssw *vswp;
4076
4077 ASSERT(VFSSW_LOCKED());
4078 if (type == NULL || *type == '\0')
4079 return (NULL);
4080
4081 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4082 if (strcmp(type, vswp->vsw_name) == 0) {
4083 vfs_refvfssw(vswp);
4084 return (vswp);
4085 }
4086 }
4087
4088 return (NULL);
4089 }
4090
4091 /*
4092 * Find a vfssw entry given a set of vfsops.
4093 */
4094 struct vfssw *
vfs_getvfsswbyvfsops(vfsops_t * vfsops)4095 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
4096 {
4097 struct vfssw *vswp;
4098
4099 RLOCK_VFSSW();
4100 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4101 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
4102 vfs_refvfssw(vswp);
4103 RUNLOCK_VFSSW();
4104 return (vswp);
4105 }
4106 }
4107 RUNLOCK_VFSSW();
4108
4109 return (NULL);
4110 }
4111
4112 /*
4113 * Reference a vfssw entry.
4114 */
4115 void
vfs_refvfssw(struct vfssw * vswp)4116 vfs_refvfssw(struct vfssw *vswp)
4117 {
4118
4119 mutex_enter(&vswp->vsw_lock);
4120 vswp->vsw_count++;
4121 mutex_exit(&vswp->vsw_lock);
4122 }
4123
4124 /*
4125 * Unreference a vfssw entry.
4126 */
4127 void
vfs_unrefvfssw(struct vfssw * vswp)4128 vfs_unrefvfssw(struct vfssw *vswp)
4129 {
4130
4131 mutex_enter(&vswp->vsw_lock);
4132 vswp->vsw_count--;
4133 mutex_exit(&vswp->vsw_lock);
4134 }
4135
4136 int sync_timeout = 30; /* timeout for syncing a page during panic */
4137 int sync_timeleft; /* portion of sync_timeout remaining */
4138
4139 static int sync_retries = 20; /* number of retries when not making progress */
4140 static int sync_triesleft; /* portion of sync_retries remaining */
4141
4142 static pgcnt_t old_pgcnt, new_pgcnt;
4143 static int new_bufcnt, old_bufcnt;
4144
4145 /*
4146 * Sync all of the mounted filesystems, and then wait for the actual i/o to
4147 * complete. We wait by counting the number of dirty pages and buffers,
4148 * pushing them out using bio_busy() and page_busy(), and then counting again.
4149 * This routine is used during both the uadmin A_SHUTDOWN code as well as
4150 * the SYNC phase of the panic code (see comments in panic.c). It should only
4151 * be used after some higher-level mechanism has quiesced the system so that
4152 * new writes are not being initiated while we are waiting for completion.
4153 *
4154 * To ensure finite running time, our algorithm uses two timeout mechanisms:
4155 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and
4156 * sync_triesleft (a progress counter used by the vfs_syncall() loop below).
4157 * Together these ensure that syncing completes if our i/o paths are stuck.
4158 * The counters are declared above so they can be found easily in the debugger.
4159 *
4160 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the
4161 * vfs_syncprogress() subroutine whenever we make progress through the lists of
4162 * pages and buffers. It is decremented and expired by the deadman() cyclic.
4163 * When vfs_syncall() decides it is done, we disable the deadman() counter by
4164 * setting sync_timeleft to zero. This timer guards against vfs_syncall()
4165 * deadlocking or hanging inside of a broken filesystem or driver routine.
4166 *
4167 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make
4168 * sync_retries consecutive calls to bio_busy() and page_busy() without
4169 * decreasing either the number of dirty buffers or dirty pages below the
4170 * lowest count we have seen so far, we give up and return from vfs_syncall().
4171 *
4172 * Each loop iteration ends with a call to delay() one second to allow time for
4173 * i/o completion and to permit the user time to read our progress messages.
4174 */
4175 void
vfs_syncall(void)4176 vfs_syncall(void)
4177 {
4178 if (rootdir == NULL && !modrootloaded)
4179 return; /* panic during boot - no filesystems yet */
4180
4181 printf("syncing file systems...");
4182 vfs_syncprogress();
4183 sync();
4184
4185 vfs_syncprogress();
4186 sync_triesleft = sync_retries;
4187
4188 old_bufcnt = new_bufcnt = INT_MAX;
4189 old_pgcnt = new_pgcnt = ULONG_MAX;
4190
4191 while (sync_triesleft > 0) {
4192 old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4193 old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4194
4195 new_bufcnt = bio_busy(B_TRUE);
4196 new_pgcnt = page_busy(B_TRUE);
4197 vfs_syncprogress();
4198
4199 if (new_bufcnt == 0 && new_pgcnt == 0)
4200 break;
4201
4202 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4203 sync_triesleft = sync_retries;
4204 else
4205 sync_triesleft--;
4206
4207 if (new_bufcnt)
4208 printf(" [%d]", new_bufcnt);
4209 if (new_pgcnt)
4210 printf(" %lu", new_pgcnt);
4211
4212 delay(hz);
4213 }
4214
4215 if (new_bufcnt != 0 || new_pgcnt != 0)
4216 printf(" done (not all i/o completed)\n");
4217 else
4218 printf(" done\n");
4219
4220 sync_timeleft = 0;
4221 delay(hz);
4222 }
4223
4224 /*
4225 * If we are in the middle of the sync phase of panic, reset sync_timeleft to
4226 * sync_timeout to indicate that we are making progress and the deadman()
4227 * omnipresent cyclic should not yet time us out. Note that it is safe to
4228 * store to sync_timeleft here since the deadman() is firing at high-level
4229 * on top of us. If we are racing with the deadman(), either the deadman()
4230 * will decrement the old value and then we will reset it, or we will
4231 * reset it and then the deadman() will immediately decrement it. In either
4232 * case, correct behavior results.
4233 */
4234 void
vfs_syncprogress(void)4235 vfs_syncprogress(void)
4236 {
4237 if (panicstr)
4238 sync_timeleft = sync_timeout;
4239 }
4240
4241 /*
4242 * Map VFS flags to statvfs flags. These shouldn't really be separate
4243 * flags at all.
4244 */
4245 uint_t
vf_to_stf(uint_t vf)4246 vf_to_stf(uint_t vf)
4247 {
4248 uint_t stf = 0;
4249
4250 if (vf & VFS_RDONLY)
4251 stf |= ST_RDONLY;
4252 if (vf & VFS_NOSETUID)
4253 stf |= ST_NOSUID;
4254 if (vf & VFS_NOTRUNC)
4255 stf |= ST_NOTRUNC;
4256
4257 return (stf);
4258 }
4259
4260 /*
4261 * Entries for (illegal) fstype 0.
4262 */
4263 /* ARGSUSED */
4264 int
vfsstray_sync(struct vfs * vfsp,short arg,struct cred * cr)4265 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4266 {
4267 cmn_err(CE_PANIC, "stray vfs operation");
4268 return (0);
4269 }
4270
4271 /*
4272 * Entries for (illegal) fstype 0.
4273 */
4274 int
vfsstray(void)4275 vfsstray(void)
4276 {
4277 cmn_err(CE_PANIC, "stray vfs operation");
4278 return (0);
4279 }
4280
4281 /*
4282 * Support for dealing with forced UFS unmount and its interaction with
4283 * LOFS. Could be used by any filesystem.
4284 * See bug 1203132.
4285 */
4286 int
vfs_EIO(void)4287 vfs_EIO(void)
4288 {
4289 return (EIO);
4290 }
4291
4292 /*
4293 * We've gotta define the op for sync separately, since the compiler gets
4294 * confused if we mix and match ANSI and normal style prototypes when
4295 * a "short" argument is present and spits out a warning.
4296 */
4297 /*ARGSUSED*/
4298 int
vfs_EIO_sync(struct vfs * vfsp,short arg,struct cred * cr)4299 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4300 {
4301 return (EIO);
4302 }
4303
4304 vfs_t EIO_vfs;
4305 vfsops_t *EIO_vfsops;
4306
4307 /*
4308 * Called from startup() to initialize all loaded vfs's
4309 */
4310 void
vfsinit(void)4311 vfsinit(void)
4312 {
4313 struct vfssw *vswp;
4314 int error;
4315 extern int vopstats_enabled;
4316 extern void vopstats_startup();
4317
4318 static const fs_operation_def_t EIO_vfsops_template[] = {
4319 VFSNAME_MOUNT, { .error = vfs_EIO },
4320 VFSNAME_UNMOUNT, { .error = vfs_EIO },
4321 VFSNAME_ROOT, { .error = vfs_EIO },
4322 VFSNAME_STATVFS, { .error = vfs_EIO },
4323 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync },
4324 VFSNAME_VGET, { .error = vfs_EIO },
4325 VFSNAME_MOUNTROOT, { .error = vfs_EIO },
4326 VFSNAME_FREEVFS, { .error = vfs_EIO },
4327 VFSNAME_VNSTATE, { .error = vfs_EIO },
4328 NULL, NULL
4329 };
4330
4331 static const fs_operation_def_t stray_vfsops_template[] = {
4332 VFSNAME_MOUNT, { .error = vfsstray },
4333 VFSNAME_UNMOUNT, { .error = vfsstray },
4334 VFSNAME_ROOT, { .error = vfsstray },
4335 VFSNAME_STATVFS, { .error = vfsstray },
4336 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync },
4337 VFSNAME_VGET, { .error = vfsstray },
4338 VFSNAME_MOUNTROOT, { .error = vfsstray },
4339 VFSNAME_FREEVFS, { .error = vfsstray },
4340 VFSNAME_VNSTATE, { .error = vfsstray },
4341 NULL, NULL
4342 };
4343
4344 /* Create vfs cache */
4345 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4346 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4347
4348 /* Initialize the vnode cache (file systems may use it during init). */
4349 vn_create_cache();
4350
4351 /* Setup event monitor framework */
4352 fem_init();
4353
4354 /* Initialize the dummy stray file system type. */
4355 error = vfs_setfsops(0, stray_vfsops_template, NULL);
4356
4357 /* Initialize the dummy EIO file system. */
4358 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4359 if (error != 0) {
4360 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4361 /* Shouldn't happen, but not bad enough to panic */
4362 }
4363
4364 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4365
4366 /*
4367 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4368 * on this vfs can immediately notice it's invalid.
4369 */
4370 EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4371
4372 /*
4373 * Call the init routines of non-loadable filesystems only.
4374 * Filesystems which are loaded as separate modules will be
4375 * initialized by the module loading code instead.
4376 */
4377
4378 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4379 RLOCK_VFSSW();
4380 if (vswp->vsw_init != NULL)
4381 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4382 RUNLOCK_VFSSW();
4383 }
4384
4385 vopstats_startup();
4386
4387 if (vopstats_enabled) {
4388 /* EIO_vfs can collect stats, but we don't retrieve them */
4389 initialize_vopstats(&EIO_vfs.vfs_vopstats);
4390 EIO_vfs.vfs_fstypevsp = NULL;
4391 EIO_vfs.vfs_vskap = NULL;
4392 EIO_vfs.vfs_flag |= VFS_STATS;
4393 }
4394
4395 xattr_init();
4396
4397 reparse_point_init();
4398 }
4399
4400 vfs_t *
vfs_alloc(int kmflag)4401 vfs_alloc(int kmflag)
4402 {
4403 vfs_t *vfsp;
4404
4405 vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4406
4407 /*
4408 * Do the simplest initialization here.
4409 * Everything else gets done in vfs_init()
4410 */
4411 bzero(vfsp, sizeof (vfs_t));
4412 return (vfsp);
4413 }
4414
4415 void
vfs_free(vfs_t * vfsp)4416 vfs_free(vfs_t *vfsp)
4417 {
4418 /*
4419 * One would be tempted to assert that "vfsp->vfs_count == 0".
4420 * The problem is that this gets called out of domount() with
4421 * a partially initialized vfs and a vfs_count of 1. This is
4422 * also called from vfs_rele() with a vfs_count of 0. We can't
4423 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4424 * returned. This is because VFS_MOUNT() fully initializes the
4425 * vfs structure and its associated data. VFS_RELE() will call
4426 * VFS_FREEVFS() which may panic the system if the data structures
4427 * aren't fully initialized from a successful VFS_MOUNT()).
4428 */
4429
4430 /* If FEM was in use, make sure everything gets cleaned up */
4431 if (vfsp->vfs_femhead) {
4432 ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4433 mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4434 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4435 vfsp->vfs_femhead = NULL;
4436 }
4437
4438 if (vfsp->vfs_implp)
4439 vfsimpl_teardown(vfsp);
4440 sema_destroy(&vfsp->vfs_reflock);
4441 kmem_cache_free(vfs_cache, vfsp);
4442 }
4443
4444 /*
4445 * Increments the vfs reference count by one atomically.
4446 */
4447 void
vfs_hold(vfs_t * vfsp)4448 vfs_hold(vfs_t *vfsp)
4449 {
4450 atomic_inc_32(&vfsp->vfs_count);
4451 ASSERT(vfsp->vfs_count != 0);
4452 }
4453
4454 /*
4455 * Decrements the vfs reference count by one atomically. When
4456 * vfs reference count becomes zero, it calls the file system
4457 * specific vfs_freevfs() to free up the resources.
4458 */
4459 void
vfs_rele(vfs_t * vfsp)4460 vfs_rele(vfs_t *vfsp)
4461 {
4462 ASSERT(vfsp->vfs_count != 0);
4463 if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4464 VFS_FREEVFS(vfsp);
4465 lofi_remove(vfsp);
4466 if (vfsp->vfs_zone)
4467 zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4468 ZONE_REF_VFS);
4469 vfs_freemnttab(vfsp);
4470 vfs_free(vfsp);
4471 }
4472 }
4473
4474 /*
4475 * Generic operations vector support.
4476 *
4477 * This is used to build operations vectors for both the vfs and vnode.
4478 * It's normally called only when a file system is loaded.
4479 *
4480 * There are many possible algorithms for this, including the following:
4481 *
4482 * (1) scan the list of known operations; for each, see if the file system
4483 * includes an entry for it, and fill it in as appropriate.
4484 *
4485 * (2) set up defaults for all known operations. scan the list of ops
4486 * supplied by the file system; for each which is both supplied and
4487 * known, fill it in.
4488 *
4489 * (3) sort the lists of known ops & supplied ops; scan the list, filling
4490 * in entries as we go.
4491 *
4492 * we choose (1) for simplicity, and because performance isn't critical here.
4493 * note that (2) could be sped up using a precomputed hash table on known ops.
4494 * (3) could be faster than either, but only if the lists were very large or
4495 * supplied in sorted order.
4496 *
4497 */
4498
4499 int
fs_build_vector(void * vector,int * unused_ops,const fs_operation_trans_def_t * translation,const fs_operation_def_t * operations)4500 fs_build_vector(void *vector, int *unused_ops,
4501 const fs_operation_trans_def_t *translation,
4502 const fs_operation_def_t *operations)
4503 {
4504 int i, num_trans, num_ops, used;
4505
4506 /*
4507 * Count the number of translations and the number of supplied
4508 * operations.
4509 */
4510
4511 {
4512 const fs_operation_trans_def_t *p;
4513
4514 for (num_trans = 0, p = translation;
4515 p->name != NULL;
4516 num_trans++, p++)
4517 ;
4518 }
4519
4520 {
4521 const fs_operation_def_t *p;
4522
4523 for (num_ops = 0, p = operations;
4524 p->name != NULL;
4525 num_ops++, p++)
4526 ;
4527 }
4528
4529 /* Walk through each operation known to our caller. There will be */
4530 /* one entry in the supplied "translation table" for each. */
4531
4532 used = 0;
4533
4534 for (i = 0; i < num_trans; i++) {
4535 int j, found;
4536 char *curname;
4537 fs_generic_func_p result;
4538 fs_generic_func_p *location;
4539
4540 curname = translation[i].name;
4541
4542 /* Look for a matching operation in the list supplied by the */
4543 /* file system. */
4544
4545 found = 0;
4546
4547 for (j = 0; j < num_ops; j++) {
4548 if (strcmp(operations[j].name, curname) == 0) {
4549 used++;
4550 found = 1;
4551 break;
4552 }
4553 }
4554
4555 /*
4556 * If the file system is using a "placeholder" for default
4557 * or error functions, grab the appropriate function out of
4558 * the translation table. If the file system didn't supply
4559 * this operation at all, use the default function.
4560 */
4561
4562 if (found) {
4563 result = operations[j].func.fs_generic;
4564 if (result == fs_default) {
4565 result = translation[i].defaultFunc;
4566 } else if (result == fs_error) {
4567 result = translation[i].errorFunc;
4568 } else if (result == NULL) {
4569 /* Null values are PROHIBITED */
4570 return (EINVAL);
4571 }
4572 } else {
4573 result = translation[i].defaultFunc;
4574 }
4575
4576 /* Now store the function into the operations vector. */
4577
4578 location = (fs_generic_func_p *)
4579 (((char *)vector) + translation[i].offset);
4580
4581 *location = result;
4582 }
4583
4584 *unused_ops = num_ops - used;
4585
4586 return (0);
4587 }
4588
4589 /* Placeholder functions, should never be called. */
4590
4591 int
fs_error(void)4592 fs_error(void)
4593 {
4594 cmn_err(CE_PANIC, "fs_error called");
4595 return (0);
4596 }
4597
4598 int
fs_default(void)4599 fs_default(void)
4600 {
4601 cmn_err(CE_PANIC, "fs_default called");
4602 return (0);
4603 }
4604
4605 #ifdef __sparc
4606
4607 /*
4608 * Part of the implementation of booting off a mirrored root
4609 * involves a change of dev_t for the root device. To
4610 * accomplish this, first remove the existing hash table
4611 * entry for the root device, convert to the new dev_t,
4612 * then re-insert in the hash table at the head of the list.
4613 */
4614 void
vfs_root_redev(vfs_t * vfsp,dev_t ndev,int fstype)4615 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4616 {
4617 vfs_list_lock();
4618
4619 vfs_hash_remove(vfsp);
4620
4621 vfsp->vfs_dev = ndev;
4622 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4623
4624 vfs_hash_add(vfsp, 1);
4625
4626 vfs_list_unlock();
4627 }
4628
4629 #else /* x86 NEWBOOT */
4630
4631 #if defined(__x86)
4632 extern int hvmboot_rootconf();
4633 #endif /* __x86 */
4634
4635 extern ib_boot_prop_t *iscsiboot_prop;
4636
4637 int
rootconf()4638 rootconf()
4639 {
4640 int error;
4641 struct vfssw *vsw;
4642 extern void pm_init();
4643 char *fstyp, *fsmod;
4644 int ret = -1;
4645
4646 getrootfs(&fstyp, &fsmod);
4647
4648 #if defined(__x86)
4649 /*
4650 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4651 * which lives in /platform/i86hvm, and hence is only available when
4652 * booted in an x86 hvm environment. If the hvm_bootstrap misc module
4653 * is not available then the modstub for this function will return 0.
4654 * If the hvm_bootstrap misc module is available it will be loaded
4655 * and hvmboot_rootconf() will be invoked.
4656 */
4657 if (error = hvmboot_rootconf())
4658 return (error);
4659 #endif /* __x86 */
4660
4661 if (error = clboot_rootconf())
4662 return (error);
4663
4664 if (modload("fs", fsmod) == -1)
4665 panic("Cannot _init %s module", fsmod);
4666
4667 RLOCK_VFSSW();
4668 vsw = vfs_getvfsswbyname(fstyp);
4669 RUNLOCK_VFSSW();
4670 if (vsw == NULL) {
4671 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4672 return (ENXIO);
4673 }
4674 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4675 VFS_HOLD(rootvfs);
4676
4677 /* always mount readonly first */
4678 rootvfs->vfs_flag |= VFS_RDONLY;
4679
4680 pm_init();
4681
4682 if (netboot && iscsiboot_prop) {
4683 cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4684 " shouldn't happen in the same time");
4685 return (EINVAL);
4686 }
4687
4688 if (netboot || iscsiboot_prop) {
4689 ret = strplumb();
4690 if (ret != 0) {
4691 cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4692 return (EFAULT);
4693 }
4694 }
4695
4696 if ((ret == 0) && iscsiboot_prop) {
4697 ret = modload("drv", "iscsi");
4698 /* -1 indicates fail */
4699 if (ret == -1) {
4700 cmn_err(CE_WARN, "Failed to load iscsi module");
4701 iscsi_boot_prop_free();
4702 return (EINVAL);
4703 } else {
4704 if (!i_ddi_attach_pseudo_node("iscsi")) {
4705 cmn_err(CE_WARN,
4706 "Failed to attach iscsi driver");
4707 iscsi_boot_prop_free();
4708 return (ENODEV);
4709 }
4710 }
4711 }
4712
4713 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4714 vfs_unrefvfssw(vsw);
4715 rootdev = rootvfs->vfs_dev;
4716
4717 if (error)
4718 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4719 rootfs.bo_name, fstyp);
4720 else
4721 cmn_err(CE_CONT, "?root on %s fstype %s\n",
4722 rootfs.bo_name, fstyp);
4723 return (error);
4724 }
4725
4726 /*
4727 * XXX this is called by nfs only and should probably be removed
4728 * If booted with ASKNAME, prompt on the console for a filesystem
4729 * name and return it.
4730 */
4731 void
getfsname(char * askfor,char * name,size_t namelen)4732 getfsname(char *askfor, char *name, size_t namelen)
4733 {
4734 if (boothowto & RB_ASKNAME) {
4735 printf("%s name: ", askfor);
4736 console_gets(name, namelen);
4737 }
4738 }
4739
4740 /*
4741 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4742 * property.
4743 *
4744 * Filesystem types starting with the prefix "nfs" are diskless clients;
4745 * init the root filename name (rootfs.bo_name), too.
4746 *
4747 * If we are booting via NFS we currently have these options:
4748 * nfs - dynamically choose NFS V2, V3, or V4 (default)
4749 * nfs2 - force NFS V2
4750 * nfs3 - force NFS V3
4751 * nfs4 - force NFS V4
4752 * Because we need to maintain backward compatibility with the naming
4753 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4754 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic
4755 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4756 * This is only for root filesystems, all other uses will expect
4757 * that "nfs" == NFS V2.
4758 */
4759 static void
getrootfs(char ** fstypp,char ** fsmodp)4760 getrootfs(char **fstypp, char **fsmodp)
4761 {
4762 extern char *strplumb_get_netdev_path(void);
4763 char *propstr = NULL;
4764
4765 /*
4766 * Check fstype property; for diskless it should be one of "nfs",
4767 * "nfs2", "nfs3" or "nfs4".
4768 */
4769 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4770 DDI_PROP_DONTPASS, "fstype", &propstr)
4771 == DDI_SUCCESS) {
4772 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4773 ddi_prop_free(propstr);
4774
4775 /*
4776 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4777 * assume the type of this root filesystem is 'zfs'.
4778 */
4779 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4780 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4781 == DDI_SUCCESS) {
4782 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4783 ddi_prop_free(propstr);
4784 }
4785
4786 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4787 *fstypp = *fsmodp = rootfs.bo_fstype;
4788 return;
4789 }
4790
4791 ++netboot;
4792
4793 if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4794 (void) strcpy(rootfs.bo_fstype, "nfs");
4795 else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4796 (void) strcpy(rootfs.bo_fstype, "nfsdyn");
4797
4798 /*
4799 * check if path to network interface is specified in bootpath
4800 * or by a hypervisor domain configuration file.
4801 * XXPV - enable strlumb_get_netdev_path()
4802 */
4803 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4804 "xpv-nfsroot")) {
4805 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4806 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4807 DDI_PROP_DONTPASS, "bootpath", &propstr)
4808 == DDI_SUCCESS) {
4809 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4810 ddi_prop_free(propstr);
4811 } else {
4812 /* attempt to determine netdev_path via boot_mac address */
4813 netdev_path = strplumb_get_netdev_path();
4814 if (netdev_path == NULL)
4815 panic("cannot find boot network interface");
4816 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME);
4817 }
4818 *fstypp = rootfs.bo_fstype;
4819 *fsmodp = "nfs";
4820 }
4821 #endif
4822
4823 /*
4824 * VFS feature routines
4825 */
4826
4827 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF)
4828 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL)
4829
4830 /* Register a feature in the vfs */
4831 void
vfs_set_feature(vfs_t * vfsp,vfs_feature_t feature)4832 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4833 {
4834 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4835 if (vfsp->vfs_implp == NULL)
4836 return;
4837
4838 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4839 }
4840
4841 void
vfs_clear_feature(vfs_t * vfsp,vfs_feature_t feature)4842 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4843 {
4844 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4845 if (vfsp->vfs_implp == NULL)
4846 return;
4847 vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4848 }
4849
4850 /*
4851 * Query a vfs for a feature.
4852 * Returns 1 if feature is present, 0 if not
4853 */
4854 int
vfs_has_feature(vfs_t * vfsp,vfs_feature_t feature)4855 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4856 {
4857 int ret = 0;
4858
4859 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4860 if (vfsp->vfs_implp == NULL)
4861 return (ret);
4862
4863 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4864 ret = 1;
4865
4866 return (ret);
4867 }
4868
4869 /*
4870 * Propagate feature set from one vfs to another
4871 */
4872 void
vfs_propagate_features(vfs_t * from,vfs_t * to)4873 vfs_propagate_features(vfs_t *from, vfs_t *to)
4874 {
4875 int i;
4876
4877 if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4878 return;
4879
4880 for (i = 1; i <= to->vfs_featureset[0]; i++) {
4881 to->vfs_featureset[i] = from->vfs_featureset[i];
4882 }
4883 }
4884
4885 #define LOFINODE_PATH "/dev/lofi/%d"
4886
4887 /*
4888 * Return the vnode for the lofi node if there's a lofi mount in place.
4889 * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4890 * failure.
4891 */
4892 int
vfs_get_lofi(vfs_t * vfsp,vnode_t ** vpp)4893 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4894 {
4895 char *path = NULL;
4896 int strsize;
4897 int err;
4898
4899 if (vfsp->vfs_lofi_id == 0) {
4900 *vpp = NULL;
4901 return (-1);
4902 }
4903
4904 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_id);
4905 path = kmem_alloc(strsize + 1, KM_SLEEP);
4906 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_id);
4907
4908 /*
4909 * We may be inside a zone, so we need to use the /dev path, but
4910 * it's created asynchronously, so we wait here.
4911 */
4912 for (;;) {
4913 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4914
4915 if (err != ENOENT)
4916 break;
4917
4918 if ((err = delay_sig(hz / 8)) == EINTR)
4919 break;
4920 }
4921
4922 if (err)
4923 *vpp = NULL;
4924
4925 kmem_free(path, strsize + 1);
4926 return (err);
4927 }
4928