1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25 /*
26 * Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
27 */
28
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/signal.h>
32 #include <sys/cmn_err.h>
33
34 #include <sys/stropts.h>
35 #include <sys/socket.h>
36 #include <sys/socketvar.h>
37 #include <sys/sockio.h>
38 #include <sys/strsubr.h>
39 #include <sys/strsun.h>
40 #include <sys/atomic.h>
41 #include <sys/tihdr.h>
42
43 #include <fs/sockfs/sockcommon.h>
44 #include <fs/sockfs/sockfilter_impl.h>
45 #include <fs/sockfs/socktpi.h>
46 #include <fs/sockfs/sodirect.h>
47 #include <sys/ddi.h>
48 #include <inet/ip.h>
49 #include <sys/time.h>
50 #include <sys/cmn_err.h>
51
52 #ifdef SOCK_TEST
53 extern int do_useracc;
54 extern clock_t sock_test_timelimit;
55 #endif /* SOCK_TEST */
56
57 #define MBLK_PULL_LEN 64
58 uint32_t so_mblk_pull_len = MBLK_PULL_LEN;
59
60 #ifdef DEBUG
61 boolean_t so_debug_length = B_FALSE;
62 static boolean_t so_check_length(sonode_t *so);
63 #endif
64
65 static int
so_acceptq_dequeue_locked(struct sonode * so,boolean_t dontblock,struct sonode ** nsop)66 so_acceptq_dequeue_locked(struct sonode *so, boolean_t dontblock,
67 struct sonode **nsop)
68 {
69 struct sonode *nso = NULL;
70
71 *nsop = NULL;
72 ASSERT(MUTEX_HELD(&so->so_acceptq_lock));
73 while ((nso = list_remove_head(&so->so_acceptq_list)) == NULL) {
74 /*
75 * No need to check so_error here, because it is not
76 * possible for a listening socket to be reset or otherwise
77 * disconnected.
78 *
79 * So now we just need check if it's ok to wait.
80 */
81 if (dontblock)
82 return (EWOULDBLOCK);
83 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
84 return (EINTR);
85
86 if (cv_wait_sig_swap(&so->so_acceptq_cv,
87 &so->so_acceptq_lock) == 0)
88 return (EINTR);
89 }
90
91 ASSERT(nso != NULL);
92 ASSERT(so->so_acceptq_len > 0);
93 so->so_acceptq_len--;
94 nso->so_listener = NULL;
95
96 *nsop = nso;
97
98 return (0);
99 }
100
101 /*
102 * int so_acceptq_dequeue(struct sonode *, boolean_t, struct sonode **)
103 *
104 * Pulls a connection off of the accept queue.
105 *
106 * Arguments:
107 * so - listening socket
108 * dontblock - indicate whether it's ok to sleep if there are no
109 * connections on the queue
110 * nsop - Value-return argument
111 *
112 * Return values:
113 * 0 when a connection is successfully dequeued, in which case nsop
114 * is set to point to the new connection. Upon failure a non-zero
115 * value is returned, and the value of nsop is set to NULL.
116 *
117 * Note:
118 * so_acceptq_dequeue() may return prematurly if the socket is falling
119 * back to TPI.
120 */
121 int
so_acceptq_dequeue(struct sonode * so,boolean_t dontblock,struct sonode ** nsop)122 so_acceptq_dequeue(struct sonode *so, boolean_t dontblock,
123 struct sonode **nsop)
124 {
125 int error;
126
127 mutex_enter(&so->so_acceptq_lock);
128 error = so_acceptq_dequeue_locked(so, dontblock, nsop);
129 mutex_exit(&so->so_acceptq_lock);
130
131 return (error);
132 }
133
134 static void
so_acceptq_flush_impl(struct sonode * so,list_t * list,boolean_t doclose)135 so_acceptq_flush_impl(struct sonode *so, list_t *list, boolean_t doclose)
136 {
137 struct sonode *nso;
138
139 while ((nso = list_remove_head(list)) != NULL) {
140 nso->so_listener = NULL;
141 if (doclose) {
142 (void) socket_close(nso, 0, CRED());
143 } else {
144 /*
145 * Only used for fallback - not possible when filters
146 * are present.
147 */
148 ASSERT(so->so_filter_active == 0);
149 /*
150 * Since the socket is on the accept queue, there can
151 * only be one reference. We drop the reference and
152 * just blow off the socket.
153 */
154 ASSERT(nso->so_count == 1);
155 nso->so_count--;
156 /* drop the proto ref */
157 VN_RELE(SOTOV(nso));
158 }
159 socket_destroy(nso);
160 }
161 }
162 /*
163 * void so_acceptq_flush(struct sonode *so)
164 *
165 * Removes all pending connections from a listening socket, and
166 * frees the associated resources.
167 *
168 * Arguments
169 * so - listening socket
170 * doclose - make a close downcall for each socket on the accept queue
171 *
172 * Return values:
173 * None.
174 *
175 * Note:
176 * The caller has to ensure that no calls to so_acceptq_enqueue() or
177 * so_acceptq_dequeue() occur while the accept queue is being flushed.
178 * So either the socket needs to be in a state where no operations
179 * would come in, or so_lock needs to be obtained.
180 */
181 void
so_acceptq_flush(struct sonode * so,boolean_t doclose)182 so_acceptq_flush(struct sonode *so, boolean_t doclose)
183 {
184 so_acceptq_flush_impl(so, &so->so_acceptq_list, doclose);
185 so_acceptq_flush_impl(so, &so->so_acceptq_defer, doclose);
186
187 so->so_acceptq_len = 0;
188 }
189
190 int
so_wait_connected_locked(struct sonode * so,boolean_t nonblock,sock_connid_t id)191 so_wait_connected_locked(struct sonode *so, boolean_t nonblock,
192 sock_connid_t id)
193 {
194 ASSERT(MUTEX_HELD(&so->so_lock));
195
196 /*
197 * The protocol has notified us that a connection attempt is being
198 * made, so before we wait for a notification to arrive we must
199 * clear out any errors associated with earlier connection attempts.
200 */
201 if (so->so_error != 0 && SOCK_CONNID_LT(so->so_proto_connid, id))
202 so->so_error = 0;
203
204 while (SOCK_CONNID_LT(so->so_proto_connid, id)) {
205 if (nonblock)
206 return (EINPROGRESS);
207
208 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
209 return (EINTR);
210
211 if (cv_wait_sig_swap(&so->so_state_cv, &so->so_lock) == 0)
212 return (EINTR);
213 }
214
215 if (so->so_error != 0)
216 return (sogeterr(so, B_TRUE));
217 /*
218 * Under normal circumstances, so_error should contain an error
219 * in case the connect failed. However, it is possible for another
220 * thread to come in a consume the error, so generate a sensible
221 * error in that case.
222 */
223 if ((so->so_state & SS_ISCONNECTED) == 0)
224 return (ECONNREFUSED);
225
226 return (0);
227 }
228
229 /*
230 * int so_wait_connected(struct sonode *so, boolean_t nonblock,
231 * sock_connid_t id)
232 *
233 * Wait until the socket is connected or an error has occured.
234 *
235 * Arguments:
236 * so - socket
237 * nonblock - indicate whether it's ok to sleep if the connection has
238 * not yet been established
239 * gen - generation number that was returned by the protocol
240 * when the operation was started
241 *
242 * Returns:
243 * 0 if the connection attempt was successful, or an error indicating why
244 * the connection attempt failed.
245 */
246 int
so_wait_connected(struct sonode * so,boolean_t nonblock,sock_connid_t id)247 so_wait_connected(struct sonode *so, boolean_t nonblock, sock_connid_t id)
248 {
249 int error;
250
251 mutex_enter(&so->so_lock);
252 error = so_wait_connected_locked(so, nonblock, id);
253 mutex_exit(&so->so_lock);
254
255 return (error);
256 }
257
258 int
so_snd_wait_qnotfull_locked(struct sonode * so,boolean_t dontblock)259 so_snd_wait_qnotfull_locked(struct sonode *so, boolean_t dontblock)
260 {
261 int error;
262
263 ASSERT(MUTEX_HELD(&so->so_lock));
264 while (SO_SND_FLOWCTRLD(so)) {
265 if (so->so_state & SS_CANTSENDMORE)
266 return (EPIPE);
267 if (dontblock)
268 return (EWOULDBLOCK);
269
270 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
271 return (EINTR);
272
273 if (so->so_sndtimeo == 0) {
274 /*
275 * Zero means disable timeout.
276 */
277 error = cv_wait_sig(&so->so_snd_cv, &so->so_lock);
278 } else {
279 error = cv_reltimedwait_sig(&so->so_snd_cv,
280 &so->so_lock, so->so_sndtimeo, TR_CLOCK_TICK);
281 }
282 if (error == 0)
283 return (EINTR);
284 else if (error == -1)
285 return (EAGAIN);
286 }
287 return (0);
288 }
289
290 /*
291 * int so_wait_sendbuf(struct sonode *so, boolean_t dontblock)
292 *
293 * Wait for the transport to notify us about send buffers becoming
294 * available.
295 */
296 int
so_snd_wait_qnotfull(struct sonode * so,boolean_t dontblock)297 so_snd_wait_qnotfull(struct sonode *so, boolean_t dontblock)
298 {
299 int error = 0;
300
301 mutex_enter(&so->so_lock);
302 so->so_snd_wakeup = B_TRUE;
303 error = so_snd_wait_qnotfull_locked(so, dontblock);
304 so->so_snd_wakeup = B_FALSE;
305 mutex_exit(&so->so_lock);
306
307 return (error);
308 }
309
310 void
so_snd_qfull(struct sonode * so)311 so_snd_qfull(struct sonode *so)
312 {
313 mutex_enter(&so->so_lock);
314 so->so_snd_qfull = B_TRUE;
315 mutex_exit(&so->so_lock);
316 }
317
318 void
so_snd_qnotfull(struct sonode * so)319 so_snd_qnotfull(struct sonode *so)
320 {
321 mutex_enter(&so->so_lock);
322 so->so_snd_qfull = B_FALSE;
323 /* wake up everyone waiting for buffers */
324 cv_broadcast(&so->so_snd_cv);
325 mutex_exit(&so->so_lock);
326 }
327
328 /*
329 * Change the process/process group to which SIGIO is sent.
330 */
331 int
socket_chgpgrp(struct sonode * so,pid_t pid)332 socket_chgpgrp(struct sonode *so, pid_t pid)
333 {
334 int error;
335
336 ASSERT(MUTEX_HELD(&so->so_lock));
337 if (pid != 0) {
338 /*
339 * Permissions check by sending signal 0.
340 * Note that when kill fails it does a
341 * set_errno causing the system call to fail.
342 */
343 error = kill(pid, 0);
344 if (error != 0) {
345 return (error);
346 }
347 }
348 so->so_pgrp = pid;
349 return (0);
350 }
351
352
353 /*
354 * Generate a SIGIO, for 'writable' events include siginfo structure,
355 * for read events just send the signal.
356 */
357 /*ARGSUSED*/
358 static void
socket_sigproc(proc_t * proc,int event)359 socket_sigproc(proc_t *proc, int event)
360 {
361 k_siginfo_t info;
362
363 ASSERT(event & (SOCKETSIG_WRITE | SOCKETSIG_READ | SOCKETSIG_URG));
364
365 if (event & SOCKETSIG_WRITE) {
366 info.si_signo = SIGPOLL;
367 info.si_code = POLL_OUT;
368 info.si_errno = 0;
369 info.si_fd = 0;
370 info.si_band = 0;
371 sigaddq(proc, NULL, &info, KM_NOSLEEP);
372 }
373 if (event & SOCKETSIG_READ) {
374 sigtoproc(proc, NULL, SIGPOLL);
375 }
376 if (event & SOCKETSIG_URG) {
377 sigtoproc(proc, NULL, SIGURG);
378 }
379 }
380
381 void
socket_sendsig(struct sonode * so,int event)382 socket_sendsig(struct sonode *so, int event)
383 {
384 proc_t *proc;
385
386 ASSERT(MUTEX_HELD(&so->so_lock));
387
388 if (so->so_pgrp == 0 || (!(so->so_state & SS_ASYNC) &&
389 event != SOCKETSIG_URG)) {
390 return;
391 }
392
393 dprint(3, ("sending sig %d to %d\n", event, so->so_pgrp));
394
395 if (so->so_pgrp > 0) {
396 /*
397 * XXX This unfortunately still generates
398 * a signal when a fd is closed but
399 * the proc is active.
400 */
401 mutex_enter(&pidlock);
402 /*
403 * Even if the thread started in another zone, we're receiving
404 * on behalf of this socket's zone, so find the proc using the
405 * socket's zone ID.
406 */
407 proc = prfind_zone(so->so_pgrp, so->so_zoneid);
408 if (proc == NULL) {
409 mutex_exit(&pidlock);
410 return;
411 }
412 mutex_enter(&proc->p_lock);
413 mutex_exit(&pidlock);
414 socket_sigproc(proc, event);
415 mutex_exit(&proc->p_lock);
416 } else {
417 /*
418 * Send to process group. Hold pidlock across
419 * calls to socket_sigproc().
420 */
421 pid_t pgrp = -so->so_pgrp;
422
423 mutex_enter(&pidlock);
424 /*
425 * Even if the thread started in another zone, we're receiving
426 * on behalf of this socket's zone, so find the pgrp using the
427 * socket's zone ID.
428 */
429 proc = pgfind_zone(pgrp, so->so_zoneid);
430 while (proc != NULL) {
431 mutex_enter(&proc->p_lock);
432 socket_sigproc(proc, event);
433 mutex_exit(&proc->p_lock);
434 proc = proc->p_pglink;
435 }
436 mutex_exit(&pidlock);
437 }
438 }
439
440 #define MIN(a, b) ((a) < (b) ? (a) : (b))
441 /* Copy userdata into a new mblk_t */
442 mblk_t *
socopyinuio(uio_t * uiop,ssize_t iosize,size_t wroff,ssize_t maxblk,size_t tail_len,int * errorp)443 socopyinuio(uio_t *uiop, ssize_t iosize, size_t wroff, ssize_t maxblk,
444 size_t tail_len, int *errorp)
445 {
446 mblk_t *head = NULL, **tail = &head;
447
448 ASSERT(iosize == INFPSZ || iosize > 0);
449
450 if (iosize == INFPSZ || iosize > uiop->uio_resid)
451 iosize = uiop->uio_resid;
452
453 if (maxblk == INFPSZ)
454 maxblk = iosize;
455
456 /* Nothing to do in these cases, so we're done */
457 if (iosize < 0 || maxblk < 0 || (maxblk == 0 && iosize > 0))
458 goto done;
459
460 /*
461 * We will enter the loop below if iosize is 0; it will allocate an
462 * empty message block and call uiomove(9F) which will just return.
463 * We could avoid that with an extra check but would only slow
464 * down the much more likely case where iosize is larger than 0.
465 */
466 do {
467 ssize_t blocksize;
468 mblk_t *mp;
469
470 blocksize = MIN(iosize, maxblk);
471 ASSERT(blocksize >= 0);
472 mp = allocb(wroff + blocksize + tail_len, BPRI_MED);
473 if (mp == NULL) {
474 *errorp = ENOMEM;
475 return (head);
476 }
477 mp->b_rptr += wroff;
478 mp->b_wptr = mp->b_rptr + blocksize;
479
480 *tail = mp;
481 tail = &mp->b_cont;
482
483 /* uiomove(9F) either returns 0 or EFAULT */
484 if ((*errorp = uiomove(mp->b_rptr, (size_t)blocksize,
485 UIO_WRITE, uiop)) != 0) {
486 ASSERT(*errorp != ENOMEM);
487 freemsg(head);
488 return (NULL);
489 }
490
491 iosize -= blocksize;
492 } while (iosize > 0);
493
494 done:
495 *errorp = 0;
496 return (head);
497 }
498
499 mblk_t *
socopyoutuio(mblk_t * mp,struct uio * uiop,ssize_t max_read,int * errorp)500 socopyoutuio(mblk_t *mp, struct uio *uiop, ssize_t max_read, int *errorp)
501 {
502 int error;
503 ptrdiff_t n;
504 mblk_t *nmp;
505
506 ASSERT(mp->b_wptr >= mp->b_rptr);
507
508 /*
509 * max_read is the offset of the oobmark and read can not go pass
510 * the oobmark.
511 */
512 if (max_read == INFPSZ || max_read > uiop->uio_resid)
513 max_read = uiop->uio_resid;
514
515 do {
516 if ((n = MIN(max_read, MBLKL(mp))) != 0) {
517 ASSERT(n > 0);
518
519 error = uiomove(mp->b_rptr, n, UIO_READ, uiop);
520 if (error != 0) {
521 freemsg(mp);
522 *errorp = error;
523 return (NULL);
524 }
525 }
526
527 mp->b_rptr += n;
528 max_read -= n;
529 while (mp != NULL && (mp->b_rptr >= mp->b_wptr)) {
530 /*
531 * get rid of zero length mblks
532 */
533 nmp = mp;
534 mp = mp->b_cont;
535 freeb(nmp);
536 }
537 } while (mp != NULL && max_read > 0);
538
539 *errorp = 0;
540 return (mp);
541 }
542
543 static void
so_prepend_msg(struct sonode * so,mblk_t * mp,mblk_t * last_tail)544 so_prepend_msg(struct sonode *so, mblk_t *mp, mblk_t *last_tail)
545 {
546 ASSERT(last_tail != NULL);
547 mp->b_next = so->so_rcv_q_head;
548 mp->b_prev = last_tail;
549 ASSERT(!(DB_FLAGS(mp) & DBLK_UIOA));
550
551 if (so->so_rcv_q_head == NULL) {
552 ASSERT(so->so_rcv_q_last_head == NULL);
553 so->so_rcv_q_last_head = mp;
554 #ifdef DEBUG
555 } else {
556 ASSERT(!(DB_FLAGS(so->so_rcv_q_head) & DBLK_UIOA));
557 #endif
558 }
559 so->so_rcv_q_head = mp;
560
561 #ifdef DEBUG
562 if (so_debug_length) {
563 mutex_enter(&so->so_lock);
564 ASSERT(so_check_length(so));
565 mutex_exit(&so->so_lock);
566 }
567 #endif
568 }
569
570 /*
571 * Move a mblk chain (mp_head, mp_last_head) to the sonode's rcv queue so it
572 * can be processed by so_dequeue_msg().
573 */
574 void
so_process_new_message(struct sonode * so,mblk_t * mp_head,mblk_t * mp_last_head)575 so_process_new_message(struct sonode *so, mblk_t *mp_head, mblk_t *mp_last_head)
576 {
577 if (so->so_filter_active > 0 &&
578 (mp_head = sof_filter_data_in_proc(so, mp_head,
579 &mp_last_head)) == NULL)
580 return;
581
582 ASSERT(mp_head->b_prev != NULL);
583 if (so->so_rcv_q_head == NULL) {
584 so->so_rcv_q_head = mp_head;
585 so->so_rcv_q_last_head = mp_last_head;
586 ASSERT(so->so_rcv_q_last_head->b_prev != NULL);
587 } else {
588 boolean_t flag_equal = ((DB_FLAGS(mp_head) & DBLK_UIOA) ==
589 (DB_FLAGS(so->so_rcv_q_last_head) & DBLK_UIOA));
590
591 if (mp_head->b_next == NULL &&
592 DB_TYPE(mp_head) == M_DATA &&
593 DB_TYPE(so->so_rcv_q_last_head) == M_DATA && flag_equal) {
594 so->so_rcv_q_last_head->b_prev->b_cont = mp_head;
595 so->so_rcv_q_last_head->b_prev = mp_head->b_prev;
596 mp_head->b_prev = NULL;
597 } else if (flag_equal && (DB_FLAGS(mp_head) & DBLK_UIOA)) {
598 /*
599 * Append to last_head if more than one mblks, and both
600 * mp_head and last_head are I/OAT mblks.
601 */
602 ASSERT(mp_head->b_next != NULL);
603 so->so_rcv_q_last_head->b_prev->b_cont = mp_head;
604 so->so_rcv_q_last_head->b_prev = mp_head->b_prev;
605 mp_head->b_prev = NULL;
606
607 so->so_rcv_q_last_head->b_next = mp_head->b_next;
608 mp_head->b_next = NULL;
609 so->so_rcv_q_last_head = mp_last_head;
610 } else {
611 #ifdef DEBUG
612 {
613 mblk_t *tmp_mblk;
614 tmp_mblk = mp_head;
615 while (tmp_mblk != NULL) {
616 ASSERT(tmp_mblk->b_prev != NULL);
617 tmp_mblk = tmp_mblk->b_next;
618 }
619 }
620 #endif
621 so->so_rcv_q_last_head->b_next = mp_head;
622 so->so_rcv_q_last_head = mp_last_head;
623 }
624 }
625 }
626
627 /*
628 * Check flow control on a given sonode. Must have so_lock held, and
629 * this function will release the hold. Return true if flow control
630 * is cleared.
631 */
632 boolean_t
so_check_flow_control(struct sonode * so)633 so_check_flow_control(struct sonode *so)
634 {
635 ASSERT(MUTEX_HELD(&so->so_lock));
636
637 if (so->so_flowctrld && (so->so_rcv_queued < so->so_rcvlowat &&
638 !(so->so_state & SS_FIL_RCV_FLOWCTRL))) {
639 so->so_flowctrld = B_FALSE;
640 mutex_exit(&so->so_lock);
641 /*
642 * Open up flow control. SCTP does not have any downcalls, and
643 * it will clr flow ctrl in sosctp_recvmsg().
644 */
645 if (so->so_downcalls != NULL &&
646 so->so_downcalls->sd_clr_flowctrl != NULL) {
647 (*so->so_downcalls->sd_clr_flowctrl)
648 (so->so_proto_handle);
649 }
650 /* filters can start injecting data */
651 sof_sonode_notify_filters(so, SOF_EV_INJECT_DATA_IN_OK, 0);
652 return (B_TRUE);
653 } else {
654 mutex_exit(&so->so_lock);
655 return (B_FALSE);
656 }
657 }
658
659 int
so_dequeue_msg(struct sonode * so,mblk_t ** mctlp,struct uio * uiop,rval_t * rvalp,int flags)660 so_dequeue_msg(struct sonode *so, mblk_t **mctlp, struct uio *uiop,
661 rval_t *rvalp, int flags)
662 {
663 mblk_t *mp, *nmp;
664 mblk_t *savemp, *savemptail;
665 mblk_t *new_msg_head;
666 mblk_t *new_msg_last_head;
667 mblk_t *last_tail;
668 boolean_t partial_read;
669 boolean_t reset_atmark = B_FALSE;
670 int more = 0;
671 int error;
672 ssize_t oobmark;
673 sodirect_t *sodp = so->so_direct;
674
675 partial_read = B_FALSE;
676 *mctlp = NULL;
677 again:
678 mutex_enter(&so->so_lock);
679 again1:
680 #ifdef DEBUG
681 if (so_debug_length) {
682 ASSERT(so_check_length(so));
683 }
684 #endif
685 if (so->so_state & SS_RCVATMARK) {
686 /* Check whether the caller is OK to read past the mark */
687 if (flags & MSG_NOMARK) {
688 mutex_exit(&so->so_lock);
689 return (EWOULDBLOCK);
690 }
691 reset_atmark = B_TRUE;
692 }
693 /*
694 * First move messages from the dump area to processing area
695 */
696 if (sodp != NULL) {
697 if (sodp->sod_enabled) {
698 if (sodp->sod_uioa.uioa_state & UIOA_ALLOC) {
699 /* nothing to uioamove */
700 sodp = NULL;
701 } else if (sodp->sod_uioa.uioa_state & UIOA_INIT) {
702 sodp->sod_uioa.uioa_state &= UIOA_CLR;
703 sodp->sod_uioa.uioa_state |= UIOA_ENABLED;
704 /*
705 * try to uioamove() the data that
706 * has already queued.
707 */
708 sod_uioa_so_init(so, sodp, uiop);
709 }
710 } else {
711 sodp = NULL;
712 }
713 }
714 new_msg_head = so->so_rcv_head;
715 new_msg_last_head = so->so_rcv_last_head;
716 so->so_rcv_head = NULL;
717 so->so_rcv_last_head = NULL;
718 oobmark = so->so_oobmark;
719 /*
720 * We can release the lock as there can only be one reader
721 */
722 mutex_exit(&so->so_lock);
723
724 if (new_msg_head != NULL) {
725 so_process_new_message(so, new_msg_head, new_msg_last_head);
726 }
727 savemp = savemptail = NULL;
728 rvalp->r_vals = 0;
729 error = 0;
730 mp = so->so_rcv_q_head;
731
732 if (mp != NULL &&
733 (so->so_rcv_timer_tid == 0 ||
734 so->so_rcv_queued >= so->so_rcv_thresh)) {
735 partial_read = B_FALSE;
736
737 if (flags & MSG_PEEK) {
738 if ((nmp = dupmsg(mp)) == NULL &&
739 (nmp = copymsg(mp)) == NULL) {
740 size_t size = msgsize(mp);
741
742 error = strwaitbuf(size, BPRI_HI);
743 if (error) {
744 return (error);
745 }
746 goto again;
747 }
748 mp = nmp;
749 } else {
750 ASSERT(mp->b_prev != NULL);
751 last_tail = mp->b_prev;
752 mp->b_prev = NULL;
753 so->so_rcv_q_head = mp->b_next;
754 if (so->so_rcv_q_head == NULL) {
755 so->so_rcv_q_last_head = NULL;
756 }
757 mp->b_next = NULL;
758 }
759
760 ASSERT(mctlp != NULL);
761 /*
762 * First process PROTO or PCPROTO blocks, if any.
763 */
764 if (DB_TYPE(mp) != M_DATA) {
765 *mctlp = mp;
766 savemp = mp;
767 savemptail = mp;
768 ASSERT(DB_TYPE(mp) == M_PROTO ||
769 DB_TYPE(mp) == M_PCPROTO);
770 while (mp->b_cont != NULL &&
771 DB_TYPE(mp->b_cont) != M_DATA) {
772 ASSERT(DB_TYPE(mp->b_cont) == M_PROTO ||
773 DB_TYPE(mp->b_cont) == M_PCPROTO);
774 mp = mp->b_cont;
775 savemptail = mp;
776 }
777 mp = savemptail->b_cont;
778 savemptail->b_cont = NULL;
779 }
780
781 ASSERT(DB_TYPE(mp) == M_DATA);
782 /*
783 * Now process DATA blocks, if any. Note that for sodirect
784 * enabled socket, uio_resid can be 0.
785 */
786 if (uiop->uio_resid >= 0) {
787 ssize_t copied = 0;
788
789 if (sodp != NULL && (DB_FLAGS(mp) & DBLK_UIOA)) {
790 mutex_enter(&so->so_lock);
791 ASSERT(uiop == (uio_t *)&sodp->sod_uioa);
792 copied = sod_uioa_mblk(so, mp);
793 if (copied > 0)
794 partial_read = B_TRUE;
795 mutex_exit(&so->so_lock);
796 /* mark this mblk as processed */
797 mp = NULL;
798 } else {
799 ssize_t oldresid = uiop->uio_resid;
800
801 if (MBLKL(mp) < so_mblk_pull_len) {
802 if (pullupmsg(mp, -1) == 1) {
803 last_tail = mp;
804 }
805 }
806 /*
807 * Can not read beyond the oobmark
808 */
809 mp = socopyoutuio(mp, uiop,
810 oobmark == 0 ? INFPSZ : oobmark, &error);
811 if (error != 0) {
812 freemsg(*mctlp);
813 *mctlp = NULL;
814 more = 0;
815 goto done;
816 }
817 ASSERT(oldresid >= uiop->uio_resid);
818 copied = oldresid - uiop->uio_resid;
819 if (oldresid > uiop->uio_resid)
820 partial_read = B_TRUE;
821 }
822 ASSERT(copied >= 0);
823 if (copied > 0 && !(flags & MSG_PEEK)) {
824 mutex_enter(&so->so_lock);
825 so->so_rcv_queued -= copied;
826 ASSERT(so->so_oobmark >= 0);
827 if (so->so_oobmark > 0) {
828 so->so_oobmark -= copied;
829 ASSERT(so->so_oobmark >= 0);
830 if (so->so_oobmark == 0) {
831 ASSERT(so->so_state &
832 SS_OOBPEND);
833 so->so_oobmark = 0;
834 so->so_state |= SS_RCVATMARK;
835 }
836 }
837 /*
838 * so_check_flow_control() will drop
839 * so->so_lock.
840 */
841 rvalp->r_val2 = so_check_flow_control(so);
842 }
843 }
844 if (mp != NULL) { /* more data blocks in msg */
845 more |= MOREDATA;
846 if ((flags & (MSG_PEEK|MSG_TRUNC))) {
847 if (flags & MSG_PEEK) {
848 freemsg(mp);
849 } else {
850 unsigned int msize = msgdsize(mp);
851
852 freemsg(mp);
853 mutex_enter(&so->so_lock);
854 so->so_rcv_queued -= msize;
855 /*
856 * so_check_flow_control() will drop
857 * so->so_lock.
858 */
859 rvalp->r_val2 =
860 so_check_flow_control(so);
861 }
862 } else if (partial_read && !somsghasdata(mp)) {
863 /*
864 * Avoid queuing a zero-length tail part of
865 * a message. partial_read == 1 indicates that
866 * we read some of the message.
867 */
868 freemsg(mp);
869 more &= ~MOREDATA;
870 } else {
871 if (savemp != NULL &&
872 (flags & MSG_DUPCTRL)) {
873 mblk_t *nmp;
874 /*
875 * There should only be non data mblks
876 */
877 ASSERT(DB_TYPE(savemp) != M_DATA &&
878 DB_TYPE(savemptail) != M_DATA);
879 try_again:
880 if ((nmp = dupmsg(savemp)) == NULL &&
881 (nmp = copymsg(savemp)) == NULL) {
882
883 size_t size = msgsize(savemp);
884
885 error = strwaitbuf(size,
886 BPRI_HI);
887 if (error != 0) {
888 /*
889 * In case we
890 * cannot copy
891 * control data
892 * free the remaining
893 * data.
894 */
895 freemsg(mp);
896 goto done;
897 }
898 goto try_again;
899 }
900
901 ASSERT(nmp != NULL);
902 ASSERT(DB_TYPE(nmp) != M_DATA);
903 savemptail->b_cont = mp;
904 *mctlp = nmp;
905 mp = savemp;
906 }
907 /*
908 * putback mp
909 */
910 so_prepend_msg(so, mp, last_tail);
911 }
912 }
913
914 /* fast check so_rcv_head if there is more data */
915 if (partial_read && !(so->so_state & SS_RCVATMARK) &&
916 *mctlp == NULL && uiop->uio_resid > 0 &&
917 !(flags & MSG_PEEK) && so->so_rcv_head != NULL) {
918 goto again;
919 }
920 } else if (!partial_read) {
921 mutex_enter(&so->so_lock);
922 if (so->so_error != 0) {
923 error = sogeterr(so, !(flags & MSG_PEEK));
924 mutex_exit(&so->so_lock);
925 return (error);
926 }
927
928 /* See if new data has arrived in the meantime */
929 if (so->so_rcv_head != NULL)
930 goto again1;
931
932 /*
933 * No pending data. Return right away for nonblocking
934 * socket, otherwise sleep waiting for data.
935 */
936 if (!(so->so_state & SS_CANTRCVMORE) && uiop->uio_resid > 0) {
937 if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
938 (flags & MSG_DONTWAIT)) {
939 error = EWOULDBLOCK;
940 } else {
941 if (so->so_state & (SS_CLOSING |
942 SS_FALLBACK_PENDING)) {
943 mutex_exit(&so->so_lock);
944 error = EINTR;
945 goto done;
946 }
947
948 so->so_rcv_wakeup = B_TRUE;
949 so->so_rcv_wanted = uiop->uio_resid;
950 if (so->so_rcvtimeo == 0) {
951 /*
952 * Zero means disable timeout.
953 */
954 error = cv_wait_sig(&so->so_rcv_cv,
955 &so->so_lock);
956 } else {
957 error = cv_reltimedwait_sig(
958 &so->so_rcv_cv, &so->so_lock,
959 so->so_rcvtimeo, TR_CLOCK_TICK);
960 }
961 so->so_rcv_wakeup = B_FALSE;
962 so->so_rcv_wanted = 0;
963
964 if (error == 0) {
965 error = EINTR;
966 } else if (error == -1) {
967 error = EAGAIN;
968 } else {
969 goto again1;
970 }
971 }
972 }
973 mutex_exit(&so->so_lock);
974 }
975 if (reset_atmark && partial_read && !(flags & MSG_PEEK)) {
976 /*
977 * We are passed the mark, update state
978 * 4.3BSD and 4.4BSD clears the mark when peeking across it.
979 * The draft Posix socket spec states that the mark should
980 * not be cleared when peeking. We follow the latter.
981 */
982 mutex_enter(&so->so_lock);
983 ASSERT(so_verify_oobstate(so));
984 so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK);
985 freemsg(so->so_oobmsg);
986 so->so_oobmsg = NULL;
987 ASSERT(so_verify_oobstate(so));
988 mutex_exit(&so->so_lock);
989 }
990 ASSERT(so->so_rcv_wakeup == B_FALSE);
991 done:
992 if (sodp != NULL) {
993 mutex_enter(&so->so_lock);
994 if (sodp->sod_enabled &&
995 (sodp->sod_uioa.uioa_state & UIOA_ENABLED)) {
996 SOD_UIOAFINI(sodp);
997 if (sodp->sod_uioa.uioa_mbytes > 0) {
998 ASSERT(so->so_rcv_q_head != NULL ||
999 so->so_rcv_head != NULL);
1000 so->so_rcv_queued -= sod_uioa_mblk(so, NULL);
1001 if (error == EWOULDBLOCK)
1002 error = 0;
1003 }
1004 }
1005 mutex_exit(&so->so_lock);
1006 }
1007 #ifdef DEBUG
1008 if (so_debug_length) {
1009 mutex_enter(&so->so_lock);
1010 ASSERT(so_check_length(so));
1011 mutex_exit(&so->so_lock);
1012 }
1013 #endif
1014 rvalp->r_val1 = more;
1015 ASSERT(MUTEX_NOT_HELD(&so->so_lock));
1016 return (error);
1017 }
1018
1019 /*
1020 * Enqueue data from the protocol on the socket's rcv queue.
1021 *
1022 * We try to hook new M_DATA mblks onto an existing chain, however,
1023 * that cannot be done if the existing chain has already been
1024 * processed by I/OAT. Non-M_DATA mblks are just linked together via
1025 * b_next. In all cases the b_prev of the enqueued mblk is set to
1026 * point to the last mblk in its b_cont chain.
1027 */
1028 void
so_enqueue_msg(struct sonode * so,mblk_t * mp,size_t msg_size)1029 so_enqueue_msg(struct sonode *so, mblk_t *mp, size_t msg_size)
1030 {
1031 ASSERT(MUTEX_HELD(&so->so_lock));
1032
1033 #ifdef DEBUG
1034 if (so_debug_length) {
1035 ASSERT(so_check_length(so));
1036 }
1037 #endif
1038 so->so_rcv_queued += msg_size;
1039
1040 if (so->so_rcv_head == NULL) {
1041 ASSERT(so->so_rcv_last_head == NULL);
1042 so->so_rcv_head = mp;
1043 so->so_rcv_last_head = mp;
1044 } else if ((DB_TYPE(mp) == M_DATA &&
1045 DB_TYPE(so->so_rcv_last_head) == M_DATA) &&
1046 ((DB_FLAGS(mp) & DBLK_UIOA) ==
1047 (DB_FLAGS(so->so_rcv_last_head) & DBLK_UIOA))) {
1048 /* Added to the end */
1049 ASSERT(so->so_rcv_last_head != NULL);
1050 ASSERT(so->so_rcv_last_head->b_prev != NULL);
1051 so->so_rcv_last_head->b_prev->b_cont = mp;
1052 } else {
1053 /* Start a new end */
1054 so->so_rcv_last_head->b_next = mp;
1055 so->so_rcv_last_head = mp;
1056 }
1057 while (mp->b_cont != NULL)
1058 mp = mp->b_cont;
1059
1060 so->so_rcv_last_head->b_prev = mp;
1061 #ifdef DEBUG
1062 if (so_debug_length) {
1063 ASSERT(so_check_length(so));
1064 }
1065 #endif
1066 }
1067
1068 /*
1069 * Return B_TRUE if there is data in the message, B_FALSE otherwise.
1070 */
1071 boolean_t
somsghasdata(mblk_t * mp)1072 somsghasdata(mblk_t *mp)
1073 {
1074 for (; mp; mp = mp->b_cont)
1075 if (mp->b_datap->db_type == M_DATA) {
1076 ASSERT(mp->b_wptr >= mp->b_rptr);
1077 if (mp->b_wptr > mp->b_rptr)
1078 return (B_TRUE);
1079 }
1080 return (B_FALSE);
1081 }
1082
1083 /*
1084 * Flush the read side of sockfs.
1085 *
1086 * The caller must be sure that a reader is not already active when the
1087 * buffer is being flushed.
1088 */
1089 void
so_rcv_flush(struct sonode * so)1090 so_rcv_flush(struct sonode *so)
1091 {
1092 mblk_t *mp;
1093
1094 ASSERT(MUTEX_HELD(&so->so_lock));
1095
1096 if (so->so_oobmsg != NULL) {
1097 freemsg(so->so_oobmsg);
1098 so->so_oobmsg = NULL;
1099 so->so_oobmark = 0;
1100 so->so_state &=
1101 ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA|SS_RCVATMARK);
1102 }
1103
1104 /*
1105 * Free messages sitting in the recv queues
1106 */
1107 while (so->so_rcv_q_head != NULL) {
1108 mp = so->so_rcv_q_head;
1109 so->so_rcv_q_head = mp->b_next;
1110 mp->b_next = mp->b_prev = NULL;
1111 freemsg(mp);
1112 }
1113 while (so->so_rcv_head != NULL) {
1114 mp = so->so_rcv_head;
1115 so->so_rcv_head = mp->b_next;
1116 mp->b_next = mp->b_prev = NULL;
1117 freemsg(mp);
1118 }
1119 so->so_rcv_queued = 0;
1120 so->so_rcv_q_head = NULL;
1121 so->so_rcv_q_last_head = NULL;
1122 so->so_rcv_head = NULL;
1123 so->so_rcv_last_head = NULL;
1124 }
1125
1126 /*
1127 * Handle recv* calls that set MSG_OOB or MSG_OOB together with MSG_PEEK.
1128 */
1129 int
sorecvoob(struct sonode * so,struct nmsghdr * msg,struct uio * uiop,int flags,boolean_t oob_inline)1130 sorecvoob(struct sonode *so, struct nmsghdr *msg, struct uio *uiop, int flags,
1131 boolean_t oob_inline)
1132 {
1133 mblk_t *mp, *nmp;
1134 int error;
1135
1136 dprintso(so, 1, ("sorecvoob(%p, %p, 0x%x)\n", (void *)so, (void *)msg,
1137 flags));
1138
1139 if (msg != NULL) {
1140 /*
1141 * There is never any oob data with addresses or control since
1142 * the T_EXDATA_IND does not carry any options.
1143 */
1144 msg->msg_controllen = 0;
1145 msg->msg_namelen = 0;
1146 msg->msg_flags = 0;
1147 }
1148
1149 mutex_enter(&so->so_lock);
1150 ASSERT(so_verify_oobstate(so));
1151 if (oob_inline ||
1152 (so->so_state & (SS_OOBPEND|SS_HADOOBDATA)) != SS_OOBPEND) {
1153 dprintso(so, 1, ("sorecvoob: inline or data consumed\n"));
1154 mutex_exit(&so->so_lock);
1155 return (EINVAL);
1156 }
1157 if (!(so->so_state & SS_HAVEOOBDATA)) {
1158 dprintso(so, 1, ("sorecvoob: no data yet\n"));
1159 mutex_exit(&so->so_lock);
1160 return (EWOULDBLOCK);
1161 }
1162 ASSERT(so->so_oobmsg != NULL);
1163 mp = so->so_oobmsg;
1164 if (flags & MSG_PEEK) {
1165 /*
1166 * Since recv* can not return ENOBUFS we can not use dupmsg.
1167 * Instead we revert to the consolidation private
1168 * allocb_wait plus bcopy.
1169 */
1170 mblk_t *mp1;
1171
1172 mp1 = allocb_wait(msgdsize(mp), BPRI_MED, STR_NOSIG, NULL);
1173 ASSERT(mp1);
1174
1175 while (mp != NULL) {
1176 ssize_t size;
1177
1178 size = MBLKL(mp);
1179 bcopy(mp->b_rptr, mp1->b_wptr, size);
1180 mp1->b_wptr += size;
1181 ASSERT(mp1->b_wptr <= mp1->b_datap->db_lim);
1182 mp = mp->b_cont;
1183 }
1184 mp = mp1;
1185 } else {
1186 /*
1187 * Update the state indicating that the data has been consumed.
1188 * Keep SS_OOBPEND set until data is consumed past the mark.
1189 */
1190 so->so_oobmsg = NULL;
1191 so->so_state ^= SS_HAVEOOBDATA|SS_HADOOBDATA;
1192 }
1193 ASSERT(so_verify_oobstate(so));
1194 mutex_exit(&so->so_lock);
1195
1196 error = 0;
1197 nmp = mp;
1198 while (nmp != NULL && uiop->uio_resid > 0) {
1199 ssize_t n = MBLKL(nmp);
1200
1201 n = MIN(n, uiop->uio_resid);
1202 if (n > 0)
1203 error = uiomove(nmp->b_rptr, n,
1204 UIO_READ, uiop);
1205 if (error)
1206 break;
1207 nmp = nmp->b_cont;
1208 }
1209 ASSERT(mp->b_next == NULL && mp->b_prev == NULL);
1210 freemsg(mp);
1211 return (error);
1212 }
1213
1214 /*
1215 * Allocate and initializ sonode
1216 */
1217 /* ARGSUSED */
1218 struct sonode *
socket_sonode_create(struct sockparams * sp,int family,int type,int protocol,int version,int sflags,int * errorp,struct cred * cr)1219 socket_sonode_create(struct sockparams *sp, int family, int type,
1220 int protocol, int version, int sflags, int *errorp, struct cred *cr)
1221 {
1222 sonode_t *so;
1223 int kmflags;
1224
1225 /*
1226 * Choose the right set of sonodeops based on the upcall and
1227 * down call version that the protocol has provided
1228 */
1229 if (SOCK_UC_VERSION != sp->sp_smod_info->smod_uc_version ||
1230 SOCK_DC_VERSION != sp->sp_smod_info->smod_dc_version) {
1231 /*
1232 * mismatch
1233 */
1234 #ifdef DEBUG
1235 cmn_err(CE_CONT, "protocol and socket module version mismatch");
1236 #endif
1237 *errorp = EINVAL;
1238 return (NULL);
1239 }
1240
1241 kmflags = (sflags & SOCKET_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
1242
1243 so = kmem_cache_alloc(socket_cache, kmflags);
1244 if (so == NULL) {
1245 *errorp = ENOMEM;
1246 return (NULL);
1247 }
1248
1249 sonode_init(so, sp, family, type, protocol, &so_sonodeops);
1250
1251 if (version == SOV_DEFAULT)
1252 version = so_default_version;
1253
1254 so->so_version = (short)version;
1255
1256 /*
1257 * set the default values to be INFPSZ
1258 * if a protocol desires it can change the value later
1259 */
1260 so->so_proto_props.sopp_rxhiwat = SOCKET_RECVHIWATER;
1261 so->so_proto_props.sopp_rxlowat = SOCKET_RECVLOWATER;
1262 so->so_proto_props.sopp_maxpsz = INFPSZ;
1263 so->so_proto_props.sopp_maxblk = INFPSZ;
1264
1265 return (so);
1266 }
1267
1268 int
socket_init_common(struct sonode * so,struct sonode * pso,int flags,cred_t * cr)1269 socket_init_common(struct sonode *so, struct sonode *pso, int flags, cred_t *cr)
1270 {
1271 int error = 0;
1272
1273 if (pso != NULL) {
1274 /*
1275 * We have a passive open, so inherit basic state from
1276 * the parent (listener).
1277 *
1278 * No need to grab the new sonode's lock, since there is no
1279 * one that can have a reference to it.
1280 */
1281 mutex_enter(&pso->so_lock);
1282
1283 so->so_state |= SS_ISCONNECTED | (pso->so_state & SS_ASYNC);
1284 so->so_pgrp = pso->so_pgrp;
1285 so->so_rcvtimeo = pso->so_rcvtimeo;
1286 so->so_sndtimeo = pso->so_sndtimeo;
1287 so->so_xpg_rcvbuf = pso->so_xpg_rcvbuf;
1288 /*
1289 * Make note of the socket level options. TCP and IP level
1290 * options are already inherited. We could do all this after
1291 * accept is successful but doing it here simplifies code and
1292 * no harm done for error case.
1293 */
1294 so->so_options = pso->so_options & (SO_DEBUG|SO_REUSEADDR|
1295 SO_KEEPALIVE|SO_DONTROUTE|SO_BROADCAST|SO_USELOOPBACK|
1296 SO_OOBINLINE|SO_DGRAM_ERRIND|SO_LINGER);
1297 so->so_proto_props = pso->so_proto_props;
1298 so->so_mode = pso->so_mode;
1299 so->so_pollev = pso->so_pollev & SO_POLLEV_ALWAYS;
1300
1301 mutex_exit(&pso->so_lock);
1302
1303 /*
1304 * If the parent has any filters, try to inherit them.
1305 */
1306 if (pso->so_filter_active > 0 &&
1307 (error = sof_sonode_inherit_filters(so, pso)) != 0)
1308 return (error);
1309
1310 } else {
1311 struct sockparams *sp = so->so_sockparams;
1312 sock_upcalls_t *upcalls_to_use;
1313
1314 /*
1315 * Attach automatic filters, if there are any.
1316 */
1317 if (!list_is_empty(&sp->sp_auto_filters) &&
1318 (error = sof_sonode_autoattach_filters(so, cr)) != 0)
1319 return (error);
1320
1321 /* OK to attach filters */
1322 so->so_state |= SS_FILOP_OK;
1323
1324 /*
1325 * Based on the version number select the right upcalls to
1326 * pass down. Currently we only have one version so choose
1327 * default
1328 */
1329 upcalls_to_use = &so_upcalls;
1330
1331 /* active open, so create a lower handle */
1332 so->so_proto_handle =
1333 sp->sp_smod_info->smod_proto_create_func(so->so_family,
1334 so->so_type, so->so_protocol, &so->so_downcalls,
1335 &so->so_mode, &error, flags, cr);
1336
1337 if (so->so_proto_handle == NULL) {
1338 ASSERT(error != 0);
1339 /*
1340 * To be safe; if a lower handle cannot be created, and
1341 * the proto does not give a reason why, assume there
1342 * was a lack of memory.
1343 */
1344 return ((error == 0) ? ENOMEM : error);
1345 }
1346 ASSERT(so->so_downcalls != NULL);
1347 ASSERT(so->so_downcalls->sd_send != NULL ||
1348 so->so_downcalls->sd_send_uio != NULL);
1349 if (so->so_downcalls->sd_recv_uio != NULL) {
1350 ASSERT(so->so_downcalls->sd_poll != NULL);
1351 so->so_pollev |= SO_POLLEV_ALWAYS;
1352 }
1353
1354 (*so->so_downcalls->sd_activate)(so->so_proto_handle,
1355 (sock_upper_handle_t)so, upcalls_to_use, 0, cr);
1356
1357 /* Wildcard */
1358
1359 /*
1360 * FIXME No need for this, the protocol can deal with it in
1361 * sd_create(). Should update ICMP.
1362 */
1363 if (so->so_protocol != so->so_sockparams->sp_protocol) {
1364 int protocol = so->so_protocol;
1365 int error;
1366 /*
1367 * Issue SO_PROTOTYPE setsockopt.
1368 */
1369 error = socket_setsockopt(so, SOL_SOCKET, SO_PROTOTYPE,
1370 &protocol, (t_uscalar_t)sizeof (protocol), cr);
1371 if (error) {
1372 (void) (*so->so_downcalls->sd_close)
1373 (so->so_proto_handle, 0, cr);
1374
1375 mutex_enter(&so->so_lock);
1376 so_rcv_flush(so);
1377 mutex_exit(&so->so_lock);
1378 /*
1379 * Setsockopt often fails with ENOPROTOOPT but
1380 * socket() should fail with
1381 * EPROTONOSUPPORT/EPROTOTYPE.
1382 */
1383 return (EPROTONOSUPPORT);
1384 }
1385 }
1386 }
1387
1388 if (uioasync.enabled)
1389 sod_sock_init(so);
1390
1391 /* put an extra reference on the socket for the protocol */
1392 VN_HOLD(SOTOV(so));
1393
1394 return (0);
1395 }
1396
1397 /*
1398 * int socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1399 * struct cred *cr, int32_t *rvalp)
1400 *
1401 * Handle ioctls that manipulate basic socket state; non-blocking,
1402 * async, etc.
1403 *
1404 * Returns:
1405 * < 0 - ioctl was not handle
1406 * >= 0 - ioctl was handled, if > 0, then it is an errno
1407 *
1408 * Notes:
1409 * Assumes the standard receive buffer is used to obtain info for
1410 * NREAD.
1411 */
1412 /* ARGSUSED */
1413 int
socket_ioctl_common(struct sonode * so,int cmd,intptr_t arg,int mode,struct cred * cr,int32_t * rvalp)1414 socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1415 struct cred *cr, int32_t *rvalp)
1416 {
1417 switch (cmd) {
1418 case SIOCSQPTR:
1419 /*
1420 * SIOCSQPTR is valid only when helper stream is created
1421 * by the protocol.
1422 */
1423
1424 return (EOPNOTSUPP);
1425 case FIONBIO: {
1426 int32_t value;
1427
1428 if (so_copyin((void *)arg, &value, sizeof (int32_t),
1429 (mode & (int)FKIOCTL)))
1430 return (EFAULT);
1431
1432 mutex_enter(&so->so_lock);
1433 if (value) {
1434 so->so_state |= SS_NDELAY;
1435 } else {
1436 so->so_state &= ~SS_NDELAY;
1437 }
1438 mutex_exit(&so->so_lock);
1439 return (0);
1440 }
1441 case FIOASYNC: {
1442 int32_t value;
1443
1444 if (so_copyin((void *)arg, &value, sizeof (int32_t),
1445 (mode & (int)FKIOCTL)))
1446 return (EFAULT);
1447
1448 mutex_enter(&so->so_lock);
1449
1450 if (value) {
1451 /* Turn on SIGIO */
1452 so->so_state |= SS_ASYNC;
1453 } else {
1454 /* Turn off SIGIO */
1455 so->so_state &= ~SS_ASYNC;
1456 }
1457 mutex_exit(&so->so_lock);
1458
1459 return (0);
1460 }
1461
1462 case SIOCSPGRP:
1463 case FIOSETOWN: {
1464 int error;
1465 pid_t pid;
1466
1467 if (so_copyin((void *)arg, &pid, sizeof (pid_t),
1468 (mode & (int)FKIOCTL)))
1469 return (EFAULT);
1470
1471 mutex_enter(&so->so_lock);
1472 error = (pid != so->so_pgrp) ? socket_chgpgrp(so, pid) : 0;
1473 mutex_exit(&so->so_lock);
1474 return (error);
1475 }
1476 case SIOCGPGRP:
1477 case FIOGETOWN:
1478 if (so_copyout(&so->so_pgrp, (void *)arg,
1479 sizeof (pid_t), (mode & (int)FKIOCTL)))
1480 return (EFAULT);
1481
1482 return (0);
1483 case SIOCATMARK: {
1484 int retval;
1485
1486 /*
1487 * Only protocols that support urgent data can handle ATMARK.
1488 */
1489 if ((so->so_mode & SM_EXDATA) == 0)
1490 return (EINVAL);
1491
1492 /*
1493 * If the protocol is maintaining its own buffer, then the
1494 * request must be passed down.
1495 */
1496 if (so->so_downcalls->sd_recv_uio != NULL)
1497 return (-1);
1498
1499 retval = (so->so_state & SS_RCVATMARK) != 0;
1500
1501 if (so_copyout(&retval, (void *)arg, sizeof (int),
1502 (mode & (int)FKIOCTL))) {
1503 return (EFAULT);
1504 }
1505 return (0);
1506 }
1507
1508 case FIONREAD: {
1509 int retval;
1510
1511 /*
1512 * If the protocol is maintaining its own buffer, then the
1513 * request must be passed down.
1514 */
1515 if (so->so_downcalls->sd_recv_uio != NULL)
1516 return (-1);
1517
1518 retval = MIN(so->so_rcv_queued, INT_MAX);
1519
1520 if (so_copyout(&retval, (void *)arg,
1521 sizeof (retval), (mode & (int)FKIOCTL))) {
1522 return (EFAULT);
1523 }
1524 return (0);
1525 }
1526
1527 case _I_GETPEERCRED: {
1528 int error = 0;
1529
1530 if ((mode & FKIOCTL) == 0)
1531 return (EINVAL);
1532
1533 mutex_enter(&so->so_lock);
1534 if ((so->so_mode & SM_CONNREQUIRED) == 0) {
1535 error = ENOTSUP;
1536 } else if ((so->so_state & SS_ISCONNECTED) == 0) {
1537 error = ENOTCONN;
1538 } else if (so->so_peercred != NULL) {
1539 k_peercred_t *kp = (k_peercred_t *)arg;
1540 kp->pc_cr = so->so_peercred;
1541 kp->pc_cpid = so->so_cpid;
1542 crhold(so->so_peercred);
1543 } else {
1544 error = EINVAL;
1545 }
1546 mutex_exit(&so->so_lock);
1547 return (error);
1548 }
1549 default:
1550 return (-1);
1551 }
1552 }
1553
1554 /*
1555 * Handle the I_NREAD STREAM ioctl.
1556 */
1557 static int
so_strioc_nread(struct sonode * so,intptr_t arg,int mode,int32_t * rvalp)1558 so_strioc_nread(struct sonode *so, intptr_t arg, int mode, int32_t *rvalp)
1559 {
1560 size_t size = 0;
1561 int retval;
1562 int count = 0;
1563 mblk_t *mp;
1564 clock_t wakeup = drv_usectohz(10);
1565
1566 if (so->so_downcalls == NULL ||
1567 so->so_downcalls->sd_recv_uio != NULL)
1568 return (EINVAL);
1569
1570 mutex_enter(&so->so_lock);
1571 /* Wait for reader to get out of the way. */
1572 while (so->so_flag & SOREADLOCKED) {
1573 /*
1574 * If reader is waiting for data, then there should be nothing
1575 * on the rcv queue.
1576 */
1577 if (so->so_rcv_wakeup)
1578 goto out;
1579
1580 /* Do a timed sleep, in case the reader goes to sleep. */
1581 (void) cv_reltimedwait(&so->so_read_cv, &so->so_lock, wakeup,
1582 TR_CLOCK_TICK);
1583 }
1584
1585 /*
1586 * Since we are holding so_lock no new reader will come in, and the
1587 * protocol will not be able to enqueue data. So it's safe to walk
1588 * both rcv queues.
1589 */
1590 mp = so->so_rcv_q_head;
1591 if (mp != NULL) {
1592 size = msgdsize(so->so_rcv_q_head);
1593 for (; mp != NULL; mp = mp->b_next)
1594 count++;
1595 } else {
1596 /*
1597 * In case the processing list was empty, get the size of the
1598 * next msg in line.
1599 */
1600 size = msgdsize(so->so_rcv_head);
1601 }
1602
1603 for (mp = so->so_rcv_head; mp != NULL; mp = mp->b_next)
1604 count++;
1605 out:
1606 mutex_exit(&so->so_lock);
1607
1608 /*
1609 * Drop down from size_t to the "int" required by the
1610 * interface. Cap at INT_MAX.
1611 */
1612 retval = MIN(size, INT_MAX);
1613 if (so_copyout(&retval, (void *)arg, sizeof (retval),
1614 (mode & (int)FKIOCTL))) {
1615 return (EFAULT);
1616 } else {
1617 *rvalp = count;
1618 return (0);
1619 }
1620 }
1621
1622 /*
1623 * Process STREAM ioctls.
1624 *
1625 * Returns:
1626 * < 0 - ioctl was not handle
1627 * >= 0 - ioctl was handled, if > 0, then it is an errno
1628 */
1629 int
socket_strioc_common(struct sonode * so,int cmd,intptr_t arg,int mode,struct cred * cr,int32_t * rvalp)1630 socket_strioc_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1631 struct cred *cr, int32_t *rvalp)
1632 {
1633 int retval;
1634
1635 /* Only STREAM iotcls are handled here */
1636 if ((cmd & 0xffffff00U) != STR)
1637 return (-1);
1638
1639 switch (cmd) {
1640 case I_CANPUT:
1641 /*
1642 * We return an error for I_CANPUT so that isastream(3C) will
1643 * not report the socket as being a STREAM.
1644 */
1645 return (EOPNOTSUPP);
1646 case I_NREAD:
1647 /* Avoid doing a fallback for I_NREAD. */
1648 return (so_strioc_nread(so, arg, mode, rvalp));
1649 case I_LOOK:
1650 /* Avoid doing a fallback for I_LOOK. */
1651 if (so_copyout("sockmod", (void *)arg, strlen("sockmod") + 1,
1652 (mode & (int)FKIOCTL))) {
1653 return (EFAULT);
1654 }
1655 return (0);
1656 default:
1657 break;
1658 }
1659
1660 /*
1661 * Try to fall back to TPI, and if successful, reissue the ioctl.
1662 */
1663 if ((retval = so_tpi_fallback(so, cr)) == 0) {
1664 /* Reissue the ioctl */
1665 ASSERT(so->so_rcv_q_head == NULL);
1666 return (SOP_IOCTL(so, cmd, arg, mode, cr, rvalp));
1667 } else {
1668 return (retval);
1669 }
1670 }
1671
1672 /*
1673 * This is called for all socket types to verify that the buffer size is large
1674 * enough for the option, and if we can, handle the request as well. Most
1675 * options will be forwarded to the protocol.
1676 */
1677 int
socket_getopt_common(struct sonode * so,int level,int option_name,void * optval,socklen_t * optlenp,int flags)1678 socket_getopt_common(struct sonode *so, int level, int option_name,
1679 void *optval, socklen_t *optlenp, int flags)
1680 {
1681 if (level != SOL_SOCKET)
1682 return (-1);
1683
1684 switch (option_name) {
1685 case SO_ERROR:
1686 case SO_DOMAIN:
1687 case SO_TYPE:
1688 case SO_ACCEPTCONN: {
1689 int32_t value;
1690 socklen_t optlen = *optlenp;
1691
1692 if (optlen < (t_uscalar_t)sizeof (int32_t)) {
1693 return (EINVAL);
1694 }
1695
1696 switch (option_name) {
1697 case SO_ERROR:
1698 mutex_enter(&so->so_lock);
1699 value = sogeterr(so, B_TRUE);
1700 mutex_exit(&so->so_lock);
1701 break;
1702 case SO_DOMAIN:
1703 value = so->so_family;
1704 break;
1705 case SO_TYPE:
1706 value = so->so_type;
1707 break;
1708 case SO_ACCEPTCONN:
1709 if (so->so_state & SS_ACCEPTCONN)
1710 value = SO_ACCEPTCONN;
1711 else
1712 value = 0;
1713 break;
1714 }
1715
1716 bcopy(&value, optval, sizeof (value));
1717 *optlenp = sizeof (value);
1718
1719 return (0);
1720 }
1721 case SO_SNDTIMEO:
1722 case SO_RCVTIMEO: {
1723 clock_t value;
1724 socklen_t optlen = *optlenp;
1725
1726 if (get_udatamodel() == DATAMODEL_NONE ||
1727 get_udatamodel() == DATAMODEL_NATIVE) {
1728 if (optlen < sizeof (struct timeval))
1729 return (EINVAL);
1730 } else {
1731 if (optlen < sizeof (struct timeval32))
1732 return (EINVAL);
1733 }
1734 if (option_name == SO_RCVTIMEO)
1735 value = drv_hztousec(so->so_rcvtimeo);
1736 else
1737 value = drv_hztousec(so->so_sndtimeo);
1738
1739 if (get_udatamodel() == DATAMODEL_NONE ||
1740 get_udatamodel() == DATAMODEL_NATIVE) {
1741 ((struct timeval *)(optval))->tv_sec =
1742 value / (1000 * 1000);
1743 ((struct timeval *)(optval))->tv_usec =
1744 value % (1000 * 1000);
1745 *optlenp = sizeof (struct timeval);
1746 } else {
1747 ((struct timeval32 *)(optval))->tv_sec =
1748 value / (1000 * 1000);
1749 ((struct timeval32 *)(optval))->tv_usec =
1750 value % (1000 * 1000);
1751 *optlenp = sizeof (struct timeval32);
1752 }
1753 return (0);
1754 }
1755 case SO_DEBUG:
1756 case SO_REUSEADDR:
1757 case SO_REUSEPORT:
1758 case SO_KEEPALIVE:
1759 case SO_DONTROUTE:
1760 case SO_BROADCAST:
1761 case SO_USELOOPBACK:
1762 case SO_OOBINLINE:
1763 case SO_SNDBUF:
1764 #ifdef notyet
1765 case SO_SNDLOWAT:
1766 case SO_RCVLOWAT:
1767 #endif /* notyet */
1768 case SO_DGRAM_ERRIND: {
1769 socklen_t optlen = *optlenp;
1770
1771 if (optlen < (t_uscalar_t)sizeof (int32_t))
1772 return (EINVAL);
1773 break;
1774 }
1775 case SO_RCVBUF: {
1776 socklen_t optlen = *optlenp;
1777
1778 if (optlen < (t_uscalar_t)sizeof (int32_t))
1779 return (EINVAL);
1780
1781 if ((flags & _SOGETSOCKOPT_XPG4_2) && so->so_xpg_rcvbuf != 0) {
1782 /*
1783 * XXX If SO_RCVBUF has been set and this is an
1784 * XPG 4.2 application then do not ask the transport
1785 * since the transport might adjust the value and not
1786 * return exactly what was set by the application.
1787 * For non-XPG 4.2 application we return the value
1788 * that the transport is actually using.
1789 */
1790 *(int32_t *)optval = so->so_xpg_rcvbuf;
1791 *optlenp = sizeof (so->so_xpg_rcvbuf);
1792 return (0);
1793 }
1794 /*
1795 * If the option has not been set then get a default
1796 * value from the transport.
1797 */
1798 break;
1799 }
1800 case SO_LINGER: {
1801 socklen_t optlen = *optlenp;
1802
1803 if (optlen < (t_uscalar_t)sizeof (struct linger))
1804 return (EINVAL);
1805 break;
1806 }
1807 case SO_SND_BUFINFO: {
1808 socklen_t optlen = *optlenp;
1809
1810 if (optlen < (t_uscalar_t)sizeof (struct so_snd_bufinfo))
1811 return (EINVAL);
1812 ((struct so_snd_bufinfo *)(optval))->sbi_wroff =
1813 (so->so_proto_props).sopp_wroff;
1814 ((struct so_snd_bufinfo *)(optval))->sbi_maxblk =
1815 (so->so_proto_props).sopp_maxblk;
1816 ((struct so_snd_bufinfo *)(optval))->sbi_maxpsz =
1817 (so->so_proto_props).sopp_maxpsz;
1818 ((struct so_snd_bufinfo *)(optval))->sbi_tail =
1819 (so->so_proto_props).sopp_tail;
1820 *optlenp = sizeof (struct so_snd_bufinfo);
1821 return (0);
1822 }
1823 case SO_SND_COPYAVOID: {
1824 sof_instance_t *inst;
1825
1826 /*
1827 * Avoid zero-copy if there is a filter with a data_out
1828 * callback. We could let the operation succeed, but then
1829 * the filter would have to copy the data anyway.
1830 */
1831 for (inst = so->so_filter_top; inst != NULL;
1832 inst = inst->sofi_next) {
1833 if (SOF_INTERESTED(inst, data_out))
1834 return (EOPNOTSUPP);
1835 }
1836 break;
1837 }
1838
1839 default:
1840 break;
1841 }
1842
1843 /* Unknown Option */
1844 return (-1);
1845 }
1846
1847 void
socket_sonode_destroy(struct sonode * so)1848 socket_sonode_destroy(struct sonode *so)
1849 {
1850 sonode_fini(so);
1851 kmem_cache_free(socket_cache, so);
1852 }
1853
1854 int
so_zcopy_wait(struct sonode * so)1855 so_zcopy_wait(struct sonode *so)
1856 {
1857 int error = 0;
1858
1859 mutex_enter(&so->so_lock);
1860 while (!(so->so_copyflag & STZCNOTIFY)) {
1861 if (so->so_state & SS_CLOSING) {
1862 mutex_exit(&so->so_lock);
1863 return (EINTR);
1864 }
1865 if (cv_wait_sig(&so->so_copy_cv, &so->so_lock) == 0) {
1866 error = EINTR;
1867 break;
1868 }
1869 }
1870 so->so_copyflag &= ~STZCNOTIFY;
1871 mutex_exit(&so->so_lock);
1872 return (error);
1873 }
1874
1875 void
so_timer_callback(void * arg)1876 so_timer_callback(void *arg)
1877 {
1878 struct sonode *so = (struct sonode *)arg;
1879
1880 mutex_enter(&so->so_lock);
1881
1882 so->so_rcv_timer_tid = 0;
1883 if (so->so_rcv_queued > 0) {
1884 so_notify_data(so, so->so_rcv_queued);
1885 } else {
1886 mutex_exit(&so->so_lock);
1887 }
1888 }
1889
1890 #ifdef DEBUG
1891 /*
1892 * Verify that the length stored in so_rcv_queued and the length of data blocks
1893 * queued is same.
1894 */
1895 static boolean_t
so_check_length(sonode_t * so)1896 so_check_length(sonode_t *so)
1897 {
1898 mblk_t *mp = so->so_rcv_q_head;
1899 int len = 0;
1900
1901 ASSERT(MUTEX_HELD(&so->so_lock));
1902
1903 if (mp != NULL) {
1904 len = msgdsize(mp);
1905 while ((mp = mp->b_next) != NULL)
1906 len += msgdsize(mp);
1907 }
1908 mp = so->so_rcv_head;
1909 if (mp != NULL) {
1910 len += msgdsize(mp);
1911 while ((mp = mp->b_next) != NULL)
1912 len += msgdsize(mp);
1913 }
1914 return ((len == so->so_rcv_queued) ? B_TRUE : B_FALSE);
1915 }
1916 #endif
1917
1918 int
so_get_mod_version(struct sockparams * sp)1919 so_get_mod_version(struct sockparams *sp)
1920 {
1921 ASSERT(sp != NULL && sp->sp_smod_info != NULL);
1922 return (sp->sp_smod_info->smod_version);
1923 }
1924
1925 /*
1926 * so_start_fallback()
1927 *
1928 * Block new socket operations from coming in, and wait for active operations
1929 * to complete. Threads that are sleeping will be woken up so they can get
1930 * out of the way.
1931 *
1932 * The caller must be a reader on so_fallback_rwlock.
1933 */
1934 static boolean_t
so_start_fallback(struct sonode * so)1935 so_start_fallback(struct sonode *so)
1936 {
1937 ASSERT(RW_READ_HELD(&so->so_fallback_rwlock));
1938
1939 mutex_enter(&so->so_lock);
1940 if (so->so_state & SS_FALLBACK_PENDING) {
1941 mutex_exit(&so->so_lock);
1942 return (B_FALSE);
1943 }
1944 so->so_state |= SS_FALLBACK_PENDING;
1945 /*
1946 * Poke all threads that might be sleeping. Any operation that comes
1947 * in after the cv_broadcast will observe the fallback pending flag
1948 * which cause the call to return where it would normally sleep.
1949 */
1950 cv_broadcast(&so->so_state_cv); /* threads in connect() */
1951 cv_broadcast(&so->so_rcv_cv); /* threads in recvmsg() */
1952 cv_broadcast(&so->so_snd_cv); /* threads in sendmsg() */
1953 mutex_enter(&so->so_acceptq_lock);
1954 cv_broadcast(&so->so_acceptq_cv); /* threads in accept() */
1955 mutex_exit(&so->so_acceptq_lock);
1956 mutex_exit(&so->so_lock);
1957
1958 /*
1959 * The main reason for the rw_tryupgrade call is to provide
1960 * observability during the fallback process. We want to
1961 * be able to see if there are pending operations.
1962 */
1963 if (rw_tryupgrade(&so->so_fallback_rwlock) == 0) {
1964 /*
1965 * It is safe to drop and reaquire the fallback lock, because
1966 * we are guaranteed that another fallback cannot take place.
1967 */
1968 rw_exit(&so->so_fallback_rwlock);
1969 DTRACE_PROBE1(pending__ops__wait, (struct sonode *), so);
1970 rw_enter(&so->so_fallback_rwlock, RW_WRITER);
1971 DTRACE_PROBE1(pending__ops__complete, (struct sonode *), so);
1972 }
1973
1974 return (B_TRUE);
1975 }
1976
1977 /*
1978 * so_end_fallback()
1979 *
1980 * Allow socket opertions back in.
1981 *
1982 * The caller must be a writer on so_fallback_rwlock.
1983 */
1984 static void
so_end_fallback(struct sonode * so)1985 so_end_fallback(struct sonode *so)
1986 {
1987 ASSERT(RW_ISWRITER(&so->so_fallback_rwlock));
1988
1989 mutex_enter(&so->so_lock);
1990 so->so_state &= ~(SS_FALLBACK_PENDING|SS_FALLBACK_DRAIN);
1991 mutex_exit(&so->so_lock);
1992
1993 rw_downgrade(&so->so_fallback_rwlock);
1994 }
1995
1996 /*
1997 * so_quiesced_cb()
1998 *
1999 * Callback passed to the protocol during fallback. It is called once
2000 * the endpoint is quiescent.
2001 *
2002 * No requests from the user, no notifications from the protocol, so it
2003 * is safe to synchronize the state. Data can also be moved without
2004 * risk for reordering.
2005 *
2006 * We do not need to hold so_lock, since there can be only one thread
2007 * operating on the sonode.
2008 */
2009 static mblk_t *
so_quiesced_cb(sock_upper_handle_t sock_handle,sock_quiesce_arg_t * arg,struct T_capability_ack * tcap,struct sockaddr * laddr,socklen_t laddrlen,struct sockaddr * faddr,socklen_t faddrlen,short opts)2010 so_quiesced_cb(sock_upper_handle_t sock_handle, sock_quiesce_arg_t *arg,
2011 struct T_capability_ack *tcap,
2012 struct sockaddr *laddr, socklen_t laddrlen,
2013 struct sockaddr *faddr, socklen_t faddrlen, short opts)
2014 {
2015 struct sonode *so = (struct sonode *)sock_handle;
2016 boolean_t atmark;
2017 mblk_t *retmp = NULL, **tailmpp = &retmp;
2018
2019 if (tcap != NULL)
2020 sotpi_update_state(so, tcap, laddr, laddrlen, faddr, faddrlen,
2021 opts);
2022
2023 /*
2024 * Some protocols do not quiece the data path during fallback. Once
2025 * we set the SS_FALLBACK_DRAIN flag any attempt to queue data will
2026 * fail and the protocol is responsible for saving the data for later
2027 * delivery (i.e., once the fallback has completed).
2028 */
2029 mutex_enter(&so->so_lock);
2030 so->so_state |= SS_FALLBACK_DRAIN;
2031 SOCKET_TIMER_CANCEL(so);
2032 mutex_exit(&so->so_lock);
2033
2034 if (so->so_rcv_head != NULL) {
2035 if (so->so_rcv_q_last_head == NULL)
2036 so->so_rcv_q_head = so->so_rcv_head;
2037 else
2038 so->so_rcv_q_last_head->b_next = so->so_rcv_head;
2039 so->so_rcv_q_last_head = so->so_rcv_last_head;
2040 }
2041
2042 atmark = (so->so_state & SS_RCVATMARK) != 0;
2043 /*
2044 * Clear any OOB state having to do with pending data. The TPI
2045 * code path will set the appropriate oob state when we move the
2046 * oob data to the STREAM head. We leave SS_HADOOBDATA since the oob
2047 * data has already been consumed.
2048 */
2049 so->so_state &= ~(SS_RCVATMARK|SS_OOBPEND|SS_HAVEOOBDATA);
2050
2051 ASSERT(so->so_oobmsg != NULL || so->so_oobmark <= so->so_rcv_queued);
2052
2053 /*
2054 * Move data to the STREAM head.
2055 */
2056 while (so->so_rcv_q_head != NULL) {
2057 mblk_t *mp = so->so_rcv_q_head;
2058 size_t mlen = msgdsize(mp);
2059
2060 so->so_rcv_q_head = mp->b_next;
2061 mp->b_next = NULL;
2062 mp->b_prev = NULL;
2063
2064 /*
2065 * Send T_EXDATA_IND if we are at the oob mark.
2066 */
2067 if (atmark) {
2068 struct T_exdata_ind *tei;
2069 mblk_t *mp1 = arg->soqa_exdata_mp;
2070
2071 arg->soqa_exdata_mp = NULL;
2072 ASSERT(mp1 != NULL);
2073 mp1->b_datap->db_type = M_PROTO;
2074 tei = (struct T_exdata_ind *)mp1->b_rptr;
2075 tei->PRIM_type = T_EXDATA_IND;
2076 tei->MORE_flag = 0;
2077 mp1->b_wptr = (uchar_t *)&tei[1];
2078
2079 if (IS_SO_OOB_INLINE(so)) {
2080 mp1->b_cont = mp;
2081 } else {
2082 ASSERT(so->so_oobmsg != NULL);
2083 mp1->b_cont = so->so_oobmsg;
2084 so->so_oobmsg = NULL;
2085
2086 /* process current mp next time around */
2087 mp->b_next = so->so_rcv_q_head;
2088 so->so_rcv_q_head = mp;
2089 mlen = 0;
2090 }
2091 mp = mp1;
2092
2093 /* we have consumed the oob mark */
2094 atmark = B_FALSE;
2095 } else if (so->so_oobmark > 0) {
2096 /*
2097 * Check if the OOB mark is within the current
2098 * mblk chain. In that case we have to split it up.
2099 */
2100 if (so->so_oobmark < mlen) {
2101 mblk_t *urg_mp = mp;
2102
2103 atmark = B_TRUE;
2104 mp = NULL;
2105 mlen = so->so_oobmark;
2106
2107 /*
2108 * It is assumed that the OOB mark does
2109 * not land within a mblk.
2110 */
2111 do {
2112 so->so_oobmark -= MBLKL(urg_mp);
2113 mp = urg_mp;
2114 urg_mp = urg_mp->b_cont;
2115 } while (so->so_oobmark > 0);
2116 mp->b_cont = NULL;
2117 if (urg_mp != NULL) {
2118 urg_mp->b_next = so->so_rcv_q_head;
2119 so->so_rcv_q_head = urg_mp;
2120 }
2121 } else {
2122 so->so_oobmark -= mlen;
2123 if (so->so_oobmark == 0)
2124 atmark = B_TRUE;
2125 }
2126 }
2127
2128 /*
2129 * Queue data on the STREAM head.
2130 */
2131 so->so_rcv_queued -= mlen;
2132 *tailmpp = mp;
2133 tailmpp = &mp->b_next;
2134 }
2135 so->so_rcv_head = NULL;
2136 so->so_rcv_last_head = NULL;
2137 so->so_rcv_q_head = NULL;
2138 so->so_rcv_q_last_head = NULL;
2139
2140 /*
2141 * Check if the oob byte is at the end of the data stream, or if the
2142 * oob byte has not yet arrived. In the latter case we have to send a
2143 * SIGURG and a mark indicator to the STREAM head. The mark indicator
2144 * is needed to guarantee correct behavior for SIOCATMARK. See block
2145 * comment in socktpi.h for more details.
2146 */
2147 if (atmark || so->so_oobmark > 0) {
2148 mblk_t *mp;
2149
2150 if (atmark && so->so_oobmsg != NULL) {
2151 struct T_exdata_ind *tei;
2152
2153 mp = arg->soqa_exdata_mp;
2154 arg->soqa_exdata_mp = NULL;
2155 ASSERT(mp != NULL);
2156 mp->b_datap->db_type = M_PROTO;
2157 tei = (struct T_exdata_ind *)mp->b_rptr;
2158 tei->PRIM_type = T_EXDATA_IND;
2159 tei->MORE_flag = 0;
2160 mp->b_wptr = (uchar_t *)&tei[1];
2161
2162 mp->b_cont = so->so_oobmsg;
2163 so->so_oobmsg = NULL;
2164
2165 *tailmpp = mp;
2166 tailmpp = &mp->b_next;
2167 } else {
2168 /* Send up the signal */
2169 mp = arg->soqa_exdata_mp;
2170 arg->soqa_exdata_mp = NULL;
2171 ASSERT(mp != NULL);
2172 DB_TYPE(mp) = M_PCSIG;
2173 *mp->b_wptr++ = (uchar_t)SIGURG;
2174 *tailmpp = mp;
2175 tailmpp = &mp->b_next;
2176
2177 /* Send up the mark indicator */
2178 mp = arg->soqa_urgmark_mp;
2179 arg->soqa_urgmark_mp = NULL;
2180 mp->b_flag = atmark ? MSGMARKNEXT : MSGNOTMARKNEXT;
2181 *tailmpp = mp;
2182 tailmpp = &mp->b_next;
2183
2184 so->so_oobmark = 0;
2185 }
2186 }
2187 ASSERT(so->so_oobmark == 0);
2188 ASSERT(so->so_rcv_queued == 0);
2189
2190 return (retmp);
2191 }
2192
2193 #ifdef DEBUG
2194 /*
2195 * Do an integrity check of the sonode. This should be done if a
2196 * fallback fails after sonode has initially been converted to use
2197 * TPI and subsequently have to be reverted.
2198 *
2199 * Failure to pass the integrity check will panic the system.
2200 */
2201 void
so_integrity_check(struct sonode * cur,struct sonode * orig)2202 so_integrity_check(struct sonode *cur, struct sonode *orig)
2203 {
2204 VERIFY(cur->so_vnode == orig->so_vnode);
2205 VERIFY(cur->so_ops == orig->so_ops);
2206 /*
2207 * For so_state we can only VERIFY the state flags in CHECK_STATE.
2208 * The other state flags might be affected by a notification from the
2209 * protocol.
2210 */
2211 #define CHECK_STATE (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_NDELAY|SS_NONBLOCK| \
2212 SS_ASYNC|SS_ACCEPTCONN|SS_SAVEDEOR|SS_RCVATMARK|SS_OOBPEND| \
2213 SS_HAVEOOBDATA|SS_HADOOBDATA|SS_SENTLASTREADSIG|SS_SENTLASTWRITESIG)
2214 VERIFY((cur->so_state & (orig->so_state & CHECK_STATE)) ==
2215 (orig->so_state & CHECK_STATE));
2216 VERIFY(cur->so_mode == orig->so_mode);
2217 VERIFY(cur->so_flag == orig->so_flag);
2218 VERIFY(cur->so_count == orig->so_count);
2219 /* Cannot VERIFY so_proto_connid; proto can update it */
2220 VERIFY(cur->so_sockparams == orig->so_sockparams);
2221 /* an error might have been recorded, but it can not be lost */
2222 VERIFY(cur->so_error != 0 || orig->so_error == 0);
2223 VERIFY(cur->so_family == orig->so_family);
2224 VERIFY(cur->so_type == orig->so_type);
2225 VERIFY(cur->so_protocol == orig->so_protocol);
2226 VERIFY(cur->so_version == orig->so_version);
2227 /* New conns might have arrived, but none should have been lost */
2228 VERIFY(cur->so_acceptq_len >= orig->so_acceptq_len);
2229 VERIFY(list_head(&cur->so_acceptq_list) ==
2230 list_head(&orig->so_acceptq_list));
2231 VERIFY(cur->so_backlog == orig->so_backlog);
2232 /* New OOB migth have arrived, but mark should not have been lost */
2233 VERIFY(cur->so_oobmark >= orig->so_oobmark);
2234 /* Cannot VERIFY so_oobmsg; the proto might have sent up a new one */
2235 VERIFY(cur->so_pgrp == orig->so_pgrp);
2236 VERIFY(cur->so_peercred == orig->so_peercred);
2237 VERIFY(cur->so_cpid == orig->so_cpid);
2238 VERIFY(cur->so_zoneid == orig->so_zoneid);
2239 /* New data migth have arrived, but none should have been lost */
2240 VERIFY(cur->so_rcv_queued >= orig->so_rcv_queued);
2241 VERIFY(cur->so_rcv_q_head == orig->so_rcv_q_head);
2242 VERIFY(cur->so_rcv_head == orig->so_rcv_head);
2243 VERIFY(cur->so_proto_handle == orig->so_proto_handle);
2244 VERIFY(cur->so_downcalls == orig->so_downcalls);
2245 /* Cannot VERIFY so_proto_props; they can be updated by proto */
2246 }
2247 #endif
2248
2249 /*
2250 * so_tpi_fallback()
2251 *
2252 * This is the fallback initation routine; things start here.
2253 *
2254 * Basic strategy:
2255 * o Block new socket operations from coming in
2256 * o Allocate/initate info needed by TPI
2257 * o Quiesce the connection, at which point we sync
2258 * state and move data
2259 * o Change operations (sonodeops) associated with the socket
2260 * o Unblock threads waiting for the fallback to finish
2261 */
2262 int
so_tpi_fallback(struct sonode * so,struct cred * cr)2263 so_tpi_fallback(struct sonode *so, struct cred *cr)
2264 {
2265 int error;
2266 queue_t *q;
2267 struct sockparams *sp;
2268 struct sockparams *newsp = NULL;
2269 so_proto_fallback_func_t fbfunc;
2270 const char *devpath;
2271 boolean_t direct;
2272 struct sonode *nso;
2273 sock_quiesce_arg_t arg = { NULL, NULL };
2274 #ifdef DEBUG
2275 struct sonode origso;
2276 #endif
2277 error = 0;
2278 sp = so->so_sockparams;
2279 fbfunc = sp->sp_smod_info->smod_proto_fallback_func;
2280
2281 /*
2282 * Cannot fallback if the socket has active filters
2283 */
2284 if (so->so_filter_active > 0)
2285 return (EINVAL);
2286
2287 switch (so->so_family) {
2288 case AF_INET:
2289 devpath = sp->sp_smod_info->smod_fallback_devpath_v4;
2290 break;
2291 case AF_INET6:
2292 devpath = sp->sp_smod_info->smod_fallback_devpath_v6;
2293 break;
2294 default:
2295 return (EINVAL);
2296 }
2297
2298 /*
2299 * Fallback can only happen if the socket module has a TPI device
2300 * and fallback function.
2301 */
2302 if (devpath == NULL || fbfunc == NULL)
2303 return (EINVAL);
2304
2305 /*
2306 * Initiate fallback; upon success we know that no new requests
2307 * will come in from the user.
2308 */
2309 if (!so_start_fallback(so))
2310 return (EAGAIN);
2311 #ifdef DEBUG
2312 /*
2313 * Make a copy of the sonode in case we need to make an integrity
2314 * check later on.
2315 */
2316 bcopy(so, &origso, sizeof (*so));
2317 #endif
2318
2319 sp->sp_stats.sps_nfallback.value.ui64++;
2320
2321 newsp = sockparams_hold_ephemeral_bydev(so->so_family, so->so_type,
2322 so->so_protocol, devpath, KM_SLEEP, &error);
2323 if (error != 0)
2324 goto out;
2325
2326 if (so->so_direct != NULL) {
2327 sodirect_t *sodp = so->so_direct;
2328 mutex_enter(&so->so_lock);
2329
2330 so->so_direct->sod_enabled = B_FALSE;
2331 so->so_state &= ~SS_SODIRECT;
2332 ASSERT(sodp->sod_uioafh == NULL);
2333 mutex_exit(&so->so_lock);
2334 }
2335
2336 /* Turn sonode into a TPI socket */
2337 error = sotpi_convert_sonode(so, newsp, &direct, &q, cr);
2338 if (error != 0)
2339 goto out;
2340 /*
2341 * When it comes to urgent data we have two cases to deal with;
2342 * (1) The oob byte has already arrived, or (2) the protocol has
2343 * notified that oob data is pending, but it has not yet arrived.
2344 *
2345 * For (1) all we need to do is send a T_EXDATA_IND to indicate were
2346 * in the byte stream the oob byte is. For (2) we have to send a
2347 * SIGURG (M_PCSIG), followed by a zero-length mblk indicating whether
2348 * the oob byte will be the next byte from the protocol.
2349 *
2350 * So in the worst case we need two mblks, one for the signal, another
2351 * for mark indication. In that case we use the exdata_mp for the sig.
2352 */
2353 arg.soqa_exdata_mp = allocb_wait(sizeof (struct T_exdata_ind),
2354 BPRI_MED, STR_NOSIG, NULL);
2355 arg.soqa_urgmark_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
2356
2357 /*
2358 * Now tell the protocol to start using TPI. so_quiesced_cb be
2359 * called once it's safe to synchronize state.
2360 */
2361 DTRACE_PROBE1(proto__fallback__begin, struct sonode *, so);
2362 error = (*fbfunc)(so->so_proto_handle, q, direct, so_quiesced_cb,
2363 &arg);
2364 DTRACE_PROBE1(proto__fallback__end, struct sonode *, so);
2365
2366 if (error != 0) {
2367 /* protocol was unable to do a fallback, revert the sonode */
2368 sotpi_revert_sonode(so, cr);
2369 goto out;
2370 }
2371
2372 /*
2373 * Walk the accept queue and notify the proto that they should
2374 * fall back to TPI. The protocol will send up the T_CONN_IND.
2375 */
2376 nso = list_head(&so->so_acceptq_list);
2377 while (nso != NULL) {
2378 int rval;
2379 struct sonode *next;
2380
2381 if (arg.soqa_exdata_mp == NULL) {
2382 arg.soqa_exdata_mp =
2383 allocb_wait(sizeof (struct T_exdata_ind),
2384 BPRI_MED, STR_NOSIG, NULL);
2385 }
2386 if (arg.soqa_urgmark_mp == NULL) {
2387 arg.soqa_urgmark_mp = allocb_wait(0, BPRI_MED,
2388 STR_NOSIG, NULL);
2389 }
2390
2391 DTRACE_PROBE1(proto__fallback__begin, struct sonode *, nso);
2392 rval = (*fbfunc)(nso->so_proto_handle, NULL, direct,
2393 so_quiesced_cb, &arg);
2394 DTRACE_PROBE1(proto__fallback__end, struct sonode *, nso);
2395 if (rval != 0) {
2396 /* Abort the connection */
2397 zcmn_err(getzoneid(), CE_WARN,
2398 "Failed to convert socket in accept queue to TPI. "
2399 "Pid = %d\n", curproc->p_pid);
2400 next = list_next(&so->so_acceptq_list, nso);
2401 list_remove(&so->so_acceptq_list, nso);
2402 so->so_acceptq_len--;
2403
2404 (void) socket_close(nso, 0, CRED());
2405 socket_destroy(nso);
2406 nso = next;
2407 } else {
2408 nso = list_next(&so->so_acceptq_list, nso);
2409 }
2410 }
2411
2412 /*
2413 * Now flush the acceptq, this will destroy all sockets. They will
2414 * be recreated in sotpi_accept().
2415 */
2416 so_acceptq_flush(so, B_FALSE);
2417
2418 mutex_enter(&so->so_lock);
2419 so->so_state |= SS_FALLBACK_COMP;
2420 mutex_exit(&so->so_lock);
2421
2422 /*
2423 * Swap the sonode ops. Socket opertations that come in once this
2424 * is done will proceed without blocking.
2425 */
2426 so->so_ops = &sotpi_sonodeops;
2427
2428 /*
2429 * Wake up any threads stuck in poll. This is needed since the poll
2430 * head changes when the fallback happens (moves from the sonode to
2431 * the STREAMS head).
2432 */
2433 pollwakeup(&so->so_poll_list, POLLERR);
2434
2435 /*
2436 * When this non-STREAM socket was created we placed an extra ref on
2437 * the associated vnode to support asynchronous close. Drop that ref
2438 * here.
2439 */
2440 ASSERT(SOTOV(so)->v_count >= 2);
2441 VN_RELE(SOTOV(so));
2442 out:
2443 so_end_fallback(so);
2444
2445 if (error != 0) {
2446 #ifdef DEBUG
2447 so_integrity_check(so, &origso);
2448 #endif
2449 zcmn_err(getzoneid(), CE_WARN,
2450 "Failed to convert socket to TPI (err=%d). Pid = %d\n",
2451 error, curproc->p_pid);
2452 if (newsp != NULL)
2453 SOCKPARAMS_DEC_REF(newsp);
2454 }
2455 if (arg.soqa_exdata_mp != NULL)
2456 freemsg(arg.soqa_exdata_mp);
2457 if (arg.soqa_urgmark_mp != NULL)
2458 freemsg(arg.soqa_urgmark_mp);
2459
2460 return (error);
2461 }
2462