1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
24 */
25
26 /*
27 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
28 * Use is subject to license terms.
29 */
30
31 /*
32 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T.
33 * All Rights Reserved
34 */
35
36 /*
37 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
38 */
39
40 /*
41 * Copyright (c) 2014, STRATO AG. All rights reserved.
42 */
43
44 #include <sys/param.h>
45 #include <sys/types.h>
46 #include <sys/systm.h>
47 #include <sys/cred.h>
48 #include <sys/time.h>
49 #include <sys/vnode.h>
50 #include <sys/vfs.h>
51 #include <sys/vfs_opreg.h>
52 #include <sys/file.h>
53 #include <sys/filio.h>
54 #include <sys/uio.h>
55 #include <sys/buf.h>
56 #include <sys/mman.h>
57 #include <sys/pathname.h>
58 #include <sys/dirent.h>
59 #include <sys/debug.h>
60 #include <sys/vmsystm.h>
61 #include <sys/fcntl.h>
62 #include <sys/flock.h>
63 #include <sys/swap.h>
64 #include <sys/errno.h>
65 #include <sys/strsubr.h>
66 #include <sys/sysmacros.h>
67 #include <sys/kmem.h>
68 #include <sys/cmn_err.h>
69 #include <sys/pathconf.h>
70 #include <sys/utsname.h>
71 #include <sys/dnlc.h>
72 #include <sys/acl.h>
73 #include <sys/systeminfo.h>
74 #include <sys/policy.h>
75 #include <sys/sdt.h>
76 #include <sys/list.h>
77 #include <sys/stat.h>
78 #include <sys/zone.h>
79
80 #include <rpc/types.h>
81 #include <rpc/auth.h>
82 #include <rpc/clnt.h>
83
84 #include <nfs/nfs.h>
85 #include <nfs/nfs_clnt.h>
86 #include <nfs/nfs_acl.h>
87 #include <nfs/lm.h>
88 #include <nfs/nfs4.h>
89 #include <nfs/nfs4_kprot.h>
90 #include <nfs/rnode4.h>
91 #include <nfs/nfs4_clnt.h>
92
93 #include <vm/hat.h>
94 #include <vm/as.h>
95 #include <vm/page.h>
96 #include <vm/pvn.h>
97 #include <vm/seg.h>
98 #include <vm/seg_map.h>
99 #include <vm/seg_kpm.h>
100 #include <vm/seg_vn.h>
101
102 #include <fs/fs_subr.h>
103
104 #include <sys/ddi.h>
105 #include <sys/int_fmtio.h>
106 #include <sys/fs/autofs.h>
107
108 typedef struct {
109 nfs4_ga_res_t *di_garp;
110 cred_t *di_cred;
111 hrtime_t di_time_call;
112 } dirattr_info_t;
113
114 typedef enum nfs4_acl_op {
115 NFS4_ACL_GET,
116 NFS4_ACL_SET
117 } nfs4_acl_op_t;
118
119 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *mi);
120 static int nfs4frlock_get_sysid(struct lm_sysid **, vnode_t *, flock64_t *);
121
122 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *,
123 char *, dirattr_info_t *);
124
125 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *,
126 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t,
127 nfs4_error_t *, int *);
128 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int,
129 cred_t *);
130 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *,
131 stable_how4 *);
132 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *,
133 cred_t *, bool_t, struct uio *);
134 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *,
135 vsecattr_t *);
136 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *);
137 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int);
138 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *);
139 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *);
140 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *);
141 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl,
142 int, vnode_t **, cred_t *);
143 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **,
144 cred_t *, int, int, enum createmode4, int);
145 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
146 caller_context_t *);
147 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *,
148 vnode_t *, char *, cred_t *, nfsstat4 *);
149 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *,
150 vnode_t *, char *, cred_t *, nfsstat4 *);
151 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *);
152 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *);
153 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t);
154 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *,
155 page_t *[], size_t, struct seg *, caddr_t,
156 enum seg_rw, cred_t *);
157 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *,
158 cred_t *);
159 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t,
160 int, cred_t *);
161 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t,
162 int, cred_t *);
163 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *);
164 static void nfs4_set_mod(vnode_t *);
165 static void nfs4_get_commit(vnode_t *);
166 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t);
167 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *);
168 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int);
169 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3,
170 cred_t *);
171 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3,
172 cred_t *);
173 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *,
174 hrtime_t, vnode_t *, cred_t *);
175 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *);
176 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *);
177 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *);
178 static int nfs4_block_and_wait(clock_t *);
179 static cred_t *state_to_cred(nfs4_open_stream_t *);
180 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *);
181 static pid_t lo_to_pid(lock_owner4 *);
182 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *,
183 cred_t *, nfs4_lock_owner_t *);
184 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *,
185 nfs4_lock_owner_t *);
186 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **);
187 static void nfs4_delmap_callback(struct as *, void *, uint_t);
188 static void nfs4_free_delmapcall(nfs4_delmapcall_t *);
189 static nfs4_delmapcall_t *nfs4_init_delmapcall();
190 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *);
191 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t);
192 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *,
193 uid_t, gid_t, int);
194
195 /*
196 * Routines that implement the setting of v4 args for the misc. ops
197 */
198 static void nfs4args_lock_free(nfs_argop4 *);
199 static void nfs4args_lockt_free(nfs_argop4 *);
200 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *,
201 int, rnode4_t *, cred_t *, bitmap4, int *,
202 nfs4_stateid_types_t *);
203 static void nfs4args_setattr_free(nfs_argop4 *);
204 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4,
205 bitmap4);
206 static void nfs4args_verify_free(nfs_argop4 *);
207 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *,
208 WRITE4args **, nfs4_stateid_types_t *);
209
210 /*
211 * These are the vnode ops functions that implement the vnode interface to
212 * the networked file system. See more comments below at nfs4_vnodeops.
213 */
214 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *);
215 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *,
216 caller_context_t *);
217 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *,
218 caller_context_t *);
219 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *,
220 caller_context_t *);
221 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
222 caller_context_t *);
223 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *,
224 caller_context_t *);
225 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *);
226 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *,
227 caller_context_t *);
228 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *);
229 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl,
230 int, vnode_t **, cred_t *, int, caller_context_t *,
231 vsecattr_t *);
232 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *,
233 int);
234 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *,
235 caller_context_t *, int);
236 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
237 caller_context_t *, int);
238 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
239 cred_t *, caller_context_t *, int, vsecattr_t *);
240 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
241 caller_context_t *, int);
242 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *,
243 cred_t *, caller_context_t *, int);
244 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *,
245 caller_context_t *, int);
246 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
247 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *,
248 page_t *[], size_t, struct seg *, caddr_t,
249 enum seg_rw, cred_t *, caller_context_t *);
250 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *,
251 caller_context_t *);
252 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t,
253 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
254 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
255 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
256 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *);
257 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
258 struct flk_callback *, cred_t *, caller_context_t *);
259 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t,
260 cred_t *, caller_context_t *);
261 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
262 uint_t, uint_t, uint_t, cred_t *, caller_context_t *);
263 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int,
264 cred_t *, caller_context_t *);
265 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *,
266 caller_context_t *);
267 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
268 caller_context_t *);
269 /*
270 * These vnode ops are required to be called from outside this source file,
271 * e.g. by ephemeral mount stub vnode ops, and so may not be declared
272 * as static.
273 */
274 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *,
275 caller_context_t *);
276 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *);
277 int nfs4_lookup(vnode_t *, char *, vnode_t **,
278 struct pathname *, int, vnode_t *, cred_t *,
279 caller_context_t *, int *, pathname_t *);
280 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *);
281 int nfs4_rwlock(vnode_t *, int, caller_context_t *);
282 void nfs4_rwunlock(vnode_t *, int, caller_context_t *);
283 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *);
284 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *,
285 caller_context_t *);
286 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
287 caller_context_t *);
288 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
289 caller_context_t *);
290
291 /*
292 * Used for nfs4_commit_vp() to indicate if we should
293 * wait on pending writes.
294 */
295 #define NFS4_WRITE_NOWAIT 0
296 #define NFS4_WRITE_WAIT 1
297
298 /*
299 * Error flags used to pass information about certain special errors
300 * which need to be handled specially.
301 */
302 #define NFS_EOF -98
303 #define NFS_VERF_MISMATCH -97
304
305 /*
306 * Flags used to differentiate between which operation drove the
307 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary)
308 */
309 #define NFS4_CLOSE_OP 0x1
310 #define NFS4_DELMAP_OP 0x2
311 #define NFS4_INACTIVE_OP 0x3
312
313 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO))
314
315 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */
316 #define ALIGN64(x, ptr, sz) \
317 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \
318 if (x) { \
319 x = sizeof (uint64_t) - (x); \
320 sz -= (x); \
321 ptr += (x); \
322 }
323
324 #ifdef DEBUG
325 int nfs4_client_attr_debug = 0;
326 int nfs4_client_state_debug = 0;
327 int nfs4_client_shadow_debug = 0;
328 int nfs4_client_lock_debug = 0;
329 int nfs4_seqid_sync = 0;
330 int nfs4_client_map_debug = 0;
331 static int nfs4_pageio_debug = 0;
332 int nfs4_client_inactive_debug = 0;
333 int nfs4_client_recov_debug = 0;
334 int nfs4_client_failover_debug = 0;
335 int nfs4_client_call_debug = 0;
336 int nfs4_client_lookup_debug = 0;
337 int nfs4_client_zone_debug = 0;
338 int nfs4_lost_rqst_debug = 0;
339 int nfs4_rdattrerr_debug = 0;
340 int nfs4_open_stream_debug = 0;
341
342 int nfs4read_error_inject;
343
344 static int nfs4_create_misses = 0;
345
346 static int nfs4_readdir_cache_shorts = 0;
347 static int nfs4_readdir_readahead = 0;
348
349 static int nfs4_bio_do_stop = 0;
350
351 static int nfs4_lostpage = 0; /* number of times we lost original page */
352
353 int nfs4_mmap_debug = 0;
354
355 static int nfs4_pathconf_cache_hits = 0;
356 static int nfs4_pathconf_cache_misses = 0;
357
358 int nfs4close_all_cnt;
359 int nfs4close_one_debug = 0;
360 int nfs4close_notw_debug = 0;
361
362 int denied_to_flk_debug = 0;
363 void *lockt_denied_debug;
364
365 #endif
366
367 /*
368 * In milliseconds. Should be less than half of the lease time or better,
369 * less than one second.
370 */
371 int nfs4_base_wait_time = 20;
372 int nfs4_max_base_wait_time = 1 * 1000; /* 1 sec */
373
374 /*
375 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT
376 * or NFS4ERR_RESOURCE.
377 */
378 static int confirm_retry_sec = 30;
379
380 static int nfs4_lookup_neg_cache = 1;
381
382 /*
383 * number of pages to read ahead
384 * optimized for 100 base-T.
385 */
386 static int nfs4_nra = 4;
387
388 static int nfs4_do_symlink_cache = 1;
389
390 static int nfs4_pathconf_disable_cache = 0;
391
392 /*
393 * These are the vnode ops routines which implement the vnode interface to
394 * the networked file system. These routines just take their parameters,
395 * make them look networkish by putting the right info into interface structs,
396 * and then calling the appropriate remote routine(s) to do the work.
397 *
398 * Note on directory name lookup cacheing: If we detect a stale fhandle,
399 * we purge the directory cache relative to that vnode. This way, the
400 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for
401 * more details on rnode locking.
402 */
403
404 struct vnodeops *nfs4_vnodeops;
405
406 const fs_operation_def_t nfs4_vnodeops_template[] = {
407 VOPNAME_OPEN, { .vop_open = nfs4_open },
408 VOPNAME_CLOSE, { .vop_close = nfs4_close },
409 VOPNAME_READ, { .vop_read = nfs4_read },
410 VOPNAME_WRITE, { .vop_write = nfs4_write },
411 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl },
412 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr },
413 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr },
414 VOPNAME_ACCESS, { .vop_access = nfs4_access },
415 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup },
416 VOPNAME_CREATE, { .vop_create = nfs4_create },
417 VOPNAME_REMOVE, { .vop_remove = nfs4_remove },
418 VOPNAME_LINK, { .vop_link = nfs4_link },
419 VOPNAME_RENAME, { .vop_rename = nfs4_rename },
420 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir },
421 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir },
422 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir },
423 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink },
424 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink },
425 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync },
426 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive },
427 VOPNAME_FID, { .vop_fid = nfs4_fid },
428 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock },
429 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock },
430 VOPNAME_SEEK, { .vop_seek = nfs4_seek },
431 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock },
432 VOPNAME_SPACE, { .vop_space = nfs4_space },
433 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp },
434 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage },
435 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage },
436 VOPNAME_MAP, { .vop_map = nfs4_map },
437 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap },
438 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap },
439 /* no separate nfs4_dump */
440 VOPNAME_DUMP, { .vop_dump = nfs_dump },
441 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf },
442 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio },
443 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose },
444 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr },
445 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr },
446 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock },
447 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
448 NULL, NULL
449 };
450
451 /*
452 * The following are subroutines and definitions to set args or get res
453 * for the different nfsv4 ops
454 */
455
456 void
nfs4args_lookup_free(nfs_argop4 * argop,int arglen)457 nfs4args_lookup_free(nfs_argop4 *argop, int arglen)
458 {
459 int i;
460
461 for (i = 0; i < arglen; i++) {
462 if (argop[i].argop == OP_LOOKUP) {
463 kmem_free(
464 argop[i].nfs_argop4_u.oplookup.
465 objname.utf8string_val,
466 argop[i].nfs_argop4_u.oplookup.
467 objname.utf8string_len);
468 }
469 }
470 }
471
472 static void
nfs4args_lock_free(nfs_argop4 * argop)473 nfs4args_lock_free(nfs_argop4 *argop)
474 {
475 locker4 *locker = &argop->nfs_argop4_u.oplock.locker;
476
477 if (locker->new_lock_owner == TRUE) {
478 open_to_lock_owner4 *open_owner;
479
480 open_owner = &locker->locker4_u.open_owner;
481 if (open_owner->lock_owner.owner_val != NULL) {
482 kmem_free(open_owner->lock_owner.owner_val,
483 open_owner->lock_owner.owner_len);
484 }
485 }
486 }
487
488 static void
nfs4args_lockt_free(nfs_argop4 * argop)489 nfs4args_lockt_free(nfs_argop4 *argop)
490 {
491 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner;
492
493 if (lowner->owner_val != NULL) {
494 kmem_free(lowner->owner_val, lowner->owner_len);
495 }
496 }
497
498 static void
nfs4args_setattr(nfs_argop4 * argop,vattr_t * vap,vsecattr_t * vsap,int flags,rnode4_t * rp,cred_t * cr,bitmap4 supp,int * error,nfs4_stateid_types_t * sid_types)499 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags,
500 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error,
501 nfs4_stateid_types_t *sid_types)
502 {
503 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes;
504 mntinfo4_t *mi;
505
506 argop->argop = OP_SETATTR;
507 /*
508 * The stateid is set to 0 if client is not modifying the size
509 * and otherwise to whatever nfs4_get_stateid() returns.
510 *
511 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no
512 * state struct could be found for the process/file pair. We may
513 * want to change this in the future (by OPENing the file). See
514 * bug # 4474852.
515 */
516 if (vap->va_mask & AT_SIZE) {
517
518 ASSERT(rp != NULL);
519 mi = VTOMI4(RTOV4(rp));
520
521 argop->nfs_argop4_u.opsetattr.stateid =
522 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi,
523 OP_SETATTR, sid_types, FALSE);
524 } else {
525 bzero(&argop->nfs_argop4_u.opsetattr.stateid,
526 sizeof (stateid4));
527 }
528
529 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp);
530 if (*error)
531 bzero(attr, sizeof (*attr));
532 }
533
534 static void
nfs4args_setattr_free(nfs_argop4 * argop)535 nfs4args_setattr_free(nfs_argop4 *argop)
536 {
537 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes);
538 }
539
540 static int
nfs4args_verify(nfs_argop4 * argop,vattr_t * vap,enum nfs_opnum4 op,bitmap4 supp)541 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op,
542 bitmap4 supp)
543 {
544 fattr4 *attr;
545 int error = 0;
546
547 argop->argop = op;
548 switch (op) {
549 case OP_VERIFY:
550 attr = &argop->nfs_argop4_u.opverify.obj_attributes;
551 break;
552 case OP_NVERIFY:
553 attr = &argop->nfs_argop4_u.opnverify.obj_attributes;
554 break;
555 default:
556 return (EINVAL);
557 }
558 if (!error)
559 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp);
560 if (error)
561 bzero(attr, sizeof (*attr));
562 return (error);
563 }
564
565 static void
nfs4args_verify_free(nfs_argop4 * argop)566 nfs4args_verify_free(nfs_argop4 *argop)
567 {
568 switch (argop->argop) {
569 case OP_VERIFY:
570 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes);
571 break;
572 case OP_NVERIFY:
573 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes);
574 break;
575 default:
576 break;
577 }
578 }
579
580 static void
nfs4args_write(nfs_argop4 * argop,stable_how4 stable,rnode4_t * rp,cred_t * cr,WRITE4args ** wargs_pp,nfs4_stateid_types_t * sid_tp)581 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr,
582 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp)
583 {
584 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite;
585 mntinfo4_t *mi = VTOMI4(RTOV4(rp));
586
587 argop->argop = OP_WRITE;
588 wargs->stable = stable;
589 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id,
590 mi, OP_WRITE, sid_tp);
591 wargs->mblk = NULL;
592 *wargs_pp = wargs;
593 }
594
595 void
nfs4args_copen_free(OPEN4cargs * open_args)596 nfs4args_copen_free(OPEN4cargs *open_args)
597 {
598 if (open_args->owner.owner_val) {
599 kmem_free(open_args->owner.owner_val,
600 open_args->owner.owner_len);
601 }
602 if ((open_args->opentype == OPEN4_CREATE) &&
603 (open_args->mode != EXCLUSIVE4)) {
604 nfs4_fattr4_free(&open_args->createhow4_u.createattrs);
605 }
606 }
607
608 /*
609 * XXX: This is referenced in modstubs.s
610 */
611 struct vnodeops *
nfs4_getvnodeops(void)612 nfs4_getvnodeops(void)
613 {
614 return (nfs4_vnodeops);
615 }
616
617 /*
618 * The OPEN operation opens a regular file.
619 */
620 /*ARGSUSED3*/
621 static int
nfs4_open(vnode_t ** vpp,int flag,cred_t * cr,caller_context_t * ct)622 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
623 {
624 vnode_t *dvp = NULL;
625 rnode4_t *rp, *drp;
626 int error;
627 int just_been_created;
628 char fn[MAXNAMELEN];
629
630 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: "));
631 if (nfs_zone() != VTOMI4(*vpp)->mi_zone)
632 return (EIO);
633 rp = VTOR4(*vpp);
634
635 /*
636 * Check to see if opening something besides a regular file;
637 * if so skip the OTW call
638 */
639 if ((*vpp)->v_type != VREG) {
640 error = nfs4_open_non_reg_file(vpp, flag, cr);
641 return (error);
642 }
643
644 /*
645 * XXX - would like a check right here to know if the file is
646 * executable or not, so as to skip OTW
647 */
648
649 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0)
650 return (error);
651
652 drp = VTOR4(dvp);
653 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
654 return (EINTR);
655
656 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) {
657 nfs_rw_exit(&drp->r_rwlock);
658 return (error);
659 }
660
661 /*
662 * See if this file has just been CREATEd.
663 * If so, clear the flag and update the dnlc, which was previously
664 * skipped in nfs4_create.
665 * XXX need better serilization on this.
666 * XXX move this into the nf4open_otw call, after we have
667 * XXX acquired the open owner seqid sync.
668 */
669 mutex_enter(&rp->r_statev4_lock);
670 if (rp->created_v4) {
671 rp->created_v4 = 0;
672 mutex_exit(&rp->r_statev4_lock);
673
674 dnlc_update(dvp, fn, *vpp);
675 /* This is needed so we don't bump the open ref count */
676 just_been_created = 1;
677 } else {
678 mutex_exit(&rp->r_statev4_lock);
679 just_been_created = 0;
680 }
681
682 /*
683 * If caller specified O_TRUNC/FTRUNC, then be sure to set
684 * FWRITE (to drive successful setattr(size=0) after open)
685 */
686 if (flag & FTRUNC)
687 flag |= FWRITE;
688
689 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0,
690 just_been_created);
691
692 if (!error && !((*vpp)->v_flag & VROOT))
693 dnlc_update(dvp, fn, *vpp);
694
695 nfs_rw_exit(&drp->r_rwlock);
696
697 /* release the hold from vtodv */
698 VN_RELE(dvp);
699
700 /* exchange the shadow for the master vnode, if needed */
701
702 if (error == 0 && IS_SHADOW(*vpp, rp))
703 sv_exchange(vpp);
704
705 return (error);
706 }
707
708 /*
709 * See if there's a "lost open" request to be saved and recovered.
710 */
711 static void
nfs4open_save_lost_rqst(int error,nfs4_lost_rqst_t * lost_rqstp,nfs4_open_owner_t * oop,cred_t * cr,vnode_t * vp,vnode_t * dvp,OPEN4cargs * open_args)712 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp,
713 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp,
714 vnode_t *dvp, OPEN4cargs *open_args)
715 {
716 vfs_t *vfsp;
717 char *srccfp;
718
719 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp);
720
721 if (error != ETIMEDOUT && error != EINTR &&
722 !NFS4_FRC_UNMT_ERR(error, vfsp)) {
723 lost_rqstp->lr_op = 0;
724 return;
725 }
726
727 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
728 "nfs4open_save_lost_rqst: error %d", error));
729
730 lost_rqstp->lr_op = OP_OPEN;
731
732 /*
733 * The vp (if it is not NULL) and dvp are held and rele'd via
734 * the recovery code. See nfs4_save_lost_rqst.
735 */
736 lost_rqstp->lr_vp = vp;
737 lost_rqstp->lr_dvp = dvp;
738 lost_rqstp->lr_oop = oop;
739 lost_rqstp->lr_osp = NULL;
740 lost_rqstp->lr_lop = NULL;
741 lost_rqstp->lr_cr = cr;
742 lost_rqstp->lr_flk = NULL;
743 lost_rqstp->lr_oacc = open_args->share_access;
744 lost_rqstp->lr_odeny = open_args->share_deny;
745 lost_rqstp->lr_oclaim = open_args->claim;
746 if (open_args->claim == CLAIM_DELEGATE_CUR) {
747 lost_rqstp->lr_ostateid =
748 open_args->open_claim4_u.delegate_cur_info.delegate_stateid;
749 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile;
750 } else {
751 srccfp = open_args->open_claim4_u.cfile;
752 }
753 lost_rqstp->lr_ofile.utf8string_len = 0;
754 lost_rqstp->lr_ofile.utf8string_val = NULL;
755 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile);
756 lost_rqstp->lr_putfirst = FALSE;
757 }
758
759 struct nfs4_excl_time {
760 uint32 seconds;
761 uint32 nseconds;
762 };
763
764 /*
765 * The OPEN operation creates and/or opens a regular file
766 *
767 * ARGSUSED
768 */
769 static int
nfs4open_otw(vnode_t * dvp,char * file_name,struct vattr * in_va,vnode_t ** vpp,cred_t * cr,int create_flag,int open_flag,enum createmode4 createmode,int file_just_been_created)770 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va,
771 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag,
772 enum createmode4 createmode, int file_just_been_created)
773 {
774 rnode4_t *rp;
775 rnode4_t *drp = VTOR4(dvp);
776 vnode_t *vp = NULL;
777 vnode_t *vpi = *vpp;
778 bool_t needrecov = FALSE;
779
780 int doqueue = 1;
781
782 COMPOUND4args_clnt args;
783 COMPOUND4res_clnt res;
784 nfs_argop4 *argop;
785 nfs_resop4 *resop;
786 int argoplist_size;
787 int idx_open, idx_fattr;
788
789 GETFH4res *gf_res = NULL;
790 OPEN4res *op_res = NULL;
791 nfs4_ga_res_t *garp;
792 fattr4 *attr = NULL;
793 struct nfs4_excl_time verf;
794 bool_t did_excl_setup = FALSE;
795 int created_osp;
796
797 OPEN4cargs *open_args;
798 nfs4_open_owner_t *oop = NULL;
799 nfs4_open_stream_t *osp = NULL;
800 seqid4 seqid = 0;
801 bool_t retry_open = FALSE;
802 nfs4_recov_state_t recov_state;
803 nfs4_lost_rqst_t lost_rqst;
804 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
805 hrtime_t t;
806 int acc = 0;
807 cred_t *cred_otw = NULL; /* cred used to do the RPC call */
808 cred_t *ncr = NULL;
809
810 nfs4_sharedfh_t *otw_sfh;
811 nfs4_sharedfh_t *orig_sfh;
812 int fh_differs = 0;
813 int numops, setgid_flag;
814 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1;
815 nfs4_rcsync_t *rcsync;
816
817 /*
818 * Make sure we properly deal with setting the right gid on
819 * a newly created file to reflect the parent's setgid bit
820 */
821 setgid_flag = 0;
822 if (create_flag && in_va) {
823
824 /*
825 * If there is grpid mount flag used or
826 * the parent's directory has the setgid bit set
827 * _and_ the client was able to get a valid mapping
828 * for the parent dir's owner_group, we want to
829 * append NVERIFY(owner_group == dva.va_gid) and
830 * SETATTR to the CREATE compound.
831 */
832 mutex_enter(&drp->r_statelock);
833 if ((VTOMI4(dvp)->mi_flags & MI4_GRPID ||
834 drp->r_attr.va_mode & VSGID) &&
835 drp->r_attr.va_gid != GID_NOBODY) {
836 in_va->va_mask |= AT_GID;
837 in_va->va_gid = drp->r_attr.va_gid;
838 setgid_flag = 1;
839 }
840 mutex_exit(&drp->r_statelock);
841 }
842
843 /*
844 * Normal/non-create compound:
845 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new)
846 *
847 * Open(create) compound no setgid:
848 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) +
849 * RESTOREFH + GETATTR
850 *
851 * Open(create) setgid:
852 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) +
853 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH +
854 * NVERIFY(grp) + SETATTR
855 */
856 if (setgid_flag) {
857 numops = 10;
858 idx_open = 1;
859 idx_fattr = 3;
860 } else if (create_flag) {
861 numops = 7;
862 idx_open = 2;
863 idx_fattr = 4;
864 } else {
865 numops = 4;
866 idx_open = 1;
867 idx_fattr = 3;
868 }
869
870 args.array_len = numops;
871 argoplist_size = numops * sizeof (nfs_argop4);
872 argop = kmem_alloc(argoplist_size, KM_SLEEP);
873
874 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: "
875 "open %s open flag 0x%x cred %p", file_name, open_flag,
876 (void *)cr));
877
878 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
879 if (create_flag) {
880 /*
881 * We are to create a file. Initialize the passed in vnode
882 * pointer.
883 */
884 vpi = NULL;
885 } else {
886 /*
887 * Check to see if the client owns a read delegation and is
888 * trying to open for write. If so, then return the delegation
889 * to avoid the server doing a cb_recall and returning DELAY.
890 * NB - we don't use the statev4_lock here because we'd have
891 * to drop the lock anyway and the result would be stale.
892 */
893 if ((open_flag & FWRITE) &&
894 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ)
895 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN);
896
897 /*
898 * If the file has a delegation, then do an access check up
899 * front. This avoids having to an access check later after
900 * we've already done start_op, which could deadlock.
901 */
902 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) {
903 if (open_flag & FREAD &&
904 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0)
905 acc |= VREAD;
906 if (open_flag & FWRITE &&
907 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0)
908 acc |= VWRITE;
909 }
910 }
911
912 drp = VTOR4(dvp);
913
914 recov_state.rs_flags = 0;
915 recov_state.rs_num_retry_despite_err = 0;
916 cred_otw = cr;
917
918 recov_retry:
919 fh_differs = 0;
920 nfs4_error_zinit(&e);
921
922 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state);
923 if (e.error) {
924 if (ncr != NULL)
925 crfree(ncr);
926 kmem_free(argop, argoplist_size);
927 return (e.error);
928 }
929
930 args.ctag = TAG_OPEN;
931 args.array_len = numops;
932 args.array = argop;
933
934 /* putfh directory fh */
935 argop[0].argop = OP_CPUTFH;
936 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
937
938 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */
939 argop[idx_open].argop = OP_COPEN;
940 open_args = &argop[idx_open].nfs_argop4_u.opcopen;
941 open_args->claim = CLAIM_NULL;
942
943 /* name of file */
944 open_args->open_claim4_u.cfile = file_name;
945 open_args->owner.owner_len = 0;
946 open_args->owner.owner_val = NULL;
947
948 if (create_flag) {
949 /* CREATE a file */
950 open_args->opentype = OPEN4_CREATE;
951 open_args->mode = createmode;
952 if (createmode == EXCLUSIVE4) {
953 if (did_excl_setup == FALSE) {
954 verf.seconds = zone_get_hostid(NULL);
955 if (verf.seconds != 0)
956 verf.nseconds = newnum();
957 else {
958 timestruc_t now;
959
960 gethrestime(&now);
961 verf.seconds = now.tv_sec;
962 verf.nseconds = now.tv_nsec;
963 }
964 /*
965 * Since the server will use this value for the
966 * mtime, make sure that it can't overflow. Zero
967 * out the MSB. The actual value does not matter
968 * here, only its uniqeness.
969 */
970 verf.seconds &= INT32_MAX;
971 did_excl_setup = TRUE;
972 }
973
974 /* Now copy over verifier to OPEN4args. */
975 open_args->createhow4_u.createverf = *(uint64_t *)&verf;
976 } else {
977 int v_error;
978 bitmap4 supp_attrs;
979 servinfo4_t *svp;
980
981 attr = &open_args->createhow4_u.createattrs;
982
983 svp = drp->r_server;
984 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
985 supp_attrs = svp->sv_supp_attrs;
986 nfs_rw_exit(&svp->sv_lock);
987
988 /* GUARDED4 or UNCHECKED4 */
989 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN,
990 supp_attrs);
991 if (v_error) {
992 bzero(attr, sizeof (*attr));
993 nfs4args_copen_free(open_args);
994 nfs4_end_op(VTOMI4(dvp), dvp, vpi,
995 &recov_state, FALSE);
996 if (ncr != NULL)
997 crfree(ncr);
998 kmem_free(argop, argoplist_size);
999 return (v_error);
1000 }
1001 }
1002 } else {
1003 /* NO CREATE */
1004 open_args->opentype = OPEN4_NOCREATE;
1005 }
1006
1007 if (recov_state.rs_sp != NULL) {
1008 mutex_enter(&recov_state.rs_sp->s_lock);
1009 open_args->owner.clientid = recov_state.rs_sp->clientid;
1010 mutex_exit(&recov_state.rs_sp->s_lock);
1011 } else {
1012 /* XXX should we just fail here? */
1013 open_args->owner.clientid = 0;
1014 }
1015
1016 /*
1017 * This increments oop's ref count or creates a temporary 'just_created'
1018 * open owner that will become valid when this OPEN/OPEN_CONFIRM call
1019 * completes.
1020 */
1021 mutex_enter(&VTOMI4(dvp)->mi_lock);
1022
1023 /* See if a permanent or just created open owner exists */
1024 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp));
1025 if (!oop) {
1026 /*
1027 * This open owner does not exist so create a temporary
1028 * just created one.
1029 */
1030 oop = create_open_owner(cr, VTOMI4(dvp));
1031 ASSERT(oop != NULL);
1032 }
1033 mutex_exit(&VTOMI4(dvp)->mi_lock);
1034
1035 /* this length never changes, do alloc before seqid sync */
1036 open_args->owner.owner_len = sizeof (oop->oo_name);
1037 open_args->owner.owner_val =
1038 kmem_alloc(open_args->owner.owner_len, KM_SLEEP);
1039
1040 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp));
1041 if (e.error == EAGAIN) {
1042 open_owner_rele(oop);
1043 nfs4args_copen_free(open_args);
1044 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE);
1045 if (ncr != NULL) {
1046 crfree(ncr);
1047 ncr = NULL;
1048 }
1049 goto recov_retry;
1050 }
1051
1052 /* Check to see if we need to do the OTW call */
1053 if (!create_flag) {
1054 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi,
1055 file_just_been_created, &e.error, acc, &recov_state)) {
1056
1057 /*
1058 * The OTW open is not necessary. Either
1059 * the open can succeed without it (eg.
1060 * delegation, error == 0) or the open
1061 * must fail due to an access failure
1062 * (error != 0). In either case, tidy
1063 * up and return.
1064 */
1065
1066 nfs4_end_open_seqid_sync(oop);
1067 open_owner_rele(oop);
1068 nfs4args_copen_free(open_args);
1069 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE);
1070 if (ncr != NULL)
1071 crfree(ncr);
1072 kmem_free(argop, argoplist_size);
1073 return (e.error);
1074 }
1075 }
1076
1077 bcopy(&oop->oo_name, open_args->owner.owner_val,
1078 open_args->owner.owner_len);
1079
1080 seqid = nfs4_get_open_seqid(oop) + 1;
1081 open_args->seqid = seqid;
1082 open_args->share_access = 0;
1083 if (open_flag & FREAD)
1084 open_args->share_access |= OPEN4_SHARE_ACCESS_READ;
1085 if (open_flag & FWRITE)
1086 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE;
1087 open_args->share_deny = OPEN4_SHARE_DENY_NONE;
1088
1089
1090
1091 /*
1092 * getfh w/sanity check for idx_open/idx_fattr
1093 */
1094 ASSERT((idx_open + 1) == (idx_fattr - 1));
1095 argop[idx_open + 1].argop = OP_GETFH;
1096
1097 /* getattr */
1098 argop[idx_fattr].argop = OP_GETATTR;
1099 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1100 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
1101
1102 if (setgid_flag) {
1103 vattr_t _v;
1104 servinfo4_t *svp;
1105 bitmap4 supp_attrs;
1106
1107 svp = drp->r_server;
1108 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1109 supp_attrs = svp->sv_supp_attrs;
1110 nfs_rw_exit(&svp->sv_lock);
1111
1112 /*
1113 * For setgid case, we need to:
1114 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new)
1115 */
1116 argop[4].argop = OP_SAVEFH;
1117
1118 argop[5].argop = OP_CPUTFH;
1119 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
1120
1121 argop[6].argop = OP_GETATTR;
1122 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1123 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
1124
1125 argop[7].argop = OP_RESTOREFH;
1126
1127 /*
1128 * nverify
1129 */
1130 _v.va_mask = AT_GID;
1131 _v.va_gid = in_va->va_gid;
1132 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY,
1133 supp_attrs))) {
1134
1135 /*
1136 * setattr
1137 *
1138 * We _know_ we're not messing with AT_SIZE or
1139 * AT_XTIME, so no need for stateid or flags.
1140 * Also we specify NULL rp since we're only
1141 * interested in setting owner_group attributes.
1142 */
1143 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr,
1144 supp_attrs, &e.error, 0);
1145 if (e.error)
1146 nfs4args_verify_free(&argop[8]);
1147 }
1148
1149 if (e.error) {
1150 /*
1151 * XXX - Revisit the last argument to nfs4_end_op()
1152 * once 5020486 is fixed.
1153 */
1154 nfs4_end_open_seqid_sync(oop);
1155 open_owner_rele(oop);
1156 nfs4args_copen_free(open_args);
1157 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE);
1158 if (ncr != NULL)
1159 crfree(ncr);
1160 kmem_free(argop, argoplist_size);
1161 return (e.error);
1162 }
1163 } else if (create_flag) {
1164 argop[1].argop = OP_SAVEFH;
1165
1166 argop[5].argop = OP_RESTOREFH;
1167
1168 argop[6].argop = OP_GETATTR;
1169 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1170 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
1171 }
1172
1173 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
1174 "nfs4open_otw: %s call, nm %s, rp %s",
1175 needrecov ? "recov" : "first", file_name,
1176 rnode4info(VTOR4(dvp))));
1177
1178 t = gethrtime();
1179
1180 rcsync = nfs4_recall_sync_start(VTOMI4(dvp));
1181
1182 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e);
1183
1184 if (!e.error && nfs4_need_to_bump_seqid(&res))
1185 nfs4_set_open_seqid(seqid, oop, args.ctag);
1186
1187 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp);
1188
1189 if (e.error || needrecov) {
1190 bool_t abort = FALSE;
1191
1192 if (needrecov) {
1193 nfs4_bseqid_entry_t *bsep = NULL;
1194
1195 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop,
1196 cred_otw, vpi, dvp, open_args);
1197
1198 if (!e.error && res.status == NFS4ERR_BAD_SEQID) {
1199 bsep = nfs4_create_bseqid_entry(oop, NULL,
1200 vpi, 0, args.ctag, open_args->seqid);
1201 num_bseqid_retry--;
1202 }
1203
1204 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi,
1205 NULL, lost_rqst.lr_op == OP_OPEN ?
1206 &lost_rqst : NULL, OP_OPEN, bsep, NULL, NULL);
1207
1208 if (bsep)
1209 kmem_free(bsep, sizeof (*bsep));
1210 /* give up if we keep getting BAD_SEQID */
1211 if (num_bseqid_retry == 0)
1212 abort = TRUE;
1213 if (abort == TRUE && e.error == 0)
1214 e.error = geterrno4(res.status);
1215 }
1216 nfs4_recall_sync_end(VTOMI4(dvp), rcsync);
1217 nfs4_end_open_seqid_sync(oop);
1218 open_owner_rele(oop);
1219 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1220 nfs4args_copen_free(open_args);
1221 if (setgid_flag) {
1222 nfs4args_verify_free(&argop[8]);
1223 nfs4args_setattr_free(&argop[9]);
1224 }
1225 if (!e.error)
1226 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1227 if (ncr != NULL) {
1228 crfree(ncr);
1229 ncr = NULL;
1230 }
1231 if (!needrecov || abort == TRUE || e.error == EINTR ||
1232 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) {
1233 kmem_free(argop, argoplist_size);
1234 return (e.error);
1235 }
1236 goto recov_retry;
1237 }
1238
1239 /*
1240 * Will check and update lease after checking the rflag for
1241 * OPEN_CONFIRM in the successful OPEN call.
1242 */
1243 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) {
1244
1245 /*
1246 * XXX what if we're crossing mount points from server1:/drp
1247 * to server2:/drp/rp.
1248 */
1249
1250 nfs4_recall_sync_end(VTOMI4(dvp), rcsync);
1251
1252 /* Signal our end of use of the open seqid */
1253 nfs4_end_open_seqid_sync(oop);
1254
1255 /*
1256 * This will destroy the open owner if it was just created,
1257 * and no one else has put a reference on it.
1258 */
1259 open_owner_rele(oop);
1260 if (create_flag && (createmode != EXCLUSIVE4) &&
1261 res.status == NFS4ERR_BADOWNER)
1262 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN);
1263
1264 e.error = geterrno4(res.status);
1265 nfs4args_copen_free(open_args);
1266 if (setgid_flag) {
1267 nfs4args_verify_free(&argop[8]);
1268 nfs4args_setattr_free(&argop[9]);
1269 }
1270 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1271 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1272 /*
1273 * If the reply is NFS4ERR_ACCESS, it may be because
1274 * we are root (no root net access). If the real uid
1275 * is not root, then retry with the real uid instead.
1276 */
1277 if (ncr != NULL) {
1278 crfree(ncr);
1279 ncr = NULL;
1280 }
1281 if (res.status == NFS4ERR_ACCESS &&
1282 (ncr = crnetadjust(cred_otw)) != NULL) {
1283 cred_otw = ncr;
1284 goto recov_retry;
1285 }
1286 kmem_free(argop, argoplist_size);
1287 return (e.error);
1288 }
1289
1290 resop = &res.array[idx_open]; /* open res */
1291 op_res = &resop->nfs_resop4_u.opopen;
1292
1293 #ifdef DEBUG
1294 /*
1295 * verify attrset bitmap
1296 */
1297 if (create_flag &&
1298 (createmode == UNCHECKED4 || createmode == GUARDED4)) {
1299 /* make sure attrset returned is what we asked for */
1300 /* XXX Ignore this 'error' for now */
1301 if (attr->attrmask != op_res->attrset)
1302 /* EMPTY */;
1303 }
1304 #endif
1305
1306 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) {
1307 mutex_enter(&VTOMI4(dvp)->mi_lock);
1308 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK;
1309 mutex_exit(&VTOMI4(dvp)->mi_lock);
1310 }
1311
1312 resop = &res.array[idx_open + 1]; /* getfh res */
1313 gf_res = &resop->nfs_resop4_u.opgetfh;
1314
1315 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp));
1316
1317 /*
1318 * The open stateid has been updated on the server but not
1319 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache->
1320 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW
1321 * WRITE call. That, however, will use the old stateid, so go ahead
1322 * and upate the open stateid now, before any call to makenfs4node.
1323 */
1324 if (vpi) {
1325 nfs4_open_stream_t *tmp_osp;
1326 rnode4_t *tmp_rp = VTOR4(vpi);
1327
1328 tmp_osp = find_open_stream(oop, tmp_rp);
1329 if (tmp_osp) {
1330 tmp_osp->open_stateid = op_res->stateid;
1331 mutex_exit(&tmp_osp->os_sync_lock);
1332 open_stream_rele(tmp_osp, tmp_rp);
1333 }
1334
1335 /*
1336 * We must determine if the file handle given by the otw open
1337 * is the same as the file handle which was passed in with
1338 * *vpp. This case can be reached if the file we are trying
1339 * to open has been removed and another file has been created
1340 * having the same file name. The passed in vnode is released
1341 * later.
1342 */
1343 orig_sfh = VTOR4(vpi)->r_fh;
1344 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh);
1345 }
1346
1347 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res;
1348
1349 if (create_flag || fh_differs) {
1350 int rnode_err = 0;
1351
1352 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr,
1353 dvp, fn_get(VTOSV(dvp)->sv_name, file_name, otw_sfh));
1354
1355 if (e.error)
1356 PURGE_ATTRCACHE4(vp);
1357 /*
1358 * For the newly created vp case, make sure the rnode
1359 * isn't bad before using it.
1360 */
1361 mutex_enter(&(VTOR4(vp))->r_statelock);
1362 if (VTOR4(vp)->r_flags & R4RECOVERR)
1363 rnode_err = EIO;
1364 mutex_exit(&(VTOR4(vp))->r_statelock);
1365
1366 if (rnode_err) {
1367 nfs4_recall_sync_end(VTOMI4(dvp), rcsync);
1368 nfs4_end_open_seqid_sync(oop);
1369 nfs4args_copen_free(open_args);
1370 if (setgid_flag) {
1371 nfs4args_verify_free(&argop[8]);
1372 nfs4args_setattr_free(&argop[9]);
1373 }
1374 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1375 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state,
1376 needrecov);
1377 open_owner_rele(oop);
1378 VN_RELE(vp);
1379 if (ncr != NULL)
1380 crfree(ncr);
1381 sfh4_rele(&otw_sfh);
1382 kmem_free(argop, argoplist_size);
1383 return (EIO);
1384 }
1385 } else {
1386 vp = vpi;
1387 }
1388 sfh4_rele(&otw_sfh);
1389
1390 /*
1391 * It seems odd to get a full set of attrs and then not update
1392 * the object's attrcache in the non-create case. Create case uses
1393 * the attrs since makenfs4node checks to see if the attrs need to
1394 * be updated (and then updates them). The non-create case should
1395 * update attrs also.
1396 */
1397 if (! create_flag && ! fh_differs && !e.error) {
1398 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL);
1399 }
1400
1401 nfs4_error_zinit(&e);
1402 if (op_res->rflags & OPEN4_RESULT_CONFIRM) {
1403 /* This does not do recovery for vp explicitly. */
1404 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE,
1405 &retry_open, oop, FALSE, &e, &num_bseqid_retry);
1406
1407 if (e.error || e.stat) {
1408 nfs4_recall_sync_end(VTOMI4(dvp), rcsync);
1409 nfs4_end_open_seqid_sync(oop);
1410 nfs4args_copen_free(open_args);
1411 if (setgid_flag) {
1412 nfs4args_verify_free(&argop[8]);
1413 nfs4args_setattr_free(&argop[9]);
1414 }
1415 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1416 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state,
1417 needrecov);
1418 open_owner_rele(oop);
1419 if (create_flag || fh_differs) {
1420 /* rele the makenfs4node */
1421 VN_RELE(vp);
1422 }
1423 if (ncr != NULL) {
1424 crfree(ncr);
1425 ncr = NULL;
1426 }
1427 if (retry_open == TRUE) {
1428 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1429 "nfs4open_otw: retry the open since OPEN "
1430 "CONFIRM failed with error %d stat %d",
1431 e.error, e.stat));
1432 if (create_flag && createmode == GUARDED4) {
1433 NFS4_DEBUG(nfs4_client_recov_debug,
1434 (CE_NOTE, "nfs4open_otw: switch "
1435 "createmode from GUARDED4 to "
1436 "UNCHECKED4"));
1437 createmode = UNCHECKED4;
1438 }
1439 goto recov_retry;
1440 }
1441 if (!e.error) {
1442 if (create_flag && (createmode != EXCLUSIVE4) &&
1443 e.stat == NFS4ERR_BADOWNER)
1444 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN);
1445
1446 e.error = geterrno4(e.stat);
1447 }
1448 kmem_free(argop, argoplist_size);
1449 return (e.error);
1450 }
1451 }
1452
1453 rp = VTOR4(vp);
1454
1455 mutex_enter(&rp->r_statev4_lock);
1456 if (create_flag)
1457 rp->created_v4 = 1;
1458 mutex_exit(&rp->r_statev4_lock);
1459
1460 mutex_enter(&oop->oo_lock);
1461 /* Doesn't matter if 'oo_just_created' already was set as this */
1462 oop->oo_just_created = NFS4_PERM_CREATED;
1463 if (oop->oo_cred_otw)
1464 crfree(oop->oo_cred_otw);
1465 oop->oo_cred_otw = cred_otw;
1466 crhold(oop->oo_cred_otw);
1467 mutex_exit(&oop->oo_lock);
1468
1469 /* returns with 'os_sync_lock' held */
1470 osp = find_or_create_open_stream(oop, rp, &created_osp);
1471 if (!osp) {
1472 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
1473 "nfs4open_otw: failed to create an open stream"));
1474 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: "
1475 "signal our end of use of the open seqid"));
1476
1477 nfs4_recall_sync_end(VTOMI4(dvp), rcsync);
1478 nfs4_end_open_seqid_sync(oop);
1479 open_owner_rele(oop);
1480 nfs4args_copen_free(open_args);
1481 if (setgid_flag) {
1482 nfs4args_verify_free(&argop[8]);
1483 nfs4args_setattr_free(&argop[9]);
1484 }
1485 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1486 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1487 if (create_flag || fh_differs)
1488 VN_RELE(vp);
1489 if (ncr != NULL)
1490 crfree(ncr);
1491
1492 kmem_free(argop, argoplist_size);
1493 return (EINVAL);
1494
1495 }
1496
1497 osp->open_stateid = op_res->stateid;
1498
1499 if (open_flag & FREAD)
1500 osp->os_share_acc_read++;
1501 if (open_flag & FWRITE)
1502 osp->os_share_acc_write++;
1503 osp->os_share_deny_none++;
1504
1505 /*
1506 * Need to reset this bitfield for the possible case where we were
1507 * going to OTW CLOSE the file, got a non-recoverable error, and before
1508 * we could retry the CLOSE, OPENed the file again.
1509 */
1510 ASSERT(osp->os_open_owner->oo_seqid_inuse);
1511 osp->os_final_close = 0;
1512 osp->os_force_close = 0;
1513 #ifdef DEBUG
1514 if (osp->os_failed_reopen)
1515 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:"
1516 " clearing os_failed_reopen for osp %p, cr %p, rp %s",
1517 (void *)osp, (void *)cr, rnode4info(rp)));
1518 #endif
1519 osp->os_failed_reopen = 0;
1520
1521 mutex_exit(&osp->os_sync_lock);
1522
1523 nfs4_end_open_seqid_sync(oop);
1524
1525 if (created_osp && recov_state.rs_sp != NULL) {
1526 mutex_enter(&recov_state.rs_sp->s_lock);
1527 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp));
1528 mutex_exit(&recov_state.rs_sp->s_lock);
1529 }
1530
1531 /* get rid of our reference to find oop */
1532 open_owner_rele(oop);
1533
1534 open_stream_rele(osp, rp);
1535
1536 /* accept delegation, if any */
1537 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw);
1538
1539 nfs4_recall_sync_end(VTOMI4(dvp), rcsync);
1540
1541 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1542
1543 if (createmode == EXCLUSIVE4 &&
1544 (in_va->va_mask & ~(AT_GID | AT_SIZE))) {
1545 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:"
1546 " EXCLUSIVE4: sending a SETATTR"));
1547 /*
1548 * If doing an exclusive create, then generate
1549 * a SETATTR to set the initial attributes.
1550 * Try to set the mtime and the atime to the
1551 * server's current time. It is somewhat
1552 * expected that these fields will be used to
1553 * store the exclusive create cookie. If not,
1554 * server implementors will need to know that
1555 * a SETATTR will follow an exclusive create
1556 * and the cookie should be destroyed if
1557 * appropriate.
1558 *
1559 * The AT_GID and AT_SIZE bits are turned off
1560 * so that the SETATTR request will not attempt
1561 * to process these. The gid will be set
1562 * separately if appropriate. The size is turned
1563 * off because it is assumed that a new file will
1564 * be created empty and if the file wasn't empty,
1565 * then the exclusive create will have failed
1566 * because the file must have existed already.
1567 * Therefore, no truncate operation is needed.
1568 */
1569 in_va->va_mask &= ~(AT_GID | AT_SIZE);
1570 in_va->va_mask |= (AT_MTIME | AT_ATIME);
1571
1572 e.error = nfs4setattr(vp, in_va, 0, cr, NULL);
1573 if (e.error) {
1574 nfs4_error_t err;
1575
1576 /*
1577 * Couldn't correct the attributes of
1578 * the newly created file and the
1579 * attributes are wrong. Remove the
1580 * file and return an error to the
1581 * application.
1582 */
1583 /* XXX will this take care of client state ? */
1584 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
1585 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:"
1586 " remove file", e.error));
1587
1588 /*
1589 * The file is currently open so try to close it first.
1590 *
1591 * If we do not close the file explicitly here then the
1592 * VN_RELE() would do an (implicit and asynchronous)
1593 * close for us. But such async close could race with
1594 * the nfs4_remove() below. If the async close is
1595 * slower than nfs4_remove() then nfs4_remove()
1596 * wouldn't remove the file but rename it to .nfsXXXX
1597 * instead.
1598 */
1599 nfs4close_one(vp, NULL, cr, open_flag, NULL, &err,
1600 CLOSE_NORM, 0, 0, 0);
1601 VN_RELE(vp);
1602 (void) nfs4_remove(dvp, file_name, cr, NULL, 0);
1603
1604 /*
1605 * Since we've reled the vnode and removed
1606 * the file we now need to return the error.
1607 * At this point we don't want to update the
1608 * dircaches, call nfs4_waitfor_purge_complete
1609 * or set vpp to vp so we need to skip these
1610 * as well.
1611 */
1612 goto skip_update_dircaches;
1613 }
1614 }
1615
1616 /*
1617 * If we created or found the correct vnode, due to create_flag or
1618 * fh_differs being set, then update directory cache attribute, readdir
1619 * and dnlc caches.
1620 */
1621 if (create_flag || fh_differs) {
1622 dirattr_info_t dinfo, *dinfop;
1623
1624 /*
1625 * Make sure getattr succeeded before using results.
1626 * note: op 7 is getattr(dir) for both flavors of
1627 * open(create).
1628 */
1629 if (create_flag && res.status == NFS4_OK) {
1630 dinfo.di_time_call = t;
1631 dinfo.di_cred = cr;
1632 dinfo.di_garp =
1633 &res.array[6].nfs_resop4_u.opgetattr.ga_res;
1634 dinfop = &dinfo;
1635 } else {
1636 dinfop = NULL;
1637 }
1638
1639 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name,
1640 dinfop);
1641 }
1642
1643 /*
1644 * If the page cache for this file was flushed from actions
1645 * above, it was done asynchronously and if that is true,
1646 * there is a need to wait here for it to complete. This must
1647 * be done outside of start_fop/end_fop.
1648 */
1649 (void) nfs4_waitfor_purge_complete(vp);
1650
1651 /*
1652 * It is implicit that we are in the open case (create_flag == 0) since
1653 * fh_differs can only be set to a non-zero value in the open case.
1654 */
1655 if (fh_differs != 0 && vpi != NULL)
1656 VN_RELE(vpi);
1657
1658 /*
1659 * Be sure to set *vpp to the correct value before returning.
1660 */
1661 *vpp = vp;
1662
1663 skip_update_dircaches:
1664
1665 nfs4args_copen_free(open_args);
1666 if (setgid_flag) {
1667 nfs4args_verify_free(&argop[8]);
1668 nfs4args_setattr_free(&argop[9]);
1669 }
1670 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1671
1672 if (ncr)
1673 crfree(ncr);
1674 kmem_free(argop, argoplist_size);
1675 return (e.error);
1676 }
1677
1678 /*
1679 * Reopen an open instance. cf. nfs4open_otw().
1680 *
1681 * Errors are returned by the nfs4_error_t parameter.
1682 * - ep->error contains an errno value or zero.
1683 * - if it is zero, ep->stat is set to an NFS status code, if any.
1684 * If the file could not be reopened, but the caller should continue, the
1685 * file is marked dead and no error values are returned. If the caller
1686 * should stop recovering open files and start over, either the ep->error
1687 * value or ep->stat will indicate an error (either something that requires
1688 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile
1689 * filehandles) may be handled silently by this routine.
1690 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state
1691 * will be started, so the caller should not do it.
1692 *
1693 * Gotos:
1694 * - kill_file : reopen failed in such a fashion to constitute marking the
1695 * file dead and setting the open stream's 'os_failed_reopen' as 1. This
1696 * is for cases where recovery is not possible.
1697 * - failed_reopen : same as above, except that the file has already been
1698 * marked dead, so no need to do it again.
1699 * - bailout : reopen failed but we are able to recover and retry the reopen -
1700 * either within this function immediately or via the calling function.
1701 */
1702
1703 void
nfs4_reopen(vnode_t * vp,nfs4_open_stream_t * osp,nfs4_error_t * ep,open_claim_type4 claim,bool_t frc_use_claim_previous,bool_t is_recov)1704 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep,
1705 open_claim_type4 claim, bool_t frc_use_claim_previous,
1706 bool_t is_recov)
1707 {
1708 COMPOUND4args_clnt args;
1709 COMPOUND4res_clnt res;
1710 nfs_argop4 argop[4];
1711 nfs_resop4 *resop;
1712 OPEN4res *op_res = NULL;
1713 OPEN4cargs *open_args;
1714 GETFH4res *gf_res;
1715 rnode4_t *rp = VTOR4(vp);
1716 int doqueue = 1;
1717 cred_t *cr = NULL, *cred_otw = NULL;
1718 nfs4_open_owner_t *oop = NULL;
1719 seqid4 seqid;
1720 nfs4_ga_res_t *garp;
1721 char fn[MAXNAMELEN];
1722 nfs4_recov_state_t recov = {NULL, 0};
1723 nfs4_lost_rqst_t lost_rqst;
1724 mntinfo4_t *mi = VTOMI4(vp);
1725 bool_t abort;
1726 char *failed_msg = "";
1727 int fh_different;
1728 hrtime_t t;
1729 nfs4_bseqid_entry_t *bsep = NULL;
1730 nfs4_rcsync_t *rcsync = NULL;
1731
1732 ASSERT(nfs4_consistent_type(vp));
1733 ASSERT(nfs_zone() == mi->mi_zone);
1734
1735 nfs4_error_zinit(ep);
1736
1737 /* this is the cred used to find the open owner */
1738 cr = state_to_cred(osp);
1739 if (cr == NULL) {
1740 failed_msg = "Couldn't reopen: no cred";
1741 goto kill_file;
1742 }
1743 /* use this cred for OTW operations */
1744 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner);
1745
1746 top:
1747 nfs4_error_zinit(ep);
1748
1749 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) {
1750 /* File system has been unmounted, quit */
1751 ep->error = EIO;
1752 failed_msg = "Couldn't reopen: file system has been unmounted";
1753 goto kill_file;
1754 }
1755
1756 oop = osp->os_open_owner;
1757
1758 ASSERT(oop != NULL);
1759 if (oop == NULL) { /* be defensive in non-DEBUG */
1760 failed_msg = "can't reopen: no open owner";
1761 goto kill_file;
1762 }
1763 open_owner_hold(oop);
1764
1765 ep->error = nfs4_start_open_seqid_sync(oop, mi);
1766 if (ep->error) {
1767 open_owner_rele(oop);
1768 oop = NULL;
1769 goto bailout;
1770 }
1771
1772 /*
1773 * If the rnode has a delegation and the delegation has been
1774 * recovered and the server didn't request a recall and the caller
1775 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during
1776 * recovery) and the rnode hasn't been marked dead, then install
1777 * the delegation stateid in the open stream. Otherwise, proceed
1778 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN.
1779 */
1780 mutex_enter(&rp->r_statev4_lock);
1781 if (rp->r_deleg_type != OPEN_DELEGATE_NONE &&
1782 !rp->r_deleg_return_pending &&
1783 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) &&
1784 !rp->r_deleg_needs_recall &&
1785 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous &&
1786 !(rp->r_flags & R4RECOVERR)) {
1787 mutex_enter(&osp->os_sync_lock);
1788 osp->os_delegation = 1;
1789 osp->open_stateid = rp->r_deleg_stateid;
1790 mutex_exit(&osp->os_sync_lock);
1791 mutex_exit(&rp->r_statev4_lock);
1792 goto bailout;
1793 }
1794 mutex_exit(&rp->r_statev4_lock);
1795
1796 /*
1797 * If the file failed recovery, just quit. This failure need not
1798 * affect other reopens, so don't return an error.
1799 */
1800 mutex_enter(&rp->r_statelock);
1801 if (rp->r_flags & R4RECOVERR) {
1802 mutex_exit(&rp->r_statelock);
1803 ep->error = 0;
1804 goto failed_reopen;
1805 }
1806 mutex_exit(&rp->r_statelock);
1807
1808 /*
1809 * argop is empty here
1810 *
1811 * PUTFH, OPEN, GETATTR
1812 */
1813 args.ctag = TAG_REOPEN;
1814 args.array_len = 4;
1815 args.array = argop;
1816
1817 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
1818 "nfs4_reopen: file is type %d, id %s",
1819 vp->v_type, rnode4info(VTOR4(vp))));
1820
1821 argop[0].argop = OP_CPUTFH;
1822
1823 if (claim != CLAIM_PREVIOUS) {
1824 /*
1825 * if this is a file mount then
1826 * use the mntinfo parentfh
1827 */
1828 argop[0].nfs_argop4_u.opcputfh.sfh =
1829 (vp->v_flag & VROOT) ? mi->mi_srvparentfh :
1830 VTOSV(vp)->sv_dfh;
1831 } else {
1832 /* putfh fh to reopen */
1833 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
1834 }
1835
1836 argop[1].argop = OP_COPEN;
1837 open_args = &argop[1].nfs_argop4_u.opcopen;
1838 open_args->claim = claim;
1839
1840 if (claim == CLAIM_NULL) {
1841
1842 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) {
1843 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname "
1844 "failed for vp 0x%p for CLAIM_NULL with %m",
1845 (void *)vp);
1846 failed_msg = "Couldn't reopen: vtoname failed for "
1847 "CLAIM_NULL";
1848 /* nothing allocated yet */
1849 goto kill_file;
1850 }
1851
1852 open_args->open_claim4_u.cfile = fn;
1853 } else if (claim == CLAIM_PREVIOUS) {
1854
1855 /*
1856 * We have two cases to deal with here:
1857 * 1) We're being called to reopen files in order to satisfy
1858 * a lock operation request which requires us to explicitly
1859 * reopen files which were opened under a delegation. If
1860 * we're in recovery, we *must* use CLAIM_PREVIOUS. In
1861 * that case, frc_use_claim_previous is TRUE and we must
1862 * use the rnode's current delegation type (r_deleg_type).
1863 * 2) We're reopening files during some form of recovery.
1864 * In this case, frc_use_claim_previous is FALSE and we
1865 * use the delegation type appropriate for recovery
1866 * (r_deleg_needs_recovery).
1867 */
1868 mutex_enter(&rp->r_statev4_lock);
1869 open_args->open_claim4_u.delegate_type =
1870 frc_use_claim_previous ?
1871 rp->r_deleg_type :
1872 rp->r_deleg_needs_recovery;
1873 mutex_exit(&rp->r_statev4_lock);
1874
1875 } else if (claim == CLAIM_DELEGATE_CUR) {
1876
1877 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) {
1878 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname "
1879 "failed for vp 0x%p for CLAIM_DELEGATE_CUR "
1880 "with %m", (void *)vp);
1881 failed_msg = "Couldn't reopen: vtoname failed for "
1882 "CLAIM_DELEGATE_CUR";
1883 /* nothing allocated yet */
1884 goto kill_file;
1885 }
1886
1887 mutex_enter(&rp->r_statev4_lock);
1888 open_args->open_claim4_u.delegate_cur_info.delegate_stateid =
1889 rp->r_deleg_stateid;
1890 mutex_exit(&rp->r_statev4_lock);
1891
1892 open_args->open_claim4_u.delegate_cur_info.cfile = fn;
1893 }
1894 open_args->opentype = OPEN4_NOCREATE;
1895 open_args->owner.clientid = mi2clientid(mi);
1896 open_args->owner.owner_len = sizeof (oop->oo_name);
1897 open_args->owner.owner_val =
1898 kmem_alloc(open_args->owner.owner_len, KM_SLEEP);
1899 bcopy(&oop->oo_name, open_args->owner.owner_val,
1900 open_args->owner.owner_len);
1901 open_args->share_access = 0;
1902 open_args->share_deny = 0;
1903
1904 mutex_enter(&osp->os_sync_lock);
1905 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp "
1906 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: "
1907 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ",
1908 (void *)osp, (void *)rp, osp->os_share_acc_read,
1909 osp->os_share_acc_write, osp->os_open_ref_count,
1910 osp->os_mmap_read, osp->os_mmap_write, claim));
1911
1912 if (osp->os_share_acc_read || osp->os_mmap_read)
1913 open_args->share_access |= OPEN4_SHARE_ACCESS_READ;
1914 if (osp->os_share_acc_write || osp->os_mmap_write)
1915 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE;
1916 if (osp->os_share_deny_read)
1917 open_args->share_deny |= OPEN4_SHARE_DENY_READ;
1918 if (osp->os_share_deny_write)
1919 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE;
1920 mutex_exit(&osp->os_sync_lock);
1921
1922 seqid = nfs4_get_open_seqid(oop) + 1;
1923 open_args->seqid = seqid;
1924
1925 /* Construct the getfh part of the compound */
1926 argop[2].argop = OP_GETFH;
1927
1928 /* Construct the getattr part of the compound */
1929 argop[3].argop = OP_GETATTR;
1930 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1931 argop[3].nfs_argop4_u.opgetattr.mi = mi;
1932
1933 t = gethrtime();
1934
1935 rcsync = nfs4_recall_sync_start(mi);
1936
1937 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep);
1938
1939 if (ep->error) {
1940 if (!is_recov && !frc_use_claim_previous &&
1941 (ep->error == EINTR || ep->error == ETIMEDOUT ||
1942 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) {
1943 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop,
1944 cred_otw, vp, NULL, open_args);
1945 abort = nfs4_start_recovery(ep,
1946 VTOMI4(vp), vp, NULL, NULL,
1947 lost_rqst.lr_op == OP_OPEN ?
1948 &lost_rqst : NULL, OP_OPEN, NULL, NULL, NULL);
1949 nfs4args_copen_free(open_args);
1950 goto bailout;
1951 }
1952
1953 nfs4args_copen_free(open_args);
1954
1955 if (ep->error == EACCES && cred_otw != cr) {
1956 crfree(cred_otw);
1957 cred_otw = cr;
1958 crhold(cred_otw);
1959 nfs4_recall_sync_end(mi, rcsync);
1960 rcsync = NULL;
1961 nfs4_end_open_seqid_sync(oop);
1962 open_owner_rele(oop);
1963 oop = NULL;
1964 goto top;
1965 }
1966 if (ep->error == ETIMEDOUT)
1967 goto bailout;
1968 failed_msg = "Couldn't reopen: rpc error";
1969 goto kill_file;
1970 }
1971
1972 if (nfs4_need_to_bump_seqid(&res))
1973 nfs4_set_open_seqid(seqid, oop, args.ctag);
1974
1975 switch (res.status) {
1976 case NFS4_OK:
1977 if (recov.rs_flags & NFS4_RS_DELAY_MSG) {
1978 mutex_enter(&rp->r_statelock);
1979 rp->r_delay_interval = 0;
1980 mutex_exit(&rp->r_statelock);
1981 }
1982 break;
1983 case NFS4ERR_BAD_SEQID:
1984 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0,
1985 args.ctag, open_args->seqid);
1986
1987 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL,
1988 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst :
1989 NULL, OP_OPEN, bsep, NULL, NULL);
1990
1991 nfs4args_copen_free(open_args);
1992 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1993 nfs4_end_open_seqid_sync(oop);
1994 open_owner_rele(oop);
1995 oop = NULL;
1996 kmem_free(bsep, sizeof (*bsep));
1997
1998 goto kill_file;
1999 case NFS4ERR_NO_GRACE:
2000 nfs4args_copen_free(open_args);
2001 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2002 nfs4_recall_sync_end(mi, rcsync);
2003 rcsync = NULL;
2004 nfs4_end_open_seqid_sync(oop);
2005 open_owner_rele(oop);
2006 oop = NULL;
2007 if (claim == CLAIM_PREVIOUS) {
2008 /*
2009 * Retry as a plain open. We don't need to worry about
2010 * checking the changeinfo: it is acceptable for a
2011 * client to re-open a file and continue processing
2012 * (in the absence of locks).
2013 */
2014 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
2015 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; "
2016 "will retry as CLAIM_NULL"));
2017 claim = CLAIM_NULL;
2018 nfs4_mi_kstat_inc_no_grace(mi);
2019 goto top;
2020 }
2021 failed_msg =
2022 "Couldn't reopen: tried reclaim outside grace period. ";
2023 goto kill_file;
2024 case NFS4ERR_GRACE:
2025 nfs4_set_grace_wait(mi);
2026 nfs4args_copen_free(open_args);
2027 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2028 nfs4_recall_sync_end(mi, rcsync);
2029 rcsync = NULL;
2030 nfs4_end_open_seqid_sync(oop);
2031 open_owner_rele(oop);
2032 oop = NULL;
2033 ep->error = nfs4_wait_for_grace(mi, &recov);
2034 if (ep->error != 0)
2035 goto bailout;
2036 goto top;
2037 case NFS4ERR_DELAY:
2038 nfs4_set_delay_wait(vp);
2039 nfs4args_copen_free(open_args);
2040 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2041 nfs4_recall_sync_end(mi, rcsync);
2042 rcsync = NULL;
2043 nfs4_end_open_seqid_sync(oop);
2044 open_owner_rele(oop);
2045 oop = NULL;
2046 ep->error = nfs4_wait_for_delay(vp, &recov);
2047 nfs4_mi_kstat_inc_delay(mi);
2048 if (ep->error != 0)
2049 goto bailout;
2050 goto top;
2051 case NFS4ERR_FHEXPIRED:
2052 /* recover filehandle and retry */
2053 abort = nfs4_start_recovery(ep,
2054 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL, NULL, NULL);
2055 nfs4args_copen_free(open_args);
2056 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2057 nfs4_recall_sync_end(mi, rcsync);
2058 rcsync = NULL;
2059 nfs4_end_open_seqid_sync(oop);
2060 open_owner_rele(oop);
2061 oop = NULL;
2062 if (abort == FALSE)
2063 goto top;
2064 failed_msg = "Couldn't reopen: recovery aborted";
2065 goto kill_file;
2066 case NFS4ERR_RESOURCE:
2067 case NFS4ERR_STALE_CLIENTID:
2068 case NFS4ERR_WRONGSEC:
2069 case NFS4ERR_EXPIRED:
2070 /*
2071 * Do not mark the file dead and let the calling
2072 * function initiate recovery.
2073 */
2074 nfs4args_copen_free(open_args);
2075 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2076 nfs4_recall_sync_end(mi, rcsync);
2077 rcsync = NULL;
2078 nfs4_end_open_seqid_sync(oop);
2079 open_owner_rele(oop);
2080 oop = NULL;
2081 goto bailout;
2082 case NFS4ERR_ACCESS:
2083 if (cred_otw != cr) {
2084 crfree(cred_otw);
2085 cred_otw = cr;
2086 crhold(cred_otw);
2087 nfs4args_copen_free(open_args);
2088 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2089 nfs4_recall_sync_end(mi, rcsync);
2090 rcsync = NULL;
2091 nfs4_end_open_seqid_sync(oop);
2092 open_owner_rele(oop);
2093 oop = NULL;
2094 goto top;
2095 }
2096 /* fall through */
2097 default:
2098 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
2099 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s",
2100 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv,
2101 rnode4info(VTOR4(vp))));
2102 failed_msg = "Couldn't reopen: NFSv4 error";
2103 nfs4args_copen_free(open_args);
2104 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2105 goto kill_file;
2106 }
2107
2108 resop = &res.array[1]; /* open res */
2109 op_res = &resop->nfs_resop4_u.opopen;
2110
2111 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res;
2112
2113 /*
2114 * Check if the path we reopened really is the same
2115 * file. We could end up in a situation where the file
2116 * was removed and a new file created with the same name.
2117 */
2118 resop = &res.array[2];
2119 gf_res = &resop->nfs_resop4_u.opgetfh;
2120 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
2121 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0);
2122 if (fh_different) {
2123 if (mi->mi_fh_expire_type == FH4_PERSISTENT ||
2124 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) {
2125 /* Oops, we don't have the same file */
2126 if (mi->mi_fh_expire_type == FH4_PERSISTENT)
2127 failed_msg = "Couldn't reopen: Persistent "
2128 "file handle changed";
2129 else
2130 failed_msg = "Couldn't reopen: Volatile "
2131 "(no expire on open) file handle changed";
2132
2133 nfs4args_copen_free(open_args);
2134 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2135 nfs_rw_exit(&mi->mi_fh_lock);
2136 goto kill_file;
2137
2138 } else {
2139 /*
2140 * We have volatile file handles that don't compare.
2141 * If the fids are the same then we assume that the
2142 * file handle expired but the rnode still refers to
2143 * the same file object.
2144 *
2145 * First check that we have fids or not.
2146 * If we don't we have a dumb server so we will
2147 * just assume every thing is ok for now.
2148 */
2149 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID &&
2150 rp->r_attr.va_mask & AT_NODEID &&
2151 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) {
2152 /*
2153 * We have fids, but they don't
2154 * compare. So kill the file.
2155 */
2156 failed_msg =
2157 "Couldn't reopen: file handle changed"
2158 " due to mismatched fids";
2159 nfs4args_copen_free(open_args);
2160 (void) xdr_free(xdr_COMPOUND4res_clnt,
2161 (caddr_t)&res);
2162 nfs_rw_exit(&mi->mi_fh_lock);
2163 goto kill_file;
2164 } else {
2165 /*
2166 * We have volatile file handles that refers
2167 * to the same file (at least they have the
2168 * same fid) or we don't have fids so we
2169 * can't tell. :(. We'll be a kind and accepting
2170 * client so we'll update the rnode's file
2171 * handle with the otw handle.
2172 *
2173 * We need to drop mi->mi_fh_lock since
2174 * sh4_update acquires it. Since there is
2175 * only one recovery thread there is no
2176 * race.
2177 */
2178 nfs_rw_exit(&mi->mi_fh_lock);
2179 sfh4_update(rp->r_fh, &gf_res->object);
2180 }
2181 }
2182 } else {
2183 nfs_rw_exit(&mi->mi_fh_lock);
2184 }
2185
2186 ASSERT(nfs4_consistent_type(vp));
2187
2188 /*
2189 * If the server wanted an OPEN_CONFIRM but that fails, just start
2190 * over. Presumably if there is a persistent error it will show up
2191 * when we resend the OPEN.
2192 */
2193 if (op_res->rflags & OPEN4_RESULT_CONFIRM) {
2194 bool_t retry_open = FALSE;
2195
2196 nfs4open_confirm(vp, &seqid, &op_res->stateid,
2197 cred_otw, is_recov, &retry_open,
2198 oop, FALSE, ep, NULL);
2199 if (ep->error || ep->stat) {
2200 nfs4args_copen_free(open_args);
2201 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2202 nfs4_recall_sync_end(mi, rcsync);
2203 rcsync = NULL;
2204 nfs4_end_open_seqid_sync(oop);
2205 open_owner_rele(oop);
2206 oop = NULL;
2207 goto top;
2208 }
2209 }
2210
2211 mutex_enter(&osp->os_sync_lock);
2212 osp->open_stateid = op_res->stateid;
2213 osp->os_delegation = 0;
2214 /*
2215 * Need to reset this bitfield for the possible case where we were
2216 * going to OTW CLOSE the file, got a non-recoverable error, and before
2217 * we could retry the CLOSE, OPENed the file again.
2218 */
2219 ASSERT(osp->os_open_owner->oo_seqid_inuse);
2220 osp->os_final_close = 0;
2221 osp->os_force_close = 0;
2222 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS)
2223 osp->os_dc_openacc = open_args->share_access;
2224 mutex_exit(&osp->os_sync_lock);
2225
2226 nfs4_end_open_seqid_sync(oop);
2227
2228 /* accept delegation, if any */
2229 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw);
2230
2231 nfs4_recall_sync_end(mi, rcsync);
2232
2233 nfs4args_copen_free(open_args);
2234
2235 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL);
2236
2237 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2238
2239 ASSERT(nfs4_consistent_type(vp));
2240
2241 open_owner_rele(oop);
2242 crfree(cr);
2243 crfree(cred_otw);
2244 return;
2245
2246 kill_file:
2247 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat);
2248 failed_reopen:
2249 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE,
2250 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s",
2251 (void *)osp, (void *)cr, rnode4info(rp)));
2252 mutex_enter(&osp->os_sync_lock);
2253 osp->os_failed_reopen = 1;
2254 mutex_exit(&osp->os_sync_lock);
2255 bailout:
2256 if (rcsync != NULL)
2257 nfs4_recall_sync_end(mi, rcsync);
2258 if (oop != NULL) {
2259 nfs4_end_open_seqid_sync(oop);
2260 open_owner_rele(oop);
2261 }
2262 if (cr != NULL)
2263 crfree(cr);
2264 if (cred_otw != NULL)
2265 crfree(cred_otw);
2266 }
2267
2268 /* for . and .. OPENs */
2269 /* ARGSUSED */
2270 static int
nfs4_open_non_reg_file(vnode_t ** vpp,int flag,cred_t * cr)2271 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr)
2272 {
2273 rnode4_t *rp;
2274 nfs4_ga_res_t gar;
2275
2276 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone);
2277
2278 /*
2279 * If close-to-open consistency checking is turned off or
2280 * if there is no cached data, we can avoid
2281 * the over the wire getattr. Otherwise, force a
2282 * call to the server to get fresh attributes and to
2283 * check caches. This is required for close-to-open
2284 * consistency.
2285 */
2286 rp = VTOR4(*vpp);
2287 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO ||
2288 (rp->r_dir == NULL && !nfs4_has_pages(*vpp)))
2289 return (0);
2290
2291 return (nfs4_getattr_otw(*vpp, &gar, cr, 0));
2292 }
2293
2294 /*
2295 * CLOSE a file
2296 */
2297 /* ARGSUSED */
2298 static int
nfs4_close(vnode_t * vp,int flag,int count,offset_t offset,cred_t * cr,caller_context_t * ct)2299 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
2300 caller_context_t *ct)
2301 {
2302 rnode4_t *rp;
2303 int error = 0;
2304 int r_error = 0;
2305 int n4error = 0;
2306 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
2307
2308 /*
2309 * Remove client state for this (lockowner, file) pair.
2310 * Issue otw v4 call to have the server do the same.
2311 */
2312
2313 rp = VTOR4(vp);
2314
2315 /*
2316 * zone_enter(2) prevents processes from changing zones with NFS files
2317 * open; if we happen to get here from the wrong zone we can't do
2318 * anything over the wire.
2319 */
2320 if (VTOMI4(vp)->mi_zone != nfs_zone()) {
2321 /*
2322 * We could attempt to clean up locks, except we're sure
2323 * that the current process didn't acquire any locks on
2324 * the file: any attempt to lock a file belong to another zone
2325 * will fail, and one can't lock an NFS file and then change
2326 * zones, as that fails too.
2327 *
2328 * Returning an error here is the sane thing to do. A
2329 * subsequent call to VN_RELE() which translates to a
2330 * nfs4_inactive() will clean up state: if the zone of the
2331 * vnode's origin is still alive and kicking, the inactive
2332 * thread will handle the request (from the correct zone), and
2333 * everything (minus the OTW close call) should be OK. If the
2334 * zone is going away nfs4_async_inactive() will throw away
2335 * delegations, open streams and cached pages inline.
2336 */
2337 return (EIO);
2338 }
2339
2340 /*
2341 * If we are using local locking for this filesystem, then
2342 * release all of the SYSV style record locks. Otherwise,
2343 * we are doing network locking and we need to release all
2344 * of the network locks. All of the locks held by this
2345 * process on this file are released no matter what the
2346 * incoming reference count is.
2347 */
2348 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) {
2349 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
2350 cleanshares(vp, ttoproc(curthread)->p_pid);
2351 } else
2352 e.error = nfs4_lockrelease(vp, flag, offset, cr);
2353
2354 if (e.error) {
2355 struct lm_sysid *lmsid;
2356 lmsid = nfs4_find_sysid(VTOMI4(vp));
2357 if (lmsid == NULL) {
2358 DTRACE_PROBE2(unknown__sysid, int, e.error,
2359 vnode_t *, vp);
2360 } else {
2361 cleanlocks(vp, ttoproc(curthread)->p_pid,
2362 (lm_sysidt(lmsid) | LM_SYSID_CLIENT));
2363
2364 lm_rel_sysid(lmsid);
2365 }
2366 return (e.error);
2367 }
2368
2369 if (count > 1)
2370 return (0);
2371
2372 /*
2373 * If the file has been `unlinked', then purge the
2374 * DNLC so that this vnode will get reycled quicker
2375 * and the .nfs* file on the server will get removed.
2376 */
2377 if (rp->r_unldvp != NULL)
2378 dnlc_purge_vp(vp);
2379
2380 /*
2381 * If the file was open for write and there are pages,
2382 * do a synchronous flush and commit of all of the
2383 * dirty and uncommitted pages.
2384 */
2385 ASSERT(!e.error);
2386 if ((flag & FWRITE) && nfs4_has_pages(vp))
2387 error = nfs4_putpage_commit(vp, 0, 0, cr);
2388
2389 mutex_enter(&rp->r_statelock);
2390 r_error = rp->r_error;
2391 rp->r_error = 0;
2392 mutex_exit(&rp->r_statelock);
2393
2394 /*
2395 * If this file type is one for which no explicit 'open' was
2396 * done, then bail now (ie. no need for protocol 'close'). If
2397 * there was an error w/the vm subsystem, return _that_ error,
2398 * otherwise, return any errors that may've been reported via
2399 * the rnode.
2400 */
2401 if (vp->v_type != VREG)
2402 return (error ? error : r_error);
2403
2404 /*
2405 * The sync putpage commit may have failed above, but since
2406 * we're working w/a regular file, we need to do the protocol
2407 * 'close' (nfs4close_one will figure out if an otw close is
2408 * needed or not). Report any errors _after_ doing the protocol
2409 * 'close'.
2410 */
2411 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0);
2412 n4error = e.error ? e.error : geterrno4(e.stat);
2413
2414 /*
2415 * Error reporting prio (Hi -> Lo)
2416 *
2417 * i) nfs4_putpage_commit (error)
2418 * ii) rnode's (r_error)
2419 * iii) nfs4close_one (n4error)
2420 */
2421 return (error ? error : (r_error ? r_error : n4error));
2422 }
2423
2424 /*
2425 * Initialize *lost_rqstp.
2426 */
2427
2428 static void
nfs4close_save_lost_rqst(int error,nfs4_lost_rqst_t * lost_rqstp,nfs4_open_owner_t * oop,nfs4_open_stream_t * osp,cred_t * cr,vnode_t * vp)2429 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp,
2430 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr,
2431 vnode_t *vp)
2432 {
2433 if (error != ETIMEDOUT && error != EINTR &&
2434 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) {
2435 lost_rqstp->lr_op = 0;
2436 return;
2437 }
2438
2439 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
2440 "nfs4close_save_lost_rqst: error %d", error));
2441
2442 lost_rqstp->lr_op = OP_CLOSE;
2443 /*
2444 * The vp is held and rele'd via the recovery code.
2445 * See nfs4_save_lost_rqst.
2446 */
2447 lost_rqstp->lr_vp = vp;
2448 lost_rqstp->lr_dvp = NULL;
2449 lost_rqstp->lr_oop = oop;
2450 lost_rqstp->lr_osp = osp;
2451 ASSERT(osp != NULL);
2452 ASSERT(mutex_owned(&osp->os_sync_lock));
2453 osp->os_pending_close = 1;
2454 lost_rqstp->lr_lop = NULL;
2455 lost_rqstp->lr_cr = cr;
2456 lost_rqstp->lr_flk = NULL;
2457 lost_rqstp->lr_putfirst = FALSE;
2458 }
2459
2460 /*
2461 * Assumes you already have the open seqid sync grabbed as well as the
2462 * 'os_sync_lock'. Note: this will release the open seqid sync and
2463 * 'os_sync_lock' if client recovery starts. Calling functions have to
2464 * be prepared to handle this.
2465 *
2466 * 'recov' is returned as 1 if the CLOSE operation detected client recovery
2467 * was needed and was started, and that the calling function should retry
2468 * this function; otherwise it is returned as 0.
2469 *
2470 * Errors are returned via the nfs4_error_t parameter.
2471 */
2472 static void
nfs4close_otw(rnode4_t * rp,cred_t * cred_otw,nfs4_open_owner_t * oop,nfs4_open_stream_t * osp,int * recov,int * did_start_seqid_syncp,nfs4_close_type_t close_type,nfs4_error_t * ep,int * have_sync_lockp)2473 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop,
2474 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp,
2475 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp)
2476 {
2477 COMPOUND4args_clnt args;
2478 COMPOUND4res_clnt res;
2479 CLOSE4args *close_args;
2480 nfs_resop4 *resop;
2481 nfs_argop4 argop[3];
2482 int doqueue = 1;
2483 mntinfo4_t *mi;
2484 seqid4 seqid;
2485 vnode_t *vp;
2486 bool_t needrecov = FALSE;
2487 nfs4_lost_rqst_t lost_rqst;
2488 hrtime_t t;
2489
2490 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone);
2491
2492 ASSERT(MUTEX_HELD(&osp->os_sync_lock));
2493
2494 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw"));
2495
2496 /* Only set this to 1 if recovery is started */
2497 *recov = 0;
2498
2499 /* do the OTW call to close the file */
2500
2501 if (close_type == CLOSE_RESEND)
2502 args.ctag = TAG_CLOSE_LOST;
2503 else if (close_type == CLOSE_AFTER_RESEND)
2504 args.ctag = TAG_CLOSE_UNDO;
2505 else
2506 args.ctag = TAG_CLOSE;
2507
2508 args.array_len = 3;
2509 args.array = argop;
2510
2511 vp = RTOV4(rp);
2512
2513 mi = VTOMI4(vp);
2514
2515 /* putfh target fh */
2516 argop[0].argop = OP_CPUTFH;
2517 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
2518
2519 argop[1].argop = OP_GETATTR;
2520 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
2521 argop[1].nfs_argop4_u.opgetattr.mi = mi;
2522
2523 argop[2].argop = OP_CLOSE;
2524 close_args = &argop[2].nfs_argop4_u.opclose;
2525
2526 seqid = nfs4_get_open_seqid(oop) + 1;
2527
2528 close_args->seqid = seqid;
2529 close_args->open_stateid = osp->open_stateid;
2530
2531 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
2532 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first",
2533 rnode4info(rp)));
2534
2535 t = gethrtime();
2536
2537 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep);
2538
2539 if (!ep->error && nfs4_need_to_bump_seqid(&res)) {
2540 nfs4_set_open_seqid(seqid, oop, args.ctag);
2541 }
2542
2543 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp);
2544 if (ep->error && !needrecov) {
2545 /*
2546 * if there was an error and no recovery is to be done
2547 * then then set up the file to flush its cache if
2548 * needed for the next caller.
2549 */
2550 mutex_enter(&rp->r_statelock);
2551 PURGE_ATTRCACHE4_LOCKED(rp);
2552 rp->r_flags &= ~R4WRITEMODIFIED;
2553 mutex_exit(&rp->r_statelock);
2554 return;
2555 }
2556
2557 if (needrecov) {
2558 bool_t abort;
2559 nfs4_bseqid_entry_t *bsep = NULL;
2560
2561 if (close_type != CLOSE_RESEND)
2562 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop,
2563 osp, cred_otw, vp);
2564
2565 if (!ep->error && res.status == NFS4ERR_BAD_SEQID)
2566 bsep = nfs4_create_bseqid_entry(oop, NULL, vp,
2567 0, args.ctag, close_args->seqid);
2568
2569 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
2570 "nfs4close_otw: initiating recovery. error %d "
2571 "res.status %d", ep->error, res.status));
2572
2573 /*
2574 * Drop the 'os_sync_lock' here so we don't hit
2575 * a potential recursive mutex_enter via an
2576 * 'open_stream_hold()'.
2577 */
2578 mutex_exit(&osp->os_sync_lock);
2579 *have_sync_lockp = 0;
2580 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL,
2581 (close_type != CLOSE_RESEND &&
2582 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL,
2583 OP_CLOSE, bsep, NULL, NULL);
2584
2585 /* drop open seq sync, and let the calling function regrab it */
2586 nfs4_end_open_seqid_sync(oop);
2587 *did_start_seqid_syncp = 0;
2588
2589 if (bsep)
2590 kmem_free(bsep, sizeof (*bsep));
2591 /*
2592 * For signals, the caller wants to quit, so don't say to
2593 * retry. For forced unmount, if it's a user thread, it
2594 * wants to quit. If it's a recovery thread, the retry
2595 * will happen higher-up on the call stack. Either way,
2596 * don't say to retry.
2597 */
2598 if (abort == FALSE && ep->error != EINTR &&
2599 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) &&
2600 close_type != CLOSE_RESEND &&
2601 close_type != CLOSE_AFTER_RESEND)
2602 *recov = 1;
2603 else
2604 *recov = 0;
2605
2606 if (!ep->error)
2607 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2608 return;
2609 }
2610
2611 if (res.status) {
2612 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2613 return;
2614 }
2615
2616 mutex_enter(&rp->r_statev4_lock);
2617 rp->created_v4 = 0;
2618 mutex_exit(&rp->r_statev4_lock);
2619
2620 resop = &res.array[2];
2621 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid;
2622 osp->os_valid = 0;
2623
2624 /*
2625 * This removes the reference obtained at OPEN; ie, when the
2626 * open stream structure was created.
2627 *
2628 * We don't have to worry about calling 'open_stream_rele'
2629 * since we our currently holding a reference to the open
2630 * stream which means the count cannot go to 0 with this
2631 * decrement.
2632 */
2633 ASSERT(osp->os_ref_count >= 2);
2634 osp->os_ref_count--;
2635
2636 if (ep->error == 0) {
2637 mutex_exit(&osp->os_sync_lock);
2638 *have_sync_lockp = 0;
2639
2640 nfs4_attr_cache(vp,
2641 &res.array[1].nfs_resop4_u.opgetattr.ga_res,
2642 t, cred_otw, TRUE, NULL);
2643 }
2644
2645 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:"
2646 " returning %d", ep->error));
2647
2648 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2649 }
2650
2651 /* ARGSUSED */
2652 static int
nfs4_read(vnode_t * vp,struct uio * uiop,int ioflag,cred_t * cr,caller_context_t * ct)2653 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
2654 caller_context_t *ct)
2655 {
2656 rnode4_t *rp;
2657 u_offset_t off;
2658 offset_t diff;
2659 uint_t on;
2660 uint_t n;
2661 caddr_t base;
2662 uint_t flags;
2663 int error;
2664 mntinfo4_t *mi;
2665
2666 rp = VTOR4(vp);
2667
2668 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
2669
2670 if (IS_SHADOW(vp, rp))
2671 vp = RTOV4(rp);
2672
2673 if (vp->v_type != VREG)
2674 return (EISDIR);
2675
2676 mi = VTOMI4(vp);
2677
2678 if (nfs_zone() != mi->mi_zone)
2679 return (EIO);
2680
2681 if (uiop->uio_resid == 0)
2682 return (0);
2683
2684 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0)
2685 return (EINVAL);
2686
2687 mutex_enter(&rp->r_statelock);
2688 if (rp->r_flags & R4RECOVERRP)
2689 error = (rp->r_error ? rp->r_error : EIO);
2690 else
2691 error = 0;
2692 mutex_exit(&rp->r_statelock);
2693 if (error)
2694 return (error);
2695
2696 /*
2697 * Bypass VM if caching has been disabled (e.g., locking) or if
2698 * using client-side direct I/O and the file is not mmap'd and
2699 * there are no cached pages.
2700 */
2701 if ((vp->v_flag & VNOCACHE) ||
2702 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) &&
2703 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) {
2704 size_t resid = 0;
2705
2706 return (nfs4read(vp, NULL, uiop->uio_loffset,
2707 uiop->uio_resid, &resid, cr, FALSE, uiop));
2708 }
2709
2710 error = 0;
2711
2712 do {
2713 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
2714 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
2715 n = MIN(MAXBSIZE - on, uiop->uio_resid);
2716
2717 if (error = nfs4_validate_caches(vp, cr))
2718 break;
2719
2720 mutex_enter(&rp->r_statelock);
2721 while (rp->r_flags & R4INCACHEPURGE) {
2722 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
2723 mutex_exit(&rp->r_statelock);
2724 return (EINTR);
2725 }
2726 }
2727 diff = rp->r_size - uiop->uio_loffset;
2728 mutex_exit(&rp->r_statelock);
2729 if (diff <= 0)
2730 break;
2731 if (diff < n)
2732 n = (uint_t)diff;
2733
2734 if (vpm_enable) {
2735 /*
2736 * Copy data.
2737 */
2738 error = vpm_data_copy(vp, off + on, n, uiop,
2739 1, NULL, 0, S_READ);
2740 } else {
2741 base = segmap_getmapflt(segkmap, vp, off + on, n, 1,
2742 S_READ);
2743
2744 error = uiomove(base + on, n, UIO_READ, uiop);
2745 }
2746
2747 if (!error) {
2748 /*
2749 * If read a whole block or read to eof,
2750 * won't need this buffer again soon.
2751 */
2752 mutex_enter(&rp->r_statelock);
2753 if (n + on == MAXBSIZE ||
2754 uiop->uio_loffset == rp->r_size)
2755 flags = SM_DONTNEED;
2756 else
2757 flags = 0;
2758 mutex_exit(&rp->r_statelock);
2759 if (vpm_enable) {
2760 error = vpm_sync_pages(vp, off, n, flags);
2761 } else {
2762 error = segmap_release(segkmap, base, flags);
2763 }
2764 } else {
2765 if (vpm_enable) {
2766 (void) vpm_sync_pages(vp, off, n, 0);
2767 } else {
2768 (void) segmap_release(segkmap, base, 0);
2769 }
2770 }
2771 } while (!error && uiop->uio_resid > 0);
2772
2773 return (error);
2774 }
2775
2776 /* ARGSUSED */
2777 static int
nfs4_write(vnode_t * vp,struct uio * uiop,int ioflag,cred_t * cr,caller_context_t * ct)2778 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
2779 caller_context_t *ct)
2780 {
2781 rlim64_t limit = uiop->uio_llimit;
2782 rnode4_t *rp;
2783 u_offset_t off;
2784 caddr_t base;
2785 uint_t flags;
2786 int remainder;
2787 size_t n;
2788 int on;
2789 int error;
2790 int resid;
2791 u_offset_t offset;
2792 mntinfo4_t *mi;
2793 uint_t bsize;
2794
2795 rp = VTOR4(vp);
2796
2797 if (IS_SHADOW(vp, rp))
2798 vp = RTOV4(rp);
2799
2800 if (vp->v_type != VREG)
2801 return (EISDIR);
2802
2803 mi = VTOMI4(vp);
2804
2805 if (nfs_zone() != mi->mi_zone)
2806 return (EIO);
2807
2808 if (uiop->uio_resid == 0)
2809 return (0);
2810
2811 mutex_enter(&rp->r_statelock);
2812 if (rp->r_flags & R4RECOVERRP)
2813 error = (rp->r_error ? rp->r_error : EIO);
2814 else
2815 error = 0;
2816 mutex_exit(&rp->r_statelock);
2817 if (error)
2818 return (error);
2819
2820 if (ioflag & FAPPEND) {
2821 struct vattr va;
2822
2823 /*
2824 * Must serialize if appending.
2825 */
2826 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) {
2827 nfs_rw_exit(&rp->r_rwlock);
2828 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER,
2829 INTR4(vp)))
2830 return (EINTR);
2831 }
2832
2833 va.va_mask = AT_SIZE;
2834 error = nfs4getattr(vp, &va, cr);
2835 if (error)
2836 return (error);
2837 uiop->uio_loffset = va.va_size;
2838 }
2839
2840 offset = uiop->uio_loffset + uiop->uio_resid;
2841
2842 if (uiop->uio_loffset < (offset_t)0 || offset < 0)
2843 return (EINVAL);
2844
2845 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
2846 limit = MAXOFFSET_T;
2847
2848 /*
2849 * Check to make sure that the process will not exceed
2850 * its limit on file size. It is okay to write up to
2851 * the limit, but not beyond. Thus, the write which
2852 * reaches the limit will be short and the next write
2853 * will return an error.
2854 */
2855 remainder = 0;
2856 if (offset > uiop->uio_llimit) {
2857 remainder = offset - uiop->uio_llimit;
2858 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset;
2859 if (uiop->uio_resid <= 0) {
2860 proc_t *p = ttoproc(curthread);
2861
2862 uiop->uio_resid += remainder;
2863 mutex_enter(&p->p_lock);
2864 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE],
2865 p->p_rctls, p, RCA_UNSAFE_SIGINFO);
2866 mutex_exit(&p->p_lock);
2867 return (EFBIG);
2868 }
2869 }
2870
2871 /* update the change attribute, if we have a write delegation */
2872
2873 mutex_enter(&rp->r_statev4_lock);
2874 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE)
2875 rp->r_deleg_change++;
2876
2877 mutex_exit(&rp->r_statev4_lock);
2878
2879 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, INTR4(vp)))
2880 return (EINTR);
2881
2882 /*
2883 * Bypass VM if caching has been disabled (e.g., locking) or if
2884 * using client-side direct I/O and the file is not mmap'd and
2885 * there are no cached pages.
2886 */
2887 if ((vp->v_flag & VNOCACHE) ||
2888 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) &&
2889 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) {
2890 size_t bufsize;
2891 int count;
2892 u_offset_t org_offset;
2893 stable_how4 stab_comm;
2894 nfs4_fwrite:
2895 if (rp->r_flags & R4STALE) {
2896 resid = uiop->uio_resid;
2897 offset = uiop->uio_loffset;
2898 error = rp->r_error;
2899 /*
2900 * A close may have cleared r_error, if so,
2901 * propagate ESTALE error return properly
2902 */
2903 if (error == 0)
2904 error = ESTALE;
2905 goto bottom;
2906 }
2907
2908 bufsize = MIN(uiop->uio_resid, mi->mi_stsize);
2909 base = kmem_alloc(bufsize, KM_SLEEP);
2910 do {
2911 if (ioflag & FDSYNC)
2912 stab_comm = DATA_SYNC4;
2913 else
2914 stab_comm = FILE_SYNC4;
2915 resid = uiop->uio_resid;
2916 offset = uiop->uio_loffset;
2917 count = MIN(uiop->uio_resid, bufsize);
2918 org_offset = uiop->uio_loffset;
2919 error = uiomove(base, count, UIO_WRITE, uiop);
2920 if (!error) {
2921 error = nfs4write(vp, base, org_offset,
2922 count, cr, &stab_comm);
2923 if (!error) {
2924 mutex_enter(&rp->r_statelock);
2925 if (rp->r_size < uiop->uio_loffset)
2926 rp->r_size = uiop->uio_loffset;
2927 mutex_exit(&rp->r_statelock);
2928 }
2929 }
2930 } while (!error && uiop->uio_resid > 0);
2931 kmem_free(base, bufsize);
2932 goto bottom;
2933 }
2934
2935 bsize = vp->v_vfsp->vfs_bsize;
2936
2937 do {
2938 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
2939 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
2940 n = MIN(MAXBSIZE - on, uiop->uio_resid);
2941
2942 resid = uiop->uio_resid;
2943 offset = uiop->uio_loffset;
2944
2945 if (rp->r_flags & R4STALE) {
2946 error = rp->r_error;
2947 /*
2948 * A close may have cleared r_error, if so,
2949 * propagate ESTALE error return properly
2950 */
2951 if (error == 0)
2952 error = ESTALE;
2953 break;
2954 }
2955
2956 /*
2957 * Don't create dirty pages faster than they
2958 * can be cleaned so that the system doesn't
2959 * get imbalanced. If the async queue is
2960 * maxed out, then wait for it to drain before
2961 * creating more dirty pages. Also, wait for
2962 * any threads doing pagewalks in the vop_getattr
2963 * entry points so that they don't block for
2964 * long periods.
2965 */
2966 mutex_enter(&rp->r_statelock);
2967 while ((mi->mi_max_threads != 0 &&
2968 rp->r_awcount > 2 * mi->mi_max_threads) ||
2969 rp->r_gcount > 0) {
2970 if (INTR4(vp)) {
2971 klwp_t *lwp = ttolwp(curthread);
2972
2973 if (lwp != NULL)
2974 lwp->lwp_nostop++;
2975 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
2976 mutex_exit(&rp->r_statelock);
2977 if (lwp != NULL)
2978 lwp->lwp_nostop--;
2979 error = EINTR;
2980 goto bottom;
2981 }
2982 if (lwp != NULL)
2983 lwp->lwp_nostop--;
2984 } else
2985 cv_wait(&rp->r_cv, &rp->r_statelock);
2986 }
2987 mutex_exit(&rp->r_statelock);
2988
2989 /*
2990 * Touch the page and fault it in if it is not in core
2991 * before segmap_getmapflt or vpm_data_copy can lock it.
2992 * This is to avoid the deadlock if the buffer is mapped
2993 * to the same file through mmap which we want to write.
2994 */
2995 uio_prefaultpages((long)n, uiop);
2996
2997 if (vpm_enable) {
2998 /*
2999 * It will use kpm mappings, so no need to
3000 * pass an address.
3001 */
3002 error = writerp4(rp, NULL, n, uiop, 0);
3003 } else {
3004 if (segmap_kpm) {
3005 int pon = uiop->uio_loffset & PAGEOFFSET;
3006 size_t pn = MIN(PAGESIZE - pon,
3007 uiop->uio_resid);
3008 int pagecreate;
3009
3010 mutex_enter(&rp->r_statelock);
3011 pagecreate = (pon == 0) && (pn == PAGESIZE ||
3012 uiop->uio_loffset + pn >= rp->r_size);
3013 mutex_exit(&rp->r_statelock);
3014
3015 base = segmap_getmapflt(segkmap, vp, off + on,
3016 pn, !pagecreate, S_WRITE);
3017
3018 error = writerp4(rp, base + pon, n, uiop,
3019 pagecreate);
3020
3021 } else {
3022 base = segmap_getmapflt(segkmap, vp, off + on,
3023 n, 0, S_READ);
3024 error = writerp4(rp, base + on, n, uiop, 0);
3025 }
3026 }
3027
3028 if (!error) {
3029 if (mi->mi_flags & MI4_NOAC)
3030 flags = SM_WRITE;
3031 else if ((uiop->uio_loffset % bsize) == 0 ||
3032 IS_SWAPVP(vp)) {
3033 /*
3034 * Have written a whole block.
3035 * Start an asynchronous write
3036 * and mark the buffer to
3037 * indicate that it won't be
3038 * needed again soon.
3039 */
3040 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
3041 } else
3042 flags = 0;
3043 if ((ioflag & (FSYNC|FDSYNC)) ||
3044 (rp->r_flags & R4OUTOFSPACE)) {
3045 flags &= ~SM_ASYNC;
3046 flags |= SM_WRITE;
3047 }
3048 if (vpm_enable) {
3049 error = vpm_sync_pages(vp, off, n, flags);
3050 } else {
3051 error = segmap_release(segkmap, base, flags);
3052 }
3053 } else {
3054 if (vpm_enable) {
3055 (void) vpm_sync_pages(vp, off, n, 0);
3056 } else {
3057 (void) segmap_release(segkmap, base, 0);
3058 }
3059 /*
3060 * In the event that we got an access error while
3061 * faulting in a page for a write-only file just
3062 * force a write.
3063 */
3064 if (error == EACCES)
3065 goto nfs4_fwrite;
3066 }
3067 } while (!error && uiop->uio_resid > 0);
3068
3069 bottom:
3070 if (error) {
3071 uiop->uio_resid = resid + remainder;
3072 uiop->uio_loffset = offset;
3073 } else {
3074 uiop->uio_resid += remainder;
3075
3076 mutex_enter(&rp->r_statev4_lock);
3077 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) {
3078 gethrestime(&rp->r_attr.va_mtime);
3079 rp->r_attr.va_ctime = rp->r_attr.va_mtime;
3080 }
3081 mutex_exit(&rp->r_statev4_lock);
3082 }
3083
3084 nfs_rw_exit(&rp->r_lkserlock);
3085
3086 return (error);
3087 }
3088
3089 /*
3090 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
3091 */
3092 static int
nfs4_rdwrlbn(vnode_t * vp,page_t * pp,u_offset_t off,size_t len,int flags,cred_t * cr)3093 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
3094 int flags, cred_t *cr)
3095 {
3096 struct buf *bp;
3097 int error;
3098 page_t *savepp;
3099 uchar_t fsdata;
3100 stable_how4 stab_comm;
3101
3102 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
3103 bp = pageio_setup(pp, len, vp, flags);
3104 ASSERT(bp != NULL);
3105
3106 /*
3107 * pageio_setup should have set b_addr to 0. This
3108 * is correct since we want to do I/O on a page
3109 * boundary. bp_mapin will use this addr to calculate
3110 * an offset, and then set b_addr to the kernel virtual
3111 * address it allocated for us.
3112 */
3113 ASSERT(bp->b_un.b_addr == 0);
3114
3115 bp->b_edev = 0;
3116 bp->b_dev = 0;
3117 bp->b_lblkno = lbtodb(off);
3118 bp->b_file = vp;
3119 bp->b_offset = (offset_t)off;
3120 bp_mapin(bp);
3121
3122 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) &&
3123 freemem > desfree)
3124 stab_comm = UNSTABLE4;
3125 else
3126 stab_comm = FILE_SYNC4;
3127
3128 error = nfs4_bio(bp, &stab_comm, cr, FALSE);
3129
3130 bp_mapout(bp);
3131 pageio_done(bp);
3132
3133 if (stab_comm == UNSTABLE4)
3134 fsdata = C_DELAYCOMMIT;
3135 else
3136 fsdata = C_NOCOMMIT;
3137
3138 savepp = pp;
3139 do {
3140 pp->p_fsdata = fsdata;
3141 } while ((pp = pp->p_next) != savepp);
3142
3143 return (error);
3144 }
3145
3146 /*
3147 */
3148 static int
nfs4rdwr_check_osid(vnode_t * vp,nfs4_error_t * ep,cred_t * cr)3149 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr)
3150 {
3151 nfs4_open_owner_t *oop;
3152 nfs4_open_stream_t *osp;
3153 rnode4_t *rp = VTOR4(vp);
3154 mntinfo4_t *mi = VTOMI4(vp);
3155 int reopen_needed;
3156
3157 ASSERT(nfs_zone() == mi->mi_zone);
3158
3159
3160 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
3161 if (!oop)
3162 return (EIO);
3163
3164 /* returns with 'os_sync_lock' held */
3165 osp = find_open_stream(oop, rp);
3166 if (!osp) {
3167 open_owner_rele(oop);
3168 return (EIO);
3169 }
3170
3171 if (osp->os_failed_reopen) {
3172 mutex_exit(&osp->os_sync_lock);
3173 open_stream_rele(osp, rp);
3174 open_owner_rele(oop);
3175 return (EIO);
3176 }
3177
3178 /*
3179 * Determine whether a reopen is needed. If this
3180 * is a delegation open stream, then the os_delegation bit
3181 * should be set.
3182 */
3183
3184 reopen_needed = osp->os_delegation;
3185
3186 mutex_exit(&osp->os_sync_lock);
3187 open_owner_rele(oop);
3188
3189 if (reopen_needed) {
3190 nfs4_error_zinit(ep);
3191 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE);
3192 mutex_enter(&osp->os_sync_lock);
3193 if (ep->error || ep->stat || osp->os_failed_reopen) {
3194 mutex_exit(&osp->os_sync_lock);
3195 open_stream_rele(osp, rp);
3196 return (EIO);
3197 }
3198 mutex_exit(&osp->os_sync_lock);
3199 }
3200 open_stream_rele(osp, rp);
3201
3202 return (0);
3203 }
3204
3205 /*
3206 * Write to file. Writes to remote server in largest size
3207 * chunks that the server can handle. Write is synchronous.
3208 */
3209 static int
nfs4write(vnode_t * vp,caddr_t base,u_offset_t offset,int count,cred_t * cr,stable_how4 * stab_comm)3210 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr,
3211 stable_how4 *stab_comm)
3212 {
3213 mntinfo4_t *mi;
3214 COMPOUND4args_clnt args;
3215 COMPOUND4res_clnt res;
3216 WRITE4args *wargs;
3217 WRITE4res *wres;
3218 nfs_argop4 argop[2];
3219 nfs_resop4 *resop;
3220 int tsize;
3221 stable_how4 stable;
3222 rnode4_t *rp;
3223 int doqueue = 1;
3224 bool_t needrecov;
3225 nfs4_recov_state_t recov_state;
3226 nfs4_stateid_types_t sid_types;
3227 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3228 int recov;
3229
3230 rp = VTOR4(vp);
3231 mi = VTOMI4(vp);
3232
3233 ASSERT(nfs_zone() == mi->mi_zone);
3234
3235 stable = *stab_comm;
3236 *stab_comm = FILE_SYNC4;
3237
3238 needrecov = FALSE;
3239 recov_state.rs_flags = 0;
3240 recov_state.rs_num_retry_despite_err = 0;
3241 nfs4_init_stateid_types(&sid_types);
3242
3243 /* Is curthread the recovery thread? */
3244 mutex_enter(&mi->mi_lock);
3245 recov = (mi->mi_recovthread == curthread);
3246 mutex_exit(&mi->mi_lock);
3247
3248 recov_retry:
3249 args.ctag = TAG_WRITE;
3250 args.array_len = 2;
3251 args.array = argop;
3252
3253 if (!recov) {
3254 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3255 &recov_state, NULL);
3256 if (e.error)
3257 return (e.error);
3258 }
3259
3260 /* 0. putfh target fh */
3261 argop[0].argop = OP_CPUTFH;
3262 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
3263
3264 /* 1. write */
3265 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types);
3266
3267 do {
3268
3269 wargs->offset = (offset4)offset;
3270 wargs->data_val = base;
3271
3272 if (mi->mi_io_kstats) {
3273 mutex_enter(&mi->mi_lock);
3274 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
3275 mutex_exit(&mi->mi_lock);
3276 }
3277
3278 if ((vp->v_flag & VNOCACHE) ||
3279 (rp->r_flags & R4DIRECTIO) ||
3280 (mi->mi_flags & MI4_DIRECTIO))
3281 tsize = MIN(mi->mi_stsize, count);
3282 else
3283 tsize = MIN(mi->mi_curwrite, count);
3284 wargs->data_len = (uint_t)tsize;
3285 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3286
3287 if (mi->mi_io_kstats) {
3288 mutex_enter(&mi->mi_lock);
3289 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
3290 mutex_exit(&mi->mi_lock);
3291 }
3292
3293 if (!recov) {
3294 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3295 if (e.error && !needrecov) {
3296 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3297 &recov_state, needrecov);
3298 return (e.error);
3299 }
3300 } else {
3301 if (e.error)
3302 return (e.error);
3303 }
3304
3305 /*
3306 * Do handling of OLD_STATEID outside
3307 * of the normal recovery framework.
3308 *
3309 * If write receives a BAD stateid error while using a
3310 * delegation stateid, retry using the open stateid (if it
3311 * exists). If it doesn't have an open stateid, reopen the
3312 * file first, then retry.
3313 */
3314 if (!e.error && res.status == NFS4ERR_OLD_STATEID &&
3315 sid_types.cur_sid_type != SPEC_SID) {
3316 nfs4_save_stateid(&wargs->stateid, &sid_types);
3317 if (!recov)
3318 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3319 &recov_state, needrecov);
3320 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3321 goto recov_retry;
3322 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID &&
3323 sid_types.cur_sid_type == DEL_SID) {
3324 nfs4_save_stateid(&wargs->stateid, &sid_types);
3325 mutex_enter(&rp->r_statev4_lock);
3326 rp->r_deleg_return_pending = TRUE;
3327 mutex_exit(&rp->r_statev4_lock);
3328 if (nfs4rdwr_check_osid(vp, &e, cr)) {
3329 if (!recov)
3330 nfs4_end_fop(mi, vp, NULL, OH_WRITE,
3331 &recov_state, needrecov);
3332 (void) xdr_free(xdr_COMPOUND4res_clnt,
3333 (caddr_t)&res);
3334 return (EIO);
3335 }
3336 if (!recov)
3337 nfs4_end_fop(mi, vp, NULL, OH_WRITE,
3338 &recov_state, needrecov);
3339 /* hold needed for nfs4delegreturn_thread */
3340 VN_HOLD(vp);
3341 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN|
3342 NFS4_DR_DISCARD), FALSE);
3343 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3344 goto recov_retry;
3345 }
3346
3347 if (needrecov) {
3348 bool_t abort;
3349
3350 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3351 "nfs4write: client got error %d, res.status %d"
3352 ", so start recovery", e.error, res.status));
3353
3354 abort = nfs4_start_recovery(&e,
3355 VTOMI4(vp), vp, NULL, &wargs->stateid,
3356 NULL, OP_WRITE, NULL, NULL, NULL);
3357 if (!e.error) {
3358 e.error = geterrno4(res.status);
3359 (void) xdr_free(xdr_COMPOUND4res_clnt,
3360 (caddr_t)&res);
3361 }
3362 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3363 &recov_state, needrecov);
3364 if (abort == FALSE)
3365 goto recov_retry;
3366 return (e.error);
3367 }
3368
3369 if (res.status) {
3370 e.error = geterrno4(res.status);
3371 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3372 if (!recov)
3373 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3374 &recov_state, needrecov);
3375 return (e.error);
3376 }
3377
3378 resop = &res.array[1]; /* write res */
3379 wres = &resop->nfs_resop4_u.opwrite;
3380
3381 if ((int)wres->count > tsize) {
3382 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3383
3384 zcmn_err(getzoneid(), CE_WARN,
3385 "nfs4write: server wrote %u, requested was %u",
3386 (int)wres->count, tsize);
3387 if (!recov)
3388 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3389 &recov_state, needrecov);
3390 return (EIO);
3391 }
3392 if (wres->committed == UNSTABLE4) {
3393 *stab_comm = UNSTABLE4;
3394 if (wargs->stable == DATA_SYNC4 ||
3395 wargs->stable == FILE_SYNC4) {
3396 (void) xdr_free(xdr_COMPOUND4res_clnt,
3397 (caddr_t)&res);
3398 zcmn_err(getzoneid(), CE_WARN,
3399 "nfs4write: server %s did not commit "
3400 "to stable storage",
3401 rp->r_server->sv_hostname);
3402 if (!recov)
3403 nfs4_end_fop(VTOMI4(vp), vp, NULL,
3404 OH_WRITE, &recov_state, needrecov);
3405 return (EIO);
3406 }
3407 }
3408
3409 tsize = (int)wres->count;
3410 count -= tsize;
3411 base += tsize;
3412 offset += tsize;
3413 if (mi->mi_io_kstats) {
3414 mutex_enter(&mi->mi_lock);
3415 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++;
3416 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten +=
3417 tsize;
3418 mutex_exit(&mi->mi_lock);
3419 }
3420 lwp_stat_update(LWP_STAT_OUBLK, 1);
3421 mutex_enter(&rp->r_statelock);
3422 if (rp->r_flags & R4HAVEVERF) {
3423 if (rp->r_writeverf != wres->writeverf) {
3424 nfs4_set_mod(vp);
3425 rp->r_writeverf = wres->writeverf;
3426 }
3427 } else {
3428 rp->r_writeverf = wres->writeverf;
3429 rp->r_flags |= R4HAVEVERF;
3430 }
3431 PURGE_ATTRCACHE4_LOCKED(rp);
3432 rp->r_flags |= R4WRITEMODIFIED;
3433 gethrestime(&rp->r_attr.va_mtime);
3434 rp->r_attr.va_ctime = rp->r_attr.va_mtime;
3435 mutex_exit(&rp->r_statelock);
3436 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3437 } while (count);
3438
3439 if (!recov)
3440 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state,
3441 needrecov);
3442
3443 return (e.error);
3444 }
3445
3446 /*
3447 * Read from a file. Reads data in largest chunks our interface can handle.
3448 */
3449 static int
nfs4read(vnode_t * vp,caddr_t base,offset_t offset,int count,size_t * residp,cred_t * cr,bool_t async,struct uio * uiop)3450 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count,
3451 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop)
3452 {
3453 mntinfo4_t *mi;
3454 COMPOUND4args_clnt args;
3455 COMPOUND4res_clnt res;
3456 READ4args *rargs;
3457 nfs_argop4 argop[2];
3458 int tsize;
3459 int doqueue;
3460 rnode4_t *rp;
3461 int data_len;
3462 bool_t is_eof;
3463 bool_t needrecov = FALSE;
3464 nfs4_recov_state_t recov_state;
3465 nfs4_stateid_types_t sid_types;
3466 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3467
3468 rp = VTOR4(vp);
3469 mi = VTOMI4(vp);
3470 doqueue = 1;
3471
3472 ASSERT(nfs_zone() == mi->mi_zone);
3473
3474 args.ctag = async ? TAG_READAHEAD : TAG_READ;
3475
3476 args.array_len = 2;
3477 args.array = argop;
3478
3479 nfs4_init_stateid_types(&sid_types);
3480
3481 recov_state.rs_flags = 0;
3482 recov_state.rs_num_retry_despite_err = 0;
3483
3484 recov_retry:
3485 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ,
3486 &recov_state, NULL);
3487 if (e.error)
3488 return (e.error);
3489
3490 /* putfh target fh */
3491 argop[0].argop = OP_CPUTFH;
3492 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
3493
3494 /* read */
3495 argop[1].argop = OP_READ;
3496 rargs = &argop[1].nfs_argop4_u.opread;
3497 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi,
3498 OP_READ, &sid_types, async);
3499
3500 do {
3501 if (mi->mi_io_kstats) {
3502 mutex_enter(&mi->mi_lock);
3503 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
3504 mutex_exit(&mi->mi_lock);
3505 }
3506
3507 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
3508 "nfs4read: %s call, rp %s",
3509 needrecov ? "recov" : "first",
3510 rnode4info(rp)));
3511
3512 if ((vp->v_flag & VNOCACHE) ||
3513 (rp->r_flags & R4DIRECTIO) ||
3514 (mi->mi_flags & MI4_DIRECTIO))
3515 tsize = MIN(mi->mi_tsize, count);
3516 else
3517 tsize = MIN(mi->mi_curread, count);
3518
3519 rargs->offset = (offset4)offset;
3520 rargs->count = (count4)tsize;
3521 rargs->res_data_val_alt = NULL;
3522 rargs->res_mblk = NULL;
3523 rargs->res_uiop = NULL;
3524 rargs->res_maxsize = 0;
3525 rargs->wlist = NULL;
3526
3527 if (uiop)
3528 rargs->res_uiop = uiop;
3529 else
3530 rargs->res_data_val_alt = base;
3531 rargs->res_maxsize = tsize;
3532
3533 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3534 #ifdef DEBUG
3535 if (nfs4read_error_inject) {
3536 res.status = nfs4read_error_inject;
3537 nfs4read_error_inject = 0;
3538 }
3539 #endif
3540
3541 if (mi->mi_io_kstats) {
3542 mutex_enter(&mi->mi_lock);
3543 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
3544 mutex_exit(&mi->mi_lock);
3545 }
3546
3547 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3548 if (e.error != 0 && !needrecov) {
3549 nfs4_end_fop(mi, vp, NULL, OH_READ,
3550 &recov_state, needrecov);
3551 return (e.error);
3552 }
3553
3554 /*
3555 * Do proper retry for OLD and BAD stateid errors outside
3556 * of the normal recovery framework. There are two differences
3557 * between async and sync reads. The first is that we allow
3558 * retry on BAD_STATEID for async reads, but not sync reads.
3559 * The second is that we mark the file dead for a failed
3560 * attempt with a special stateid for sync reads, but just
3561 * return EIO for async reads.
3562 *
3563 * If a sync read receives a BAD stateid error while using a
3564 * delegation stateid, retry using the open stateid (if it
3565 * exists). If it doesn't have an open stateid, reopen the
3566 * file first, then retry.
3567 */
3568 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID ||
3569 res.status == NFS4ERR_BAD_STATEID) && async) {
3570 nfs4_end_fop(mi, vp, NULL, OH_READ,
3571 &recov_state, needrecov);
3572 if (sid_types.cur_sid_type == SPEC_SID) {
3573 (void) xdr_free(xdr_COMPOUND4res_clnt,
3574 (caddr_t)&res);
3575 return (EIO);
3576 }
3577 nfs4_save_stateid(&rargs->stateid, &sid_types);
3578 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3579 goto recov_retry;
3580 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3581 !async && sid_types.cur_sid_type != SPEC_SID) {
3582 nfs4_save_stateid(&rargs->stateid, &sid_types);
3583 nfs4_end_fop(mi, vp, NULL, OH_READ,
3584 &recov_state, needrecov);
3585 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3586 goto recov_retry;
3587 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID &&
3588 sid_types.cur_sid_type == DEL_SID) {
3589 nfs4_save_stateid(&rargs->stateid, &sid_types);
3590 mutex_enter(&rp->r_statev4_lock);
3591 rp->r_deleg_return_pending = TRUE;
3592 mutex_exit(&rp->r_statev4_lock);
3593 if (nfs4rdwr_check_osid(vp, &e, cr)) {
3594 nfs4_end_fop(mi, vp, NULL, OH_READ,
3595 &recov_state, needrecov);
3596 (void) xdr_free(xdr_COMPOUND4res_clnt,
3597 (caddr_t)&res);
3598 return (EIO);
3599 }
3600 nfs4_end_fop(mi, vp, NULL, OH_READ,
3601 &recov_state, needrecov);
3602 /* hold needed for nfs4delegreturn_thread */
3603 VN_HOLD(vp);
3604 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN|
3605 NFS4_DR_DISCARD), FALSE);
3606 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3607 goto recov_retry;
3608 }
3609 if (needrecov) {
3610 bool_t abort;
3611
3612 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3613 "nfs4read: initiating recovery\n"));
3614 abort = nfs4_start_recovery(&e,
3615 mi, vp, NULL, &rargs->stateid,
3616 NULL, OP_READ, NULL, NULL, NULL);
3617 nfs4_end_fop(mi, vp, NULL, OH_READ,
3618 &recov_state, needrecov);
3619 /*
3620 * Do not retry if we got OLD_STATEID using a special
3621 * stateid. This avoids looping with a broken server.
3622 */
3623 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3624 sid_types.cur_sid_type == SPEC_SID)
3625 abort = TRUE;
3626
3627 if (abort == FALSE) {
3628 /*
3629 * Need to retry all possible stateids in
3630 * case the recovery error wasn't stateid
3631 * related or the stateids have become
3632 * stale (server reboot).
3633 */
3634 nfs4_init_stateid_types(&sid_types);
3635 (void) xdr_free(xdr_COMPOUND4res_clnt,
3636 (caddr_t)&res);
3637 goto recov_retry;
3638 }
3639
3640 if (!e.error) {
3641 e.error = geterrno4(res.status);
3642 (void) xdr_free(xdr_COMPOUND4res_clnt,
3643 (caddr_t)&res);
3644 }
3645 return (e.error);
3646 }
3647
3648 if (res.status) {
3649 e.error = geterrno4(res.status);
3650 nfs4_end_fop(mi, vp, NULL, OH_READ,
3651 &recov_state, needrecov);
3652 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3653 return (e.error);
3654 }
3655
3656 data_len = res.array[1].nfs_resop4_u.opread.data_len;
3657 count -= data_len;
3658 if (base)
3659 base += data_len;
3660 offset += data_len;
3661 if (mi->mi_io_kstats) {
3662 mutex_enter(&mi->mi_lock);
3663 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
3664 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len;
3665 mutex_exit(&mi->mi_lock);
3666 }
3667 lwp_stat_update(LWP_STAT_INBLK, 1);
3668 is_eof = res.array[1].nfs_resop4_u.opread.eof;
3669 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3670
3671 } while (count && !is_eof);
3672
3673 *residp = count;
3674
3675 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov);
3676
3677 return (e.error);
3678 }
3679
3680 /* ARGSUSED */
3681 static int
nfs4_ioctl(vnode_t * vp,int cmd,intptr_t arg,int flag,cred_t * cr,int * rvalp,caller_context_t * ct)3682 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp,
3683 caller_context_t *ct)
3684 {
3685 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3686 return (EIO);
3687 switch (cmd) {
3688 case _FIODIRECTIO:
3689 return (nfs4_directio(vp, (int)arg, cr));
3690 default:
3691 return (ENOTTY);
3692 }
3693 }
3694
3695 /* ARGSUSED */
3696 int
nfs4_getattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,caller_context_t * ct)3697 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3698 caller_context_t *ct)
3699 {
3700 int error;
3701 rnode4_t *rp = VTOR4(vp);
3702
3703 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3704 return (EIO);
3705 /*
3706 * If it has been specified that the return value will
3707 * just be used as a hint, and we are only being asked
3708 * for size, fsid or rdevid, then return the client's
3709 * notion of these values without checking to make sure
3710 * that the attribute cache is up to date.
3711 * The whole point is to avoid an over the wire GETATTR
3712 * call.
3713 */
3714 if (flags & ATTR_HINT) {
3715 if (!(vap->va_mask & ~(AT_SIZE | AT_FSID | AT_RDEV))) {
3716 mutex_enter(&rp->r_statelock);
3717 if (vap->va_mask & AT_SIZE)
3718 vap->va_size = rp->r_size;
3719 if (vap->va_mask & AT_FSID)
3720 vap->va_fsid = rp->r_attr.va_fsid;
3721 if (vap->va_mask & AT_RDEV)
3722 vap->va_rdev = rp->r_attr.va_rdev;
3723 mutex_exit(&rp->r_statelock);
3724 return (0);
3725 }
3726 }
3727
3728 /*
3729 * Only need to flush pages if asking for the mtime
3730 * and if there any dirty pages or any outstanding
3731 * asynchronous (write) requests for this file.
3732 */
3733 if (vap->va_mask & AT_MTIME) {
3734 rp = VTOR4(vp);
3735 if (nfs4_has_pages(vp)) {
3736 mutex_enter(&rp->r_statev4_lock);
3737 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) {
3738 mutex_exit(&rp->r_statev4_lock);
3739 if (rp->r_flags & R4DIRTY ||
3740 rp->r_awcount > 0) {
3741 mutex_enter(&rp->r_statelock);
3742 rp->r_gcount++;
3743 mutex_exit(&rp->r_statelock);
3744 error =
3745 nfs4_putpage(vp, (u_offset_t)0,
3746 0, 0, cr, NULL);
3747 mutex_enter(&rp->r_statelock);
3748 if (error && (error == ENOSPC ||
3749 error == EDQUOT)) {
3750 if (!rp->r_error)
3751 rp->r_error = error;
3752 }
3753 if (--rp->r_gcount == 0)
3754 cv_broadcast(&rp->r_cv);
3755 mutex_exit(&rp->r_statelock);
3756 }
3757 } else {
3758 mutex_exit(&rp->r_statev4_lock);
3759 }
3760 }
3761 }
3762 return (nfs4getattr(vp, vap, cr));
3763 }
3764
3765 int
nfs4_compare_modes(mode_t from_server,mode_t on_client)3766 nfs4_compare_modes(mode_t from_server, mode_t on_client)
3767 {
3768 /*
3769 * If these are the only two bits cleared
3770 * on the server then return 0 (OK) else
3771 * return 1 (BAD).
3772 */
3773 on_client &= ~(S_ISUID|S_ISGID);
3774 if (on_client == from_server)
3775 return (0);
3776 else
3777 return (1);
3778 }
3779
3780 /*ARGSUSED4*/
3781 static int
nfs4_setattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,caller_context_t * ct)3782 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3783 caller_context_t *ct)
3784 {
3785 int error;
3786
3787 if (vap->va_mask & AT_NOSET)
3788 return (EINVAL);
3789
3790 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3791 return (EIO);
3792
3793 /*
3794 * Don't call secpolicy_vnode_setattr, the client cannot
3795 * use its cached attributes to make security decisions
3796 * as the server may be faking mode bits or mapping uid/gid.
3797 * Always just let the server to the checking.
3798 * If we provide the ability to remove basic priviledges
3799 * to setattr (e.g. basic without chmod) then we will
3800 * need to add a check here before calling the server.
3801 */
3802 error = nfs4setattr(vp, vap, flags, cr, NULL);
3803
3804 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0)
3805 vnevent_truncate(vp, ct);
3806
3807 return (error);
3808 }
3809
3810 /*
3811 * To replace the "guarded" version 3 setattr, we use two types of compound
3812 * setattr requests:
3813 * 1. The "normal" setattr, used when the size of the file isn't being
3814 * changed - { Putfh <fh>; Setattr; Getattr }/
3815 * 2. If the size is changed, precede Setattr with: Getattr; Verify
3816 * with only ctime as the argument. If the server ctime differs from
3817 * what is cached on the client, the verify will fail, but we would
3818 * already have the ctime from the preceding getattr, so just set it
3819 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify;
3820 * Setattr; Getattr }.
3821 *
3822 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in
3823 * this setattr and NULL if they are not.
3824 */
3825 static int
nfs4setattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,vsecattr_t * vsap)3826 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3827 vsecattr_t *vsap)
3828 {
3829 COMPOUND4args_clnt args;
3830 COMPOUND4res_clnt res, *resp = NULL;
3831 nfs4_ga_res_t *garp = NULL;
3832 int numops = 3; /* { Putfh; Setattr; Getattr } */
3833 nfs_argop4 argop[5];
3834 int verify_argop = -1;
3835 int setattr_argop = 1;
3836 nfs_resop4 *resop;
3837 vattr_t va;
3838 rnode4_t *rp;
3839 int doqueue = 1;
3840 uint_t mask = vap->va_mask;
3841 mode_t omode;
3842 vsecattr_t *vsp;
3843 timestruc_t ctime;
3844 bool_t needrecov = FALSE;
3845 nfs4_recov_state_t recov_state;
3846 nfs4_stateid_types_t sid_types;
3847 stateid4 stateid;
3848 hrtime_t t;
3849 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3850 servinfo4_t *svp;
3851 bitmap4 supp_attrs;
3852
3853 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
3854 rp = VTOR4(vp);
3855 nfs4_init_stateid_types(&sid_types);
3856
3857 /*
3858 * Only need to flush pages if there are any pages and
3859 * if the file is marked as dirty in some fashion. The
3860 * file must be flushed so that we can accurately
3861 * determine the size of the file and the cached data
3862 * after the SETATTR returns. A file is considered to
3863 * be dirty if it is either marked with R4DIRTY, has
3864 * outstanding i/o's active, or is mmap'd. In this
3865 * last case, we can't tell whether there are dirty
3866 * pages, so we flush just to be sure.
3867 */
3868 if (nfs4_has_pages(vp) &&
3869 ((rp->r_flags & R4DIRTY) ||
3870 rp->r_count > 0 ||
3871 rp->r_mapcnt > 0)) {
3872 ASSERT(vp->v_type != VCHR);
3873 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL);
3874 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) {
3875 mutex_enter(&rp->r_statelock);
3876 if (!rp->r_error)
3877 rp->r_error = e.error;
3878 mutex_exit(&rp->r_statelock);
3879 }
3880 }
3881
3882 if (mask & AT_SIZE) {
3883 /*
3884 * Verification setattr compound for non-deleg AT_SIZE:
3885 * { Putfh; Getattr; Verify; Setattr; Getattr }
3886 * Set ctime local here (outside the do_again label)
3887 * so that subsequent retries (after failed VERIFY)
3888 * will use ctime from GETATTR results (from failed
3889 * verify compound) as VERIFY arg.
3890 * If file has delegation, then VERIFY(time_metadata)
3891 * is of little added value, so don't bother.
3892 */
3893 mutex_enter(&rp->r_statev4_lock);
3894 if (rp->r_deleg_type == OPEN_DELEGATE_NONE ||
3895 rp->r_deleg_return_pending) {
3896 numops = 5;
3897 ctime = rp->r_attr.va_ctime;
3898 }
3899 mutex_exit(&rp->r_statev4_lock);
3900 }
3901
3902 recov_state.rs_flags = 0;
3903 recov_state.rs_num_retry_despite_err = 0;
3904
3905 args.ctag = TAG_SETATTR;
3906 do_again:
3907 recov_retry:
3908 setattr_argop = numops - 2;
3909
3910 args.array = argop;
3911 args.array_len = numops;
3912
3913 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state);
3914 if (e.error)
3915 return (e.error);
3916
3917
3918 /* putfh target fh */
3919 argop[0].argop = OP_CPUTFH;
3920 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
3921
3922 if (numops == 5) {
3923 /*
3924 * We only care about the ctime, but need to get mtime
3925 * and size for proper cache update.
3926 */
3927 /* getattr */
3928 argop[1].argop = OP_GETATTR;
3929 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
3930 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
3931
3932 /* verify - set later in loop */
3933 verify_argop = 2;
3934 }
3935
3936 /* setattr */
3937 svp = rp->r_server;
3938 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
3939 supp_attrs = svp->sv_supp_attrs;
3940 nfs_rw_exit(&svp->sv_lock);
3941
3942 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr,
3943 supp_attrs, &e.error, &sid_types);
3944 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid;
3945 if (e.error) {
3946 /* req time field(s) overflow - return immediately */
3947 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
3948 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
3949 opsetattr.obj_attributes);
3950 return (e.error);
3951 }
3952 omode = rp->r_attr.va_mode;
3953
3954 /* getattr */
3955 argop[numops-1].argop = OP_GETATTR;
3956 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
3957 /*
3958 * If we are setting the ACL (indicated only by vsap != NULL), request
3959 * the ACL in this getattr. The ACL returned from this getattr will be
3960 * used in updating the ACL cache.
3961 */
3962 if (vsap != NULL)
3963 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |=
3964 FATTR4_ACL_MASK;
3965 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
3966
3967 /*
3968 * setattr iterates if the object size is set and the cached ctime
3969 * does not match the file ctime. In that case, verify the ctime first.
3970 */
3971
3972 do {
3973 if (verify_argop != -1) {
3974 /*
3975 * Verify that the ctime match before doing setattr.
3976 */
3977 va.va_mask = AT_CTIME;
3978 va.va_ctime = ctime;
3979 svp = rp->r_server;
3980 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
3981 supp_attrs = svp->sv_supp_attrs;
3982 nfs_rw_exit(&svp->sv_lock);
3983 e.error = nfs4args_verify(&argop[verify_argop], &va,
3984 OP_VERIFY, supp_attrs);
3985 if (e.error) {
3986 /* req time field(s) overflow - return */
3987 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3988 needrecov);
3989 break;
3990 }
3991 }
3992
3993 doqueue = 1;
3994
3995 t = gethrtime();
3996
3997 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e);
3998
3999 /*
4000 * Purge the access cache and ACL cache if changing either the
4001 * owner of the file, the group owner, or the mode. These may
4002 * change the access permissions of the file, so purge old
4003 * information and start over again.
4004 */
4005 if (mask & (AT_UID | AT_GID | AT_MODE)) {
4006 (void) nfs4_access_purge_rp(rp);
4007 if (rp->r_secattr != NULL) {
4008 mutex_enter(&rp->r_statelock);
4009 vsp = rp->r_secattr;
4010 rp->r_secattr = NULL;
4011 mutex_exit(&rp->r_statelock);
4012 if (vsp != NULL)
4013 nfs4_acl_free_cache(vsp);
4014 }
4015 }
4016
4017 /*
4018 * If res.array_len == numops, then everything succeeded,
4019 * except for possibly the final getattr. If only the
4020 * last getattr failed, give up, and don't try recovery.
4021 */
4022 if (res.array_len == numops) {
4023 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
4024 needrecov);
4025 if (! e.error)
4026 resp = &res;
4027 break;
4028 }
4029
4030 /*
4031 * if either rpc call failed or completely succeeded - done
4032 */
4033 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
4034 if (e.error) {
4035 PURGE_ATTRCACHE4(vp);
4036 if (!needrecov) {
4037 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
4038 needrecov);
4039 break;
4040 }
4041 }
4042
4043 /*
4044 * Do proper retry for OLD_STATEID outside of the normal
4045 * recovery framework.
4046 */
4047 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
4048 sid_types.cur_sid_type != SPEC_SID &&
4049 sid_types.cur_sid_type != NO_SID) {
4050 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
4051 needrecov);
4052 nfs4_save_stateid(&stateid, &sid_types);
4053 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4054 opsetattr.obj_attributes);
4055 if (verify_argop != -1) {
4056 nfs4args_verify_free(&argop[verify_argop]);
4057 verify_argop = -1;
4058 }
4059 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4060 goto recov_retry;
4061 }
4062
4063 if (needrecov) {
4064 bool_t abort;
4065
4066 abort = nfs4_start_recovery(&e,
4067 VTOMI4(vp), vp, NULL, NULL, NULL,
4068 OP_SETATTR, NULL, NULL, NULL);
4069 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
4070 needrecov);
4071 /*
4072 * Do not retry if we failed with OLD_STATEID using
4073 * a special stateid. This is done to avoid looping
4074 * with a broken server.
4075 */
4076 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
4077 (sid_types.cur_sid_type == SPEC_SID ||
4078 sid_types.cur_sid_type == NO_SID))
4079 abort = TRUE;
4080 if (!e.error) {
4081 if (res.status == NFS4ERR_BADOWNER)
4082 nfs4_log_badowner(VTOMI4(vp),
4083 OP_SETATTR);
4084
4085 e.error = geterrno4(res.status);
4086 (void) xdr_free(xdr_COMPOUND4res_clnt,
4087 (caddr_t)&res);
4088 }
4089 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4090 opsetattr.obj_attributes);
4091 if (verify_argop != -1) {
4092 nfs4args_verify_free(&argop[verify_argop]);
4093 verify_argop = -1;
4094 }
4095 if (abort == FALSE) {
4096 /*
4097 * Need to retry all possible stateids in
4098 * case the recovery error wasn't stateid
4099 * related or the stateids have become
4100 * stale (server reboot).
4101 */
4102 nfs4_init_stateid_types(&sid_types);
4103 goto recov_retry;
4104 }
4105 return (e.error);
4106 }
4107
4108 /*
4109 * Need to call nfs4_end_op before nfs4getattr to
4110 * avoid potential nfs4_start_op deadlock. See RFE
4111 * 4777612. Calls to nfs4_invalidate_pages() and
4112 * nfs4_purge_stale_fh() might also generate over the
4113 * wire calls which my cause nfs4_start_op() deadlock.
4114 */
4115 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
4116
4117 /*
4118 * Check to update lease.
4119 */
4120 resp = &res;
4121 if (res.status == NFS4_OK) {
4122 break;
4123 }
4124
4125 /*
4126 * Check if verify failed to see if try again
4127 */
4128 if ((verify_argop == -1) || (res.array_len != 3)) {
4129 /*
4130 * can't continue...
4131 */
4132 if (res.status == NFS4ERR_BADOWNER)
4133 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR);
4134
4135 e.error = geterrno4(res.status);
4136 } else {
4137 /*
4138 * When the verify request fails, the client ctime is
4139 * not in sync with the server. This is the same as
4140 * the version 3 "not synchronized" error, and we
4141 * handle it in a similar manner (XXX do we need to???).
4142 * Use the ctime returned in the first getattr for
4143 * the input to the next verify.
4144 * If we couldn't get the attributes, then we give up
4145 * because we can't complete the operation as required.
4146 */
4147 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res;
4148 }
4149 if (e.error) {
4150 PURGE_ATTRCACHE4(vp);
4151 nfs4_purge_stale_fh(e.error, vp, cr);
4152 } else {
4153 /*
4154 * retry with a new verify value
4155 */
4156 ctime = garp->n4g_va.va_ctime;
4157 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4158 resp = NULL;
4159 }
4160 if (!e.error) {
4161 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4162 opsetattr.obj_attributes);
4163 if (verify_argop != -1) {
4164 nfs4args_verify_free(&argop[verify_argop]);
4165 verify_argop = -1;
4166 }
4167 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4168 goto do_again;
4169 }
4170 } while (!e.error);
4171
4172 if (e.error) {
4173 /*
4174 * If we are here, rfs4call has an irrecoverable error - return
4175 */
4176 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4177 opsetattr.obj_attributes);
4178 if (verify_argop != -1) {
4179 nfs4args_verify_free(&argop[verify_argop]);
4180 verify_argop = -1;
4181 }
4182 if (resp)
4183 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
4184 return (e.error);
4185 }
4186
4187
4188
4189 /*
4190 * If changing the size of the file, invalidate
4191 * any local cached data which is no longer part
4192 * of the file. We also possibly invalidate the
4193 * last page in the file. We could use
4194 * pvn_vpzero(), but this would mark the page as
4195 * modified and require it to be written back to
4196 * the server for no particularly good reason.
4197 * This way, if we access it, then we bring it
4198 * back in. A read should be cheaper than a
4199 * write.
4200 */
4201 if (mask & AT_SIZE) {
4202 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr);
4203 }
4204
4205 /* either no error or one of the postop getattr failed */
4206
4207 /*
4208 * XXX Perform a simplified version of wcc checking. Instead of
4209 * have another getattr to get pre-op, just purge cache if
4210 * any of the ops prior to and including the getattr failed.
4211 * If the getattr succeeded then update the attrcache accordingly.
4212 */
4213
4214 garp = NULL;
4215 if (res.status == NFS4_OK) {
4216 /*
4217 * Last getattr
4218 */
4219 resop = &res.array[numops - 1];
4220 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
4221 }
4222 /*
4223 * In certain cases, nfs4_update_attrcache() will purge the attrcache,
4224 * rather than filling it. See the function itself for details.
4225 */
4226 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr);
4227 if (garp != NULL) {
4228 if (garp->n4g_resbmap & FATTR4_ACL_MASK) {
4229 nfs4_acl_fill_cache(rp, &garp->n4g_vsa);
4230 vs_ace4_destroy(&garp->n4g_vsa);
4231 } else {
4232 if (vsap != NULL) {
4233 /*
4234 * The ACL was supposed to be set and to be
4235 * returned in the last getattr of this
4236 * compound, but for some reason the getattr
4237 * result doesn't contain the ACL. In this
4238 * case, purge the ACL cache.
4239 */
4240 if (rp->r_secattr != NULL) {
4241 mutex_enter(&rp->r_statelock);
4242 vsp = rp->r_secattr;
4243 rp->r_secattr = NULL;
4244 mutex_exit(&rp->r_statelock);
4245 if (vsp != NULL)
4246 nfs4_acl_free_cache(vsp);
4247 }
4248 }
4249 }
4250 }
4251
4252 if (res.status == NFS4_OK && (mask & AT_SIZE)) {
4253 /*
4254 * Set the size, rather than relying on getting it updated
4255 * via a GETATTR. With delegations the client tries to
4256 * suppress GETATTR calls.
4257 */
4258 mutex_enter(&rp->r_statelock);
4259 rp->r_size = vap->va_size;
4260 mutex_exit(&rp->r_statelock);
4261 }
4262
4263 /*
4264 * Can free up request args and res
4265 */
4266 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4267 opsetattr.obj_attributes);
4268 if (verify_argop != -1) {
4269 nfs4args_verify_free(&argop[verify_argop]);
4270 verify_argop = -1;
4271 }
4272 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4273
4274 /*
4275 * Some servers will change the mode to clear the setuid
4276 * and setgid bits when changing the uid or gid. The
4277 * client needs to compensate appropriately.
4278 */
4279 if (mask & (AT_UID | AT_GID)) {
4280 int terror, do_setattr;
4281
4282 do_setattr = 0;
4283 va.va_mask = AT_MODE;
4284 terror = nfs4getattr(vp, &va, cr);
4285 if (!terror &&
4286 (((mask & AT_MODE) && va.va_mode != vap->va_mode) ||
4287 (!(mask & AT_MODE) && va.va_mode != omode))) {
4288 va.va_mask = AT_MODE;
4289 if (mask & AT_MODE) {
4290 /*
4291 * We asked the mode to be changed and what
4292 * we just got from the server in getattr is
4293 * not what we wanted it to be, so set it now.
4294 */
4295 va.va_mode = vap->va_mode;
4296 do_setattr = 1;
4297 } else {
4298 /*
4299 * We did not ask the mode to be changed,
4300 * Check to see that the server just cleared
4301 * I_SUID and I_GUID from it. If not then
4302 * set mode to omode with UID/GID cleared.
4303 */
4304 if (nfs4_compare_modes(va.va_mode, omode)) {
4305 omode &= ~(S_ISUID|S_ISGID);
4306 va.va_mode = omode;
4307 do_setattr = 1;
4308 }
4309 }
4310
4311 if (do_setattr)
4312 (void) nfs4setattr(vp, &va, 0, cr, NULL);
4313 }
4314 }
4315
4316 return (e.error);
4317 }
4318
4319 /* ARGSUSED */
4320 static int
nfs4_access(vnode_t * vp,int mode,int flags,cred_t * cr,caller_context_t * ct)4321 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
4322 {
4323 COMPOUND4args_clnt args;
4324 COMPOUND4res_clnt res;
4325 int doqueue;
4326 uint32_t acc, resacc, argacc;
4327 rnode4_t *rp;
4328 cred_t *cred, *ncr, *ncrfree = NULL;
4329 nfs4_access_type_t cacc;
4330 int num_ops;
4331 nfs_argop4 argop[3];
4332 nfs_resop4 *resop;
4333 bool_t needrecov = FALSE, do_getattr;
4334 nfs4_recov_state_t recov_state;
4335 int rpc_error;
4336 hrtime_t t;
4337 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4338 mntinfo4_t *mi = VTOMI4(vp);
4339
4340 if (nfs_zone() != mi->mi_zone)
4341 return (EIO);
4342
4343 acc = 0;
4344 if (mode & VREAD)
4345 acc |= ACCESS4_READ;
4346 if (mode & VWRITE) {
4347 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type))
4348 return (EROFS);
4349 if (vp->v_type == VDIR)
4350 acc |= ACCESS4_DELETE;
4351 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND;
4352 }
4353 if (mode & VEXEC) {
4354 if (vp->v_type == VDIR)
4355 acc |= ACCESS4_LOOKUP;
4356 else
4357 acc |= ACCESS4_EXECUTE;
4358 }
4359
4360 if (VTOR4(vp)->r_acache != NULL) {
4361 e.error = nfs4_validate_caches(vp, cr);
4362 if (e.error)
4363 return (e.error);
4364 }
4365
4366 rp = VTOR4(vp);
4367 if (vp->v_type == VDIR)
4368 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY |
4369 ACCESS4_EXTEND | ACCESS4_LOOKUP;
4370 else
4371 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND |
4372 ACCESS4_EXECUTE;
4373 recov_state.rs_flags = 0;
4374 recov_state.rs_num_retry_despite_err = 0;
4375
4376 cred = cr;
4377 /*
4378 * ncr and ncrfree both initially
4379 * point to the memory area returned
4380 * by crnetadjust();
4381 * ncrfree not NULL when exiting means
4382 * that we need to release it
4383 */
4384 ncr = crnetadjust(cred);
4385 ncrfree = ncr;
4386
4387 tryagain:
4388 cacc = nfs4_access_check(rp, acc, cred);
4389 if (cacc == NFS4_ACCESS_ALLOWED) {
4390 if (ncrfree != NULL)
4391 crfree(ncrfree);
4392 return (0);
4393 }
4394 if (cacc == NFS4_ACCESS_DENIED) {
4395 /*
4396 * If the cred can be adjusted, try again
4397 * with the new cred.
4398 */
4399 if (ncr != NULL) {
4400 cred = ncr;
4401 ncr = NULL;
4402 goto tryagain;
4403 }
4404 if (ncrfree != NULL)
4405 crfree(ncrfree);
4406 return (EACCES);
4407 }
4408
4409 recov_retry:
4410 /*
4411 * Don't take with r_statev4_lock here. r_deleg_type could
4412 * change as soon as lock is released. Since it is an int,
4413 * there is no atomicity issue.
4414 */
4415 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE);
4416 num_ops = do_getattr ? 3 : 2;
4417
4418 args.ctag = TAG_ACCESS;
4419
4420 args.array_len = num_ops;
4421 args.array = argop;
4422
4423 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS,
4424 &recov_state, NULL)) {
4425 if (ncrfree != NULL)
4426 crfree(ncrfree);
4427 return (e.error);
4428 }
4429
4430 /* putfh target fh */
4431 argop[0].argop = OP_CPUTFH;
4432 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
4433
4434 /* access */
4435 argop[1].argop = OP_ACCESS;
4436 argop[1].nfs_argop4_u.opaccess.access = argacc;
4437
4438 /* getattr */
4439 if (do_getattr) {
4440 argop[2].argop = OP_GETATTR;
4441 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
4442 argop[2].nfs_argop4_u.opgetattr.mi = mi;
4443 }
4444
4445 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
4446 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first",
4447 rnode4info(VTOR4(vp))));
4448
4449 doqueue = 1;
4450 t = gethrtime();
4451 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e);
4452 rpc_error = e.error;
4453
4454 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
4455 if (needrecov) {
4456 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
4457 "nfs4_access: initiating recovery\n"));
4458
4459 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
4460 NULL, OP_ACCESS, NULL, NULL, NULL) == FALSE) {
4461 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS,
4462 &recov_state, needrecov);
4463 if (!e.error)
4464 (void) xdr_free(xdr_COMPOUND4res_clnt,
4465 (caddr_t)&res);
4466 goto recov_retry;
4467 }
4468 }
4469 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov);
4470
4471 if (e.error)
4472 goto out;
4473
4474 if (res.status) {
4475 e.error = geterrno4(res.status);
4476 /*
4477 * This might generate over the wire calls throught
4478 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
4479 * here to avoid a deadlock.
4480 */
4481 nfs4_purge_stale_fh(e.error, vp, cr);
4482 goto out;
4483 }
4484 resop = &res.array[1]; /* access res */
4485
4486 resacc = resop->nfs_resop4_u.opaccess.access;
4487
4488 if (do_getattr) {
4489 resop++; /* getattr res */
4490 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res,
4491 t, cr, FALSE, NULL);
4492 }
4493
4494 if (!e.error) {
4495 nfs4_access_cache(rp, argacc, resacc, cred);
4496 /*
4497 * we just cached results with cred; if cred is the
4498 * adjusted credentials from crnetadjust, we do not want
4499 * to release them before exiting: hence setting ncrfree
4500 * to NULL
4501 */
4502 if (cred != cr)
4503 ncrfree = NULL;
4504 /* XXX check the supported bits too? */
4505 if ((acc & resacc) != acc) {
4506 /*
4507 * The following code implements the semantic
4508 * that a setuid root program has *at least* the
4509 * permissions of the user that is running the
4510 * program. See rfs3call() for more portions
4511 * of the implementation of this functionality.
4512 */
4513 /* XXX-LP */
4514 if (ncr != NULL) {
4515 (void) xdr_free(xdr_COMPOUND4res_clnt,
4516 (caddr_t)&res);
4517 cred = ncr;
4518 ncr = NULL;
4519 goto tryagain;
4520 }
4521 e.error = EACCES;
4522 }
4523 }
4524
4525 out:
4526 if (!rpc_error)
4527 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4528
4529 if (ncrfree != NULL)
4530 crfree(ncrfree);
4531
4532 return (e.error);
4533 }
4534
4535 /* ARGSUSED */
4536 static int
nfs4_readlink(vnode_t * vp,struct uio * uiop,cred_t * cr,caller_context_t * ct)4537 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct)
4538 {
4539 COMPOUND4args_clnt args;
4540 COMPOUND4res_clnt res;
4541 int doqueue;
4542 rnode4_t *rp;
4543 nfs_argop4 argop[3];
4544 nfs_resop4 *resop;
4545 READLINK4res *lr_res;
4546 nfs4_ga_res_t *garp;
4547 uint_t len;
4548 char *linkdata;
4549 bool_t needrecov = FALSE;
4550 nfs4_recov_state_t recov_state;
4551 hrtime_t t;
4552 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4553
4554 if (nfs_zone() != VTOMI4(vp)->mi_zone)
4555 return (EIO);
4556 /*
4557 * Can't readlink anything other than a symbolic link.
4558 */
4559 if (vp->v_type != VLNK)
4560 return (EINVAL);
4561
4562 rp = VTOR4(vp);
4563 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) {
4564 e.error = nfs4_validate_caches(vp, cr);
4565 if (e.error)
4566 return (e.error);
4567 mutex_enter(&rp->r_statelock);
4568 if (rp->r_symlink.contents != NULL) {
4569 e.error = uiomove(rp->r_symlink.contents,
4570 rp->r_symlink.len, UIO_READ, uiop);
4571 mutex_exit(&rp->r_statelock);
4572 return (e.error);
4573 }
4574 mutex_exit(&rp->r_statelock);
4575 }
4576 recov_state.rs_flags = 0;
4577 recov_state.rs_num_retry_despite_err = 0;
4578
4579 recov_retry:
4580 args.array_len = 3;
4581 args.array = argop;
4582 args.ctag = TAG_READLINK;
4583
4584 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state);
4585 if (e.error) {
4586 return (e.error);
4587 }
4588
4589 /* 0. putfh symlink fh */
4590 argop[0].argop = OP_CPUTFH;
4591 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
4592
4593 /* 1. readlink */
4594 argop[1].argop = OP_READLINK;
4595
4596 /* 2. getattr */
4597 argop[2].argop = OP_GETATTR;
4598 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
4599 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
4600
4601 doqueue = 1;
4602
4603 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
4604 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first",
4605 rnode4info(VTOR4(vp))));
4606
4607 t = gethrtime();
4608
4609 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e);
4610
4611 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
4612 if (needrecov) {
4613 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
4614 "nfs4_readlink: initiating recovery\n"));
4615
4616 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
4617 NULL, OP_READLINK, NULL, NULL, NULL) == FALSE) {
4618 if (!e.error)
4619 (void) xdr_free(xdr_COMPOUND4res_clnt,
4620 (caddr_t)&res);
4621
4622 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
4623 needrecov);
4624 goto recov_retry;
4625 }
4626 }
4627
4628 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
4629
4630 if (e.error)
4631 return (e.error);
4632
4633 /*
4634 * There is an path in the code below which calls
4635 * nfs4_purge_stale_fh(), which may generate otw calls through
4636 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
4637 * here to avoid nfs4_start_op() deadlock.
4638 */
4639
4640 if (res.status && (res.array_len < args.array_len)) {
4641 /*
4642 * either Putfh or Link failed
4643 */
4644 e.error = geterrno4(res.status);
4645 nfs4_purge_stale_fh(e.error, vp, cr);
4646 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4647 return (e.error);
4648 }
4649
4650 resop = &res.array[1]; /* readlink res */
4651 lr_res = &resop->nfs_resop4_u.opreadlink;
4652
4653 /*
4654 * treat symlink names as data
4655 */
4656 linkdata = utf8_to_str((utf8string *)&lr_res->link, &len, NULL);
4657 if (linkdata != NULL) {
4658 int uio_len = len - 1;
4659 /* len includes null byte, which we won't uiomove */
4660 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop);
4661 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) {
4662 mutex_enter(&rp->r_statelock);
4663 if (rp->r_symlink.contents == NULL) {
4664 rp->r_symlink.contents = linkdata;
4665 rp->r_symlink.len = uio_len;
4666 rp->r_symlink.size = len;
4667 mutex_exit(&rp->r_statelock);
4668 } else {
4669 mutex_exit(&rp->r_statelock);
4670 kmem_free(linkdata, len);
4671 }
4672 } else {
4673 kmem_free(linkdata, len);
4674 }
4675 }
4676 if (res.status == NFS4_OK) {
4677 resop++; /* getattr res */
4678 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
4679 }
4680 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr);
4681
4682 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4683
4684 /*
4685 * The over the wire error for attempting to readlink something
4686 * other than a symbolic link is ENXIO. However, we need to
4687 * return EINVAL instead of ENXIO, so we map it here.
4688 */
4689 return (e.error == ENXIO ? EINVAL : e.error);
4690 }
4691
4692 /*
4693 * Flush local dirty pages to stable storage on the server.
4694 *
4695 * If FNODSYNC is specified, then there is nothing to do because
4696 * metadata changes are not cached on the client before being
4697 * sent to the server.
4698 */
4699 /* ARGSUSED */
4700 static int
nfs4_fsync(vnode_t * vp,int syncflag,cred_t * cr,caller_context_t * ct)4701 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
4702 {
4703 int error;
4704
4705 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
4706 return (0);
4707 if (nfs_zone() != VTOMI4(vp)->mi_zone)
4708 return (EIO);
4709 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr);
4710 if (!error)
4711 error = VTOR4(vp)->r_error;
4712 return (error);
4713 }
4714
4715 /*
4716 * Weirdness: if the file was removed or the target of a rename
4717 * operation while it was open, it got renamed instead. Here we
4718 * remove the renamed file.
4719 */
4720 /* ARGSUSED */
4721 void
nfs4_inactive(vnode_t * vp,cred_t * cr,caller_context_t * ct)4722 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4723 {
4724 rnode4_t *rp;
4725
4726 ASSERT(vp != DNLC_NO_VNODE);
4727
4728 rp = VTOR4(vp);
4729
4730 if (IS_SHADOW(vp, rp)) {
4731 sv_inactive(vp);
4732 return;
4733 }
4734
4735 /*
4736 * If this is coming from the wrong zone, we let someone in the right
4737 * zone take care of it asynchronously. We can get here due to
4738 * VN_RELE() being called from pageout() or fsflush(). This call may
4739 * potentially turn into an expensive no-op if, for instance, v_count
4740 * gets incremented in the meantime, but it's still correct.
4741 */
4742 if (nfs_zone() != VTOMI4(vp)->mi_zone) {
4743 nfs4_async_inactive(vp, cr);
4744 return;
4745 }
4746
4747 /*
4748 * Some of the cleanup steps might require over-the-wire
4749 * operations. Since VOP_INACTIVE can get called as a result of
4750 * other over-the-wire operations (e.g., an attribute cache update
4751 * can lead to a DNLC purge), doing those steps now would lead to a
4752 * nested call to the recovery framework, which can deadlock. So
4753 * do any over-the-wire cleanups asynchronously, in a separate
4754 * thread.
4755 */
4756
4757 mutex_enter(&rp->r_os_lock);
4758 mutex_enter(&rp->r_statelock);
4759 mutex_enter(&rp->r_statev4_lock);
4760
4761 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) {
4762 mutex_exit(&rp->r_statev4_lock);
4763 mutex_exit(&rp->r_statelock);
4764 mutex_exit(&rp->r_os_lock);
4765 nfs4_async_inactive(vp, cr);
4766 return;
4767 }
4768
4769 if (rp->r_deleg_type == OPEN_DELEGATE_READ ||
4770 rp->r_deleg_type == OPEN_DELEGATE_WRITE) {
4771 mutex_exit(&rp->r_statev4_lock);
4772 mutex_exit(&rp->r_statelock);
4773 mutex_exit(&rp->r_os_lock);
4774 nfs4_async_inactive(vp, cr);
4775 return;
4776 }
4777
4778 if (rp->r_unldvp != NULL) {
4779 mutex_exit(&rp->r_statev4_lock);
4780 mutex_exit(&rp->r_statelock);
4781 mutex_exit(&rp->r_os_lock);
4782 nfs4_async_inactive(vp, cr);
4783 return;
4784 }
4785 mutex_exit(&rp->r_statev4_lock);
4786 mutex_exit(&rp->r_statelock);
4787 mutex_exit(&rp->r_os_lock);
4788
4789 rp4_addfree(rp, cr);
4790 }
4791
4792 /*
4793 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up
4794 * various bits of state. The caller must not refer to vp after this call.
4795 */
4796
4797 void
nfs4_inactive_otw(vnode_t * vp,cred_t * cr)4798 nfs4_inactive_otw(vnode_t *vp, cred_t *cr)
4799 {
4800 rnode4_t *rp = VTOR4(vp);
4801 nfs4_recov_state_t recov_state;
4802 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4803 vnode_t *unldvp;
4804 char *unlname;
4805 cred_t *unlcred;
4806 COMPOUND4args_clnt args;
4807 COMPOUND4res_clnt res, *resp;
4808 nfs_argop4 argop[2];
4809 int doqueue;
4810 #ifdef DEBUG
4811 char *name;
4812 #endif
4813
4814 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
4815 ASSERT(!IS_SHADOW(vp, rp));
4816
4817 #ifdef DEBUG
4818 name = fn_name(VTOSV(vp)->sv_name);
4819 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: "
4820 "release vnode %s", name));
4821 kmem_free(name, MAXNAMELEN);
4822 #endif
4823
4824 if (vp->v_type == VREG) {
4825 bool_t recov_failed = FALSE;
4826
4827 e.error = nfs4close_all(vp, cr);
4828 if (e.error) {
4829 /* Check to see if recovery failed */
4830 mutex_enter(&(VTOMI4(vp)->mi_lock));
4831 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL)
4832 recov_failed = TRUE;
4833 mutex_exit(&(VTOMI4(vp)->mi_lock));
4834 if (!recov_failed) {
4835 mutex_enter(&rp->r_statelock);
4836 if (rp->r_flags & R4RECOVERR)
4837 recov_failed = TRUE;
4838 mutex_exit(&rp->r_statelock);
4839 }
4840 if (recov_failed) {
4841 NFS4_DEBUG(nfs4_client_recov_debug,
4842 (CE_NOTE, "nfs4_inactive_otw: "
4843 "close failed (recovery failure)"));
4844 }
4845 }
4846 }
4847
4848 redo:
4849 if (rp->r_unldvp == NULL) {
4850 rp4_addfree(rp, cr);
4851 return;
4852 }
4853
4854 /*
4855 * Save the vnode pointer for the directory where the
4856 * unlinked-open file got renamed, then set it to NULL
4857 * to prevent another thread from getting here before
4858 * we're done with the remove. While we have the
4859 * statelock, make local copies of the pertinent rnode
4860 * fields. If we weren't to do this in an atomic way, the
4861 * the unl* fields could become inconsistent with respect
4862 * to each other due to a race condition between this
4863 * code and nfs_remove(). See bug report 1034328.
4864 */
4865 mutex_enter(&rp->r_statelock);
4866 if (rp->r_unldvp == NULL) {
4867 mutex_exit(&rp->r_statelock);
4868 rp4_addfree(rp, cr);
4869 return;
4870 }
4871
4872 unldvp = rp->r_unldvp;
4873 rp->r_unldvp = NULL;
4874 unlname = rp->r_unlname;
4875 rp->r_unlname = NULL;
4876 unlcred = rp->r_unlcred;
4877 rp->r_unlcred = NULL;
4878 mutex_exit(&rp->r_statelock);
4879
4880 /*
4881 * If there are any dirty pages left, then flush
4882 * them. This is unfortunate because they just
4883 * may get thrown away during the remove operation,
4884 * but we have to do this for correctness.
4885 */
4886 if (nfs4_has_pages(vp) &&
4887 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) {
4888 ASSERT(vp->v_type != VCHR);
4889 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL);
4890 if (e.error) {
4891 mutex_enter(&rp->r_statelock);
4892 if (!rp->r_error)
4893 rp->r_error = e.error;
4894 mutex_exit(&rp->r_statelock);
4895 }
4896 }
4897
4898 recov_state.rs_flags = 0;
4899 recov_state.rs_num_retry_despite_err = 0;
4900 recov_retry_remove:
4901 /*
4902 * Do the remove operation on the renamed file
4903 */
4904 args.ctag = TAG_INACTIVE;
4905
4906 /*
4907 * Remove ops: putfh dir; remove
4908 */
4909 args.array_len = 2;
4910 args.array = argop;
4911
4912 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state);
4913 if (e.error) {
4914 kmem_free(unlname, MAXNAMELEN);
4915 crfree(unlcred);
4916 VN_RELE(unldvp);
4917 /*
4918 * Try again; this time around r_unldvp will be NULL, so we'll
4919 * just call rp4_addfree() and return.
4920 */
4921 goto redo;
4922 }
4923
4924 /* putfh directory */
4925 argop[0].argop = OP_CPUTFH;
4926 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh;
4927
4928 /* remove */
4929 argop[1].argop = OP_CREMOVE;
4930 argop[1].nfs_argop4_u.opcremove.ctarget = unlname;
4931
4932 doqueue = 1;
4933 resp = &res;
4934
4935 #if 0 /* notyet */
4936 /*
4937 * Can't do this yet. We may be being called from
4938 * dnlc_purge_XXX while that routine is holding a
4939 * mutex lock to the nc_rele list. The calls to
4940 * nfs3_cache_wcc_data may result in calls to
4941 * dnlc_purge_XXX. This will result in a deadlock.
4942 */
4943 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e);
4944 if (e.error) {
4945 PURGE_ATTRCACHE4(unldvp);
4946 resp = NULL;
4947 } else if (res.status) {
4948 e.error = geterrno4(res.status);
4949 PURGE_ATTRCACHE4(unldvp);
4950 /*
4951 * This code is inactive right now
4952 * but if made active there should
4953 * be a nfs4_end_op() call before
4954 * nfs4_purge_stale_fh to avoid start_op()
4955 * deadlock. See BugId: 4948726
4956 */
4957 nfs4_purge_stale_fh(error, unldvp, cr);
4958 } else {
4959 nfs_resop4 *resop;
4960 REMOVE4res *rm_res;
4961
4962 resop = &res.array[1];
4963 rm_res = &resop->nfs_resop4_u.opremove;
4964 /*
4965 * Update directory cache attribute,
4966 * readdir and dnlc caches.
4967 */
4968 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL);
4969 }
4970 #else
4971 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e);
4972
4973 PURGE_ATTRCACHE4(unldvp);
4974 #endif
4975
4976 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) {
4977 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL,
4978 NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
4979 if (!e.error)
4980 (void) xdr_free(xdr_COMPOUND4res_clnt,
4981 (caddr_t)&res);
4982 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL,
4983 &recov_state, TRUE);
4984 goto recov_retry_remove;
4985 }
4986 }
4987 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE);
4988
4989 /*
4990 * Release stuff held for the remove
4991 */
4992 VN_RELE(unldvp);
4993 if (!e.error && resp)
4994 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
4995
4996 kmem_free(unlname, MAXNAMELEN);
4997 crfree(unlcred);
4998 goto redo;
4999 }
5000
5001 /*
5002 * Remote file system operations having to do with directory manipulation.
5003 */
5004 /* ARGSUSED3 */
5005 int
nfs4_lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,struct pathname * pnp,int flags,vnode_t * rdir,cred_t * cr,caller_context_t * ct,int * direntflags,pathname_t * realpnp)5006 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
5007 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
5008 int *direntflags, pathname_t *realpnp)
5009 {
5010 int error;
5011 vnode_t *vp, *avp = NULL;
5012 rnode4_t *drp;
5013
5014 *vpp = NULL;
5015 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
5016 return (EPERM);
5017 /*
5018 * if LOOKUP_XATTR, must replace dvp (object) with
5019 * object's attrdir before continuing with lookup
5020 */
5021 if (flags & LOOKUP_XATTR) {
5022 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr);
5023 if (error)
5024 return (error);
5025
5026 dvp = avp;
5027
5028 /*
5029 * If lookup is for "", just return dvp now. The attrdir
5030 * has already been activated (from nfs4lookup_xattr), and
5031 * the caller will RELE the original dvp -- not
5032 * the attrdir. So, set vpp and return.
5033 * Currently, when the LOOKUP_XATTR flag is
5034 * passed to VOP_LOOKUP, the name is always empty, and
5035 * shortcircuiting here avoids 3 unneeded lock/unlock
5036 * pairs.
5037 *
5038 * If a non-empty name was provided, then it is the
5039 * attribute name, and it will be looked up below.
5040 */
5041 if (*nm == '\0') {
5042 *vpp = dvp;
5043 return (0);
5044 }
5045
5046 /*
5047 * The vfs layer never sends a name when asking for the
5048 * attrdir, so we should never get here (unless of course
5049 * name is passed at some time in future -- at which time
5050 * we'll blow up here).
5051 */
5052 ASSERT(0);
5053 }
5054
5055 drp = VTOR4(dvp);
5056 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
5057 return (EINTR);
5058
5059 error = nfs4lookup(dvp, nm, vpp, cr, 0);
5060 nfs_rw_exit(&drp->r_rwlock);
5061
5062 /*
5063 * If vnode is a device, create special vnode.
5064 */
5065 if (!error && ISVDEV((*vpp)->v_type)) {
5066 vp = *vpp;
5067 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
5068 VN_RELE(vp);
5069 }
5070
5071 return (error);
5072 }
5073
5074 /* ARGSUSED */
5075 static int
nfs4lookup_xattr(vnode_t * dvp,char * nm,vnode_t ** vpp,int flags,cred_t * cr)5076 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr)
5077 {
5078 int error;
5079 rnode4_t *drp;
5080 int cflag = ((flags & CREATE_XATTR_DIR) != 0);
5081 mntinfo4_t *mi;
5082
5083 mi = VTOMI4(dvp);
5084 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) &&
5085 !vfs_has_feature(mi->mi_vfsp, VFSFT_SYSATTR_VIEWS))
5086 return (EINVAL);
5087
5088 drp = VTOR4(dvp);
5089 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
5090 return (EINTR);
5091
5092 mutex_enter(&drp->r_statelock);
5093 /*
5094 * If the server doesn't support xattrs just return EINVAL
5095 */
5096 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) {
5097 mutex_exit(&drp->r_statelock);
5098 nfs_rw_exit(&drp->r_rwlock);
5099 return (EINVAL);
5100 }
5101
5102 /*
5103 * If there is a cached xattr directory entry,
5104 * use it as long as the attributes are valid. If the
5105 * attributes are not valid, take the simple approach and
5106 * free the cached value and re-fetch a new value.
5107 *
5108 * We don't negative entry cache for now, if we did we
5109 * would need to check if the file has changed on every
5110 * lookup. But xattrs don't exist very often and failing
5111 * an openattr is not much more expensive than and NVERIFY or GETATTR
5112 * so do an openattr over the wire for now.
5113 */
5114 if (drp->r_xattr_dir != NULL) {
5115 if (ATTRCACHE4_VALID(dvp)) {
5116 VN_HOLD(drp->r_xattr_dir);
5117 *vpp = drp->r_xattr_dir;
5118 mutex_exit(&drp->r_statelock);
5119 nfs_rw_exit(&drp->r_rwlock);
5120 return (0);
5121 }
5122 VN_RELE(drp->r_xattr_dir);
5123 drp->r_xattr_dir = NULL;
5124 }
5125 mutex_exit(&drp->r_statelock);
5126
5127 error = nfs4openattr(dvp, vpp, cflag, cr);
5128
5129 nfs_rw_exit(&drp->r_rwlock);
5130
5131 return (error);
5132 }
5133
5134 static int
nfs4lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr,int skipdnlc)5135 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc)
5136 {
5137 int error;
5138 rnode4_t *drp;
5139
5140 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5141
5142 /*
5143 * If lookup is for "", just return dvp. Don't need
5144 * to send it over the wire, look it up in the dnlc,
5145 * or perform any access checks.
5146 */
5147 if (*nm == '\0') {
5148 VN_HOLD(dvp);
5149 *vpp = dvp;
5150 return (0);
5151 }
5152
5153 /*
5154 * Can't do lookups in non-directories.
5155 */
5156 if (dvp->v_type != VDIR)
5157 return (ENOTDIR);
5158
5159 /*
5160 * If lookup is for ".", just return dvp. Don't need
5161 * to send it over the wire or look it up in the dnlc,
5162 * just need to check access.
5163 */
5164 if (nm[0] == '.' && nm[1] == '\0') {
5165 error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5166 if (error)
5167 return (error);
5168 VN_HOLD(dvp);
5169 *vpp = dvp;
5170 return (0);
5171 }
5172
5173 drp = VTOR4(dvp);
5174 if (!(drp->r_flags & R4LOOKUP)) {
5175 mutex_enter(&drp->r_statelock);
5176 drp->r_flags |= R4LOOKUP;
5177 mutex_exit(&drp->r_statelock);
5178 }
5179
5180 *vpp = NULL;
5181 /*
5182 * Lookup this name in the DNLC. If there is no entry
5183 * lookup over the wire.
5184 */
5185 if (!skipdnlc)
5186 *vpp = dnlc_lookup(dvp, nm);
5187 if (*vpp == NULL) {
5188 /*
5189 * We need to go over the wire to lookup the name.
5190 */
5191 return (nfs4lookupnew_otw(dvp, nm, vpp, cr));
5192 }
5193
5194 /*
5195 * We hit on the dnlc
5196 */
5197 if (*vpp != DNLC_NO_VNODE ||
5198 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) {
5199 /*
5200 * But our attrs may not be valid.
5201 */
5202 if (ATTRCACHE4_VALID(dvp)) {
5203 error = nfs4_waitfor_purge_complete(dvp);
5204 if (error) {
5205 VN_RELE(*vpp);
5206 *vpp = NULL;
5207 return (error);
5208 }
5209
5210 /*
5211 * If after the purge completes, check to make sure
5212 * our attrs are still valid.
5213 */
5214 if (ATTRCACHE4_VALID(dvp)) {
5215 /*
5216 * If we waited for a purge we may have
5217 * lost our vnode so look it up again.
5218 */
5219 VN_RELE(*vpp);
5220 *vpp = dnlc_lookup(dvp, nm);
5221 if (*vpp == NULL)
5222 return (nfs4lookupnew_otw(dvp,
5223 nm, vpp, cr));
5224
5225 /*
5226 * The access cache should almost always hit
5227 */
5228 error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5229
5230 if (error) {
5231 VN_RELE(*vpp);
5232 *vpp = NULL;
5233 return (error);
5234 }
5235 if (*vpp == DNLC_NO_VNODE) {
5236 VN_RELE(*vpp);
5237 *vpp = NULL;
5238 return (ENOENT);
5239 }
5240 return (0);
5241 }
5242 }
5243 }
5244
5245 ASSERT(*vpp != NULL);
5246
5247 /*
5248 * We may have gotten here we have one of the following cases:
5249 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we
5250 * need to validate them.
5251 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always
5252 * must validate.
5253 *
5254 * Go to the server and check if the directory has changed, if
5255 * it hasn't we are done and can use the dnlc entry.
5256 */
5257 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr));
5258 }
5259
5260 /*
5261 * Go to the server and check if the directory has changed, if
5262 * it hasn't we are done and can use the dnlc entry. If it
5263 * has changed we get a new copy of its attributes and check
5264 * the access for VEXEC, then relookup the filename and
5265 * get its filehandle and attributes.
5266 *
5267 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR
5268 * if the NVERIFY failed we must
5269 * purge the caches
5270 * cache new attributes (will set r_time_attr_inval)
5271 * cache new access
5272 * recheck VEXEC access
5273 * add name to dnlc, possibly negative
5274 * if LOOKUP succeeded
5275 * cache new attributes
5276 * else
5277 * set a new r_time_attr_inval for dvp
5278 * check to make sure we have access
5279 *
5280 * The vpp returned is the vnode passed in if the directory is valid,
5281 * a new vnode if successful lookup, or NULL on error.
5282 */
5283 static int
nfs4lookupvalidate_otw(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr)5284 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
5285 {
5286 COMPOUND4args_clnt args;
5287 COMPOUND4res_clnt res;
5288 fattr4 *ver_fattr;
5289 fattr4_change dchange;
5290 int32_t *ptr;
5291 int argoplist_size = 7 * sizeof (nfs_argop4);
5292 nfs_argop4 *argop;
5293 int doqueue;
5294 mntinfo4_t *mi;
5295 nfs4_recov_state_t recov_state;
5296 hrtime_t t;
5297 int isdotdot;
5298 vnode_t *nvp;
5299 nfs_fh4 *fhp;
5300 nfs4_sharedfh_t *sfhp;
5301 nfs4_access_type_t cacc;
5302 rnode4_t *nrp;
5303 rnode4_t *drp = VTOR4(dvp);
5304 nfs4_ga_res_t *garp = NULL;
5305 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
5306
5307 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5308 ASSERT(nm != NULL);
5309 ASSERT(nm[0] != '\0');
5310 ASSERT(dvp->v_type == VDIR);
5311 ASSERT(nm[0] != '.' || nm[1] != '\0');
5312 ASSERT(*vpp != NULL);
5313
5314 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') {
5315 isdotdot = 1;
5316 args.ctag = TAG_LOOKUP_VPARENT;
5317 } else {
5318 /*
5319 * If dvp were a stub, it should have triggered and caused
5320 * a mount for us to get this far.
5321 */
5322 ASSERT(!RP_ISSTUB(VTOR4(dvp)));
5323
5324 isdotdot = 0;
5325 args.ctag = TAG_LOOKUP_VALID;
5326 }
5327
5328 mi = VTOMI4(dvp);
5329 recov_state.rs_flags = 0;
5330 recov_state.rs_num_retry_despite_err = 0;
5331
5332 nvp = NULL;
5333
5334 /* Save the original mount point security information */
5335 (void) save_mnt_secinfo(mi->mi_curr_serv);
5336
5337 recov_retry:
5338 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP,
5339 &recov_state, NULL);
5340 if (e.error) {
5341 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5342 VN_RELE(*vpp);
5343 *vpp = NULL;
5344 return (e.error);
5345 }
5346
5347 argop = kmem_alloc(argoplist_size, KM_SLEEP);
5348
5349 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */
5350 args.array_len = 7;
5351 args.array = argop;
5352
5353 /* 0. putfh file */
5354 argop[0].argop = OP_CPUTFH;
5355 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh;
5356
5357 /* 1. nverify the change info */
5358 argop[1].argop = OP_NVERIFY;
5359 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes;
5360 ver_fattr->attrmask = FATTR4_CHANGE_MASK;
5361 ver_fattr->attrlist4 = (char *)&dchange;
5362 ptr = (int32_t *)&dchange;
5363 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change);
5364 ver_fattr->attrlist4_len = sizeof (fattr4_change);
5365
5366 /* 2. getattr directory */
5367 argop[2].argop = OP_GETATTR;
5368 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5369 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5370
5371 /* 3. access directory */
5372 argop[3].argop = OP_ACCESS;
5373 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE |
5374 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP;
5375
5376 /* 4. lookup name */
5377 if (isdotdot) {
5378 argop[4].argop = OP_LOOKUPP;
5379 } else {
5380 argop[4].argop = OP_CLOOKUP;
5381 argop[4].nfs_argop4_u.opclookup.cname = nm;
5382 }
5383
5384 /* 5. resulting file handle */
5385 argop[5].argop = OP_GETFH;
5386
5387 /* 6. resulting file attributes */
5388 argop[6].argop = OP_GETATTR;
5389 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5390 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5391
5392 doqueue = 1;
5393 t = gethrtime();
5394
5395 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
5396
5397 if (!isdotdot && res.status == NFS4ERR_MOVED) {
5398 e.error = nfs4_setup_referral(dvp, nm, vpp, cr);
5399 if (e.error != 0 && *vpp != NULL)
5400 VN_RELE(*vpp);
5401 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5402 &recov_state, FALSE);
5403 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5404 kmem_free(argop, argoplist_size);
5405 return (e.error);
5406 }
5407
5408 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) {
5409 /*
5410 * For WRONGSEC of a non-dotdot case, send secinfo directly
5411 * from this thread, do not go thru the recovery thread since
5412 * we need the nm information.
5413 *
5414 * Not doing dotdot case because there is no specification
5415 * for (PUTFH, SECINFO "..") yet.
5416 */
5417 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) {
5418 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr)))
5419 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5420 &recov_state, FALSE);
5421 else
5422 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5423 &recov_state, TRUE);
5424 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5425 kmem_free(argop, argoplist_size);
5426 if (!e.error)
5427 goto recov_retry;
5428 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5429 VN_RELE(*vpp);
5430 *vpp = NULL;
5431 return (e.error);
5432 }
5433
5434 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
5435 OP_LOOKUP, NULL, NULL, NULL) == FALSE) {
5436 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5437 &recov_state, TRUE);
5438
5439 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5440 kmem_free(argop, argoplist_size);
5441 goto recov_retry;
5442 }
5443 }
5444
5445 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE);
5446
5447 if (e.error || res.array_len == 0) {
5448 /*
5449 * If e.error isn't set, then reply has no ops (or we couldn't
5450 * be here). The only legal way to reply without an op array
5451 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should
5452 * be in the reply for all other status values.
5453 *
5454 * For valid replies without an ops array, return ENOTSUP
5455 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies,
5456 * return EIO -- don't trust status.
5457 */
5458 if (e.error == 0)
5459 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ?
5460 ENOTSUP : EIO;
5461 VN_RELE(*vpp);
5462 *vpp = NULL;
5463 kmem_free(argop, argoplist_size);
5464 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5465 return (e.error);
5466 }
5467
5468 if (res.status != NFS4ERR_SAME) {
5469 e.error = geterrno4(res.status);
5470
5471 /*
5472 * The NVERIFY "failed" so the directory has changed
5473 * First make sure PUTFH succeeded and NVERIFY "failed"
5474 * cleanly.
5475 */
5476 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) ||
5477 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) {
5478 nfs4_purge_stale_fh(e.error, dvp, cr);
5479 VN_RELE(*vpp);
5480 *vpp = NULL;
5481 goto exit;
5482 }
5483
5484 /*
5485 * We know the NVERIFY "failed" so we must:
5486 * purge the caches (access and indirectly dnlc if needed)
5487 */
5488 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE);
5489
5490 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5491 nfs4_purge_stale_fh(e.error, dvp, cr);
5492 VN_RELE(*vpp);
5493 *vpp = NULL;
5494 goto exit;
5495 }
5496
5497 /*
5498 * Install new cached attributes for the directory
5499 */
5500 nfs4_attr_cache(dvp,
5501 &res.array[2].nfs_resop4_u.opgetattr.ga_res,
5502 t, cr, FALSE, NULL);
5503
5504 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) {
5505 nfs4_purge_stale_fh(e.error, dvp, cr);
5506 VN_RELE(*vpp);
5507 *vpp = NULL;
5508 e.error = geterrno4(res.status);
5509 goto exit;
5510 }
5511
5512 /*
5513 * Now we know the directory is valid,
5514 * cache new directory access
5515 */
5516 nfs4_access_cache(drp,
5517 args.array[3].nfs_argop4_u.opaccess.access,
5518 res.array[3].nfs_resop4_u.opaccess.access, cr);
5519
5520 /*
5521 * recheck VEXEC access
5522 */
5523 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr);
5524 if (cacc != NFS4_ACCESS_ALLOWED) {
5525 /*
5526 * Directory permissions might have been revoked
5527 */
5528 if (cacc == NFS4_ACCESS_DENIED) {
5529 e.error = EACCES;
5530 VN_RELE(*vpp);
5531 *vpp = NULL;
5532 goto exit;
5533 }
5534
5535 /*
5536 * Somehow we must not have asked for enough
5537 * so try a singleton ACCESS, should never happen.
5538 */
5539 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5540 if (e.error) {
5541 VN_RELE(*vpp);
5542 *vpp = NULL;
5543 goto exit;
5544 }
5545 }
5546
5547 e.error = geterrno4(res.status);
5548 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) {
5549 /*
5550 * The lookup failed, probably no entry
5551 */
5552 if (e.error == ENOENT && nfs4_lookup_neg_cache) {
5553 dnlc_update(dvp, nm, DNLC_NO_VNODE);
5554 } else {
5555 /*
5556 * Might be some other error, so remove
5557 * the dnlc entry to make sure we start all
5558 * over again, next time.
5559 */
5560 dnlc_remove(dvp, nm);
5561 }
5562 VN_RELE(*vpp);
5563 *vpp = NULL;
5564 goto exit;
5565 }
5566
5567 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) {
5568 /*
5569 * The file exists but we can't get its fh for
5570 * some unknown reason. Remove it from the dnlc
5571 * and error out to be safe.
5572 */
5573 dnlc_remove(dvp, nm);
5574 VN_RELE(*vpp);
5575 *vpp = NULL;
5576 goto exit;
5577 }
5578 fhp = &res.array[5].nfs_resop4_u.opgetfh.object;
5579 if (fhp->nfs_fh4_len == 0) {
5580 /*
5581 * The file exists but a bogus fh
5582 * some unknown reason. Remove it from the dnlc
5583 * and error out to be safe.
5584 */
5585 e.error = ENOENT;
5586 dnlc_remove(dvp, nm);
5587 VN_RELE(*vpp);
5588 *vpp = NULL;
5589 goto exit;
5590 }
5591 sfhp = sfh4_get(fhp, mi);
5592
5593 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK)
5594 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res;
5595
5596 /*
5597 * Make the new rnode
5598 */
5599 if (isdotdot) {
5600 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1);
5601 if (e.error) {
5602 sfh4_rele(&sfhp);
5603 VN_RELE(*vpp);
5604 *vpp = NULL;
5605 goto exit;
5606 }
5607 /*
5608 * XXX if nfs4_make_dotdot uses an existing rnode
5609 * XXX it doesn't update the attributes.
5610 * XXX for now just save them again to save an OTW
5611 */
5612 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL);
5613 } else {
5614 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr,
5615 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
5616 /*
5617 * If v_type == VNON, then garp was NULL because
5618 * the last op in the compound failed and makenfs4node
5619 * could not find the vnode for sfhp. It created
5620 * a new vnode, so we have nothing to purge here.
5621 */
5622 if (nvp->v_type == VNON) {
5623 vattr_t vattr;
5624
5625 vattr.va_mask = AT_TYPE;
5626 /*
5627 * N.B. We've already called nfs4_end_fop above.
5628 */
5629 e.error = nfs4getattr(nvp, &vattr, cr);
5630 if (e.error) {
5631 sfh4_rele(&sfhp);
5632 VN_RELE(*vpp);
5633 *vpp = NULL;
5634 VN_RELE(nvp);
5635 goto exit;
5636 }
5637 nvp->v_type = vattr.va_type;
5638 }
5639 }
5640 sfh4_rele(&sfhp);
5641
5642 nrp = VTOR4(nvp);
5643 mutex_enter(&nrp->r_statev4_lock);
5644 if (!nrp->created_v4) {
5645 mutex_exit(&nrp->r_statev4_lock);
5646 dnlc_update(dvp, nm, nvp);
5647 } else
5648 mutex_exit(&nrp->r_statev4_lock);
5649
5650 VN_RELE(*vpp);
5651 *vpp = nvp;
5652 } else {
5653 hrtime_t now;
5654 hrtime_t delta = 0;
5655
5656 e.error = 0;
5657
5658 /*
5659 * Because the NVERIFY "succeeded" we know that the
5660 * directory attributes are still valid
5661 * so update r_time_attr_inval
5662 */
5663 now = gethrtime();
5664 mutex_enter(&drp->r_statelock);
5665 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) {
5666 delta = now - drp->r_time_attr_saved;
5667 if (delta < mi->mi_acdirmin)
5668 delta = mi->mi_acdirmin;
5669 else if (delta > mi->mi_acdirmax)
5670 delta = mi->mi_acdirmax;
5671 }
5672 drp->r_time_attr_inval = now + delta;
5673 mutex_exit(&drp->r_statelock);
5674 dnlc_update(dvp, nm, *vpp);
5675
5676 /*
5677 * Even though we have a valid directory attr cache
5678 * and dnlc entry, we may not have access.
5679 * This should almost always hit the cache.
5680 */
5681 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5682 if (e.error) {
5683 VN_RELE(*vpp);
5684 *vpp = NULL;
5685 }
5686
5687 if (*vpp == DNLC_NO_VNODE) {
5688 VN_RELE(*vpp);
5689 *vpp = NULL;
5690 e.error = ENOENT;
5691 }
5692 }
5693
5694 exit:
5695 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5696 kmem_free(argop, argoplist_size);
5697 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5698 return (e.error);
5699 }
5700
5701 /*
5702 * We need to go over the wire to lookup the name, but
5703 * while we are there verify the directory has not
5704 * changed but if it has, get new attributes and check access
5705 *
5706 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH
5707 * NVERIFY GETATTR ACCESS
5708 *
5709 * With the results:
5710 * if the NVERIFY failed we must purge the caches, add new attributes,
5711 * and cache new access.
5712 * set a new r_time_attr_inval
5713 * add name to dnlc, possibly negative
5714 * if LOOKUP succeeded
5715 * cache new attributes
5716 */
5717 static int
nfs4lookupnew_otw(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr)5718 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
5719 {
5720 COMPOUND4args_clnt args;
5721 COMPOUND4res_clnt res;
5722 fattr4 *ver_fattr;
5723 fattr4_change dchange;
5724 int32_t *ptr;
5725 nfs4_ga_res_t *garp = NULL;
5726 int argoplist_size = 9 * sizeof (nfs_argop4);
5727 nfs_argop4 *argop;
5728 int doqueue;
5729 mntinfo4_t *mi;
5730 nfs4_recov_state_t recov_state;
5731 hrtime_t t;
5732 int isdotdot;
5733 vnode_t *nvp;
5734 nfs_fh4 *fhp;
5735 nfs4_sharedfh_t *sfhp;
5736 nfs4_access_type_t cacc;
5737 rnode4_t *nrp;
5738 rnode4_t *drp = VTOR4(dvp);
5739 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
5740
5741 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5742 ASSERT(nm != NULL);
5743 ASSERT(nm[0] != '\0');
5744 ASSERT(dvp->v_type == VDIR);
5745 ASSERT(nm[0] != '.' || nm[1] != '\0');
5746 ASSERT(*vpp == NULL);
5747
5748 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') {
5749 isdotdot = 1;
5750 args.ctag = TAG_LOOKUP_PARENT;
5751 } else {
5752 /*
5753 * If dvp were a stub, it should have triggered and caused
5754 * a mount for us to get this far.
5755 */
5756 ASSERT(!RP_ISSTUB(VTOR4(dvp)));
5757
5758 isdotdot = 0;
5759 args.ctag = TAG_LOOKUP;
5760 }
5761
5762 mi = VTOMI4(dvp);
5763 recov_state.rs_flags = 0;
5764 recov_state.rs_num_retry_despite_err = 0;
5765
5766 nvp = NULL;
5767
5768 /* Save the original mount point security information */
5769 (void) save_mnt_secinfo(mi->mi_curr_serv);
5770
5771 recov_retry:
5772 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP,
5773 &recov_state, NULL);
5774 if (e.error) {
5775 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5776 return (e.error);
5777 }
5778
5779 argop = kmem_alloc(argoplist_size, KM_SLEEP);
5780
5781 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */
5782 args.array_len = 9;
5783 args.array = argop;
5784
5785 /* 0. putfh file */
5786 argop[0].argop = OP_CPUTFH;
5787 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh;
5788
5789 /* 1. savefh for the nverify */
5790 argop[1].argop = OP_SAVEFH;
5791
5792 /* 2. lookup name */
5793 if (isdotdot) {
5794 argop[2].argop = OP_LOOKUPP;
5795 } else {
5796 argop[2].argop = OP_CLOOKUP;
5797 argop[2].nfs_argop4_u.opclookup.cname = nm;
5798 }
5799
5800 /* 3. resulting file handle */
5801 argop[3].argop = OP_GETFH;
5802
5803 /* 4. resulting file attributes */
5804 argop[4].argop = OP_GETATTR;
5805 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5806 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5807
5808 /* 5. restorefh back the directory for the nverify */
5809 argop[5].argop = OP_RESTOREFH;
5810
5811 /* 6. nverify the change info */
5812 argop[6].argop = OP_NVERIFY;
5813 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes;
5814 ver_fattr->attrmask = FATTR4_CHANGE_MASK;
5815 ver_fattr->attrlist4 = (char *)&dchange;
5816 ptr = (int32_t *)&dchange;
5817 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change);
5818 ver_fattr->attrlist4_len = sizeof (fattr4_change);
5819
5820 /* 7. getattr directory */
5821 argop[7].argop = OP_GETATTR;
5822 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5823 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5824
5825 /* 8. access directory */
5826 argop[8].argop = OP_ACCESS;
5827 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE |
5828 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP;
5829
5830 doqueue = 1;
5831 t = gethrtime();
5832
5833 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
5834
5835 if (!isdotdot && res.status == NFS4ERR_MOVED) {
5836 e.error = nfs4_setup_referral(dvp, nm, vpp, cr);
5837 if (e.error != 0 && *vpp != NULL)
5838 VN_RELE(*vpp);
5839 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5840 &recov_state, FALSE);
5841 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5842 kmem_free(argop, argoplist_size);
5843 return (e.error);
5844 }
5845
5846 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) {
5847 /*
5848 * For WRONGSEC of a non-dotdot case, send secinfo directly
5849 * from this thread, do not go thru the recovery thread since
5850 * we need the nm information.
5851 *
5852 * Not doing dotdot case because there is no specification
5853 * for (PUTFH, SECINFO "..") yet.
5854 */
5855 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) {
5856 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr)))
5857 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5858 &recov_state, FALSE);
5859 else
5860 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5861 &recov_state, TRUE);
5862 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5863 kmem_free(argop, argoplist_size);
5864 if (!e.error)
5865 goto recov_retry;
5866 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5867 return (e.error);
5868 }
5869
5870 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
5871 OP_LOOKUP, NULL, NULL, NULL) == FALSE) {
5872 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5873 &recov_state, TRUE);
5874
5875 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5876 kmem_free(argop, argoplist_size);
5877 goto recov_retry;
5878 }
5879 }
5880
5881 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE);
5882
5883 if (e.error || res.array_len == 0) {
5884 /*
5885 * If e.error isn't set, then reply has no ops (or we couldn't
5886 * be here). The only legal way to reply without an op array
5887 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should
5888 * be in the reply for all other status values.
5889 *
5890 * For valid replies without an ops array, return ENOTSUP
5891 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies,
5892 * return EIO -- don't trust status.
5893 */
5894 if (e.error == 0)
5895 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ?
5896 ENOTSUP : EIO;
5897
5898 kmem_free(argop, argoplist_size);
5899 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5900 return (e.error);
5901 }
5902
5903 e.error = geterrno4(res.status);
5904
5905 /*
5906 * The PUTFH and SAVEFH may have failed.
5907 */
5908 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) ||
5909 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) {
5910 nfs4_purge_stale_fh(e.error, dvp, cr);
5911 goto exit;
5912 }
5913
5914 /*
5915 * Check if the file exists, if it does delay entering
5916 * into the dnlc until after we update the directory
5917 * attributes so we don't cause it to get purged immediately.
5918 */
5919 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) {
5920 /*
5921 * The lookup failed, probably no entry
5922 */
5923 if (e.error == ENOENT && nfs4_lookup_neg_cache)
5924 dnlc_update(dvp, nm, DNLC_NO_VNODE);
5925 goto exit;
5926 }
5927
5928 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) {
5929 /*
5930 * The file exists but we can't get its fh for
5931 * some unknown reason. Error out to be safe.
5932 */
5933 goto exit;
5934 }
5935
5936 fhp = &res.array[3].nfs_resop4_u.opgetfh.object;
5937 if (fhp->nfs_fh4_len == 0) {
5938 /*
5939 * The file exists but a bogus fh
5940 * some unknown reason. Error out to be safe.
5941 */
5942 e.error = EIO;
5943 goto exit;
5944 }
5945 sfhp = sfh4_get(fhp, mi);
5946
5947 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5948 sfh4_rele(&sfhp);
5949 goto exit;
5950 }
5951 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res;
5952
5953 /*
5954 * The RESTOREFH may have failed
5955 */
5956 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) {
5957 sfh4_rele(&sfhp);
5958 e.error = EIO;
5959 goto exit;
5960 }
5961
5962 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) {
5963 /*
5964 * First make sure the NVERIFY failed as we expected,
5965 * if it didn't then be conservative and error out
5966 * as we can't trust the directory.
5967 */
5968 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) {
5969 sfh4_rele(&sfhp);
5970 e.error = EIO;
5971 goto exit;
5972 }
5973
5974 /*
5975 * We know the NVERIFY "failed" so the directory has changed,
5976 * so we must:
5977 * purge the caches (access and indirectly dnlc if needed)
5978 */
5979 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE);
5980
5981 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5982 sfh4_rele(&sfhp);
5983 goto exit;
5984 }
5985 nfs4_attr_cache(dvp,
5986 &res.array[7].nfs_resop4_u.opgetattr.ga_res,
5987 t, cr, FALSE, NULL);
5988
5989 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) {
5990 nfs4_purge_stale_fh(e.error, dvp, cr);
5991 sfh4_rele(&sfhp);
5992 e.error = geterrno4(res.status);
5993 goto exit;
5994 }
5995
5996 /*
5997 * Now we know the directory is valid,
5998 * cache new directory access
5999 */
6000 nfs4_access_cache(drp,
6001 args.array[8].nfs_argop4_u.opaccess.access,
6002 res.array[8].nfs_resop4_u.opaccess.access, cr);
6003
6004 /*
6005 * recheck VEXEC access
6006 */
6007 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr);
6008 if (cacc != NFS4_ACCESS_ALLOWED) {
6009 /*
6010 * Directory permissions might have been revoked
6011 */
6012 if (cacc == NFS4_ACCESS_DENIED) {
6013 sfh4_rele(&sfhp);
6014 e.error = EACCES;
6015 goto exit;
6016 }
6017
6018 /*
6019 * Somehow we must not have asked for enough
6020 * so try a singleton ACCESS should never happen
6021 */
6022 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
6023 if (e.error) {
6024 sfh4_rele(&sfhp);
6025 goto exit;
6026 }
6027 }
6028
6029 e.error = geterrno4(res.status);
6030 } else {
6031 hrtime_t now;
6032 hrtime_t delta = 0;
6033
6034 e.error = 0;
6035
6036 /*
6037 * Because the NVERIFY "succeeded" we know that the
6038 * directory attributes are still valid
6039 * so update r_time_attr_inval
6040 */
6041 now = gethrtime();
6042 mutex_enter(&drp->r_statelock);
6043 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) {
6044 delta = now - drp->r_time_attr_saved;
6045 if (delta < mi->mi_acdirmin)
6046 delta = mi->mi_acdirmin;
6047 else if (delta > mi->mi_acdirmax)
6048 delta = mi->mi_acdirmax;
6049 }
6050 drp->r_time_attr_inval = now + delta;
6051 mutex_exit(&drp->r_statelock);
6052
6053 /*
6054 * Even though we have a valid directory attr cache,
6055 * we may not have access.
6056 * This should almost always hit the cache.
6057 */
6058 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
6059 if (e.error) {
6060 sfh4_rele(&sfhp);
6061 goto exit;
6062 }
6063 }
6064
6065 /*
6066 * Now we have successfully completed the lookup, if the
6067 * directory has changed we now have the valid attributes.
6068 * We also know we have directory access.
6069 * Create the new rnode and insert it in the dnlc.
6070 */
6071 if (isdotdot) {
6072 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1);
6073 if (e.error) {
6074 sfh4_rele(&sfhp);
6075 goto exit;
6076 }
6077 /*
6078 * XXX if nfs4_make_dotdot uses an existing rnode
6079 * XXX it doesn't update the attributes.
6080 * XXX for now just save them again to save an OTW
6081 */
6082 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL);
6083 } else {
6084 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr,
6085 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
6086 }
6087 sfh4_rele(&sfhp);
6088
6089 nrp = VTOR4(nvp);
6090 mutex_enter(&nrp->r_statev4_lock);
6091 if (!nrp->created_v4) {
6092 mutex_exit(&nrp->r_statev4_lock);
6093 dnlc_update(dvp, nm, nvp);
6094 } else
6095 mutex_exit(&nrp->r_statev4_lock);
6096
6097 *vpp = nvp;
6098
6099 exit:
6100 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6101 kmem_free(argop, argoplist_size);
6102 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
6103 return (e.error);
6104 }
6105
6106 #ifdef DEBUG
6107 void
nfs4lookup_dump_compound(char * where,nfs_argop4 * argbase,int argcnt)6108 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt)
6109 {
6110 uint_t i, len;
6111 zoneid_t zoneid = getzoneid();
6112 char *s;
6113
6114 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where);
6115 for (i = 0; i < argcnt; i++) {
6116 nfs_argop4 *op = &argbase[i];
6117 switch (op->argop) {
6118 case OP_CPUTFH:
6119 case OP_PUTFH:
6120 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i);
6121 break;
6122 case OP_PUTROOTFH:
6123 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i);
6124 break;
6125 case OP_CLOOKUP:
6126 s = op->nfs_argop4_u.opclookup.cname;
6127 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s);
6128 break;
6129 case OP_LOOKUP:
6130 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname,
6131 &len, NULL);
6132 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s);
6133 kmem_free(s, len);
6134 break;
6135 case OP_LOOKUPP:
6136 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i);
6137 break;
6138 case OP_GETFH:
6139 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i);
6140 break;
6141 case OP_GETATTR:
6142 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i);
6143 break;
6144 case OP_OPENATTR:
6145 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i);
6146 break;
6147 default:
6148 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i,
6149 op->argop);
6150 break;
6151 }
6152 }
6153 }
6154 #endif
6155
6156 /*
6157 * nfs4lookup_setup - constructs a multi-lookup compound request.
6158 *
6159 * Given the path "nm1/nm2/.../nmn", the following compound requests
6160 * may be created:
6161 *
6162 * Note: Getfh is not be needed because filehandle attr is mandatory, but it
6163 * is faster, for now.
6164 *
6165 * l4_getattrs indicates the type of compound requested.
6166 *
6167 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo):
6168 *
6169 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} }
6170 *
6171 * total number of ops is n + 1.
6172 *
6173 * LKP4_LAST_NAMED_ATTR - multi-component path for a named
6174 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR
6175 * before the last component, and only get attributes
6176 * for the last component. Note that the second-to-last
6177 * pathname component is XATTR_RPATH, which does NOT go
6178 * over-the-wire as a lookup.
6179 *
6180 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2};
6181 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr }
6182 *
6183 * and total number of ops is n + 5.
6184 *
6185 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named
6186 * attribute directory: create lookups plus an OPENATTR
6187 * replacing the last lookup. Note that the last pathname
6188 * component is XATTR_RPATH, which does NOT go over-the-wire
6189 * as a lookup.
6190 *
6191 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr;
6192 * Openattr; Getfh; Getattr }
6193 *
6194 * and total number of ops is n + 5.
6195 *
6196 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate
6197 * nodes too.
6198 *
6199 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr;
6200 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr }
6201 *
6202 * and total number of ops is 3*n + 1.
6203 *
6204 * All cases: returns the index in the arg array of the final LOOKUP op, or
6205 * -1 if no LOOKUPs were used.
6206 */
6207 int
nfs4lookup_setup(char * nm,lookup4_param_t * lookupargp,int needgetfh)6208 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh)
6209 {
6210 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs;
6211 nfs_argop4 *argbase, *argop;
6212 int arglen, argcnt;
6213 int n = 1; /* number of components */
6214 int nga = 1; /* number of Getattr's in request */
6215 char c = '\0', *s, *p;
6216 int lookup_idx = -1;
6217 int argoplist_size;
6218
6219 /* set lookuparg response result to 0 */
6220 lookupargp->resp->status = NFS4_OK;
6221
6222 /* skip leading "/" or "." e.g. ".//./" if there is */
6223 for (; ; nm++) {
6224 if (*nm != '/' && *nm != '.')
6225 break;
6226
6227 /* ".." is counted as 1 component */
6228 if (*nm == '.' && *(nm + 1) != '/')
6229 break;
6230 }
6231
6232 /*
6233 * Find n = number of components - nm must be null terminated
6234 * Skip "." components.
6235 */
6236 if (*nm != '\0')
6237 for (n = 1, s = nm; *s != '\0'; s++) {
6238 if ((*s == '/') && (*(s + 1) != '/') &&
6239 (*(s + 1) != '\0') &&
6240 !(*(s + 1) == '.' && (*(s + 2) == '/' ||
6241 *(s + 2) == '\0')))
6242 n++;
6243 }
6244 else
6245 n = 0;
6246
6247 /*
6248 * nga is number of components that need Getfh+Getattr
6249 */
6250 switch (l4_getattrs) {
6251 case LKP4_NO_ATTRIBUTES:
6252 nga = 0;
6253 break;
6254 case LKP4_ALL_ATTRIBUTES:
6255 nga = n;
6256 /*
6257 * Always have at least 1 getfh, getattr pair
6258 */
6259 if (nga == 0)
6260 nga++;
6261 break;
6262 case LKP4_LAST_ATTRDIR:
6263 case LKP4_LAST_NAMED_ATTR:
6264 nga = n+1;
6265 break;
6266 }
6267
6268 /*
6269 * If change to use the filehandle attr instead of getfh
6270 * the following line can be deleted.
6271 */
6272 nga *= 2;
6273
6274 /*
6275 * calculate number of ops in request as
6276 * header + trailer + lookups + getattrs
6277 */
6278 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga;
6279
6280 argoplist_size = arglen * sizeof (nfs_argop4);
6281 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP);
6282 lookupargp->argsp->array = argop;
6283
6284 argcnt = lookupargp->header_len;
6285 argop += argcnt;
6286
6287 /*
6288 * loop and create a lookup op and possibly getattr/getfh for
6289 * each component. Skip "." components.
6290 */
6291 for (s = nm; *s != '\0'; s = p) {
6292 /*
6293 * Set up a pathname struct for each component if needed
6294 */
6295 while (*s == '/')
6296 s++;
6297 if (*s == '\0')
6298 break;
6299
6300 for (p = s; (*p != '/') && (*p != '\0'); p++)
6301 ;
6302 c = *p;
6303 *p = '\0';
6304
6305 if (s[0] == '.' && s[1] == '\0') {
6306 *p = c;
6307 continue;
6308 }
6309 if (l4_getattrs == LKP4_LAST_ATTRDIR &&
6310 strcmp(s, XATTR_RPATH) == 0) {
6311 /* getfh XXX may not be needed in future */
6312 argop->argop = OP_GETFH;
6313 argop++;
6314 argcnt++;
6315
6316 /* getattr */
6317 argop->argop = OP_GETATTR;
6318 argop->nfs_argop4_u.opgetattr.attr_request =
6319 lookupargp->ga_bits;
6320 argop->nfs_argop4_u.opgetattr.mi =
6321 lookupargp->mi;
6322 argop++;
6323 argcnt++;
6324
6325 /* openattr */
6326 argop->argop = OP_OPENATTR;
6327 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR &&
6328 strcmp(s, XATTR_RPATH) == 0) {
6329 /* openattr */
6330 argop->argop = OP_OPENATTR;
6331 argop++;
6332 argcnt++;
6333
6334 /* getfh XXX may not be needed in future */
6335 argop->argop = OP_GETFH;
6336 argop++;
6337 argcnt++;
6338
6339 /* getattr */
6340 argop->argop = OP_GETATTR;
6341 argop->nfs_argop4_u.opgetattr.attr_request =
6342 lookupargp->ga_bits;
6343 argop->nfs_argop4_u.opgetattr.mi =
6344 lookupargp->mi;
6345 argop++;
6346 argcnt++;
6347 *p = c;
6348 continue;
6349 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') {
6350 /* lookupp */
6351 argop->argop = OP_LOOKUPP;
6352 } else {
6353 /* lookup */
6354 argop->argop = OP_LOOKUP;
6355 (void) str_to_utf8(s,
6356 &argop->nfs_argop4_u.oplookup.objname);
6357 }
6358 lookup_idx = argcnt;
6359 argop++;
6360 argcnt++;
6361
6362 *p = c;
6363
6364 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) {
6365 /* getfh XXX may not be needed in future */
6366 argop->argop = OP_GETFH;
6367 argop++;
6368 argcnt++;
6369
6370 /* getattr */
6371 argop->argop = OP_GETATTR;
6372 argop->nfs_argop4_u.opgetattr.attr_request =
6373 lookupargp->ga_bits;
6374 argop->nfs_argop4_u.opgetattr.mi =
6375 lookupargp->mi;
6376 argop++;
6377 argcnt++;
6378 }
6379 }
6380
6381 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) &&
6382 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) {
6383 if (needgetfh) {
6384 /* stick in a post-lookup getfh */
6385 argop->argop = OP_GETFH;
6386 argcnt++;
6387 argop++;
6388 }
6389 /* post-lookup getattr */
6390 argop->argop = OP_GETATTR;
6391 argop->nfs_argop4_u.opgetattr.attr_request =
6392 lookupargp->ga_bits;
6393 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi;
6394 argcnt++;
6395 }
6396 argcnt += lookupargp->trailer_len; /* actual op count */
6397 lookupargp->argsp->array_len = argcnt;
6398 lookupargp->arglen = arglen;
6399
6400 #ifdef DEBUG
6401 if (nfs4_client_lookup_debug)
6402 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt);
6403 #endif
6404
6405 return (lookup_idx);
6406 }
6407
6408 static int
nfs4openattr(vnode_t * dvp,vnode_t ** avp,int cflag,cred_t * cr)6409 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr)
6410 {
6411 COMPOUND4args_clnt args;
6412 COMPOUND4res_clnt res;
6413 GETFH4res *gf_res = NULL;
6414 nfs_argop4 argop[4];
6415 nfs_resop4 *resop = NULL;
6416 nfs4_sharedfh_t *sfhp;
6417 hrtime_t t;
6418 nfs4_error_t e;
6419
6420 rnode4_t *drp;
6421 int doqueue = 1;
6422 vnode_t *vp;
6423 int needrecov = 0;
6424 nfs4_recov_state_t recov_state;
6425
6426 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
6427
6428 *avp = NULL;
6429 recov_state.rs_flags = 0;
6430 recov_state.rs_num_retry_despite_err = 0;
6431
6432 recov_retry:
6433 /* COMPOUND: putfh, openattr, getfh, getattr */
6434 args.array_len = 4;
6435 args.array = argop;
6436 args.ctag = TAG_OPENATTR;
6437
6438 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
6439 if (e.error)
6440 return (e.error);
6441
6442 drp = VTOR4(dvp);
6443
6444 /* putfh */
6445 argop[0].argop = OP_CPUTFH;
6446 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
6447
6448 /* openattr */
6449 argop[1].argop = OP_OPENATTR;
6450 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE);
6451
6452 /* getfh */
6453 argop[2].argop = OP_GETFH;
6454
6455 /* getattr */
6456 argop[3].argop = OP_GETATTR;
6457 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6458 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
6459
6460 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
6461 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first",
6462 rnode4info(drp)));
6463
6464 t = gethrtime();
6465
6466 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
6467
6468 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp);
6469 if (needrecov) {
6470 bool_t abort;
6471
6472 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
6473 "nfs4openattr: initiating recovery\n"));
6474
6475 abort = nfs4_start_recovery(&e,
6476 VTOMI4(dvp), dvp, NULL, NULL, NULL,
6477 OP_OPENATTR, NULL, NULL, NULL);
6478 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6479 if (!e.error) {
6480 e.error = geterrno4(res.status);
6481 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6482 }
6483 if (abort == FALSE)
6484 goto recov_retry;
6485 return (e.error);
6486 }
6487
6488 if (e.error) {
6489 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6490 return (e.error);
6491 }
6492
6493 if (res.status) {
6494 /*
6495 * If OTW errro is NOTSUPP, then it should be
6496 * translated to EINVAL. All Solaris file system
6497 * implementations return EINVAL to the syscall layer
6498 * when the attrdir cannot be created due to an
6499 * implementation restriction or noxattr mount option.
6500 */
6501 if (res.status == NFS4ERR_NOTSUPP) {
6502 mutex_enter(&drp->r_statelock);
6503 if (drp->r_xattr_dir)
6504 VN_RELE(drp->r_xattr_dir);
6505 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP);
6506 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP;
6507 mutex_exit(&drp->r_statelock);
6508
6509 e.error = EINVAL;
6510 } else {
6511 e.error = geterrno4(res.status);
6512 }
6513
6514 if (e.error) {
6515 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6516 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
6517 needrecov);
6518 return (e.error);
6519 }
6520 }
6521
6522 resop = &res.array[0]; /* putfh res */
6523 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK);
6524
6525 resop = &res.array[1]; /* openattr res */
6526 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK);
6527
6528 resop = &res.array[2]; /* getfh res */
6529 gf_res = &resop->nfs_resop4_u.opgetfh;
6530 if (gf_res->object.nfs_fh4_len == 0) {
6531 *avp = NULL;
6532 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6533 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6534 return (ENOENT);
6535 }
6536
6537 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp));
6538 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res,
6539 dvp->v_vfsp, t, cr, dvp,
6540 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH, sfhp));
6541 sfh4_rele(&sfhp);
6542
6543 if (e.error)
6544 PURGE_ATTRCACHE4(vp);
6545
6546 mutex_enter(&vp->v_lock);
6547 vp->v_flag |= V_XATTRDIR;
6548 mutex_exit(&vp->v_lock);
6549
6550 *avp = vp;
6551
6552 mutex_enter(&drp->r_statelock);
6553 if (drp->r_xattr_dir)
6554 VN_RELE(drp->r_xattr_dir);
6555 VN_HOLD(vp);
6556 drp->r_xattr_dir = vp;
6557
6558 /*
6559 * Invalidate pathconf4 cache because r_xattr_dir is no longer
6560 * NULL. xattrs could be created at any time, and we have no
6561 * way to update pc4_xattr_exists in the base object if/when
6562 * it happens.
6563 */
6564 drp->r_pathconf.pc4_xattr_valid = 0;
6565
6566 mutex_exit(&drp->r_statelock);
6567
6568 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6569
6570 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6571
6572 return (0);
6573 }
6574
6575 /* ARGSUSED */
6576 static int
nfs4_create(vnode_t * dvp,char * nm,struct vattr * va,enum vcexcl exclusive,int mode,vnode_t ** vpp,cred_t * cr,int flags,caller_context_t * ct,vsecattr_t * vsecp)6577 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
6578 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct,
6579 vsecattr_t *vsecp)
6580 {
6581 int error;
6582 vnode_t *vp = NULL;
6583 rnode4_t *rp;
6584 struct vattr vattr;
6585 rnode4_t *drp;
6586 vnode_t *tempvp;
6587 enum createmode4 createmode;
6588 bool_t must_trunc = FALSE;
6589 int truncating = 0;
6590
6591 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
6592 return (EPERM);
6593 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) {
6594 return (EINVAL);
6595 }
6596
6597 /* . and .. have special meaning in the protocol, reject them. */
6598
6599 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0')))
6600 return (EISDIR);
6601
6602 drp = VTOR4(dvp);
6603
6604 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
6605 return (EINTR);
6606
6607 top:
6608 /*
6609 * We make a copy of the attributes because the caller does not
6610 * expect us to change what va points to.
6611 */
6612 vattr = *va;
6613
6614 /*
6615 * If the pathname is "", then dvp is the root vnode of
6616 * a remote file mounted over a local directory.
6617 * All that needs to be done is access
6618 * checking and truncation. Note that we avoid doing
6619 * open w/ create because the parent directory might
6620 * be in pseudo-fs and the open would fail.
6621 */
6622 if (*nm == '\0') {
6623 error = 0;
6624 VN_HOLD(dvp);
6625 vp = dvp;
6626 must_trunc = TRUE;
6627 } else {
6628 /*
6629 * We need to go over the wire, just to be sure whether the
6630 * file exists or not. Using the DNLC can be dangerous in
6631 * this case when making a decision regarding existence.
6632 */
6633 error = nfs4lookup(dvp, nm, &vp, cr, 1);
6634 }
6635
6636 if (exclusive)
6637 createmode = EXCLUSIVE4;
6638 else
6639 createmode = GUARDED4;
6640
6641 /*
6642 * error would be set if the file does not exist on the
6643 * server, so lets go create it.
6644 */
6645 if (error) {
6646 goto create_otw;
6647 }
6648
6649 /*
6650 * File does exist on the server
6651 */
6652 if (exclusive == EXCL)
6653 error = EEXIST;
6654 else if (vp->v_type == VDIR && (mode & VWRITE))
6655 error = EISDIR;
6656 else {
6657 /*
6658 * If vnode is a device, create special vnode.
6659 */
6660 if (ISVDEV(vp->v_type)) {
6661 tempvp = vp;
6662 vp = specvp(vp, vp->v_rdev, vp->v_type, cr);
6663 VN_RELE(tempvp);
6664 }
6665 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) {
6666 if ((vattr.va_mask & AT_SIZE) &&
6667 vp->v_type == VREG) {
6668 rp = VTOR4(vp);
6669 /*
6670 * Check here for large file handled
6671 * by LF-unaware process (as
6672 * ufs_create() does)
6673 */
6674 if (!(flags & FOFFMAX)) {
6675 mutex_enter(&rp->r_statelock);
6676 if (rp->r_size > MAXOFF32_T)
6677 error = EOVERFLOW;
6678 mutex_exit(&rp->r_statelock);
6679 }
6680
6681 /* if error is set then we need to return */
6682 if (error) {
6683 nfs_rw_exit(&drp->r_rwlock);
6684 VN_RELE(vp);
6685 return (error);
6686 }
6687
6688 if (must_trunc) {
6689 vattr.va_mask = AT_SIZE;
6690 error = nfs4setattr(vp, &vattr, 0, cr,
6691 NULL);
6692 } else {
6693 /*
6694 * we know we have a regular file that already
6695 * exists and we may end up truncating the file
6696 * as a result of the open_otw, so flush out
6697 * any dirty pages for this file first.
6698 */
6699 if (nfs4_has_pages(vp) &&
6700 ((rp->r_flags & R4DIRTY) ||
6701 rp->r_count > 0 ||
6702 rp->r_mapcnt > 0)) {
6703 error = nfs4_putpage(vp,
6704 (offset_t)0, 0, 0, cr, ct);
6705 if (error && (error == ENOSPC ||
6706 error == EDQUOT)) {
6707 mutex_enter(
6708 &rp->r_statelock);
6709 if (!rp->r_error)
6710 rp->r_error =
6711 error;
6712 mutex_exit(
6713 &rp->r_statelock);
6714 }
6715 }
6716 vattr.va_mask = (AT_SIZE |
6717 AT_TYPE | AT_MODE);
6718 vattr.va_type = VREG;
6719 createmode = UNCHECKED4;
6720 truncating = 1;
6721 goto create_otw;
6722 }
6723 }
6724 }
6725 }
6726 nfs_rw_exit(&drp->r_rwlock);
6727 if (error) {
6728 VN_RELE(vp);
6729 } else {
6730 vnode_t *tvp;
6731 rnode4_t *trp;
6732 tvp = vp;
6733 if (vp->v_type == VREG) {
6734 trp = VTOR4(vp);
6735 if (IS_SHADOW(vp, trp))
6736 tvp = RTOV4(trp);
6737 }
6738
6739 if (must_trunc) {
6740 /*
6741 * existing file got truncated, notify.
6742 */
6743 vnevent_create(tvp, ct);
6744 }
6745
6746 *vpp = vp;
6747 }
6748 return (error);
6749
6750 create_otw:
6751 dnlc_remove(dvp, nm);
6752
6753 ASSERT(vattr.va_mask & AT_TYPE);
6754
6755 /*
6756 * If not a regular file let nfs4mknod() handle it.
6757 */
6758 if (vattr.va_type != VREG) {
6759 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr);
6760 nfs_rw_exit(&drp->r_rwlock);
6761 return (error);
6762 }
6763
6764 /*
6765 * It _is_ a regular file.
6766 */
6767 ASSERT(vattr.va_mask & AT_MODE);
6768 if (MANDMODE(vattr.va_mode)) {
6769 nfs_rw_exit(&drp->r_rwlock);
6770 return (EACCES);
6771 }
6772
6773 /*
6774 * If this happens to be a mknod of a regular file, then flags will
6775 * have neither FREAD or FWRITE. However, we must set at least one
6776 * for the call to nfs4open_otw. If it's open(O_CREAT) driving
6777 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been
6778 * set (based on openmode specified by app).
6779 */
6780 if ((flags & (FREAD|FWRITE)) == 0)
6781 flags |= (FREAD|FWRITE);
6782
6783 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0);
6784
6785 if (vp != NULL) {
6786 /* if create was successful, throw away the file's pages */
6787 if (!error && (vattr.va_mask & AT_SIZE))
6788 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK),
6789 cr);
6790 /* release the lookup hold */
6791 VN_RELE(vp);
6792 vp = NULL;
6793 }
6794
6795 /*
6796 * validate that we opened a regular file. This handles a misbehaving
6797 * server that returns an incorrect FH.
6798 */
6799 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) {
6800 error = EISDIR;
6801 VN_RELE(*vpp);
6802 }
6803
6804 /*
6805 * If this is not an exclusive create, then the CREATE
6806 * request will be made with the GUARDED mode set. This
6807 * means that the server will return EEXIST if the file
6808 * exists. The file could exist because of a retransmitted
6809 * request. In this case, we recover by starting over and
6810 * checking to see whether the file exists. This second
6811 * time through it should and a CREATE request will not be
6812 * sent.
6813 *
6814 * This handles the problem of a dangling CREATE request
6815 * which contains attributes which indicate that the file
6816 * should be truncated. This retransmitted request could
6817 * possibly truncate valid data in the file if not caught
6818 * by the duplicate request mechanism on the server or if
6819 * not caught by other means. The scenario is:
6820 *
6821 * Client transmits CREATE request with size = 0
6822 * Client times out, retransmits request.
6823 * Response to the first request arrives from the server
6824 * and the client proceeds on.
6825 * Client writes data to the file.
6826 * The server now processes retransmitted CREATE request
6827 * and truncates file.
6828 *
6829 * The use of the GUARDED CREATE request prevents this from
6830 * happening because the retransmitted CREATE would fail
6831 * with EEXIST and would not truncate the file.
6832 */
6833 if (error == EEXIST && exclusive == NONEXCL) {
6834 #ifdef DEBUG
6835 nfs4_create_misses++;
6836 #endif
6837 goto top;
6838 }
6839 nfs_rw_exit(&drp->r_rwlock);
6840 if (truncating && !error && *vpp) {
6841 vnode_t *tvp;
6842 rnode4_t *trp;
6843 /*
6844 * existing file got truncated, notify.
6845 */
6846 tvp = *vpp;
6847 trp = VTOR4(tvp);
6848 if (IS_SHADOW(tvp, trp))
6849 tvp = RTOV4(trp);
6850 vnevent_create(tvp, ct);
6851 }
6852 return (error);
6853 }
6854
6855 /*
6856 * Create compound (for mkdir, mknod, symlink):
6857 * { Putfh <dfh>; Create; Getfh; Getattr }
6858 * It's okay if setattr failed to set gid - this is not considered
6859 * an error, but purge attrs in that case.
6860 */
6861 static int
call_nfs4_create_req(vnode_t * dvp,char * nm,void * data,struct vattr * va,vnode_t ** vpp,cred_t * cr,nfs_ftype4 type)6862 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va,
6863 vnode_t **vpp, cred_t *cr, nfs_ftype4 type)
6864 {
6865 int need_end_op = FALSE;
6866 COMPOUND4args_clnt args;
6867 COMPOUND4res_clnt res, *resp = NULL;
6868 nfs_argop4 *argop;
6869 nfs_resop4 *resop;
6870 int doqueue;
6871 mntinfo4_t *mi;
6872 rnode4_t *drp = VTOR4(dvp);
6873 change_info4 *cinfo;
6874 GETFH4res *gf_res;
6875 struct vattr vattr;
6876 vnode_t *vp;
6877 fattr4 *crattr;
6878 bool_t needrecov = FALSE;
6879 nfs4_recov_state_t recov_state;
6880 nfs4_sharedfh_t *sfhp = NULL;
6881 hrtime_t t;
6882 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
6883 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr;
6884 dirattr_info_t dinfo, *dinfop;
6885 servinfo4_t *svp;
6886 bitmap4 supp_attrs;
6887
6888 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK ||
6889 type == NF4CHR || type == NF4SOCK || type == NF4FIFO);
6890
6891 mi = VTOMI4(dvp);
6892
6893 /*
6894 * Make sure we properly deal with setting the right gid
6895 * on a new directory to reflect the parent's setgid bit
6896 */
6897 setgid_flag = 0;
6898 if (type == NF4DIR) {
6899 struct vattr dva;
6900
6901 va->va_mode &= ~VSGID;
6902 dva.va_mask = AT_MODE | AT_GID;
6903 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) {
6904
6905 /*
6906 * If the parent's directory has the setgid bit set
6907 * _and_ the client was able to get a valid mapping
6908 * for the parent dir's owner_group, we want to
6909 * append NVERIFY(owner_group == dva.va_gid) and
6910 * SETTATTR to the CREATE compound.
6911 */
6912 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) {
6913 setgid_flag = 1;
6914 va->va_mode |= VSGID;
6915 if (dva.va_gid != GID_NOBODY) {
6916 va->va_mask |= AT_GID;
6917 va->va_gid = dva.va_gid;
6918 }
6919 }
6920 }
6921 }
6922
6923 /*
6924 * Create ops:
6925 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new)
6926 * 5:restorefh(dir) 6:getattr(dir)
6927 *
6928 * if (setgid)
6929 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new)
6930 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new)
6931 * 8:nverify 9:setattr
6932 */
6933 if (setgid_flag) {
6934 numops = 10;
6935 idx_create = 1;
6936 idx_fattr = 3;
6937 } else {
6938 numops = 7;
6939 idx_create = 2;
6940 idx_fattr = 4;
6941 }
6942
6943 ASSERT(nfs_zone() == mi->mi_zone);
6944 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) {
6945 return (EINTR);
6946 }
6947 recov_state.rs_flags = 0;
6948 recov_state.rs_num_retry_despite_err = 0;
6949
6950 argoplist_size = numops * sizeof (nfs_argop4);
6951 argop = kmem_alloc(argoplist_size, KM_SLEEP);
6952
6953 recov_retry:
6954 if (type == NF4LNK)
6955 args.ctag = TAG_SYMLINK;
6956 else if (type == NF4DIR)
6957 args.ctag = TAG_MKDIR;
6958 else
6959 args.ctag = TAG_MKNOD;
6960
6961 args.array_len = numops;
6962 args.array = argop;
6963
6964 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) {
6965 nfs_rw_exit(&drp->r_rwlock);
6966 kmem_free(argop, argoplist_size);
6967 return (e.error);
6968 }
6969 need_end_op = TRUE;
6970
6971
6972 /* 0: putfh directory */
6973 argop[0].argop = OP_CPUTFH;
6974 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
6975
6976 /* 1/2: Create object */
6977 argop[idx_create].argop = OP_CCREATE;
6978 argop[idx_create].nfs_argop4_u.opccreate.cname = nm;
6979 argop[idx_create].nfs_argop4_u.opccreate.type = type;
6980 if (type == NF4LNK) {
6981 /*
6982 * symlink, treat name as data
6983 */
6984 ASSERT(data != NULL);
6985 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata =
6986 (char *)data;
6987 }
6988 if (type == NF4BLK || type == NF4CHR) {
6989 ASSERT(data != NULL);
6990 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata =
6991 *((specdata4 *)data);
6992 }
6993
6994 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs;
6995
6996 svp = drp->r_server;
6997 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
6998 supp_attrs = svp->sv_supp_attrs;
6999 nfs_rw_exit(&svp->sv_lock);
7000
7001 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) {
7002 nfs_rw_exit(&drp->r_rwlock);
7003 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov);
7004 e.error = EINVAL;
7005 kmem_free(argop, argoplist_size);
7006 return (e.error);
7007 }
7008
7009 /* 2/3: getfh fh of created object */
7010 ASSERT(idx_create + 1 == idx_fattr - 1);
7011 argop[idx_create + 1].argop = OP_GETFH;
7012
7013 /* 3/4: getattr of new object */
7014 argop[idx_fattr].argop = OP_GETATTR;
7015 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7016 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi;
7017
7018 if (setgid_flag) {
7019 vattr_t _v;
7020
7021 argop[4].argop = OP_SAVEFH;
7022
7023 argop[5].argop = OP_CPUTFH;
7024 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
7025
7026 argop[6].argop = OP_GETATTR;
7027 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7028 argop[6].nfs_argop4_u.opgetattr.mi = mi;
7029
7030 argop[7].argop = OP_RESTOREFH;
7031
7032 /*
7033 * nverify
7034 *
7035 * XXX - Revisit the last argument to nfs4_end_op()
7036 * once 5020486 is fixed.
7037 */
7038 _v.va_mask = AT_GID;
7039 _v.va_gid = va->va_gid;
7040 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY,
7041 supp_attrs)) {
7042 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE);
7043 nfs_rw_exit(&drp->r_rwlock);
7044 nfs4_fattr4_free(crattr);
7045 kmem_free(argop, argoplist_size);
7046 return (e.error);
7047 }
7048
7049 /*
7050 * setattr
7051 *
7052 * We _know_ we're not messing with AT_SIZE or AT_XTIME,
7053 * so no need for stateid or flags. Also we specify NULL
7054 * rp since we're only interested in setting owner_group
7055 * attributes.
7056 */
7057 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs,
7058 &e.error, 0);
7059
7060 if (e.error) {
7061 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE);
7062 nfs_rw_exit(&drp->r_rwlock);
7063 nfs4_fattr4_free(crattr);
7064 nfs4args_verify_free(&argop[8]);
7065 kmem_free(argop, argoplist_size);
7066 return (e.error);
7067 }
7068 } else {
7069 argop[1].argop = OP_SAVEFH;
7070
7071 argop[5].argop = OP_RESTOREFH;
7072
7073 argop[6].argop = OP_GETATTR;
7074 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7075 argop[6].nfs_argop4_u.opgetattr.mi = mi;
7076 }
7077
7078 dnlc_remove(dvp, nm);
7079
7080 doqueue = 1;
7081 t = gethrtime();
7082 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
7083
7084 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
7085 if (e.error) {
7086 PURGE_ATTRCACHE4(dvp);
7087 if (!needrecov)
7088 goto out;
7089 }
7090
7091 if (needrecov) {
7092 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
7093 OP_CREATE, NULL, NULL, NULL) == FALSE) {
7094 nfs4_end_op(mi, dvp, NULL, &recov_state,
7095 needrecov);
7096 need_end_op = FALSE;
7097 nfs4_fattr4_free(crattr);
7098 if (setgid_flag) {
7099 nfs4args_verify_free(&argop[8]);
7100 nfs4args_setattr_free(&argop[9]);
7101 }
7102 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
7103 goto recov_retry;
7104 }
7105 }
7106
7107 resp = &res;
7108
7109 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) {
7110
7111 if (res.status == NFS4ERR_BADOWNER)
7112 nfs4_log_badowner(mi, OP_CREATE);
7113
7114 e.error = geterrno4(res.status);
7115
7116 /*
7117 * This check is left over from when create was implemented
7118 * using a setattr op (instead of createattrs). If the
7119 * putfh/create/getfh failed, the error was returned. If
7120 * setattr/getattr failed, we keep going.
7121 *
7122 * It might be better to get rid of the GETFH also, and just
7123 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory.
7124 * Then if any of the operations failed, we could return the
7125 * error now, and remove much of the error code below.
7126 */
7127 if (res.array_len <= idx_fattr) {
7128 /*
7129 * Either Putfh, Create or Getfh failed.
7130 */
7131 PURGE_ATTRCACHE4(dvp);
7132 /*
7133 * nfs4_purge_stale_fh() may generate otw calls through
7134 * nfs4_invalidate_pages. Hence the need to call
7135 * nfs4_end_op() here to avoid nfs4_start_op() deadlock.
7136 */
7137 nfs4_end_op(mi, dvp, NULL, &recov_state,
7138 needrecov);
7139 need_end_op = FALSE;
7140 nfs4_purge_stale_fh(e.error, dvp, cr);
7141 goto out;
7142 }
7143 }
7144
7145 resop = &res.array[idx_create]; /* create res */
7146 cinfo = &resop->nfs_resop4_u.opcreate.cinfo;
7147
7148 resop = &res.array[idx_create + 1]; /* getfh res */
7149 gf_res = &resop->nfs_resop4_u.opgetfh;
7150
7151 sfhp = sfh4_get(&gf_res->object, mi);
7152 if (e.error) {
7153 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp,
7154 fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
7155 if (vp->v_type == VNON) {
7156 vattr.va_mask = AT_TYPE;
7157 /*
7158 * Need to call nfs4_end_op before nfs4getattr to avoid
7159 * potential nfs4_start_op deadlock. See RFE 4777612.
7160 */
7161 nfs4_end_op(mi, dvp, NULL, &recov_state,
7162 needrecov);
7163 need_end_op = FALSE;
7164 e.error = nfs4getattr(vp, &vattr, cr);
7165 if (e.error) {
7166 VN_RELE(vp);
7167 *vpp = NULL;
7168 goto out;
7169 }
7170 vp->v_type = vattr.va_type;
7171 }
7172 e.error = 0;
7173 } else {
7174 *vpp = vp = makenfs4node(sfhp,
7175 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res,
7176 dvp->v_vfsp, t, cr,
7177 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
7178 }
7179
7180 /*
7181 * If compound succeeded, then update dir attrs
7182 */
7183 if (res.status == NFS4_OK) {
7184 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res;
7185 dinfo.di_cred = cr;
7186 dinfo.di_time_call = t;
7187 dinfop = &dinfo;
7188 } else
7189 dinfop = NULL;
7190
7191 /* Update directory cache attribute, readdir and dnlc caches */
7192 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop);
7193
7194 out:
7195 if (sfhp != NULL)
7196 sfh4_rele(&sfhp);
7197 nfs_rw_exit(&drp->r_rwlock);
7198 nfs4_fattr4_free(crattr);
7199 if (setgid_flag) {
7200 nfs4args_verify_free(&argop[8]);
7201 nfs4args_setattr_free(&argop[9]);
7202 }
7203 if (resp)
7204 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
7205 if (need_end_op)
7206 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov);
7207
7208 kmem_free(argop, argoplist_size);
7209 return (e.error);
7210 }
7211
7212 /* ARGSUSED */
7213 static int
nfs4mknod(vnode_t * dvp,char * nm,struct vattr * va,enum vcexcl exclusive,int mode,vnode_t ** vpp,cred_t * cr)7214 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
7215 int mode, vnode_t **vpp, cred_t *cr)
7216 {
7217 int error;
7218 vnode_t *vp;
7219 nfs_ftype4 type;
7220 specdata4 spec, *specp = NULL;
7221
7222 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
7223
7224 switch (va->va_type) {
7225 case VCHR:
7226 case VBLK:
7227 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK;
7228 spec.specdata1 = getmajor(va->va_rdev);
7229 spec.specdata2 = getminor(va->va_rdev);
7230 specp = &spec;
7231 break;
7232
7233 case VFIFO:
7234 type = NF4FIFO;
7235 break;
7236 case VSOCK:
7237 type = NF4SOCK;
7238 break;
7239
7240 default:
7241 return (EINVAL);
7242 }
7243
7244 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type);
7245 if (error) {
7246 return (error);
7247 }
7248
7249 /*
7250 * This might not be needed any more; special case to deal
7251 * with problematic v2/v3 servers. Since create was unable
7252 * to set group correctly, not sure what hope setattr has.
7253 */
7254 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) {
7255 va->va_mask = AT_GID;
7256 (void) nfs4setattr(vp, va, 0, cr, NULL);
7257 }
7258
7259 /*
7260 * If vnode is a device create special vnode
7261 */
7262 if (ISVDEV(vp->v_type)) {
7263 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
7264 VN_RELE(vp);
7265 } else {
7266 *vpp = vp;
7267 }
7268 return (error);
7269 }
7270
7271 /*
7272 * Remove requires that the current fh be the target directory.
7273 * After the operation, the current fh is unchanged.
7274 * The compound op structure is:
7275 * PUTFH(targetdir), REMOVE
7276 *
7277 * Weirdness: if the vnode to be removed is open
7278 * we rename it instead of removing it and nfs_inactive
7279 * will remove the new name.
7280 */
7281 /* ARGSUSED */
7282 static int
nfs4_remove(vnode_t * dvp,char * nm,cred_t * cr,caller_context_t * ct,int flags)7283 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags)
7284 {
7285 COMPOUND4args_clnt args;
7286 COMPOUND4res_clnt res, *resp = NULL;
7287 REMOVE4res *rm_res;
7288 nfs_argop4 argop[3];
7289 nfs_resop4 *resop;
7290 vnode_t *vp;
7291 char *tmpname;
7292 int doqueue;
7293 mntinfo4_t *mi;
7294 rnode4_t *rp;
7295 rnode4_t *drp;
7296 int needrecov = 0;
7297 nfs4_recov_state_t recov_state;
7298 int isopen;
7299 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
7300 dirattr_info_t dinfo;
7301
7302 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
7303 return (EPERM);
7304 drp = VTOR4(dvp);
7305 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
7306 return (EINTR);
7307
7308 e.error = nfs4lookup(dvp, nm, &vp, cr, 0);
7309 if (e.error) {
7310 nfs_rw_exit(&drp->r_rwlock);
7311 return (e.error);
7312 }
7313
7314 if (vp->v_type == VDIR) {
7315 VN_RELE(vp);
7316 nfs_rw_exit(&drp->r_rwlock);
7317 return (EISDIR);
7318 }
7319
7320 /*
7321 * First just remove the entry from the name cache, as it
7322 * is most likely the only entry for this vp.
7323 */
7324 dnlc_remove(dvp, nm);
7325
7326 rp = VTOR4(vp);
7327
7328 /*
7329 * For regular file types, check to see if the file is open by looking
7330 * at the open streams.
7331 * For all other types, check the reference count on the vnode. Since
7332 * they are not opened OTW they never have an open stream.
7333 *
7334 * If the file is open, rename it to .nfsXXXX.
7335 */
7336 if (vp->v_type != VREG) {
7337 /*
7338 * If the file has a v_count > 1 then there may be more than one
7339 * entry in the name cache due multiple links or an open file,
7340 * but we don't have the real reference count so flush all
7341 * possible entries.
7342 */
7343 if (vp->v_count > 1)
7344 dnlc_purge_vp(vp);
7345
7346 /*
7347 * Now we have the real reference count.
7348 */
7349 isopen = vp->v_count > 1;
7350 } else {
7351 mutex_enter(&rp->r_os_lock);
7352 isopen = list_head(&rp->r_open_streams) != NULL;
7353 mutex_exit(&rp->r_os_lock);
7354 }
7355
7356 mutex_enter(&rp->r_statelock);
7357 if (isopen &&
7358 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) {
7359 mutex_exit(&rp->r_statelock);
7360 tmpname = newname();
7361 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct);
7362 if (e.error)
7363 kmem_free(tmpname, MAXNAMELEN);
7364 else {
7365 mutex_enter(&rp->r_statelock);
7366 if (rp->r_unldvp == NULL) {
7367 VN_HOLD(dvp);
7368 rp->r_unldvp = dvp;
7369 if (rp->r_unlcred != NULL)
7370 crfree(rp->r_unlcred);
7371 crhold(cr);
7372 rp->r_unlcred = cr;
7373 rp->r_unlname = tmpname;
7374 } else {
7375 kmem_free(rp->r_unlname, MAXNAMELEN);
7376 rp->r_unlname = tmpname;
7377 }
7378 mutex_exit(&rp->r_statelock);
7379 }
7380 VN_RELE(vp);
7381 nfs_rw_exit(&drp->r_rwlock);
7382 return (e.error);
7383 }
7384 /*
7385 * Actually remove the file/dir
7386 */
7387 mutex_exit(&rp->r_statelock);
7388
7389 /*
7390 * We need to flush any dirty pages which happen to
7391 * be hanging around before removing the file.
7392 * This shouldn't happen very often since in NFSv4
7393 * we should be close to open consistent.
7394 */
7395 if (nfs4_has_pages(vp) &&
7396 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) {
7397 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct);
7398 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) {
7399 mutex_enter(&rp->r_statelock);
7400 if (!rp->r_error)
7401 rp->r_error = e.error;
7402 mutex_exit(&rp->r_statelock);
7403 }
7404 }
7405
7406 mi = VTOMI4(dvp);
7407
7408 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN);
7409 recov_state.rs_flags = 0;
7410 recov_state.rs_num_retry_despite_err = 0;
7411
7412 recov_retry:
7413 /*
7414 * Remove ops: putfh dir; remove
7415 */
7416 args.ctag = TAG_REMOVE;
7417 args.array_len = 3;
7418 args.array = argop;
7419
7420 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
7421 if (e.error) {
7422 nfs_rw_exit(&drp->r_rwlock);
7423 VN_RELE(vp);
7424 return (e.error);
7425 }
7426
7427 /* putfh directory */
7428 argop[0].argop = OP_CPUTFH;
7429 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
7430
7431 /* remove */
7432 argop[1].argop = OP_CREMOVE;
7433 argop[1].nfs_argop4_u.opcremove.ctarget = nm;
7434
7435 /* getattr dir */
7436 argop[2].argop = OP_GETATTR;
7437 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7438 argop[2].nfs_argop4_u.opgetattr.mi = mi;
7439
7440 doqueue = 1;
7441 dinfo.di_time_call = gethrtime();
7442 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
7443
7444 PURGE_ATTRCACHE4(vp);
7445
7446 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
7447 if (e.error)
7448 PURGE_ATTRCACHE4(dvp);
7449
7450 if (needrecov) {
7451 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp,
7452 NULL, NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
7453 if (!e.error)
7454 (void) xdr_free(xdr_COMPOUND4res_clnt,
7455 (caddr_t)&res);
7456 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
7457 needrecov);
7458 goto recov_retry;
7459 }
7460 }
7461
7462 /*
7463 * Matching nfs4_end_op() for start_op() above.
7464 * There is a path in the code below which calls
7465 * nfs4_purge_stale_fh(), which may generate otw calls through
7466 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
7467 * here to avoid nfs4_start_op() deadlock.
7468 */
7469 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
7470
7471 if (!e.error) {
7472 resp = &res;
7473
7474 if (res.status) {
7475 e.error = geterrno4(res.status);
7476 PURGE_ATTRCACHE4(dvp);
7477 nfs4_purge_stale_fh(e.error, dvp, cr);
7478 } else {
7479 resop = &res.array[1]; /* remove res */
7480 rm_res = &resop->nfs_resop4_u.opremove;
7481
7482 dinfo.di_garp =
7483 &res.array[2].nfs_resop4_u.opgetattr.ga_res;
7484 dinfo.di_cred = cr;
7485
7486 /* Update directory attr, readdir and dnlc caches */
7487 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL,
7488 &dinfo);
7489 }
7490 }
7491 nfs_rw_exit(&drp->r_rwlock);
7492 if (resp)
7493 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
7494
7495 if (e.error == 0) {
7496 vnode_t *tvp;
7497 rnode4_t *trp;
7498 trp = VTOR4(vp);
7499 tvp = vp;
7500 if (IS_SHADOW(vp, trp))
7501 tvp = RTOV4(trp);
7502 vnevent_remove(tvp, dvp, nm, ct);
7503 }
7504 VN_RELE(vp);
7505 return (e.error);
7506 }
7507
7508 /*
7509 * Link requires that the current fh be the target directory and the
7510 * saved fh be the source fh. After the operation, the current fh is unchanged.
7511 * Thus the compound op structure is:
7512 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH,
7513 * GETATTR(file)
7514 */
7515 /* ARGSUSED */
7516 static int
nfs4_link(vnode_t * tdvp,vnode_t * svp,char * tnm,cred_t * cr,caller_context_t * ct,int flags)7517 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr,
7518 caller_context_t *ct, int flags)
7519 {
7520 COMPOUND4args_clnt args;
7521 COMPOUND4res_clnt res, *resp = NULL;
7522 LINK4res *ln_res;
7523 int argoplist_size = 7 * sizeof (nfs_argop4);
7524 nfs_argop4 *argop;
7525 nfs_resop4 *resop;
7526 vnode_t *realvp, *nvp;
7527 int doqueue;
7528 mntinfo4_t *mi;
7529 rnode4_t *tdrp;
7530 bool_t needrecov = FALSE;
7531 nfs4_recov_state_t recov_state;
7532 hrtime_t t;
7533 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
7534 dirattr_info_t dinfo;
7535
7536 ASSERT(*tnm != '\0');
7537 ASSERT(tdvp->v_type == VDIR);
7538 ASSERT(nfs4_consistent_type(tdvp));
7539 ASSERT(nfs4_consistent_type(svp));
7540
7541 if (nfs_zone() != VTOMI4(tdvp)->mi_zone)
7542 return (EPERM);
7543 if (VOP_REALVP(svp, &realvp, ct) == 0) {
7544 svp = realvp;
7545 ASSERT(nfs4_consistent_type(svp));
7546 }
7547
7548 tdrp = VTOR4(tdvp);
7549 mi = VTOMI4(svp);
7550
7551 if (!(mi->mi_flags & MI4_LINK)) {
7552 return (EOPNOTSUPP);
7553 }
7554 recov_state.rs_flags = 0;
7555 recov_state.rs_num_retry_despite_err = 0;
7556
7557 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp)))
7558 return (EINTR);
7559
7560 recov_retry:
7561 argop = kmem_alloc(argoplist_size, KM_SLEEP);
7562
7563 args.ctag = TAG_LINK;
7564
7565 /*
7566 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir);
7567 * restorefh; getattr(fl)
7568 */
7569 args.array_len = 7;
7570 args.array = argop;
7571
7572 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state);
7573 if (e.error) {
7574 kmem_free(argop, argoplist_size);
7575 nfs_rw_exit(&tdrp->r_rwlock);
7576 return (e.error);
7577 }
7578
7579 /* 0. putfh file */
7580 argop[0].argop = OP_CPUTFH;
7581 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh;
7582
7583 /* 1. save current fh to free up the space for the dir */
7584 argop[1].argop = OP_SAVEFH;
7585
7586 /* 2. putfh targetdir */
7587 argop[2].argop = OP_CPUTFH;
7588 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh;
7589
7590 /* 3. link: current_fh is targetdir, saved_fh is source */
7591 argop[3].argop = OP_CLINK;
7592 argop[3].nfs_argop4_u.opclink.cnewname = tnm;
7593
7594 /* 4. Get attributes of dir */
7595 argop[4].argop = OP_GETATTR;
7596 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7597 argop[4].nfs_argop4_u.opgetattr.mi = mi;
7598
7599 /* 5. If link was successful, restore current vp to file */
7600 argop[5].argop = OP_RESTOREFH;
7601
7602 /* 6. Get attributes of linked object */
7603 argop[6].argop = OP_GETATTR;
7604 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7605 argop[6].nfs_argop4_u.opgetattr.mi = mi;
7606
7607 dnlc_remove(tdvp, tnm);
7608
7609 doqueue = 1;
7610 t = gethrtime();
7611
7612 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e);
7613
7614 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp);
7615 if (e.error != 0 && !needrecov) {
7616 PURGE_ATTRCACHE4(tdvp);
7617 PURGE_ATTRCACHE4(svp);
7618 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov);
7619 goto out;
7620 }
7621
7622 if (needrecov) {
7623 bool_t abort;
7624
7625 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp,
7626 NULL, NULL, OP_LINK, NULL, NULL, NULL);
7627 if (abort == FALSE) {
7628 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state,
7629 needrecov);
7630 kmem_free(argop, argoplist_size);
7631 if (!e.error)
7632 (void) xdr_free(xdr_COMPOUND4res_clnt,
7633 (caddr_t)&res);
7634 goto recov_retry;
7635 } else {
7636 if (e.error != 0) {
7637 PURGE_ATTRCACHE4(tdvp);
7638 PURGE_ATTRCACHE4(svp);
7639 nfs4_end_op(VTOMI4(svp), svp, tdvp,
7640 &recov_state, needrecov);
7641 goto out;
7642 }
7643 /* fall through for res.status case */
7644 }
7645 }
7646
7647 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov);
7648
7649 resp = &res;
7650 if (res.status) {
7651 /* If link succeeded, then don't return error */
7652 e.error = geterrno4(res.status);
7653 if (res.array_len <= 4) {
7654 /*
7655 * Either Putfh, Savefh, Putfh dir, or Link failed
7656 */
7657 PURGE_ATTRCACHE4(svp);
7658 PURGE_ATTRCACHE4(tdvp);
7659 if (e.error == EOPNOTSUPP) {
7660 mutex_enter(&mi->mi_lock);
7661 mi->mi_flags &= ~MI4_LINK;
7662 mutex_exit(&mi->mi_lock);
7663 }
7664 /* Remap EISDIR to EPERM for non-root user for SVVS */
7665 /* XXX-LP */
7666 if (e.error == EISDIR && crgetuid(cr) != 0)
7667 e.error = EPERM;
7668 goto out;
7669 }
7670 }
7671
7672 /* either no error or one of the postop getattr failed */
7673
7674 /*
7675 * XXX - if LINK succeeded, but no attrs were returned for link
7676 * file, purge its cache.
7677 *
7678 * XXX Perform a simplified version of wcc checking. Instead of
7679 * have another getattr to get pre-op, just purge cache if
7680 * any of the ops prior to and including the getattr failed.
7681 * If the getattr succeeded then update the attrcache accordingly.
7682 */
7683
7684 /*
7685 * update cache with link file postattrs.
7686 * Note: at this point resop points to link res.
7687 */
7688 resop = &res.array[3]; /* link res */
7689 ln_res = &resop->nfs_resop4_u.oplink;
7690 if (res.status == NFS4_OK)
7691 e.error = nfs4_update_attrcache(res.status,
7692 &res.array[6].nfs_resop4_u.opgetattr.ga_res,
7693 t, svp, cr);
7694
7695 /*
7696 * Call makenfs4node to create the new shadow vp for tnm.
7697 * We pass NULL attrs because we just cached attrs for
7698 * the src object. All we're trying to accomplish is to
7699 * to create the new shadow vnode.
7700 */
7701 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr,
7702 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm, VTOR4(svp)->r_fh));
7703
7704 /* Update target cache attribute, readdir and dnlc caches */
7705 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res;
7706 dinfo.di_time_call = t;
7707 dinfo.di_cred = cr;
7708
7709 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo);
7710 ASSERT(nfs4_consistent_type(tdvp));
7711 ASSERT(nfs4_consistent_type(svp));
7712 ASSERT(nfs4_consistent_type(nvp));
7713 VN_RELE(nvp);
7714
7715 if (!e.error) {
7716 vnode_t *tvp;
7717 rnode4_t *trp;
7718 /*
7719 * Notify the source file of this link operation.
7720 */
7721 trp = VTOR4(svp);
7722 tvp = svp;
7723 if (IS_SHADOW(svp, trp))
7724 tvp = RTOV4(trp);
7725 vnevent_link(tvp, ct);
7726 }
7727 out:
7728 kmem_free(argop, argoplist_size);
7729 if (resp)
7730 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
7731
7732 nfs_rw_exit(&tdrp->r_rwlock);
7733
7734 return (e.error);
7735 }
7736
7737 /* ARGSUSED */
7738 static int
nfs4_rename(vnode_t * odvp,char * onm,vnode_t * ndvp,char * nnm,cred_t * cr,caller_context_t * ct,int flags)7739 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
7740 caller_context_t *ct, int flags)
7741 {
7742 vnode_t *realvp;
7743
7744 if (nfs_zone() != VTOMI4(odvp)->mi_zone)
7745 return (EPERM);
7746 if (VOP_REALVP(ndvp, &realvp, ct) == 0)
7747 ndvp = realvp;
7748
7749 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct));
7750 }
7751
7752 /*
7753 * nfs4rename does the real work of renaming in NFS Version 4.
7754 *
7755 * A file handle is considered volatile for renaming purposes if either
7756 * of the volatile bits are turned on. However, the compound may differ
7757 * based on the likelihood of the filehandle to change during rename.
7758 */
7759 static int
nfs4rename(vnode_t * odvp,char * onm,vnode_t * ndvp,char * nnm,cred_t * cr,caller_context_t * ct)7760 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
7761 caller_context_t *ct)
7762 {
7763 int error;
7764 mntinfo4_t *mi;
7765 vnode_t *nvp = NULL;
7766 vnode_t *ovp = NULL;
7767 char *tmpname = NULL;
7768 rnode4_t *rp;
7769 rnode4_t *odrp;
7770 rnode4_t *ndrp;
7771 int did_link = 0;
7772 int do_link = 1;
7773 nfsstat4 stat = NFS4_OK;
7774
7775 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
7776 ASSERT(nfs4_consistent_type(odvp));
7777 ASSERT(nfs4_consistent_type(ndvp));
7778
7779 if (onm[0] == '.' && (onm[1] == '\0' ||
7780 (onm[1] == '.' && onm[2] == '\0')))
7781 return (EINVAL);
7782
7783 if (nnm[0] == '.' && (nnm[1] == '\0' ||
7784 (nnm[1] == '.' && nnm[2] == '\0')))
7785 return (EINVAL);
7786
7787 odrp = VTOR4(odvp);
7788 ndrp = VTOR4(ndvp);
7789 if ((intptr_t)odrp < (intptr_t)ndrp) {
7790 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp)))
7791 return (EINTR);
7792 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) {
7793 nfs_rw_exit(&odrp->r_rwlock);
7794 return (EINTR);
7795 }
7796 } else {
7797 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp)))
7798 return (EINTR);
7799 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) {
7800 nfs_rw_exit(&ndrp->r_rwlock);
7801 return (EINTR);
7802 }
7803 }
7804
7805 /*
7806 * Lookup the target file. If it exists, it needs to be
7807 * checked to see whether it is a mount point and whether
7808 * it is active (open).
7809 */
7810 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0);
7811 if (!error) {
7812 int isactive;
7813
7814 ASSERT(nfs4_consistent_type(nvp));
7815 /*
7816 * If this file has been mounted on, then just
7817 * return busy because renaming to it would remove
7818 * the mounted file system from the name space.
7819 */
7820 if (vn_ismntpt(nvp)) {
7821 VN_RELE(nvp);
7822 nfs_rw_exit(&odrp->r_rwlock);
7823 nfs_rw_exit(&ndrp->r_rwlock);
7824 return (EBUSY);
7825 }
7826
7827 /*
7828 * First just remove the entry from the name cache, as it
7829 * is most likely the only entry for this vp.
7830 */
7831 dnlc_remove(ndvp, nnm);
7832
7833 rp = VTOR4(nvp);
7834
7835 if (nvp->v_type != VREG) {
7836 /*
7837 * Purge the name cache of all references to this vnode
7838 * so that we can check the reference count to infer
7839 * whether it is active or not.
7840 */
7841 if (nvp->v_count > 1)
7842 dnlc_purge_vp(nvp);
7843
7844 isactive = nvp->v_count > 1;
7845 } else {
7846 mutex_enter(&rp->r_os_lock);
7847 isactive = list_head(&rp->r_open_streams) != NULL;
7848 mutex_exit(&rp->r_os_lock);
7849 }
7850
7851 /*
7852 * If the vnode is active and is not a directory,
7853 * arrange to rename it to a
7854 * temporary file so that it will continue to be
7855 * accessible. This implements the "unlink-open-file"
7856 * semantics for the target of a rename operation.
7857 * Before doing this though, make sure that the
7858 * source and target files are not already the same.
7859 */
7860 if (isactive && nvp->v_type != VDIR) {
7861 /*
7862 * Lookup the source name.
7863 */
7864 error = nfs4lookup(odvp, onm, &ovp, cr, 0);
7865
7866 /*
7867 * The source name *should* already exist.
7868 */
7869 if (error) {
7870 VN_RELE(nvp);
7871 nfs_rw_exit(&odrp->r_rwlock);
7872 nfs_rw_exit(&ndrp->r_rwlock);
7873 return (error);
7874 }
7875
7876 ASSERT(nfs4_consistent_type(ovp));
7877
7878 /*
7879 * Compare the two vnodes. If they are the same,
7880 * just release all held vnodes and return success.
7881 */
7882 if (VN_CMP(ovp, nvp)) {
7883 VN_RELE(ovp);
7884 VN_RELE(nvp);
7885 nfs_rw_exit(&odrp->r_rwlock);
7886 nfs_rw_exit(&ndrp->r_rwlock);
7887 return (0);
7888 }
7889
7890 /*
7891 * Can't mix and match directories and non-
7892 * directories in rename operations. We already
7893 * know that the target is not a directory. If
7894 * the source is a directory, return an error.
7895 */
7896 if (ovp->v_type == VDIR) {
7897 VN_RELE(ovp);
7898 VN_RELE(nvp);
7899 nfs_rw_exit(&odrp->r_rwlock);
7900 nfs_rw_exit(&ndrp->r_rwlock);
7901 return (ENOTDIR);
7902 }
7903 link_call:
7904 /*
7905 * The target file exists, is not the same as
7906 * the source file, and is active. We first
7907 * try to Link it to a temporary filename to
7908 * avoid having the server removing the file
7909 * completely (which could cause data loss to
7910 * the user's POV in the event the Rename fails
7911 * -- see bug 1165874).
7912 */
7913 /*
7914 * The do_link and did_link booleans are
7915 * introduced in the event we get NFS4ERR_FILE_OPEN
7916 * returned for the Rename. Some servers can
7917 * not Rename over an Open file, so they return
7918 * this error. The client needs to Remove the
7919 * newly created Link and do two Renames, just
7920 * as if the server didn't support LINK.
7921 */
7922 tmpname = newname();
7923 error = 0;
7924
7925 if (do_link) {
7926 error = nfs4_link(ndvp, nvp, tmpname, cr,
7927 NULL, 0);
7928 }
7929 if (error == EOPNOTSUPP || !do_link) {
7930 error = nfs4_rename(ndvp, nnm, ndvp, tmpname,
7931 cr, NULL, 0);
7932 did_link = 0;
7933 } else {
7934 did_link = 1;
7935 }
7936 if (error) {
7937 kmem_free(tmpname, MAXNAMELEN);
7938 VN_RELE(ovp);
7939 VN_RELE(nvp);
7940 nfs_rw_exit(&odrp->r_rwlock);
7941 nfs_rw_exit(&ndrp->r_rwlock);
7942 return (error);
7943 }
7944
7945 mutex_enter(&rp->r_statelock);
7946 if (rp->r_unldvp == NULL) {
7947 VN_HOLD(ndvp);
7948 rp->r_unldvp = ndvp;
7949 if (rp->r_unlcred != NULL)
7950 crfree(rp->r_unlcred);
7951 crhold(cr);
7952 rp->r_unlcred = cr;
7953 rp->r_unlname = tmpname;
7954 } else {
7955 if (rp->r_unlname)
7956 kmem_free(rp->r_unlname, MAXNAMELEN);
7957 rp->r_unlname = tmpname;
7958 }
7959 mutex_exit(&rp->r_statelock);
7960 }
7961
7962 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN);
7963
7964 ASSERT(nfs4_consistent_type(nvp));
7965 }
7966
7967 if (ovp == NULL) {
7968 /*
7969 * When renaming directories to be a subdirectory of a
7970 * different parent, the dnlc entry for ".." will no
7971 * longer be valid, so it must be removed.
7972 *
7973 * We do a lookup here to determine whether we are renaming
7974 * a directory and we need to check if we are renaming
7975 * an unlinked file. This might have already been done
7976 * in previous code, so we check ovp == NULL to avoid
7977 * doing it twice.
7978 */
7979 error = nfs4lookup(odvp, onm, &ovp, cr, 0);
7980 /*
7981 * The source name *should* already exist.
7982 */
7983 if (error) {
7984 nfs_rw_exit(&odrp->r_rwlock);
7985 nfs_rw_exit(&ndrp->r_rwlock);
7986 if (nvp) {
7987 VN_RELE(nvp);
7988 }
7989 return (error);
7990 }
7991 ASSERT(ovp != NULL);
7992 ASSERT(nfs4_consistent_type(ovp));
7993 }
7994
7995 /*
7996 * Is the object being renamed a dir, and if so, is
7997 * it being renamed to a child of itself? The underlying
7998 * fs should ultimately return EINVAL for this case;
7999 * however, buggy beta non-Solaris NFSv4 servers at
8000 * interop testing events have allowed this behavior,
8001 * and it caused our client to panic due to a recursive
8002 * mutex_enter in fn_move.
8003 *
8004 * The tedious locking in fn_move could be changed to
8005 * deal with this case, and the client could avoid the
8006 * panic; however, the client would just confuse itself
8007 * later and misbehave. A better way to handle the broken
8008 * server is to detect this condition and return EINVAL
8009 * without ever sending the the bogus rename to the server.
8010 * We know the rename is invalid -- just fail it now.
8011 */
8012 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) {
8013 VN_RELE(ovp);
8014 nfs_rw_exit(&odrp->r_rwlock);
8015 nfs_rw_exit(&ndrp->r_rwlock);
8016 if (nvp) {
8017 VN_RELE(nvp);
8018 }
8019 return (EINVAL);
8020 }
8021
8022 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN);
8023
8024 /*
8025 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is
8026 * possible for the filehandle to change due to the rename.
8027 * If neither of these bits is set, but FH4_VOL_MIGRATION is set,
8028 * the fh will not change because of the rename, but we still need
8029 * to update its rnode entry with the new name for
8030 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN
8031 * has no effect on these for now, but for future improvements,
8032 * we might want to use it too to simplify handling of files
8033 * that are open with that flag on. (XXX)
8034 */
8035 mi = VTOMI4(odvp);
8036 if (NFS4_VOLATILE_FH(mi))
8037 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr,
8038 &stat);
8039 else
8040 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr,
8041 &stat);
8042
8043 ASSERT(nfs4_consistent_type(odvp));
8044 ASSERT(nfs4_consistent_type(ndvp));
8045 ASSERT(nfs4_consistent_type(ovp));
8046
8047 if (stat == NFS4ERR_FILE_OPEN && did_link) {
8048 do_link = 0;
8049 /*
8050 * Before the 'link_call' code, we did a nfs4_lookup
8051 * that puts a VN_HOLD on nvp. After the nfs4_link
8052 * call we call VN_RELE to match that hold. We need
8053 * to place an additional VN_HOLD here since we will
8054 * be hitting that VN_RELE again.
8055 */
8056 VN_HOLD(nvp);
8057
8058 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0);
8059
8060 /* Undo the unlinked file naming stuff we just did */
8061 mutex_enter(&rp->r_statelock);
8062 if (rp->r_unldvp) {
8063 VN_RELE(ndvp);
8064 rp->r_unldvp = NULL;
8065 if (rp->r_unlcred != NULL)
8066 crfree(rp->r_unlcred);
8067 rp->r_unlcred = NULL;
8068 /* rp->r_unlanme points to tmpname */
8069 if (rp->r_unlname)
8070 kmem_free(rp->r_unlname, MAXNAMELEN);
8071 rp->r_unlname = NULL;
8072 }
8073 mutex_exit(&rp->r_statelock);
8074
8075 if (nvp) {
8076 VN_RELE(nvp);
8077 }
8078 goto link_call;
8079 }
8080
8081 if (error) {
8082 VN_RELE(ovp);
8083 nfs_rw_exit(&odrp->r_rwlock);
8084 nfs_rw_exit(&ndrp->r_rwlock);
8085 if (nvp) {
8086 VN_RELE(nvp);
8087 }
8088 return (error);
8089 }
8090
8091 /*
8092 * when renaming directories to be a subdirectory of a
8093 * different parent, the dnlc entry for ".." will no
8094 * longer be valid, so it must be removed
8095 */
8096 rp = VTOR4(ovp);
8097 if (ndvp != odvp) {
8098 if (ovp->v_type == VDIR) {
8099 dnlc_remove(ovp, "..");
8100 if (rp->r_dir != NULL)
8101 nfs4_purge_rddir_cache(ovp);
8102 }
8103 }
8104
8105 /*
8106 * If we are renaming the unlinked file, update the
8107 * r_unldvp and r_unlname as needed.
8108 */
8109 mutex_enter(&rp->r_statelock);
8110 if (rp->r_unldvp != NULL) {
8111 if (strcmp(rp->r_unlname, onm) == 0) {
8112 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN);
8113 rp->r_unlname[MAXNAMELEN - 1] = '\0';
8114 if (ndvp != rp->r_unldvp) {
8115 VN_RELE(rp->r_unldvp);
8116 rp->r_unldvp = ndvp;
8117 VN_HOLD(ndvp);
8118 }
8119 }
8120 }
8121 mutex_exit(&rp->r_statelock);
8122
8123 /*
8124 * Notify the rename vnevents to source vnode, and to the target
8125 * vnode if it already existed.
8126 */
8127 if (error == 0) {
8128 vnode_t *tvp;
8129 rnode4_t *trp;
8130 /*
8131 * Notify the vnode. Each links is represented by
8132 * a different vnode, in nfsv4.
8133 */
8134 if (nvp) {
8135 trp = VTOR4(nvp);
8136 tvp = nvp;
8137 if (IS_SHADOW(nvp, trp))
8138 tvp = RTOV4(trp);
8139 vnevent_rename_dest(tvp, ndvp, nnm, ct);
8140 }
8141
8142 /*
8143 * if the source and destination directory are not the
8144 * same notify the destination directory.
8145 */
8146 if (VTOR4(odvp) != VTOR4(ndvp)) {
8147 trp = VTOR4(ndvp);
8148 tvp = ndvp;
8149 if (IS_SHADOW(ndvp, trp))
8150 tvp = RTOV4(trp);
8151 vnevent_rename_dest_dir(tvp, ct);
8152 }
8153
8154 trp = VTOR4(ovp);
8155 tvp = ovp;
8156 if (IS_SHADOW(ovp, trp))
8157 tvp = RTOV4(trp);
8158 vnevent_rename_src(tvp, odvp, onm, ct);
8159 }
8160
8161 if (nvp) {
8162 VN_RELE(nvp);
8163 }
8164 VN_RELE(ovp);
8165
8166 nfs_rw_exit(&odrp->r_rwlock);
8167 nfs_rw_exit(&ndrp->r_rwlock);
8168
8169 return (error);
8170 }
8171
8172 /*
8173 * When the parent directory has changed, sv_dfh must be updated
8174 */
8175 static void
update_parentdir_sfh(vnode_t * vp,vnode_t * ndvp)8176 update_parentdir_sfh(vnode_t *vp, vnode_t *ndvp)
8177 {
8178 svnode_t *sv = VTOSV(vp);
8179 nfs4_sharedfh_t *old_dfh = sv->sv_dfh;
8180 nfs4_sharedfh_t *new_dfh = VTOR4(ndvp)->r_fh;
8181
8182 sfh4_hold(new_dfh);
8183 sv->sv_dfh = new_dfh;
8184 sfh4_rele(&old_dfh);
8185 }
8186
8187 /*
8188 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4,
8189 * when it is known that the filehandle is persistent through rename.
8190 *
8191 * Rename requires that the current fh be the target directory and the
8192 * saved fh be the source directory. After the operation, the current fh
8193 * is unchanged.
8194 * The compound op structure for persistent fh rename is:
8195 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME
8196 * Rather than bother with the directory postop args, we'll simply
8197 * update that a change occurred in the cache, so no post-op getattrs.
8198 */
8199 static int
nfs4rename_persistent_fh(vnode_t * odvp,char * onm,vnode_t * renvp,vnode_t * ndvp,char * nnm,cred_t * cr,nfsstat4 * statp)8200 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp,
8201 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp)
8202 {
8203 COMPOUND4args_clnt args;
8204 COMPOUND4res_clnt res, *resp = NULL;
8205 nfs_argop4 *argop;
8206 nfs_resop4 *resop;
8207 int doqueue, argoplist_size;
8208 mntinfo4_t *mi;
8209 rnode4_t *odrp = VTOR4(odvp);
8210 rnode4_t *ndrp = VTOR4(ndvp);
8211 RENAME4res *rn_res;
8212 bool_t needrecov;
8213 nfs4_recov_state_t recov_state;
8214 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8215 dirattr_info_t dinfo, *dinfop;
8216
8217 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
8218
8219 recov_state.rs_flags = 0;
8220 recov_state.rs_num_retry_despite_err = 0;
8221
8222 /*
8223 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir
8224 *
8225 * If source/target are different dirs, then append putfh(src); getattr
8226 */
8227 args.array_len = (odvp == ndvp) ? 5 : 7;
8228 argoplist_size = args.array_len * sizeof (nfs_argop4);
8229 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP);
8230
8231 recov_retry:
8232 *statp = NFS4_OK;
8233
8234 /* No need to Lookup the file, persistent fh */
8235 args.ctag = TAG_RENAME;
8236
8237 mi = VTOMI4(odvp);
8238 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state);
8239 if (e.error) {
8240 kmem_free(argop, argoplist_size);
8241 return (e.error);
8242 }
8243
8244 /* 0: putfh source directory */
8245 argop[0].argop = OP_CPUTFH;
8246 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh;
8247
8248 /* 1: Save source fh to free up current for target */
8249 argop[1].argop = OP_SAVEFH;
8250
8251 /* 2: putfh targetdir */
8252 argop[2].argop = OP_CPUTFH;
8253 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8254
8255 /* 3: current_fh is targetdir, saved_fh is sourcedir */
8256 argop[3].argop = OP_CRENAME;
8257 argop[3].nfs_argop4_u.opcrename.coldname = onm;
8258 argop[3].nfs_argop4_u.opcrename.cnewname = nnm;
8259
8260 /* 4: getattr (targetdir) */
8261 argop[4].argop = OP_GETATTR;
8262 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8263 argop[4].nfs_argop4_u.opgetattr.mi = mi;
8264
8265 if (ndvp != odvp) {
8266
8267 /* 5: putfh (sourcedir) */
8268 argop[5].argop = OP_CPUTFH;
8269 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8270
8271 /* 6: getattr (sourcedir) */
8272 argop[6].argop = OP_GETATTR;
8273 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8274 argop[6].nfs_argop4_u.opgetattr.mi = mi;
8275 }
8276
8277 dnlc_remove(odvp, onm);
8278 dnlc_remove(ndvp, nnm);
8279
8280 doqueue = 1;
8281 dinfo.di_time_call = gethrtime();
8282 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
8283
8284 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8285 if (e.error) {
8286 PURGE_ATTRCACHE4(odvp);
8287 PURGE_ATTRCACHE4(ndvp);
8288 } else {
8289 *statp = res.status;
8290 }
8291
8292 if (needrecov) {
8293 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL,
8294 OP_RENAME, NULL, NULL, NULL) == FALSE) {
8295 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov);
8296 if (!e.error)
8297 (void) xdr_free(xdr_COMPOUND4res_clnt,
8298 (caddr_t)&res);
8299 goto recov_retry;
8300 }
8301 }
8302
8303 if (!e.error) {
8304 resp = &res;
8305 /*
8306 * as long as OP_RENAME
8307 */
8308 if (res.status != NFS4_OK && res.array_len <= 4) {
8309 e.error = geterrno4(res.status);
8310 PURGE_ATTRCACHE4(odvp);
8311 PURGE_ATTRCACHE4(ndvp);
8312 /*
8313 * System V defines rename to return EEXIST, not
8314 * ENOTEMPTY if the target directory is not empty.
8315 * Over the wire, the error is NFSERR_ENOTEMPTY
8316 * which geterrno4 maps to ENOTEMPTY.
8317 */
8318 if (e.error == ENOTEMPTY)
8319 e.error = EEXIST;
8320 } else {
8321
8322 resop = &res.array[3]; /* rename res */
8323 rn_res = &resop->nfs_resop4_u.oprename;
8324
8325 if (res.status == NFS4_OK) {
8326 /*
8327 * Update target attribute, readdir and dnlc
8328 * caches.
8329 */
8330 dinfo.di_garp =
8331 &res.array[4].nfs_resop4_u.opgetattr.ga_res;
8332 dinfo.di_cred = cr;
8333 dinfop = &dinfo;
8334 } else
8335 dinfop = NULL;
8336
8337 nfs4_update_dircaches(&rn_res->target_cinfo,
8338 ndvp, NULL, NULL, dinfop);
8339
8340 /*
8341 * Update source attribute, readdir and dnlc caches
8342 *
8343 */
8344 if (ndvp != odvp) {
8345 update_parentdir_sfh(renvp, ndvp);
8346
8347 if (dinfop)
8348 dinfo.di_garp =
8349 &(res.array[6].nfs_resop4_u.
8350 opgetattr.ga_res);
8351
8352 nfs4_update_dircaches(&rn_res->source_cinfo,
8353 odvp, NULL, NULL, dinfop);
8354 }
8355
8356 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name,
8357 nnm);
8358 }
8359 }
8360
8361 if (resp)
8362 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8363 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov);
8364 kmem_free(argop, argoplist_size);
8365
8366 return (e.error);
8367 }
8368
8369 /*
8370 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when
8371 * it is possible for the filehandle to change due to the rename.
8372 *
8373 * The compound req in this case includes a post-rename lookup and getattr
8374 * to ensure that we have the correct fh and attributes for the object.
8375 *
8376 * Rename requires that the current fh be the target directory and the
8377 * saved fh be the source directory. After the operation, the current fh
8378 * is unchanged.
8379 *
8380 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can
8381 * update the filehandle for the renamed object. We also get the old
8382 * filehandle for historical reasons; this should be taken out sometime.
8383 * This results in a rather cumbersome compound...
8384 *
8385 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old),
8386 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR
8387 *
8388 */
8389 static int
nfs4rename_volatile_fh(vnode_t * odvp,char * onm,vnode_t * ovp,vnode_t * ndvp,char * nnm,cred_t * cr,nfsstat4 * statp)8390 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp,
8391 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp)
8392 {
8393 COMPOUND4args_clnt args;
8394 COMPOUND4res_clnt res, *resp = NULL;
8395 int argoplist_size;
8396 nfs_argop4 *argop;
8397 nfs_resop4 *resop;
8398 int doqueue;
8399 mntinfo4_t *mi;
8400 rnode4_t *odrp = VTOR4(odvp); /* old directory */
8401 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */
8402 rnode4_t *orp = VTOR4(ovp); /* object being renamed */
8403 RENAME4res *rn_res;
8404 GETFH4res *ngf_res;
8405 bool_t needrecov;
8406 nfs4_recov_state_t recov_state;
8407 hrtime_t t;
8408 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8409 dirattr_info_t dinfo, *dinfop = &dinfo;
8410
8411 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
8412
8413 recov_state.rs_flags = 0;
8414 recov_state.rs_num_retry_despite_err = 0;
8415
8416 recov_retry:
8417 *statp = NFS4_OK;
8418
8419 /*
8420 * There is a window between the RPC and updating the path and
8421 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery
8422 * code, so that it doesn't try to use the old path during that
8423 * window.
8424 */
8425 mutex_enter(&orp->r_statelock);
8426 while (orp->r_flags & R4RECEXPFH) {
8427 klwp_t *lwp = ttolwp(curthread);
8428
8429 if (lwp != NULL)
8430 lwp->lwp_nostop++;
8431 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) {
8432 mutex_exit(&orp->r_statelock);
8433 if (lwp != NULL)
8434 lwp->lwp_nostop--;
8435 return (EINTR);
8436 }
8437 if (lwp != NULL)
8438 lwp->lwp_nostop--;
8439 }
8440 orp->r_flags |= R4RECEXPFH;
8441 mutex_exit(&orp->r_statelock);
8442
8443 mi = VTOMI4(odvp);
8444
8445 args.ctag = TAG_RENAME_VFH;
8446 args.array_len = (odvp == ndvp) ? 10 : 12;
8447 argoplist_size = args.array_len * sizeof (nfs_argop4);
8448 argop = kmem_alloc(argoplist_size, KM_SLEEP);
8449
8450 /*
8451 * Rename ops:
8452 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old),
8453 * PUTFH(targetdir), RENAME, GETATTR(targetdir)
8454 * LOOKUP(trgt), GETFH(new), GETATTR,
8455 *
8456 * if (odvp != ndvp)
8457 * add putfh(sourcedir), getattr(sourcedir) }
8458 */
8459 args.array = argop;
8460
8461 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8462 &recov_state, NULL);
8463 if (e.error) {
8464 kmem_free(argop, argoplist_size);
8465 mutex_enter(&orp->r_statelock);
8466 orp->r_flags &= ~R4RECEXPFH;
8467 cv_broadcast(&orp->r_cv);
8468 mutex_exit(&orp->r_statelock);
8469 return (e.error);
8470 }
8471
8472 /* 0: putfh source directory */
8473 argop[0].argop = OP_CPUTFH;
8474 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh;
8475
8476 /* 1: Save source fh to free up current for target */
8477 argop[1].argop = OP_SAVEFH;
8478
8479 /* 2: Lookup pre-rename fh of renamed object */
8480 argop[2].argop = OP_CLOOKUP;
8481 argop[2].nfs_argop4_u.opclookup.cname = onm;
8482
8483 /* 3: getfh fh of renamed object (before rename) */
8484 argop[3].argop = OP_GETFH;
8485
8486 /* 4: putfh targetdir */
8487 argop[4].argop = OP_CPUTFH;
8488 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8489
8490 /* 5: current_fh is targetdir, saved_fh is sourcedir */
8491 argop[5].argop = OP_CRENAME;
8492 argop[5].nfs_argop4_u.opcrename.coldname = onm;
8493 argop[5].nfs_argop4_u.opcrename.cnewname = nnm;
8494
8495 /* 6: getattr of target dir (post op attrs) */
8496 argop[6].argop = OP_GETATTR;
8497 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8498 argop[6].nfs_argop4_u.opgetattr.mi = mi;
8499
8500 /* 7: Lookup post-rename fh of renamed object */
8501 argop[7].argop = OP_CLOOKUP;
8502 argop[7].nfs_argop4_u.opclookup.cname = nnm;
8503
8504 /* 8: getfh fh of renamed object (after rename) */
8505 argop[8].argop = OP_GETFH;
8506
8507 /* 9: getattr of renamed object */
8508 argop[9].argop = OP_GETATTR;
8509 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8510 argop[9].nfs_argop4_u.opgetattr.mi = mi;
8511
8512 /*
8513 * If source/target dirs are different, then get new post-op
8514 * attrs for source dir also.
8515 */
8516 if (ndvp != odvp) {
8517 /* 10: putfh (sourcedir) */
8518 argop[10].argop = OP_CPUTFH;
8519 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8520
8521 /* 11: getattr (sourcedir) */
8522 argop[11].argop = OP_GETATTR;
8523 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8524 argop[11].nfs_argop4_u.opgetattr.mi = mi;
8525 }
8526
8527 dnlc_remove(odvp, onm);
8528 dnlc_remove(ndvp, nnm);
8529
8530 doqueue = 1;
8531 t = gethrtime();
8532 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
8533
8534 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8535 if (e.error) {
8536 PURGE_ATTRCACHE4(odvp);
8537 PURGE_ATTRCACHE4(ndvp);
8538 if (!needrecov) {
8539 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8540 &recov_state, needrecov);
8541 goto out;
8542 }
8543 } else {
8544 *statp = res.status;
8545 }
8546
8547 if (needrecov) {
8548 bool_t abort;
8549
8550 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL,
8551 OP_RENAME, NULL, NULL, NULL);
8552 if (abort == FALSE) {
8553 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8554 &recov_state, needrecov);
8555 kmem_free(argop, argoplist_size);
8556 if (!e.error)
8557 (void) xdr_free(xdr_COMPOUND4res_clnt,
8558 (caddr_t)&res);
8559 mutex_enter(&orp->r_statelock);
8560 orp->r_flags &= ~R4RECEXPFH;
8561 cv_broadcast(&orp->r_cv);
8562 mutex_exit(&orp->r_statelock);
8563 goto recov_retry;
8564 } else {
8565 if (e.error != 0) {
8566 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8567 &recov_state, needrecov);
8568 goto out;
8569 }
8570 /* fall through for res.status case */
8571 }
8572 }
8573
8574 resp = &res;
8575 /*
8576 * If OP_RENAME (or any prev op) failed, then return an error.
8577 * OP_RENAME is index 5, so if array len <= 6 we return an error.
8578 */
8579 if ((res.status != NFS4_OK) && (res.array_len <= 6)) {
8580 /*
8581 * Error in an op other than last Getattr
8582 */
8583 e.error = geterrno4(res.status);
8584 PURGE_ATTRCACHE4(odvp);
8585 PURGE_ATTRCACHE4(ndvp);
8586 /*
8587 * System V defines rename to return EEXIST, not
8588 * ENOTEMPTY if the target directory is not empty.
8589 * Over the wire, the error is NFSERR_ENOTEMPTY
8590 * which geterrno4 maps to ENOTEMPTY.
8591 */
8592 if (e.error == ENOTEMPTY)
8593 e.error = EEXIST;
8594 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state,
8595 needrecov);
8596 goto out;
8597 }
8598
8599 /* rename results */
8600 rn_res = &res.array[5].nfs_resop4_u.oprename;
8601
8602 if (res.status == NFS4_OK) {
8603 /* Update target attribute, readdir and dnlc caches */
8604 dinfo.di_garp =
8605 &res.array[6].nfs_resop4_u.opgetattr.ga_res;
8606 dinfo.di_cred = cr;
8607 dinfo.di_time_call = t;
8608 } else
8609 dinfop = NULL;
8610
8611 /* Update source cache attribute, readdir and dnlc caches */
8612 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop);
8613
8614 /* Update source cache attribute, readdir and dnlc caches */
8615 if (ndvp != odvp) {
8616 update_parentdir_sfh(ovp, ndvp);
8617
8618 /*
8619 * If dinfop is non-NULL, then compound succeded, so
8620 * set di_garp to attrs for source dir. dinfop is only
8621 * set to NULL when compound fails.
8622 */
8623 if (dinfop)
8624 dinfo.di_garp =
8625 &res.array[11].nfs_resop4_u.opgetattr.ga_res;
8626 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL,
8627 dinfop);
8628 }
8629
8630 /*
8631 * Update the rnode with the new component name and args,
8632 * and if the file handle changed, also update it with the new fh.
8633 * This is only necessary if the target object has an rnode
8634 * entry and there is no need to create one for it.
8635 */
8636 resop = &res.array[8]; /* getfh new res */
8637 ngf_res = &resop->nfs_resop4_u.opgetfh;
8638
8639 /*
8640 * Update the path and filehandle for the renamed object.
8641 */
8642 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm);
8643
8644 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov);
8645
8646 if (res.status == NFS4_OK) {
8647 resop++; /* getattr res */
8648 e.error = nfs4_update_attrcache(res.status,
8649 &resop->nfs_resop4_u.opgetattr.ga_res,
8650 t, ovp, cr);
8651 }
8652
8653 out:
8654 kmem_free(argop, argoplist_size);
8655 if (resp)
8656 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8657 mutex_enter(&orp->r_statelock);
8658 orp->r_flags &= ~R4RECEXPFH;
8659 cv_broadcast(&orp->r_cv);
8660 mutex_exit(&orp->r_statelock);
8661
8662 return (e.error);
8663 }
8664
8665 /* ARGSUSED */
8666 static int
nfs4_mkdir(vnode_t * dvp,char * nm,struct vattr * va,vnode_t ** vpp,cred_t * cr,caller_context_t * ct,int flags,vsecattr_t * vsecp)8667 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr,
8668 caller_context_t *ct, int flags, vsecattr_t *vsecp)
8669 {
8670 int error;
8671 vnode_t *vp;
8672
8673 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
8674 return (EPERM);
8675 /*
8676 * As ".." has special meaning and rather than send a mkdir
8677 * over the wire to just let the server freak out, we just
8678 * short circuit it here and return EEXIST
8679 */
8680 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0')
8681 return (EEXIST);
8682
8683 /*
8684 * Decision to get the right gid and setgid bit of the
8685 * new directory is now made in call_nfs4_create_req.
8686 */
8687 va->va_mask |= AT_MODE;
8688 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR);
8689 if (error)
8690 return (error);
8691
8692 *vpp = vp;
8693 return (0);
8694 }
8695
8696
8697 /*
8698 * rmdir is using the same remove v4 op as does remove.
8699 * Remove requires that the current fh be the target directory.
8700 * After the operation, the current fh is unchanged.
8701 * The compound op structure is:
8702 * PUTFH(targetdir), REMOVE
8703 */
8704 /*ARGSUSED4*/
8705 static int
nfs4_rmdir(vnode_t * dvp,char * nm,vnode_t * cdir,cred_t * cr,caller_context_t * ct,int flags)8706 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
8707 caller_context_t *ct, int flags)
8708 {
8709 int need_end_op = FALSE;
8710 COMPOUND4args_clnt args;
8711 COMPOUND4res_clnt res, *resp = NULL;
8712 REMOVE4res *rm_res;
8713 nfs_argop4 argop[3];
8714 nfs_resop4 *resop;
8715 vnode_t *vp;
8716 int doqueue;
8717 mntinfo4_t *mi;
8718 rnode4_t *drp;
8719 bool_t needrecov = FALSE;
8720 nfs4_recov_state_t recov_state;
8721 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8722 dirattr_info_t dinfo, *dinfop;
8723
8724 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
8725 return (EPERM);
8726 /*
8727 * As ".." has special meaning and rather than send a rmdir
8728 * over the wire to just let the server freak out, we just
8729 * short circuit it here and return EEXIST
8730 */
8731 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0')
8732 return (EEXIST);
8733
8734 drp = VTOR4(dvp);
8735 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
8736 return (EINTR);
8737
8738 /*
8739 * Attempt to prevent a rmdir(".") from succeeding.
8740 */
8741 e.error = nfs4lookup(dvp, nm, &vp, cr, 0);
8742 if (e.error) {
8743 nfs_rw_exit(&drp->r_rwlock);
8744 return (e.error);
8745 }
8746 if (vp == cdir) {
8747 VN_RELE(vp);
8748 nfs_rw_exit(&drp->r_rwlock);
8749 return (EINVAL);
8750 }
8751
8752 /*
8753 * Since nfsv4 remove op works on both files and directories,
8754 * check that the removed object is indeed a directory.
8755 */
8756 if (vp->v_type != VDIR) {
8757 VN_RELE(vp);
8758 nfs_rw_exit(&drp->r_rwlock);
8759 return (ENOTDIR);
8760 }
8761
8762 /*
8763 * First just remove the entry from the name cache, as it
8764 * is most likely an entry for this vp.
8765 */
8766 dnlc_remove(dvp, nm);
8767
8768 /*
8769 * If there vnode reference count is greater than one, then
8770 * there may be additional references in the DNLC which will
8771 * need to be purged. First, trying removing the entry for
8772 * the parent directory and see if that removes the additional
8773 * reference(s). If that doesn't do it, then use dnlc_purge_vp
8774 * to completely remove any references to the directory which
8775 * might still exist in the DNLC.
8776 */
8777 if (vp->v_count > 1) {
8778 dnlc_remove(vp, "..");
8779 if (vp->v_count > 1)
8780 dnlc_purge_vp(vp);
8781 }
8782
8783 mi = VTOMI4(dvp);
8784 recov_state.rs_flags = 0;
8785 recov_state.rs_num_retry_despite_err = 0;
8786
8787 recov_retry:
8788 args.ctag = TAG_RMDIR;
8789
8790 /*
8791 * Rmdir ops: putfh dir; remove
8792 */
8793 args.array_len = 3;
8794 args.array = argop;
8795
8796 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
8797 if (e.error) {
8798 nfs_rw_exit(&drp->r_rwlock);
8799 return (e.error);
8800 }
8801 need_end_op = TRUE;
8802
8803 /* putfh directory */
8804 argop[0].argop = OP_CPUTFH;
8805 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
8806
8807 /* remove */
8808 argop[1].argop = OP_CREMOVE;
8809 argop[1].nfs_argop4_u.opcremove.ctarget = nm;
8810
8811 /* getattr (postop attrs for dir that contained removed dir) */
8812 argop[2].argop = OP_GETATTR;
8813 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8814 argop[2].nfs_argop4_u.opgetattr.mi = mi;
8815
8816 dinfo.di_time_call = gethrtime();
8817 doqueue = 1;
8818 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
8819
8820 PURGE_ATTRCACHE4(vp);
8821
8822 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8823 if (e.error) {
8824 PURGE_ATTRCACHE4(dvp);
8825 }
8826
8827 if (needrecov) {
8828 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL,
8829 NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
8830 if (!e.error)
8831 (void) xdr_free(xdr_COMPOUND4res_clnt,
8832 (caddr_t)&res);
8833
8834 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
8835 needrecov);
8836 need_end_op = FALSE;
8837 goto recov_retry;
8838 }
8839 }
8840
8841 if (!e.error) {
8842 resp = &res;
8843
8844 /*
8845 * Only return error if first 2 ops (OP_REMOVE or earlier)
8846 * failed.
8847 */
8848 if (res.status != NFS4_OK && res.array_len <= 2) {
8849 e.error = geterrno4(res.status);
8850 PURGE_ATTRCACHE4(dvp);
8851 nfs4_end_op(VTOMI4(dvp), dvp, NULL,
8852 &recov_state, needrecov);
8853 need_end_op = FALSE;
8854 nfs4_purge_stale_fh(e.error, dvp, cr);
8855 /*
8856 * System V defines rmdir to return EEXIST, not
8857 * ENOTEMPTY if the directory is not empty. Over
8858 * the wire, the error is NFSERR_ENOTEMPTY which
8859 * geterrno4 maps to ENOTEMPTY.
8860 */
8861 if (e.error == ENOTEMPTY)
8862 e.error = EEXIST;
8863 } else {
8864 resop = &res.array[1]; /* remove res */
8865 rm_res = &resop->nfs_resop4_u.opremove;
8866
8867 if (res.status == NFS4_OK) {
8868 resop = &res.array[2]; /* dir attrs */
8869 dinfo.di_garp =
8870 &resop->nfs_resop4_u.opgetattr.ga_res;
8871 dinfo.di_cred = cr;
8872 dinfop = &dinfo;
8873 } else
8874 dinfop = NULL;
8875
8876 /* Update dir attribute, readdir and dnlc caches */
8877 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL,
8878 dinfop);
8879
8880 /* destroy rddir cache for dir that was removed */
8881 if (VTOR4(vp)->r_dir != NULL)
8882 nfs4_purge_rddir_cache(vp);
8883 }
8884 }
8885
8886 if (need_end_op)
8887 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
8888
8889 nfs_rw_exit(&drp->r_rwlock);
8890
8891 if (resp)
8892 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8893
8894 if (e.error == 0) {
8895 vnode_t *tvp;
8896 rnode4_t *trp;
8897 trp = VTOR4(vp);
8898 tvp = vp;
8899 if (IS_SHADOW(vp, trp))
8900 tvp = RTOV4(trp);
8901 vnevent_rmdir(tvp, dvp, nm, ct);
8902 }
8903
8904 VN_RELE(vp);
8905
8906 return (e.error);
8907 }
8908
8909 /* ARGSUSED */
8910 static int
nfs4_symlink(vnode_t * dvp,char * lnm,struct vattr * tva,char * tnm,cred_t * cr,caller_context_t * ct,int flags)8911 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr,
8912 caller_context_t *ct, int flags)
8913 {
8914 int error;
8915 vnode_t *vp;
8916 rnode4_t *rp;
8917 char *contents;
8918 mntinfo4_t *mi = VTOMI4(dvp);
8919
8920 if (nfs_zone() != mi->mi_zone)
8921 return (EPERM);
8922 if (!(mi->mi_flags & MI4_SYMLINK))
8923 return (EOPNOTSUPP);
8924
8925 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK);
8926 if (error)
8927 return (error);
8928
8929 ASSERT(nfs4_consistent_type(vp));
8930 rp = VTOR4(vp);
8931 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) {
8932
8933 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP);
8934
8935 if (contents != NULL) {
8936 mutex_enter(&rp->r_statelock);
8937 if (rp->r_symlink.contents == NULL) {
8938 rp->r_symlink.len = strlen(tnm);
8939 bcopy(tnm, contents, rp->r_symlink.len);
8940 rp->r_symlink.contents = contents;
8941 rp->r_symlink.size = MAXPATHLEN;
8942 mutex_exit(&rp->r_statelock);
8943 } else {
8944 mutex_exit(&rp->r_statelock);
8945 kmem_free((void *)contents, MAXPATHLEN);
8946 }
8947 }
8948 }
8949 VN_RELE(vp);
8950
8951 return (error);
8952 }
8953
8954
8955 /*
8956 * Read directory entries.
8957 * There are some weird things to look out for here. The uio_loffset
8958 * field is either 0 or it is the offset returned from a previous
8959 * readdir. It is an opaque value used by the server to find the
8960 * correct directory block to read. The count field is the number
8961 * of blocks to read on the server. This is advisory only, the server
8962 * may return only one block's worth of entries. Entries may be compressed
8963 * on the server.
8964 */
8965 /* ARGSUSED */
8966 static int
nfs4_readdir(vnode_t * vp,struct uio * uiop,cred_t * cr,int * eofp,caller_context_t * ct,int flags)8967 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
8968 caller_context_t *ct, int flags)
8969 {
8970 int error;
8971 uint_t count;
8972 rnode4_t *rp;
8973 rddir4_cache *rdc;
8974 rddir4_cache *rrdc;
8975
8976 if (nfs_zone() != VTOMI4(vp)->mi_zone)
8977 return (EIO);
8978 rp = VTOR4(vp);
8979
8980 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
8981
8982 /*
8983 * Make sure that the directory cache is valid.
8984 */
8985 if (rp->r_dir != NULL) {
8986 if (nfs_disable_rddir_cache != 0) {
8987 /*
8988 * Setting nfs_disable_rddir_cache in /etc/system
8989 * allows interoperability with servers that do not
8990 * properly update the attributes of directories.
8991 * Any cached information gets purged before an
8992 * access is made to it.
8993 */
8994 nfs4_purge_rddir_cache(vp);
8995 }
8996
8997 error = nfs4_validate_caches(vp, cr);
8998 if (error)
8999 return (error);
9000 }
9001
9002 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE);
9003
9004 /*
9005 * Short circuit last readdir which always returns 0 bytes.
9006 * This can be done after the directory has been read through
9007 * completely at least once. This will set r_direof which
9008 * can be used to find the value of the last cookie.
9009 */
9010 mutex_enter(&rp->r_statelock);
9011 if (rp->r_direof != NULL &&
9012 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) {
9013 mutex_exit(&rp->r_statelock);
9014 #ifdef DEBUG
9015 nfs4_readdir_cache_shorts++;
9016 #endif
9017 if (eofp)
9018 *eofp = 1;
9019 return (0);
9020 }
9021
9022 /*
9023 * Look for a cache entry. Cache entries are identified
9024 * by the NFS cookie value and the byte count requested.
9025 */
9026 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count);
9027
9028 /*
9029 * If rdc is NULL then the lookup resulted in an unrecoverable error.
9030 */
9031 if (rdc == NULL) {
9032 mutex_exit(&rp->r_statelock);
9033 return (EINTR);
9034 }
9035
9036 /*
9037 * Check to see if we need to fill this entry in.
9038 */
9039 if (rdc->flags & RDDIRREQ) {
9040 rdc->flags &= ~RDDIRREQ;
9041 rdc->flags |= RDDIR;
9042 mutex_exit(&rp->r_statelock);
9043
9044 /*
9045 * Do the readdir.
9046 */
9047 nfs4readdir(vp, rdc, cr);
9048
9049 /*
9050 * Reacquire the lock, so that we can continue
9051 */
9052 mutex_enter(&rp->r_statelock);
9053 /*
9054 * The entry is now complete
9055 */
9056 rdc->flags &= ~RDDIR;
9057 }
9058
9059 ASSERT(!(rdc->flags & RDDIR));
9060
9061 /*
9062 * If an error occurred while attempting
9063 * to fill the cache entry, mark the entry invalid and
9064 * just return the error.
9065 */
9066 if (rdc->error) {
9067 error = rdc->error;
9068 rdc->flags |= RDDIRREQ;
9069 rddir4_cache_rele(rp, rdc);
9070 mutex_exit(&rp->r_statelock);
9071 return (error);
9072 }
9073
9074 /*
9075 * The cache entry is complete and good,
9076 * copyout the dirent structs to the calling
9077 * thread.
9078 */
9079 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop);
9080
9081 /*
9082 * If no error occurred during the copyout,
9083 * update the offset in the uio struct to
9084 * contain the value of the next NFS 4 cookie
9085 * and set the eof value appropriately.
9086 */
9087 if (!error) {
9088 uiop->uio_loffset = rdc->nfs4_ncookie;
9089 if (eofp)
9090 *eofp = rdc->eof;
9091 }
9092
9093 /*
9094 * Decide whether to do readahead. Don't if we
9095 * have already read to the end of directory.
9096 */
9097 if (rdc->eof) {
9098 /*
9099 * Make the entry the direof only if it is cached
9100 */
9101 if (rdc->flags & RDDIRCACHED)
9102 rp->r_direof = rdc;
9103 rddir4_cache_rele(rp, rdc);
9104 mutex_exit(&rp->r_statelock);
9105 return (error);
9106 }
9107
9108 /* Determine if a readdir readahead should be done */
9109 if (!(rp->r_flags & R4LOOKUP)) {
9110 rddir4_cache_rele(rp, rdc);
9111 mutex_exit(&rp->r_statelock);
9112 return (error);
9113 }
9114
9115 /*
9116 * Now look for a readahead entry.
9117 *
9118 * Check to see whether we found an entry for the readahead.
9119 * If so, we don't need to do anything further, so free the new
9120 * entry if one was allocated. Otherwise, allocate a new entry, add
9121 * it to the cache, and then initiate an asynchronous readdir
9122 * operation to fill it.
9123 */
9124 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count);
9125
9126 /*
9127 * A readdir cache entry could not be obtained for the readahead. In
9128 * this case we skip the readahead and return.
9129 */
9130 if (rrdc == NULL) {
9131 rddir4_cache_rele(rp, rdc);
9132 mutex_exit(&rp->r_statelock);
9133 return (error);
9134 }
9135
9136 /*
9137 * Check to see if we need to fill this entry in.
9138 */
9139 if (rrdc->flags & RDDIRREQ) {
9140 rrdc->flags &= ~RDDIRREQ;
9141 rrdc->flags |= RDDIR;
9142 rddir4_cache_rele(rp, rdc);
9143 mutex_exit(&rp->r_statelock);
9144 #ifdef DEBUG
9145 nfs4_readdir_readahead++;
9146 #endif
9147 /*
9148 * Do the readdir.
9149 */
9150 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir);
9151 return (error);
9152 }
9153
9154 rddir4_cache_rele(rp, rrdc);
9155 rddir4_cache_rele(rp, rdc);
9156 mutex_exit(&rp->r_statelock);
9157 return (error);
9158 }
9159
9160 static int
do_nfs4readdir(vnode_t * vp,rddir4_cache * rdc,cred_t * cr)9161 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr)
9162 {
9163 int error;
9164 rnode4_t *rp;
9165
9166 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
9167
9168 rp = VTOR4(vp);
9169
9170 /*
9171 * Obtain the readdir results for the caller.
9172 */
9173 nfs4readdir(vp, rdc, cr);
9174
9175 mutex_enter(&rp->r_statelock);
9176 /*
9177 * The entry is now complete
9178 */
9179 rdc->flags &= ~RDDIR;
9180
9181 error = rdc->error;
9182 if (error)
9183 rdc->flags |= RDDIRREQ;
9184 rddir4_cache_rele(rp, rdc);
9185 mutex_exit(&rp->r_statelock);
9186
9187 return (error);
9188 }
9189
9190 /*
9191 * Read directory entries.
9192 * There are some weird things to look out for here. The uio_loffset
9193 * field is either 0 or it is the offset returned from a previous
9194 * readdir. It is an opaque value used by the server to find the
9195 * correct directory block to read. The count field is the number
9196 * of blocks to read on the server. This is advisory only, the server
9197 * may return only one block's worth of entries. Entries may be compressed
9198 * on the server.
9199 *
9200 * Generates the following compound request:
9201 * 1. If readdir offset is zero and no dnlc entry for parent exists,
9202 * must include a Lookupp as well. In this case, send:
9203 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr }
9204 * 2. Otherwise just do: { Putfh <fh>; Readdir }
9205 *
9206 * Get complete attributes and filehandles for entries if this is the
9207 * first read of the directory. Otherwise, just get fileid's.
9208 */
9209 static void
nfs4readdir(vnode_t * vp,rddir4_cache * rdc,cred_t * cr)9210 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr)
9211 {
9212 COMPOUND4args_clnt args;
9213 COMPOUND4res_clnt res;
9214 READDIR4args *rargs;
9215 READDIR4res_clnt *rd_res;
9216 bitmap4 rd_bitsval;
9217 nfs_argop4 argop[5];
9218 nfs_resop4 *resop;
9219 rnode4_t *rp = VTOR4(vp);
9220 mntinfo4_t *mi = VTOMI4(vp);
9221 int doqueue;
9222 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */
9223 vnode_t *dvp;
9224 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie;
9225 int num_ops, res_opcnt;
9226 bool_t needrecov = FALSE;
9227 nfs4_recov_state_t recov_state;
9228 hrtime_t t;
9229 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
9230
9231 ASSERT(nfs_zone() == mi->mi_zone);
9232 ASSERT(rdc->flags & RDDIR);
9233 ASSERT(rdc->entries == NULL);
9234
9235 /*
9236 * If rp were a stub, it should have triggered and caused
9237 * a mount for us to get this far.
9238 */
9239 ASSERT(!RP_ISSTUB(rp));
9240
9241 num_ops = 2;
9242 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) {
9243 /*
9244 * Since nfsv4 readdir may not return entries for "." and "..",
9245 * the client must recreate them:
9246 * To find the correct nodeid, do the following:
9247 * For current node, get nodeid from dnlc.
9248 * - if current node is rootvp, set pnodeid to nodeid.
9249 * - else if parent is in the dnlc, get its nodeid from there.
9250 * - else add LOOKUPP+GETATTR to compound.
9251 */
9252 nodeid = rp->r_attr.va_nodeid;
9253 if (vp->v_flag & VROOT) {
9254 pnodeid = nodeid; /* root of mount point */
9255 } else {
9256 dvp = dnlc_lookup(vp, "..");
9257 if (dvp != NULL && dvp != DNLC_NO_VNODE) {
9258 /* parent in dnlc cache - no need for otw */
9259 pnodeid = VTOR4(dvp)->r_attr.va_nodeid;
9260 } else {
9261 /*
9262 * parent not in dnlc cache,
9263 * do lookupp to get its id
9264 */
9265 num_ops = 5;
9266 pnodeid = 0; /* set later by getattr parent */
9267 }
9268 if (dvp)
9269 VN_RELE(dvp);
9270 }
9271 }
9272 recov_state.rs_flags = 0;
9273 recov_state.rs_num_retry_despite_err = 0;
9274
9275 /* Save the original mount point security flavor */
9276 (void) save_mnt_secinfo(mi->mi_curr_serv);
9277
9278 recov_retry:
9279 args.ctag = TAG_READDIR;
9280
9281 args.array = argop;
9282 args.array_len = num_ops;
9283
9284 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9285 &recov_state, NULL)) {
9286 /*
9287 * If readdir a node that is a stub for a crossed mount point,
9288 * keep the original secinfo flavor for the current file
9289 * system, not the crossed one.
9290 */
9291 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9292 rdc->error = e.error;
9293 return;
9294 }
9295
9296 /*
9297 * Determine which attrs to request for dirents. This code
9298 * must be protected by nfs4_start/end_fop because of r_server
9299 * (which will change during failover recovery).
9300 *
9301 */
9302 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) {
9303 /*
9304 * Get all vattr attrs plus filehandle and rdattr_error
9305 */
9306 rd_bitsval = NFS4_VATTR_MASK |
9307 FATTR4_RDATTR_ERROR_MASK |
9308 FATTR4_FILEHANDLE_MASK;
9309
9310 if (rp->r_flags & R4READDIRWATTR) {
9311 mutex_enter(&rp->r_statelock);
9312 rp->r_flags &= ~R4READDIRWATTR;
9313 mutex_exit(&rp->r_statelock);
9314 }
9315 } else {
9316 servinfo4_t *svp = rp->r_server;
9317
9318 /*
9319 * Already read directory. Use readdir with
9320 * no attrs (except for mounted_on_fileid) for updates.
9321 */
9322 rd_bitsval = FATTR4_RDATTR_ERROR_MASK;
9323
9324 /*
9325 * request mounted on fileid if supported, else request
9326 * fileid. maybe we should verify that fileid is supported
9327 * and request something else if not.
9328 */
9329 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
9330 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK)
9331 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK;
9332 nfs_rw_exit(&svp->sv_lock);
9333 }
9334
9335 /* putfh directory fh */
9336 argop[0].argop = OP_CPUTFH;
9337 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
9338
9339 argop[1].argop = OP_READDIR;
9340 rargs = &argop[1].nfs_argop4_u.opreaddir;
9341 /*
9342 * 1 and 2 are reserved for client "." and ".." entry offset.
9343 * cookie 0 should be used over-the-wire to start reading at
9344 * the beginning of the directory excluding "." and "..".
9345 */
9346 if (rdc->nfs4_cookie == 0 ||
9347 rdc->nfs4_cookie == 1 ||
9348 rdc->nfs4_cookie == 2) {
9349 rargs->cookie = (nfs_cookie4)0;
9350 rargs->cookieverf = 0;
9351 } else {
9352 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie;
9353 mutex_enter(&rp->r_statelock);
9354 rargs->cookieverf = rp->r_cookieverf4;
9355 mutex_exit(&rp->r_statelock);
9356 }
9357 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize);
9358 rargs->maxcount = mi->mi_tsize;
9359 rargs->attr_request = rd_bitsval;
9360 rargs->rdc = rdc;
9361 rargs->dvp = vp;
9362 rargs->mi = mi;
9363 rargs->cr = cr;
9364
9365
9366 /*
9367 * If count < than the minimum required, we return no entries
9368 * and fail with EINVAL
9369 */
9370 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) {
9371 rdc->error = EINVAL;
9372 goto out;
9373 }
9374
9375 if (args.array_len == 5) {
9376 /*
9377 * Add lookupp and getattr for parent nodeid.
9378 */
9379 argop[2].argop = OP_LOOKUPP;
9380
9381 argop[3].argop = OP_GETFH;
9382
9383 /* getattr parent */
9384 argop[4].argop = OP_GETATTR;
9385 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
9386 argop[4].nfs_argop4_u.opgetattr.mi = mi;
9387 }
9388
9389 doqueue = 1;
9390
9391 if (mi->mi_io_kstats) {
9392 mutex_enter(&mi->mi_lock);
9393 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
9394 mutex_exit(&mi->mi_lock);
9395 }
9396
9397 /* capture the time of this call */
9398 rargs->t = t = gethrtime();
9399
9400 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
9401
9402 if (mi->mi_io_kstats) {
9403 mutex_enter(&mi->mi_lock);
9404 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
9405 mutex_exit(&mi->mi_lock);
9406 }
9407
9408 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
9409
9410 /*
9411 * If RPC error occurred and it isn't an error that
9412 * triggers recovery, then go ahead and fail now.
9413 */
9414 if (e.error != 0 && !needrecov) {
9415 rdc->error = e.error;
9416 goto out;
9417 }
9418
9419 if (needrecov) {
9420 bool_t abort;
9421
9422 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
9423 "nfs4readdir: initiating recovery.\n"));
9424
9425 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
9426 NULL, OP_READDIR, NULL, NULL, NULL);
9427 if (abort == FALSE) {
9428 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9429 &recov_state, needrecov);
9430 if (!e.error)
9431 (void) xdr_free(xdr_COMPOUND4res_clnt,
9432 (caddr_t)&res);
9433 if (rdc->entries != NULL) {
9434 kmem_free(rdc->entries, rdc->entlen);
9435 rdc->entries = NULL;
9436 }
9437 goto recov_retry;
9438 }
9439
9440 if (e.error != 0) {
9441 rdc->error = e.error;
9442 goto out;
9443 }
9444
9445 /* fall through for res.status case */
9446 }
9447
9448 res_opcnt = res.array_len;
9449
9450 /*
9451 * If compound failed first 2 ops (PUTFH+READDIR), then return
9452 * failure here. Subsequent ops are for filling out dot-dot
9453 * dirent, and if they fail, we still want to give the caller
9454 * the dirents returned by (the successful) READDIR op, so we need
9455 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR).
9456 *
9457 * One example where PUTFH+READDIR ops would succeed but
9458 * LOOKUPP+GETATTR would fail would be a dir that has r perm
9459 * but lacks x. In this case, a POSIX server's VOP_READDIR
9460 * would succeed; however, VOP_LOOKUP(..) would fail since no
9461 * x perm. We need to come up with a non-vendor-specific way
9462 * for a POSIX server to return d_ino from dotdot's dirent if
9463 * client only requests mounted_on_fileid, and just say the
9464 * LOOKUPP succeeded and fill out the GETATTR. However, if
9465 * client requested any mandatory attrs, server would be required
9466 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR
9467 * for dotdot.
9468 */
9469
9470 if (res.status) {
9471 if (res_opcnt <= 2) {
9472 e.error = geterrno4(res.status);
9473 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9474 &recov_state, needrecov);
9475 nfs4_purge_stale_fh(e.error, vp, cr);
9476 rdc->error = e.error;
9477 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
9478 if (rdc->entries != NULL) {
9479 kmem_free(rdc->entries, rdc->entlen);
9480 rdc->entries = NULL;
9481 }
9482 /*
9483 * If readdir a node that is a stub for a
9484 * crossed mount point, keep the original
9485 * secinfo flavor for the current file system,
9486 * not the crossed one.
9487 */
9488 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9489 return;
9490 }
9491 }
9492
9493 resop = &res.array[1]; /* readdir res */
9494 rd_res = &resop->nfs_resop4_u.opreaddirclnt;
9495
9496 mutex_enter(&rp->r_statelock);
9497 rp->r_cookieverf4 = rd_res->cookieverf;
9498 mutex_exit(&rp->r_statelock);
9499
9500 /*
9501 * For "." and ".." entries
9502 * e.g.
9503 * seek(cookie=0) -> "." entry with d_off = 1
9504 * seek(cookie=1) -> ".." entry with d_off = 2
9505 */
9506 if (cookie == (nfs_cookie4) 0) {
9507 if (rd_res->dotp)
9508 rd_res->dotp->d_ino = nodeid;
9509 if (rd_res->dotdotp)
9510 rd_res->dotdotp->d_ino = pnodeid;
9511 }
9512 if (cookie == (nfs_cookie4) 1) {
9513 if (rd_res->dotdotp)
9514 rd_res->dotdotp->d_ino = pnodeid;
9515 }
9516
9517
9518 /* LOOKUPP+GETATTR attemped */
9519 if (args.array_len == 5 && rd_res->dotdotp) {
9520 if (res.status == NFS4_OK && res_opcnt == 5) {
9521 nfs_fh4 *fhp;
9522 nfs4_sharedfh_t *sfhp;
9523 vnode_t *pvp;
9524 nfs4_ga_res_t *garp;
9525
9526 resop++; /* lookupp */
9527 resop++; /* getfh */
9528 fhp = &resop->nfs_resop4_u.opgetfh.object;
9529
9530 resop++; /* getattr of parent */
9531
9532 /*
9533 * First, take care of finishing the
9534 * readdir results.
9535 */
9536 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
9537 /*
9538 * The d_ino of .. must be the inode number
9539 * of the mounted filesystem.
9540 */
9541 if (garp->n4g_va.va_mask & AT_NODEID)
9542 rd_res->dotdotp->d_ino =
9543 garp->n4g_va.va_nodeid;
9544
9545
9546 /*
9547 * Next, create the ".." dnlc entry
9548 */
9549 sfhp = sfh4_get(fhp, mi);
9550 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) {
9551 dnlc_update(vp, "..", pvp);
9552 VN_RELE(pvp);
9553 }
9554 sfh4_rele(&sfhp);
9555 }
9556 }
9557
9558 if (mi->mi_io_kstats) {
9559 mutex_enter(&mi->mi_lock);
9560 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
9561 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen;
9562 mutex_exit(&mi->mi_lock);
9563 }
9564
9565 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
9566
9567 out:
9568 /*
9569 * If readdir a node that is a stub for a crossed mount point,
9570 * keep the original secinfo flavor for the current file system,
9571 * not the crossed one.
9572 */
9573 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9574
9575 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov);
9576 }
9577
9578
9579 static int
nfs4_bio(struct buf * bp,stable_how4 * stab_comm,cred_t * cr,bool_t readahead)9580 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead)
9581 {
9582 rnode4_t *rp = VTOR4(bp->b_vp);
9583 int count;
9584 int error;
9585 cred_t *cred_otw = NULL;
9586 offset_t offset;
9587 nfs4_open_stream_t *osp = NULL;
9588 bool_t first_time = TRUE; /* first time getting otw cred */
9589 bool_t last_time = FALSE; /* last time getting otw cred */
9590
9591 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone);
9592
9593 DTRACE_IO1(start, struct buf *, bp);
9594 offset = ldbtob(bp->b_lblkno);
9595
9596 if (bp->b_flags & B_READ) {
9597 read_again:
9598 /*
9599 * Releases the osp, if it is provided.
9600 * Puts a hold on the cred_otw and the new osp (if found).
9601 */
9602 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
9603 &first_time, &last_time);
9604 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr,
9605 offset, bp->b_bcount, &bp->b_resid, cred_otw,
9606 readahead, NULL);
9607 crfree(cred_otw);
9608 if (!error) {
9609 if (bp->b_resid) {
9610 /*
9611 * Didn't get it all because we hit EOF,
9612 * zero all the memory beyond the EOF.
9613 */
9614 /* bzero(rdaddr + */
9615 bzero(bp->b_un.b_addr +
9616 bp->b_bcount - bp->b_resid, bp->b_resid);
9617 }
9618 mutex_enter(&rp->r_statelock);
9619 if (bp->b_resid == bp->b_bcount &&
9620 offset >= rp->r_size) {
9621 /*
9622 * We didn't read anything at all as we are
9623 * past EOF. Return an error indicator back
9624 * but don't destroy the pages (yet).
9625 */
9626 error = NFS_EOF;
9627 }
9628 mutex_exit(&rp->r_statelock);
9629 } else if (error == EACCES && last_time == FALSE) {
9630 goto read_again;
9631 }
9632 } else {
9633 if (!(rp->r_flags & R4STALE)) {
9634 write_again:
9635 /*
9636 * Releases the osp, if it is provided.
9637 * Puts a hold on the cred_otw and the new
9638 * osp (if found).
9639 */
9640 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
9641 &first_time, &last_time);
9642 mutex_enter(&rp->r_statelock);
9643 count = MIN(bp->b_bcount, rp->r_size - offset);
9644 mutex_exit(&rp->r_statelock);
9645 if (count < 0)
9646 cmn_err(CE_PANIC, "nfs4_bio: write count < 0");
9647 #ifdef DEBUG
9648 if (count == 0) {
9649 zoneid_t zoneid = getzoneid();
9650
9651 zcmn_err(zoneid, CE_WARN,
9652 "nfs4_bio: zero length write at %lld",
9653 offset);
9654 zcmn_err(zoneid, CE_CONT, "flags=0x%x, "
9655 "b_bcount=%ld, file size=%lld",
9656 rp->r_flags, (long)bp->b_bcount,
9657 rp->r_size);
9658 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh);
9659 if (nfs4_bio_do_stop)
9660 debug_enter("nfs4_bio");
9661 }
9662 #endif
9663 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset,
9664 count, cred_otw, stab_comm);
9665 if (error == EACCES && last_time == FALSE) {
9666 crfree(cred_otw);
9667 goto write_again;
9668 }
9669 bp->b_error = error;
9670 if (error && error != EINTR &&
9671 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) {
9672 /*
9673 * Don't print EDQUOT errors on the console.
9674 * Don't print asynchronous EACCES errors.
9675 * Don't print EFBIG errors.
9676 * Print all other write errors.
9677 */
9678 if (error != EDQUOT && error != EFBIG &&
9679 (error != EACCES ||
9680 !(bp->b_flags & B_ASYNC)))
9681 nfs4_write_error(bp->b_vp,
9682 error, cred_otw);
9683 /*
9684 * Update r_error and r_flags as appropriate.
9685 * If the error was ESTALE, then mark the
9686 * rnode as not being writeable and save
9687 * the error status. Otherwise, save any
9688 * errors which occur from asynchronous
9689 * page invalidations. Any errors occurring
9690 * from other operations should be saved
9691 * by the caller.
9692 */
9693 mutex_enter(&rp->r_statelock);
9694 if (error == ESTALE) {
9695 rp->r_flags |= R4STALE;
9696 if (!rp->r_error)
9697 rp->r_error = error;
9698 } else if (!rp->r_error &&
9699 (bp->b_flags &
9700 (B_INVAL|B_FORCE|B_ASYNC)) ==
9701 (B_INVAL|B_FORCE|B_ASYNC)) {
9702 rp->r_error = error;
9703 }
9704 mutex_exit(&rp->r_statelock);
9705 }
9706 crfree(cred_otw);
9707 } else {
9708 error = rp->r_error;
9709 /*
9710 * A close may have cleared r_error, if so,
9711 * propagate ESTALE error return properly
9712 */
9713 if (error == 0)
9714 error = ESTALE;
9715 }
9716 }
9717
9718 if (error != 0 && error != NFS_EOF)
9719 bp->b_flags |= B_ERROR;
9720
9721 if (osp)
9722 open_stream_rele(osp, rp);
9723
9724 DTRACE_IO1(done, struct buf *, bp);
9725
9726 return (error);
9727 }
9728
9729 /* ARGSUSED */
9730 int
nfs4_fid(vnode_t * vp,fid_t * fidp,caller_context_t * ct)9731 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
9732 {
9733 return (EREMOTE);
9734 }
9735
9736 /* ARGSUSED2 */
9737 int
nfs4_rwlock(vnode_t * vp,int write_lock,caller_context_t * ctp)9738 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
9739 {
9740 rnode4_t *rp = VTOR4(vp);
9741
9742 if (!write_lock) {
9743 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
9744 return (V_WRITELOCK_FALSE);
9745 }
9746
9747 if ((rp->r_flags & R4DIRECTIO) ||
9748 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) {
9749 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
9750 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp))
9751 return (V_WRITELOCK_FALSE);
9752 nfs_rw_exit(&rp->r_rwlock);
9753 }
9754
9755 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE);
9756 return (V_WRITELOCK_TRUE);
9757 }
9758
9759 /* ARGSUSED */
9760 void
nfs4_rwunlock(vnode_t * vp,int write_lock,caller_context_t * ctp)9761 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
9762 {
9763 rnode4_t *rp = VTOR4(vp);
9764
9765 nfs_rw_exit(&rp->r_rwlock);
9766 }
9767
9768 /* ARGSUSED */
9769 static int
nfs4_seek(vnode_t * vp,offset_t ooff,offset_t * noffp,caller_context_t * ct)9770 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
9771 {
9772 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9773 return (EIO);
9774
9775 /*
9776 * Because we stuff the readdir cookie into the offset field
9777 * someone may attempt to do an lseek with the cookie which
9778 * we want to succeed.
9779 */
9780 if (vp->v_type == VDIR)
9781 return (0);
9782 if (*noffp < 0)
9783 return (EINVAL);
9784 return (0);
9785 }
9786
9787
9788 /*
9789 * Return all the pages from [off..off+len) in file
9790 */
9791 /* ARGSUSED */
9792 static int
nfs4_getpage(vnode_t * vp,offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr,caller_context_t * ct)9793 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
9794 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
9795 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
9796 {
9797 rnode4_t *rp;
9798 int error;
9799 mntinfo4_t *mi;
9800
9801 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9802 return (EIO);
9803 rp = VTOR4(vp);
9804 if (IS_SHADOW(vp, rp))
9805 vp = RTOV4(rp);
9806
9807 if (vp->v_flag & VNOMAP)
9808 return (ENOSYS);
9809
9810 if (protp != NULL)
9811 *protp = PROT_ALL;
9812
9813 /*
9814 * Now validate that the caches are up to date.
9815 */
9816 if (error = nfs4_validate_caches(vp, cr))
9817 return (error);
9818
9819 mi = VTOMI4(vp);
9820 retry:
9821 mutex_enter(&rp->r_statelock);
9822
9823 /*
9824 * Don't create dirty pages faster than they
9825 * can be cleaned so that the system doesn't
9826 * get imbalanced. If the async queue is
9827 * maxed out, then wait for it to drain before
9828 * creating more dirty pages. Also, wait for
9829 * any threads doing pagewalks in the vop_getattr
9830 * entry points so that they don't block for
9831 * long periods.
9832 */
9833 if (rw == S_CREATE) {
9834 while ((mi->mi_max_threads != 0 &&
9835 rp->r_awcount > 2 * mi->mi_max_threads) ||
9836 rp->r_gcount > 0)
9837 cv_wait(&rp->r_cv, &rp->r_statelock);
9838 }
9839
9840 /*
9841 * If we are getting called as a side effect of an nfs_write()
9842 * operation the local file size might not be extended yet.
9843 * In this case we want to be able to return pages of zeroes.
9844 */
9845 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) {
9846 NFS4_DEBUG(nfs4_pageio_debug,
9847 (CE_NOTE, "getpage beyond EOF: off=%lld, "
9848 "len=%llu, size=%llu, attrsize =%llu", off,
9849 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size));
9850 mutex_exit(&rp->r_statelock);
9851 return (EFAULT); /* beyond EOF */
9852 }
9853
9854 mutex_exit(&rp->r_statelock);
9855
9856 error = pvn_getpages(nfs4_getapage, vp, off, len, protp,
9857 pl, plsz, seg, addr, rw, cr);
9858 NFS4_DEBUG(nfs4_pageio_debug && error,
9859 (CE_NOTE, "getpages error %d; off=%lld, len=%lld",
9860 error, off, (u_longlong_t)len));
9861
9862 switch (error) {
9863 case NFS_EOF:
9864 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE);
9865 goto retry;
9866 case ESTALE:
9867 nfs4_purge_stale_fh(error, vp, cr);
9868 }
9869
9870 return (error);
9871 }
9872
9873 /*
9874 * Called from pvn_getpages to get a particular page.
9875 */
9876 /* ARGSUSED */
9877 static int
nfs4_getapage(vnode_t * vp,u_offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr)9878 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp,
9879 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
9880 enum seg_rw rw, cred_t *cr)
9881 {
9882 rnode4_t *rp;
9883 uint_t bsize;
9884 struct buf *bp;
9885 page_t *pp;
9886 u_offset_t lbn;
9887 u_offset_t io_off;
9888 u_offset_t blkoff;
9889 u_offset_t rablkoff;
9890 size_t io_len;
9891 uint_t blksize;
9892 int error;
9893 int readahead;
9894 int readahead_issued = 0;
9895 int ra_window; /* readahead window */
9896 page_t *pagefound;
9897 page_t *savepp;
9898
9899 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9900 return (EIO);
9901
9902 rp = VTOR4(vp);
9903 ASSERT(!IS_SHADOW(vp, rp));
9904 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
9905
9906 reread:
9907 bp = NULL;
9908 pp = NULL;
9909 pagefound = NULL;
9910
9911 if (pl != NULL)
9912 pl[0] = NULL;
9913
9914 error = 0;
9915 lbn = off / bsize;
9916 blkoff = lbn * bsize;
9917
9918 /*
9919 * Queueing up the readahead before doing the synchronous read
9920 * results in a significant increase in read throughput because
9921 * of the increased parallelism between the async threads and
9922 * the process context.
9923 */
9924 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 &&
9925 rw != S_CREATE &&
9926 !(vp->v_flag & VNOCACHE)) {
9927 mutex_enter(&rp->r_statelock);
9928
9929 /*
9930 * Calculate the number of readaheads to do.
9931 * a) No readaheads at offset = 0.
9932 * b) Do maximum(nfs4_nra) readaheads when the readahead
9933 * window is closed.
9934 * c) Do readaheads between 1 to (nfs4_nra - 1) depending
9935 * upon how far the readahead window is open or close.
9936 * d) No readaheads if rp->r_nextr is not within the scope
9937 * of the readahead window (random i/o).
9938 */
9939
9940 if (off == 0)
9941 readahead = 0;
9942 else if (blkoff == rp->r_nextr)
9943 readahead = nfs4_nra;
9944 else if (rp->r_nextr > blkoff &&
9945 ((ra_window = (rp->r_nextr - blkoff) / bsize)
9946 <= (nfs4_nra - 1)))
9947 readahead = nfs4_nra - ra_window;
9948 else
9949 readahead = 0;
9950
9951 rablkoff = rp->r_nextr;
9952 while (readahead > 0 && rablkoff + bsize < rp->r_size) {
9953 mutex_exit(&rp->r_statelock);
9954 if (nfs4_async_readahead(vp, rablkoff + bsize,
9955 addr + (rablkoff + bsize - off),
9956 seg, cr, nfs4_readahead) < 0) {
9957 mutex_enter(&rp->r_statelock);
9958 break;
9959 }
9960 readahead--;
9961 rablkoff += bsize;
9962 /*
9963 * Indicate that we did a readahead so
9964 * readahead offset is not updated
9965 * by the synchronous read below.
9966 */
9967 readahead_issued = 1;
9968 mutex_enter(&rp->r_statelock);
9969 /*
9970 * set readahead offset to
9971 * offset of last async readahead
9972 * request.
9973 */
9974 rp->r_nextr = rablkoff;
9975 }
9976 mutex_exit(&rp->r_statelock);
9977 }
9978
9979 again:
9980 if ((pagefound = page_exists(vp, off)) == NULL) {
9981 if (pl == NULL) {
9982 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr,
9983 nfs4_readahead);
9984 } else if (rw == S_CREATE) {
9985 /*
9986 * Block for this page is not allocated, or the offset
9987 * is beyond the current allocation size, or we're
9988 * allocating a swap slot and the page was not found,
9989 * so allocate it and return a zero page.
9990 */
9991 if ((pp = page_create_va(vp, off,
9992 PAGESIZE, PG_WAIT, seg, addr)) == NULL)
9993 cmn_err(CE_PANIC, "nfs4_getapage: page_create");
9994 io_len = PAGESIZE;
9995 mutex_enter(&rp->r_statelock);
9996 rp->r_nextr = off + PAGESIZE;
9997 mutex_exit(&rp->r_statelock);
9998 } else {
9999 /*
10000 * Need to go to server to get a block
10001 */
10002 mutex_enter(&rp->r_statelock);
10003 if (blkoff < rp->r_size &&
10004 blkoff + bsize > rp->r_size) {
10005 /*
10006 * If less than a block left in
10007 * file read less than a block.
10008 */
10009 if (rp->r_size <= off) {
10010 /*
10011 * Trying to access beyond EOF,
10012 * set up to get at least one page.
10013 */
10014 blksize = off + PAGESIZE - blkoff;
10015 } else
10016 blksize = rp->r_size - blkoff;
10017 } else if ((off == 0) ||
10018 (off != rp->r_nextr && !readahead_issued)) {
10019 blksize = PAGESIZE;
10020 blkoff = off; /* block = page here */
10021 } else
10022 blksize = bsize;
10023 mutex_exit(&rp->r_statelock);
10024
10025 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
10026 &io_len, blkoff, blksize, 0);
10027
10028 /*
10029 * Some other thread has entered the page,
10030 * so just use it.
10031 */
10032 if (pp == NULL)
10033 goto again;
10034
10035 /*
10036 * Now round the request size up to page boundaries.
10037 * This ensures that the entire page will be
10038 * initialized to zeroes if EOF is encountered.
10039 */
10040 io_len = ptob(btopr(io_len));
10041
10042 bp = pageio_setup(pp, io_len, vp, B_READ);
10043 ASSERT(bp != NULL);
10044
10045 /*
10046 * pageio_setup should have set b_addr to 0. This
10047 * is correct since we want to do I/O on a page
10048 * boundary. bp_mapin will use this addr to calculate
10049 * an offset, and then set b_addr to the kernel virtual
10050 * address it allocated for us.
10051 */
10052 ASSERT(bp->b_un.b_addr == 0);
10053
10054 bp->b_edev = 0;
10055 bp->b_dev = 0;
10056 bp->b_lblkno = lbtodb(io_off);
10057 bp->b_file = vp;
10058 bp->b_offset = (offset_t)off;
10059 bp_mapin(bp);
10060
10061 /*
10062 * If doing a write beyond what we believe is EOF,
10063 * don't bother trying to read the pages from the
10064 * server, we'll just zero the pages here. We
10065 * don't check that the rw flag is S_WRITE here
10066 * because some implementations may attempt a
10067 * read access to the buffer before copying data.
10068 */
10069 mutex_enter(&rp->r_statelock);
10070 if (io_off >= rp->r_size && seg == segkmap) {
10071 mutex_exit(&rp->r_statelock);
10072 bzero(bp->b_un.b_addr, io_len);
10073 } else {
10074 mutex_exit(&rp->r_statelock);
10075 error = nfs4_bio(bp, NULL, cr, FALSE);
10076 }
10077
10078 /*
10079 * Unmap the buffer before freeing it.
10080 */
10081 bp_mapout(bp);
10082 pageio_done(bp);
10083
10084 savepp = pp;
10085 do {
10086 pp->p_fsdata = C_NOCOMMIT;
10087 } while ((pp = pp->p_next) != savepp);
10088
10089 if (error == NFS_EOF) {
10090 /*
10091 * If doing a write system call just return
10092 * zeroed pages, else user tried to get pages
10093 * beyond EOF, return error. We don't check
10094 * that the rw flag is S_WRITE here because
10095 * some implementations may attempt a read
10096 * access to the buffer before copying data.
10097 */
10098 if (seg == segkmap)
10099 error = 0;
10100 else
10101 error = EFAULT;
10102 }
10103
10104 if (!readahead_issued && !error) {
10105 mutex_enter(&rp->r_statelock);
10106 rp->r_nextr = io_off + io_len;
10107 mutex_exit(&rp->r_statelock);
10108 }
10109 }
10110 }
10111
10112 out:
10113 if (pl == NULL)
10114 return (error);
10115
10116 if (error) {
10117 if (pp != NULL)
10118 pvn_read_done(pp, B_ERROR);
10119 return (error);
10120 }
10121
10122 if (pagefound) {
10123 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
10124
10125 /*
10126 * Page exists in the cache, acquire the appropriate lock.
10127 * If this fails, start all over again.
10128 */
10129 if ((pp = page_lookup(vp, off, se)) == NULL) {
10130 #ifdef DEBUG
10131 nfs4_lostpage++;
10132 #endif
10133 goto reread;
10134 }
10135 pl[0] = pp;
10136 pl[1] = NULL;
10137 return (0);
10138 }
10139
10140 if (pp != NULL)
10141 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
10142
10143 return (error);
10144 }
10145
10146 static void
nfs4_readahead(vnode_t * vp,u_offset_t blkoff,caddr_t addr,struct seg * seg,cred_t * cr)10147 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg,
10148 cred_t *cr)
10149 {
10150 int error;
10151 page_t *pp;
10152 u_offset_t io_off;
10153 size_t io_len;
10154 struct buf *bp;
10155 uint_t bsize, blksize;
10156 rnode4_t *rp = VTOR4(vp);
10157 page_t *savepp;
10158
10159 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
10160
10161 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
10162
10163 mutex_enter(&rp->r_statelock);
10164 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) {
10165 /*
10166 * If less than a block left in file read less
10167 * than a block.
10168 */
10169 blksize = rp->r_size - blkoff;
10170 } else
10171 blksize = bsize;
10172 mutex_exit(&rp->r_statelock);
10173
10174 pp = pvn_read_kluster(vp, blkoff, segkmap, addr,
10175 &io_off, &io_len, blkoff, blksize, 1);
10176 /*
10177 * The isra flag passed to the kluster function is 1, we may have
10178 * gotten a return value of NULL for a variety of reasons (# of free
10179 * pages < minfree, someone entered the page on the vnode etc). In all
10180 * cases, we want to punt on the readahead.
10181 */
10182 if (pp == NULL)
10183 return;
10184
10185 /*
10186 * Now round the request size up to page boundaries.
10187 * This ensures that the entire page will be
10188 * initialized to zeroes if EOF is encountered.
10189 */
10190 io_len = ptob(btopr(io_len));
10191
10192 bp = pageio_setup(pp, io_len, vp, B_READ);
10193 ASSERT(bp != NULL);
10194
10195 /*
10196 * pageio_setup should have set b_addr to 0. This is correct since
10197 * we want to do I/O on a page boundary. bp_mapin() will use this addr
10198 * to calculate an offset, and then set b_addr to the kernel virtual
10199 * address it allocated for us.
10200 */
10201 ASSERT(bp->b_un.b_addr == 0);
10202
10203 bp->b_edev = 0;
10204 bp->b_dev = 0;
10205 bp->b_lblkno = lbtodb(io_off);
10206 bp->b_file = vp;
10207 bp->b_offset = (offset_t)blkoff;
10208 bp_mapin(bp);
10209
10210 /*
10211 * If doing a write beyond what we believe is EOF, don't bother trying
10212 * to read the pages from the server, we'll just zero the pages here.
10213 * We don't check that the rw flag is S_WRITE here because some
10214 * implementations may attempt a read access to the buffer before
10215 * copying data.
10216 */
10217 mutex_enter(&rp->r_statelock);
10218 if (io_off >= rp->r_size && seg == segkmap) {
10219 mutex_exit(&rp->r_statelock);
10220 bzero(bp->b_un.b_addr, io_len);
10221 error = 0;
10222 } else {
10223 mutex_exit(&rp->r_statelock);
10224 error = nfs4_bio(bp, NULL, cr, TRUE);
10225 if (error == NFS_EOF)
10226 error = 0;
10227 }
10228
10229 /*
10230 * Unmap the buffer before freeing it.
10231 */
10232 bp_mapout(bp);
10233 pageio_done(bp);
10234
10235 savepp = pp;
10236 do {
10237 pp->p_fsdata = C_NOCOMMIT;
10238 } while ((pp = pp->p_next) != savepp);
10239
10240 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ);
10241
10242 /*
10243 * In case of error set readahead offset
10244 * to the lowest offset.
10245 * pvn_read_done() calls VN_DISPOSE to destroy the pages
10246 */
10247 if (error && rp->r_nextr > io_off) {
10248 mutex_enter(&rp->r_statelock);
10249 if (rp->r_nextr > io_off)
10250 rp->r_nextr = io_off;
10251 mutex_exit(&rp->r_statelock);
10252 }
10253 }
10254
10255 /*
10256 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE}
10257 * If len == 0, do from off to EOF.
10258 *
10259 * The normal cases should be len == 0 && off == 0 (entire vp list) or
10260 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
10261 * (from pageout).
10262 */
10263 /* ARGSUSED */
10264 static int
nfs4_putpage(vnode_t * vp,offset_t off,size_t len,int flags,cred_t * cr,caller_context_t * ct)10265 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
10266 caller_context_t *ct)
10267 {
10268 int error;
10269 rnode4_t *rp;
10270
10271 ASSERT(cr != NULL);
10272
10273 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone)
10274 return (EIO);
10275
10276 rp = VTOR4(vp);
10277 if (IS_SHADOW(vp, rp))
10278 vp = RTOV4(rp);
10279
10280 /*
10281 * XXX - Why should this check be made here?
10282 */
10283 if (vp->v_flag & VNOMAP)
10284 return (ENOSYS);
10285
10286 if (len == 0 && !(flags & B_INVAL) &&
10287 (vp->v_vfsp->vfs_flag & VFS_RDONLY))
10288 return (0);
10289
10290 mutex_enter(&rp->r_statelock);
10291 rp->r_count++;
10292 mutex_exit(&rp->r_statelock);
10293 error = nfs4_putpages(vp, off, len, flags, cr);
10294 mutex_enter(&rp->r_statelock);
10295 rp->r_count--;
10296 cv_broadcast(&rp->r_cv);
10297 mutex_exit(&rp->r_statelock);
10298
10299 return (error);
10300 }
10301
10302 /*
10303 * Write out a single page, possibly klustering adjacent dirty pages.
10304 */
10305 int
nfs4_putapage(vnode_t * vp,page_t * pp,u_offset_t * offp,size_t * lenp,int flags,cred_t * cr)10306 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
10307 int flags, cred_t *cr)
10308 {
10309 u_offset_t io_off;
10310 u_offset_t lbn_off;
10311 u_offset_t lbn;
10312 size_t io_len;
10313 uint_t bsize;
10314 int error;
10315 rnode4_t *rp;
10316
10317 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY));
10318 ASSERT(pp != NULL);
10319 ASSERT(cr != NULL);
10320 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone);
10321
10322 rp = VTOR4(vp);
10323 ASSERT(rp->r_count > 0);
10324 ASSERT(!IS_SHADOW(vp, rp));
10325
10326 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
10327 lbn = pp->p_offset / bsize;
10328 lbn_off = lbn * bsize;
10329
10330 /*
10331 * Find a kluster that fits in one block, or in
10332 * one page if pages are bigger than blocks. If
10333 * there is less file space allocated than a whole
10334 * page, we'll shorten the i/o request below.
10335 */
10336 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off,
10337 roundup(bsize, PAGESIZE), flags);
10338
10339 /*
10340 * pvn_write_kluster shouldn't have returned a page with offset
10341 * behind the original page we were given. Verify that.
10342 */
10343 ASSERT((pp->p_offset / bsize) >= lbn);
10344
10345 /*
10346 * Now pp will have the list of kept dirty pages marked for
10347 * write back. It will also handle invalidation and freeing
10348 * of pages that are not dirty. Check for page length rounding
10349 * problems.
10350 */
10351 if (io_off + io_len > lbn_off + bsize) {
10352 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE);
10353 io_len = lbn_off + bsize - io_off;
10354 }
10355 /*
10356 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a
10357 * consistent value of r_size. R4MODINPROGRESS is set in writerp4().
10358 * When R4MODINPROGRESS is set it indicates that a uiomove() is in
10359 * progress and the r_size has not been made consistent with the
10360 * new size of the file. When the uiomove() completes the r_size is
10361 * updated and the R4MODINPROGRESS flag is cleared.
10362 *
10363 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a
10364 * consistent value of r_size. Without this handshaking, it is
10365 * possible that nfs4_bio() picks up the old value of r_size
10366 * before the uiomove() in writerp4() completes. This will result
10367 * in the write through nfs4_bio() being dropped.
10368 *
10369 * More precisely, there is a window between the time the uiomove()
10370 * completes and the time the r_size is updated. If a VOP_PUTPAGE()
10371 * operation intervenes in this window, the page will be picked up,
10372 * because it is dirty (it will be unlocked, unless it was
10373 * pagecreate'd). When the page is picked up as dirty, the dirty
10374 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is
10375 * checked. This will still be the old size. Therefore the page will
10376 * not be written out. When segmap_release() calls VOP_PUTPAGE(),
10377 * the page will be found to be clean and the write will be dropped.
10378 */
10379 if (rp->r_flags & R4MODINPROGRESS) {
10380 mutex_enter(&rp->r_statelock);
10381 if ((rp->r_flags & R4MODINPROGRESS) &&
10382 rp->r_modaddr + MAXBSIZE > io_off &&
10383 rp->r_modaddr < io_off + io_len) {
10384 page_t *plist;
10385 /*
10386 * A write is in progress for this region of the file.
10387 * If we did not detect R4MODINPROGRESS here then this
10388 * path through nfs_putapage() would eventually go to
10389 * nfs4_bio() and may not write out all of the data
10390 * in the pages. We end up losing data. So we decide
10391 * to set the modified bit on each page in the page
10392 * list and mark the rnode with R4DIRTY. This write
10393 * will be restarted at some later time.
10394 */
10395 plist = pp;
10396 while (plist != NULL) {
10397 pp = plist;
10398 page_sub(&plist, pp);
10399 hat_setmod(pp);
10400 page_io_unlock(pp);
10401 page_unlock(pp);
10402 }
10403 rp->r_flags |= R4DIRTY;
10404 mutex_exit(&rp->r_statelock);
10405 if (offp)
10406 *offp = io_off;
10407 if (lenp)
10408 *lenp = io_len;
10409 return (0);
10410 }
10411 mutex_exit(&rp->r_statelock);
10412 }
10413
10414 if (flags & B_ASYNC) {
10415 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr,
10416 nfs4_sync_putapage);
10417 } else
10418 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr);
10419
10420 if (offp)
10421 *offp = io_off;
10422 if (lenp)
10423 *lenp = io_len;
10424 return (error);
10425 }
10426
10427 static int
nfs4_sync_putapage(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr)10428 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
10429 int flags, cred_t *cr)
10430 {
10431 int error;
10432 rnode4_t *rp;
10433
10434 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
10435
10436 flags |= B_WRITE;
10437
10438 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
10439
10440 rp = VTOR4(vp);
10441
10442 if ((error == ENOSPC || error == EDQUOT || error == EFBIG ||
10443 error == EACCES) &&
10444 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) {
10445 if (!(rp->r_flags & R4OUTOFSPACE)) {
10446 mutex_enter(&rp->r_statelock);
10447 rp->r_flags |= R4OUTOFSPACE;
10448 mutex_exit(&rp->r_statelock);
10449 }
10450 flags |= B_ERROR;
10451 pvn_write_done(pp, flags);
10452 /*
10453 * If this was not an async thread, then try again to
10454 * write out the pages, but this time, also destroy
10455 * them whether or not the write is successful. This
10456 * will prevent memory from filling up with these
10457 * pages and destroying them is the only alternative
10458 * if they can't be written out.
10459 *
10460 * Don't do this if this is an async thread because
10461 * when the pages are unlocked in pvn_write_done,
10462 * some other thread could have come along, locked
10463 * them, and queued for an async thread. It would be
10464 * possible for all of the async threads to be tied
10465 * up waiting to lock the pages again and they would
10466 * all already be locked and waiting for an async
10467 * thread to handle them. Deadlock.
10468 */
10469 if (!(flags & B_ASYNC)) {
10470 error = nfs4_putpage(vp, io_off, io_len,
10471 B_INVAL | B_FORCE, cr, NULL);
10472 }
10473 } else {
10474 if (error)
10475 flags |= B_ERROR;
10476 else if (rp->r_flags & R4OUTOFSPACE) {
10477 mutex_enter(&rp->r_statelock);
10478 rp->r_flags &= ~R4OUTOFSPACE;
10479 mutex_exit(&rp->r_statelock);
10480 }
10481 pvn_write_done(pp, flags);
10482 if (freemem < desfree)
10483 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr,
10484 NFS4_WRITE_NOWAIT);
10485 }
10486
10487 return (error);
10488 }
10489
10490 #ifdef DEBUG
10491 int nfs4_force_open_before_mmap = 0;
10492 #endif
10493
10494 /* ARGSUSED */
10495 static int
nfs4_map(vnode_t * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)10496 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
10497 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
10498 caller_context_t *ct)
10499 {
10500 struct segvn_crargs vn_a;
10501 int error = 0;
10502 rnode4_t *rp = VTOR4(vp);
10503 mntinfo4_t *mi = VTOMI4(vp);
10504
10505 if (nfs_zone() != VTOMI4(vp)->mi_zone)
10506 return (EIO);
10507
10508 if (vp->v_flag & VNOMAP)
10509 return (ENOSYS);
10510
10511 if (off < 0 || (off + len) < 0)
10512 return (ENXIO);
10513
10514 if (vp->v_type != VREG)
10515 return (ENODEV);
10516
10517 /*
10518 * If the file is delegated to the client don't do anything.
10519 * If the file is not delegated, then validate the data cache.
10520 */
10521 mutex_enter(&rp->r_statev4_lock);
10522 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) {
10523 mutex_exit(&rp->r_statev4_lock);
10524 error = nfs4_validate_caches(vp, cr);
10525 if (error)
10526 return (error);
10527 } else {
10528 mutex_exit(&rp->r_statev4_lock);
10529 }
10530
10531 /*
10532 * Check to see if the vnode is currently marked as not cachable.
10533 * This means portions of the file are locked (through VOP_FRLOCK).
10534 * In this case the map request must be refused. We use
10535 * rp->r_lkserlock to avoid a race with concurrent lock requests.
10536 *
10537 * Atomically increment r_inmap after acquiring r_rwlock. The
10538 * idea here is to acquire r_rwlock to block read/write and
10539 * not to protect r_inmap. r_inmap will inform nfs4_read/write()
10540 * that we are in nfs4_map(). Now, r_rwlock is acquired in order
10541 * and we can prevent the deadlock that would have occurred
10542 * when nfs4_addmap() would have acquired it out of order.
10543 *
10544 * Since we are not protecting r_inmap by any lock, we do not
10545 * hold any lock when we decrement it. We atomically decrement
10546 * r_inmap after we release r_lkserlock.
10547 */
10548
10549 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR4(vp)))
10550 return (EINTR);
10551 atomic_inc_uint(&rp->r_inmap);
10552 nfs_rw_exit(&rp->r_rwlock);
10553
10554 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) {
10555 atomic_dec_uint(&rp->r_inmap);
10556 return (EINTR);
10557 }
10558
10559
10560 if (vp->v_flag & VNOCACHE) {
10561 error = EAGAIN;
10562 goto done;
10563 }
10564
10565 /*
10566 * Don't allow concurrent locks and mapping if mandatory locking is
10567 * enabled.
10568 */
10569 if (flk_has_remote_locks(vp)) {
10570 struct vattr va;
10571 va.va_mask = AT_MODE;
10572 error = nfs4getattr(vp, &va, cr);
10573 if (error != 0)
10574 goto done;
10575 if (MANDLOCK(vp, va.va_mode)) {
10576 error = EAGAIN;
10577 goto done;
10578 }
10579 }
10580
10581 /*
10582 * It is possible that the rnode has a lost lock request that we
10583 * are still trying to recover, and that the request conflicts with
10584 * this map request.
10585 *
10586 * An alternative approach would be for nfs4_safemap() to consider
10587 * queued lock requests when deciding whether to set or clear
10588 * VNOCACHE. This would require the frlock code path to call
10589 * nfs4_safemap() after enqueing a lost request.
10590 */
10591 if (nfs4_map_lost_lock_conflict(vp)) {
10592 error = EAGAIN;
10593 goto done;
10594 }
10595
10596 as_rangelock(as);
10597 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
10598 if (error != 0) {
10599 as_rangeunlock(as);
10600 goto done;
10601 }
10602
10603 if (vp->v_type == VREG) {
10604 /*
10605 * We need to retrieve the open stream
10606 */
10607 nfs4_open_stream_t *osp = NULL;
10608 nfs4_open_owner_t *oop = NULL;
10609
10610 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
10611 if (oop != NULL) {
10612 /* returns with 'os_sync_lock' held */
10613 osp = find_open_stream(oop, rp);
10614 open_owner_rele(oop);
10615 }
10616 if (osp == NULL) {
10617 #ifdef DEBUG
10618 if (nfs4_force_open_before_mmap) {
10619 error = EIO;
10620 goto done;
10621 }
10622 #endif
10623 /* returns with 'os_sync_lock' held */
10624 error = open_and_get_osp(vp, cr, &osp);
10625 if (osp == NULL) {
10626 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE,
10627 "nfs4_map: we tried to OPEN the file "
10628 "but again no osp, so fail with EIO"));
10629 goto done;
10630 }
10631 }
10632
10633 if (osp->os_failed_reopen) {
10634 mutex_exit(&osp->os_sync_lock);
10635 open_stream_rele(osp, rp);
10636 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE,
10637 "nfs4_map: os_failed_reopen set on "
10638 "osp %p, cr %p, rp %s", (void *)osp,
10639 (void *)cr, rnode4info(rp)));
10640 error = EIO;
10641 goto done;
10642 }
10643 mutex_exit(&osp->os_sync_lock);
10644 open_stream_rele(osp, rp);
10645 }
10646
10647 vn_a.vp = vp;
10648 vn_a.offset = off;
10649 vn_a.type = (flags & MAP_TYPE);
10650 vn_a.prot = (uchar_t)prot;
10651 vn_a.maxprot = (uchar_t)maxprot;
10652 vn_a.flags = (flags & ~MAP_TYPE);
10653 vn_a.cred = cr;
10654 vn_a.amp = NULL;
10655 vn_a.szc = 0;
10656 vn_a.lgrp_mem_policy_flags = 0;
10657
10658 error = as_map(as, *addrp, len, segvn_create, &vn_a);
10659 as_rangeunlock(as);
10660
10661 done:
10662 nfs_rw_exit(&rp->r_lkserlock);
10663 atomic_dec_uint(&rp->r_inmap);
10664 return (error);
10665 }
10666
10667 /*
10668 * We're most likely dealing with a kernel module that likes to READ
10669 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets
10670 * officially OPEN the file to create the necessary client state
10671 * for bookkeeping of os_mmap_read/write counts.
10672 *
10673 * Since VOP_MAP only passes in a pointer to the vnode rather than
10674 * a double pointer, we can't handle the case where nfs4open_otw()
10675 * returns a different vnode than the one passed into VOP_MAP (since
10676 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case,
10677 * we return NULL and let nfs4_map() fail. Note: the only case where
10678 * this should happen is if the file got removed and replaced with the
10679 * same name on the server (in addition to the fact that we're trying
10680 * to VOP_MAP withouth VOP_OPENing the file in the first place).
10681 */
10682 static int
open_and_get_osp(vnode_t * map_vp,cred_t * cr,nfs4_open_stream_t ** ospp)10683 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp)
10684 {
10685 rnode4_t *rp, *drp;
10686 vnode_t *dvp, *open_vp;
10687 char file_name[MAXNAMELEN];
10688 int just_created;
10689 nfs4_open_stream_t *osp;
10690 nfs4_open_owner_t *oop;
10691 int error;
10692
10693 *ospp = NULL;
10694 open_vp = map_vp;
10695
10696 rp = VTOR4(open_vp);
10697 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0)
10698 return (error);
10699 drp = VTOR4(dvp);
10700
10701 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) {
10702 VN_RELE(dvp);
10703 return (EINTR);
10704 }
10705
10706 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) {
10707 nfs_rw_exit(&drp->r_rwlock);
10708 VN_RELE(dvp);
10709 return (error);
10710 }
10711
10712 mutex_enter(&rp->r_statev4_lock);
10713 if (rp->created_v4) {
10714 rp->created_v4 = 0;
10715 mutex_exit(&rp->r_statev4_lock);
10716
10717 dnlc_update(dvp, file_name, open_vp);
10718 /* This is needed so we don't bump the open ref count */
10719 just_created = 1;
10720 } else {
10721 mutex_exit(&rp->r_statev4_lock);
10722 just_created = 0;
10723 }
10724
10725 VN_HOLD(map_vp);
10726
10727 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0,
10728 just_created);
10729 if (error) {
10730 nfs_rw_exit(&drp->r_rwlock);
10731 VN_RELE(dvp);
10732 VN_RELE(map_vp);
10733 return (error);
10734 }
10735
10736 nfs_rw_exit(&drp->r_rwlock);
10737 VN_RELE(dvp);
10738
10739 /*
10740 * If nfs4open_otw() returned a different vnode then "undo"
10741 * the open and return failure to the caller.
10742 */
10743 if (!VN_CMP(open_vp, map_vp)) {
10744 nfs4_error_t e;
10745
10746 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: "
10747 "open returned a different vnode"));
10748 /*
10749 * If there's an error, ignore it,
10750 * and let VOP_INACTIVE handle it.
10751 */
10752 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e,
10753 CLOSE_NORM, 0, 0, 0);
10754 VN_RELE(map_vp);
10755 return (EIO);
10756 }
10757
10758 VN_RELE(map_vp);
10759
10760 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp));
10761 if (!oop) {
10762 nfs4_error_t e;
10763
10764 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: "
10765 "no open owner"));
10766 /*
10767 * If there's an error, ignore it,
10768 * and let VOP_INACTIVE handle it.
10769 */
10770 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e,
10771 CLOSE_NORM, 0, 0, 0);
10772 return (EIO);
10773 }
10774 osp = find_open_stream(oop, rp);
10775 open_owner_rele(oop);
10776 *ospp = osp;
10777 return (0);
10778 }
10779
10780 /*
10781 * Please be aware that when this function is called, the address space write
10782 * a_lock is held. Do not put over the wire calls in this function.
10783 */
10784 /* ARGSUSED */
10785 static int
nfs4_addmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)10786 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
10787 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
10788 caller_context_t *ct)
10789 {
10790 rnode4_t *rp;
10791 int error = 0;
10792 mntinfo4_t *mi;
10793
10794 mi = VTOMI4(vp);
10795 rp = VTOR4(vp);
10796
10797 if (nfs_zone() != mi->mi_zone)
10798 return (EIO);
10799 if (vp->v_flag & VNOMAP)
10800 return (ENOSYS);
10801
10802 /*
10803 * Don't need to update the open stream first, since this
10804 * mmap can't add any additional share access that isn't
10805 * already contained in the open stream (for the case where we
10806 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't
10807 * take into account os_mmap_read[write] counts).
10808 */
10809 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len));
10810
10811 if (vp->v_type == VREG) {
10812 /*
10813 * We need to retrieve the open stream and update the counts.
10814 * If there is no open stream here, something is wrong.
10815 */
10816 nfs4_open_stream_t *osp = NULL;
10817 nfs4_open_owner_t *oop = NULL;
10818
10819 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
10820 if (oop != NULL) {
10821 /* returns with 'os_sync_lock' held */
10822 osp = find_open_stream(oop, rp);
10823 open_owner_rele(oop);
10824 }
10825 if (osp == NULL) {
10826 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE,
10827 "nfs4_addmap: we should have an osp"
10828 "but we don't, so fail with EIO"));
10829 error = EIO;
10830 goto out;
10831 }
10832
10833 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p,"
10834 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot));
10835
10836 /*
10837 * Update the map count in the open stream.
10838 * This is necessary in the case where we
10839 * open/mmap/close/, then the server reboots, and we
10840 * attempt to reopen. If the mmap doesn't add share
10841 * access then we send an invalid reopen with
10842 * access = NONE.
10843 *
10844 * We need to specifically check each PROT_* so a mmap
10845 * call of (PROT_WRITE | PROT_EXEC) will ensure us both
10846 * read and write access. A simple comparison of prot
10847 * to ~PROT_WRITE to determine read access is insufficient
10848 * since prot can be |= with PROT_USER, etc.
10849 */
10850
10851 /*
10852 * Unless we're MAP_SHARED, no sense in adding os_mmap_write
10853 */
10854 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE))
10855 osp->os_mmap_write += btopr(len);
10856 if (maxprot & PROT_READ)
10857 osp->os_mmap_read += btopr(len);
10858 if (maxprot & PROT_EXEC)
10859 osp->os_mmap_read += btopr(len);
10860 /*
10861 * Ensure that os_mmap_read gets incremented, even if
10862 * maxprot were to look like PROT_NONE.
10863 */
10864 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) &&
10865 !(maxprot & PROT_EXEC))
10866 osp->os_mmap_read += btopr(len);
10867 osp->os_mapcnt += btopr(len);
10868 mutex_exit(&osp->os_sync_lock);
10869 open_stream_rele(osp, rp);
10870 }
10871
10872 out:
10873 /*
10874 * If we got an error, then undo our
10875 * incrementing of 'r_mapcnt'.
10876 */
10877
10878 if (error) {
10879 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len));
10880 ASSERT(rp->r_mapcnt >= 0);
10881 }
10882 return (error);
10883 }
10884
10885 /* ARGSUSED */
10886 static int
nfs4_cmp(vnode_t * vp1,vnode_t * vp2,caller_context_t * ct)10887 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct)
10888 {
10889
10890 return (VTOR4(vp1) == VTOR4(vp2));
10891 }
10892
10893 /*
10894 * Data structure for nfs4_lkserlock_callback() function.
10895 */
10896 struct nfs4_lkserlock_callback_data {
10897 vnode_t *vp;
10898 int rc;
10899 };
10900
10901 /*
10902 * Callback function for reclock().
10903 */
10904 static callb_cpr_t *
nfs4_lkserlock_callback(flk_cb_when_t when,void * infop)10905 nfs4_lkserlock_callback(flk_cb_when_t when, void *infop)
10906 {
10907 struct nfs4_lkserlock_callback_data *dp =
10908 (struct nfs4_lkserlock_callback_data *)infop;
10909 rnode4_t *rp = VTOR4(dp->vp);
10910
10911 if (when == FLK_BEFORE_SLEEP)
10912 nfs_rw_exit(&rp->r_lkserlock);
10913 else
10914 dp->rc = nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER,
10915 INTR4(dp->vp));
10916
10917 return (NULL);
10918 }
10919
10920 /* ARGSUSED */
10921 static int
nfs4_frlock(vnode_t * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,struct flk_callback * flk_cbp,cred_t * cr,caller_context_t * ct)10922 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
10923 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
10924 caller_context_t *ct)
10925 {
10926 int rc = 0;
10927 rnode4_t *rp;
10928 int intr = INTR4(vp);
10929 nfs4_error_t e;
10930 int frcmd;
10931 struct lm_sysid *ls = NULL;
10932
10933 if (nfs_zone() != VTOMI4(vp)->mi_zone)
10934 return (EIO);
10935
10936 /* check for valid cmd parameter and set frcmd appropriately */
10937 switch (cmd) {
10938 case F_GETLK:
10939 frcmd = 0;
10940 break;
10941 case F_SETLK:
10942 frcmd = SETFLCK;
10943 break;
10944 case F_SETLKW:
10945 frcmd = SETFLCK | SLPFLCK;
10946 break;
10947 default:
10948 return (EINVAL);
10949 }
10950
10951 /*
10952 * If lock is relative to EOF, we need the newest length of the file.
10953 * Therefore invalidate the ATTR_CACHE.
10954 */
10955 if (bfp->l_whence == 2) /* SEEK_END */
10956 PURGE_ATTRCACHE4(vp);
10957
10958 /*
10959 * If the filesystem is mounted using local locking, pass the
10960 * request off to the local locking code.
10961 */
10962 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) {
10963 if (cmd == F_SETLK || cmd == F_SETLKW) {
10964 /*
10965 * For complete safety, we should be holding
10966 * r_lkserlock. However, we can't call
10967 * nfs4_safelock and then fs_frlock while
10968 * holding r_lkserlock, so just invoke
10969 * nfs4_safelock and expect that this will
10970 * catch enough of the cases.
10971 */
10972 if (!nfs4_safelock(vp, bfp, cr))
10973 return (EAGAIN);
10974 }
10975 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
10976 }
10977
10978 /*
10979 * Convert the offset. We need to do this to make sure our view of the
10980 * locking range is always the same through the rest of this function.
10981 * This is especially needed for bfp->l_whence == SEEK_END, because the
10982 * length of the file could change anytime and thus the locking range
10983 * would be a moving target for us.
10984 *
10985 * For the bfp->l_whence == SEEK_CUR case this is just a convenient
10986 * conversion to make the life easier for nfs4frlock().
10987 */
10988 rc = convoff(vp, bfp, 0, offset);
10989 if (rc != 0)
10990 return (rc);
10991
10992 if (bfp->l_type == F_UNLCK) {
10993 u_offset_t start, end;
10994
10995 /*
10996 * Shortcut for trivial case.
10997 */
10998 if (cmd == F_GETLK)
10999 return (rc);
11000
11001 /*
11002 * For every lock or unlock request we need to do two steps:
11003 * (un)register the local lock, and (un)register the lock at
11004 * the NFSv4 server. It is essential to make sure the lock
11005 * status registered at the server and registered locally is
11006 * same and never goes out of sync. This means that if one
11007 * step fails, the other one needs to be either skipped, or
11008 * reverted.
11009 *
11010 * For lock requests the situation is easy since a lock
11011 * registration can be reverted without any risk of data
11012 * corruption.
11013 *
11014 * The unlock requests cannot be reverted because once a lock
11015 * is unregistered the race window is open and some other
11016 * process could grab a conflicting lock. This means that once
11017 * the first step (the first lock unregistration) succeeded,
11018 * the second step cannot fail. The second step for the unlock
11019 * request is the local lock unregistration by the reclock()
11020 * call.
11021 *
11022 * The only way how the reclock() call for an unlock request
11023 * could fail is the invalid unlock range so we check it here,
11024 * before the lock is unregistered at NFSv4 server. This
11025 * duplicates the check done in the reclock() function.
11026 */
11027 rc = flk_convert_lock_data(vp, bfp, &start, &end, offset);
11028 if (rc != 0)
11029 return (rc);
11030 rc = flk_check_lock_data(start, end, MAXEND);
11031 if (rc != 0)
11032 return (rc);
11033
11034 intr = 0;
11035 }
11036
11037 /*
11038 * For F_SETLK and F_SETLKW we need to set sysid.
11039 */
11040 if (cmd == F_SETLK || cmd == F_SETLKW) {
11041 rc = nfs4frlock_get_sysid(&ls, vp, bfp);
11042 if (rc != 0)
11043 return (rc);
11044
11045 /*
11046 * Client locks are registerred locally by oring the sysid with
11047 * LM_SYSID_CLIENT. The server registers locks locally using
11048 * just the sysid. We need to distinguish between the two to
11049 * avoid collision in a case one machine is used as both client
11050 * and server.
11051 */
11052 bfp->l_sysid |= LM_SYSID_CLIENT;
11053 }
11054
11055 bfp->l_pid = curproc->p_pid;
11056
11057 rp = VTOR4(vp);
11058
11059 /*
11060 * Check whether the given lock request can proceed, given the
11061 * current file mappings.
11062 */
11063 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) {
11064 if (ls != NULL)
11065 lm_rel_sysid(ls);
11066 return (EINTR);
11067 }
11068 if (cmd == F_SETLK || cmd == F_SETLKW) {
11069 if (!nfs4_safelock(vp, bfp, cr)) {
11070 rc = EAGAIN;
11071 goto done;
11072 }
11073 }
11074
11075 /*
11076 * For query we will try to find a conflicting local lock first by
11077 * calling reclock().
11078 *
11079 * In a case this is a lock request we need to register it locally
11080 * first before we consult the NFSv4 server.
11081 */
11082 if (cmd == F_GETLK || bfp->l_type != F_UNLCK) {
11083 /*
11084 * Save l_type. This is needed in a case the query (F_GETLK)
11085 * founds no local lock and we need to consult the server to
11086 * find possible conflicting lock.
11087 */
11088 short saved_l_type = bfp->l_type;
11089
11090 /*
11091 * If we might sleep in reclock() we need to register a
11092 * callback to release the r_lkserlock during the sleep.
11093 */
11094 if ((frcmd & SLPFLCK) == 0) {
11095 rc = reclock(vp, bfp, frcmd, flag, 0, flk_cbp);
11096 } else {
11097 flk_callback_t callback;
11098 struct nfs4_lkserlock_callback_data callback_data =
11099 {vp, 0};
11100
11101 flk_add_callback(&callback, nfs4_lkserlock_callback,
11102 &callback_data, flk_cbp);
11103 rc = reclock(vp, bfp, frcmd, flag, 0, &callback);
11104 flk_del_callback(&callback);
11105
11106 if (callback_data.rc != 0) {
11107 /*
11108 * The nfs_rw_enter_sig() call in
11109 * nfs4_lkserlock_callback() failed.
11110 */
11111
11112 if (rc == 0) {
11113 /*
11114 * The reclock() call above succeeded
11115 * so we need to revert it.
11116 */
11117 bfp->l_type = F_UNLCK;
11118 rc = reclock(vp, bfp, frcmd, flag, 0,
11119 flk_cbp);
11120 /* The unlock cannot fail */
11121 ASSERT(rc == 0);
11122
11123 /*
11124 * We are here because we failed to
11125 * acquire r_lkserlock in
11126 * nfs4_lkserlock_callback() due to a
11127 * signal. Return the appropriate
11128 * error.
11129 */
11130 rc = EINTR;
11131 }
11132
11133 ASSERT(ls != NULL);
11134 lm_rel_sysid(ls);
11135
11136 return (rc);
11137 }
11138
11139 /*
11140 * We possibly released r_lkserlock in reclock() so
11141 * make sure it is still safe to lock the file.
11142 */
11143 if (!nfs4_safelock(vp, bfp, cr)) {
11144 rc = EAGAIN;
11145 goto revert;
11146 }
11147
11148 }
11149
11150 /*
11151 * If the reclock() call failed we are done and we will return
11152 * an error to the caller. Similarly, if we found a
11153 * conflicting lock registered locally we are done too. We do
11154 * not need to consult the server.
11155 */
11156 if ((rc != 0) || (cmd == F_GETLK && bfp->l_type != F_UNLCK))
11157 goto done;
11158
11159 /*
11160 * If this is a query (F_GETLK) and we didn't found any
11161 * conflicting local lock (otherwise we would just jump out
11162 * above) the original l_type got replaced by F_UNLCK. Restore
11163 * its value so we will ask the server with original l_type.
11164 */
11165 if (cmd == F_GETLK)
11166 bfp->l_type = saved_l_type;
11167 }
11168
11169 /*
11170 * Flush the cache after waiting for async I/O to finish. For new
11171 * locks, this is so that the process gets the latest bits from the
11172 * server. For unlocks, this is so that other clients see the
11173 * latest bits once the file has been unlocked. If currently dirty
11174 * pages can't be flushed, then don't allow a lock to be set. But
11175 * allow unlocks to succeed, to avoid having orphan locks on the
11176 * server.
11177 */
11178 if (cmd != F_GETLK) {
11179 mutex_enter(&rp->r_statelock);
11180 while (rp->r_count > 0) {
11181 if (intr) {
11182 klwp_t *lwp = ttolwp(curthread);
11183
11184 if (lwp != NULL)
11185 lwp->lwp_nostop++;
11186 if (cv_wait_sig(&rp->r_cv,
11187 &rp->r_statelock) == 0) {
11188 if (lwp != NULL)
11189 lwp->lwp_nostop--;
11190 rc = EINTR;
11191 break;
11192 }
11193 if (lwp != NULL)
11194 lwp->lwp_nostop--;
11195 } else
11196 cv_wait(&rp->r_cv, &rp->r_statelock);
11197 }
11198 mutex_exit(&rp->r_statelock);
11199 if (rc != 0) {
11200 ASSERT(bfp->l_type != F_UNLCK);
11201
11202 goto revert;
11203 }
11204
11205 rc = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct);
11206 if (rc != 0) {
11207 if (rc == ENOSPC || rc == EDQUOT) {
11208 mutex_enter(&rp->r_statelock);
11209 if (!rp->r_error)
11210 rp->r_error = rc;
11211 mutex_exit(&rp->r_statelock);
11212 }
11213
11214 /*
11215 * If this was a lock request, make sure it is
11216 * reverted.
11217 */
11218 if (bfp->l_type != F_UNLCK) {
11219 rc = ENOLCK;
11220 goto revert;
11221 }
11222 }
11223 }
11224
11225 /*
11226 * Call the lock manager to do the real work of contacting
11227 * the server and obtaining the lock.
11228 */
11229 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, cr, &e, NULL, NULL);
11230 rc = e.error;
11231
11232 if (rc == 0)
11233 nfs4_lockcompletion(vp, cmd);
11234
11235 revert:
11236 /*
11237 * If this is either successful unlock request or a lock request that
11238 * failed we should unregister/revert the local lock now.
11239 */
11240 if ((rc == 0 && cmd != F_GETLK && bfp->l_type == F_UNLCK) ||
11241 (rc != 0 && cmd != F_GETLK && bfp->l_type != F_UNLCK)) {
11242 int r;
11243
11244 bfp->l_type = F_UNLCK;
11245 r = reclock(vp, bfp, frcmd, flag, 0, flk_cbp);
11246 /* The unlock cannot fail */
11247 ASSERT(r == 0);
11248 }
11249
11250 done:
11251 nfs_rw_exit(&rp->r_lkserlock);
11252 if (ls != NULL)
11253 lm_rel_sysid(ls);
11254
11255 return (rc);
11256 }
11257
11258 /*
11259 * Free storage space associated with the specified vnode. The portion
11260 * to be freed is specified by bfp->l_start and bfp->l_len (already
11261 * normalized to a "whence" of 0).
11262 *
11263 * This is an experimental facility whose continued existence is not
11264 * guaranteed. Currently, we only support the special case
11265 * of l_len == 0, meaning free to end of file.
11266 */
11267 /* ARGSUSED */
11268 static int
nfs4_space(vnode_t * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,cred_t * cr,caller_context_t * ct)11269 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
11270 offset_t offset, cred_t *cr, caller_context_t *ct)
11271 {
11272 int error;
11273
11274 if (nfs_zone() != VTOMI4(vp)->mi_zone)
11275 return (EIO);
11276 ASSERT(vp->v_type == VREG);
11277 if (cmd != F_FREESP)
11278 return (EINVAL);
11279
11280 error = convoff(vp, bfp, 0, offset);
11281 if (!error) {
11282 ASSERT(bfp->l_start >= 0);
11283 if (bfp->l_len == 0) {
11284 struct vattr va;
11285
11286 va.va_mask = AT_SIZE;
11287 va.va_size = bfp->l_start;
11288 error = nfs4setattr(vp, &va, 0, cr, NULL);
11289
11290 if (error == 0 && bfp->l_start == 0)
11291 vnevent_truncate(vp, ct);
11292 } else
11293 error = EINVAL;
11294 }
11295
11296 return (error);
11297 }
11298
11299 /* ARGSUSED */
11300 int
nfs4_realvp(vnode_t * vp,vnode_t ** vpp,caller_context_t * ct)11301 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)
11302 {
11303 rnode4_t *rp;
11304 rp = VTOR4(vp);
11305
11306 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) {
11307 vp = RTOV4(rp);
11308 }
11309 *vpp = vp;
11310 return (0);
11311 }
11312
11313 /*
11314 * Setup and add an address space callback to do the work of the delmap call.
11315 * The callback will (and must be) deleted in the actual callback function.
11316 *
11317 * This is done in order to take care of the problem that we have with holding
11318 * the address space's a_lock for a long period of time (e.g. if the NFS server
11319 * is down). Callbacks will be executed in the address space code while the
11320 * a_lock is not held. Holding the address space's a_lock causes things such
11321 * as ps and fork to hang because they are trying to acquire this lock as well.
11322 */
11323 /* ARGSUSED */
11324 static int
nfs4_delmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uint_t prot,uint_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)11325 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
11326 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
11327 caller_context_t *ct)
11328 {
11329 int caller_found;
11330 int error;
11331 rnode4_t *rp;
11332 nfs4_delmap_args_t *dmapp;
11333 nfs4_delmapcall_t *delmap_call;
11334
11335 if (vp->v_flag & VNOMAP)
11336 return (ENOSYS);
11337
11338 /*
11339 * A process may not change zones if it has NFS pages mmap'ed
11340 * in, so we can't legitimately get here from the wrong zone.
11341 */
11342 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11343
11344 rp = VTOR4(vp);
11345
11346 /*
11347 * The way that the address space of this process deletes its mapping
11348 * of this file is via the following call chains:
11349 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap()
11350 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap()
11351 *
11352 * With the use of address space callbacks we are allowed to drop the
11353 * address space lock, a_lock, while executing the NFS operations that
11354 * need to go over the wire. Returning EAGAIN to the caller of this
11355 * function is what drives the execution of the callback that we add
11356 * below. The callback will be executed by the address space code
11357 * after dropping the a_lock. When the callback is finished, since
11358 * we dropped the a_lock, it must be re-acquired and segvn_unmap()
11359 * is called again on the same segment to finish the rest of the work
11360 * that needs to happen during unmapping.
11361 *
11362 * This action of calling back into the segment driver causes
11363 * nfs4_delmap() to get called again, but since the callback was
11364 * already executed at this point, it already did the work and there
11365 * is nothing left for us to do.
11366 *
11367 * To Summarize:
11368 * - The first time nfs4_delmap is called by the current thread is when
11369 * we add the caller associated with this delmap to the delmap caller
11370 * list, add the callback, and return EAGAIN.
11371 * - The second time in this call chain when nfs4_delmap is called we
11372 * will find this caller in the delmap caller list and realize there
11373 * is no more work to do thus removing this caller from the list and
11374 * returning the error that was set in the callback execution.
11375 */
11376 caller_found = nfs4_find_and_delete_delmapcall(rp, &error);
11377 if (caller_found) {
11378 /*
11379 * 'error' is from the actual delmap operations. To avoid
11380 * hangs, we need to handle the return of EAGAIN differently
11381 * since this is what drives the callback execution.
11382 * In this case, we don't want to return EAGAIN and do the
11383 * callback execution because there are none to execute.
11384 */
11385 if (error == EAGAIN)
11386 return (0);
11387 else
11388 return (error);
11389 }
11390
11391 /* current caller was not in the list */
11392 delmap_call = nfs4_init_delmapcall();
11393
11394 mutex_enter(&rp->r_statelock);
11395 list_insert_tail(&rp->r_indelmap, delmap_call);
11396 mutex_exit(&rp->r_statelock);
11397
11398 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP);
11399
11400 dmapp->vp = vp;
11401 dmapp->off = off;
11402 dmapp->addr = addr;
11403 dmapp->len = len;
11404 dmapp->prot = prot;
11405 dmapp->maxprot = maxprot;
11406 dmapp->flags = flags;
11407 dmapp->cr = cr;
11408 dmapp->caller = delmap_call;
11409
11410 error = as_add_callback(as, nfs4_delmap_callback, dmapp,
11411 AS_UNMAP_EVENT, addr, len, KM_SLEEP);
11412
11413 return (error ? error : EAGAIN);
11414 }
11415
11416 static nfs4_delmapcall_t *
nfs4_init_delmapcall()11417 nfs4_init_delmapcall()
11418 {
11419 nfs4_delmapcall_t *delmap_call;
11420
11421 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP);
11422 delmap_call->call_id = curthread;
11423 delmap_call->error = 0;
11424
11425 return (delmap_call);
11426 }
11427
11428 static void
nfs4_free_delmapcall(nfs4_delmapcall_t * delmap_call)11429 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call)
11430 {
11431 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t));
11432 }
11433
11434 /*
11435 * Searches for the current delmap caller (based on curthread) in the list of
11436 * callers. If it is found, we remove it and free the delmap caller.
11437 * Returns:
11438 * 0 if the caller wasn't found
11439 * 1 if the caller was found, removed and freed. *errp will be set
11440 * to what the result of the delmap was.
11441 */
11442 static int
nfs4_find_and_delete_delmapcall(rnode4_t * rp,int * errp)11443 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp)
11444 {
11445 nfs4_delmapcall_t *delmap_call;
11446
11447 /*
11448 * If the list doesn't exist yet, we create it and return
11449 * that the caller wasn't found. No list = no callers.
11450 */
11451 mutex_enter(&rp->r_statelock);
11452 if (!(rp->r_flags & R4DELMAPLIST)) {
11453 /* The list does not exist */
11454 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t),
11455 offsetof(nfs4_delmapcall_t, call_node));
11456 rp->r_flags |= R4DELMAPLIST;
11457 mutex_exit(&rp->r_statelock);
11458 return (0);
11459 } else {
11460 /* The list exists so search it */
11461 for (delmap_call = list_head(&rp->r_indelmap);
11462 delmap_call != NULL;
11463 delmap_call = list_next(&rp->r_indelmap, delmap_call)) {
11464 if (delmap_call->call_id == curthread) {
11465 /* current caller is in the list */
11466 *errp = delmap_call->error;
11467 list_remove(&rp->r_indelmap, delmap_call);
11468 mutex_exit(&rp->r_statelock);
11469 nfs4_free_delmapcall(delmap_call);
11470 return (1);
11471 }
11472 }
11473 }
11474 mutex_exit(&rp->r_statelock);
11475 return (0);
11476 }
11477
11478 /*
11479 * Remove some pages from an mmap'd vnode. Just update the
11480 * count of pages. If doing close-to-open, then flush and
11481 * commit all of the pages associated with this file.
11482 * Otherwise, start an asynchronous page flush to write out
11483 * any dirty pages. This will also associate a credential
11484 * with the rnode which can be used to write the pages.
11485 */
11486 /* ARGSUSED */
11487 static void
nfs4_delmap_callback(struct as * as,void * arg,uint_t event)11488 nfs4_delmap_callback(struct as *as, void *arg, uint_t event)
11489 {
11490 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
11491 rnode4_t *rp;
11492 mntinfo4_t *mi;
11493 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg;
11494
11495 rp = VTOR4(dmapp->vp);
11496 mi = VTOMI4(dmapp->vp);
11497
11498 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len));
11499 ASSERT(rp->r_mapcnt >= 0);
11500
11501 /*
11502 * Initiate a page flush and potential commit if there are
11503 * pages, the file system was not mounted readonly, the segment
11504 * was mapped shared, and the pages themselves were writeable.
11505 */
11506 if (nfs4_has_pages(dmapp->vp) &&
11507 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) &&
11508 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
11509 mutex_enter(&rp->r_statelock);
11510 rp->r_flags |= R4DIRTY;
11511 mutex_exit(&rp->r_statelock);
11512 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off,
11513 dmapp->len, dmapp->cr);
11514 if (!e.error) {
11515 mutex_enter(&rp->r_statelock);
11516 e.error = rp->r_error;
11517 rp->r_error = 0;
11518 mutex_exit(&rp->r_statelock);
11519 }
11520 } else
11521 e.error = 0;
11522
11523 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO))
11524 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len,
11525 B_INVAL, dmapp->cr, NULL);
11526
11527 if (e.error) {
11528 e.stat = puterrno4(e.error);
11529 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0,
11530 OP_COMMIT, FALSE, NULL, 0, dmapp->vp);
11531 dmapp->caller->error = e.error;
11532 }
11533
11534 /* Check to see if we need to close the file */
11535
11536 if (dmapp->vp->v_type == VREG) {
11537 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e,
11538 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags);
11539
11540 if (e.error != 0 || e.stat != NFS4_OK) {
11541 /*
11542 * Since it is possible that e.error == 0 and
11543 * e.stat != NFS4_OK (and vice versa),
11544 * we do the proper checking in order to get both
11545 * e.error and e.stat reporting the correct info.
11546 */
11547 if (e.stat == NFS4_OK)
11548 e.stat = puterrno4(e.error);
11549 if (e.error == 0)
11550 e.error = geterrno4(e.stat);
11551
11552 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0,
11553 OP_CLOSE, FALSE, NULL, 0, dmapp->vp);
11554 dmapp->caller->error = e.error;
11555 }
11556 }
11557
11558 (void) as_delete_callback(as, arg);
11559 kmem_free(dmapp, sizeof (nfs4_delmap_args_t));
11560 }
11561
11562
11563 static uint_t
fattr4_maxfilesize_to_bits(uint64_t ll)11564 fattr4_maxfilesize_to_bits(uint64_t ll)
11565 {
11566 uint_t l = 1;
11567
11568 if (ll == 0) {
11569 return (0);
11570 }
11571
11572 if (ll & 0xffffffff00000000) {
11573 l += 32; ll >>= 32;
11574 }
11575 if (ll & 0xffff0000) {
11576 l += 16; ll >>= 16;
11577 }
11578 if (ll & 0xff00) {
11579 l += 8; ll >>= 8;
11580 }
11581 if (ll & 0xf0) {
11582 l += 4; ll >>= 4;
11583 }
11584 if (ll & 0xc) {
11585 l += 2; ll >>= 2;
11586 }
11587 if (ll & 0x2) {
11588 l += 1;
11589 }
11590 return (l);
11591 }
11592
11593 static int
nfs4_have_xattrs(vnode_t * vp,ulong_t * valp,cred_t * cr)11594 nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr)
11595 {
11596 vnode_t *avp = NULL;
11597 int error;
11598
11599 if ((error = nfs4lookup_xattr(vp, "", &avp,
11600 LOOKUP_XATTR, cr)) == 0)
11601 error = do_xattr_exists_check(avp, valp, cr);
11602 if (avp)
11603 VN_RELE(avp);
11604
11605 return (error);
11606 }
11607
11608 /* ARGSUSED */
11609 int
nfs4_pathconf(vnode_t * vp,int cmd,ulong_t * valp,cred_t * cr,caller_context_t * ct)11610 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
11611 caller_context_t *ct)
11612 {
11613 int error;
11614 hrtime_t t;
11615 rnode4_t *rp;
11616 nfs4_ga_res_t gar;
11617 nfs4_ga_ext_res_t ger;
11618
11619 gar.n4g_ext_res = &ger;
11620
11621 if (nfs_zone() != VTOMI4(vp)->mi_zone)
11622 return (EIO);
11623 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) {
11624 *valp = MAXPATHLEN;
11625 return (0);
11626 }
11627 if (cmd == _PC_ACL_ENABLED) {
11628 *valp = _ACL_ACE_ENABLED;
11629 return (0);
11630 }
11631
11632 rp = VTOR4(vp);
11633 if (cmd == _PC_XATTR_EXISTS) {
11634 /*
11635 * The existence of the xattr directory is not sufficient
11636 * for determining whether generic user attributes exists.
11637 * The attribute directory could only be a transient directory
11638 * used for Solaris sysattr support. Do a small readdir
11639 * to verify if the only entries are sysattrs or not.
11640 *
11641 * pc4_xattr_valid can be only be trusted when r_xattr_dir
11642 * is NULL. Once the xadir vp exists, we can create xattrs,
11643 * and we don't have any way to update the "base" object's
11644 * pc4_xattr_exists from the xattr or xadir. Maybe FEM
11645 * could help out.
11646 */
11647 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid &&
11648 rp->r_xattr_dir == NULL) {
11649 return (nfs4_have_xattrs(vp, valp, cr));
11650 }
11651 } else { /* OLD CODE */
11652 if (ATTRCACHE4_VALID(vp)) {
11653 mutex_enter(&rp->r_statelock);
11654 if (rp->r_pathconf.pc4_cache_valid) {
11655 error = 0;
11656 switch (cmd) {
11657 case _PC_FILESIZEBITS:
11658 *valp =
11659 rp->r_pathconf.pc4_filesizebits;
11660 break;
11661 case _PC_LINK_MAX:
11662 *valp =
11663 rp->r_pathconf.pc4_link_max;
11664 break;
11665 case _PC_NAME_MAX:
11666 *valp =
11667 rp->r_pathconf.pc4_name_max;
11668 break;
11669 case _PC_CHOWN_RESTRICTED:
11670 *valp =
11671 rp->r_pathconf.pc4_chown_restricted;
11672 break;
11673 case _PC_NO_TRUNC:
11674 *valp =
11675 rp->r_pathconf.pc4_no_trunc;
11676 break;
11677 default:
11678 error = EINVAL;
11679 break;
11680 }
11681 mutex_exit(&rp->r_statelock);
11682 #ifdef DEBUG
11683 nfs4_pathconf_cache_hits++;
11684 #endif
11685 return (error);
11686 }
11687 mutex_exit(&rp->r_statelock);
11688 }
11689 }
11690 #ifdef DEBUG
11691 nfs4_pathconf_cache_misses++;
11692 #endif
11693
11694 t = gethrtime();
11695
11696 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr);
11697
11698 if (error) {
11699 mutex_enter(&rp->r_statelock);
11700 rp->r_pathconf.pc4_cache_valid = FALSE;
11701 rp->r_pathconf.pc4_xattr_valid = FALSE;
11702 mutex_exit(&rp->r_statelock);
11703 return (error);
11704 }
11705
11706 /* interpret the max filesize */
11707 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits =
11708 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize);
11709
11710 /* Store the attributes we just received */
11711 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL);
11712
11713 switch (cmd) {
11714 case _PC_FILESIZEBITS:
11715 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits;
11716 break;
11717 case _PC_LINK_MAX:
11718 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max;
11719 break;
11720 case _PC_NAME_MAX:
11721 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max;
11722 break;
11723 case _PC_CHOWN_RESTRICTED:
11724 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted;
11725 break;
11726 case _PC_NO_TRUNC:
11727 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc;
11728 break;
11729 case _PC_XATTR_EXISTS:
11730 if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) {
11731 if (error = nfs4_have_xattrs(vp, valp, cr))
11732 return (error);
11733 }
11734 break;
11735 default:
11736 return (EINVAL);
11737 }
11738
11739 return (0);
11740 }
11741
11742 /*
11743 * Called by async thread to do synchronous pageio. Do the i/o, wait
11744 * for it to complete, and cleanup the page list when done.
11745 */
11746 static int
nfs4_sync_pageio(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr)11747 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
11748 int flags, cred_t *cr)
11749 {
11750 int error;
11751
11752 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11753
11754 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
11755 if (flags & B_READ)
11756 pvn_read_done(pp, (error ? B_ERROR : 0) | flags);
11757 else
11758 pvn_write_done(pp, (error ? B_ERROR : 0) | flags);
11759 return (error);
11760 }
11761
11762 /* ARGSUSED */
11763 static int
nfs4_pageio(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr,caller_context_t * ct)11764 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
11765 int flags, cred_t *cr, caller_context_t *ct)
11766 {
11767 int error;
11768 rnode4_t *rp;
11769
11770 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone)
11771 return (EIO);
11772
11773 if (pp == NULL)
11774 return (EINVAL);
11775
11776 rp = VTOR4(vp);
11777 mutex_enter(&rp->r_statelock);
11778 rp->r_count++;
11779 mutex_exit(&rp->r_statelock);
11780
11781 if (flags & B_ASYNC) {
11782 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr,
11783 nfs4_sync_pageio);
11784 } else
11785 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
11786 mutex_enter(&rp->r_statelock);
11787 rp->r_count--;
11788 cv_broadcast(&rp->r_cv);
11789 mutex_exit(&rp->r_statelock);
11790 return (error);
11791 }
11792
11793 /* ARGSUSED */
11794 static void
nfs4_dispose(vnode_t * vp,page_t * pp,int fl,int dn,cred_t * cr,caller_context_t * ct)11795 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr,
11796 caller_context_t *ct)
11797 {
11798 int error;
11799 rnode4_t *rp;
11800 page_t *plist;
11801 page_t *pptr;
11802 offset3 offset;
11803 count3 len;
11804 k_sigset_t smask;
11805
11806 /*
11807 * We should get called with fl equal to either B_FREE or
11808 * B_INVAL. Any other value is illegal.
11809 *
11810 * The page that we are either supposed to free or destroy
11811 * should be exclusive locked and its io lock should not
11812 * be held.
11813 */
11814 ASSERT(fl == B_FREE || fl == B_INVAL);
11815 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
11816
11817 rp = VTOR4(vp);
11818
11819 /*
11820 * If the page doesn't need to be committed or we shouldn't
11821 * even bother attempting to commit it, then just make sure
11822 * that the p_fsdata byte is clear and then either free or
11823 * destroy the page as appropriate.
11824 */
11825 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) {
11826 pp->p_fsdata = C_NOCOMMIT;
11827 if (fl == B_FREE)
11828 page_free(pp, dn);
11829 else
11830 page_destroy(pp, dn);
11831 return;
11832 }
11833
11834 /*
11835 * If there is a page invalidation operation going on, then
11836 * if this is one of the pages being destroyed, then just
11837 * clear the p_fsdata byte and then either free or destroy
11838 * the page as appropriate.
11839 */
11840 mutex_enter(&rp->r_statelock);
11841 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) {
11842 mutex_exit(&rp->r_statelock);
11843 pp->p_fsdata = C_NOCOMMIT;
11844 if (fl == B_FREE)
11845 page_free(pp, dn);
11846 else
11847 page_destroy(pp, dn);
11848 return;
11849 }
11850
11851 /*
11852 * If we are freeing this page and someone else is already
11853 * waiting to do a commit, then just unlock the page and
11854 * return. That other thread will take care of commiting
11855 * this page. The page can be freed sometime after the
11856 * commit has finished. Otherwise, if the page is marked
11857 * as delay commit, then we may be getting called from
11858 * pvn_write_done, one page at a time. This could result
11859 * in one commit per page, so we end up doing lots of small
11860 * commits instead of fewer larger commits. This is bad,
11861 * we want do as few commits as possible.
11862 */
11863 if (fl == B_FREE) {
11864 if (rp->r_flags & R4COMMITWAIT) {
11865 page_unlock(pp);
11866 mutex_exit(&rp->r_statelock);
11867 return;
11868 }
11869 if (pp->p_fsdata == C_DELAYCOMMIT) {
11870 pp->p_fsdata = C_COMMIT;
11871 page_unlock(pp);
11872 mutex_exit(&rp->r_statelock);
11873 return;
11874 }
11875 }
11876
11877 /*
11878 * Check to see if there is a signal which would prevent an
11879 * attempt to commit the pages from being successful. If so,
11880 * then don't bother with all of the work to gather pages and
11881 * generate the unsuccessful RPC. Just return from here and
11882 * let the page be committed at some later time.
11883 */
11884 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT);
11885 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) {
11886 sigunintr(&smask);
11887 page_unlock(pp);
11888 mutex_exit(&rp->r_statelock);
11889 return;
11890 }
11891 sigunintr(&smask);
11892
11893 /*
11894 * We are starting to need to commit pages, so let's try
11895 * to commit as many as possible at once to reduce the
11896 * overhead.
11897 *
11898 * Set the `commit inprogress' state bit. We must
11899 * first wait until any current one finishes. Then
11900 * we initialize the c_pages list with this page.
11901 */
11902 while (rp->r_flags & R4COMMIT) {
11903 rp->r_flags |= R4COMMITWAIT;
11904 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
11905 rp->r_flags &= ~R4COMMITWAIT;
11906 }
11907 rp->r_flags |= R4COMMIT;
11908 mutex_exit(&rp->r_statelock);
11909 ASSERT(rp->r_commit.c_pages == NULL);
11910 rp->r_commit.c_pages = pp;
11911 rp->r_commit.c_commbase = (offset3)pp->p_offset;
11912 rp->r_commit.c_commlen = PAGESIZE;
11913
11914 /*
11915 * Gather together all other pages which can be committed.
11916 * They will all be chained off r_commit.c_pages.
11917 */
11918 nfs4_get_commit(vp);
11919
11920 /*
11921 * Clear the `commit inprogress' status and disconnect
11922 * the list of pages to be committed from the rnode.
11923 * At this same time, we also save the starting offset
11924 * and length of data to be committed on the server.
11925 */
11926 plist = rp->r_commit.c_pages;
11927 rp->r_commit.c_pages = NULL;
11928 offset = rp->r_commit.c_commbase;
11929 len = rp->r_commit.c_commlen;
11930 mutex_enter(&rp->r_statelock);
11931 rp->r_flags &= ~R4COMMIT;
11932 cv_broadcast(&rp->r_commit.c_cv);
11933 mutex_exit(&rp->r_statelock);
11934
11935 if (curproc == proc_pageout || curproc == proc_fsflush ||
11936 nfs_zone() != VTOMI4(vp)->mi_zone) {
11937 nfs4_async_commit(vp, plist, offset, len,
11938 cr, do_nfs4_async_commit);
11939 return;
11940 }
11941
11942 /*
11943 * Actually generate the COMMIT op over the wire operation.
11944 */
11945 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr);
11946
11947 /*
11948 * If we got an error during the commit, just unlock all
11949 * of the pages. The pages will get retransmitted to the
11950 * server during a putpage operation.
11951 */
11952 if (error) {
11953 while (plist != NULL) {
11954 pptr = plist;
11955 page_sub(&plist, pptr);
11956 page_unlock(pptr);
11957 }
11958 return;
11959 }
11960
11961 /*
11962 * We've tried as hard as we can to commit the data to stable
11963 * storage on the server. We just unlock the rest of the pages
11964 * and clear the commit required state. They will be put
11965 * onto the tail of the cachelist if they are nolonger
11966 * mapped.
11967 */
11968 while (plist != pp) {
11969 pptr = plist;
11970 page_sub(&plist, pptr);
11971 pptr->p_fsdata = C_NOCOMMIT;
11972 page_unlock(pptr);
11973 }
11974
11975 /*
11976 * It is possible that nfs4_commit didn't return error but
11977 * some other thread has modified the page we are going
11978 * to free/destroy.
11979 * In this case we need to rewrite the page. Do an explicit check
11980 * before attempting to free/destroy the page. If modified, needs to
11981 * be rewritten so unlock the page and return.
11982 */
11983 if (hat_ismod(pp)) {
11984 pp->p_fsdata = C_NOCOMMIT;
11985 page_unlock(pp);
11986 return;
11987 }
11988
11989 /*
11990 * Now, as appropriate, either free or destroy the page
11991 * that we were called with.
11992 */
11993 pp->p_fsdata = C_NOCOMMIT;
11994 if (fl == B_FREE)
11995 page_free(pp, dn);
11996 else
11997 page_destroy(pp, dn);
11998 }
11999
12000 /*
12001 * Commit requires that the current fh be the file written to.
12002 * The compound op structure is:
12003 * PUTFH(file), COMMIT
12004 */
12005 static int
nfs4_commit(vnode_t * vp,offset4 offset,count4 count,cred_t * cr)12006 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr)
12007 {
12008 COMPOUND4args_clnt args;
12009 COMPOUND4res_clnt res;
12010 COMMIT4res *cm_res;
12011 nfs_argop4 argop[2];
12012 nfs_resop4 *resop;
12013 int doqueue;
12014 mntinfo4_t *mi;
12015 rnode4_t *rp;
12016 cred_t *cred_otw = NULL;
12017 bool_t needrecov = FALSE;
12018 nfs4_recov_state_t recov_state;
12019 nfs4_open_stream_t *osp = NULL;
12020 bool_t first_time = TRUE; /* first time getting OTW cred */
12021 bool_t last_time = FALSE; /* last time getting OTW cred */
12022 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
12023
12024 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12025
12026 rp = VTOR4(vp);
12027
12028 mi = VTOMI4(vp);
12029 recov_state.rs_flags = 0;
12030 recov_state.rs_num_retry_despite_err = 0;
12031 get_commit_cred:
12032 /*
12033 * Releases the osp, if a valid open stream is provided.
12034 * Puts a hold on the cred_otw and the new osp (if found).
12035 */
12036 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
12037 &first_time, &last_time);
12038 args.ctag = TAG_COMMIT;
12039 recov_retry:
12040 /*
12041 * Commit ops: putfh file; commit
12042 */
12043 args.array_len = 2;
12044 args.array = argop;
12045
12046 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
12047 &recov_state, NULL);
12048 if (e.error) {
12049 crfree(cred_otw);
12050 if (osp != NULL)
12051 open_stream_rele(osp, rp);
12052 return (e.error);
12053 }
12054
12055 /* putfh directory */
12056 argop[0].argop = OP_CPUTFH;
12057 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
12058
12059 /* commit */
12060 argop[1].argop = OP_COMMIT;
12061 argop[1].nfs_argop4_u.opcommit.offset = offset;
12062 argop[1].nfs_argop4_u.opcommit.count = count;
12063
12064 doqueue = 1;
12065 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e);
12066
12067 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
12068 if (!needrecov && e.error) {
12069 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state,
12070 needrecov);
12071 crfree(cred_otw);
12072 if (e.error == EACCES && last_time == FALSE)
12073 goto get_commit_cred;
12074 if (osp != NULL)
12075 open_stream_rele(osp, rp);
12076 return (e.error);
12077 }
12078
12079 if (needrecov) {
12080 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
12081 NULL, OP_COMMIT, NULL, NULL, NULL) == FALSE) {
12082 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
12083 &recov_state, needrecov);
12084 if (!e.error)
12085 (void) xdr_free(xdr_COMPOUND4res_clnt,
12086 (caddr_t)&res);
12087 goto recov_retry;
12088 }
12089 if (e.error) {
12090 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
12091 &recov_state, needrecov);
12092 crfree(cred_otw);
12093 if (osp != NULL)
12094 open_stream_rele(osp, rp);
12095 return (e.error);
12096 }
12097 /* fall through for res.status case */
12098 }
12099
12100 if (res.status) {
12101 e.error = geterrno4(res.status);
12102 if (e.error == EACCES && last_time == FALSE) {
12103 crfree(cred_otw);
12104 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
12105 &recov_state, needrecov);
12106 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12107 goto get_commit_cred;
12108 }
12109 /*
12110 * Can't do a nfs4_purge_stale_fh here because this
12111 * can cause a deadlock. nfs4_commit can
12112 * be called from nfs4_dispose which can be called
12113 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh
12114 * can call back to pvn_vplist_dirty.
12115 */
12116 if (e.error == ESTALE) {
12117 mutex_enter(&rp->r_statelock);
12118 rp->r_flags |= R4STALE;
12119 if (!rp->r_error)
12120 rp->r_error = e.error;
12121 mutex_exit(&rp->r_statelock);
12122 PURGE_ATTRCACHE4(vp);
12123 } else {
12124 mutex_enter(&rp->r_statelock);
12125 if (!rp->r_error)
12126 rp->r_error = e.error;
12127 mutex_exit(&rp->r_statelock);
12128 }
12129 } else {
12130 ASSERT(rp->r_flags & R4HAVEVERF);
12131 resop = &res.array[1]; /* commit res */
12132 cm_res = &resop->nfs_resop4_u.opcommit;
12133 mutex_enter(&rp->r_statelock);
12134 if (cm_res->writeverf == rp->r_writeverf) {
12135 mutex_exit(&rp->r_statelock);
12136 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12137 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
12138 &recov_state, needrecov);
12139 crfree(cred_otw);
12140 if (osp != NULL)
12141 open_stream_rele(osp, rp);
12142 return (0);
12143 }
12144 nfs4_set_mod(vp);
12145 rp->r_writeverf = cm_res->writeverf;
12146 mutex_exit(&rp->r_statelock);
12147 e.error = NFS_VERF_MISMATCH;
12148 }
12149
12150 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12151 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov);
12152 crfree(cred_otw);
12153 if (osp != NULL)
12154 open_stream_rele(osp, rp);
12155
12156 return (e.error);
12157 }
12158
12159 static void
nfs4_set_mod(vnode_t * vp)12160 nfs4_set_mod(vnode_t *vp)
12161 {
12162 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12163
12164 /* make sure we're looking at the master vnode, not a shadow */
12165 pvn_vplist_setdirty(RTOV4(VTOR4(vp)), nfs_setmod_check);
12166 }
12167
12168 /*
12169 * This function is used to gather a page list of the pages which
12170 * can be committed on the server.
12171 *
12172 * The calling thread must have set R4COMMIT. This bit is used to
12173 * serialize access to the commit structure in the rnode. As long
12174 * as the thread has set R4COMMIT, then it can manipulate the commit
12175 * structure without requiring any other locks.
12176 *
12177 * When this function is called from nfs4_dispose() the page passed
12178 * into nfs4_dispose() will be SE_EXCL locked, and so this function
12179 * will skip it. This is not a problem since we initially add the
12180 * page to the r_commit page list.
12181 *
12182 */
12183 static void
nfs4_get_commit(vnode_t * vp)12184 nfs4_get_commit(vnode_t *vp)
12185 {
12186 rnode4_t *rp;
12187 page_t *pp;
12188 kmutex_t *vphm;
12189
12190 rp = VTOR4(vp);
12191
12192 ASSERT(rp->r_flags & R4COMMIT);
12193
12194 /* make sure we're looking at the master vnode, not a shadow */
12195
12196 if (IS_SHADOW(vp, rp))
12197 vp = RTOV4(rp);
12198
12199 vphm = page_vnode_mutex(vp);
12200 mutex_enter(vphm);
12201
12202 /*
12203 * If there are no pages associated with this vnode, then
12204 * just return.
12205 */
12206 if ((pp = vp->v_pages) == NULL) {
12207 mutex_exit(vphm);
12208 return;
12209 }
12210
12211 /*
12212 * Step through all of the pages associated with this vnode
12213 * looking for pages which need to be committed.
12214 */
12215 do {
12216 /* Skip marker pages. */
12217 if (pp->p_hash == PVN_VPLIST_HASH_TAG)
12218 continue;
12219
12220 /*
12221 * First short-cut everything (without the page_lock)
12222 * and see if this page does not need to be committed
12223 * or is modified if so then we'll just skip it.
12224 */
12225 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp))
12226 continue;
12227
12228 /*
12229 * Attempt to lock the page. If we can't, then
12230 * someone else is messing with it or we have been
12231 * called from nfs4_dispose and this is the page that
12232 * nfs4_dispose was called with.. anyway just skip it.
12233 */
12234 if (!page_trylock(pp, SE_EXCL))
12235 continue;
12236
12237 /*
12238 * Lets check again now that we have the page lock.
12239 */
12240 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
12241 page_unlock(pp);
12242 continue;
12243 }
12244
12245 /* this had better not be a free page */
12246 ASSERT(PP_ISFREE(pp) == 0);
12247
12248 /*
12249 * The page needs to be committed and we locked it.
12250 * Update the base and length parameters and add it
12251 * to r_pages.
12252 */
12253 if (rp->r_commit.c_pages == NULL) {
12254 rp->r_commit.c_commbase = (offset3)pp->p_offset;
12255 rp->r_commit.c_commlen = PAGESIZE;
12256 } else if (pp->p_offset < rp->r_commit.c_commbase) {
12257 rp->r_commit.c_commlen = rp->r_commit.c_commbase -
12258 (offset3)pp->p_offset + rp->r_commit.c_commlen;
12259 rp->r_commit.c_commbase = (offset3)pp->p_offset;
12260 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen)
12261 <= pp->p_offset) {
12262 rp->r_commit.c_commlen = (offset3)pp->p_offset -
12263 rp->r_commit.c_commbase + PAGESIZE;
12264 }
12265 page_add(&rp->r_commit.c_pages, pp);
12266 } while ((pp = pp->p_vpnext) != vp->v_pages);
12267
12268 mutex_exit(vphm);
12269 }
12270
12271 /*
12272 * This routine is used to gather together a page list of the pages
12273 * which are to be committed on the server. This routine must not
12274 * be called if the calling thread holds any locked pages.
12275 *
12276 * The calling thread must have set R4COMMIT. This bit is used to
12277 * serialize access to the commit structure in the rnode. As long
12278 * as the thread has set R4COMMIT, then it can manipulate the commit
12279 * structure without requiring any other locks.
12280 */
12281 static void
nfs4_get_commit_range(vnode_t * vp,u_offset_t soff,size_t len)12282 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len)
12283 {
12284
12285 rnode4_t *rp;
12286 page_t *pp;
12287 u_offset_t end;
12288 u_offset_t off;
12289 ASSERT(len != 0);
12290 rp = VTOR4(vp);
12291 ASSERT(rp->r_flags & R4COMMIT);
12292
12293 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12294
12295 /* make sure we're looking at the master vnode, not a shadow */
12296
12297 if (IS_SHADOW(vp, rp))
12298 vp = RTOV4(rp);
12299
12300 /*
12301 * If there are no pages associated with this vnode, then
12302 * just return.
12303 */
12304 if ((pp = vp->v_pages) == NULL)
12305 return;
12306 /*
12307 * Calculate the ending offset.
12308 */
12309 end = soff + len;
12310 for (off = soff; off < end; off += PAGESIZE) {
12311 /*
12312 * Lookup each page by vp, offset.
12313 */
12314 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL)
12315 continue;
12316 /*
12317 * If this page does not need to be committed or is
12318 * modified, then just skip it.
12319 */
12320 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
12321 page_unlock(pp);
12322 continue;
12323 }
12324
12325 ASSERT(PP_ISFREE(pp) == 0);
12326 /*
12327 * The page needs to be committed and we locked it.
12328 * Update the base and length parameters and add it
12329 * to r_pages.
12330 */
12331 if (rp->r_commit.c_pages == NULL) {
12332 rp->r_commit.c_commbase = (offset3)pp->p_offset;
12333 rp->r_commit.c_commlen = PAGESIZE;
12334 } else {
12335 rp->r_commit.c_commlen = (offset3)pp->p_offset -
12336 rp->r_commit.c_commbase + PAGESIZE;
12337 }
12338 page_add(&rp->r_commit.c_pages, pp);
12339 }
12340 }
12341
12342 /*
12343 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap().
12344 * Flushes and commits data to the server.
12345 */
12346 static int
nfs4_putpage_commit(vnode_t * vp,offset_t poff,size_t plen,cred_t * cr)12347 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr)
12348 {
12349 int error;
12350 verifier4 write_verf;
12351 rnode4_t *rp = VTOR4(vp);
12352
12353 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12354
12355 /*
12356 * Flush the data portion of the file and then commit any
12357 * portions which need to be committed. This may need to
12358 * be done twice if the server has changed state since
12359 * data was last written. The data will need to be
12360 * rewritten to the server and then a new commit done.
12361 *
12362 * In fact, this may need to be done several times if the
12363 * server is having problems and crashing while we are
12364 * attempting to do this.
12365 */
12366
12367 top:
12368 /*
12369 * Do a flush based on the poff and plen arguments. This
12370 * will synchronously write out any modified pages in the
12371 * range specified by (poff, plen). This starts all of the
12372 * i/o operations which will be waited for in the next
12373 * call to nfs4_putpage
12374 */
12375
12376 mutex_enter(&rp->r_statelock);
12377 write_verf = rp->r_writeverf;
12378 mutex_exit(&rp->r_statelock);
12379
12380 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL);
12381 if (error == EAGAIN)
12382 error = 0;
12383
12384 /*
12385 * Do a flush based on the poff and plen arguments. This
12386 * will synchronously write out any modified pages in the
12387 * range specified by (poff, plen) and wait until all of
12388 * the asynchronous i/o's in that range are done as well.
12389 */
12390 if (!error)
12391 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL);
12392
12393 if (error)
12394 return (error);
12395
12396 mutex_enter(&rp->r_statelock);
12397 if (rp->r_writeverf != write_verf) {
12398 mutex_exit(&rp->r_statelock);
12399 goto top;
12400 }
12401 mutex_exit(&rp->r_statelock);
12402
12403 /*
12404 * Now commit any pages which might need to be committed.
12405 * If the error, NFS_VERF_MISMATCH, is returned, then
12406 * start over with the flush operation.
12407 */
12408 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT);
12409
12410 if (error == NFS_VERF_MISMATCH)
12411 goto top;
12412
12413 return (error);
12414 }
12415
12416 /*
12417 * nfs4_commit_vp() will wait for other pending commits and
12418 * will either commit the whole file or a range, plen dictates
12419 * if we commit whole file. a value of zero indicates the whole
12420 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage()
12421 */
12422 static int
nfs4_commit_vp(vnode_t * vp,u_offset_t poff,size_t plen,cred_t * cr,int wait_on_writes)12423 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen,
12424 cred_t *cr, int wait_on_writes)
12425 {
12426 rnode4_t *rp;
12427 page_t *plist;
12428 offset3 offset;
12429 count3 len;
12430
12431 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12432
12433 rp = VTOR4(vp);
12434
12435 /*
12436 * before we gather commitable pages make
12437 * sure there are no outstanding async writes
12438 */
12439 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) {
12440 mutex_enter(&rp->r_statelock);
12441 while (rp->r_count > 0) {
12442 cv_wait(&rp->r_cv, &rp->r_statelock);
12443 }
12444 mutex_exit(&rp->r_statelock);
12445 }
12446
12447 /*
12448 * Set the `commit inprogress' state bit. We must
12449 * first wait until any current one finishes.
12450 */
12451 mutex_enter(&rp->r_statelock);
12452 while (rp->r_flags & R4COMMIT) {
12453 rp->r_flags |= R4COMMITWAIT;
12454 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
12455 rp->r_flags &= ~R4COMMITWAIT;
12456 }
12457 rp->r_flags |= R4COMMIT;
12458 mutex_exit(&rp->r_statelock);
12459
12460 /*
12461 * Gather all of the pages which need to be
12462 * committed.
12463 */
12464 if (plen == 0)
12465 nfs4_get_commit(vp);
12466 else
12467 nfs4_get_commit_range(vp, poff, plen);
12468
12469 /*
12470 * Clear the `commit inprogress' bit and disconnect the
12471 * page list which was gathered by nfs4_get_commit.
12472 */
12473 plist = rp->r_commit.c_pages;
12474 rp->r_commit.c_pages = NULL;
12475 offset = rp->r_commit.c_commbase;
12476 len = rp->r_commit.c_commlen;
12477 mutex_enter(&rp->r_statelock);
12478 rp->r_flags &= ~R4COMMIT;
12479 cv_broadcast(&rp->r_commit.c_cv);
12480 mutex_exit(&rp->r_statelock);
12481
12482 /*
12483 * If any pages need to be committed, commit them and
12484 * then unlock them so that they can be freed some
12485 * time later.
12486 */
12487 if (plist == NULL)
12488 return (0);
12489
12490 /*
12491 * No error occurred during the flush portion
12492 * of this operation, so now attempt to commit
12493 * the data to stable storage on the server.
12494 *
12495 * This will unlock all of the pages on the list.
12496 */
12497 return (nfs4_sync_commit(vp, plist, offset, len, cr));
12498 }
12499
12500 static int
nfs4_sync_commit(vnode_t * vp,page_t * plist,offset3 offset,count3 count,cred_t * cr)12501 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
12502 cred_t *cr)
12503 {
12504 int error;
12505 page_t *pp;
12506
12507 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12508
12509 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr);
12510
12511 /*
12512 * If we got an error, then just unlock all of the pages
12513 * on the list.
12514 */
12515 if (error) {
12516 while (plist != NULL) {
12517 pp = plist;
12518 page_sub(&plist, pp);
12519 page_unlock(pp);
12520 }
12521 return (error);
12522 }
12523 /*
12524 * We've tried as hard as we can to commit the data to stable
12525 * storage on the server. We just unlock the pages and clear
12526 * the commit required state. They will get freed later.
12527 */
12528 while (plist != NULL) {
12529 pp = plist;
12530 page_sub(&plist, pp);
12531 pp->p_fsdata = C_NOCOMMIT;
12532 page_unlock(pp);
12533 }
12534
12535 return (error);
12536 }
12537
12538 static void
do_nfs4_async_commit(vnode_t * vp,page_t * plist,offset3 offset,count3 count,cred_t * cr)12539 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
12540 cred_t *cr)
12541 {
12542
12543 (void) nfs4_sync_commit(vp, plist, offset, count, cr);
12544 }
12545
12546 /*ARGSUSED*/
12547 static int
nfs4_setsecattr(vnode_t * vp,vsecattr_t * vsecattr,int flag,cred_t * cr,caller_context_t * ct)12548 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
12549 caller_context_t *ct)
12550 {
12551 int error = 0;
12552 mntinfo4_t *mi;
12553 vattr_t va;
12554 vsecattr_t nfsace4_vsap;
12555
12556 mi = VTOMI4(vp);
12557 if (nfs_zone() != mi->mi_zone)
12558 return (EIO);
12559 if (mi->mi_flags & MI4_ACL) {
12560 /* if we have a delegation, return it */
12561 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE)
12562 (void) nfs4delegreturn(VTOR4(vp),
12563 NFS4_DR_REOPEN|NFS4_DR_PUSH);
12564
12565 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask,
12566 NFS4_ACL_SET);
12567 if (error) /* EINVAL */
12568 return (error);
12569
12570 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) {
12571 /*
12572 * These are aclent_t type entries.
12573 */
12574 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap,
12575 vp->v_type == VDIR, FALSE);
12576 if (error)
12577 return (error);
12578 } else {
12579 /*
12580 * These are ace_t type entries.
12581 */
12582 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap,
12583 FALSE);
12584 if (error)
12585 return (error);
12586 }
12587 bzero(&va, sizeof (va));
12588 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap);
12589 vs_ace4_destroy(&nfsace4_vsap);
12590 return (error);
12591 }
12592 return (ENOSYS);
12593 }
12594
12595 /* ARGSUSED */
12596 int
nfs4_getsecattr(vnode_t * vp,vsecattr_t * vsecattr,int flag,cred_t * cr,caller_context_t * ct)12597 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
12598 caller_context_t *ct)
12599 {
12600 int error;
12601 mntinfo4_t *mi;
12602 nfs4_ga_res_t gar;
12603 rnode4_t *rp = VTOR4(vp);
12604
12605 mi = VTOMI4(vp);
12606 if (nfs_zone() != mi->mi_zone)
12607 return (EIO);
12608
12609 bzero(&gar, sizeof (gar));
12610 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask;
12611
12612 /*
12613 * vsecattr->vsa_mask holds the original acl request mask.
12614 * This is needed when determining what to return.
12615 * (See: nfs4_create_getsecattr_return())
12616 */
12617 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET);
12618 if (error) /* EINVAL */
12619 return (error);
12620
12621 /*
12622 * If this is a referral stub, don't try to go OTW for an ACL
12623 */
12624 if (RP_ISSTUB_REFERRAL(VTOR4(vp)))
12625 return (fs_fab_acl(vp, vsecattr, flag, cr, ct));
12626
12627 if (mi->mi_flags & MI4_ACL) {
12628 /*
12629 * Check if the data is cached and the cache is valid. If it
12630 * is we don't go over the wire.
12631 */
12632 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) {
12633 mutex_enter(&rp->r_statelock);
12634 if (rp->r_secattr != NULL) {
12635 error = nfs4_create_getsecattr_return(
12636 rp->r_secattr, vsecattr, rp->r_attr.va_uid,
12637 rp->r_attr.va_gid,
12638 vp->v_type == VDIR);
12639 if (!error) { /* error == 0 - Success! */
12640 mutex_exit(&rp->r_statelock);
12641 return (error);
12642 }
12643 }
12644 mutex_exit(&rp->r_statelock);
12645 }
12646
12647 /*
12648 * The getattr otw call will always get both the acl, in
12649 * the form of a list of nfsace4's, and the number of acl
12650 * entries; independent of the value of gar.n4g_va.va_mask.
12651 */
12652 error = nfs4_getattr_otw(vp, &gar, cr, 1);
12653 if (error) {
12654 vs_ace4_destroy(&gar.n4g_vsa);
12655 if (error == ENOTSUP || error == EOPNOTSUPP)
12656 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12657 return (error);
12658 }
12659
12660 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) {
12661 /*
12662 * No error was returned, but according to the response
12663 * bitmap, neither was an acl.
12664 */
12665 vs_ace4_destroy(&gar.n4g_vsa);
12666 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12667 return (error);
12668 }
12669
12670 /*
12671 * Update the cache with the ACL.
12672 */
12673 nfs4_acl_fill_cache(rp, &gar.n4g_vsa);
12674
12675 error = nfs4_create_getsecattr_return(&gar.n4g_vsa,
12676 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid,
12677 vp->v_type == VDIR);
12678 vs_ace4_destroy(&gar.n4g_vsa);
12679 if ((error) && (vsecattr->vsa_mask &
12680 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) &&
12681 (error != EACCES)) {
12682 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12683 }
12684 return (error);
12685 }
12686 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12687 return (error);
12688 }
12689
12690 /*
12691 * The function returns:
12692 * - 0 (zero) if the passed in "acl_mask" is a valid request.
12693 * - EINVAL if the passed in "acl_mask" is an invalid request.
12694 *
12695 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if:
12696 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE)
12697 *
12698 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if:
12699 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE)
12700 * - We have a count field set without the corresponding acl field set. (e.g. -
12701 * VSA_ACECNT is set, but VSA_ACE is not)
12702 */
12703 static int
nfs4_is_acl_mask_valid(uint_t acl_mask,nfs4_acl_op_t op)12704 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op)
12705 {
12706 /* Shortcut the masks that are always valid. */
12707 if (acl_mask == (VSA_ACE | VSA_ACECNT))
12708 return (0);
12709 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT))
12710 return (0);
12711
12712 if (acl_mask & (VSA_ACE | VSA_ACECNT)) {
12713 /*
12714 * We can't have any VSA_ACL type stuff in the mask now.
12715 */
12716 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL |
12717 VSA_DFACLCNT))
12718 return (EINVAL);
12719
12720 if (op == NFS4_ACL_SET) {
12721 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE))
12722 return (EINVAL);
12723 }
12724 }
12725
12726 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) {
12727 /*
12728 * We can't have any VSA_ACE type stuff in the mask now.
12729 */
12730 if (acl_mask & (VSA_ACE | VSA_ACECNT))
12731 return (EINVAL);
12732
12733 if (op == NFS4_ACL_SET) {
12734 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL))
12735 return (EINVAL);
12736
12737 if ((acl_mask & VSA_DFACLCNT) &&
12738 !(acl_mask & VSA_DFACL))
12739 return (EINVAL);
12740 }
12741 }
12742 return (0);
12743 }
12744
12745 /*
12746 * The theory behind creating the correct getsecattr return is simply this:
12747 * "Don't return anything that the caller is not expecting to have to free."
12748 */
12749 static int
nfs4_create_getsecattr_return(vsecattr_t * filled_vsap,vsecattr_t * vsap,uid_t uid,gid_t gid,int isdir)12750 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap,
12751 uid_t uid, gid_t gid, int isdir)
12752 {
12753 int error = 0;
12754 /* Save the mask since the translators modify it. */
12755 uint_t orig_mask = vsap->vsa_mask;
12756
12757 if (orig_mask & (VSA_ACE | VSA_ACECNT)) {
12758 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, FALSE);
12759
12760 if (error)
12761 return (error);
12762
12763 /*
12764 * If the caller only asked for the ace count (VSA_ACECNT)
12765 * don't give them the full acl (VSA_ACE), free it.
12766 */
12767 if (!orig_mask & VSA_ACE) {
12768 if (vsap->vsa_aclentp != NULL) {
12769 kmem_free(vsap->vsa_aclentp,
12770 vsap->vsa_aclcnt * sizeof (ace_t));
12771 vsap->vsa_aclentp = NULL;
12772 }
12773 }
12774 vsap->vsa_mask = orig_mask;
12775
12776 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL |
12777 VSA_DFACLCNT)) {
12778 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid,
12779 isdir, FALSE);
12780
12781 if (error)
12782 return (error);
12783
12784 /*
12785 * If the caller only asked for the acl count (VSA_ACLCNT)
12786 * and/or the default acl count (VSA_DFACLCNT) don't give them
12787 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it.
12788 */
12789 if (!orig_mask & VSA_ACL) {
12790 if (vsap->vsa_aclentp != NULL) {
12791 kmem_free(vsap->vsa_aclentp,
12792 vsap->vsa_aclcnt * sizeof (aclent_t));
12793 vsap->vsa_aclentp = NULL;
12794 }
12795 }
12796
12797 if (!orig_mask & VSA_DFACL) {
12798 if (vsap->vsa_dfaclentp != NULL) {
12799 kmem_free(vsap->vsa_dfaclentp,
12800 vsap->vsa_dfaclcnt * sizeof (aclent_t));
12801 vsap->vsa_dfaclentp = NULL;
12802 }
12803 }
12804 vsap->vsa_mask = orig_mask;
12805 }
12806 return (0);
12807 }
12808
12809 /* ARGSUSED */
12810 int
nfs4_shrlock(vnode_t * vp,int cmd,struct shrlock * shr,int flag,cred_t * cr,caller_context_t * ct)12811 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
12812 caller_context_t *ct)
12813 {
12814 int error;
12815
12816 if (nfs_zone() != VTOMI4(vp)->mi_zone)
12817 return (EIO);
12818 /*
12819 * check for valid cmd parameter
12820 */
12821 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS)
12822 return (EINVAL);
12823
12824 /*
12825 * Check access permissions
12826 */
12827 if ((cmd & F_SHARE) &&
12828 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) ||
12829 (shr->s_access == F_WRACC && (flag & FWRITE) == 0)))
12830 return (EBADF);
12831
12832 /*
12833 * If the filesystem is mounted using local locking, pass the
12834 * request off to the local share code.
12835 */
12836 if (VTOMI4(vp)->mi_flags & MI4_LLOCK)
12837 return (fs_shrlock(vp, cmd, shr, flag, cr, ct));
12838
12839 switch (cmd) {
12840 case F_SHARE:
12841 case F_UNSHARE:
12842 /*
12843 * This will be properly implemented later,
12844 * see RFE: 4823948 .
12845 */
12846 error = EAGAIN;
12847 break;
12848
12849 case F_HASREMOTELOCKS:
12850 /*
12851 * NFS client can't store remote locks itself
12852 */
12853 shr->s_access = 0;
12854 error = 0;
12855 break;
12856
12857 default:
12858 error = EINVAL;
12859 break;
12860 }
12861
12862 return (error);
12863 }
12864
12865 /*
12866 * Common code called by directory ops to update the attrcache
12867 */
12868 static int
nfs4_update_attrcache(nfsstat4 status,nfs4_ga_res_t * garp,hrtime_t t,vnode_t * vp,cred_t * cr)12869 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp,
12870 hrtime_t t, vnode_t *vp, cred_t *cr)
12871 {
12872 int error = 0;
12873
12874 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12875
12876 if (status != NFS4_OK) {
12877 /* getattr not done or failed */
12878 PURGE_ATTRCACHE4(vp);
12879 return (error);
12880 }
12881
12882 if (garp) {
12883 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL);
12884 } else {
12885 PURGE_ATTRCACHE4(vp);
12886 }
12887 return (error);
12888 }
12889
12890 /*
12891 * Update directory caches for directory modification ops (link, rename, etc.)
12892 * When dinfo is NULL, manage dircaches in the old way.
12893 */
12894 static void
nfs4_update_dircaches(change_info4 * cinfo,vnode_t * dvp,vnode_t * vp,char * nm,dirattr_info_t * dinfo)12895 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm,
12896 dirattr_info_t *dinfo)
12897 {
12898 rnode4_t *drp = VTOR4(dvp);
12899
12900 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
12901
12902 /* Purge rddir cache for dir since it changed */
12903 if (drp->r_dir != NULL)
12904 nfs4_purge_rddir_cache(dvp);
12905
12906 /*
12907 * If caller provided dinfo, then use it to manage dir caches.
12908 */
12909 if (dinfo != NULL) {
12910 if (vp != NULL) {
12911 mutex_enter(&VTOR4(vp)->r_statev4_lock);
12912 if (!VTOR4(vp)->created_v4) {
12913 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12914 dnlc_update(dvp, nm, vp);
12915 } else {
12916 /*
12917 * XXX don't update if the created_v4 flag is
12918 * set
12919 */
12920 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12921 NFS4_DEBUG(nfs4_client_state_debug,
12922 (CE_NOTE, "nfs4_update_dircaches: "
12923 "don't update dnlc: created_v4 flag"));
12924 }
12925 }
12926
12927 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call,
12928 dinfo->di_cred, FALSE, cinfo);
12929
12930 return;
12931 }
12932
12933 /*
12934 * Caller didn't provide dinfo, then check change_info4 to update DNLC.
12935 * Since caller modified dir but didn't receive post-dirmod-op dir
12936 * attrs, the dir's attrs must be purged.
12937 *
12938 * XXX this check and dnlc update/purge should really be atomic,
12939 * XXX but can't use rnode statelock because it'll deadlock in
12940 * XXX dnlc_purge_vp, however, the risk is minimal even if a race
12941 * XXX does occur.
12942 *
12943 * XXX We also may want to check that atomic is true in the
12944 * XXX change_info struct. If it is not, the change_info may
12945 * XXX reflect changes by more than one clients which means that
12946 * XXX our cache may not be valid.
12947 */
12948 PURGE_ATTRCACHE4(dvp);
12949 if (drp->r_change == cinfo->before) {
12950 /* no changes took place in the directory prior to our link */
12951 if (vp != NULL) {
12952 mutex_enter(&VTOR4(vp)->r_statev4_lock);
12953 if (!VTOR4(vp)->created_v4) {
12954 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12955 dnlc_update(dvp, nm, vp);
12956 } else {
12957 /*
12958 * XXX dont' update if the created_v4 flag
12959 * is set
12960 */
12961 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12962 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
12963 "nfs4_update_dircaches: don't"
12964 " update dnlc: created_v4 flag"));
12965 }
12966 }
12967 } else {
12968 /* Another client modified directory - purge its dnlc cache */
12969 dnlc_purge_vp(dvp);
12970 }
12971 }
12972
12973 /*
12974 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a
12975 * file.
12976 *
12977 * The 'reopening_file' boolean should be set to TRUE if we are reopening this
12978 * file (ie: client recovery) and otherwise set to FALSE.
12979 *
12980 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery
12981 * initiated) calling functions.
12982 *
12983 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result
12984 * of resending a 'lost' open request.
12985 *
12986 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken
12987 * server that hands out BAD_SEQID on open confirm.
12988 *
12989 * Errors are returned via the nfs4_error_t parameter.
12990 */
12991 void
nfs4open_confirm(vnode_t * vp,seqid4 * seqid,stateid4 * stateid,cred_t * cr,bool_t reopening_file,bool_t * retry_open,nfs4_open_owner_t * oop,bool_t resend,nfs4_error_t * ep,int * num_bseqid_retryp)12992 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr,
12993 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop,
12994 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp)
12995 {
12996 COMPOUND4args_clnt args;
12997 COMPOUND4res_clnt res;
12998 nfs_argop4 argop[2];
12999 nfs_resop4 *resop;
13000 int doqueue = 1;
13001 mntinfo4_t *mi;
13002 OPEN_CONFIRM4args *open_confirm_args;
13003 int needrecov;
13004
13005 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13006 #if DEBUG
13007 mutex_enter(&oop->oo_lock);
13008 ASSERT(oop->oo_seqid_inuse);
13009 mutex_exit(&oop->oo_lock);
13010 #endif
13011
13012 recov_retry_confirm:
13013 nfs4_error_zinit(ep);
13014 *retry_open = FALSE;
13015
13016 if (resend)
13017 args.ctag = TAG_OPEN_CONFIRM_LOST;
13018 else
13019 args.ctag = TAG_OPEN_CONFIRM;
13020
13021 args.array_len = 2;
13022 args.array = argop;
13023
13024 /* putfh target fh */
13025 argop[0].argop = OP_CPUTFH;
13026 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
13027
13028 argop[1].argop = OP_OPEN_CONFIRM;
13029 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm;
13030
13031 (*seqid) += 1;
13032 open_confirm_args->seqid = *seqid;
13033 open_confirm_args->open_stateid = *stateid;
13034
13035 mi = VTOMI4(vp);
13036
13037 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep);
13038
13039 if (!ep->error && nfs4_need_to_bump_seqid(&res)) {
13040 nfs4_set_open_seqid((*seqid), oop, args.ctag);
13041 }
13042
13043 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp);
13044 if (!needrecov && ep->error)
13045 return;
13046
13047 if (needrecov) {
13048 bool_t abort = FALSE;
13049
13050 if (reopening_file == FALSE) {
13051 nfs4_bseqid_entry_t *bsep = NULL;
13052
13053 if (!ep->error && res.status == NFS4ERR_BAD_SEQID)
13054 bsep = nfs4_create_bseqid_entry(oop, NULL,
13055 vp, 0, args.ctag,
13056 open_confirm_args->seqid);
13057
13058 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL,
13059 NULL, NULL, OP_OPEN_CONFIRM, bsep, NULL, NULL);
13060 if (bsep) {
13061 kmem_free(bsep, sizeof (*bsep));
13062 if (num_bseqid_retryp &&
13063 --(*num_bseqid_retryp) == 0)
13064 abort = TRUE;
13065 }
13066 }
13067 if ((ep->error == ETIMEDOUT ||
13068 res.status == NFS4ERR_RESOURCE) &&
13069 abort == FALSE && resend == FALSE) {
13070 if (!ep->error)
13071 (void) xdr_free(xdr_COMPOUND4res_clnt,
13072 (caddr_t)&res);
13073
13074 delay(SEC_TO_TICK(confirm_retry_sec));
13075 goto recov_retry_confirm;
13076 }
13077 /* State may have changed so retry the entire OPEN op */
13078 if (abort == FALSE)
13079 *retry_open = TRUE;
13080 else
13081 *retry_open = FALSE;
13082 if (!ep->error)
13083 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
13084 return;
13085 }
13086
13087 if (res.status) {
13088 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
13089 return;
13090 }
13091
13092 resop = &res.array[1]; /* open confirm res */
13093 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid,
13094 stateid, sizeof (*stateid));
13095
13096 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
13097 }
13098
13099 /*
13100 * Return the credentials associated with a client state object. The
13101 * caller is responsible for freeing the credentials.
13102 */
13103
13104 static cred_t *
state_to_cred(nfs4_open_stream_t * osp)13105 state_to_cred(nfs4_open_stream_t *osp)
13106 {
13107 cred_t *cr;
13108
13109 /*
13110 * It's ok to not lock the open stream and open owner to get
13111 * the oo_cred since this is only written once (upon creation)
13112 * and will not change.
13113 */
13114 cr = osp->os_open_owner->oo_cred;
13115 crhold(cr);
13116
13117 return (cr);
13118 }
13119
13120 /*
13121 * nfs4_find_sysid
13122 *
13123 * Find the sysid for the knetconfig associated with the given mi.
13124 */
13125 static struct lm_sysid *
nfs4_find_sysid(mntinfo4_t * mi)13126 nfs4_find_sysid(mntinfo4_t *mi)
13127 {
13128 ASSERT(nfs_zone() == mi->mi_zone);
13129
13130 /*
13131 * Switch from RDMA knconf to original mount knconf
13132 */
13133 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr,
13134 mi->mi_curr_serv->sv_hostname, NULL));
13135 }
13136
13137 #ifdef DEBUG
13138 /*
13139 * Return a string version of the call type for easy reading.
13140 */
13141 static char *
nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype)13142 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype)
13143 {
13144 switch (ctype) {
13145 case NFS4_LCK_CTYPE_NORM:
13146 return ("NORMAL");
13147 case NFS4_LCK_CTYPE_RECLAIM:
13148 return ("RECLAIM");
13149 case NFS4_LCK_CTYPE_RESEND:
13150 return ("RESEND");
13151 case NFS4_LCK_CTYPE_REINSTATE:
13152 return ("REINSTATE");
13153 default:
13154 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal "
13155 "type %d", ctype);
13156 return ("");
13157 }
13158 }
13159 #endif
13160
13161 /*
13162 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type
13163 * Unlock requests don't have an over-the-wire locktype, so we just return
13164 * something non-threatening.
13165 */
13166
13167 static nfs_lock_type4
flk_to_locktype(int cmd,int l_type)13168 flk_to_locktype(int cmd, int l_type)
13169 {
13170 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK);
13171
13172 switch (l_type) {
13173 case F_UNLCK:
13174 return (READ_LT);
13175 case F_RDLCK:
13176 if (cmd == F_SETLK)
13177 return (READ_LT);
13178 else
13179 return (READW_LT);
13180 case F_WRLCK:
13181 if (cmd == F_SETLK)
13182 return (WRITE_LT);
13183 else
13184 return (WRITEW_LT);
13185 }
13186 panic("flk_to_locktype");
13187 /*NOTREACHED*/
13188 }
13189
13190 /*
13191 * Set the flock64's lm_sysid for nfs4frlock.
13192 */
13193 static int
nfs4frlock_get_sysid(struct lm_sysid ** lspp,vnode_t * vp,flock64_t * flk)13194 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk)
13195 {
13196 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13197
13198 /* Find the lm_sysid */
13199 *lspp = nfs4_find_sysid(VTOMI4(vp));
13200
13201 if (*lspp == NULL) {
13202 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
13203 "nfs4frlock_get_sysid: no sysid, return ENOLCK"));
13204 return (ENOLCK);
13205 }
13206
13207 flk->l_sysid = lm_sysidt(*lspp);
13208
13209 return (0);
13210 }
13211
13212 /*
13213 * Do the remaining preliminary setup for nfs4frlock.
13214 */
13215 static void
nfs4frlock_pre_setup(clock_t * tick_delayp,nfs4_recov_state_t * recov_statep,vnode_t * vp,cred_t * search_cr,cred_t ** cred_otw)13216 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep,
13217 vnode_t *vp, cred_t *search_cr, cred_t **cred_otw)
13218 {
13219 /*
13220 * set tick_delay to the base delay time.
13221 * (nfs4_base_wait_time is in msecs)
13222 */
13223
13224 *tick_delayp = drv_usectohz(nfs4_base_wait_time * 1000);
13225
13226 recov_statep->rs_flags = 0;
13227 recov_statep->rs_num_retry_despite_err = 0;
13228 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL);
13229 }
13230
13231 /*
13232 * Initialize and allocate the data structures necessary for
13233 * the nfs4frlock call.
13234 * Allocates argsp's op array, frees up the saved_rqstpp if there is one.
13235 */
13236 static void
nfs4frlock_call_init(COMPOUND4args_clnt * argsp,COMPOUND4args_clnt ** argspp,nfs_argop4 ** argopp,nfs4_op_hint_t * op_hintp,flock64_t * flk,int cmd,bool_t * retry,bool_t * did_start_fop,COMPOUND4res_clnt ** respp,bool_t * skip_get_err,nfs4_lost_rqst_t * lost_rqstp)13237 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp,
13238 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd,
13239 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp,
13240 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp)
13241 {
13242 int argoplist_size;
13243 int num_ops = 2;
13244
13245 *retry = FALSE;
13246 *did_start_fop = FALSE;
13247 *skip_get_err = FALSE;
13248 lost_rqstp->lr_op = 0;
13249 argoplist_size = num_ops * sizeof (nfs_argop4);
13250 /* fill array with zero */
13251 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP);
13252
13253 *argspp = argsp;
13254 *respp = NULL;
13255
13256 argsp->array_len = num_ops;
13257 argsp->array = *argopp;
13258
13259 /* initialize in case of error; will get real value down below */
13260 argsp->ctag = TAG_NONE;
13261
13262 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK)
13263 *op_hintp = OH_LOCKU;
13264 else
13265 *op_hintp = OH_OTHER;
13266 }
13267
13268 /*
13269 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign
13270 * the proper nfs4_server_t for this instance of nfs4frlock.
13271 * Returns 0 (success) or an errno value.
13272 */
13273 static int
nfs4frlock_start_call(nfs4_lock_call_type_t ctype,vnode_t * vp,nfs4_op_hint_t op_hint,nfs4_recov_state_t * recov_statep,bool_t * did_start_fop,bool_t * startrecovp)13274 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp,
13275 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep,
13276 bool_t *did_start_fop, bool_t *startrecovp)
13277 {
13278 int error = 0;
13279 rnode4_t *rp;
13280
13281 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13282
13283 if (ctype == NFS4_LCK_CTYPE_NORM) {
13284 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint,
13285 recov_statep, startrecovp);
13286 if (error)
13287 return (error);
13288 *did_start_fop = TRUE;
13289 } else {
13290 *did_start_fop = FALSE;
13291 *startrecovp = FALSE;
13292 }
13293
13294 if (!error) {
13295 rp = VTOR4(vp);
13296
13297 /* If the file failed recovery, just quit. */
13298 mutex_enter(&rp->r_statelock);
13299 if (rp->r_flags & R4RECOVERR) {
13300 error = EIO;
13301 }
13302 mutex_exit(&rp->r_statelock);
13303 }
13304
13305 return (error);
13306 }
13307
13308 /*
13309 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A
13310 * resend nfs4frlock call is initiated by the recovery framework.
13311 * Acquires the lop and oop seqid synchronization.
13312 */
13313 static void
nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t * resend_rqstp,COMPOUND4args_clnt * argsp,nfs_argop4 * argop,nfs4_lock_owner_t ** lopp,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,LOCK4args ** lock_argsp,LOCKU4args ** locku_argsp)13314 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp,
13315 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp,
13316 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
13317 LOCK4args **lock_argsp, LOCKU4args **locku_argsp)
13318 {
13319 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp);
13320 int error;
13321
13322 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug),
13323 (CE_NOTE,
13324 "nfs4frlock_setup_resend_lock_args: have lost lock to resend"));
13325 ASSERT(resend_rqstp != NULL);
13326 ASSERT(resend_rqstp->lr_op == OP_LOCK ||
13327 resend_rqstp->lr_op == OP_LOCKU);
13328
13329 *oopp = resend_rqstp->lr_oop;
13330 if (resend_rqstp->lr_oop) {
13331 open_owner_hold(resend_rqstp->lr_oop);
13332 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi);
13333 ASSERT(error == 0); /* recov thread always succeeds */
13334 }
13335
13336 /* Must resend this lost lock/locku request. */
13337 ASSERT(resend_rqstp->lr_lop != NULL);
13338 *lopp = resend_rqstp->lr_lop;
13339 lock_owner_hold(resend_rqstp->lr_lop);
13340 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi);
13341 ASSERT(error == 0); /* recov thread always succeeds */
13342
13343 *ospp = resend_rqstp->lr_osp;
13344 if (*ospp)
13345 open_stream_hold(resend_rqstp->lr_osp);
13346
13347 if (resend_rqstp->lr_op == OP_LOCK) {
13348 LOCK4args *lock_args;
13349
13350 argop->argop = OP_LOCK;
13351 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock;
13352 lock_args->locktype = resend_rqstp->lr_locktype;
13353 lock_args->reclaim =
13354 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM);
13355 lock_args->offset = resend_rqstp->lr_flk->l_start;
13356 lock_args->length = resend_rqstp->lr_flk->l_len;
13357 if (lock_args->length == 0)
13358 lock_args->length = ~lock_args->length;
13359 nfs4_setup_lock_args(*lopp, *oopp, *ospp,
13360 mi2clientid(mi), &lock_args->locker);
13361
13362 switch (resend_rqstp->lr_ctype) {
13363 case NFS4_LCK_CTYPE_RESEND:
13364 argsp->ctag = TAG_LOCK_RESEND;
13365 break;
13366 case NFS4_LCK_CTYPE_REINSTATE:
13367 argsp->ctag = TAG_LOCK_REINSTATE;
13368 break;
13369 case NFS4_LCK_CTYPE_RECLAIM:
13370 argsp->ctag = TAG_LOCK_RECLAIM;
13371 break;
13372 default:
13373 argsp->ctag = TAG_LOCK_UNKNOWN;
13374 break;
13375 }
13376 } else {
13377 LOCKU4args *locku_args;
13378 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop;
13379
13380 argop->argop = OP_LOCKU;
13381 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku;
13382 locku_args->locktype = READ_LT;
13383 locku_args->seqid = lop->lock_seqid + 1;
13384 mutex_enter(&lop->lo_lock);
13385 locku_args->lock_stateid = lop->lock_stateid;
13386 mutex_exit(&lop->lo_lock);
13387 locku_args->offset = resend_rqstp->lr_flk->l_start;
13388 locku_args->length = resend_rqstp->lr_flk->l_len;
13389 if (locku_args->length == 0)
13390 locku_args->length = ~locku_args->length;
13391
13392 switch (resend_rqstp->lr_ctype) {
13393 case NFS4_LCK_CTYPE_RESEND:
13394 argsp->ctag = TAG_LOCKU_RESEND;
13395 break;
13396 case NFS4_LCK_CTYPE_REINSTATE:
13397 argsp->ctag = TAG_LOCKU_REINSTATE;
13398 break;
13399 default:
13400 argsp->ctag = TAG_LOCK_UNKNOWN;
13401 break;
13402 }
13403 }
13404 }
13405
13406 /*
13407 * Setup the LOCKT4 arguments.
13408 */
13409 static void
nfs4frlock_setup_lockt_args(nfs_argop4 * argop,LOCKT4args ** lockt_argsp,COMPOUND4args_clnt * argsp,flock64_t * flk,rnode4_t * rp)13410 nfs4frlock_setup_lockt_args(nfs_argop4 *argop, LOCKT4args **lockt_argsp,
13411 COMPOUND4args_clnt *argsp, flock64_t *flk, rnode4_t *rp)
13412 {
13413 LOCKT4args *lockt_args;
13414
13415 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone);
13416 argop->argop = OP_LOCKT;
13417 argsp->ctag = TAG_LOCKT;
13418 lockt_args = &argop->nfs_argop4_u.oplockt;
13419
13420 /*
13421 * The locktype will be READ_LT unless it's
13422 * a write lock. We do this because the Solaris
13423 * system call allows the combination of
13424 * F_UNLCK and F_GETLK* and so in that case the
13425 * unlock is mapped to a read.
13426 */
13427 if (flk->l_type == F_WRLCK)
13428 lockt_args->locktype = WRITE_LT;
13429 else
13430 lockt_args->locktype = READ_LT;
13431
13432 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp)));
13433 /* set the lock owner4 args */
13434 nfs4_setlockowner_args(&lockt_args->owner, rp, flk->l_pid);
13435 lockt_args->offset = flk->l_start;
13436 lockt_args->length = flk->l_len;
13437 if (flk->l_len == 0)
13438 lockt_args->length = ~lockt_args->length;
13439
13440 *lockt_argsp = lockt_args;
13441 }
13442
13443 /*
13444 * If the client is holding a delegation, and the open stream to be used
13445 * with this lock request is a delegation open stream, then re-open the stream.
13446 * Sets the nfs4_error_t to all zeros unless the open stream has already
13447 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY
13448 * means the caller should retry (like a recovery retry).
13449 */
13450 static void
nfs4frlock_check_deleg(vnode_t * vp,nfs4_error_t * ep,cred_t * cr,int lt)13451 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt)
13452 {
13453 open_delegation_type4 dt;
13454 bool_t reopen_needed, force;
13455 nfs4_open_stream_t *osp;
13456 open_claim_type4 oclaim;
13457 rnode4_t *rp = VTOR4(vp);
13458 mntinfo4_t *mi = VTOMI4(vp);
13459
13460 ASSERT(nfs_zone() == mi->mi_zone);
13461
13462 nfs4_error_zinit(ep);
13463
13464 mutex_enter(&rp->r_statev4_lock);
13465 dt = rp->r_deleg_type;
13466 mutex_exit(&rp->r_statev4_lock);
13467
13468 if (dt != OPEN_DELEGATE_NONE) {
13469 nfs4_open_owner_t *oop;
13470
13471 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
13472 if (!oop) {
13473 ep->stat = NFS4ERR_IO;
13474 return;
13475 }
13476 /* returns with 'os_sync_lock' held */
13477 osp = find_open_stream(oop, rp);
13478 if (!osp) {
13479 open_owner_rele(oop);
13480 ep->stat = NFS4ERR_IO;
13481 return;
13482 }
13483
13484 if (osp->os_failed_reopen) {
13485 NFS4_DEBUG((nfs4_open_stream_debug ||
13486 nfs4_client_lock_debug), (CE_NOTE,
13487 "nfs4frlock_check_deleg: os_failed_reopen set "
13488 "for osp %p, cr %p, rp %s", (void *)osp,
13489 (void *)cr, rnode4info(rp)));
13490 mutex_exit(&osp->os_sync_lock);
13491 open_stream_rele(osp, rp);
13492 open_owner_rele(oop);
13493 ep->stat = NFS4ERR_IO;
13494 return;
13495 }
13496
13497 /*
13498 * Determine whether a reopen is needed. If this
13499 * is a delegation open stream, then send the open
13500 * to the server to give visibility to the open owner.
13501 * Even if it isn't a delegation open stream, we need
13502 * to check if the previous open CLAIM_DELEGATE_CUR
13503 * was sufficient.
13504 */
13505
13506 reopen_needed = osp->os_delegation ||
13507 ((lt == F_RDLCK &&
13508 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) ||
13509 (lt == F_WRLCK &&
13510 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE)));
13511
13512 mutex_exit(&osp->os_sync_lock);
13513 open_owner_rele(oop);
13514
13515 if (reopen_needed) {
13516 /*
13517 * Always use CLAIM_PREVIOUS after server reboot.
13518 * The server will reject CLAIM_DELEGATE_CUR if
13519 * it is used during the grace period.
13520 */
13521 mutex_enter(&mi->mi_lock);
13522 if (mi->mi_recovflags & MI4R_SRV_REBOOT) {
13523 oclaim = CLAIM_PREVIOUS;
13524 force = TRUE;
13525 } else {
13526 oclaim = CLAIM_DELEGATE_CUR;
13527 force = FALSE;
13528 }
13529 mutex_exit(&mi->mi_lock);
13530
13531 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE);
13532 if (ep->error == EAGAIN) {
13533 nfs4_error_zinit(ep);
13534 ep->stat = NFS4ERR_DELAY;
13535 }
13536 }
13537 open_stream_rele(osp, rp);
13538 osp = NULL;
13539 }
13540 }
13541
13542 /*
13543 * Setup the LOCKU4 arguments.
13544 * Returns errors via the nfs4_error_t.
13545 * NFS4_OK no problems. *go_otwp is TRUE if call should go
13546 * over-the-wire. The caller must release the
13547 * reference on *lopp.
13548 * NFS4ERR_DELAY caller should retry (like recovery retry)
13549 * (other) unrecoverable error.
13550 */
13551 static void
nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype,nfs_argop4 * argop,LOCKU4args ** locku_argsp,flock64_t * flk,nfs4_lock_owner_t ** lopp,nfs4_error_t * ep,COMPOUND4args_clnt * argsp,vnode_t * vp,cred_t * cr,bool_t * skip_get_err,bool_t * go_otwp)13552 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop,
13553 LOCKU4args **locku_argsp, flock64_t *flk,
13554 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp,
13555 vnode_t *vp, cred_t *cr, bool_t *skip_get_err, bool_t *go_otwp)
13556 {
13557 nfs4_lock_owner_t *lop = NULL;
13558 LOCKU4args *locku_args;
13559 pid_t pid = flk->l_pid;
13560 bool_t is_spec = FALSE;
13561 rnode4_t *rp = VTOR4(vp);
13562
13563 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13564 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
13565
13566 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK);
13567 if (ep->error || ep->stat)
13568 return;
13569
13570 argop->argop = OP_LOCKU;
13571 if (ctype == NFS4_LCK_CTYPE_REINSTATE)
13572 argsp->ctag = TAG_LOCKU_REINSTATE;
13573 else
13574 argsp->ctag = TAG_LOCKU;
13575 locku_args = &argop->nfs_argop4_u.oplocku;
13576 *locku_argsp = locku_args;
13577
13578 /*
13579 * XXX what should locku_args->locktype be?
13580 * setting to ALWAYS be READ_LT so at least
13581 * it is a valid locktype.
13582 */
13583
13584 locku_args->locktype = READ_LT;
13585
13586 /*
13587 * Get the lock owner stateid. If no lock owner
13588 * exists, return success.
13589 */
13590 lop = find_lock_owner(rp, pid, LOWN_ANY);
13591 *lopp = lop;
13592 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid))
13593 is_spec = TRUE;
13594 if (!lop || is_spec) {
13595 /*
13596 * No lock owner so no locks to unlock.
13597 * Return success.
13598 *
13599 * If the lockowner is using a special stateid,
13600 * then the original lock request (that created
13601 * this lockowner) was never successful, so we
13602 * have no lock to undo OTW.
13603 */
13604 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
13605 "nfs4frlock_setup_locku_args: LOCKU: no lock owner "
13606 "(%ld) so return success", (long)pid));
13607
13608 /*
13609 * Release our hold and NULL out so final_cleanup
13610 * doesn't try to end a lock seqid sync we
13611 * never started.
13612 */
13613 if (is_spec) {
13614 lock_owner_rele(lop);
13615 *lopp = NULL;
13616 }
13617 *skip_get_err = TRUE;
13618 *go_otwp = FALSE;
13619 return;
13620 }
13621
13622 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp));
13623 if (ep->error == EAGAIN) {
13624 lock_owner_rele(lop);
13625 *lopp = NULL;
13626 return;
13627 }
13628
13629 mutex_enter(&lop->lo_lock);
13630 locku_args->lock_stateid = lop->lock_stateid;
13631 mutex_exit(&lop->lo_lock);
13632 locku_args->seqid = lop->lock_seqid + 1;
13633
13634 /* leave the ref count on lop, rele after RPC call */
13635
13636 locku_args->offset = flk->l_start;
13637 locku_args->length = flk->l_len;
13638 if (flk->l_len == 0)
13639 locku_args->length = ~locku_args->length;
13640
13641 *go_otwp = TRUE;
13642 }
13643
13644 /*
13645 * Setup the LOCK4 arguments.
13646 *
13647 * Returns errors via the nfs4_error_t.
13648 * NFS4_OK no problems
13649 * NFS4ERR_DELAY caller should retry (like recovery retry)
13650 * (other) unrecoverable error
13651 */
13652 static void
nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype,LOCK4args ** lock_argsp,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,nfs4_lock_owner_t ** lopp,nfs_argop4 * argop,COMPOUND4args_clnt * argsp,flock64_t * flk,int cmd,vnode_t * vp,cred_t * cr,nfs4_error_t * ep)13653 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp,
13654 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
13655 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp,
13656 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep)
13657 {
13658 LOCK4args *lock_args;
13659 nfs4_open_owner_t *oop = NULL;
13660 nfs4_open_stream_t *osp = NULL;
13661 nfs4_lock_owner_t *lop = NULL;
13662 pid_t pid = flk->l_pid;
13663 rnode4_t *rp = VTOR4(vp);
13664
13665 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13666
13667 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type);
13668 if (ep->error || ep->stat != NFS4_OK)
13669 return;
13670
13671 argop->argop = OP_LOCK;
13672 if (ctype == NFS4_LCK_CTYPE_NORM)
13673 argsp->ctag = TAG_LOCK;
13674 else if (ctype == NFS4_LCK_CTYPE_RECLAIM)
13675 argsp->ctag = TAG_RELOCK;
13676 else
13677 argsp->ctag = TAG_LOCK_REINSTATE;
13678 lock_args = &argop->nfs_argop4_u.oplock;
13679 lock_args->locktype = flk_to_locktype(cmd, flk->l_type);
13680 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0;
13681 /*
13682 * Get the lock owner. If no lock owner exists,
13683 * create a 'temporary' one and grab the open seqid
13684 * synchronization (which puts a hold on the open
13685 * owner and open stream).
13686 * This also grabs the lock seqid synchronization.
13687 */
13688 ep->stat =
13689 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop);
13690
13691 if (ep->stat != NFS4_OK)
13692 goto out;
13693
13694 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)),
13695 &lock_args->locker);
13696
13697 lock_args->offset = flk->l_start;
13698 lock_args->length = flk->l_len;
13699 if (flk->l_len == 0)
13700 lock_args->length = ~lock_args->length;
13701 *lock_argsp = lock_args;
13702 out:
13703 *oopp = oop;
13704 *ospp = osp;
13705 *lopp = lop;
13706 }
13707
13708 /*
13709 * After we get the reply from the server, record the proper information
13710 * for possible resend lock requests.
13711 *
13712 * Allocates memory for the saved_rqstp if we have a lost lock to save.
13713 */
13714 static void
nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype,int error,nfs_lock_type4 locktype,nfs4_open_owner_t * oop,nfs4_open_stream_t * osp,nfs4_lock_owner_t * lop,flock64_t * flk,nfs4_lost_rqst_t * lost_rqstp,cred_t * cr,vnode_t * vp)13715 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error,
13716 nfs_lock_type4 locktype, nfs4_open_owner_t *oop,
13717 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk,
13718 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp)
13719 {
13720 bool_t unlock = (flk->l_type == F_UNLCK);
13721
13722 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13723 ASSERT(ctype == NFS4_LCK_CTYPE_NORM ||
13724 ctype == NFS4_LCK_CTYPE_REINSTATE);
13725
13726 if (error != 0 && !unlock) {
13727 NFS4_DEBUG((nfs4_lost_rqst_debug ||
13728 nfs4_client_lock_debug), (CE_NOTE,
13729 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 "
13730 " for lop %p", (void *)lop));
13731 ASSERT(lop != NULL);
13732 mutex_enter(&lop->lo_lock);
13733 lop->lo_pending_rqsts = 1;
13734 mutex_exit(&lop->lo_lock);
13735 }
13736
13737 lost_rqstp->lr_putfirst = FALSE;
13738 lost_rqstp->lr_op = 0;
13739
13740 /*
13741 * For lock/locku requests, we treat EINTR as ETIMEDOUT for
13742 * recovery purposes so that the lock request that was sent
13743 * can be saved and re-issued later. Ditto for EIO from a forced
13744 * unmount. This is done to have the client's local locking state
13745 * match the v4 server's state; that is, the request was
13746 * potentially received and accepted by the server but the client
13747 * thinks it was not.
13748 */
13749 if (error == ETIMEDOUT || error == EINTR ||
13750 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) {
13751 NFS4_DEBUG((nfs4_lost_rqst_debug ||
13752 nfs4_client_lock_debug), (CE_NOTE,
13753 "nfs4frlock_save_lost_rqst: got a lost %s lock for "
13754 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK",
13755 (void *)lop, (void *)oop, (void *)osp));
13756 if (unlock)
13757 lost_rqstp->lr_op = OP_LOCKU;
13758 else {
13759 lost_rqstp->lr_op = OP_LOCK;
13760 lost_rqstp->lr_locktype = locktype;
13761 }
13762 /*
13763 * Objects are held and rele'd via the recovery code.
13764 * See nfs4_save_lost_rqst.
13765 */
13766 lost_rqstp->lr_vp = vp;
13767 lost_rqstp->lr_dvp = NULL;
13768 lost_rqstp->lr_oop = oop;
13769 lost_rqstp->lr_osp = osp;
13770 lost_rqstp->lr_lop = lop;
13771 lost_rqstp->lr_cr = cr;
13772 switch (ctype) {
13773 case NFS4_LCK_CTYPE_NORM:
13774 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND;
13775 break;
13776 case NFS4_LCK_CTYPE_REINSTATE:
13777 lost_rqstp->lr_putfirst = TRUE;
13778 lost_rqstp->lr_ctype = ctype;
13779 break;
13780 default:
13781 break;
13782 }
13783 lost_rqstp->lr_flk = flk;
13784 }
13785 }
13786
13787 /*
13788 * Update lop's seqid. Also update the seqid stored in a resend request,
13789 * if any. (Some recovery errors increment the seqid, and we may have to
13790 * send the resend request again.)
13791 */
13792
13793 static void
nfs4frlock_bump_seqid(LOCK4args * lock_args,LOCKU4args * locku_args,nfs4_open_owner_t * oop,nfs4_lock_owner_t * lop,nfs4_tag_type_t tag_type)13794 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args,
13795 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type)
13796 {
13797 if (lock_args) {
13798 if (lock_args->locker.new_lock_owner == TRUE)
13799 nfs4_get_and_set_next_open_seqid(oop, tag_type);
13800 else {
13801 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE);
13802 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop);
13803 }
13804 } else if (locku_args) {
13805 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE);
13806 nfs4_set_lock_seqid(lop->lock_seqid +1, lop);
13807 }
13808 }
13809
13810 /*
13811 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
13812 * COMPOUND4 args/res for calls that need to retry.
13813 * Switches the *cred_otwp to base_cr.
13814 */
13815 static void
nfs4frlock_check_access(vnode_t * vp,nfs4_op_hint_t op_hint,nfs4_recov_state_t * recov_statep,int needrecov,bool_t * did_start_fop,COMPOUND4args_clnt ** argspp,COMPOUND4res_clnt ** respp,int error,nfs4_lock_owner_t ** lopp,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,cred_t * base_cr,cred_t ** cred_otwp)13816 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint,
13817 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop,
13818 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error,
13819 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp,
13820 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp)
13821 {
13822 nfs4_open_owner_t *oop = *oopp;
13823 nfs4_open_stream_t *osp = *ospp;
13824 nfs4_lock_owner_t *lop = *lopp;
13825 nfs_argop4 *argop = (*argspp)->array;
13826
13827 if (*did_start_fop) {
13828 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep,
13829 needrecov);
13830 *did_start_fop = FALSE;
13831 }
13832 ASSERT((*argspp)->array_len == 2);
13833 if (argop[1].argop == OP_LOCK)
13834 nfs4args_lock_free(&argop[1]);
13835 else if (argop[1].argop == OP_LOCKT)
13836 nfs4args_lockt_free(&argop[1]);
13837 kmem_free(argop, 2 * sizeof (nfs_argop4));
13838 if (!error)
13839 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp);
13840 *argspp = NULL;
13841 *respp = NULL;
13842
13843 if (lop) {
13844 nfs4_end_lock_seqid_sync(lop);
13845 lock_owner_rele(lop);
13846 *lopp = NULL;
13847 }
13848
13849 /* need to free up the reference on osp for lock args */
13850 if (osp != NULL) {
13851 open_stream_rele(osp, VTOR4(vp));
13852 *ospp = NULL;
13853 }
13854
13855 /* need to free up the reference on oop for lock args */
13856 if (oop != NULL) {
13857 nfs4_end_open_seqid_sync(oop);
13858 open_owner_rele(oop);
13859 *oopp = NULL;
13860 }
13861
13862 crfree(*cred_otwp);
13863 *cred_otwp = base_cr;
13864 crhold(*cred_otwp);
13865 }
13866
13867 /*
13868 * Function to process the client's recovery for nfs4frlock.
13869 * Returns TRUE if we should retry the lock request; FALSE otherwise.
13870 *
13871 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
13872 * COMPOUND4 args/res for calls that need to retry.
13873 *
13874 * Note: the rp's r_lkserlock is *not* dropped during this path.
13875 */
13876 static bool_t
nfs4frlock_recovery(int needrecov,nfs4_error_t * ep,COMPOUND4args_clnt ** argspp,COMPOUND4res_clnt ** respp,LOCK4args * lock_args,LOCKU4args * locku_args,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,nfs4_lock_owner_t ** lopp,rnode4_t * rp,vnode_t * vp,nfs4_recov_state_t * recov_statep,nfs4_op_hint_t op_hint,bool_t * did_start_fop,nfs4_lost_rqst_t * lost_rqstp,flock64_t * flk)13877 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep,
13878 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp,
13879 LOCK4args *lock_args, LOCKU4args *locku_args,
13880 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
13881 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp,
13882 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint,
13883 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk)
13884 {
13885 nfs4_open_owner_t *oop = *oopp;
13886 nfs4_open_stream_t *osp = *ospp;
13887 nfs4_lock_owner_t *lop = *lopp;
13888
13889 bool_t abort, retry;
13890
13891 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13892 ASSERT((*argspp) != NULL);
13893 ASSERT((*respp) != NULL);
13894 if (lock_args || locku_args)
13895 ASSERT(lop != NULL);
13896
13897 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug),
13898 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n"));
13899
13900 retry = TRUE;
13901 abort = FALSE;
13902 if (needrecov) {
13903 nfs4_bseqid_entry_t *bsep = NULL;
13904 nfs_opnum4 op;
13905
13906 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT;
13907
13908 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) {
13909 seqid4 seqid;
13910
13911 if (lock_args) {
13912 if (lock_args->locker.new_lock_owner == TRUE)
13913 seqid = lock_args->locker.locker4_u.
13914 open_owner.open_seqid;
13915 else
13916 seqid = lock_args->locker.locker4_u.
13917 lock_owner.lock_seqid;
13918 } else if (locku_args) {
13919 seqid = locku_args->seqid;
13920 } else {
13921 seqid = 0;
13922 }
13923
13924 bsep = nfs4_create_bseqid_entry(oop, lop, vp,
13925 flk->l_pid, (*argspp)->ctag, seqid);
13926 }
13927
13928 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL,
13929 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK ||
13930 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp :
13931 NULL, op, bsep, NULL, NULL);
13932
13933 if (bsep)
13934 kmem_free(bsep, sizeof (*bsep));
13935 }
13936
13937 /*
13938 * Return that we do not want to retry the request for 3 cases:
13939 * 1. If we received EINTR or are bailing out because of a forced
13940 * unmount, we came into this code path just for the sake of
13941 * initiating recovery, we now need to return the error.
13942 * 2. If we have aborted recovery.
13943 * 3. We received NFS4ERR_BAD_SEQID.
13944 */
13945 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) ||
13946 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID))
13947 retry = FALSE;
13948
13949 if (*did_start_fop == TRUE) {
13950 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep,
13951 needrecov);
13952 *did_start_fop = FALSE;
13953 }
13954
13955 if (retry == TRUE) {
13956 nfs_argop4 *argop;
13957
13958 argop = (*argspp)->array;
13959 ASSERT((*argspp)->array_len == 2);
13960
13961 if (argop[1].argop == OP_LOCK)
13962 nfs4args_lock_free(&argop[1]);
13963 else if (argop[1].argop == OP_LOCKT)
13964 nfs4args_lockt_free(&argop[1]);
13965 kmem_free(argop, 2 * sizeof (nfs_argop4));
13966 if (!ep->error)
13967 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp);
13968 *respp = NULL;
13969 *argspp = NULL;
13970 }
13971
13972 if (lop != NULL) {
13973 nfs4_end_lock_seqid_sync(lop);
13974 lock_owner_rele(lop);
13975 }
13976
13977 *lopp = NULL;
13978
13979 /* need to free up the reference on osp for lock args */
13980 if (osp != NULL) {
13981 open_stream_rele(osp, rp);
13982 *ospp = NULL;
13983 }
13984
13985 /* need to free up the reference on oop for lock args */
13986 if (oop != NULL) {
13987 nfs4_end_open_seqid_sync(oop);
13988 open_owner_rele(oop);
13989 *oopp = NULL;
13990 }
13991
13992 return (retry);
13993 }
13994
13995 /*
13996 * Handle the DENIED reply from the server for nfs4frlock.
13997 * Returns TRUE if we should retry the request; FALSE otherwise.
13998 *
13999 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
14000 * COMPOUND4 args/res for calls that need to retry. Can also
14001 * drop and regrab the r_lkserlock.
14002 */
14003 static bool_t
nfs4frlock_results_denied(nfs4_lock_call_type_t ctype,LOCK4args * lock_args,LOCKT4args * lockt_args,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,nfs4_lock_owner_t ** lopp,int cmd,vnode_t * vp,flock64_t * flk,nfs4_op_hint_t op_hint,nfs4_recov_state_t * recov_statep,int needrecov,COMPOUND4args_clnt ** argspp,COMPOUND4res_clnt ** respp,clock_t * tick_delayp,int * errorp,nfs_resop4 * resop,cred_t * cr,bool_t * did_start_fop,bool_t * skip_get_err)14004 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args,
14005 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp,
14006 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd,
14007 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint,
14008 nfs4_recov_state_t *recov_statep, int needrecov,
14009 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp,
14010 clock_t *tick_delayp, int *errorp,
14011 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop,
14012 bool_t *skip_get_err)
14013 {
14014 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14015
14016 if (lock_args) {
14017 nfs4_open_owner_t *oop = *oopp;
14018 nfs4_open_stream_t *osp = *ospp;
14019 nfs4_lock_owner_t *lop = *lopp;
14020 int intr;
14021
14022 /*
14023 * Blocking lock needs to sleep and retry from the request.
14024 *
14025 * Do not block and wait for 'resend' or 'reinstate'
14026 * lock requests, just return the error.
14027 *
14028 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW.
14029 */
14030 if (cmd == F_SETLKW) {
14031 rnode4_t *rp = VTOR4(vp);
14032 nfs_argop4 *argop = (*argspp)->array;
14033
14034 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
14035
14036 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint,
14037 recov_statep, needrecov);
14038 *did_start_fop = FALSE;
14039 ASSERT((*argspp)->array_len == 2);
14040 if (argop[1].argop == OP_LOCK)
14041 nfs4args_lock_free(&argop[1]);
14042 else if (argop[1].argop == OP_LOCKT)
14043 nfs4args_lockt_free(&argop[1]);
14044 kmem_free(argop, 2 * sizeof (nfs_argop4));
14045 if (*respp)
14046 (void) xdr_free(xdr_COMPOUND4res_clnt,
14047 (caddr_t)*respp);
14048 *argspp = NULL;
14049 *respp = NULL;
14050 nfs4_end_lock_seqid_sync(lop);
14051 lock_owner_rele(lop);
14052 *lopp = NULL;
14053 if (osp != NULL) {
14054 open_stream_rele(osp, rp);
14055 *ospp = NULL;
14056 }
14057 if (oop != NULL) {
14058 nfs4_end_open_seqid_sync(oop);
14059 open_owner_rele(oop);
14060 *oopp = NULL;
14061 }
14062
14063 nfs_rw_exit(&rp->r_lkserlock);
14064
14065 intr = nfs4_block_and_wait(tick_delayp);
14066
14067 (void) nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER,
14068 FALSE);
14069
14070 if (intr) {
14071 *errorp = EINTR;
14072 return (FALSE);
14073 }
14074
14075 /*
14076 * Make sure we are still safe to lock with
14077 * regards to mmapping.
14078 */
14079 if (!nfs4_safelock(vp, flk, cr)) {
14080 *errorp = EAGAIN;
14081 return (FALSE);
14082 }
14083
14084 return (TRUE);
14085 }
14086 if (ctype == NFS4_LCK_CTYPE_NORM)
14087 *errorp = EAGAIN;
14088 *skip_get_err = TRUE;
14089 flk->l_whence = 0;
14090 return (FALSE);
14091 } else if (lockt_args) {
14092 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14093 "nfs4frlock_results_denied: OP_LOCKT DENIED"));
14094
14095 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied,
14096 flk, lockt_args);
14097
14098 /* according to NLM code */
14099 *errorp = 0;
14100 *skip_get_err = TRUE;
14101 return (FALSE);
14102 }
14103 return (FALSE);
14104 }
14105
14106 /*
14107 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock.
14108 */
14109 static void
nfs4frlock_results_default(COMPOUND4res_clnt * resp,int * errorp)14110 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp)
14111 {
14112 switch (resp->status) {
14113 case NFS4ERR_ACCESS:
14114 case NFS4ERR_ADMIN_REVOKED:
14115 case NFS4ERR_BADHANDLE:
14116 case NFS4ERR_BAD_RANGE:
14117 case NFS4ERR_BAD_SEQID:
14118 case NFS4ERR_BAD_STATEID:
14119 case NFS4ERR_BADXDR:
14120 case NFS4ERR_DEADLOCK:
14121 case NFS4ERR_DELAY:
14122 case NFS4ERR_EXPIRED:
14123 case NFS4ERR_FHEXPIRED:
14124 case NFS4ERR_GRACE:
14125 case NFS4ERR_INVAL:
14126 case NFS4ERR_ISDIR:
14127 case NFS4ERR_LEASE_MOVED:
14128 case NFS4ERR_LOCK_NOTSUPP:
14129 case NFS4ERR_LOCK_RANGE:
14130 case NFS4ERR_MOVED:
14131 case NFS4ERR_NOFILEHANDLE:
14132 case NFS4ERR_NO_GRACE:
14133 case NFS4ERR_OLD_STATEID:
14134 case NFS4ERR_OPENMODE:
14135 case NFS4ERR_RECLAIM_BAD:
14136 case NFS4ERR_RECLAIM_CONFLICT:
14137 case NFS4ERR_RESOURCE:
14138 case NFS4ERR_SERVERFAULT:
14139 case NFS4ERR_STALE:
14140 case NFS4ERR_STALE_CLIENTID:
14141 case NFS4ERR_STALE_STATEID:
14142 return;
14143 default:
14144 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14145 "nfs4frlock_results_default: got unrecognizable "
14146 "res.status %d", resp->status));
14147 *errorp = NFS4ERR_INVAL;
14148 }
14149 }
14150
14151 /*
14152 * The lock request was successful, so update the client's state.
14153 */
14154 static void
nfs4frlock_update_state(LOCK4args * lock_args,LOCKU4args * locku_args,LOCKT4args * lockt_args,nfs_resop4 * resop,nfs4_lock_owner_t * lop,vnode_t * vp,flock64_t * flk,cred_t * cr,nfs4_lost_rqst_t * resend_rqstp)14155 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args,
14156 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop,
14157 vnode_t *vp, flock64_t *flk, cred_t *cr,
14158 nfs4_lost_rqst_t *resend_rqstp)
14159 {
14160 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14161
14162 if (lock_args) {
14163 LOCK4res *lock_res;
14164
14165 lock_res = &resop->nfs_resop4_u.oplock;
14166 /* update the stateid with server's response */
14167
14168 if (lock_args->locker.new_lock_owner == TRUE) {
14169 mutex_enter(&lop->lo_lock);
14170 lop->lo_just_created = NFS4_PERM_CREATED;
14171 mutex_exit(&lop->lo_lock);
14172 }
14173
14174 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid);
14175
14176 /*
14177 * If the lock was the result of a resending a lost
14178 * request, we've synched up the stateid and seqid
14179 * with the server, but now the server might be out of sync
14180 * with what the application thinks it has for locks.
14181 * Clean that up here. It's unclear whether we should do
14182 * this even if the filesystem has been forcibly unmounted.
14183 * For most servers, it's probably wasted effort, but
14184 * RFC3530 lets servers require that unlocks exactly match
14185 * the locks that are held.
14186 */
14187 if (resend_rqstp != NULL &&
14188 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) {
14189 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop);
14190 } else {
14191 flk->l_whence = 0;
14192 }
14193 } else if (locku_args) {
14194 LOCKU4res *locku_res;
14195
14196 locku_res = &resop->nfs_resop4_u.oplocku;
14197
14198 /* Update the stateid with the server's response */
14199 nfs4_set_lock_stateid(lop, locku_res->lock_stateid);
14200 } else if (lockt_args) {
14201 /* Switch the lock type to express success, see fcntl */
14202 flk->l_type = F_UNLCK;
14203 flk->l_whence = 0;
14204 }
14205 }
14206
14207 /*
14208 * Do final cleanup before exiting nfs4frlock.
14209 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
14210 * COMPOUND4 args/res for calls that haven't already.
14211 */
14212 static void
nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype,COMPOUND4args_clnt * argsp,COMPOUND4res_clnt * resp,vnode_t * vp,nfs4_op_hint_t op_hint,nfs4_recov_state_t * recov_statep,int needrecov,nfs4_open_owner_t * oop,nfs4_open_stream_t * osp,nfs4_lock_owner_t * lop,int * errorp,LOCK4args * lock_args,LOCKU4args * locku_args,bool_t did_start_fop,bool_t skip_get_err,cred_t * cred_otw,cred_t * cred)14213 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp,
14214 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint,
14215 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop,
14216 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop,
14217 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args,
14218 bool_t did_start_fop, bool_t skip_get_err,
14219 cred_t *cred_otw, cred_t *cred)
14220 {
14221 mntinfo4_t *mi = VTOMI4(vp);
14222 rnode4_t *rp = VTOR4(vp);
14223 int error = *errorp;
14224 nfs_argop4 *argop;
14225 int do_flush_pages = 0;
14226
14227 ASSERT(nfs_zone() == mi->mi_zone);
14228 /*
14229 * The client recovery code wants the raw status information,
14230 * so don't map the NFS status code to an errno value for
14231 * non-normal call types.
14232 */
14233 if (ctype == NFS4_LCK_CTYPE_NORM) {
14234 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE)
14235 *errorp = geterrno4(resp->status);
14236 if (did_start_fop == TRUE)
14237 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep,
14238 needrecov);
14239
14240 /*
14241 * We've established a new lock on the server, so invalidate
14242 * the pages associated with the vnode to get the most up to
14243 * date pages from the server after acquiring the lock. We
14244 * want to be sure that the read operation gets the newest data.
14245 *
14246 * We flush the pages below after calling nfs4_end_fop above.
14247 *
14248 * The flush of the page cache must be done after
14249 * nfs4_end_open_seqid_sync() to avoid a 4-way hang.
14250 */
14251 if (!error && resp && resp->status == NFS4_OK)
14252 do_flush_pages = 1;
14253 }
14254 if (argsp) {
14255 ASSERT(argsp->array_len == 2);
14256 argop = argsp->array;
14257 if (argop[1].argop == OP_LOCK)
14258 nfs4args_lock_free(&argop[1]);
14259 else if (argop[1].argop == OP_LOCKT)
14260 nfs4args_lockt_free(&argop[1]);
14261 kmem_free(argop, 2 * sizeof (nfs_argop4));
14262 if (resp)
14263 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
14264 }
14265
14266 /* free the reference on the lock owner */
14267 if (lop != NULL) {
14268 nfs4_end_lock_seqid_sync(lop);
14269 lock_owner_rele(lop);
14270 }
14271
14272 /* need to free up the reference on osp for lock args */
14273 if (osp != NULL)
14274 open_stream_rele(osp, rp);
14275
14276 /* need to free up the reference on oop for lock args */
14277 if (oop != NULL) {
14278 nfs4_end_open_seqid_sync(oop);
14279 open_owner_rele(oop);
14280 }
14281
14282 if (do_flush_pages)
14283 nfs4_flush_pages(vp, cred);
14284
14285 /*
14286 * Record debug information in the event we get EINVAL.
14287 */
14288 mutex_enter(&mi->mi_lock);
14289 if (*errorp == EINVAL && (lock_args || locku_args) &&
14290 (!(mi->mi_flags & MI4_POSIX_LOCK))) {
14291 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) {
14292 zcmn_err(getzoneid(), CE_NOTE,
14293 "%s operation failed with "
14294 "EINVAL probably since the server, %s,"
14295 " doesn't support POSIX style locking",
14296 lock_args ? "LOCK" : "LOCKU",
14297 mi->mi_curr_serv->sv_hostname);
14298 mi->mi_flags |= MI4_LOCK_DEBUG;
14299 }
14300 }
14301 mutex_exit(&mi->mi_lock);
14302
14303 if (cred_otw)
14304 crfree(cred_otw);
14305 }
14306
14307 /*
14308 * This calls the server.
14309 *
14310 * Blocking lock requests will continually retry to acquire the lock
14311 * forever.
14312 *
14313 * The ctype is defined as follows:
14314 * NFS4_LCK_CTYPE_NORM: normal lock request.
14315 *
14316 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client
14317 * recovery.
14318 *
14319 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition
14320 * that we will use the information passed in via resend_rqstp to setup the
14321 * lock/locku request. This resend is the exact same request as the 'lost
14322 * lock', and is initiated by the recovery framework. A successful resend
14323 * request can initiate one or more reinstate requests.
14324 *
14325 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it
14326 * does not trigger additional reinstate requests. This lock call type is
14327 * set for setting the v4 server's locking state back to match what the
14328 * client's local locking state is in the event of a received 'lost lock'.
14329 *
14330 * Errors are returned via the nfs4_error_t parameter.
14331 */
14332 void
nfs4frlock(nfs4_lock_call_type_t ctype,vnode_t * vp,int cmd,flock64_t * flk,cred_t * cr,nfs4_error_t * ep,nfs4_lost_rqst_t * resend_rqstp,int * did_reclaimp)14333 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk,
14334 cred_t *cr, nfs4_error_t *ep, nfs4_lost_rqst_t *resend_rqstp,
14335 int *did_reclaimp)
14336 {
14337 COMPOUND4args_clnt args, *argsp = NULL;
14338 COMPOUND4res_clnt res, *resp = NULL;
14339 nfs_argop4 *argop;
14340 nfs_resop4 *resop;
14341 rnode4_t *rp;
14342 int doqueue = 1;
14343 clock_t tick_delay; /* delay in clock ticks */
14344 LOCK4args *lock_args = NULL;
14345 LOCKU4args *locku_args = NULL;
14346 LOCKT4args *lockt_args = NULL;
14347 nfs4_open_owner_t *oop = NULL;
14348 nfs4_open_stream_t *osp = NULL;
14349 nfs4_lock_owner_t *lop = NULL;
14350 bool_t needrecov = FALSE;
14351 nfs4_recov_state_t recov_state;
14352 nfs4_op_hint_t op_hint;
14353 nfs4_lost_rqst_t lost_rqst;
14354 bool_t retry = FALSE;
14355 bool_t did_start_fop = FALSE;
14356 bool_t skip_get_err = FALSE;
14357 cred_t *cred_otw = NULL;
14358 bool_t recovonly; /* just queue request */
14359 int frc_no_reclaim = 0;
14360 #ifdef DEBUG
14361 char *name;
14362 #endif
14363
14364 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14365
14366 #ifdef DEBUG
14367 name = fn_name(VTOSV(vp)->sv_name);
14368 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: "
14369 "%s: cmd %d, type %d, start %"PRIx64", "
14370 "length %"PRIu64", pid %d, sysid %d, call type %s, "
14371 "resend request %s", name, cmd, flk->l_type, flk->l_start,
14372 flk->l_len, flk->l_pid, flk->l_sysid,
14373 nfs4frlock_get_call_type(ctype),
14374 resend_rqstp ? "TRUE" : "FALSE"));
14375 kmem_free(name, MAXNAMELEN);
14376 #endif
14377
14378 nfs4_error_zinit(ep);
14379
14380 nfs4frlock_pre_setup(&tick_delay, &recov_state, vp, cr, &cred_otw);
14381
14382 rp = VTOR4(vp);
14383
14384 recov_retry:
14385 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd,
14386 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst);
14387
14388 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state,
14389 &did_start_fop, &recovonly);
14390
14391 if (ep->error)
14392 goto out;
14393
14394 if (recovonly) {
14395 /*
14396 * Leave the request for the recovery system to deal with.
14397 */
14398 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
14399 ASSERT(cmd != F_GETLK);
14400 ASSERT(flk->l_type == F_UNLCK);
14401
14402 nfs4_error_init(ep, EINTR);
14403 needrecov = TRUE;
14404 lop = find_lock_owner(rp, flk->l_pid, LOWN_ANY);
14405 if (lop != NULL) {
14406 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT,
14407 NULL, NULL, lop, flk, &lost_rqst, cr, vp);
14408 (void) nfs4_start_recovery(ep,
14409 VTOMI4(vp), vp, NULL, NULL,
14410 (lost_rqst.lr_op == OP_LOCK ||
14411 lost_rqst.lr_op == OP_LOCKU) ?
14412 &lost_rqst : NULL, OP_LOCKU, NULL, NULL, NULL);
14413 lock_owner_rele(lop);
14414 lop = NULL;
14415 }
14416 goto out;
14417 }
14418
14419 /* putfh directory fh */
14420 argop[0].argop = OP_CPUTFH;
14421 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
14422
14423 /*
14424 * Set up the over-the-wire arguments and get references to the
14425 * open owner, etc.
14426 */
14427
14428 if (ctype == NFS4_LCK_CTYPE_RESEND ||
14429 ctype == NFS4_LCK_CTYPE_REINSTATE) {
14430 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp,
14431 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args);
14432 } else {
14433 bool_t go_otw = TRUE;
14434
14435 ASSERT(resend_rqstp == NULL);
14436
14437 switch (cmd) {
14438 case F_GETLK:
14439 case F_O_GETLK:
14440 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
14441 nfs4frlock_setup_lockt_args(&argop[1], &lockt_args,
14442 argsp, flk, rp);
14443 break;
14444 case F_SETLKW:
14445 case F_SETLK:
14446 if (flk->l_type == F_UNLCK)
14447 nfs4frlock_setup_locku_args(ctype,
14448 &argop[1], &locku_args, flk,
14449 &lop, ep, argsp, vp, cr,
14450 &skip_get_err, &go_otw);
14451 else
14452 nfs4frlock_setup_lock_args(ctype,
14453 &lock_args, &oop, &osp, &lop, &argop[1],
14454 argsp, flk, cmd, vp, cr, ep);
14455
14456 if (ep->error)
14457 goto out;
14458
14459 switch (ep->stat) {
14460 case NFS4_OK:
14461 break;
14462 case NFS4ERR_DELAY:
14463 /* recov thread never gets this error */
14464 ASSERT(resend_rqstp == NULL);
14465 ASSERT(did_start_fop);
14466
14467 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint,
14468 &recov_state, TRUE);
14469 did_start_fop = FALSE;
14470 if (argop[1].argop == OP_LOCK)
14471 nfs4args_lock_free(&argop[1]);
14472 else if (argop[1].argop == OP_LOCKT)
14473 nfs4args_lockt_free(&argop[1]);
14474 kmem_free(argop, 2 * sizeof (nfs_argop4));
14475 argsp = NULL;
14476 goto recov_retry;
14477 default:
14478 ep->error = EIO;
14479 goto out;
14480 }
14481 break;
14482 default:
14483 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14484 "nfs4_frlock: invalid cmd %d", cmd));
14485 ep->error = EINVAL;
14486 goto out;
14487 }
14488
14489 if (!go_otw)
14490 goto out;
14491 }
14492
14493 /*
14494 * Send the server the lock request. Continually loop with a delay
14495 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE.
14496 */
14497 resp = &res;
14498
14499 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug),
14500 (CE_NOTE,
14501 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first",
14502 rnode4info(rp)));
14503
14504 if (lock_args && frc_no_reclaim) {
14505 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM);
14506 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14507 "nfs4frlock: frc_no_reclaim: clearing reclaim"));
14508 lock_args->reclaim = FALSE;
14509 if (did_reclaimp)
14510 *did_reclaimp = 0;
14511 }
14512
14513 /*
14514 * Do the OTW call.
14515 */
14516 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep);
14517
14518 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14519 "nfs4frlock: error %d, status %d", ep->error, resp->status));
14520
14521 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp);
14522 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14523 "nfs4frlock: needrecov %d", needrecov));
14524
14525 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp))
14526 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop,
14527 args.ctag);
14528
14529 /*
14530 * Check if one of these mutually exclusive error cases has
14531 * happened:
14532 * need to swap credentials due to access error
14533 * recovery is needed
14534 * different error (only known case is missing Kerberos ticket)
14535 */
14536
14537 if ((ep->error == EACCES ||
14538 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) &&
14539 cred_otw != cr) {
14540 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov,
14541 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp,
14542 cr, &cred_otw);
14543 goto recov_retry;
14544 }
14545
14546 if (needrecov) {
14547 /*
14548 * LOCKT requests don't need to recover from lost
14549 * requests since they don't create/modify state.
14550 */
14551 if ((ep->error == EINTR ||
14552 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) &&
14553 lockt_args)
14554 goto out;
14555 /*
14556 * Do not attempt recovery for requests initiated by
14557 * the recovery framework. Let the framework redrive them.
14558 */
14559 if (ctype != NFS4_LCK_CTYPE_NORM)
14560 goto out;
14561 else {
14562 ASSERT(resend_rqstp == NULL);
14563 }
14564
14565 nfs4frlock_save_lost_rqst(ctype, ep->error,
14566 flk_to_locktype(cmd, flk->l_type),
14567 oop, osp, lop, flk, &lost_rqst, cred_otw, vp);
14568
14569 retry = nfs4frlock_recovery(needrecov, ep, &argsp,
14570 &resp, lock_args, locku_args, &oop, &osp, &lop,
14571 rp, vp, &recov_state, op_hint, &did_start_fop,
14572 cmd != F_GETLK ? &lost_rqst : NULL, flk);
14573
14574 if (retry) {
14575 ASSERT(oop == NULL);
14576 ASSERT(osp == NULL);
14577 ASSERT(lop == NULL);
14578 goto recov_retry;
14579 }
14580 goto out;
14581 }
14582
14583 /*
14584 * Bail out if have reached this point with ep->error set. Can
14585 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr).
14586 * This happens if Kerberos ticket has expired or has been
14587 * destroyed.
14588 */
14589 if (ep->error != 0)
14590 goto out;
14591
14592 /*
14593 * Process the reply.
14594 */
14595 switch (resp->status) {
14596 case NFS4_OK:
14597 resop = &resp->array[1];
14598 /*
14599 * Have a successful lock operation, now update state.
14600 */
14601 nfs4frlock_update_state(lock_args, locku_args, lockt_args,
14602 resop, lop, vp, flk, cr, resend_rqstp);
14603 break;
14604
14605 case NFS4ERR_DENIED:
14606 resop = &resp->array[1];
14607 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args,
14608 &oop, &osp, &lop, cmd, vp, flk, op_hint,
14609 &recov_state, needrecov, &argsp, &resp,
14610 &tick_delay, &ep->error, resop, cr,
14611 &did_start_fop, &skip_get_err);
14612
14613 if (retry) {
14614 ASSERT(oop == NULL);
14615 ASSERT(osp == NULL);
14616 ASSERT(lop == NULL);
14617 goto recov_retry;
14618 }
14619 break;
14620 /*
14621 * If the server won't let us reclaim, fall-back to trying to lock
14622 * the file from scratch. Code elsewhere will check the changeinfo
14623 * to ensure the file hasn't been changed.
14624 */
14625 case NFS4ERR_NO_GRACE:
14626 if (lock_args && lock_args->reclaim == TRUE) {
14627 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM);
14628 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14629 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE"));
14630 frc_no_reclaim = 1;
14631 /* clean up before retrying */
14632 needrecov = 0;
14633 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp,
14634 lock_args, locku_args, &oop, &osp, &lop, rp, vp,
14635 &recov_state, op_hint, &did_start_fop, NULL, flk);
14636 goto recov_retry;
14637 }
14638 /* FALLTHROUGH */
14639
14640 default:
14641 nfs4frlock_results_default(resp, &ep->error);
14642 break;
14643 }
14644 out:
14645 /*
14646 * Process and cleanup from error. Make interrupted unlock
14647 * requests look successful, since they will be handled by the
14648 * client recovery code.
14649 */
14650 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state,
14651 needrecov, oop, osp, lop, &ep->error,
14652 lock_args, locku_args, did_start_fop,
14653 skip_get_err, cred_otw, cr);
14654
14655 if (ep->error == EINTR && flk->l_type == F_UNLCK &&
14656 (cmd == F_SETLK || cmd == F_SETLKW))
14657 ep->error = 0;
14658 }
14659
14660 /*
14661 * nfs4_safelock:
14662 *
14663 * Return non-zero if the given lock request can be handled without
14664 * violating the constraints on concurrent mapping and locking.
14665 */
14666
14667 static int
nfs4_safelock(vnode_t * vp,const struct flock64 * bfp,cred_t * cr)14668 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr)
14669 {
14670 rnode4_t *rp = VTOR4(vp);
14671 struct vattr va;
14672 int error;
14673
14674 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14675 ASSERT(rp->r_mapcnt >= 0);
14676 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: "
14677 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ?
14678 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock",
14679 bfp->l_start, bfp->l_len, rp->r_mapcnt));
14680
14681 if (rp->r_mapcnt == 0)
14682 return (1); /* always safe if not mapped */
14683
14684 /*
14685 * If the file is already mapped and there are locks, then they
14686 * should be all safe locks. So adding or removing a lock is safe
14687 * as long as the new request is safe (i.e., whole-file, meaning
14688 * length and starting offset are both zero).
14689 */
14690
14691 if (bfp->l_start != 0 || bfp->l_len != 0) {
14692 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
14693 "cannot lock a memory mapped file unless locking the "
14694 "entire file: start %"PRIx64", len %"PRIx64,
14695 bfp->l_start, bfp->l_len));
14696 return (0);
14697 }
14698
14699 /* mandatory locking and mapping don't mix */
14700 va.va_mask = AT_MODE;
14701 error = VOP_GETATTR(vp, &va, 0, cr, NULL);
14702 if (error != 0) {
14703 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
14704 "getattr error %d", error));
14705 return (0); /* treat errors conservatively */
14706 }
14707 if (MANDLOCK(vp, va.va_mode)) {
14708 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
14709 "cannot mandatory lock and mmap a file"));
14710 return (0);
14711 }
14712
14713 return (1);
14714 }
14715
14716 /*
14717 * nfs4_lockrelease:
14718 *
14719 * Release any locks on the given vnode that are held by the current
14720 * process. Also removes the lock owner (if one exists) from the rnode's
14721 * list.
14722 */
14723 static int
nfs4_lockrelease(vnode_t * vp,int flag,offset_t offset,cred_t * cr)14724 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr)
14725 {
14726 flock64_t ld;
14727 int ret, error;
14728 rnode4_t *rp;
14729 nfs4_lock_owner_t *lop;
14730 nfs4_recov_state_t recov_state;
14731 mntinfo4_t *mi;
14732 bool_t possible_orphan = FALSE;
14733 bool_t recovonly;
14734
14735 ASSERT((uintptr_t)vp > KERNELBASE);
14736 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14737
14738 rp = VTOR4(vp);
14739 mi = VTOMI4(vp);
14740
14741 /*
14742 * If we have not locked anything then we can
14743 * just return since we have no work to do.
14744 */
14745 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) {
14746 return (0);
14747 }
14748
14749 /*
14750 * We need to comprehend that another thread may
14751 * kick off recovery and the lock_owner we have stashed
14752 * in lop might be invalid so we should NOT cache it
14753 * locally!
14754 */
14755 recov_state.rs_flags = 0;
14756 recov_state.rs_num_retry_despite_err = 0;
14757 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state,
14758 &recovonly);
14759 if (error) {
14760 mutex_enter(&rp->r_statelock);
14761 rp->r_flags |= R4LODANGLERS;
14762 mutex_exit(&rp->r_statelock);
14763 return (error);
14764 }
14765
14766 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY);
14767
14768 /*
14769 * Check if the lock owner might have a lock (request was sent but
14770 * no response was received). Also check if there are any remote
14771 * locks on the file. (In theory we shouldn't have to make this
14772 * second check if there's no lock owner, but for now we'll be
14773 * conservative and do it anyway.) If either condition is true,
14774 * send an unlock for the entire file to the server.
14775 *
14776 * Note that no explicit synchronization is needed here. At worst,
14777 * flk_has_remote_locks() will return a false positive, in which case
14778 * the unlock call wastes time but doesn't harm correctness.
14779 */
14780
14781 if (lop) {
14782 mutex_enter(&lop->lo_lock);
14783 possible_orphan = lop->lo_pending_rqsts;
14784 mutex_exit(&lop->lo_lock);
14785 lock_owner_rele(lop);
14786 }
14787
14788 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0);
14789
14790 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14791 "nfs4_lockrelease: possible orphan %d, remote locks %d, for "
14792 "lop %p.", possible_orphan, flk_has_remote_locks(vp),
14793 (void *)lop));
14794
14795 if (possible_orphan || flk_has_remote_locks(vp)) {
14796 ld.l_type = F_UNLCK; /* set to unlock entire file */
14797 ld.l_whence = 0; /* unlock from start of file */
14798 ld.l_start = 0;
14799 ld.l_len = 0; /* do entire file */
14800
14801 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL,
14802 cr, NULL);
14803
14804 if (ret != 0) {
14805 /*
14806 * If VOP_FRLOCK fails, make sure we unregister
14807 * local locks before we continue.
14808 */
14809 struct lm_sysid *lmsid = nfs4_find_sysid(VTOMI4(vp));
14810
14811 if (lmsid != NULL) {
14812 cleanlocks(vp, curproc->p_pid,
14813 lm_sysidt(lmsid) | LM_SYSID_CLIENT);
14814 lm_rel_sysid(lmsid);
14815 }
14816
14817 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14818 "nfs4_lockrelease: lock release error on vp"
14819 " %p: error %d.\n", (void *)vp, ret));
14820 }
14821 }
14822
14823 recov_state.rs_flags = 0;
14824 recov_state.rs_num_retry_despite_err = 0;
14825 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state,
14826 &recovonly);
14827 if (error) {
14828 mutex_enter(&rp->r_statelock);
14829 rp->r_flags |= R4LODANGLERS;
14830 mutex_exit(&rp->r_statelock);
14831 return (error);
14832 }
14833
14834 /*
14835 * So, here we're going to need to retrieve the lock-owner
14836 * again (in case recovery has done a switch-a-roo) and
14837 * remove it because we can.
14838 */
14839 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY);
14840
14841 if (lop) {
14842 nfs4_rnode_remove_lock_owner(rp, lop);
14843 lock_owner_rele(lop);
14844 }
14845
14846 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0);
14847 return (0);
14848 }
14849
14850 /*
14851 * Wait for 'tick_delay' clock ticks.
14852 * Implement exponential backoff until hit the lease_time of this nfs4_server.
14853 *
14854 * The client should retry to acquire the lock faster than the lease period.
14855 * We use roughly half of the lease time to use a similar calculation as it is
14856 * used in nfs4_renew_lease_thread().
14857 *
14858 * XXX For future improvements, should implement a waiting queue scheme.
14859 */
14860 static int
nfs4_block_and_wait(clock_t * tick_delay)14861 nfs4_block_and_wait(clock_t *tick_delay)
14862 {
14863 /* wait tick_delay clock ticks or siginteruptus */
14864 if (delay_sig(*tick_delay)) {
14865 return (EINTR);
14866 }
14867
14868 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: "
14869 "reissue the lock request: blocked for %ld clock ticks: %ld "
14870 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000));
14871
14872 *tick_delay = MIN(drv_usectohz(nfs4_max_base_wait_time * 1000),
14873 *tick_delay * 1.5);
14874 return (0);
14875 }
14876
14877 void
nfs4_vnops_init(void)14878 nfs4_vnops_init(void)
14879 {
14880 }
14881
14882 void
nfs4_vnops_fini(void)14883 nfs4_vnops_fini(void)
14884 {
14885 }
14886
14887 /*
14888 * Return a reference to the directory (parent) vnode for a given vnode,
14889 * using the saved pathname information and the directory file handle. The
14890 * caller is responsible for disposing of the reference.
14891 * Returns zero or an errno value.
14892 *
14893 * Caller should set need_start_op to FALSE if it is the recovery
14894 * thread, or if a start_fop has already been done. Otherwise, TRUE.
14895 */
14896 int
vtodv(vnode_t * vp,vnode_t ** dvpp,cred_t * cr,bool_t need_start_op)14897 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op)
14898 {
14899 svnode_t *svnp;
14900 vnode_t *dvp = NULL;
14901 servinfo4_t *svp;
14902 nfs4_fname_t *mfname;
14903 int error;
14904
14905 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14906
14907 if (vp->v_flag & VROOT) {
14908 nfs4_sharedfh_t *sfh;
14909 nfs_fh4 fh;
14910 mntinfo4_t *mi;
14911
14912 ASSERT(vp->v_type == VREG);
14913
14914 mi = VTOMI4(vp);
14915 svp = mi->mi_curr_serv;
14916 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
14917 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len;
14918 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf;
14919 sfh = sfh4_get(&fh, VTOMI4(vp));
14920 nfs_rw_exit(&svp->sv_lock);
14921 mfname = mi->mi_fname;
14922 fn_hold(mfname);
14923 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0);
14924 sfh4_rele(&sfh);
14925
14926 if (dvp->v_type == VNON)
14927 dvp->v_type = VDIR;
14928 *dvpp = dvp;
14929 return (0);
14930 }
14931
14932 svnp = VTOSV(vp);
14933
14934 if (svnp == NULL) {
14935 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14936 "shadow node is NULL"));
14937 return (EINVAL);
14938 }
14939
14940 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) {
14941 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14942 "shadow node name or dfh val == NULL"));
14943 return (EINVAL);
14944 }
14945
14946 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp,
14947 (int)need_start_op);
14948 if (error != 0) {
14949 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14950 "nfs4_make_dotdot returned %d", error));
14951 return (error);
14952 }
14953 if (!dvp) {
14954 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14955 "nfs4_make_dotdot returned a NULL dvp"));
14956 return (EIO);
14957 }
14958 if (dvp->v_type == VNON)
14959 dvp->v_type = VDIR;
14960 ASSERT(dvp->v_type == VDIR);
14961 if (VTOR4(vp)->r_flags & R4ISXATTR) {
14962 mutex_enter(&dvp->v_lock);
14963 dvp->v_flag |= V_XATTRDIR;
14964 mutex_exit(&dvp->v_lock);
14965 }
14966 *dvpp = dvp;
14967 return (0);
14968 }
14969
14970 /*
14971 * Copy the (final) component name of vp to fnamep. maxlen is the maximum
14972 * length that fnamep can accept, including the trailing null.
14973 * Returns 0 if okay, returns an errno value if there was a problem.
14974 */
14975
14976 int
vtoname(vnode_t * vp,char * fnamep,ssize_t maxlen)14977 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen)
14978 {
14979 char *fn;
14980 int err = 0;
14981 servinfo4_t *svp;
14982 svnode_t *shvp;
14983
14984 /*
14985 * If the file being opened has VROOT set, then this is
14986 * a "file" mount. sv_name will not be interesting, so
14987 * go back to the servinfo4 to get the original mount
14988 * path and strip off all but the final edge. Otherwise
14989 * just return the name from the shadow vnode.
14990 */
14991
14992 if (vp->v_flag & VROOT) {
14993
14994 svp = VTOMI4(vp)->mi_curr_serv;
14995 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
14996
14997 fn = strrchr(svp->sv_path, '/');
14998 if (fn == NULL)
14999 err = EINVAL;
15000 else
15001 fn++;
15002 } else {
15003 shvp = VTOSV(vp);
15004 fn = fn_name(shvp->sv_name);
15005 }
15006
15007 if (err == 0)
15008 if (strlen(fn) < maxlen)
15009 (void) strcpy(fnamep, fn);
15010 else
15011 err = ENAMETOOLONG;
15012
15013 if (vp->v_flag & VROOT)
15014 nfs_rw_exit(&svp->sv_lock);
15015 else
15016 kmem_free(fn, MAXNAMELEN);
15017
15018 return (err);
15019 }
15020
15021 /*
15022 * Bookkeeping for a close that doesn't need to go over the wire.
15023 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise
15024 * it is left at 1.
15025 */
15026 void
nfs4close_notw(vnode_t * vp,nfs4_open_stream_t * osp,int * have_lockp)15027 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp)
15028 {
15029 rnode4_t *rp;
15030 mntinfo4_t *mi;
15031
15032 mi = VTOMI4(vp);
15033 rp = VTOR4(vp);
15034
15035 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: "
15036 "rp=%p osp=%p", (void *)rp, (void *)osp));
15037 ASSERT(nfs_zone() == mi->mi_zone);
15038 ASSERT(mutex_owned(&osp->os_sync_lock));
15039 ASSERT(*have_lockp);
15040
15041 if (!osp->os_valid ||
15042 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) {
15043 return;
15044 }
15045
15046 /*
15047 * This removes the reference obtained at OPEN; ie,
15048 * when the open stream structure was created.
15049 *
15050 * We don't have to worry about calling 'open_stream_rele'
15051 * since we our currently holding a reference to this
15052 * open stream which means the count can not go to 0 with
15053 * this decrement.
15054 */
15055 ASSERT(osp->os_ref_count >= 2);
15056 osp->os_ref_count--;
15057 osp->os_valid = 0;
15058 mutex_exit(&osp->os_sync_lock);
15059 *have_lockp = 0;
15060
15061 nfs4_dec_state_ref_count(mi);
15062 }
15063
15064 /*
15065 * Close all remaining open streams on the rnode. These open streams
15066 * could be here because:
15067 * - The close attempted at either close or delmap failed
15068 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE
15069 * - Someone did mknod on a regular file but never opened it
15070 */
15071 int
nfs4close_all(vnode_t * vp,cred_t * cr)15072 nfs4close_all(vnode_t *vp, cred_t *cr)
15073 {
15074 nfs4_open_stream_t *osp;
15075 int error;
15076 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
15077 rnode4_t *rp;
15078
15079 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
15080
15081 error = 0;
15082 rp = VTOR4(vp);
15083
15084 /*
15085 * At this point, all we know is that the last time
15086 * someone called vn_rele, the count was 1. Since then,
15087 * the vnode could have been re-activated. We want to
15088 * loop through the open streams and close each one, but
15089 * we have to be careful since once we release the rnode
15090 * hash bucket lock, someone else is free to come in and
15091 * re-activate the rnode and add new open streams. The
15092 * strategy is take the rnode hash bucket lock, verify that
15093 * the count is still 1, grab the open stream off the
15094 * head of the list and mark it invalid, then release the
15095 * rnode hash bucket lock and proceed with that open stream.
15096 * This is ok because nfs4close_one() will acquire the proper
15097 * open/create to close/destroy synchronization for open
15098 * streams, and will ensure that if someone has reopened
15099 * the open stream after we've dropped the hash bucket lock
15100 * then we'll just simply return without destroying the
15101 * open stream.
15102 * Repeat until the list is empty.
15103 */
15104
15105 for (;;) {
15106
15107 /* make sure vnode hasn't been reactivated */
15108 rw_enter(&rp->r_hashq->r_lock, RW_READER);
15109 mutex_enter(&vp->v_lock);
15110 if (vp->v_count > 1) {
15111 mutex_exit(&vp->v_lock);
15112 rw_exit(&rp->r_hashq->r_lock);
15113 break;
15114 }
15115 /*
15116 * Grabbing r_os_lock before releasing v_lock prevents
15117 * a window where the rnode/open stream could get
15118 * reactivated (and os_force_close set to 0) before we
15119 * had a chance to set os_force_close to 1.
15120 */
15121 mutex_enter(&rp->r_os_lock);
15122 mutex_exit(&vp->v_lock);
15123
15124 osp = list_head(&rp->r_open_streams);
15125 if (!osp) {
15126 /* nothing left to CLOSE OTW, so return */
15127 mutex_exit(&rp->r_os_lock);
15128 rw_exit(&rp->r_hashq->r_lock);
15129 break;
15130 }
15131
15132 mutex_enter(&rp->r_statev4_lock);
15133 /* the file can't still be mem mapped */
15134 ASSERT(rp->r_mapcnt == 0);
15135 if (rp->created_v4)
15136 rp->created_v4 = 0;
15137 mutex_exit(&rp->r_statev4_lock);
15138
15139 /*
15140 * Grab a ref on this open stream; nfs4close_one
15141 * will mark it as invalid
15142 */
15143 mutex_enter(&osp->os_sync_lock);
15144 osp->os_ref_count++;
15145 osp->os_force_close = 1;
15146 mutex_exit(&osp->os_sync_lock);
15147 mutex_exit(&rp->r_os_lock);
15148 rw_exit(&rp->r_hashq->r_lock);
15149
15150 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0);
15151
15152 /* Update error if it isn't already non-zero */
15153 if (error == 0) {
15154 if (e.error)
15155 error = e.error;
15156 else if (e.stat)
15157 error = geterrno4(e.stat);
15158 }
15159
15160 #ifdef DEBUG
15161 nfs4close_all_cnt++;
15162 #endif
15163 /* Release the ref on osp acquired above. */
15164 open_stream_rele(osp, rp);
15165
15166 /* Proceed to the next open stream, if any */
15167 }
15168 return (error);
15169 }
15170
15171 /*
15172 * nfs4close_one - close one open stream for a file if needed.
15173 *
15174 * "close_type" indicates which close path this is:
15175 * CLOSE_NORM: close initiated via VOP_CLOSE.
15176 * CLOSE_DELMAP: close initiated via VOP_DELMAP.
15177 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces
15178 * the close and release of client state for this open stream
15179 * (unless someone else has the open stream open).
15180 * CLOSE_RESEND: indicates the request is a replay of an earlier request
15181 * (e.g., due to abort because of a signal).
15182 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN.
15183 *
15184 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client
15185 * recovery. Instead, the caller is expected to deal with retries.
15186 *
15187 * The caller can either pass in the osp ('provided_osp') or not.
15188 *
15189 * 'access_bits' represents the access we are closing/downgrading.
15190 *
15191 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the
15192 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and
15193 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED).
15194 *
15195 * Errors are returned via the nfs4_error_t.
15196 */
15197 void
nfs4close_one(vnode_t * vp,nfs4_open_stream_t * provided_osp,cred_t * cr,int access_bits,nfs4_lost_rqst_t * lrp,nfs4_error_t * ep,nfs4_close_type_t close_type,size_t len,uint_t maxprot,uint_t mmap_flags)15198 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr,
15199 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep,
15200 nfs4_close_type_t close_type, size_t len, uint_t maxprot,
15201 uint_t mmap_flags)
15202 {
15203 nfs4_open_owner_t *oop;
15204 nfs4_open_stream_t *osp = NULL;
15205 int retry = 0;
15206 int num_retries = NFS4_NUM_RECOV_RETRIES;
15207 rnode4_t *rp;
15208 mntinfo4_t *mi;
15209 nfs4_recov_state_t recov_state;
15210 cred_t *cred_otw = NULL;
15211 bool_t recovonly = FALSE;
15212 int isrecov;
15213 int force_close;
15214 int close_failed = 0;
15215 int did_dec_count = 0;
15216 int did_start_op = 0;
15217 int did_force_recovlock = 0;
15218 int did_start_seqid_sync = 0;
15219 int have_sync_lock = 0;
15220
15221 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
15222
15223 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, "
15224 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x",
15225 (void *)vp, (void *)provided_osp, (void *)lrp, close_type,
15226 len, maxprot, mmap_flags, access_bits));
15227
15228 nfs4_error_zinit(ep);
15229 rp = VTOR4(vp);
15230 mi = VTOMI4(vp);
15231 isrecov = (close_type == CLOSE_RESEND ||
15232 close_type == CLOSE_AFTER_RESEND);
15233
15234 /*
15235 * First get the open owner.
15236 */
15237 if (!provided_osp) {
15238 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
15239 } else {
15240 oop = provided_osp->os_open_owner;
15241 ASSERT(oop != NULL);
15242 open_owner_hold(oop);
15243 }
15244
15245 if (!oop) {
15246 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
15247 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, "
15248 "close type %d", (void *)rp, (void *)mi, (void *)cr,
15249 (void *)provided_osp, close_type));
15250 ep->error = EIO;
15251 goto out;
15252 }
15253
15254 cred_otw = nfs4_get_otw_cred(cr, mi, oop);
15255 recov_retry:
15256 osp = NULL;
15257 close_failed = 0;
15258 force_close = (close_type == CLOSE_FORCE);
15259 retry = 0;
15260 did_start_op = 0;
15261 did_force_recovlock = 0;
15262 did_start_seqid_sync = 0;
15263 have_sync_lock = 0;
15264 recovonly = FALSE;
15265 recov_state.rs_flags = 0;
15266 recov_state.rs_num_retry_despite_err = 0;
15267
15268 /*
15269 * Second synchronize with recovery.
15270 */
15271 if (!isrecov) {
15272 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE,
15273 &recov_state, &recovonly);
15274 if (!ep->error) {
15275 did_start_op = 1;
15276 } else {
15277 close_failed = 1;
15278 /*
15279 * If we couldn't get start_fop, but have to
15280 * cleanup state, then at least acquire the
15281 * mi_recovlock so we can synchronize with
15282 * recovery.
15283 */
15284 if (close_type == CLOSE_FORCE) {
15285 (void) nfs_rw_enter_sig(&mi->mi_recovlock,
15286 RW_READER, FALSE);
15287 did_force_recovlock = 1;
15288 } else
15289 goto out;
15290 }
15291 }
15292
15293 /*
15294 * We cannot attempt to get the open seqid sync if nfs4_start_fop
15295 * set 'recovonly' to TRUE since most likely this is due to
15296 * reovery being active (MI4_RECOV_ACTIV). If recovery is active,
15297 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us
15298 * to retry, causing us to loop until recovery finishes. Plus we
15299 * don't need protection over the open seqid since we're not going
15300 * OTW, hence don't need to use the seqid.
15301 */
15302 if (recovonly == FALSE) {
15303 /* need to grab the open owner sync before 'os_sync_lock' */
15304 ep->error = nfs4_start_open_seqid_sync(oop, mi);
15305 if (ep->error == EAGAIN) {
15306 ASSERT(!isrecov);
15307 if (did_start_op)
15308 nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
15309 &recov_state, TRUE);
15310 if (did_force_recovlock)
15311 nfs_rw_exit(&mi->mi_recovlock);
15312 goto recov_retry;
15313 }
15314 did_start_seqid_sync = 1;
15315 }
15316
15317 /*
15318 * Third get an open stream and acquire 'os_sync_lock' to
15319 * sychronize the opening/creating of an open stream with the
15320 * closing/destroying of an open stream.
15321 */
15322 if (!provided_osp) {
15323 /* returns with 'os_sync_lock' held */
15324 osp = find_open_stream(oop, rp);
15325 if (!osp) {
15326 ep->error = EIO;
15327 goto out;
15328 }
15329 } else {
15330 osp = provided_osp;
15331 open_stream_hold(osp);
15332 mutex_enter(&osp->os_sync_lock);
15333 }
15334 have_sync_lock = 1;
15335
15336 ASSERT(oop == osp->os_open_owner);
15337
15338 /*
15339 * Fourth, do any special pre-OTW CLOSE processing
15340 * based on the specific close type.
15341 */
15342 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) &&
15343 !did_dec_count) {
15344 ASSERT(osp->os_open_ref_count > 0);
15345 osp->os_open_ref_count--;
15346 did_dec_count = 1;
15347 if (osp->os_open_ref_count == 0)
15348 osp->os_final_close = 1;
15349 }
15350
15351 if (close_type == CLOSE_FORCE) {
15352 /* see if somebody reopened the open stream. */
15353 if (!osp->os_force_close) {
15354 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE,
15355 "nfs4close_one: skip CLOSE_FORCE as osp %p "
15356 "was reopened, vp %p", (void *)osp, (void *)vp));
15357 ep->error = 0;
15358 ep->stat = NFS4_OK;
15359 goto out;
15360 }
15361
15362 if (!osp->os_final_close && !did_dec_count) {
15363 osp->os_open_ref_count--;
15364 did_dec_count = 1;
15365 }
15366
15367 /*
15368 * We can't depend on os_open_ref_count being 0 due to the
15369 * way executables are opened (VN_RELE to match a VOP_OPEN).
15370 */
15371 #ifdef NOTYET
15372 ASSERT(osp->os_open_ref_count == 0);
15373 #endif
15374 if (osp->os_open_ref_count != 0) {
15375 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE,
15376 "nfs4close_one: should panic here on an "
15377 "ASSERT(osp->os_open_ref_count == 0). Ignoring "
15378 "since this is probably the exec problem."));
15379
15380 osp->os_open_ref_count = 0;
15381 }
15382
15383 /*
15384 * There is the possibility that nfs4close_one()
15385 * for close_type == CLOSE_DELMAP couldn't find the
15386 * open stream, thus couldn't decrement its os_mapcnt;
15387 * therefore we can't use this ASSERT yet.
15388 */
15389 #ifdef NOTYET
15390 ASSERT(osp->os_mapcnt == 0);
15391 #endif
15392 osp->os_mapcnt = 0;
15393 }
15394
15395 if (close_type == CLOSE_DELMAP && !did_dec_count) {
15396 ASSERT(osp->os_mapcnt >= btopr(len));
15397
15398 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE))
15399 osp->os_mmap_write -= btopr(len);
15400 if (maxprot & PROT_READ)
15401 osp->os_mmap_read -= btopr(len);
15402 if (maxprot & PROT_EXEC)
15403 osp->os_mmap_read -= btopr(len);
15404 /* mirror the PROT_NONE check in nfs4_addmap() */
15405 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) &&
15406 !(maxprot & PROT_EXEC))
15407 osp->os_mmap_read -= btopr(len);
15408 osp->os_mapcnt -= btopr(len);
15409 did_dec_count = 1;
15410 }
15411
15412 if (recovonly) {
15413 nfs4_lost_rqst_t lost_rqst;
15414
15415 /* request should not already be in recovery queue */
15416 ASSERT(lrp == NULL);
15417 nfs4_error_init(ep, EINTR);
15418 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop,
15419 osp, cred_otw, vp);
15420 mutex_exit(&osp->os_sync_lock);
15421 have_sync_lock = 0;
15422 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL,
15423 lost_rqst.lr_op == OP_CLOSE ?
15424 &lost_rqst : NULL, OP_CLOSE, NULL, NULL, NULL);
15425 close_failed = 1;
15426 force_close = 0;
15427 goto close_cleanup;
15428 }
15429
15430 /*
15431 * If a previous OTW call got NFS4ERR_BAD_SEQID, then
15432 * we stopped operating on the open owner's <old oo_name, old seqid>
15433 * space, which means we stopped operating on the open stream
15434 * too. So don't go OTW (as the seqid is likely bad, and the
15435 * stateid could be stale, potentially triggering a false
15436 * setclientid), and just clean up the client's internal state.
15437 */
15438 if (osp->os_orig_oo_name != oop->oo_name) {
15439 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug,
15440 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p "
15441 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current "
15442 "oo_name %" PRIx64")",
15443 (void *)osp, (void *)oop, osp->os_orig_oo_name,
15444 oop->oo_name));
15445 close_failed = 1;
15446 }
15447
15448 /* If the file failed recovery, just quit. */
15449 mutex_enter(&rp->r_statelock);
15450 if (rp->r_flags & R4RECOVERR) {
15451 close_failed = 1;
15452 }
15453 mutex_exit(&rp->r_statelock);
15454
15455 /*
15456 * If the force close path failed to obtain start_fop
15457 * then skip the OTW close and just remove the state.
15458 */
15459 if (close_failed)
15460 goto close_cleanup;
15461
15462 /*
15463 * Fifth, check to see if there are still mapped pages or other
15464 * opens using this open stream. If there are then we can't
15465 * close yet but we can see if an OPEN_DOWNGRADE is necessary.
15466 */
15467 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) {
15468 nfs4_lost_rqst_t new_lost_rqst;
15469 bool_t needrecov = FALSE;
15470 cred_t *odg_cred_otw = NULL;
15471 seqid4 open_dg_seqid = 0;
15472
15473 if (osp->os_delegation) {
15474 /*
15475 * If this open stream was never OPENed OTW then we
15476 * surely can't DOWNGRADE it (especially since the
15477 * osp->open_stateid is really a delegation stateid
15478 * when os_delegation is 1).
15479 */
15480 if (access_bits & FREAD)
15481 osp->os_share_acc_read--;
15482 if (access_bits & FWRITE)
15483 osp->os_share_acc_write--;
15484 osp->os_share_deny_none--;
15485 nfs4_error_zinit(ep);
15486 goto out;
15487 }
15488 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr,
15489 lrp, ep, &odg_cred_otw, &open_dg_seqid);
15490 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp);
15491 if (needrecov && !isrecov) {
15492 bool_t abort;
15493 nfs4_bseqid_entry_t *bsep = NULL;
15494
15495 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID)
15496 bsep = nfs4_create_bseqid_entry(oop, NULL,
15497 vp, 0,
15498 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG,
15499 open_dg_seqid);
15500
15501 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst,
15502 oop, osp, odg_cred_otw, vp, access_bits, 0);
15503 mutex_exit(&osp->os_sync_lock);
15504 have_sync_lock = 0;
15505 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL,
15506 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ?
15507 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE,
15508 bsep, NULL, NULL);
15509 if (odg_cred_otw)
15510 crfree(odg_cred_otw);
15511 if (bsep)
15512 kmem_free(bsep, sizeof (*bsep));
15513
15514 if (abort == TRUE)
15515 goto out;
15516
15517 if (did_start_seqid_sync) {
15518 nfs4_end_open_seqid_sync(oop);
15519 did_start_seqid_sync = 0;
15520 }
15521 open_stream_rele(osp, rp);
15522
15523 if (did_start_op)
15524 nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
15525 &recov_state, FALSE);
15526 if (did_force_recovlock)
15527 nfs_rw_exit(&mi->mi_recovlock);
15528
15529 goto recov_retry;
15530 } else {
15531 if (odg_cred_otw)
15532 crfree(odg_cred_otw);
15533 }
15534 goto out;
15535 }
15536
15537 /*
15538 * If this open stream was created as the results of an open
15539 * while holding a delegation, then just release it; no need
15540 * to do an OTW close. Otherwise do a "normal" OTW close.
15541 */
15542 if (osp->os_delegation) {
15543 nfs4close_notw(vp, osp, &have_sync_lock);
15544 nfs4_error_zinit(ep);
15545 goto out;
15546 }
15547
15548 /*
15549 * If this stream is not valid, we're done.
15550 */
15551 if (!osp->os_valid) {
15552 nfs4_error_zinit(ep);
15553 goto out;
15554 }
15555
15556 /*
15557 * Last open or mmap ref has vanished, need to do an OTW close.
15558 * First check to see if a close is still necessary.
15559 */
15560 if (osp->os_failed_reopen) {
15561 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
15562 "don't close OTW osp %p since reopen failed.",
15563 (void *)osp));
15564 /*
15565 * Reopen of the open stream failed, hence the
15566 * stateid of the open stream is invalid/stale, and
15567 * sending this OTW would incorrectly cause another
15568 * round of recovery. In this case, we need to set
15569 * the 'os_valid' bit to 0 so another thread doesn't
15570 * come in and re-open this open stream before
15571 * this "closing" thread cleans up state (decrementing
15572 * the nfs4_server_t's state_ref_count and decrementing
15573 * the os_ref_count).
15574 */
15575 osp->os_valid = 0;
15576 /*
15577 * This removes the reference obtained at OPEN; ie,
15578 * when the open stream structure was created.
15579 *
15580 * We don't have to worry about calling 'open_stream_rele'
15581 * since we our currently holding a reference to this
15582 * open stream which means the count can not go to 0 with
15583 * this decrement.
15584 */
15585 ASSERT(osp->os_ref_count >= 2);
15586 osp->os_ref_count--;
15587 nfs4_error_zinit(ep);
15588 close_failed = 0;
15589 goto close_cleanup;
15590 }
15591
15592 ASSERT(osp->os_ref_count > 1);
15593
15594 /*
15595 * Sixth, try the CLOSE OTW.
15596 */
15597 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync,
15598 close_type, ep, &have_sync_lock);
15599
15600 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) {
15601 /*
15602 * Let the recovery thread be responsible for
15603 * removing the state for CLOSE.
15604 */
15605 close_failed = 1;
15606 force_close = 0;
15607 retry = 0;
15608 }
15609
15610 /* See if we need to retry with a different cred */
15611 if ((ep->error == EACCES ||
15612 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) &&
15613 cred_otw != cr) {
15614 crfree(cred_otw);
15615 cred_otw = cr;
15616 crhold(cred_otw);
15617 retry = 1;
15618 }
15619
15620 if (ep->error || ep->stat)
15621 close_failed = 1;
15622
15623 if (retry && !isrecov && num_retries-- > 0) {
15624 if (have_sync_lock) {
15625 mutex_exit(&osp->os_sync_lock);
15626 have_sync_lock = 0;
15627 }
15628 if (did_start_seqid_sync) {
15629 nfs4_end_open_seqid_sync(oop);
15630 did_start_seqid_sync = 0;
15631 }
15632 open_stream_rele(osp, rp);
15633
15634 if (did_start_op)
15635 nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
15636 &recov_state, FALSE);
15637 if (did_force_recovlock)
15638 nfs_rw_exit(&mi->mi_recovlock);
15639 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
15640 "nfs4close_one: need to retry the close "
15641 "operation"));
15642 goto recov_retry;
15643 }
15644 close_cleanup:
15645 /*
15646 * Seventh and lastly, process our results.
15647 */
15648 if (close_failed && force_close) {
15649 /*
15650 * It's ok to drop and regrab the 'os_sync_lock' since
15651 * nfs4close_notw() will recheck to make sure the
15652 * "close"/removal of state should happen.
15653 */
15654 if (!have_sync_lock) {
15655 mutex_enter(&osp->os_sync_lock);
15656 have_sync_lock = 1;
15657 }
15658 /*
15659 * This is last call, remove the ref on the open
15660 * stream created by open and clean everything up.
15661 */
15662 osp->os_pending_close = 0;
15663 nfs4close_notw(vp, osp, &have_sync_lock);
15664 nfs4_error_zinit(ep);
15665 }
15666
15667 if (!close_failed) {
15668 if (have_sync_lock) {
15669 osp->os_pending_close = 0;
15670 mutex_exit(&osp->os_sync_lock);
15671 have_sync_lock = 0;
15672 } else {
15673 mutex_enter(&osp->os_sync_lock);
15674 osp->os_pending_close = 0;
15675 mutex_exit(&osp->os_sync_lock);
15676 }
15677 if (did_start_op && recov_state.rs_sp != NULL) {
15678 mutex_enter(&recov_state.rs_sp->s_lock);
15679 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi);
15680 mutex_exit(&recov_state.rs_sp->s_lock);
15681 } else {
15682 nfs4_dec_state_ref_count(mi);
15683 }
15684 nfs4_error_zinit(ep);
15685 }
15686
15687 out:
15688 if (have_sync_lock)
15689 mutex_exit(&osp->os_sync_lock);
15690 if (did_start_op)
15691 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state,
15692 recovonly ? TRUE : FALSE);
15693 if (did_force_recovlock)
15694 nfs_rw_exit(&mi->mi_recovlock);
15695 if (cred_otw)
15696 crfree(cred_otw);
15697 if (osp)
15698 open_stream_rele(osp, rp);
15699 if (oop) {
15700 if (did_start_seqid_sync)
15701 nfs4_end_open_seqid_sync(oop);
15702 open_owner_rele(oop);
15703 }
15704 }
15705
15706 /*
15707 * Convert information returned by the server in the LOCK4denied
15708 * structure to the form required by fcntl.
15709 */
15710 static void
denied_to_flk(LOCK4denied * lockt_denied,flock64_t * flk,LOCKT4args * lockt_args)15711 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args)
15712 {
15713 nfs4_lo_name_t *lo;
15714
15715 #ifdef DEBUG
15716 if (denied_to_flk_debug) {
15717 lockt_denied_debug = lockt_denied;
15718 debug_enter("lockt_denied");
15719 }
15720 #endif
15721
15722 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK;
15723 flk->l_whence = 0; /* aka SEEK_SET */
15724 flk->l_start = lockt_denied->offset;
15725 flk->l_len = lockt_denied->length;
15726
15727 /*
15728 * If the blocking clientid matches our client id, then we can
15729 * interpret the lockowner (since we built it). If not, then
15730 * fabricate a sysid and pid. Note that the l_sysid field
15731 * in *flk already has the local sysid.
15732 */
15733
15734 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) {
15735
15736 if (lockt_denied->owner.owner_len == sizeof (*lo)) {
15737 lo = (nfs4_lo_name_t *)
15738 lockt_denied->owner.owner_val;
15739
15740 flk->l_pid = lo->ln_pid;
15741 } else {
15742 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
15743 "denied_to_flk: bad lock owner length\n"));
15744
15745 flk->l_pid = lo_to_pid(&lockt_denied->owner);
15746 }
15747 } else {
15748 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
15749 "denied_to_flk: foreign clientid\n"));
15750
15751 /*
15752 * Construct a new sysid which should be different from
15753 * sysids of other systems.
15754 */
15755
15756 flk->l_sysid++;
15757 flk->l_pid = lo_to_pid(&lockt_denied->owner);
15758 }
15759 }
15760
15761 static pid_t
lo_to_pid(lock_owner4 * lop)15762 lo_to_pid(lock_owner4 *lop)
15763 {
15764 pid_t pid = 0;
15765 uchar_t *cp;
15766 int i;
15767
15768 cp = (uchar_t *)&lop->clientid;
15769
15770 for (i = 0; i < sizeof (lop->clientid); i++)
15771 pid += (pid_t)*cp++;
15772
15773 cp = (uchar_t *)lop->owner_val;
15774
15775 for (i = 0; i < lop->owner_len; i++)
15776 pid += (pid_t)*cp++;
15777
15778 return (pid);
15779 }
15780
15781 /*
15782 * Given a lock pointer, returns the length of that lock.
15783 * "end" is the last locked offset the "l_len" covers from
15784 * the start of the lock.
15785 */
15786 static off64_t
lock_to_end(flock64_t * lock)15787 lock_to_end(flock64_t *lock)
15788 {
15789 off64_t lock_end;
15790
15791 if (lock->l_len == 0)
15792 lock_end = (off64_t)MAXEND;
15793 else
15794 lock_end = lock->l_start + lock->l_len - 1;
15795
15796 return (lock_end);
15797 }
15798
15799 /*
15800 * Given the end of a lock, it will return you the length "l_len" for that lock.
15801 */
15802 static off64_t
end_to_len(off64_t start,off64_t end)15803 end_to_len(off64_t start, off64_t end)
15804 {
15805 off64_t lock_len;
15806
15807 ASSERT(end >= start);
15808 if (end == MAXEND)
15809 lock_len = 0;
15810 else
15811 lock_len = end - start + 1;
15812
15813 return (lock_len);
15814 }
15815
15816 /*
15817 * On given end for a lock it determines if it is the last locked offset
15818 * or not, if so keeps it as is, else adds one to return the length for
15819 * valid start.
15820 */
15821 static off64_t
start_check(off64_t x)15822 start_check(off64_t x)
15823 {
15824 if (x == MAXEND)
15825 return (x);
15826 else
15827 return (x + 1);
15828 }
15829
15830 /*
15831 * See if these two locks overlap, and if so return 1;
15832 * otherwise, return 0.
15833 */
15834 static int
locks_intersect(flock64_t * llfp,flock64_t * curfp)15835 locks_intersect(flock64_t *llfp, flock64_t *curfp)
15836 {
15837 off64_t llfp_end, curfp_end;
15838
15839 llfp_end = lock_to_end(llfp);
15840 curfp_end = lock_to_end(curfp);
15841
15842 if (((llfp_end >= curfp->l_start) &&
15843 (llfp->l_start <= curfp->l_start)) ||
15844 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start)))
15845 return (1);
15846 return (0);
15847 }
15848
15849 /*
15850 * Determine what the intersecting lock region is, and add that to the
15851 * 'nl_llpp' locklist in increasing order (by l_start).
15852 */
15853 static void
nfs4_add_lock_range(flock64_t * lost_flp,flock64_t * local_flp,locklist_t ** nl_llpp,vnode_t * vp)15854 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp,
15855 locklist_t **nl_llpp, vnode_t *vp)
15856 {
15857 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp;
15858 off64_t lost_flp_end, local_flp_end, len, start;
15859
15860 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:"));
15861
15862 if (!locks_intersect(lost_flp, local_flp))
15863 return;
15864
15865 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: "
15866 "locks intersect"));
15867
15868 lost_flp_end = lock_to_end(lost_flp);
15869 local_flp_end = lock_to_end(local_flp);
15870
15871 /* Find the starting point of the intersecting region */
15872 if (local_flp->l_start > lost_flp->l_start)
15873 start = local_flp->l_start;
15874 else
15875 start = lost_flp->l_start;
15876
15877 /* Find the lenght of the intersecting region */
15878 if (lost_flp_end < local_flp_end)
15879 len = end_to_len(start, lost_flp_end);
15880 else
15881 len = end_to_len(start, local_flp_end);
15882
15883 /*
15884 * Prepare the flock structure for the intersection found and insert
15885 * it into the new list in increasing l_start order. This list contains
15886 * intersections of locks registered by the client with the local host
15887 * and the lost lock.
15888 * The lock type of this lock is the same as that of the local_flp.
15889 */
15890 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP);
15891 intersect_llp->ll_flock.l_start = start;
15892 intersect_llp->ll_flock.l_len = len;
15893 intersect_llp->ll_flock.l_type = local_flp->l_type;
15894 intersect_llp->ll_flock.l_pid = local_flp->l_pid;
15895 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid;
15896 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */
15897 intersect_llp->ll_vp = vp;
15898
15899 tmp_fllp = *nl_llpp;
15900 cur_fllp = NULL;
15901 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start <
15902 intersect_llp->ll_flock.l_start) {
15903 cur_fllp = tmp_fllp;
15904 tmp_fllp = tmp_fllp->ll_next;
15905 }
15906 if (cur_fllp == NULL) {
15907 /* first on the list */
15908 intersect_llp->ll_next = *nl_llpp;
15909 *nl_llpp = intersect_llp;
15910 } else {
15911 intersect_llp->ll_next = cur_fllp->ll_next;
15912 cur_fllp->ll_next = intersect_llp;
15913 }
15914
15915 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: "
15916 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n",
15917 intersect_llp->ll_flock.l_start,
15918 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len,
15919 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE"));
15920 }
15921
15922 /*
15923 * Our local locking current state is potentially different than
15924 * what the NFSv4 server thinks we have due to a lost lock that was
15925 * resent and then received. We need to reset our "NFSv4" locking
15926 * state to match the current local locking state for this pid since
15927 * that is what the user/application sees as what the world is.
15928 *
15929 * We cannot afford to drop the open/lock seqid sync since then we can
15930 * get confused about what the current local locking state "is" versus
15931 * "was".
15932 *
15933 * If we are unable to fix up the locks, we send SIGLOST to the affected
15934 * process. This is not done if the filesystem has been forcibly
15935 * unmounted, in case the process has already exited and a new process
15936 * exists with the same pid.
15937 */
15938 static void
nfs4_reinstitute_local_lock_state(vnode_t * vp,flock64_t * lost_flp,cred_t * cr,nfs4_lock_owner_t * lop)15939 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr,
15940 nfs4_lock_owner_t *lop)
15941 {
15942 locklist_t *locks, *llp, *ri_llp, *tmp_llp;
15943 mntinfo4_t *mi = VTOMI4(vp);
15944 const int cmd = F_SETLK;
15945 off64_t cur_start, llp_ll_flock_end, lost_flp_end;
15946 flock64_t ul_fl;
15947
15948 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15949 "nfs4_reinstitute_local_lock_state"));
15950
15951 /*
15952 * Find active locks for this vp from the local locking code.
15953 * Scan through this list and find out the locks that intersect with
15954 * the lost lock. Once we find the lock that intersects, add the
15955 * intersection area as a new lock to a new list "ri_llp". The lock
15956 * type of the intersection region lock added to ri_llp is the same
15957 * as that found in the active lock list, "list". The intersecting
15958 * region locks are added to ri_llp in increasing l_start order.
15959 */
15960 ASSERT(nfs_zone() == mi->mi_zone);
15961
15962 locks = flk_active_locks_for_vp(vp);
15963 ri_llp = NULL;
15964
15965 for (llp = locks; llp != NULL; llp = llp->ll_next) {
15966 ASSERT(llp->ll_vp == vp);
15967 /*
15968 * Pick locks that belong to this pid/lockowner
15969 */
15970 if (llp->ll_flock.l_pid != lost_flp->l_pid)
15971 continue;
15972
15973 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp);
15974 }
15975
15976 /*
15977 * Now we have the list of intersections with the lost lock. These are
15978 * the locks that were/are active before the server replied to the
15979 * last/lost lock. Issue these locks to the server here. Playing these
15980 * locks to the server will re-establish aur current local locking state
15981 * with the v4 server.
15982 * If we get an error, send SIGLOST to the application for that lock.
15983 */
15984
15985 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) {
15986 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15987 "nfs4_reinstitute_local_lock_state: need to issue "
15988 "flock: [%"PRIx64" - %"PRIx64"] : %s",
15989 llp->ll_flock.l_start,
15990 llp->ll_flock.l_start + llp->ll_flock.l_len,
15991 llp->ll_flock.l_type == F_RDLCK ? "READ" :
15992 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID"));
15993 /*
15994 * No need to relock what we already have
15995 */
15996 if (llp->ll_flock.l_type == lost_flp->l_type)
15997 continue;
15998
15999 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop);
16000 }
16001
16002 /*
16003 * Now keeping the start of the lost lock as our reference parse the
16004 * newly created ri_llp locklist to find the ranges that we have locked
16005 * with the v4 server but not in the current local locking. We need
16006 * to unlock these ranges.
16007 * These ranges can also be reffered to as those ranges, where the lost
16008 * lock does not overlap with the locks in the ri_llp but are locked
16009 * since the server replied to the lost lock.
16010 */
16011 cur_start = lost_flp->l_start;
16012 lost_flp_end = lock_to_end(lost_flp);
16013
16014 ul_fl.l_type = F_UNLCK;
16015 ul_fl.l_whence = 0; /* aka SEEK_SET */
16016 ul_fl.l_sysid = lost_flp->l_sysid;
16017 ul_fl.l_pid = lost_flp->l_pid;
16018
16019 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) {
16020 llp_ll_flock_end = lock_to_end(&llp->ll_flock);
16021
16022 if (llp->ll_flock.l_start <= cur_start) {
16023 cur_start = start_check(llp_ll_flock_end);
16024 continue;
16025 }
16026 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
16027 "nfs4_reinstitute_local_lock_state: "
16028 "UNLOCK [%"PRIx64" - %"PRIx64"]",
16029 cur_start, llp->ll_flock.l_start));
16030
16031 ul_fl.l_start = cur_start;
16032 ul_fl.l_len = end_to_len(cur_start,
16033 (llp->ll_flock.l_start - 1));
16034
16035 push_reinstate(vp, cmd, &ul_fl, cr, lop);
16036 cur_start = start_check(llp_ll_flock_end);
16037 }
16038
16039 /*
16040 * In the case where the lost lock ends after all intersecting locks,
16041 * unlock the last part of the lost lock range.
16042 */
16043 if (cur_start != start_check(lost_flp_end)) {
16044 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
16045 "nfs4_reinstitute_local_lock_state: UNLOCK end of the "
16046 "lost lock region [%"PRIx64" - %"PRIx64"]",
16047 cur_start, lost_flp->l_start + lost_flp->l_len));
16048
16049 ul_fl.l_start = cur_start;
16050 /*
16051 * Is it an to-EOF lock? if so unlock till the end
16052 */
16053 if (lost_flp->l_len == 0)
16054 ul_fl.l_len = 0;
16055 else
16056 ul_fl.l_len = start_check(lost_flp_end) - cur_start;
16057
16058 push_reinstate(vp, cmd, &ul_fl, cr, lop);
16059 }
16060
16061 if (locks != NULL)
16062 flk_free_locklist(locks);
16063
16064 /* Free up our newly created locklist */
16065 for (llp = ri_llp; llp != NULL; ) {
16066 tmp_llp = llp->ll_next;
16067 kmem_free(llp, sizeof (locklist_t));
16068 llp = tmp_llp;
16069 }
16070
16071 /*
16072 * Now return back to the original calling nfs4frlock()
16073 * and let us naturally drop our seqid syncs.
16074 */
16075 }
16076
16077 /*
16078 * Create a lost state record for the given lock reinstantiation request
16079 * and push it onto the lost state queue.
16080 */
16081 static void
push_reinstate(vnode_t * vp,int cmd,flock64_t * flk,cred_t * cr,nfs4_lock_owner_t * lop)16082 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr,
16083 nfs4_lock_owner_t *lop)
16084 {
16085 nfs4_lost_rqst_t req;
16086 nfs_lock_type4 locktype;
16087 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS };
16088
16089 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
16090
16091 locktype = flk_to_locktype(cmd, flk->l_type);
16092 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype,
16093 NULL, NULL, lop, flk, &req, cr, vp);
16094 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
16095 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ?
16096 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK,
16097 NULL, NULL, NULL);
16098 }
16099