xref: /titanic_52/usr/src/uts/i86pc/os/mp_startup.c (revision 7c4dcc5546f9f002dfc2b95de47c90f00d07c066)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/thread.h>
30 #include <sys/cpuvar.h>
31 #include <sys/t_lock.h>
32 #include <sys/param.h>
33 #include <sys/proc.h>
34 #include <sys/disp.h>
35 #include <sys/mmu.h>
36 #include <sys/class.h>
37 #include <sys/cmn_err.h>
38 #include <sys/debug.h>
39 #include <sys/asm_linkage.h>
40 #include <sys/x_call.h>
41 #include <sys/systm.h>
42 #include <sys/var.h>
43 #include <sys/vtrace.h>
44 #include <vm/hat.h>
45 #include <sys/mmu.h>
46 #include <vm/as.h>
47 #include <vm/seg_kmem.h>
48 #include <sys/segments.h>
49 #include <sys/kmem.h>
50 #include <sys/stack.h>
51 #include <sys/smp_impldefs.h>
52 #include <sys/x86_archext.h>
53 #include <sys/machsystm.h>
54 #include <sys/traptrace.h>
55 #include <sys/clock.h>
56 #include <sys/cpc_impl.h>
57 #include <sys/chip.h>
58 #include <sys/dtrace.h>
59 #include <sys/archsystm.h>
60 #include <sys/fp.h>
61 #include <sys/reboot.h>
62 #include <sys/kdi.h>
63 #include <vm/hat_i86.h>
64 #include <sys/memnode.h>
65 #include <sys/pci_cfgspace.h>
66 #include <sys/cpu_module.h>
67 
68 struct cpu	cpus[1];			/* CPU data */
69 struct cpu	*cpu[NCPU] = {&cpus[0]};	/* pointers to all CPUs */
70 cpu_core_t	cpu_core[NCPU];			/* cpu_core structures */
71 
72 /*
73  * Useful for disabling MP bring-up for an MP capable kernel
74  * (a kernel that was built with MP defined)
75  */
76 int use_mp = 1;
77 
78 int mp_cpus = 0x1;	/* to be set by platform specific module	*/
79 
80 /*
81  * This variable is used by the hat layer to decide whether or not
82  * critical sections are needed to prevent race conditions.  For sun4m,
83  * this variable is set once enough MP initialization has been done in
84  * order to allow cross calls.
85  */
86 int flushes_require_xcalls = 0;
87 ulong_t	cpu_ready_set = 1;
88 
89 extern	void	real_mode_start(void);
90 extern	void	real_mode_end(void);
91 static 	void	mp_startup(void);
92 
93 static void cpu_sep_enable(void);
94 static void cpu_sep_disable(void);
95 static void cpu_asysc_enable(void);
96 static void cpu_asysc_disable(void);
97 
98 extern int tsc_gethrtime_enable;
99 
100 /*
101  * Init CPU info - get CPU type info for processor_info system call.
102  */
103 void
104 init_cpu_info(struct cpu *cp)
105 {
106 	processor_info_t *pi = &cp->cpu_type_info;
107 	char buf[CPU_IDSTRLEN];
108 
109 	/*
110 	 * Get clock-frequency property for the CPU.
111 	 */
112 	pi->pi_clock = cpu_freq;
113 
114 	(void) strcpy(pi->pi_processor_type, "i386");
115 	if (fpu_exists)
116 		(void) strcpy(pi->pi_fputypes, "i387 compatible");
117 
118 	(void) cpuid_getidstr(cp, buf, sizeof (buf));
119 
120 	cp->cpu_idstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP);
121 	(void) strcpy(cp->cpu_idstr, buf);
122 
123 	cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr);
124 
125 	(void) cpuid_getbrandstr(cp, buf, sizeof (buf));
126 	cp->cpu_brandstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP);
127 	(void) strcpy(cp->cpu_brandstr, buf);
128 
129 	cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr);
130 }
131 
132 /*
133  * Configure syscall support on this CPU.
134  */
135 /*ARGSUSED*/
136 static void
137 init_cpu_syscall(struct cpu *cp)
138 {
139 	kpreempt_disable();
140 
141 #if defined(__amd64)
142 	if (x86_feature & X86_ASYSC) {
143 
144 #if !defined(__lint)
145 		/*
146 		 * The syscall instruction imposes a certain ordering on
147 		 * segment selectors, so we double-check that ordering
148 		 * here.
149 		 */
150 		ASSERT(KDS_SEL == KCS_SEL + 8);
151 		ASSERT(UDS_SEL == U32CS_SEL + 8);
152 		ASSERT(UCS_SEL == U32CS_SEL + 16);
153 #endif
154 		/*
155 		 * Turn syscall/sysret extensions on.
156 		 */
157 		cpu_asysc_enable();
158 
159 		/*
160 		 * Program the magic registers ..
161 		 */
162 		wrmsr(MSR_AMD_STAR, ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) <<
163 		    32);
164 		wrmsr(MSR_AMD_LSTAR, (uint64_t)(uintptr_t)sys_syscall);
165 		wrmsr(MSR_AMD_CSTAR, (uint64_t)(uintptr_t)sys_syscall32);
166 
167 		/*
168 		 * This list of flags is masked off the incoming
169 		 * %rfl when we enter the kernel.
170 		 */
171 		wrmsr(MSR_AMD_SFMASK, (uint64_t)(uintptr_t)(PS_IE | PS_T));
172 	}
173 #endif
174 
175 	/*
176 	 * On 32-bit kernels, we use sysenter/sysexit because it's too
177 	 * hard to use syscall/sysret, and it is more portable anyway.
178 	 *
179 	 * On 64-bit kernels on Nocona machines, the 32-bit syscall
180 	 * variant isn't available to 32-bit applications, but sysenter is.
181 	 */
182 	if (x86_feature & X86_SEP) {
183 
184 #if !defined(__lint)
185 		/*
186 		 * The sysenter instruction imposes a certain ordering on
187 		 * segment selectors, so we double-check that ordering
188 		 * here. See "sysenter" in Intel document 245471-012, "IA-32
189 		 * Intel Architecture Software Developer's Manual Volume 2:
190 		 * Instruction Set Reference"
191 		 */
192 		ASSERT(KDS_SEL == KCS_SEL + 8);
193 
194 		ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3));
195 		ASSERT32(UDS_SEL == UCS_SEL + 8);
196 
197 		ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3));
198 		ASSERT64(UDS_SEL == U32CS_SEL + 8);
199 #endif
200 
201 		cpu_sep_enable();
202 
203 		/*
204 		 * resume() sets this value to the base of the threads stack
205 		 * via a context handler.
206 		 */
207 		wrmsr(MSR_INTC_SEP_ESP, 0ULL);
208 		wrmsr(MSR_INTC_SEP_EIP, (uint64_t)(uintptr_t)sys_sysenter);
209 	}
210 
211 	kpreempt_enable();
212 }
213 
214 /*
215  * Multiprocessor initialization.
216  *
217  * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the
218  * startup and idle threads for the specified CPU.
219  */
220 static void
221 mp_startup_init(int cpun)
222 {
223 #if defined(__amd64)
224 extern void *long_mode_64(void);
225 #endif	/* __amd64 */
226 
227 	struct cpu *cp;
228 	struct tss *ntss;
229 	kthread_id_t tp;
230 	caddr_t	sp;
231 	int size;
232 	proc_t *procp;
233 	extern void idle();
234 
235 	struct cpu_tables *tablesp;
236 	rm_platter_t *real_mode_platter = (rm_platter_t *)rm_platter_va;
237 
238 #ifdef TRAPTRACE
239 	trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun];
240 #endif
241 
242 	ASSERT(cpun < NCPU && cpu[cpun] == NULL);
243 
244 	if ((cp = kmem_zalloc(sizeof (*cp), KM_NOSLEEP)) == NULL) {
245 		panic("mp_startup_init: cpu%d: "
246 		    "no memory for cpu structure", cpun);
247 		/*NOTREACHED*/
248 	}
249 	procp = curthread->t_procp;
250 
251 	mutex_enter(&cpu_lock);
252 	/*
253 	 * Initialize the dispatcher first.
254 	 */
255 	disp_cpu_init(cp);
256 	mutex_exit(&cpu_lock);
257 
258 	cpu_vm_data_init(cp);
259 
260 	/*
261 	 * Allocate and initialize the startup thread for this CPU.
262 	 * Interrupt and process switch stacks get allocated later
263 	 * when the CPU starts running.
264 	 */
265 	tp = thread_create(NULL, 0, NULL, NULL, 0, procp,
266 	    TS_STOPPED, maxclsyspri);
267 
268 	/*
269 	 * Set state to TS_ONPROC since this thread will start running
270 	 * as soon as the CPU comes online.
271 	 *
272 	 * All the other fields of the thread structure are setup by
273 	 * thread_create().
274 	 */
275 	THREAD_ONPROC(tp, cp);
276 	tp->t_preempt = 1;
277 	tp->t_bound_cpu = cp;
278 	tp->t_affinitycnt = 1;
279 	tp->t_cpu = cp;
280 	tp->t_disp_queue = cp->cpu_disp;
281 
282 	/*
283 	 * Setup thread to start in mp_startup.
284 	 */
285 	sp = tp->t_stk;
286 	tp->t_pc = (uintptr_t)mp_startup;
287 	tp->t_sp = (uintptr_t)(sp - MINFRAME);
288 
289 	cp->cpu_id = cpun;
290 	cp->cpu_self = cp;
291 	cp->cpu_mask = 1 << cpun;
292 	cp->cpu_thread = tp;
293 	cp->cpu_lwp = NULL;
294 	cp->cpu_dispthread = tp;
295 	cp->cpu_dispatch_pri = DISP_PRIO(tp);
296 
297 	/*
298 	 * Now, initialize per-CPU idle thread for this CPU.
299 	 */
300 	tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1);
301 
302 	cp->cpu_idle_thread = tp;
303 
304 	tp->t_preempt = 1;
305 	tp->t_bound_cpu = cp;
306 	tp->t_affinitycnt = 1;
307 	tp->t_cpu = cp;
308 	tp->t_disp_queue = cp->cpu_disp;
309 
310 	/*
311 	 * Bootstrap the CPU for CMT aware scheduling
312 	 * The rest of the initialization will happen from
313 	 * mp_startup()
314 	 */
315 	chip_bootstrap_cpu(cp);
316 
317 	/*
318 	 * Perform CPC intialization on the new CPU.
319 	 */
320 	kcpc_hw_init(cp);
321 
322 	/*
323 	 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2
324 	 * for each CPU.
325 	 */
326 
327 	setup_vaddr_for_ppcopy(cp);
328 
329 	/*
330 	 * Allocate space for page directory, stack, tss, gdt and idt.
331 	 * This assumes that kmem_alloc will return memory which is aligned
332 	 * to the next higher power of 2 or a page(if size > MAXABIG)
333 	 * If this assumption goes wrong at any time due to change in
334 	 * kmem alloc, things may not work as the page directory has to be
335 	 * page aligned
336 	 */
337 	if ((tablesp = kmem_zalloc(sizeof (*tablesp), KM_NOSLEEP)) == NULL)
338 		panic("mp_startup_init: cpu%d cannot allocate tables", cpun);
339 
340 	if ((uintptr_t)tablesp & ~MMU_STD_PAGEMASK) {
341 		kmem_free(tablesp, sizeof (struct cpu_tables));
342 		size = sizeof (struct cpu_tables) + MMU_STD_PAGESIZE;
343 		tablesp = kmem_zalloc(size, KM_NOSLEEP);
344 		tablesp = (struct cpu_tables *)
345 		    (((uintptr_t)tablesp + MMU_STD_PAGESIZE) &
346 		    MMU_STD_PAGEMASK);
347 	}
348 
349 	ntss = cp->cpu_tss = &tablesp->ct_tss;
350 	cp->cpu_gdt = tablesp->ct_gdt;
351 	bcopy(CPU->cpu_gdt, cp->cpu_gdt, NGDT * (sizeof (user_desc_t)));
352 
353 #if defined(__amd64)
354 
355 	/*
356 	 * #DF (double fault).
357 	 */
358 	ntss->tss_ist1 =
359 	    (uint64_t)&tablesp->ct_stack[sizeof (tablesp->ct_stack)];
360 
361 #elif defined(__i386)
362 
363 	ntss->tss_esp0 = ntss->tss_esp1 = ntss->tss_esp2 = ntss->tss_esp =
364 	    (uint32_t)&tablesp->ct_stack[sizeof (tablesp->ct_stack)];
365 
366 	ntss->tss_ss0 = ntss->tss_ss1 = ntss->tss_ss2 = ntss->tss_ss = KDS_SEL;
367 
368 	ntss->tss_eip = (uint32_t)mp_startup;
369 
370 	ntss->tss_cs = KCS_SEL;
371 	ntss->tss_fs = KFS_SEL;
372 	ntss->tss_gs = KGS_SEL;
373 
374 	/*
375 	 * setup kernel %gs.
376 	 */
377 	set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA,
378 	    SEL_KPL, 0, 1);
379 
380 #endif	/* __i386 */
381 
382 	/*
383 	 * Set I/O bit map offset equal to size of TSS segment limit
384 	 * for no I/O permission map. This will cause all user I/O
385 	 * instructions to generate #gp fault.
386 	 */
387 	ntss->tss_bitmapbase = sizeof (*ntss);
388 
389 	/*
390 	 * setup kernel tss.
391 	 */
392 	set_syssegd((system_desc_t *)&cp->cpu_gdt[GDT_KTSS], cp->cpu_tss,
393 	    sizeof (*cp->cpu_tss) -1, SDT_SYSTSS, SEL_KPL);
394 
395 	/*
396 	 * If we have more than one node, each cpu gets a copy of IDT
397 	 * local to its node. If this is a Pentium box, we use cpu 0's
398 	 * IDT. cpu 0's IDT has been made read-only to workaround the
399 	 * cmpxchgl register bug
400 	 */
401 	cp->cpu_idt = CPU->cpu_idt;
402 	if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) {
403 		cp->cpu_idt = kmem_alloc(sizeof (idt0), KM_SLEEP);
404 		bcopy(idt0, cp->cpu_idt, sizeof (idt0));
405 	}
406 
407 	/*
408 	 * Get interrupt priority data from cpu 0
409 	 */
410 	cp->cpu_pri_data = CPU->cpu_pri_data;
411 
412 	hat_cpu_online(cp);
413 
414 	/* Should remove all entries for the current process/thread here */
415 
416 	/*
417 	 * Fill up the real mode platter to make it easy for real mode code to
418 	 * kick it off. This area should really be one passed by boot to kernel
419 	 * and guaranteed to be below 1MB and aligned to 16 bytes. Should also
420 	 * have identical physical and virtual address in paged mode.
421 	 */
422 	real_mode_platter->rm_idt_base = cp->cpu_idt;
423 	real_mode_platter->rm_idt_lim = sizeof (idt0) - 1;
424 	real_mode_platter->rm_gdt_base = cp->cpu_gdt;
425 	real_mode_platter->rm_gdt_lim = sizeof (gdt0) -1;
426 	real_mode_platter->rm_pdbr = getcr3();
427 	real_mode_platter->rm_cpu = cpun;
428 	real_mode_platter->rm_x86feature = x86_feature;
429 	real_mode_platter->rm_cr4 = cr4_value;
430 
431 #if defined(__amd64)
432 	if (getcr3() > 0xffffffffUL)
433 		panic("Cannot initialize CPUs; kernel's 64-bit page tables\n"
434 			"located above 4G in physical memory (@ 0x%llx).",
435 			(unsigned long long)getcr3());
436 
437 	/*
438 	 * Setup pseudo-descriptors for temporary GDT and IDT for use ONLY
439 	 * by code in real_mode_start():
440 	 *
441 	 * GDT[0]:  NULL selector
442 	 * GDT[1]:  64-bit CS: Long = 1, Present = 1, bits 12, 11 = 1
443 	 *
444 	 * Clear the IDT as interrupts will be off and a limit of 0 will cause
445 	 * the CPU to triple fault and reset on an NMI, seemingly as reasonable
446 	 * a course of action as any other, though it may cause the entire
447 	 * platform to reset in some cases...
448 	 */
449 	real_mode_platter->rm_temp_gdt[0] = 0ULL;
450 	real_mode_platter->rm_temp_gdt[TEMPGDT_KCODE64] = 0x20980000000000ULL;
451 
452 	real_mode_platter->rm_temp_gdt_lim = (ushort_t)
453 	    (sizeof (real_mode_platter->rm_temp_gdt) - 1);
454 	real_mode_platter->rm_temp_gdt_base = rm_platter_pa +
455 	    (uint32_t)(&((rm_platter_t *)0)->rm_temp_gdt);
456 
457 	real_mode_platter->rm_temp_idt_lim = 0;
458 	real_mode_platter->rm_temp_idt_base = 0;
459 
460 	/*
461 	 * Since the CPU needs to jump to protected mode using an identity
462 	 * mapped address, we need to calculate it here.
463 	 */
464 	real_mode_platter->rm_longmode64_addr = rm_platter_pa +
465 	    ((uint32_t)long_mode_64 - (uint32_t)real_mode_start);
466 #endif	/* __amd64 */
467 
468 #ifdef TRAPTRACE
469 	/*
470 	 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers for this
471 	 * CPU.
472 	 */
473 	ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP);
474 	ttc->ttc_next = ttc->ttc_first;
475 	ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize;
476 #endif
477 
478 	/*
479 	 * Record that we have another CPU.
480 	 */
481 	mutex_enter(&cpu_lock);
482 	/*
483 	 * Initialize the interrupt threads for this CPU
484 	 */
485 	cpu_intr_alloc(cp, NINTR_THREADS);
486 	/*
487 	 * Add CPU to list of available CPUs.  It'll be on the active list
488 	 * after mp_startup().
489 	 */
490 	cpu_add_unit(cp);
491 	mutex_exit(&cpu_lock);
492 }
493 
494 /*
495  * Apply workarounds for known errata, and warn about those that are absent.
496  *
497  * System vendors occasionally create configurations which contain different
498  * revisions of the CPUs that are almost but not exactly the same.  At the
499  * time of writing, this meant that their clock rates were the same, their
500  * feature sets were the same, but the required workaround were -not-
501  * necessarily the same.  So, this routine is invoked on -every- CPU soon
502  * after starting to make sure that the resulting system contains the most
503  * pessimal set of workarounds needed to cope with *any* of the CPUs in the
504  * system.
505  *
506  * workaround_errata is invoked early in mlsetup() for CPU 0, and in
507  * mp_startup() for all slave CPUs. Slaves process workaround_errata prior
508  * to acknowledging their readiness to the master, so this routine will
509  * never be executed by multiple CPUs in parallel, thus making updates to
510  * global data safe.
511  *
512  * These workarounds are based on Rev 3.57 of the Revision Guide for
513  * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005.
514  */
515 
516 #if defined(OPTERON_ERRATUM_91)
517 int opteron_erratum_91;		/* if non-zero -> at least one cpu has it */
518 #endif
519 
520 #if defined(OPTERON_ERRATUM_93)
521 int opteron_erratum_93;		/* if non-zero -> at least one cpu has it */
522 #endif
523 
524 #if defined(OPTERON_ERRATUM_100)
525 int opteron_erratum_100;	/* if non-zero -> at least one cpu has it */
526 #endif
527 
528 #if defined(OPTERON_ERRATUM_109)
529 int opteron_erratum_109;	/* if non-zero -> at least one cpu has it */
530 #endif
531 
532 #if defined(OPTERON_ERRATUM_121)
533 int opteron_erratum_121;	/* if non-zero -> at least one cpu has it */
534 #endif
535 
536 #if defined(OPTERON_ERRATUM_122)
537 int opteron_erratum_122;	/* if non-zero -> at least one cpu has it */
538 #endif
539 
540 #if defined(OPTERON_ERRATUM_123)
541 int opteron_erratum_123;	/* if non-zero -> at least one cpu has it */
542 #endif
543 
544 #if defined(OPTERON_ERRATUM_131)
545 int opteron_erratum_131;	/* if non-zero -> at least one cpu has it */
546 #endif
547 
548 #if defined(OPTERON_WORKAROUND_6336786)
549 int opteron_workaround_6336786;	/* non-zero -> WA relevant and applied */
550 int opteron_workaround_6336786_UP = 0;	/* Not needed for UP */
551 #endif
552 
553 #define	WARNING(cpu, n)						\
554 	cmn_err(CE_WARN, "cpu%d: no workaround for erratum %d",	\
555 	    (cpu)->cpu_id, (n))
556 
557 uint_t
558 workaround_errata(struct cpu *cpu)
559 {
560 	uint_t missing = 0;
561 
562 	ASSERT(cpu == CPU);
563 
564 	/*LINTED*/
565 	if (cpuid_opteron_erratum(cpu, 88) > 0) {
566 		/*
567 		 * SWAPGS May Fail To Read Correct GS Base
568 		 */
569 #if defined(OPTERON_ERRATUM_88)
570 		/*
571 		 * The workaround is an mfence in the relevant assembler code
572 		 */
573 #else
574 		WARNING(cpu, 88);
575 		missing++;
576 #endif
577 	}
578 
579 	if (cpuid_opteron_erratum(cpu, 91) > 0) {
580 		/*
581 		 * Software Prefetches May Report A Page Fault
582 		 */
583 #if defined(OPTERON_ERRATUM_91)
584 		/*
585 		 * fix is in trap.c
586 		 */
587 		opteron_erratum_91++;
588 #else
589 		WARNING(cpu, 91);
590 		missing++;
591 #endif
592 	}
593 
594 	if (cpuid_opteron_erratum(cpu, 93) > 0) {
595 		/*
596 		 * RSM Auto-Halt Restart Returns to Incorrect RIP
597 		 */
598 #if defined(OPTERON_ERRATUM_93)
599 		/*
600 		 * fix is in trap.c
601 		 */
602 		opteron_erratum_93++;
603 #else
604 		WARNING(cpu, 93);
605 		missing++;
606 #endif
607 	}
608 
609 	/*LINTED*/
610 	if (cpuid_opteron_erratum(cpu, 95) > 0) {
611 		/*
612 		 * RET Instruction May Return to Incorrect EIP
613 		 */
614 #if defined(OPTERON_ERRATUM_95)
615 #if defined(_LP64)
616 		/*
617 		 * Workaround this by ensuring that 32-bit user code and
618 		 * 64-bit kernel code never occupy the same address
619 		 * range mod 4G.
620 		 */
621 		if (_userlimit32 > 0xc0000000ul)
622 			*(uintptr_t *)&_userlimit32 = 0xc0000000ul;
623 
624 		/*LINTED*/
625 		ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u);
626 #endif	/* _LP64 */
627 #else
628 		WARNING(cpu, 95);
629 		missing++;
630 #endif	/* OPTERON_ERRATUM_95 */
631 	}
632 
633 	if (cpuid_opteron_erratum(cpu, 100) > 0) {
634 		/*
635 		 * Compatibility Mode Branches Transfer to Illegal Address
636 		 */
637 #if defined(OPTERON_ERRATUM_100)
638 		/*
639 		 * fix is in trap.c
640 		 */
641 		opteron_erratum_100++;
642 #else
643 		WARNING(cpu, 100);
644 		missing++;
645 #endif
646 	}
647 
648 	/*LINTED*/
649 	if (cpuid_opteron_erratum(cpu, 108) > 0) {
650 		/*
651 		 * CPUID Instruction May Return Incorrect Model Number In
652 		 * Some Processors
653 		 */
654 #if defined(OPTERON_ERRATUM_108)
655 		/*
656 		 * (Our cpuid-handling code corrects the model number on
657 		 * those processors)
658 		 */
659 #else
660 		WARNING(cpu, 108);
661 		missing++;
662 #endif
663 	}
664 
665 	/*LINTED*/
666 	if (cpuid_opteron_erratum(cpu, 109) > 0) {
667 		/*
668 		 * Certain Reverse REP MOVS May Produce Unpredictable Behaviour
669 		 */
670 #if defined(OPTERON_ERRATUM_109)
671 
672 		/* workaround is to print a warning to upgrade BIOS */
673 		if (rdmsr(MSR_AMD_PATCHLEVEL) == 0)
674 			opteron_erratum_109++;
675 #else
676 		WARNING(cpu, 109);
677 		missing++;
678 #endif
679 	}
680 	/*LINTED*/
681 	if (cpuid_opteron_erratum(cpu, 121) > 0) {
682 		/*
683 		 * Sequential Execution Across Non_Canonical Boundary Caused
684 		 * Processor Hang
685 		 */
686 #if defined(OPTERON_ERRATUM_121)
687 		static int	lma;
688 
689 		if (opteron_erratum_121)
690 			opteron_erratum_121++;
691 
692 		/*
693 		 * Erratum 121 is only present in long (64 bit) mode.
694 		 * Workaround is to include the page immediately before the
695 		 * va hole to eliminate the possibility of system hangs due to
696 		 * sequential execution across the va hole boundary.
697 		 */
698 		if (lma == 0) {
699 			/*
700 			 * check LMA once: assume all cpus are in long mode
701 			 * or not.
702 			 */
703 			lma = 1;
704 
705 			if (rdmsr(MSR_AMD_EFER) & AMD_EFER_LMA) {
706 				if (hole_start) {
707 					hole_start -= PAGESIZE;
708 				} else {
709 					/*
710 					 * hole_start not yet initialized by
711 					 * mmu_init. Initialize hole_start
712 					 * with value to be subtracted.
713 					 */
714 					hole_start = PAGESIZE;
715 				}
716 				opteron_erratum_121++;
717 			}
718 		}
719 #else
720 		WARNING(cpu, 121);
721 		missing++;
722 #endif
723 	}
724 
725 	/*LINTED*/
726 	if (cpuid_opteron_erratum(cpu, 122) > 0) {
727 		/*
728 		 * TLB Flush Filter May Cause Cohenrency Problem in
729 		 * Multiprocessor Systems
730 		 */
731 #if defined(OPTERON_ERRATUM_122)
732 		/*
733 		 * Erratum 122 is only present in MP configurations (multi-core
734 		 * or multi-processor).
735 		 */
736 
737 		if (opteron_erratum_122 || lgrp_plat_node_cnt > 1 ||
738 		    cpuid_get_ncpu_per_chip(cpu) > 1) {
739 			/* disable TLB Flush Filter */
740 			wrmsr(MSR_AMD_HWCR, rdmsr(MSR_AMD_HWCR) |
741 			    (uint64_t)(uintptr_t)AMD_HWCR_FFDIS);
742 			opteron_erratum_122++;
743 		}
744 
745 #else
746 		WARNING(cpu, 122);
747 		missing++;
748 #endif
749 	}
750 
751 #if defined(OPTERON_ERRATUM_123)
752 	/*LINTED*/
753 	if (cpuid_opteron_erratum(cpu, 123) > 0) {
754 		/*
755 		 * Bypassed Reads May Cause Data Corruption of System Hang in
756 		 * Dual Core Processors
757 		 */
758 		/*
759 		 * Erratum 123 applies only to multi-core cpus.
760 		 */
761 
762 		if (cpuid_get_ncpu_per_chip(cpu) > 1) {
763 			/* workaround is to print a warning to upgrade BIOS */
764 			if (rdmsr(MSR_AMD_PATCHLEVEL) == 0)
765 				opteron_erratum_123++;
766 		}
767 	}
768 #endif
769 
770 #if defined(OPTERON_ERRATUM_131)
771 	/*LINTED*/
772 	if (cpuid_opteron_erratum(cpu, 131) > 0) {
773 		/*
774 		 * Multiprocessor Systems with Four or More Cores May Deadlock
775 		 * Waiting for a Probe Response
776 		 */
777 		/*
778 		 * Erratum 131 applies to any system with four or more cores.
779 		 */
780 		if ((opteron_erratum_131 == 0) && ((lgrp_plat_node_cnt *
781 		    cpuid_get_ncpu_per_chip(cpu)) >= 4)) {
782 			/*
783 			 * Workaround is to print a warning to upgrade
784 			 * the BIOS
785 			 */
786 			if (!(rdmsr(MSR_AMD_NB_CFG) & AMD_NB_CFG_SRQ_HEARTBEAT))
787 				opteron_erratum_131++;
788 		}
789 	}
790 #endif
791 
792 #if defined(OPTERON_WORKAROUND_6336786)
793 	/*
794 	 * This isn't really erratum, but for convenience the
795 	 * detection/workaround code lives here and in cpuid_opteron_erratum.
796 	 */
797 	if (cpuid_opteron_erratum(cpu, 6336786) > 0) {
798 		int	node;
799 		uint8_t data;
800 
801 		/*
802 		 * Disable C1-Clock ramping on multi-core/multi-processor
803 		 * K8 platforms to guard against TSC drift.
804 		 */
805 		if (opteron_workaround_6336786) {
806 			opteron_workaround_6336786++;
807 		} else if ((lgrp_plat_node_cnt *
808 		    cpuid_get_ncpu_per_chip(cpu) >= 2) ||
809 		    opteron_workaround_6336786_UP) {
810 			for (node = 0; node < lgrp_plat_node_cnt; node++) {
811 				/*
812 				 * Clear PMM7[1:0] (function 3, offset 0x87)
813 				 * Northbridge device is the node id + 24.
814 				 */
815 				data = pci_getb_func(0, node + 24, 3, 0x87);
816 				data &= 0xFC;
817 				pci_putb_func(0, node + 24, 3, 0x87, data);
818 			}
819 			opteron_workaround_6336786++;
820 		}
821 	}
822 #endif
823 	return (missing);
824 }
825 
826 void
827 workaround_errata_end()
828 {
829 #if defined(OPTERON_ERRATUM_109)
830 	if (opteron_erratum_109) {
831 		cmn_err(CE_WARN,
832 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
833 		    " processor\nerratum 109 was not detected; updating your"
834 		    " system's BIOS to a version\ncontaining this"
835 		    " microcode patch is HIGHLY recommended or erroneous"
836 		    " system\noperation may occur.\n");
837 	}
838 #endif	/* OPTERON_ERRATUM_109 */
839 #if defined(OPTERON_ERRATUM_123)
840 	if (opteron_erratum_123) {
841 		cmn_err(CE_WARN,
842 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
843 		    " processor\nerratum 123 was not detected; updating your"
844 		    " system's BIOS to a version\ncontaining this"
845 		    " microcode patch is HIGHLY recommended or erroneous"
846 		    " system\noperation may occur.\n");
847 	}
848 #endif	/* OPTERON_ERRATUM_123 */
849 #if defined(OPTERON_ERRATUM_131)
850 	if (opteron_erratum_131) {
851 		cmn_err(CE_WARN,
852 		    "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
853 		    " processor\nerratum 131 was not detected; updating your"
854 		    " system's BIOS to a version\ncontaining this"
855 		    " microcode patch is HIGHLY recommended or erroneous"
856 		    " system\noperation may occur.\n");
857 	}
858 #endif	/* OPTERON_ERRATUM_131 */
859 }
860 
861 static ushort_t *mp_map_warm_reset_vector();
862 static void mp_unmap_warm_reset_vector(ushort_t *warm_reset_vector);
863 
864 /*ARGSUSED*/
865 void
866 start_other_cpus(int cprboot)
867 {
868 	unsigned who;
869 	int cpuid = 0;
870 	int delays = 0;
871 	int started_cpu;
872 	ushort_t *warm_reset_vector = NULL;
873 	extern int procset;
874 
875 	/*
876 	 * Initialize our own cpu_info.
877 	 */
878 	init_cpu_info(CPU);
879 
880 	/*
881 	 * Initialize our syscall handlers
882 	 */
883 	init_cpu_syscall(CPU);
884 
885 	/*
886 	 * if only 1 cpu or not using MP, skip the rest of this
887 	 */
888 	if (!(mp_cpus & ~(1 << cpuid)) || use_mp == 0) {
889 		if (use_mp == 0)
890 			cmn_err(CE_CONT, "?***** Not in MP mode\n");
891 		goto done;
892 	}
893 
894 	/*
895 	 * perform such initialization as is needed
896 	 * to be able to take CPUs on- and off-line.
897 	 */
898 	cpu_pause_init();
899 
900 	xc_init();		/* initialize processor crosscalls */
901 
902 	/*
903 	 * Copy the real mode code at "real_mode_start" to the
904 	 * page at rm_platter_va.
905 	 */
906 	warm_reset_vector = mp_map_warm_reset_vector();
907 	if (warm_reset_vector == NULL)
908 		goto done;
909 
910 	bcopy((caddr_t)real_mode_start,
911 	    (caddr_t)((rm_platter_t *)rm_platter_va)->rm_code,
912 	    (size_t)real_mode_end - (size_t)real_mode_start);
913 
914 	flushes_require_xcalls = 1;
915 
916 	affinity_set(CPU_CURRENT);
917 
918 	for (who = 0; who < NCPU; who++) {
919 		if (who == cpuid)
920 			continue;
921 
922 		if ((mp_cpus & (1 << who)) == 0)
923 			continue;
924 
925 		mp_startup_init(who);
926 		started_cpu = 1;
927 		(*cpu_startf)(who, rm_platter_pa);
928 
929 		while ((procset & (1 << who)) == 0) {
930 
931 			delay(1);
932 			if (++delays > (20 * hz)) {
933 
934 				cmn_err(CE_WARN,
935 				    "cpu%d failed to start", who);
936 
937 				mutex_enter(&cpu_lock);
938 				cpu[who]->cpu_flags = 0;
939 				cpu_vm_data_destroy(cpu[who]);
940 				cpu_del_unit(who);
941 				mutex_exit(&cpu_lock);
942 
943 				started_cpu = 0;
944 				break;
945 			}
946 		}
947 		if (!started_cpu)
948 			continue;
949 		if (tsc_gethrtime_enable)
950 			tsc_sync_master(who);
951 
952 
953 		if (dtrace_cpu_init != NULL) {
954 			/*
955 			 * DTrace CPU initialization expects cpu_lock
956 			 * to be held.
957 			 */
958 			mutex_enter(&cpu_lock);
959 			(*dtrace_cpu_init)(who);
960 			mutex_exit(&cpu_lock);
961 		}
962 	}
963 
964 	affinity_clear();
965 
966 	for (who = 0; who < NCPU; who++) {
967 		if (who == cpuid)
968 			continue;
969 
970 		if (!(procset & (1 << who)))
971 			continue;
972 
973 		while (!(cpu_ready_set & (1 << who)))
974 			delay(1);
975 	}
976 
977 done:
978 	workaround_errata_end();
979 
980 	if (warm_reset_vector != NULL)
981 		mp_unmap_warm_reset_vector(warm_reset_vector);
982 	hat_unload(kas.a_hat, (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
983 	    HAT_UNLOAD);
984 }
985 
986 /*
987  * Dummy functions - no i86pc platforms support dynamic cpu allocation.
988  */
989 /*ARGSUSED*/
990 int
991 mp_cpu_configure(int cpuid)
992 {
993 	return (ENOTSUP);		/* not supported */
994 }
995 
996 /*ARGSUSED*/
997 int
998 mp_cpu_unconfigure(int cpuid)
999 {
1000 	return (ENOTSUP);		/* not supported */
1001 }
1002 
1003 /*
1004  * Startup function for 'other' CPUs (besides boot cpu).
1005  * Resumed from cpu_startup.
1006  *
1007  * WARNING: until CPU_READY is set, mp_startup and routines called by
1008  * mp_startup should not call routines (e.g. kmem_free) that could call
1009  * hat_unload which requires CPU_READY to be set.
1010  */
1011 void
1012 mp_startup(void)
1013 {
1014 	struct cpu *cp = CPU;
1015 	extern int procset;
1016 	uint_t new_x86_feature;
1017 
1018 	new_x86_feature = cpuid_pass1(cp);
1019 
1020 	/*
1021 	 * We need to Sync MTRR with cpu0's MTRR. We have to do
1022 	 * this with interrupts disabled.
1023 	 */
1024 	if (x86_feature & X86_MTRR)
1025 		mtrr_sync();
1026 
1027 	/*
1028 	 * Initialize this CPU's syscall handlers
1029 	 */
1030 	init_cpu_syscall(cp);
1031 
1032 	/*
1033 	 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the
1034 	 * highest level at which a routine is permitted to block on
1035 	 * an adaptive mutex (allows for cpu poke interrupt in case
1036 	 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks
1037 	 * device interrupts that may end up in the hat layer issuing cross
1038 	 * calls before CPU_READY is set.
1039 	 */
1040 	(void) splx(ipltospl(LOCK_LEVEL));
1041 
1042 	/*
1043 	 * Do a sanity check to make sure this new CPU is a sane thing
1044 	 * to add to the collection of processors running this system.
1045 	 *
1046 	 * XXX	Clearly this needs to get more sophisticated, if x86
1047 	 * systems start to get built out of heterogenous CPUs; as is
1048 	 * likely to happen once the number of processors in a configuration
1049 	 * gets large enough.
1050 	 */
1051 	if ((x86_feature & new_x86_feature) != x86_feature) {
1052 		cmn_err(CE_CONT, "?cpu%d: %b\n",
1053 		    cp->cpu_id, new_x86_feature, FMT_X86_FEATURE);
1054 		cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id);
1055 	}
1056 
1057 	/*
1058 	 * We could be more sophisticated here, and just mark the CPU
1059 	 * as "faulted" but at this point we'll opt for the easier
1060 	 * answer of dieing horribly.  Provided the boot cpu is ok,
1061 	 * the system can be recovered by booting with use_mp set to zero.
1062 	 */
1063 	if (workaround_errata(cp) != 0)
1064 		panic("critical workaround(s) missing for cpu%d", cp->cpu_id);
1065 
1066 	cpuid_pass2(cp);
1067 	cpuid_pass3(cp);
1068 	(void) cpuid_pass4(cp);
1069 
1070 	init_cpu_info(cp);
1071 
1072 	mutex_enter(&cpu_lock);
1073 	procset |= 1 << cp->cpu_id;
1074 	mutex_exit(&cpu_lock);
1075 
1076 	if (tsc_gethrtime_enable)
1077 		tsc_sync_slave();
1078 
1079 	mutex_enter(&cpu_lock);
1080 	/*
1081 	 * It's unfortunate that chip_cpu_init() has to be called here.
1082 	 * It really belongs in cpu_add_unit(), but unfortunately it is
1083 	 * dependent on the cpuid probing, which must be done in the
1084 	 * context of the current CPU. Care must be taken on x86 to ensure
1085 	 * that mp_startup can safely block even though chip_cpu_init() and
1086 	 * cpu_add_active() have not yet been called.
1087 	 */
1088 	chip_cpu_init(cp);
1089 	chip_cpu_startup(cp);
1090 
1091 	cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_ENABLE | CPU_EXISTS;
1092 	cpu_add_active(cp);
1093 	mutex_exit(&cpu_lock);
1094 
1095 	add_cpunode2devtree(cp->cpu_id, cp->cpu_m.mcpu_cpi);
1096 
1097 	(void) spl0();				/* enable interrupts */
1098 
1099 	/*
1100 	 * Set up the CPU module for this CPU.  This can't be done before
1101 	 * this CPU is made CPU_READY, because we may (in heterogeneous systems)
1102 	 * need to go load another CPU module.  The act of attempting to load
1103 	 * a module may trigger a cross-call, which will ASSERT unless this
1104 	 * cpu is CPU_READY.
1105 	 */
1106 	cmi_init();
1107 
1108 	if (x86_feature & X86_MCA)
1109 		cmi_mca_init();
1110 
1111 	if (boothowto & RB_DEBUG)
1112 		kdi_dvec_cpu_init(cp);
1113 
1114 	/*
1115 	 * Setting the bit in cpu_ready_set must be the last operation in
1116 	 * processor initialization; the boot CPU will continue to boot once
1117 	 * it sees this bit set for all active CPUs.
1118 	 */
1119 	CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id);
1120 
1121 	/*
1122 	 * Because mp_startup() gets fired off after init() starts, we
1123 	 * can't use the '?' trick to do 'boot -v' printing - so we
1124 	 * always direct the 'cpu .. online' messages to the log.
1125 	 */
1126 	cmn_err(CE_CONT, "!cpu%d initialization complete - online\n",
1127 	    cp->cpu_id);
1128 
1129 	/*
1130 	 * Now we are done with the startup thread, so free it up.
1131 	 */
1132 	thread_exit();
1133 	panic("mp_startup: cannot return");
1134 	/*NOTREACHED*/
1135 }
1136 
1137 
1138 /*
1139  * Start CPU on user request.
1140  */
1141 /* ARGSUSED */
1142 int
1143 mp_cpu_start(struct cpu *cp)
1144 {
1145 	ASSERT(MUTEX_HELD(&cpu_lock));
1146 	return (0);
1147 }
1148 
1149 /*
1150  * Stop CPU on user request.
1151  */
1152 /* ARGSUSED */
1153 int
1154 mp_cpu_stop(struct cpu *cp)
1155 {
1156 	extern int cbe_psm_timer_mode;
1157 	ASSERT(MUTEX_HELD(&cpu_lock));
1158 
1159 	/*
1160 	 * If TIMER_PERIODIC mode is used, CPU0 is the one running it;
1161 	 * can't stop it.  (This is true only for machines with no TSC.)
1162 	 */
1163 
1164 	if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0))
1165 		return (1);
1166 
1167 	return (0);
1168 }
1169 
1170 /*
1171  * Power on CPU.
1172  */
1173 /* ARGSUSED */
1174 int
1175 mp_cpu_poweron(struct cpu *cp)
1176 {
1177 	ASSERT(MUTEX_HELD(&cpu_lock));
1178 	return (ENOTSUP);		/* not supported */
1179 }
1180 
1181 /*
1182  * Power off CPU.
1183  */
1184 /* ARGSUSED */
1185 int
1186 mp_cpu_poweroff(struct cpu *cp)
1187 {
1188 	ASSERT(MUTEX_HELD(&cpu_lock));
1189 	return (ENOTSUP);		/* not supported */
1190 }
1191 
1192 
1193 /*
1194  * Take the specified CPU out of participation in interrupts.
1195  */
1196 int
1197 cpu_disable_intr(struct cpu *cp)
1198 {
1199 	if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS)
1200 		return (EBUSY);
1201 
1202 	cp->cpu_flags &= ~CPU_ENABLE;
1203 	return (0);
1204 }
1205 
1206 /*
1207  * Allow the specified CPU to participate in interrupts.
1208  */
1209 void
1210 cpu_enable_intr(struct cpu *cp)
1211 {
1212 	ASSERT(MUTEX_HELD(&cpu_lock));
1213 	cp->cpu_flags |= CPU_ENABLE;
1214 	psm_enable_intr(cp->cpu_id);
1215 }
1216 
1217 
1218 
1219 static ushort_t *
1220 mp_map_warm_reset_vector()
1221 {
1222 	ushort_t *warm_reset_vector;
1223 
1224 	if (!(warm_reset_vector = (ushort_t *)psm_map_phys(WARM_RESET_VECTOR,
1225 	    sizeof (ushort_t *), PROT_READ|PROT_WRITE)))
1226 		return (NULL);
1227 
1228 	/*
1229 	 * setup secondary cpu bios boot up vector
1230 	 */
1231 	*warm_reset_vector = (ushort_t)((caddr_t)
1232 		((struct rm_platter *)rm_platter_va)->rm_code - rm_platter_va
1233 		+ ((ulong_t)rm_platter_va & 0xf));
1234 	warm_reset_vector++;
1235 	*warm_reset_vector = (ushort_t)(rm_platter_pa >> 4);
1236 
1237 	--warm_reset_vector;
1238 	return (warm_reset_vector);
1239 }
1240 
1241 static void
1242 mp_unmap_warm_reset_vector(ushort_t *warm_reset_vector)
1243 {
1244 	psm_unmap_phys((caddr_t)warm_reset_vector, sizeof (ushort_t *));
1245 }
1246 
1247 void
1248 mp_cpu_faulted_enter(struct cpu *cp)
1249 {
1250 	cmi_faulted_enter(cp);
1251 }
1252 
1253 void
1254 mp_cpu_faulted_exit(struct cpu *cp)
1255 {
1256 	cmi_faulted_exit(cp);
1257 }
1258 
1259 /*
1260  * The following two routines are used as context operators on threads belonging
1261  * to processes with a private LDT (see sysi86).  Due to the rarity of such
1262  * processes, these routines are currently written for best code readability and
1263  * organization rather than speed.  We could avoid checking x86_feature at every
1264  * context switch by installing different context ops, depending on the
1265  * x86_feature flags, at LDT creation time -- one for each combination of fast
1266  * syscall feature flags.
1267  */
1268 
1269 /*ARGSUSED*/
1270 void
1271 cpu_fast_syscall_disable(void *arg)
1272 {
1273 	if (x86_feature & X86_SEP)
1274 		cpu_sep_disable();
1275 	if (x86_feature & X86_ASYSC)
1276 		cpu_asysc_disable();
1277 }
1278 
1279 /*ARGSUSED*/
1280 void
1281 cpu_fast_syscall_enable(void *arg)
1282 {
1283 	if (x86_feature & X86_SEP)
1284 		cpu_sep_enable();
1285 	if (x86_feature & X86_ASYSC)
1286 		cpu_asysc_enable();
1287 }
1288 
1289 static void
1290 cpu_sep_enable(void)
1291 {
1292 	ASSERT(x86_feature & X86_SEP);
1293 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1294 
1295 	wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL);
1296 }
1297 
1298 static void
1299 cpu_sep_disable(void)
1300 {
1301 	ASSERT(x86_feature & X86_SEP);
1302 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1303 
1304 	/*
1305 	 * Setting the SYSENTER_CS_MSR register to 0 causes software executing
1306 	 * the sysenter or sysexit instruction to trigger a #gp fault.
1307 	 */
1308 	wrmsr(MSR_INTC_SEP_CS, 0ULL);
1309 }
1310 
1311 static void
1312 cpu_asysc_enable(void)
1313 {
1314 	ASSERT(x86_feature & X86_ASYSC);
1315 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1316 
1317 	wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) |
1318 	    (uint64_t)(uintptr_t)AMD_EFER_SCE);
1319 }
1320 
1321 static void
1322 cpu_asysc_disable(void)
1323 {
1324 	ASSERT(x86_feature & X86_ASYSC);
1325 	ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
1326 
1327 	/*
1328 	 * Turn off the SCE (syscall enable) bit in the EFER register. Software
1329 	 * executing syscall or sysret with this bit off will incur a #ud trap.
1330 	 */
1331 	wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) &
1332 	    ~((uint64_t)(uintptr_t)AMD_EFER_SCE));
1333 }
1334