/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct cpu cpus[1]; /* CPU data */ struct cpu *cpu[NCPU] = {&cpus[0]}; /* pointers to all CPUs */ cpu_core_t cpu_core[NCPU]; /* cpu_core structures */ /* * Useful for disabling MP bring-up for an MP capable kernel * (a kernel that was built with MP defined) */ int use_mp = 1; int mp_cpus = 0x1; /* to be set by platform specific module */ /* * This variable is used by the hat layer to decide whether or not * critical sections are needed to prevent race conditions. For sun4m, * this variable is set once enough MP initialization has been done in * order to allow cross calls. */ int flushes_require_xcalls = 0; ulong_t cpu_ready_set = 1; extern void real_mode_start(void); extern void real_mode_end(void); static void mp_startup(void); static void cpu_sep_enable(void); static void cpu_sep_disable(void); static void cpu_asysc_enable(void); static void cpu_asysc_disable(void); extern int tsc_gethrtime_enable; /* * Init CPU info - get CPU type info for processor_info system call. */ void init_cpu_info(struct cpu *cp) { processor_info_t *pi = &cp->cpu_type_info; char buf[CPU_IDSTRLEN]; /* * Get clock-frequency property for the CPU. */ pi->pi_clock = cpu_freq; (void) strcpy(pi->pi_processor_type, "i386"); if (fpu_exists) (void) strcpy(pi->pi_fputypes, "i387 compatible"); (void) cpuid_getidstr(cp, buf, sizeof (buf)); cp->cpu_idstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP); (void) strcpy(cp->cpu_idstr, buf); cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr); (void) cpuid_getbrandstr(cp, buf, sizeof (buf)); cp->cpu_brandstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP); (void) strcpy(cp->cpu_brandstr, buf); cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr); } /* * Configure syscall support on this CPU. */ /*ARGSUSED*/ static void init_cpu_syscall(struct cpu *cp) { kpreempt_disable(); #if defined(__amd64) if (x86_feature & X86_ASYSC) { #if !defined(__lint) /* * The syscall instruction imposes a certain ordering on * segment selectors, so we double-check that ordering * here. */ ASSERT(KDS_SEL == KCS_SEL + 8); ASSERT(UDS_SEL == U32CS_SEL + 8); ASSERT(UCS_SEL == U32CS_SEL + 16); #endif /* * Turn syscall/sysret extensions on. */ cpu_asysc_enable(); /* * Program the magic registers .. */ wrmsr(MSR_AMD_STAR, ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32); wrmsr(MSR_AMD_LSTAR, (uint64_t)(uintptr_t)sys_syscall); wrmsr(MSR_AMD_CSTAR, (uint64_t)(uintptr_t)sys_syscall32); /* * This list of flags is masked off the incoming * %rfl when we enter the kernel. */ wrmsr(MSR_AMD_SFMASK, (uint64_t)(uintptr_t)(PS_IE | PS_T)); } #endif /* * On 32-bit kernels, we use sysenter/sysexit because it's too * hard to use syscall/sysret, and it is more portable anyway. * * On 64-bit kernels on Nocona machines, the 32-bit syscall * variant isn't available to 32-bit applications, but sysenter is. */ if (x86_feature & X86_SEP) { #if !defined(__lint) /* * The sysenter instruction imposes a certain ordering on * segment selectors, so we double-check that ordering * here. See "sysenter" in Intel document 245471-012, "IA-32 * Intel Architecture Software Developer's Manual Volume 2: * Instruction Set Reference" */ ASSERT(KDS_SEL == KCS_SEL + 8); ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3)); ASSERT32(UDS_SEL == UCS_SEL + 8); ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3)); ASSERT64(UDS_SEL == U32CS_SEL + 8); #endif cpu_sep_enable(); /* * resume() sets this value to the base of the threads stack * via a context handler. */ wrmsr(MSR_INTC_SEP_ESP, 0ULL); wrmsr(MSR_INTC_SEP_EIP, (uint64_t)(uintptr_t)sys_sysenter); } kpreempt_enable(); } /* * Multiprocessor initialization. * * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the * startup and idle threads for the specified CPU. */ static void mp_startup_init(int cpun) { #if defined(__amd64) extern void *long_mode_64(void); #endif /* __amd64 */ struct cpu *cp; struct tss *ntss; kthread_id_t tp; caddr_t sp; int size; proc_t *procp; extern void idle(); struct cpu_tables *tablesp; rm_platter_t *real_mode_platter = (rm_platter_t *)rm_platter_va; #ifdef TRAPTRACE trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun]; #endif ASSERT(cpun < NCPU && cpu[cpun] == NULL); if ((cp = kmem_zalloc(sizeof (*cp), KM_NOSLEEP)) == NULL) { panic("mp_startup_init: cpu%d: " "no memory for cpu structure", cpun); /*NOTREACHED*/ } procp = curthread->t_procp; mutex_enter(&cpu_lock); /* * Initialize the dispatcher first. */ disp_cpu_init(cp); mutex_exit(&cpu_lock); cpu_vm_data_init(cp); /* * Allocate and initialize the startup thread for this CPU. * Interrupt and process switch stacks get allocated later * when the CPU starts running. */ tp = thread_create(NULL, 0, NULL, NULL, 0, procp, TS_STOPPED, maxclsyspri); /* * Set state to TS_ONPROC since this thread will start running * as soon as the CPU comes online. * * All the other fields of the thread structure are setup by * thread_create(). */ THREAD_ONPROC(tp, cp); tp->t_preempt = 1; tp->t_bound_cpu = cp; tp->t_affinitycnt = 1; tp->t_cpu = cp; tp->t_disp_queue = cp->cpu_disp; /* * Setup thread to start in mp_startup. */ sp = tp->t_stk; tp->t_pc = (uintptr_t)mp_startup; tp->t_sp = (uintptr_t)(sp - MINFRAME); cp->cpu_id = cpun; cp->cpu_self = cp; cp->cpu_mask = 1 << cpun; cp->cpu_thread = tp; cp->cpu_lwp = NULL; cp->cpu_dispthread = tp; cp->cpu_dispatch_pri = DISP_PRIO(tp); /* * Now, initialize per-CPU idle thread for this CPU. */ tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1); cp->cpu_idle_thread = tp; tp->t_preempt = 1; tp->t_bound_cpu = cp; tp->t_affinitycnt = 1; tp->t_cpu = cp; tp->t_disp_queue = cp->cpu_disp; /* * Bootstrap the CPU for CMT aware scheduling * The rest of the initialization will happen from * mp_startup() */ chip_bootstrap_cpu(cp); /* * Perform CPC intialization on the new CPU. */ kcpc_hw_init(cp); /* * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2 * for each CPU. */ setup_vaddr_for_ppcopy(cp); /* * Allocate space for page directory, stack, tss, gdt and idt. * This assumes that kmem_alloc will return memory which is aligned * to the next higher power of 2 or a page(if size > MAXABIG) * If this assumption goes wrong at any time due to change in * kmem alloc, things may not work as the page directory has to be * page aligned */ if ((tablesp = kmem_zalloc(sizeof (*tablesp), KM_NOSLEEP)) == NULL) panic("mp_startup_init: cpu%d cannot allocate tables", cpun); if ((uintptr_t)tablesp & ~MMU_STD_PAGEMASK) { kmem_free(tablesp, sizeof (struct cpu_tables)); size = sizeof (struct cpu_tables) + MMU_STD_PAGESIZE; tablesp = kmem_zalloc(size, KM_NOSLEEP); tablesp = (struct cpu_tables *) (((uintptr_t)tablesp + MMU_STD_PAGESIZE) & MMU_STD_PAGEMASK); } ntss = cp->cpu_tss = &tablesp->ct_tss; cp->cpu_gdt = tablesp->ct_gdt; bcopy(CPU->cpu_gdt, cp->cpu_gdt, NGDT * (sizeof (user_desc_t))); #if defined(__amd64) /* * #DF (double fault). */ ntss->tss_ist1 = (uint64_t)&tablesp->ct_stack[sizeof (tablesp->ct_stack)]; #elif defined(__i386) ntss->tss_esp0 = ntss->tss_esp1 = ntss->tss_esp2 = ntss->tss_esp = (uint32_t)&tablesp->ct_stack[sizeof (tablesp->ct_stack)]; ntss->tss_ss0 = ntss->tss_ss1 = ntss->tss_ss2 = ntss->tss_ss = KDS_SEL; ntss->tss_eip = (uint32_t)mp_startup; ntss->tss_cs = KCS_SEL; ntss->tss_fs = KFS_SEL; ntss->tss_gs = KGS_SEL; /* * setup kernel %gs. */ set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA, SEL_KPL, 0, 1); #endif /* __i386 */ /* * Set I/O bit map offset equal to size of TSS segment limit * for no I/O permission map. This will cause all user I/O * instructions to generate #gp fault. */ ntss->tss_bitmapbase = sizeof (*ntss); /* * setup kernel tss. */ set_syssegd((system_desc_t *)&cp->cpu_gdt[GDT_KTSS], cp->cpu_tss, sizeof (*cp->cpu_tss) -1, SDT_SYSTSS, SEL_KPL); /* * If we have more than one node, each cpu gets a copy of IDT * local to its node. If this is a Pentium box, we use cpu 0's * IDT. cpu 0's IDT has been made read-only to workaround the * cmpxchgl register bug */ cp->cpu_idt = CPU->cpu_idt; if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) { cp->cpu_idt = kmem_alloc(sizeof (idt0), KM_SLEEP); bcopy(idt0, cp->cpu_idt, sizeof (idt0)); } /* * Get interrupt priority data from cpu 0 */ cp->cpu_pri_data = CPU->cpu_pri_data; hat_cpu_online(cp); /* Should remove all entries for the current process/thread here */ /* * Fill up the real mode platter to make it easy for real mode code to * kick it off. This area should really be one passed by boot to kernel * and guaranteed to be below 1MB and aligned to 16 bytes. Should also * have identical physical and virtual address in paged mode. */ real_mode_platter->rm_idt_base = cp->cpu_idt; real_mode_platter->rm_idt_lim = sizeof (idt0) - 1; real_mode_platter->rm_gdt_base = cp->cpu_gdt; real_mode_platter->rm_gdt_lim = sizeof (gdt0) -1; real_mode_platter->rm_pdbr = getcr3(); real_mode_platter->rm_cpu = cpun; real_mode_platter->rm_x86feature = x86_feature; real_mode_platter->rm_cr4 = cr4_value; #if defined(__amd64) if (getcr3() > 0xffffffffUL) panic("Cannot initialize CPUs; kernel's 64-bit page tables\n" "located above 4G in physical memory (@ 0x%llx).", (unsigned long long)getcr3()); /* * Setup pseudo-descriptors for temporary GDT and IDT for use ONLY * by code in real_mode_start(): * * GDT[0]: NULL selector * GDT[1]: 64-bit CS: Long = 1, Present = 1, bits 12, 11 = 1 * * Clear the IDT as interrupts will be off and a limit of 0 will cause * the CPU to triple fault and reset on an NMI, seemingly as reasonable * a course of action as any other, though it may cause the entire * platform to reset in some cases... */ real_mode_platter->rm_temp_gdt[0] = 0ULL; real_mode_platter->rm_temp_gdt[TEMPGDT_KCODE64] = 0x20980000000000ULL; real_mode_platter->rm_temp_gdt_lim = (ushort_t) (sizeof (real_mode_platter->rm_temp_gdt) - 1); real_mode_platter->rm_temp_gdt_base = rm_platter_pa + (uint32_t)(&((rm_platter_t *)0)->rm_temp_gdt); real_mode_platter->rm_temp_idt_lim = 0; real_mode_platter->rm_temp_idt_base = 0; /* * Since the CPU needs to jump to protected mode using an identity * mapped address, we need to calculate it here. */ real_mode_platter->rm_longmode64_addr = rm_platter_pa + ((uint32_t)long_mode_64 - (uint32_t)real_mode_start); #endif /* __amd64 */ #ifdef TRAPTRACE /* * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers for this * CPU. */ ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP); ttc->ttc_next = ttc->ttc_first; ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize; #endif /* * Record that we have another CPU. */ mutex_enter(&cpu_lock); /* * Initialize the interrupt threads for this CPU */ cpu_intr_alloc(cp, NINTR_THREADS); /* * Add CPU to list of available CPUs. It'll be on the active list * after mp_startup(). */ cpu_add_unit(cp); mutex_exit(&cpu_lock); } /* * Apply workarounds for known errata, and warn about those that are absent. * * System vendors occasionally create configurations which contain different * revisions of the CPUs that are almost but not exactly the same. At the * time of writing, this meant that their clock rates were the same, their * feature sets were the same, but the required workaround were -not- * necessarily the same. So, this routine is invoked on -every- CPU soon * after starting to make sure that the resulting system contains the most * pessimal set of workarounds needed to cope with *any* of the CPUs in the * system. * * workaround_errata is invoked early in mlsetup() for CPU 0, and in * mp_startup() for all slave CPUs. Slaves process workaround_errata prior * to acknowledging their readiness to the master, so this routine will * never be executed by multiple CPUs in parallel, thus making updates to * global data safe. * * These workarounds are based on Rev 3.57 of the Revision Guide for * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005. */ #if defined(OPTERON_ERRATUM_91) int opteron_erratum_91; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_ERRATUM_93) int opteron_erratum_93; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_ERRATUM_100) int opteron_erratum_100; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_ERRATUM_109) int opteron_erratum_109; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_ERRATUM_121) int opteron_erratum_121; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_ERRATUM_122) int opteron_erratum_122; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_ERRATUM_123) int opteron_erratum_123; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_ERRATUM_131) int opteron_erratum_131; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_WORKAROUND_6336786) int opteron_workaround_6336786; /* non-zero -> WA relevant and applied */ int opteron_workaround_6336786_UP = 0; /* Not needed for UP */ #endif #define WARNING(cpu, n) \ cmn_err(CE_WARN, "cpu%d: no workaround for erratum %d", \ (cpu)->cpu_id, (n)) uint_t workaround_errata(struct cpu *cpu) { uint_t missing = 0; ASSERT(cpu == CPU); /*LINTED*/ if (cpuid_opteron_erratum(cpu, 88) > 0) { /* * SWAPGS May Fail To Read Correct GS Base */ #if defined(OPTERON_ERRATUM_88) /* * The workaround is an mfence in the relevant assembler code */ #else WARNING(cpu, 88); missing++; #endif } if (cpuid_opteron_erratum(cpu, 91) > 0) { /* * Software Prefetches May Report A Page Fault */ #if defined(OPTERON_ERRATUM_91) /* * fix is in trap.c */ opteron_erratum_91++; #else WARNING(cpu, 91); missing++; #endif } if (cpuid_opteron_erratum(cpu, 93) > 0) { /* * RSM Auto-Halt Restart Returns to Incorrect RIP */ #if defined(OPTERON_ERRATUM_93) /* * fix is in trap.c */ opteron_erratum_93++; #else WARNING(cpu, 93); missing++; #endif } /*LINTED*/ if (cpuid_opteron_erratum(cpu, 95) > 0) { /* * RET Instruction May Return to Incorrect EIP */ #if defined(OPTERON_ERRATUM_95) #if defined(_LP64) /* * Workaround this by ensuring that 32-bit user code and * 64-bit kernel code never occupy the same address * range mod 4G. */ if (_userlimit32 > 0xc0000000ul) *(uintptr_t *)&_userlimit32 = 0xc0000000ul; /*LINTED*/ ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u); #endif /* _LP64 */ #else WARNING(cpu, 95); missing++; #endif /* OPTERON_ERRATUM_95 */ } if (cpuid_opteron_erratum(cpu, 100) > 0) { /* * Compatibility Mode Branches Transfer to Illegal Address */ #if defined(OPTERON_ERRATUM_100) /* * fix is in trap.c */ opteron_erratum_100++; #else WARNING(cpu, 100); missing++; #endif } /*LINTED*/ if (cpuid_opteron_erratum(cpu, 108) > 0) { /* * CPUID Instruction May Return Incorrect Model Number In * Some Processors */ #if defined(OPTERON_ERRATUM_108) /* * (Our cpuid-handling code corrects the model number on * those processors) */ #else WARNING(cpu, 108); missing++; #endif } /*LINTED*/ if (cpuid_opteron_erratum(cpu, 109) > 0) { /* * Certain Reverse REP MOVS May Produce Unpredictable Behaviour */ #if defined(OPTERON_ERRATUM_109) /* workaround is to print a warning to upgrade BIOS */ if (rdmsr(MSR_AMD_PATCHLEVEL) == 0) opteron_erratum_109++; #else WARNING(cpu, 109); missing++; #endif } /*LINTED*/ if (cpuid_opteron_erratum(cpu, 121) > 0) { /* * Sequential Execution Across Non_Canonical Boundary Caused * Processor Hang */ #if defined(OPTERON_ERRATUM_121) static int lma; if (opteron_erratum_121) opteron_erratum_121++; /* * Erratum 121 is only present in long (64 bit) mode. * Workaround is to include the page immediately before the * va hole to eliminate the possibility of system hangs due to * sequential execution across the va hole boundary. */ if (lma == 0) { /* * check LMA once: assume all cpus are in long mode * or not. */ lma = 1; if (rdmsr(MSR_AMD_EFER) & AMD_EFER_LMA) { if (hole_start) { hole_start -= PAGESIZE; } else { /* * hole_start not yet initialized by * mmu_init. Initialize hole_start * with value to be subtracted. */ hole_start = PAGESIZE; } opteron_erratum_121++; } } #else WARNING(cpu, 121); missing++; #endif } /*LINTED*/ if (cpuid_opteron_erratum(cpu, 122) > 0) { /* * TLB Flush Filter May Cause Cohenrency Problem in * Multiprocessor Systems */ #if defined(OPTERON_ERRATUM_122) /* * Erratum 122 is only present in MP configurations (multi-core * or multi-processor). */ if (opteron_erratum_122 || lgrp_plat_node_cnt > 1 || cpuid_get_ncpu_per_chip(cpu) > 1) { /* disable TLB Flush Filter */ wrmsr(MSR_AMD_HWCR, rdmsr(MSR_AMD_HWCR) | (uint64_t)(uintptr_t)AMD_HWCR_FFDIS); opteron_erratum_122++; } #else WARNING(cpu, 122); missing++; #endif } #if defined(OPTERON_ERRATUM_123) /*LINTED*/ if (cpuid_opteron_erratum(cpu, 123) > 0) { /* * Bypassed Reads May Cause Data Corruption of System Hang in * Dual Core Processors */ /* * Erratum 123 applies only to multi-core cpus. */ if (cpuid_get_ncpu_per_chip(cpu) > 1) { /* workaround is to print a warning to upgrade BIOS */ if (rdmsr(MSR_AMD_PATCHLEVEL) == 0) opteron_erratum_123++; } } #endif #if defined(OPTERON_ERRATUM_131) /*LINTED*/ if (cpuid_opteron_erratum(cpu, 131) > 0) { /* * Multiprocessor Systems with Four or More Cores May Deadlock * Waiting for a Probe Response */ /* * Erratum 131 applies to any system with four or more cores. */ if ((opteron_erratum_131 == 0) && ((lgrp_plat_node_cnt * cpuid_get_ncpu_per_chip(cpu)) >= 4)) { /* * Workaround is to print a warning to upgrade * the BIOS */ if (!(rdmsr(MSR_AMD_NB_CFG) & AMD_NB_CFG_SRQ_HEARTBEAT)) opteron_erratum_131++; } } #endif #if defined(OPTERON_WORKAROUND_6336786) /* * This isn't really erratum, but for convenience the * detection/workaround code lives here and in cpuid_opteron_erratum. */ if (cpuid_opteron_erratum(cpu, 6336786) > 0) { int node; uint8_t data; /* * Disable C1-Clock ramping on multi-core/multi-processor * K8 platforms to guard against TSC drift. */ if (opteron_workaround_6336786) { opteron_workaround_6336786++; } else if ((lgrp_plat_node_cnt * cpuid_get_ncpu_per_chip(cpu) >= 2) || opteron_workaround_6336786_UP) { for (node = 0; node < lgrp_plat_node_cnt; node++) { /* * Clear PMM7[1:0] (function 3, offset 0x87) * Northbridge device is the node id + 24. */ data = pci_getb_func(0, node + 24, 3, 0x87); data &= 0xFC; pci_putb_func(0, node + 24, 3, 0x87, data); } opteron_workaround_6336786++; } } #endif return (missing); } void workaround_errata_end() { #if defined(OPTERON_ERRATUM_109) if (opteron_erratum_109) { cmn_err(CE_WARN, "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" " processor\nerratum 109 was not detected; updating your" " system's BIOS to a version\ncontaining this" " microcode patch is HIGHLY recommended or erroneous" " system\noperation may occur.\n"); } #endif /* OPTERON_ERRATUM_109 */ #if defined(OPTERON_ERRATUM_123) if (opteron_erratum_123) { cmn_err(CE_WARN, "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" " processor\nerratum 123 was not detected; updating your" " system's BIOS to a version\ncontaining this" " microcode patch is HIGHLY recommended or erroneous" " system\noperation may occur.\n"); } #endif /* OPTERON_ERRATUM_123 */ #if defined(OPTERON_ERRATUM_131) if (opteron_erratum_131) { cmn_err(CE_WARN, "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" " processor\nerratum 131 was not detected; updating your" " system's BIOS to a version\ncontaining this" " microcode patch is HIGHLY recommended or erroneous" " system\noperation may occur.\n"); } #endif /* OPTERON_ERRATUM_131 */ } static ushort_t *mp_map_warm_reset_vector(); static void mp_unmap_warm_reset_vector(ushort_t *warm_reset_vector); /*ARGSUSED*/ void start_other_cpus(int cprboot) { unsigned who; int cpuid = 0; int delays = 0; int started_cpu; ushort_t *warm_reset_vector = NULL; extern int procset; /* * Initialize our own cpu_info. */ init_cpu_info(CPU); /* * Initialize our syscall handlers */ init_cpu_syscall(CPU); /* * if only 1 cpu or not using MP, skip the rest of this */ if (!(mp_cpus & ~(1 << cpuid)) || use_mp == 0) { if (use_mp == 0) cmn_err(CE_CONT, "?***** Not in MP mode\n"); goto done; } /* * perform such initialization as is needed * to be able to take CPUs on- and off-line. */ cpu_pause_init(); xc_init(); /* initialize processor crosscalls */ /* * Copy the real mode code at "real_mode_start" to the * page at rm_platter_va. */ warm_reset_vector = mp_map_warm_reset_vector(); if (warm_reset_vector == NULL) goto done; bcopy((caddr_t)real_mode_start, (caddr_t)((rm_platter_t *)rm_platter_va)->rm_code, (size_t)real_mode_end - (size_t)real_mode_start); flushes_require_xcalls = 1; affinity_set(CPU_CURRENT); for (who = 0; who < NCPU; who++) { if (who == cpuid) continue; if ((mp_cpus & (1 << who)) == 0) continue; mp_startup_init(who); started_cpu = 1; (*cpu_startf)(who, rm_platter_pa); while ((procset & (1 << who)) == 0) { delay(1); if (++delays > (20 * hz)) { cmn_err(CE_WARN, "cpu%d failed to start", who); mutex_enter(&cpu_lock); cpu[who]->cpu_flags = 0; cpu_vm_data_destroy(cpu[who]); cpu_del_unit(who); mutex_exit(&cpu_lock); started_cpu = 0; break; } } if (!started_cpu) continue; if (tsc_gethrtime_enable) tsc_sync_master(who); if (dtrace_cpu_init != NULL) { /* * DTrace CPU initialization expects cpu_lock * to be held. */ mutex_enter(&cpu_lock); (*dtrace_cpu_init)(who); mutex_exit(&cpu_lock); } } affinity_clear(); for (who = 0; who < NCPU; who++) { if (who == cpuid) continue; if (!(procset & (1 << who))) continue; while (!(cpu_ready_set & (1 << who))) delay(1); } done: workaround_errata_end(); if (warm_reset_vector != NULL) mp_unmap_warm_reset_vector(warm_reset_vector); hat_unload(kas.a_hat, (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, HAT_UNLOAD); } /* * Dummy functions - no i86pc platforms support dynamic cpu allocation. */ /*ARGSUSED*/ int mp_cpu_configure(int cpuid) { return (ENOTSUP); /* not supported */ } /*ARGSUSED*/ int mp_cpu_unconfigure(int cpuid) { return (ENOTSUP); /* not supported */ } /* * Startup function for 'other' CPUs (besides boot cpu). * Resumed from cpu_startup. * * WARNING: until CPU_READY is set, mp_startup and routines called by * mp_startup should not call routines (e.g. kmem_free) that could call * hat_unload which requires CPU_READY to be set. */ void mp_startup(void) { struct cpu *cp = CPU; extern int procset; uint_t new_x86_feature; new_x86_feature = cpuid_pass1(cp); /* * We need to Sync MTRR with cpu0's MTRR. We have to do * this with interrupts disabled. */ if (x86_feature & X86_MTRR) mtrr_sync(); /* * Initialize this CPU's syscall handlers */ init_cpu_syscall(cp); /* * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the * highest level at which a routine is permitted to block on * an adaptive mutex (allows for cpu poke interrupt in case * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks * device interrupts that may end up in the hat layer issuing cross * calls before CPU_READY is set. */ (void) splx(ipltospl(LOCK_LEVEL)); /* * Do a sanity check to make sure this new CPU is a sane thing * to add to the collection of processors running this system. * * XXX Clearly this needs to get more sophisticated, if x86 * systems start to get built out of heterogenous CPUs; as is * likely to happen once the number of processors in a configuration * gets large enough. */ if ((x86_feature & new_x86_feature) != x86_feature) { cmn_err(CE_CONT, "?cpu%d: %b\n", cp->cpu_id, new_x86_feature, FMT_X86_FEATURE); cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id); } /* * We could be more sophisticated here, and just mark the CPU * as "faulted" but at this point we'll opt for the easier * answer of dieing horribly. Provided the boot cpu is ok, * the system can be recovered by booting with use_mp set to zero. */ if (workaround_errata(cp) != 0) panic("critical workaround(s) missing for cpu%d", cp->cpu_id); cpuid_pass2(cp); cpuid_pass3(cp); (void) cpuid_pass4(cp); init_cpu_info(cp); mutex_enter(&cpu_lock); procset |= 1 << cp->cpu_id; mutex_exit(&cpu_lock); if (tsc_gethrtime_enable) tsc_sync_slave(); mutex_enter(&cpu_lock); /* * It's unfortunate that chip_cpu_init() has to be called here. * It really belongs in cpu_add_unit(), but unfortunately it is * dependent on the cpuid probing, which must be done in the * context of the current CPU. Care must be taken on x86 to ensure * that mp_startup can safely block even though chip_cpu_init() and * cpu_add_active() have not yet been called. */ chip_cpu_init(cp); chip_cpu_startup(cp); cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_ENABLE | CPU_EXISTS; cpu_add_active(cp); mutex_exit(&cpu_lock); add_cpunode2devtree(cp->cpu_id, cp->cpu_m.mcpu_cpi); (void) spl0(); /* enable interrupts */ /* * Set up the CPU module for this CPU. This can't be done before * this CPU is made CPU_READY, because we may (in heterogeneous systems) * need to go load another CPU module. The act of attempting to load * a module may trigger a cross-call, which will ASSERT unless this * cpu is CPU_READY. */ cmi_init(); if (x86_feature & X86_MCA) cmi_mca_init(); if (boothowto & RB_DEBUG) kdi_dvec_cpu_init(cp); /* * Setting the bit in cpu_ready_set must be the last operation in * processor initialization; the boot CPU will continue to boot once * it sees this bit set for all active CPUs. */ CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id); /* * Because mp_startup() gets fired off after init() starts, we * can't use the '?' trick to do 'boot -v' printing - so we * always direct the 'cpu .. online' messages to the log. */ cmn_err(CE_CONT, "!cpu%d initialization complete - online\n", cp->cpu_id); /* * Now we are done with the startup thread, so free it up. */ thread_exit(); panic("mp_startup: cannot return"); /*NOTREACHED*/ } /* * Start CPU on user request. */ /* ARGSUSED */ int mp_cpu_start(struct cpu *cp) { ASSERT(MUTEX_HELD(&cpu_lock)); return (0); } /* * Stop CPU on user request. */ /* ARGSUSED */ int mp_cpu_stop(struct cpu *cp) { extern int cbe_psm_timer_mode; ASSERT(MUTEX_HELD(&cpu_lock)); /* * If TIMER_PERIODIC mode is used, CPU0 is the one running it; * can't stop it. (This is true only for machines with no TSC.) */ if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0)) return (1); return (0); } /* * Power on CPU. */ /* ARGSUSED */ int mp_cpu_poweron(struct cpu *cp) { ASSERT(MUTEX_HELD(&cpu_lock)); return (ENOTSUP); /* not supported */ } /* * Power off CPU. */ /* ARGSUSED */ int mp_cpu_poweroff(struct cpu *cp) { ASSERT(MUTEX_HELD(&cpu_lock)); return (ENOTSUP); /* not supported */ } /* * Take the specified CPU out of participation in interrupts. */ int cpu_disable_intr(struct cpu *cp) { if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS) return (EBUSY); cp->cpu_flags &= ~CPU_ENABLE; return (0); } /* * Allow the specified CPU to participate in interrupts. */ void cpu_enable_intr(struct cpu *cp) { ASSERT(MUTEX_HELD(&cpu_lock)); cp->cpu_flags |= CPU_ENABLE; psm_enable_intr(cp->cpu_id); } static ushort_t * mp_map_warm_reset_vector() { ushort_t *warm_reset_vector; if (!(warm_reset_vector = (ushort_t *)psm_map_phys(WARM_RESET_VECTOR, sizeof (ushort_t *), PROT_READ|PROT_WRITE))) return (NULL); /* * setup secondary cpu bios boot up vector */ *warm_reset_vector = (ushort_t)((caddr_t) ((struct rm_platter *)rm_platter_va)->rm_code - rm_platter_va + ((ulong_t)rm_platter_va & 0xf)); warm_reset_vector++; *warm_reset_vector = (ushort_t)(rm_platter_pa >> 4); --warm_reset_vector; return (warm_reset_vector); } static void mp_unmap_warm_reset_vector(ushort_t *warm_reset_vector) { psm_unmap_phys((caddr_t)warm_reset_vector, sizeof (ushort_t *)); } void mp_cpu_faulted_enter(struct cpu *cp) { cmi_faulted_enter(cp); } void mp_cpu_faulted_exit(struct cpu *cp) { cmi_faulted_exit(cp); } /* * The following two routines are used as context operators on threads belonging * to processes with a private LDT (see sysi86). Due to the rarity of such * processes, these routines are currently written for best code readability and * organization rather than speed. We could avoid checking x86_feature at every * context switch by installing different context ops, depending on the * x86_feature flags, at LDT creation time -- one for each combination of fast * syscall feature flags. */ /*ARGSUSED*/ void cpu_fast_syscall_disable(void *arg) { if (x86_feature & X86_SEP) cpu_sep_disable(); if (x86_feature & X86_ASYSC) cpu_asysc_disable(); } /*ARGSUSED*/ void cpu_fast_syscall_enable(void *arg) { if (x86_feature & X86_SEP) cpu_sep_enable(); if (x86_feature & X86_ASYSC) cpu_asysc_enable(); } static void cpu_sep_enable(void) { ASSERT(x86_feature & X86_SEP); ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL); } static void cpu_sep_disable(void) { ASSERT(x86_feature & X86_SEP); ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); /* * Setting the SYSENTER_CS_MSR register to 0 causes software executing * the sysenter or sysexit instruction to trigger a #gp fault. */ wrmsr(MSR_INTC_SEP_CS, 0ULL); } static void cpu_asysc_enable(void) { ASSERT(x86_feature & X86_ASYSC); ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) | (uint64_t)(uintptr_t)AMD_EFER_SCE); } static void cpu_asysc_disable(void) { ASSERT(x86_feature & X86_ASYSC); ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); /* * Turn off the SCE (syscall enable) bit in the EFER register. Software * executing syscall or sysret with this bit off will incur a #ud trap. */ wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) & ~((uint64_t)(uintptr_t)AMD_EFER_SCE)); }