1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/types.h> 26 #include <sys/stream.h> 27 #include <sys/strsun.h> 28 #include <sys/strsubr.h> 29 #include <sys/debug.h> 30 #include <sys/sdt.h> 31 #include <sys/cmn_err.h> 32 #include <sys/tihdr.h> 33 34 #include <inet/common.h> 35 #include <inet/optcom.h> 36 #include <inet/ip.h> 37 #include <inet/ip_if.h> 38 #include <inet/ip_impl.h> 39 #include <inet/tcp.h> 40 #include <inet/tcp_impl.h> 41 #include <inet/ipsec_impl.h> 42 #include <inet/ipclassifier.h> 43 #include <inet/ipp_common.h> 44 #include <inet/ip_if.h> 45 46 /* 47 * This file implements TCP fusion - a protocol-less data path for TCP 48 * loopback connections. The fusion of two local TCP endpoints occurs 49 * at connection establishment time. Various conditions (see details 50 * in tcp_fuse()) need to be met for fusion to be successful. If it 51 * fails, we fall back to the regular TCP data path; if it succeeds, 52 * both endpoints proceed to use tcp_fuse_output() as the transmit path. 53 * tcp_fuse_output() enqueues application data directly onto the peer's 54 * receive queue; no protocol processing is involved. 55 * 56 * Sychronization is handled by squeue and the mutex tcp_non_sq_lock. 57 * One of the requirements for fusion to succeed is that both endpoints 58 * need to be using the same squeue. This ensures that neither side 59 * can disappear while the other side is still sending data. Flow 60 * control information is manipulated outside the squeue, so the 61 * tcp_non_sq_lock must be held when touching tcp_flow_stopped. 62 */ 63 64 /* 65 * Setting this to false means we disable fusion altogether and 66 * loopback connections would go through the protocol paths. 67 */ 68 boolean_t do_tcp_fusion = B_TRUE; 69 70 /* 71 * This routine gets called by the eager tcp upon changing state from 72 * SYN_RCVD to ESTABLISHED. It fuses a direct path between itself 73 * and the active connect tcp such that the regular tcp processings 74 * may be bypassed under allowable circumstances. Because the fusion 75 * requires both endpoints to be in the same squeue, it does not work 76 * for simultaneous active connects because there is no easy way to 77 * switch from one squeue to another once the connection is created. 78 * This is different from the eager tcp case where we assign it the 79 * same squeue as the one given to the active connect tcp during open. 80 */ 81 void 82 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcpha_t *tcpha) 83 { 84 conn_t *peer_connp, *connp = tcp->tcp_connp; 85 tcp_t *peer_tcp; 86 tcp_stack_t *tcps = tcp->tcp_tcps; 87 netstack_t *ns; 88 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 89 90 ASSERT(!tcp->tcp_fused); 91 ASSERT(tcp->tcp_loopback); 92 ASSERT(tcp->tcp_loopback_peer == NULL); 93 /* 94 * We need to inherit conn_rcvbuf of the listener tcp, 95 * but we can't really use tcp_listener since we get here after 96 * sending up T_CONN_IND and tcp_tli_accept() may be called 97 * independently, at which point tcp_listener is cleared; 98 * this is why we use tcp_saved_listener. The listener itself 99 * is guaranteed to be around until tcp_accept_finish() is called 100 * on this eager -- this won't happen until we're done since we're 101 * inside the eager's perimeter now. 102 */ 103 ASSERT(tcp->tcp_saved_listener != NULL); 104 /* 105 * Lookup peer endpoint; search for the remote endpoint having 106 * the reversed address-port quadruplet in ESTABLISHED state, 107 * which is guaranteed to be unique in the system. Zone check 108 * is applied accordingly for loopback address, but not for 109 * local address since we want fusion to happen across Zones. 110 */ 111 if (connp->conn_ipversion == IPV4_VERSION) { 112 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp, 113 (ipha_t *)iphdr, tcpha, ipst); 114 } else { 115 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp, 116 (ip6_t *)iphdr, tcpha, ipst); 117 } 118 119 /* 120 * We can only proceed if peer exists, resides in the same squeue 121 * as our conn and is not raw-socket. We also restrict fusion to 122 * endpoints of the same type (STREAMS or non-STREAMS). The squeue 123 * assignment of this eager tcp was done earlier at the time of SYN 124 * processing in ip_fanout_tcp{_v6}. Note that similar squeues by 125 * itself doesn't guarantee a safe condition to fuse, hence we perform 126 * additional tests below. 127 */ 128 ASSERT(peer_connp == NULL || peer_connp != connp); 129 if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp || 130 !IPCL_IS_TCP(peer_connp) || 131 IPCL_IS_NONSTR(connp) != IPCL_IS_NONSTR(peer_connp)) { 132 if (peer_connp != NULL) { 133 TCP_STAT(tcps, tcp_fusion_unqualified); 134 CONN_DEC_REF(peer_connp); 135 } 136 return; 137 } 138 peer_tcp = peer_connp->conn_tcp; /* active connect tcp */ 139 140 ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused); 141 ASSERT(peer_tcp->tcp_loopback_peer == NULL); 142 ASSERT(peer_connp->conn_sqp == connp->conn_sqp); 143 144 /* 145 * Due to IRE changes the peer and us might not agree on tcp_loopback. 146 * We bail in that case. 147 */ 148 if (!peer_tcp->tcp_loopback) { 149 TCP_STAT(tcps, tcp_fusion_unqualified); 150 CONN_DEC_REF(peer_connp); 151 return; 152 } 153 /* 154 * Fuse the endpoints; we perform further checks against both 155 * tcp endpoints to ensure that a fusion is allowed to happen. 156 * In particular we bail out if kernel SSL exists. 157 */ 158 ns = tcps->tcps_netstack; 159 ipst = ns->netstack_ip; 160 161 if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable && 162 (tcp->tcp_kssl_ent == NULL) && (tcp->tcp_xmit_head == NULL) && 163 (peer_tcp->tcp_xmit_head == NULL)) { 164 mblk_t *mp; 165 queue_t *peer_rq = peer_connp->conn_rq; 166 167 ASSERT(!TCP_IS_DETACHED(peer_tcp)); 168 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 169 ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL); 170 ASSERT(tcp->tcp_kssl_ctx == NULL); 171 172 /* 173 * We need to drain data on both endpoints during unfuse. 174 * If we need to send up SIGURG at the time of draining, 175 * we want to be sure that an mblk is readily available. 176 * This is why we pre-allocate the M_PCSIG mblks for both 177 * endpoints which will only be used during/after unfuse. 178 * The mblk might already exist if we are doing a re-fuse. 179 */ 180 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 181 ASSERT(!IPCL_IS_NONSTR(peer_tcp->tcp_connp)); 182 183 if (tcp->tcp_fused_sigurg_mp == NULL) { 184 if ((mp = allocb(1, BPRI_HI)) == NULL) 185 goto failed; 186 tcp->tcp_fused_sigurg_mp = mp; 187 } 188 189 if (peer_tcp->tcp_fused_sigurg_mp == NULL) { 190 if ((mp = allocb(1, BPRI_HI)) == NULL) 191 goto failed; 192 peer_tcp->tcp_fused_sigurg_mp = mp; 193 } 194 195 if ((mp = allocb(sizeof (struct stroptions), 196 BPRI_HI)) == NULL) 197 goto failed; 198 } 199 200 /* Fuse both endpoints */ 201 peer_tcp->tcp_loopback_peer = tcp; 202 tcp->tcp_loopback_peer = peer_tcp; 203 peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE; 204 205 /* 206 * We never use regular tcp paths in fusion and should 207 * therefore clear tcp_unsent on both endpoints. Having 208 * them set to non-zero values means asking for trouble 209 * especially after unfuse, where we may end up sending 210 * through regular tcp paths which expect xmit_list and 211 * friends to be correctly setup. 212 */ 213 peer_tcp->tcp_unsent = tcp->tcp_unsent = 0; 214 215 tcp_timers_stop(tcp); 216 tcp_timers_stop(peer_tcp); 217 218 /* 219 * Set receive buffer and max packet size for the 220 * active open tcp. 221 * eager's values will be set in tcp_accept_finish. 222 */ 223 (void) tcp_rwnd_set(peer_tcp, peer_tcp->tcp_connp->conn_rcvbuf); 224 225 /* 226 * Set the write offset value to zero since we won't 227 * be needing any room for TCP/IP headers. 228 */ 229 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) { 230 struct stroptions *stropt; 231 232 DB_TYPE(mp) = M_SETOPTS; 233 mp->b_wptr += sizeof (*stropt); 234 235 stropt = (struct stroptions *)mp->b_rptr; 236 stropt->so_flags = SO_WROFF | SO_MAXBLK; 237 stropt->so_wroff = 0; 238 stropt->so_maxblk = INFPSZ; 239 240 /* Send the options up */ 241 putnext(peer_rq, mp); 242 } else { 243 struct sock_proto_props sopp; 244 245 /* The peer is a non-STREAMS end point */ 246 ASSERT(IPCL_IS_TCP(peer_connp)); 247 248 sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_MAXBLK; 249 sopp.sopp_wroff = 0; 250 sopp.sopp_maxblk = INFPSZ; 251 (*peer_connp->conn_upcalls->su_set_proto_props) 252 (peer_connp->conn_upper_handle, &sopp); 253 } 254 } else { 255 TCP_STAT(tcps, tcp_fusion_unqualified); 256 } 257 CONN_DEC_REF(peer_connp); 258 return; 259 260 failed: 261 if (tcp->tcp_fused_sigurg_mp != NULL) { 262 freeb(tcp->tcp_fused_sigurg_mp); 263 tcp->tcp_fused_sigurg_mp = NULL; 264 } 265 if (peer_tcp->tcp_fused_sigurg_mp != NULL) { 266 freeb(peer_tcp->tcp_fused_sigurg_mp); 267 peer_tcp->tcp_fused_sigurg_mp = NULL; 268 } 269 CONN_DEC_REF(peer_connp); 270 } 271 272 /* 273 * Unfuse a previously-fused pair of tcp loopback endpoints. 274 */ 275 void 276 tcp_unfuse(tcp_t *tcp) 277 { 278 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 279 tcp_stack_t *tcps = tcp->tcp_tcps; 280 281 ASSERT(tcp->tcp_fused && peer_tcp != NULL); 282 ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp); 283 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 284 ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0); 285 286 /* 287 * Cancel any pending push timers. 288 */ 289 if (tcp->tcp_push_tid != 0) { 290 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 291 tcp->tcp_push_tid = 0; 292 } 293 if (peer_tcp->tcp_push_tid != 0) { 294 (void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid); 295 peer_tcp->tcp_push_tid = 0; 296 } 297 298 /* 299 * Drain any pending data; Note that in case of a detached tcp, the 300 * draining will happen later after the tcp is unfused. For non- 301 * urgent data, this can be handled by the regular tcp_rcv_drain(). 302 * If we have urgent data sitting in the receive list, we will 303 * need to send up a SIGURG signal first before draining the data. 304 * All of these will be handled by the code in tcp_fuse_rcv_drain() 305 * when called from tcp_rcv_drain(). 306 */ 307 if (!TCP_IS_DETACHED(tcp)) { 308 (void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, 309 &tcp->tcp_fused_sigurg_mp); 310 } 311 if (!TCP_IS_DETACHED(peer_tcp)) { 312 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_connp->conn_rq, 313 peer_tcp, &peer_tcp->tcp_fused_sigurg_mp); 314 } 315 316 /* Lift up any flow-control conditions */ 317 mutex_enter(&tcp->tcp_non_sq_lock); 318 if (tcp->tcp_flow_stopped) { 319 tcp_clrqfull(tcp); 320 TCP_STAT(tcps, tcp_fusion_backenabled); 321 } 322 mutex_exit(&tcp->tcp_non_sq_lock); 323 324 mutex_enter(&peer_tcp->tcp_non_sq_lock); 325 if (peer_tcp->tcp_flow_stopped) { 326 tcp_clrqfull(peer_tcp); 327 TCP_STAT(tcps, tcp_fusion_backenabled); 328 } 329 mutex_exit(&peer_tcp->tcp_non_sq_lock); 330 331 /* 332 * Update tha_seq and tha_ack in the header template 333 */ 334 tcp->tcp_tcpha->tha_seq = htonl(tcp->tcp_snxt); 335 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 336 peer_tcp->tcp_tcpha->tha_seq = htonl(peer_tcp->tcp_snxt); 337 peer_tcp->tcp_tcpha->tha_ack = htonl(peer_tcp->tcp_rnxt); 338 339 /* Unfuse the endpoints */ 340 peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE; 341 peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL; 342 } 343 344 /* 345 * Fusion output routine used to handle urgent data sent by STREAMS based 346 * endpoints. This routine is called by tcp_fuse_output() for handling 347 * non-M_DATA mblks. 348 */ 349 void 350 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp) 351 { 352 mblk_t *mp1; 353 struct T_exdata_ind *tei; 354 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 355 mblk_t *head, *prev_head = NULL; 356 tcp_stack_t *tcps = tcp->tcp_tcps; 357 358 ASSERT(tcp->tcp_fused); 359 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 360 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 361 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 362 ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA); 363 ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0); 364 365 /* 366 * Urgent data arrives in the form of T_EXDATA_REQ from above. 367 * Each occurence denotes a new urgent pointer. For each new 368 * urgent pointer we signal (SIGURG) the receiving app to indicate 369 * that it needs to go into urgent mode. This is similar to the 370 * urgent data handling in the regular tcp. We don't need to keep 371 * track of where the urgent pointer is, because each T_EXDATA_REQ 372 * "advances" the urgent pointer for us. 373 * 374 * The actual urgent data carried by T_EXDATA_REQ is then prepended 375 * by a T_EXDATA_IND before being enqueued behind any existing data 376 * destined for the receiving app. There is only a single urgent 377 * pointer (out-of-band mark) for a given tcp. If the new urgent 378 * data arrives before the receiving app reads some existing urgent 379 * data, the previous marker is lost. This behavior is emulated 380 * accordingly below, by removing any existing T_EXDATA_IND messages 381 * and essentially converting old urgent data into non-urgent. 382 */ 383 ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID); 384 /* Let sender get out of urgent mode */ 385 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 386 387 /* 388 * This flag indicates that a signal needs to be sent up. 389 * This flag will only get cleared once SIGURG is delivered and 390 * is not affected by the tcp_fused flag -- delivery will still 391 * happen even after an endpoint is unfused, to handle the case 392 * where the sending endpoint immediately closes/unfuses after 393 * sending urgent data and the accept is not yet finished. 394 */ 395 peer_tcp->tcp_fused_sigurg = B_TRUE; 396 397 /* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */ 398 DB_TYPE(mp) = M_PROTO; 399 tei = (struct T_exdata_ind *)mp->b_rptr; 400 tei->PRIM_type = T_EXDATA_IND; 401 tei->MORE_flag = 0; 402 mp->b_wptr = (uchar_t *)&tei[1]; 403 404 TCP_STAT(tcps, tcp_fusion_urg); 405 TCPS_BUMP_MIB(tcps, tcpOutUrg); 406 407 head = peer_tcp->tcp_rcv_list; 408 while (head != NULL) { 409 /* 410 * Remove existing T_EXDATA_IND, keep the data which follows 411 * it and relink our list. Note that we don't modify the 412 * tcp_rcv_last_tail since it never points to T_EXDATA_IND. 413 */ 414 if (DB_TYPE(head) != M_DATA) { 415 mp1 = head; 416 417 ASSERT(DB_TYPE(mp1->b_cont) == M_DATA); 418 head = mp1->b_cont; 419 mp1->b_cont = NULL; 420 head->b_next = mp1->b_next; 421 mp1->b_next = NULL; 422 if (prev_head != NULL) 423 prev_head->b_next = head; 424 if (peer_tcp->tcp_rcv_list == mp1) 425 peer_tcp->tcp_rcv_list = head; 426 if (peer_tcp->tcp_rcv_last_head == mp1) 427 peer_tcp->tcp_rcv_last_head = head; 428 freeb(mp1); 429 } 430 prev_head = head; 431 head = head->b_next; 432 } 433 } 434 435 /* 436 * Fusion output routine, called by tcp_output() and tcp_wput_proto(). 437 * If we are modifying any member that can be changed outside the squeue, 438 * like tcp_flow_stopped, we need to take tcp_non_sq_lock. 439 */ 440 boolean_t 441 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size) 442 { 443 conn_t *connp = tcp->tcp_connp; 444 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 445 conn_t *peer_connp = peer_tcp->tcp_connp; 446 boolean_t flow_stopped, peer_data_queued = B_FALSE; 447 boolean_t urgent = (DB_TYPE(mp) != M_DATA); 448 boolean_t push = B_TRUE; 449 mblk_t *mp1 = mp; 450 uint_t ip_hdr_len; 451 uint32_t recv_size = send_size; 452 tcp_stack_t *tcps = tcp->tcp_tcps; 453 netstack_t *ns = tcps->tcps_netstack; 454 ip_stack_t *ipst = ns->netstack_ip; 455 ipsec_stack_t *ipss = ns->netstack_ipsec; 456 iaflags_t ixaflags = connp->conn_ixa->ixa_flags; 457 boolean_t do_ipsec, hooks_out, hooks_in, ipobs_enabled; 458 459 ASSERT(tcp->tcp_fused); 460 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 461 ASSERT(connp->conn_sqp == peer_connp->conn_sqp); 462 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO || 463 DB_TYPE(mp) == M_PCPROTO); 464 465 if (send_size == 0) { 466 freemsg(mp); 467 return (B_TRUE); 468 } 469 470 /* 471 * Handle urgent data; we either send up SIGURG to the peer now 472 * or do it later when we drain, in case the peer is detached 473 * or if we're short of memory for M_PCSIG mblk. 474 */ 475 if (urgent) { 476 tcp_fuse_output_urg(tcp, mp); 477 478 mp1 = mp->b_cont; 479 } 480 481 /* 482 * Check that we are still using an IRE_LOCAL or IRE_LOOPBACK before 483 * further processes. 484 */ 485 if (!ip_output_verify_local(connp->conn_ixa)) 486 goto unfuse; 487 488 /* 489 * Build IP and TCP header in case we have something that needs the 490 * headers. Those cases are: 491 * 1. IPsec 492 * 2. IPobs 493 * 3. FW_HOOKS 494 * 495 * If tcp_xmit_mp() fails to dupb() the message, unfuse the connection 496 * and back to regular path. 497 */ 498 if (ixaflags & IXAF_IS_IPV4) { 499 do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) || 500 CONN_INBOUND_POLICY_PRESENT(peer_connp, ipss); 501 502 hooks_out = HOOKS4_INTERESTED_LOOPBACK_OUT(ipst); 503 hooks_in = HOOKS4_INTERESTED_LOOPBACK_IN(ipst); 504 ipobs_enabled = (ipst->ips_ip4_observe.he_interested != 0); 505 } else { 506 do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) || 507 CONN_INBOUND_POLICY_PRESENT_V6(peer_connp, ipss); 508 509 hooks_out = HOOKS6_INTERESTED_LOOPBACK_OUT(ipst); 510 hooks_in = HOOKS6_INTERESTED_LOOPBACK_IN(ipst); 511 ipobs_enabled = (ipst->ips_ip6_observe.he_interested != 0); 512 } 513 514 /* We do logical 'or' for efficiency */ 515 if (ipobs_enabled | do_ipsec | hooks_in | hooks_out) { 516 if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL, 517 tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL) 518 /* If tcp_xmit_mp fails, use regular path */ 519 goto unfuse; 520 521 /* 522 * Leave all IP relevant processes to ip_output_process_local(), 523 * which handles IPsec, IPobs, and FW_HOOKS. 524 */ 525 mp1 = ip_output_process_local(mp1, connp->conn_ixa, hooks_out, 526 hooks_in, do_ipsec ? peer_connp : NULL); 527 528 /* If the message is dropped for any reason. */ 529 if (mp1 == NULL) 530 goto unfuse; 531 532 /* 533 * Data length might have been changed by FW_HOOKS. 534 * We assume that the first mblk contains the TCP/IP headers. 535 */ 536 if (hooks_in || hooks_out) { 537 tcpha_t *tcpha; 538 539 ip_hdr_len = (ixaflags & IXAF_IS_IPV4) ? 540 IPH_HDR_LENGTH((ipha_t *)mp1->b_rptr) : 541 ip_hdr_length_v6(mp1, (ip6_t *)mp1->b_rptr); 542 543 tcpha = (tcpha_t *)&mp1->b_rptr[ip_hdr_len]; 544 ASSERT((uchar_t *)tcpha + sizeof (tcpha_t) <= 545 mp1->b_wptr); 546 recv_size += htonl(tcpha->tha_seq) - tcp->tcp_snxt; 547 548 } 549 550 /* 551 * The message duplicated by tcp_xmit_mp is freed. 552 * Note: the original message passed in remains unchanged. 553 */ 554 freemsg(mp1); 555 } 556 557 /* 558 * Enqueue data into the peer's receive list; we may or may not 559 * drain the contents depending on the conditions below. 560 * 561 * For non-STREAMS sockets we normally queue data directly in the 562 * socket by calling the su_recv upcall. However, if the peer is 563 * detached we use tcp_rcv_enqueue() instead. Queued data will be 564 * drained when the accept completes (in tcp_accept_finish()). 565 */ 566 if (IPCL_IS_NONSTR(peer_connp) && 567 !TCP_IS_DETACHED(peer_tcp)) { 568 int error; 569 int flags = 0; 570 571 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 572 (tcp->tcp_urg == tcp->tcp_snxt)) { 573 flags = MSG_OOB; 574 (*peer_connp->conn_upcalls->su_signal_oob) 575 (peer_connp->conn_upper_handle, 0); 576 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 577 } 578 if ((*peer_connp->conn_upcalls->su_recv)( 579 peer_connp->conn_upper_handle, mp, recv_size, 580 flags, &error, &push) < 0) { 581 ASSERT(error != EOPNOTSUPP); 582 peer_data_queued = B_TRUE; 583 } 584 } else { 585 if (IPCL_IS_NONSTR(peer_connp) && 586 (tcp->tcp_valid_bits & TCP_URG_VALID) && 587 (tcp->tcp_urg == tcp->tcp_snxt)) { 588 /* 589 * Can not deal with urgent pointers 590 * that arrive before the connection has been 591 * accept()ed. 592 */ 593 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 594 freemsg(mp); 595 return (B_TRUE); 596 } 597 598 tcp_rcv_enqueue(peer_tcp, mp, recv_size, 599 tcp->tcp_connp->conn_cred); 600 601 /* In case it wrapped around and also to keep it constant */ 602 peer_tcp->tcp_rwnd += recv_size; 603 } 604 605 /* 606 * Exercise flow-control when needed; we will get back-enabled 607 * in either tcp_accept_finish(), tcp_unfuse(), or when data is 608 * consumed. If peer endpoint is detached, we emulate streams flow 609 * control by checking the peer's queue size and high water mark; 610 * otherwise we simply use canputnext() to decide if we need to stop 611 * our flow. 612 * 613 * Since we are accessing our tcp_flow_stopped and might modify it, 614 * we need to take tcp->tcp_non_sq_lock. 615 */ 616 mutex_enter(&tcp->tcp_non_sq_lock); 617 flow_stopped = tcp->tcp_flow_stopped; 618 if ((TCP_IS_DETACHED(peer_tcp) && 619 (peer_tcp->tcp_rcv_cnt >= peer_connp->conn_rcvbuf)) || 620 (!TCP_IS_DETACHED(peer_tcp) && 621 !IPCL_IS_NONSTR(peer_connp) && !canputnext(peer_connp->conn_rq))) { 622 peer_data_queued = B_TRUE; 623 } 624 625 if (!flow_stopped && (peer_data_queued || 626 (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf))) { 627 tcp_setqfull(tcp); 628 flow_stopped = B_TRUE; 629 TCP_STAT(tcps, tcp_fusion_flowctl); 630 DTRACE_PROBE3(tcp__fuse__output__flowctl, tcp_t *, tcp, 631 uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt); 632 } else if (flow_stopped && !peer_data_queued && 633 (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat)) { 634 tcp_clrqfull(tcp); 635 TCP_STAT(tcps, tcp_fusion_backenabled); 636 flow_stopped = B_FALSE; 637 } 638 mutex_exit(&tcp->tcp_non_sq_lock); 639 640 ipst->ips_loopback_packets++; 641 tcp->tcp_last_sent_len = send_size; 642 643 /* Need to adjust the following SNMP MIB-related variables */ 644 tcp->tcp_snxt += send_size; 645 tcp->tcp_suna = tcp->tcp_snxt; 646 peer_tcp->tcp_rnxt += recv_size; 647 peer_tcp->tcp_last_recv_len = recv_size; 648 peer_tcp->tcp_rack = peer_tcp->tcp_rnxt; 649 650 TCPS_BUMP_MIB(tcps, tcpOutDataSegs); 651 TCPS_UPDATE_MIB(tcps, tcpOutDataBytes, send_size); 652 653 TCPS_BUMP_MIB(tcps, tcpHCInSegs); 654 TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs); 655 TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, send_size); 656 657 BUMP_LOCAL(tcp->tcp_obsegs); 658 BUMP_LOCAL(peer_tcp->tcp_ibsegs); 659 660 DTRACE_TCP5(send, void, NULL, ip_xmit_attr_t *, connp->conn_ixa, 661 __dtrace_tcp_void_ip_t *, NULL, tcp_t *, tcp, 662 __dtrace_tcp_tcph_t *, NULL); 663 DTRACE_TCP5(receive, void, NULL, ip_xmit_attr_t *, 664 peer_connp->conn_ixa, __dtrace_tcp_void_ip_t *, NULL, 665 tcp_t *, peer_tcp, __dtrace_tcp_tcph_t *, NULL); 666 667 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) && 668 !TCP_IS_DETACHED(peer_tcp)) { 669 /* 670 * Drain the peer's receive queue it has urgent data or if 671 * we're not flow-controlled. 672 */ 673 if (urgent || !flow_stopped) { 674 ASSERT(peer_tcp->tcp_rcv_list != NULL); 675 /* 676 * For TLI-based streams, a thread in tcp_accept_swap() 677 * can race with us. That thread will ensure that the 678 * correct peer_connp->conn_rq is globally visible 679 * before peer_tcp->tcp_detached is visible as clear, 680 * but we must also ensure that the load of conn_rq 681 * cannot be reordered to be before the tcp_detached 682 * check. 683 */ 684 membar_consumer(); 685 (void) tcp_fuse_rcv_drain(peer_connp->conn_rq, peer_tcp, 686 NULL); 687 } 688 } 689 return (B_TRUE); 690 unfuse: 691 tcp_unfuse(tcp); 692 return (B_FALSE); 693 } 694 695 /* 696 * This routine gets called to deliver data upstream on a fused or 697 * previously fused tcp loopback endpoint; the latter happens only 698 * when there is a pending SIGURG signal plus urgent data that can't 699 * be sent upstream in the past. 700 */ 701 boolean_t 702 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp) 703 { 704 mblk_t *mp; 705 conn_t *connp = tcp->tcp_connp; 706 707 #ifdef DEBUG 708 uint_t cnt = 0; 709 #endif 710 tcp_stack_t *tcps = tcp->tcp_tcps; 711 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 712 713 ASSERT(tcp->tcp_loopback); 714 ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg); 715 ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL); 716 ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused); 717 718 /* No need for the push timer now, in case it was scheduled */ 719 if (tcp->tcp_push_tid != 0) { 720 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 721 tcp->tcp_push_tid = 0; 722 } 723 /* 724 * If there's urgent data sitting in receive list and we didn't 725 * get a chance to send up a SIGURG signal, make sure we send 726 * it first before draining in order to ensure that SIOCATMARK 727 * works properly. 728 */ 729 if (tcp->tcp_fused_sigurg) { 730 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 731 732 tcp->tcp_fused_sigurg = B_FALSE; 733 /* 734 * sigurg_mpp is normally NULL, i.e. when we're still 735 * fused and didn't get here because of tcp_unfuse(). 736 * In this case try hard to allocate the M_PCSIG mblk. 737 */ 738 if (sigurg_mpp == NULL && 739 (mp = allocb(1, BPRI_HI)) == NULL && 740 (mp = allocb_tryhard(1)) == NULL) { 741 /* Alloc failed; try again next time */ 742 tcp->tcp_push_tid = TCP_TIMER(tcp, 743 tcp_push_timer, tcps->tcps_push_timer_interval); 744 return (B_TRUE); 745 } else if (sigurg_mpp != NULL) { 746 /* 747 * Use the supplied M_PCSIG mblk; it means we're 748 * either unfused or in the process of unfusing, 749 * and the drain must happen now. 750 */ 751 mp = *sigurg_mpp; 752 *sigurg_mpp = NULL; 753 } 754 ASSERT(mp != NULL); 755 756 /* Send up the signal */ 757 DB_TYPE(mp) = M_PCSIG; 758 *mp->b_wptr++ = (uchar_t)SIGURG; 759 putnext(q, mp); 760 761 /* 762 * Let the regular tcp_rcv_drain() path handle 763 * draining the data if we're no longer fused. 764 */ 765 if (!tcp->tcp_fused) 766 return (B_FALSE); 767 } 768 769 /* Drain the data */ 770 while ((mp = tcp->tcp_rcv_list) != NULL) { 771 tcp->tcp_rcv_list = mp->b_next; 772 mp->b_next = NULL; 773 #ifdef DEBUG 774 cnt += msgdsize(mp); 775 #endif 776 ASSERT(!IPCL_IS_NONSTR(connp)); 777 putnext(q, mp); 778 TCP_STAT(tcps, tcp_fusion_putnext); 779 } 780 781 #ifdef DEBUG 782 ASSERT(cnt == tcp->tcp_rcv_cnt); 783 #endif 784 tcp->tcp_rcv_last_head = NULL; 785 tcp->tcp_rcv_last_tail = NULL; 786 tcp->tcp_rcv_cnt = 0; 787 tcp->tcp_rwnd = tcp->tcp_connp->conn_rcvbuf; 788 789 mutex_enter(&peer_tcp->tcp_non_sq_lock); 790 if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <= 791 peer_tcp->tcp_connp->conn_sndlowat)) { 792 tcp_clrqfull(peer_tcp); 793 TCP_STAT(tcps, tcp_fusion_backenabled); 794 } 795 mutex_exit(&peer_tcp->tcp_non_sq_lock); 796 797 return (B_TRUE); 798 } 799 800 /* 801 * Calculate the size of receive buffer for a fused tcp endpoint. 802 */ 803 size_t 804 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd) 805 { 806 tcp_stack_t *tcps = tcp->tcp_tcps; 807 uint32_t max_win; 808 809 ASSERT(tcp->tcp_fused); 810 811 /* Ensure that value is within the maximum upper bound */ 812 if (rwnd > tcps->tcps_max_buf) 813 rwnd = tcps->tcps_max_buf; 814 /* 815 * Round up to system page size in case SO_RCVBUF is modified 816 * after SO_SNDBUF; the latter is also similarly rounded up. 817 */ 818 rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t); 819 max_win = TCP_MAXWIN << tcp->tcp_rcv_ws; 820 if (rwnd > max_win) { 821 rwnd = max_win - (max_win % tcp->tcp_mss); 822 if (rwnd < tcp->tcp_mss) 823 rwnd = max_win; 824 } 825 826 /* 827 * Record high water mark, this is used for flow-control 828 * purposes in tcp_fuse_output(). 829 */ 830 tcp->tcp_connp->conn_rcvbuf = rwnd; 831 tcp->tcp_rwnd = rwnd; 832 return (rwnd); 833 } 834 835 /* 836 * Calculate the maximum outstanding unread data block for a fused tcp endpoint. 837 */ 838 int 839 tcp_fuse_maxpsz(tcp_t *tcp) 840 { 841 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 842 conn_t *connp = tcp->tcp_connp; 843 uint_t sndbuf = connp->conn_sndbuf; 844 uint_t maxpsz = sndbuf; 845 846 ASSERT(tcp->tcp_fused); 847 ASSERT(peer_tcp != NULL); 848 ASSERT(peer_tcp->tcp_connp->conn_rcvbuf != 0); 849 /* 850 * In the fused loopback case, we want the stream head to split 851 * up larger writes into smaller chunks for a more accurate flow- 852 * control accounting. Our maxpsz is half of the sender's send 853 * buffer or the receiver's receive buffer, whichever is smaller. 854 * We round up the buffer to system page size due to the lack of 855 * TCP MSS concept in Fusion. 856 */ 857 if (maxpsz > peer_tcp->tcp_connp->conn_rcvbuf) 858 maxpsz = peer_tcp->tcp_connp->conn_rcvbuf; 859 maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1; 860 861 return (maxpsz); 862 } 863 864 /* 865 * Called to release flow control. 866 */ 867 void 868 tcp_fuse_backenable(tcp_t *tcp) 869 { 870 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 871 872 ASSERT(tcp->tcp_fused); 873 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 874 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 875 ASSERT(!TCP_IS_DETACHED(tcp)); 876 ASSERT(tcp->tcp_connp->conn_sqp == 877 peer_tcp->tcp_connp->conn_sqp); 878 879 if (tcp->tcp_rcv_list != NULL) 880 (void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, NULL); 881 882 mutex_enter(&peer_tcp->tcp_non_sq_lock); 883 if (peer_tcp->tcp_flow_stopped && 884 (TCP_UNSENT_BYTES(peer_tcp) <= 885 peer_tcp->tcp_connp->conn_sndlowat)) { 886 tcp_clrqfull(peer_tcp); 887 } 888 mutex_exit(&peer_tcp->tcp_non_sq_lock); 889 890 TCP_STAT(tcp->tcp_tcps, tcp_fusion_backenabled); 891 } 892