/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * This file implements TCP fusion - a protocol-less data path for TCP * loopback connections. The fusion of two local TCP endpoints occurs * at connection establishment time. Various conditions (see details * in tcp_fuse()) need to be met for fusion to be successful. If it * fails, we fall back to the regular TCP data path; if it succeeds, * both endpoints proceed to use tcp_fuse_output() as the transmit path. * tcp_fuse_output() enqueues application data directly onto the peer's * receive queue; no protocol processing is involved. * * Sychronization is handled by squeue and the mutex tcp_non_sq_lock. * One of the requirements for fusion to succeed is that both endpoints * need to be using the same squeue. This ensures that neither side * can disappear while the other side is still sending data. Flow * control information is manipulated outside the squeue, so the * tcp_non_sq_lock must be held when touching tcp_flow_stopped. */ /* * Setting this to false means we disable fusion altogether and * loopback connections would go through the protocol paths. */ boolean_t do_tcp_fusion = B_TRUE; /* * This routine gets called by the eager tcp upon changing state from * SYN_RCVD to ESTABLISHED. It fuses a direct path between itself * and the active connect tcp such that the regular tcp processings * may be bypassed under allowable circumstances. Because the fusion * requires both endpoints to be in the same squeue, it does not work * for simultaneous active connects because there is no easy way to * switch from one squeue to another once the connection is created. * This is different from the eager tcp case where we assign it the * same squeue as the one given to the active connect tcp during open. */ void tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcpha_t *tcpha) { conn_t *peer_connp, *connp = tcp->tcp_connp; tcp_t *peer_tcp; tcp_stack_t *tcps = tcp->tcp_tcps; netstack_t *ns; ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; ASSERT(!tcp->tcp_fused); ASSERT(tcp->tcp_loopback); ASSERT(tcp->tcp_loopback_peer == NULL); /* * We need to inherit conn_rcvbuf of the listener tcp, * but we can't really use tcp_listener since we get here after * sending up T_CONN_IND and tcp_tli_accept() may be called * independently, at which point tcp_listener is cleared; * this is why we use tcp_saved_listener. The listener itself * is guaranteed to be around until tcp_accept_finish() is called * on this eager -- this won't happen until we're done since we're * inside the eager's perimeter now. */ ASSERT(tcp->tcp_saved_listener != NULL); /* * Lookup peer endpoint; search for the remote endpoint having * the reversed address-port quadruplet in ESTABLISHED state, * which is guaranteed to be unique in the system. Zone check * is applied accordingly for loopback address, but not for * local address since we want fusion to happen across Zones. */ if (connp->conn_ipversion == IPV4_VERSION) { peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp, (ipha_t *)iphdr, tcpha, ipst); } else { peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp, (ip6_t *)iphdr, tcpha, ipst); } /* * We can only proceed if peer exists, resides in the same squeue * as our conn and is not raw-socket. We also restrict fusion to * endpoints of the same type (STREAMS or non-STREAMS). The squeue * assignment of this eager tcp was done earlier at the time of SYN * processing in ip_fanout_tcp{_v6}. Note that similar squeues by * itself doesn't guarantee a safe condition to fuse, hence we perform * additional tests below. */ ASSERT(peer_connp == NULL || peer_connp != connp); if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp || !IPCL_IS_TCP(peer_connp) || IPCL_IS_NONSTR(connp) != IPCL_IS_NONSTR(peer_connp)) { if (peer_connp != NULL) { TCP_STAT(tcps, tcp_fusion_unqualified); CONN_DEC_REF(peer_connp); } return; } peer_tcp = peer_connp->conn_tcp; /* active connect tcp */ ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused); ASSERT(peer_tcp->tcp_loopback_peer == NULL); ASSERT(peer_connp->conn_sqp == connp->conn_sqp); /* * Due to IRE changes the peer and us might not agree on tcp_loopback. * We bail in that case. */ if (!peer_tcp->tcp_loopback) { TCP_STAT(tcps, tcp_fusion_unqualified); CONN_DEC_REF(peer_connp); return; } /* * Fuse the endpoints; we perform further checks against both * tcp endpoints to ensure that a fusion is allowed to happen. * In particular we bail out if kernel SSL exists. */ ns = tcps->tcps_netstack; ipst = ns->netstack_ip; if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable && (tcp->tcp_kssl_ent == NULL) && (tcp->tcp_xmit_head == NULL) && (peer_tcp->tcp_xmit_head == NULL)) { mblk_t *mp; queue_t *peer_rq = peer_connp->conn_rq; ASSERT(!TCP_IS_DETACHED(peer_tcp)); ASSERT(tcp->tcp_fused_sigurg_mp == NULL); ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL); ASSERT(tcp->tcp_kssl_ctx == NULL); /* * We need to drain data on both endpoints during unfuse. * If we need to send up SIGURG at the time of draining, * we want to be sure that an mblk is readily available. * This is why we pre-allocate the M_PCSIG mblks for both * endpoints which will only be used during/after unfuse. * The mblk might already exist if we are doing a re-fuse. */ if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { ASSERT(!IPCL_IS_NONSTR(peer_tcp->tcp_connp)); if (tcp->tcp_fused_sigurg_mp == NULL) { if ((mp = allocb(1, BPRI_HI)) == NULL) goto failed; tcp->tcp_fused_sigurg_mp = mp; } if (peer_tcp->tcp_fused_sigurg_mp == NULL) { if ((mp = allocb(1, BPRI_HI)) == NULL) goto failed; peer_tcp->tcp_fused_sigurg_mp = mp; } if ((mp = allocb(sizeof (struct stroptions), BPRI_HI)) == NULL) goto failed; } /* Fuse both endpoints */ peer_tcp->tcp_loopback_peer = tcp; tcp->tcp_loopback_peer = peer_tcp; peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE; /* * We never use regular tcp paths in fusion and should * therefore clear tcp_unsent on both endpoints. Having * them set to non-zero values means asking for trouble * especially after unfuse, where we may end up sending * through regular tcp paths which expect xmit_list and * friends to be correctly setup. */ peer_tcp->tcp_unsent = tcp->tcp_unsent = 0; tcp_timers_stop(tcp); tcp_timers_stop(peer_tcp); /* * Set receive buffer and max packet size for the * active open tcp. * eager's values will be set in tcp_accept_finish. */ (void) tcp_rwnd_set(peer_tcp, peer_tcp->tcp_connp->conn_rcvbuf); /* * Set the write offset value to zero since we won't * be needing any room for TCP/IP headers. */ if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) { struct stroptions *stropt; DB_TYPE(mp) = M_SETOPTS; mp->b_wptr += sizeof (*stropt); stropt = (struct stroptions *)mp->b_rptr; stropt->so_flags = SO_WROFF | SO_MAXBLK; stropt->so_wroff = 0; stropt->so_maxblk = INFPSZ; /* Send the options up */ putnext(peer_rq, mp); } else { struct sock_proto_props sopp; /* The peer is a non-STREAMS end point */ ASSERT(IPCL_IS_TCP(peer_connp)); sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_MAXBLK; sopp.sopp_wroff = 0; sopp.sopp_maxblk = INFPSZ; (*peer_connp->conn_upcalls->su_set_proto_props) (peer_connp->conn_upper_handle, &sopp); } } else { TCP_STAT(tcps, tcp_fusion_unqualified); } CONN_DEC_REF(peer_connp); return; failed: if (tcp->tcp_fused_sigurg_mp != NULL) { freeb(tcp->tcp_fused_sigurg_mp); tcp->tcp_fused_sigurg_mp = NULL; } if (peer_tcp->tcp_fused_sigurg_mp != NULL) { freeb(peer_tcp->tcp_fused_sigurg_mp); peer_tcp->tcp_fused_sigurg_mp = NULL; } CONN_DEC_REF(peer_connp); } /* * Unfuse a previously-fused pair of tcp loopback endpoints. */ void tcp_unfuse(tcp_t *tcp) { tcp_t *peer_tcp = tcp->tcp_loopback_peer; tcp_stack_t *tcps = tcp->tcp_tcps; ASSERT(tcp->tcp_fused && peer_tcp != NULL); ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp); ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0); /* * Cancel any pending push timers. */ if (tcp->tcp_push_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); tcp->tcp_push_tid = 0; } if (peer_tcp->tcp_push_tid != 0) { (void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid); peer_tcp->tcp_push_tid = 0; } /* * Drain any pending data; Note that in case of a detached tcp, the * draining will happen later after the tcp is unfused. For non- * urgent data, this can be handled by the regular tcp_rcv_drain(). * If we have urgent data sitting in the receive list, we will * need to send up a SIGURG signal first before draining the data. * All of these will be handled by the code in tcp_fuse_rcv_drain() * when called from tcp_rcv_drain(). */ if (!TCP_IS_DETACHED(tcp)) { (void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, &tcp->tcp_fused_sigurg_mp); } if (!TCP_IS_DETACHED(peer_tcp)) { (void) tcp_fuse_rcv_drain(peer_tcp->tcp_connp->conn_rq, peer_tcp, &peer_tcp->tcp_fused_sigurg_mp); } /* Lift up any flow-control conditions */ mutex_enter(&tcp->tcp_non_sq_lock); if (tcp->tcp_flow_stopped) { tcp_clrqfull(tcp); TCP_STAT(tcps, tcp_fusion_backenabled); } mutex_exit(&tcp->tcp_non_sq_lock); mutex_enter(&peer_tcp->tcp_non_sq_lock); if (peer_tcp->tcp_flow_stopped) { tcp_clrqfull(peer_tcp); TCP_STAT(tcps, tcp_fusion_backenabled); } mutex_exit(&peer_tcp->tcp_non_sq_lock); /* * Update tha_seq and tha_ack in the header template */ tcp->tcp_tcpha->tha_seq = htonl(tcp->tcp_snxt); tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); peer_tcp->tcp_tcpha->tha_seq = htonl(peer_tcp->tcp_snxt); peer_tcp->tcp_tcpha->tha_ack = htonl(peer_tcp->tcp_rnxt); /* Unfuse the endpoints */ peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE; peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL; } /* * Fusion output routine used to handle urgent data sent by STREAMS based * endpoints. This routine is called by tcp_fuse_output() for handling * non-M_DATA mblks. */ void tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp) { mblk_t *mp1; struct T_exdata_ind *tei; tcp_t *peer_tcp = tcp->tcp_loopback_peer; mblk_t *head, *prev_head = NULL; tcp_stack_t *tcps = tcp->tcp_tcps; ASSERT(tcp->tcp_fused); ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA); ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0); /* * Urgent data arrives in the form of T_EXDATA_REQ from above. * Each occurence denotes a new urgent pointer. For each new * urgent pointer we signal (SIGURG) the receiving app to indicate * that it needs to go into urgent mode. This is similar to the * urgent data handling in the regular tcp. We don't need to keep * track of where the urgent pointer is, because each T_EXDATA_REQ * "advances" the urgent pointer for us. * * The actual urgent data carried by T_EXDATA_REQ is then prepended * by a T_EXDATA_IND before being enqueued behind any existing data * destined for the receiving app. There is only a single urgent * pointer (out-of-band mark) for a given tcp. If the new urgent * data arrives before the receiving app reads some existing urgent * data, the previous marker is lost. This behavior is emulated * accordingly below, by removing any existing T_EXDATA_IND messages * and essentially converting old urgent data into non-urgent. */ ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID); /* Let sender get out of urgent mode */ tcp->tcp_valid_bits &= ~TCP_URG_VALID; /* * This flag indicates that a signal needs to be sent up. * This flag will only get cleared once SIGURG is delivered and * is not affected by the tcp_fused flag -- delivery will still * happen even after an endpoint is unfused, to handle the case * where the sending endpoint immediately closes/unfuses after * sending urgent data and the accept is not yet finished. */ peer_tcp->tcp_fused_sigurg = B_TRUE; /* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */ DB_TYPE(mp) = M_PROTO; tei = (struct T_exdata_ind *)mp->b_rptr; tei->PRIM_type = T_EXDATA_IND; tei->MORE_flag = 0; mp->b_wptr = (uchar_t *)&tei[1]; TCP_STAT(tcps, tcp_fusion_urg); TCPS_BUMP_MIB(tcps, tcpOutUrg); head = peer_tcp->tcp_rcv_list; while (head != NULL) { /* * Remove existing T_EXDATA_IND, keep the data which follows * it and relink our list. Note that we don't modify the * tcp_rcv_last_tail since it never points to T_EXDATA_IND. */ if (DB_TYPE(head) != M_DATA) { mp1 = head; ASSERT(DB_TYPE(mp1->b_cont) == M_DATA); head = mp1->b_cont; mp1->b_cont = NULL; head->b_next = mp1->b_next; mp1->b_next = NULL; if (prev_head != NULL) prev_head->b_next = head; if (peer_tcp->tcp_rcv_list == mp1) peer_tcp->tcp_rcv_list = head; if (peer_tcp->tcp_rcv_last_head == mp1) peer_tcp->tcp_rcv_last_head = head; freeb(mp1); } prev_head = head; head = head->b_next; } } /* * Fusion output routine, called by tcp_output() and tcp_wput_proto(). * If we are modifying any member that can be changed outside the squeue, * like tcp_flow_stopped, we need to take tcp_non_sq_lock. */ boolean_t tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size) { conn_t *connp = tcp->tcp_connp; tcp_t *peer_tcp = tcp->tcp_loopback_peer; conn_t *peer_connp = peer_tcp->tcp_connp; boolean_t flow_stopped, peer_data_queued = B_FALSE; boolean_t urgent = (DB_TYPE(mp) != M_DATA); boolean_t push = B_TRUE; mblk_t *mp1 = mp; uint_t ip_hdr_len; uint32_t recv_size = send_size; tcp_stack_t *tcps = tcp->tcp_tcps; netstack_t *ns = tcps->tcps_netstack; ip_stack_t *ipst = ns->netstack_ip; ipsec_stack_t *ipss = ns->netstack_ipsec; iaflags_t ixaflags = connp->conn_ixa->ixa_flags; boolean_t do_ipsec, hooks_out, hooks_in, ipobs_enabled; ASSERT(tcp->tcp_fused); ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); ASSERT(connp->conn_sqp == peer_connp->conn_sqp); ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); if (send_size == 0) { freemsg(mp); return (B_TRUE); } /* * Handle urgent data; we either send up SIGURG to the peer now * or do it later when we drain, in case the peer is detached * or if we're short of memory for M_PCSIG mblk. */ if (urgent) { tcp_fuse_output_urg(tcp, mp); mp1 = mp->b_cont; } /* * Check that we are still using an IRE_LOCAL or IRE_LOOPBACK before * further processes. */ if (!ip_output_verify_local(connp->conn_ixa)) goto unfuse; /* * Build IP and TCP header in case we have something that needs the * headers. Those cases are: * 1. IPsec * 2. IPobs * 3. FW_HOOKS * * If tcp_xmit_mp() fails to dupb() the message, unfuse the connection * and back to regular path. */ if (ixaflags & IXAF_IS_IPV4) { do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) || CONN_INBOUND_POLICY_PRESENT(peer_connp, ipss); hooks_out = HOOKS4_INTERESTED_LOOPBACK_OUT(ipst); hooks_in = HOOKS4_INTERESTED_LOOPBACK_IN(ipst); ipobs_enabled = (ipst->ips_ip4_observe.he_interested != 0); } else { do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) || CONN_INBOUND_POLICY_PRESENT_V6(peer_connp, ipss); hooks_out = HOOKS6_INTERESTED_LOOPBACK_OUT(ipst); hooks_in = HOOKS6_INTERESTED_LOOPBACK_IN(ipst); ipobs_enabled = (ipst->ips_ip6_observe.he_interested != 0); } /* We do logical 'or' for efficiency */ if (ipobs_enabled | do_ipsec | hooks_in | hooks_out) { if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL, tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL) /* If tcp_xmit_mp fails, use regular path */ goto unfuse; /* * Leave all IP relevant processes to ip_output_process_local(), * which handles IPsec, IPobs, and FW_HOOKS. */ mp1 = ip_output_process_local(mp1, connp->conn_ixa, hooks_out, hooks_in, do_ipsec ? peer_connp : NULL); /* If the message is dropped for any reason. */ if (mp1 == NULL) goto unfuse; /* * Data length might have been changed by FW_HOOKS. * We assume that the first mblk contains the TCP/IP headers. */ if (hooks_in || hooks_out) { tcpha_t *tcpha; ip_hdr_len = (ixaflags & IXAF_IS_IPV4) ? IPH_HDR_LENGTH((ipha_t *)mp1->b_rptr) : ip_hdr_length_v6(mp1, (ip6_t *)mp1->b_rptr); tcpha = (tcpha_t *)&mp1->b_rptr[ip_hdr_len]; ASSERT((uchar_t *)tcpha + sizeof (tcpha_t) <= mp1->b_wptr); recv_size += htonl(tcpha->tha_seq) - tcp->tcp_snxt; } /* * The message duplicated by tcp_xmit_mp is freed. * Note: the original message passed in remains unchanged. */ freemsg(mp1); } /* * Enqueue data into the peer's receive list; we may or may not * drain the contents depending on the conditions below. * * For non-STREAMS sockets we normally queue data directly in the * socket by calling the su_recv upcall. However, if the peer is * detached we use tcp_rcv_enqueue() instead. Queued data will be * drained when the accept completes (in tcp_accept_finish()). */ if (IPCL_IS_NONSTR(peer_connp) && !TCP_IS_DETACHED(peer_tcp)) { int error; int flags = 0; if ((tcp->tcp_valid_bits & TCP_URG_VALID) && (tcp->tcp_urg == tcp->tcp_snxt)) { flags = MSG_OOB; (*peer_connp->conn_upcalls->su_signal_oob) (peer_connp->conn_upper_handle, 0); tcp->tcp_valid_bits &= ~TCP_URG_VALID; } if ((*peer_connp->conn_upcalls->su_recv)( peer_connp->conn_upper_handle, mp, recv_size, flags, &error, &push) < 0) { ASSERT(error != EOPNOTSUPP); peer_data_queued = B_TRUE; } } else { if (IPCL_IS_NONSTR(peer_connp) && (tcp->tcp_valid_bits & TCP_URG_VALID) && (tcp->tcp_urg == tcp->tcp_snxt)) { /* * Can not deal with urgent pointers * that arrive before the connection has been * accept()ed. */ tcp->tcp_valid_bits &= ~TCP_URG_VALID; freemsg(mp); return (B_TRUE); } tcp_rcv_enqueue(peer_tcp, mp, recv_size, tcp->tcp_connp->conn_cred); /* In case it wrapped around and also to keep it constant */ peer_tcp->tcp_rwnd += recv_size; } /* * Exercise flow-control when needed; we will get back-enabled * in either tcp_accept_finish(), tcp_unfuse(), or when data is * consumed. If peer endpoint is detached, we emulate streams flow * control by checking the peer's queue size and high water mark; * otherwise we simply use canputnext() to decide if we need to stop * our flow. * * Since we are accessing our tcp_flow_stopped and might modify it, * we need to take tcp->tcp_non_sq_lock. */ mutex_enter(&tcp->tcp_non_sq_lock); flow_stopped = tcp->tcp_flow_stopped; if ((TCP_IS_DETACHED(peer_tcp) && (peer_tcp->tcp_rcv_cnt >= peer_connp->conn_rcvbuf)) || (!TCP_IS_DETACHED(peer_tcp) && !IPCL_IS_NONSTR(peer_connp) && !canputnext(peer_connp->conn_rq))) { peer_data_queued = B_TRUE; } if (!flow_stopped && (peer_data_queued || (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf))) { tcp_setqfull(tcp); flow_stopped = B_TRUE; TCP_STAT(tcps, tcp_fusion_flowctl); DTRACE_PROBE3(tcp__fuse__output__flowctl, tcp_t *, tcp, uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt); } else if (flow_stopped && !peer_data_queued && (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat)) { tcp_clrqfull(tcp); TCP_STAT(tcps, tcp_fusion_backenabled); flow_stopped = B_FALSE; } mutex_exit(&tcp->tcp_non_sq_lock); ipst->ips_loopback_packets++; tcp->tcp_last_sent_len = send_size; /* Need to adjust the following SNMP MIB-related variables */ tcp->tcp_snxt += send_size; tcp->tcp_suna = tcp->tcp_snxt; peer_tcp->tcp_rnxt += recv_size; peer_tcp->tcp_last_recv_len = recv_size; peer_tcp->tcp_rack = peer_tcp->tcp_rnxt; TCPS_BUMP_MIB(tcps, tcpOutDataSegs); TCPS_UPDATE_MIB(tcps, tcpOutDataBytes, send_size); TCPS_BUMP_MIB(tcps, tcpHCInSegs); TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs); TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, send_size); BUMP_LOCAL(tcp->tcp_obsegs); BUMP_LOCAL(peer_tcp->tcp_ibsegs); DTRACE_TCP5(send, void, NULL, ip_xmit_attr_t *, connp->conn_ixa, __dtrace_tcp_void_ip_t *, NULL, tcp_t *, tcp, __dtrace_tcp_tcph_t *, NULL); DTRACE_TCP5(receive, void, NULL, ip_xmit_attr_t *, peer_connp->conn_ixa, __dtrace_tcp_void_ip_t *, NULL, tcp_t *, peer_tcp, __dtrace_tcp_tcph_t *, NULL); if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) && !TCP_IS_DETACHED(peer_tcp)) { /* * Drain the peer's receive queue it has urgent data or if * we're not flow-controlled. */ if (urgent || !flow_stopped) { ASSERT(peer_tcp->tcp_rcv_list != NULL); /* * For TLI-based streams, a thread in tcp_accept_swap() * can race with us. That thread will ensure that the * correct peer_connp->conn_rq is globally visible * before peer_tcp->tcp_detached is visible as clear, * but we must also ensure that the load of conn_rq * cannot be reordered to be before the tcp_detached * check. */ membar_consumer(); (void) tcp_fuse_rcv_drain(peer_connp->conn_rq, peer_tcp, NULL); } } return (B_TRUE); unfuse: tcp_unfuse(tcp); return (B_FALSE); } /* * This routine gets called to deliver data upstream on a fused or * previously fused tcp loopback endpoint; the latter happens only * when there is a pending SIGURG signal plus urgent data that can't * be sent upstream in the past. */ boolean_t tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp) { mblk_t *mp; conn_t *connp = tcp->tcp_connp; #ifdef DEBUG uint_t cnt = 0; #endif tcp_stack_t *tcps = tcp->tcp_tcps; tcp_t *peer_tcp = tcp->tcp_loopback_peer; ASSERT(tcp->tcp_loopback); ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg); ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL); ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused); /* No need for the push timer now, in case it was scheduled */ if (tcp->tcp_push_tid != 0) { (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); tcp->tcp_push_tid = 0; } /* * If there's urgent data sitting in receive list and we didn't * get a chance to send up a SIGURG signal, make sure we send * it first before draining in order to ensure that SIOCATMARK * works properly. */ if (tcp->tcp_fused_sigurg) { ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); tcp->tcp_fused_sigurg = B_FALSE; /* * sigurg_mpp is normally NULL, i.e. when we're still * fused and didn't get here because of tcp_unfuse(). * In this case try hard to allocate the M_PCSIG mblk. */ if (sigurg_mpp == NULL && (mp = allocb(1, BPRI_HI)) == NULL && (mp = allocb_tryhard(1)) == NULL) { /* Alloc failed; try again next time */ tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer, tcps->tcps_push_timer_interval); return (B_TRUE); } else if (sigurg_mpp != NULL) { /* * Use the supplied M_PCSIG mblk; it means we're * either unfused or in the process of unfusing, * and the drain must happen now. */ mp = *sigurg_mpp; *sigurg_mpp = NULL; } ASSERT(mp != NULL); /* Send up the signal */ DB_TYPE(mp) = M_PCSIG; *mp->b_wptr++ = (uchar_t)SIGURG; putnext(q, mp); /* * Let the regular tcp_rcv_drain() path handle * draining the data if we're no longer fused. */ if (!tcp->tcp_fused) return (B_FALSE); } /* Drain the data */ while ((mp = tcp->tcp_rcv_list) != NULL) { tcp->tcp_rcv_list = mp->b_next; mp->b_next = NULL; #ifdef DEBUG cnt += msgdsize(mp); #endif ASSERT(!IPCL_IS_NONSTR(connp)); putnext(q, mp); TCP_STAT(tcps, tcp_fusion_putnext); } #ifdef DEBUG ASSERT(cnt == tcp->tcp_rcv_cnt); #endif tcp->tcp_rcv_last_head = NULL; tcp->tcp_rcv_last_tail = NULL; tcp->tcp_rcv_cnt = 0; tcp->tcp_rwnd = tcp->tcp_connp->conn_rcvbuf; mutex_enter(&peer_tcp->tcp_non_sq_lock); if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <= peer_tcp->tcp_connp->conn_sndlowat)) { tcp_clrqfull(peer_tcp); TCP_STAT(tcps, tcp_fusion_backenabled); } mutex_exit(&peer_tcp->tcp_non_sq_lock); return (B_TRUE); } /* * Calculate the size of receive buffer for a fused tcp endpoint. */ size_t tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd) { tcp_stack_t *tcps = tcp->tcp_tcps; uint32_t max_win; ASSERT(tcp->tcp_fused); /* Ensure that value is within the maximum upper bound */ if (rwnd > tcps->tcps_max_buf) rwnd = tcps->tcps_max_buf; /* * Round up to system page size in case SO_RCVBUF is modified * after SO_SNDBUF; the latter is also similarly rounded up. */ rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t); max_win = TCP_MAXWIN << tcp->tcp_rcv_ws; if (rwnd > max_win) { rwnd = max_win - (max_win % tcp->tcp_mss); if (rwnd < tcp->tcp_mss) rwnd = max_win; } /* * Record high water mark, this is used for flow-control * purposes in tcp_fuse_output(). */ tcp->tcp_connp->conn_rcvbuf = rwnd; tcp->tcp_rwnd = rwnd; return (rwnd); } /* * Calculate the maximum outstanding unread data block for a fused tcp endpoint. */ int tcp_fuse_maxpsz(tcp_t *tcp) { tcp_t *peer_tcp = tcp->tcp_loopback_peer; conn_t *connp = tcp->tcp_connp; uint_t sndbuf = connp->conn_sndbuf; uint_t maxpsz = sndbuf; ASSERT(tcp->tcp_fused); ASSERT(peer_tcp != NULL); ASSERT(peer_tcp->tcp_connp->conn_rcvbuf != 0); /* * In the fused loopback case, we want the stream head to split * up larger writes into smaller chunks for a more accurate flow- * control accounting. Our maxpsz is half of the sender's send * buffer or the receiver's receive buffer, whichever is smaller. * We round up the buffer to system page size due to the lack of * TCP MSS concept in Fusion. */ if (maxpsz > peer_tcp->tcp_connp->conn_rcvbuf) maxpsz = peer_tcp->tcp_connp->conn_rcvbuf; maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1; return (maxpsz); } /* * Called to release flow control. */ void tcp_fuse_backenable(tcp_t *tcp) { tcp_t *peer_tcp = tcp->tcp_loopback_peer; ASSERT(tcp->tcp_fused); ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); ASSERT(peer_tcp->tcp_loopback_peer == tcp); ASSERT(!TCP_IS_DETACHED(tcp)); ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); if (tcp->tcp_rcv_list != NULL) (void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, NULL); mutex_enter(&peer_tcp->tcp_non_sq_lock); if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <= peer_tcp->tcp_connp->conn_sndlowat)) { tcp_clrqfull(peer_tcp); } mutex_exit(&peer_tcp->tcp_non_sq_lock); TCP_STAT(tcp->tcp_tcps, tcp_fusion_backenabled); }