1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 24 * Copyright (c) 2013 Martin Matuska. All rights reserved. 25 * Copyright (c) 2014 Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 #include <sys/dmu.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_prop.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dsl_deleg.h> 38 #include <sys/dmu_impl.h> 39 #include <sys/spa.h> 40 #include <sys/metaslab.h> 41 #include <sys/zap.h> 42 #include <sys/zio.h> 43 #include <sys/arc.h> 44 #include <sys/sunddi.h> 45 #include <sys/zfeature.h> 46 #include <sys/policy.h> 47 #include <sys/zfs_znode.h> 48 #include "zfs_namecheck.h" 49 #include "zfs_prop.h" 50 51 /* 52 * Filesystem and Snapshot Limits 53 * ------------------------------ 54 * 55 * These limits are used to restrict the number of filesystems and/or snapshots 56 * that can be created at a given level in the tree or below. A typical 57 * use-case is with a delegated dataset where the administrator wants to ensure 58 * that a user within the zone is not creating too many additional filesystems 59 * or snapshots, even though they're not exceeding their space quota. 60 * 61 * The filesystem and snapshot counts are stored as extensible properties. This 62 * capability is controlled by a feature flag and must be enabled to be used. 63 * Once enabled, the feature is not active until the first limit is set. At 64 * that point, future operations to create/destroy filesystems or snapshots 65 * will validate and update the counts. 66 * 67 * Because the count properties will not exist before the feature is active, 68 * the counts are updated when a limit is first set on an uninitialized 69 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes 70 * all of the nested filesystems/snapshots. Thus, a new leaf node has a 71 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and 72 * snapshot count properties on a node indicate uninitialized counts on that 73 * node.) When first setting a limit on an uninitialized node, the code starts 74 * at the filesystem with the new limit and descends into all sub-filesystems 75 * to add the count properties. 76 * 77 * In practice this is lightweight since a limit is typically set when the 78 * filesystem is created and thus has no children. Once valid, changing the 79 * limit value won't require a re-traversal since the counts are already valid. 80 * When recursively fixing the counts, if a node with a limit is encountered 81 * during the descent, the counts are known to be valid and there is no need to 82 * descend into that filesystem's children. The counts on filesystems above the 83 * one with the new limit will still be uninitialized, unless a limit is 84 * eventually set on one of those filesystems. The counts are always recursively 85 * updated when a limit is set on a dataset, unless there is already a limit. 86 * When a new limit value is set on a filesystem with an existing limit, it is 87 * possible for the new limit to be less than the current count at that level 88 * since a user who can change the limit is also allowed to exceed the limit. 89 * 90 * Once the feature is active, then whenever a filesystem or snapshot is 91 * created, the code recurses up the tree, validating the new count against the 92 * limit at each initialized level. In practice, most levels will not have a 93 * limit set. If there is a limit at any initialized level up the tree, the 94 * check must pass or the creation will fail. Likewise, when a filesystem or 95 * snapshot is destroyed, the counts are recursively adjusted all the way up 96 * the initizized nodes in the tree. Renaming a filesystem into different point 97 * in the tree will first validate, then update the counts on each branch up to 98 * the common ancestor. A receive will also validate the counts and then update 99 * them. 100 * 101 * An exception to the above behavior is that the limit is not enforced if the 102 * user has permission to modify the limit. This is primarily so that 103 * recursive snapshots in the global zone always work. We want to prevent a 104 * denial-of-service in which a lower level delegated dataset could max out its 105 * limit and thus block recursive snapshots from being taken in the global zone. 106 * Because of this, it is possible for the snapshot count to be over the limit 107 * and snapshots taken in the global zone could cause a lower level dataset to 108 * hit or exceed its limit. The administrator taking the global zone recursive 109 * snapshot should be aware of this side-effect and behave accordingly. 110 * For consistency, the filesystem limit is also not enforced if the user can 111 * modify the limit. 112 * 113 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check() 114 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in 115 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by 116 * dsl_dir_init_fs_ss_count(). 117 * 118 * There is a special case when we receive a filesystem that already exists. In 119 * this case a temporary clone name of %X is created (see dmu_recv_begin). We 120 * never update the filesystem counts for temporary clones. 121 * 122 * Likewise, we do not update the snapshot counts for temporary snapshots, 123 * such as those created by zfs diff. 124 */ 125 126 /* 127 * Tunable to control EDQUOT behaviour. With this set to a value != 0, zfs 128 * doesn't always wait for a dirty txg to complete when an operation can't 129 * get through due to space exhaustion. Instead it fails early in a range 130 * of the tunable around the quota. 131 * This vastly helps to reduce the number of threads waiting for the txg 132 * to commit when a busy filesystem is near quota, especially in combination 133 * with NFS, where each waiter takes up a server thread. 134 */ 135 uint64_t early_edquot_threshold = 32 * 1048576; /* tunable */ 136 137 /* 138 * tunable. when set, zfs allows all tx into the running txg as long as the recorded 139 * on-disk quota from the previous is below the quota. On busy filesystems it can be 140 * possible to go over quota for several GB. The intention here is to never let a 141 * request wait for the next transaction. It either fails or passes immediately. This 142 * prevents NFS threads to pile up on busy filesystems near quota. 143 * This tunable takes precedence over early_edquot_threshold. 144 */ 145 boolean_t late_edquot = TRUE; /* tunable */ 146 147 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd); 148 149 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd); 150 151 static void 152 dsl_dir_evict_async(void *dbu) 153 { 154 dsl_dir_t *dd = dbu; 155 dsl_pool_t *dp = dd->dd_pool; 156 int t; 157 158 dd->dd_dbuf = NULL; 159 160 for (t = 0; t < TXG_SIZE; t++) { 161 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t)); 162 ASSERT(dd->dd_tempreserved[t] == 0); 163 ASSERT(dd->dd_space_towrite[t] == 0); 164 } 165 166 if (dd->dd_parent) 167 dsl_dir_async_rele(dd->dd_parent, dd); 168 169 spa_async_close(dd->dd_pool->dp_spa, dd); 170 171 dsl_prop_fini(dd); 172 mutex_destroy(&dd->dd_lock); 173 kmem_free(dd, sizeof (dsl_dir_t)); 174 } 175 176 int 177 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj, 178 const char *tail, void *tag, dsl_dir_t **ddp) 179 { 180 dmu_buf_t *dbuf; 181 dsl_dir_t *dd; 182 int err; 183 184 ASSERT(dsl_pool_config_held(dp)); 185 186 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf); 187 if (err != 0) 188 return (err); 189 dd = dmu_buf_get_user(dbuf); 190 #ifdef ZFS_DEBUG 191 { 192 dmu_object_info_t doi; 193 dmu_object_info_from_db(dbuf, &doi); 194 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR); 195 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t)); 196 } 197 #endif 198 if (dd == NULL) { 199 dsl_dir_t *winner; 200 201 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP); 202 dd->dd_object = ddobj; 203 dd->dd_dbuf = dbuf; 204 dd->dd_pool = dp; 205 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL); 206 dsl_prop_init(dd); 207 208 dsl_dir_snap_cmtime_update(dd); 209 210 if (dsl_dir_phys(dd)->dd_parent_obj) { 211 err = dsl_dir_hold_obj(dp, 212 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd, 213 &dd->dd_parent); 214 if (err != 0) 215 goto errout; 216 if (tail) { 217 #ifdef ZFS_DEBUG 218 uint64_t foundobj; 219 220 err = zap_lookup(dp->dp_meta_objset, 221 dsl_dir_phys(dd->dd_parent)-> 222 dd_child_dir_zapobj, tail, 223 sizeof (foundobj), 1, &foundobj); 224 ASSERT(err || foundobj == ddobj); 225 #endif 226 (void) strcpy(dd->dd_myname, tail); 227 } else { 228 err = zap_value_search(dp->dp_meta_objset, 229 dsl_dir_phys(dd->dd_parent)-> 230 dd_child_dir_zapobj, 231 ddobj, 0, dd->dd_myname); 232 } 233 if (err != 0) 234 goto errout; 235 } else { 236 (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa)); 237 } 238 239 if (dsl_dir_is_clone(dd)) { 240 dmu_buf_t *origin_bonus; 241 dsl_dataset_phys_t *origin_phys; 242 243 /* 244 * We can't open the origin dataset, because 245 * that would require opening this dsl_dir. 246 * Just look at its phys directly instead. 247 */ 248 err = dmu_bonus_hold(dp->dp_meta_objset, 249 dsl_dir_phys(dd)->dd_origin_obj, FTAG, 250 &origin_bonus); 251 if (err != 0) 252 goto errout; 253 origin_phys = origin_bonus->db_data; 254 dd->dd_origin_txg = 255 origin_phys->ds_creation_txg; 256 dmu_buf_rele(origin_bonus, FTAG); 257 } 258 259 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async, 260 &dd->dd_dbuf); 261 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu); 262 if (winner != NULL) { 263 if (dd->dd_parent) 264 dsl_dir_rele(dd->dd_parent, dd); 265 dsl_prop_fini(dd); 266 mutex_destroy(&dd->dd_lock); 267 kmem_free(dd, sizeof (dsl_dir_t)); 268 dd = winner; 269 } else { 270 spa_open_ref(dp->dp_spa, dd); 271 } 272 } 273 274 /* 275 * The dsl_dir_t has both open-to-close and instantiate-to-evict 276 * holds on the spa. We need the open-to-close holds because 277 * otherwise the spa_refcnt wouldn't change when we open a 278 * dir which the spa also has open, so we could incorrectly 279 * think it was OK to unload/export/destroy the pool. We need 280 * the instantiate-to-evict hold because the dsl_dir_t has a 281 * pointer to the dd_pool, which has a pointer to the spa_t. 282 */ 283 spa_open_ref(dp->dp_spa, tag); 284 ASSERT3P(dd->dd_pool, ==, dp); 285 ASSERT3U(dd->dd_object, ==, ddobj); 286 ASSERT3P(dd->dd_dbuf, ==, dbuf); 287 *ddp = dd; 288 return (0); 289 290 errout: 291 if (dd->dd_parent) 292 dsl_dir_rele(dd->dd_parent, dd); 293 dsl_prop_fini(dd); 294 mutex_destroy(&dd->dd_lock); 295 kmem_free(dd, sizeof (dsl_dir_t)); 296 dmu_buf_rele(dbuf, tag); 297 return (err); 298 } 299 300 void 301 dsl_dir_rele(dsl_dir_t *dd, void *tag) 302 { 303 dprintf_dd(dd, "%s\n", ""); 304 spa_close(dd->dd_pool->dp_spa, tag); 305 dmu_buf_rele(dd->dd_dbuf, tag); 306 } 307 308 /* 309 * Remove a reference to the given dsl dir that is being asynchronously 310 * released. Async releases occur from a taskq performing eviction of 311 * dsl datasets and dirs. This process is identical to a normal release 312 * with the exception of using the async API for releasing the reference on 313 * the spa. 314 */ 315 void 316 dsl_dir_async_rele(dsl_dir_t *dd, void *tag) 317 { 318 dprintf_dd(dd, "%s\n", ""); 319 spa_async_close(dd->dd_pool->dp_spa, tag); 320 dmu_buf_rele(dd->dd_dbuf, tag); 321 } 322 323 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */ 324 void 325 dsl_dir_name(dsl_dir_t *dd, char *buf) 326 { 327 if (dd->dd_parent) { 328 dsl_dir_name(dd->dd_parent, buf); 329 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <, 330 ZFS_MAX_DATASET_NAME_LEN); 331 } else { 332 buf[0] = '\0'; 333 } 334 if (!MUTEX_HELD(&dd->dd_lock)) { 335 /* 336 * recursive mutex so that we can use 337 * dprintf_dd() with dd_lock held 338 */ 339 mutex_enter(&dd->dd_lock); 340 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 341 <, ZFS_MAX_DATASET_NAME_LEN); 342 mutex_exit(&dd->dd_lock); 343 } else { 344 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN), 345 <, ZFS_MAX_DATASET_NAME_LEN); 346 } 347 } 348 349 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */ 350 int 351 dsl_dir_namelen(dsl_dir_t *dd) 352 { 353 int result = 0; 354 355 if (dd->dd_parent) { 356 /* parent's name + 1 for the "/" */ 357 result = dsl_dir_namelen(dd->dd_parent) + 1; 358 } 359 360 if (!MUTEX_HELD(&dd->dd_lock)) { 361 /* see dsl_dir_name */ 362 mutex_enter(&dd->dd_lock); 363 result += strlen(dd->dd_myname); 364 mutex_exit(&dd->dd_lock); 365 } else { 366 result += strlen(dd->dd_myname); 367 } 368 369 return (result); 370 } 371 372 static int 373 getcomponent(const char *path, char *component, const char **nextp) 374 { 375 char *p; 376 377 if ((path == NULL) || (path[0] == '\0')) 378 return (SET_ERROR(ENOENT)); 379 /* This would be a good place to reserve some namespace... */ 380 p = strpbrk(path, "/@"); 381 if (p && (p[1] == '/' || p[1] == '@')) { 382 /* two separators in a row */ 383 return (SET_ERROR(EINVAL)); 384 } 385 if (p == NULL || p == path) { 386 /* 387 * if the first thing is an @ or /, it had better be an 388 * @ and it had better not have any more ats or slashes, 389 * and it had better have something after the @. 390 */ 391 if (p != NULL && 392 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0')) 393 return (SET_ERROR(EINVAL)); 394 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN) 395 return (SET_ERROR(ENAMETOOLONG)); 396 (void) strcpy(component, path); 397 p = NULL; 398 } else if (p[0] == '/') { 399 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 400 return (SET_ERROR(ENAMETOOLONG)); 401 (void) strncpy(component, path, p - path); 402 component[p - path] = '\0'; 403 p++; 404 } else if (p[0] == '@') { 405 /* 406 * if the next separator is an @, there better not be 407 * any more slashes. 408 */ 409 if (strchr(path, '/')) 410 return (SET_ERROR(EINVAL)); 411 if (p - path >= ZFS_MAX_DATASET_NAME_LEN) 412 return (SET_ERROR(ENAMETOOLONG)); 413 (void) strncpy(component, path, p - path); 414 component[p - path] = '\0'; 415 } else { 416 panic("invalid p=%p", (void *)p); 417 } 418 *nextp = p; 419 return (0); 420 } 421 422 /* 423 * Return the dsl_dir_t, and possibly the last component which couldn't 424 * be found in *tail. The name must be in the specified dsl_pool_t. This 425 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the 426 * path is bogus, or if tail==NULL and we couldn't parse the whole name. 427 * (*tail)[0] == '@' means that the last component is a snapshot. 428 */ 429 int 430 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag, 431 dsl_dir_t **ddp, const char **tailp) 432 { 433 char buf[ZFS_MAX_DATASET_NAME_LEN]; 434 const char *spaname, *next, *nextnext = NULL; 435 int err; 436 dsl_dir_t *dd; 437 uint64_t ddobj; 438 439 err = getcomponent(name, buf, &next); 440 if (err != 0) 441 return (err); 442 443 /* Make sure the name is in the specified pool. */ 444 spaname = spa_name(dp->dp_spa); 445 if (strcmp(buf, spaname) != 0) 446 return (SET_ERROR(EXDEV)); 447 448 ASSERT(dsl_pool_config_held(dp)); 449 450 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd); 451 if (err != 0) { 452 return (err); 453 } 454 455 while (next != NULL) { 456 dsl_dir_t *child_dd; 457 err = getcomponent(next, buf, &nextnext); 458 if (err != 0) 459 break; 460 ASSERT(next[0] != '\0'); 461 if (next[0] == '@') 462 break; 463 dprintf("looking up %s in obj%lld\n", 464 buf, dsl_dir_phys(dd)->dd_child_dir_zapobj); 465 466 err = zap_lookup(dp->dp_meta_objset, 467 dsl_dir_phys(dd)->dd_child_dir_zapobj, 468 buf, sizeof (ddobj), 1, &ddobj); 469 if (err != 0) { 470 if (err == ENOENT) 471 err = 0; 472 break; 473 } 474 475 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd); 476 if (err != 0) 477 break; 478 dsl_dir_rele(dd, tag); 479 dd = child_dd; 480 next = nextnext; 481 } 482 483 if (err != 0) { 484 dsl_dir_rele(dd, tag); 485 return (err); 486 } 487 488 /* 489 * It's an error if there's more than one component left, or 490 * tailp==NULL and there's any component left. 491 */ 492 if (next != NULL && 493 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) { 494 /* bad path name */ 495 dsl_dir_rele(dd, tag); 496 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp); 497 err = SET_ERROR(ENOENT); 498 } 499 if (tailp != NULL) 500 *tailp = next; 501 *ddp = dd; 502 return (err); 503 } 504 505 /* 506 * If the counts are already initialized for this filesystem and its 507 * descendants then do nothing, otherwise initialize the counts. 508 * 509 * The counts on this filesystem, and those below, may be uninitialized due to 510 * either the use of a pre-existing pool which did not support the 511 * filesystem/snapshot limit feature, or one in which the feature had not yet 512 * been enabled. 513 * 514 * Recursively descend the filesystem tree and update the filesystem/snapshot 515 * counts on each filesystem below, then update the cumulative count on the 516 * current filesystem. If the filesystem already has a count set on it, 517 * then we know that its counts, and the counts on the filesystems below it, 518 * are already correct, so we don't have to update this filesystem. 519 */ 520 static void 521 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx) 522 { 523 uint64_t my_fs_cnt = 0; 524 uint64_t my_ss_cnt = 0; 525 dsl_pool_t *dp = dd->dd_pool; 526 objset_t *os = dp->dp_meta_objset; 527 zap_cursor_t *zc; 528 zap_attribute_t *za; 529 dsl_dataset_t *ds; 530 531 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)); 532 ASSERT(dsl_pool_config_held(dp)); 533 ASSERT(dmu_tx_is_syncing(tx)); 534 535 dsl_dir_zapify(dd, tx); 536 537 /* 538 * If the filesystem count has already been initialized then we 539 * don't need to recurse down any further. 540 */ 541 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0) 542 return; 543 544 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 545 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 546 547 /* Iterate my child dirs */ 548 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj); 549 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) { 550 dsl_dir_t *chld_dd; 551 uint64_t count; 552 553 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG, 554 &chld_dd)); 555 556 /* 557 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and 558 * temporary datasets. 559 */ 560 if (chld_dd->dd_myname[0] == '$' || 561 chld_dd->dd_myname[0] == '%') { 562 dsl_dir_rele(chld_dd, FTAG); 563 continue; 564 } 565 566 my_fs_cnt++; /* count this child */ 567 568 dsl_dir_init_fs_ss_count(chld_dd, tx); 569 570 VERIFY0(zap_lookup(os, chld_dd->dd_object, 571 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count)); 572 my_fs_cnt += count; 573 VERIFY0(zap_lookup(os, chld_dd->dd_object, 574 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count)); 575 my_ss_cnt += count; 576 577 dsl_dir_rele(chld_dd, FTAG); 578 } 579 zap_cursor_fini(zc); 580 /* Count my snapshots (we counted children's snapshots above) */ 581 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 582 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds)); 583 584 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj); 585 zap_cursor_retrieve(zc, za) == 0; 586 zap_cursor_advance(zc)) { 587 /* Don't count temporary snapshots */ 588 if (za->za_name[0] != '%') 589 my_ss_cnt++; 590 } 591 zap_cursor_fini(zc); 592 593 dsl_dataset_rele(ds, FTAG); 594 595 kmem_free(zc, sizeof (zap_cursor_t)); 596 kmem_free(za, sizeof (zap_attribute_t)); 597 598 /* we're in a sync task, update counts */ 599 dmu_buf_will_dirty(dd->dd_dbuf, tx); 600 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 601 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx)); 602 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 603 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx)); 604 } 605 606 static int 607 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx) 608 { 609 char *ddname = (char *)arg; 610 dsl_pool_t *dp = dmu_tx_pool(tx); 611 dsl_dataset_t *ds; 612 dsl_dir_t *dd; 613 int error; 614 615 error = dsl_dataset_hold(dp, ddname, FTAG, &ds); 616 if (error != 0) 617 return (error); 618 619 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) { 620 dsl_dataset_rele(ds, FTAG); 621 return (SET_ERROR(ENOTSUP)); 622 } 623 624 dd = ds->ds_dir; 625 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) && 626 dsl_dir_is_zapified(dd) && 627 zap_contains(dp->dp_meta_objset, dd->dd_object, 628 DD_FIELD_FILESYSTEM_COUNT) == 0) { 629 dsl_dataset_rele(ds, FTAG); 630 return (SET_ERROR(EALREADY)); 631 } 632 633 dsl_dataset_rele(ds, FTAG); 634 return (0); 635 } 636 637 static void 638 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx) 639 { 640 char *ddname = (char *)arg; 641 dsl_pool_t *dp = dmu_tx_pool(tx); 642 dsl_dataset_t *ds; 643 spa_t *spa; 644 645 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds)); 646 647 spa = dsl_dataset_get_spa(ds); 648 649 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) { 650 /* 651 * Since the feature was not active and we're now setting a 652 * limit, increment the feature-active counter so that the 653 * feature becomes active for the first time. 654 * 655 * We are already in a sync task so we can update the MOS. 656 */ 657 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx); 658 } 659 660 /* 661 * Since we are now setting a non-UINT64_MAX limit on the filesystem, 662 * we need to ensure the counts are correct. Descend down the tree from 663 * this point and update all of the counts to be accurate. 664 */ 665 dsl_dir_init_fs_ss_count(ds->ds_dir, tx); 666 667 dsl_dataset_rele(ds, FTAG); 668 } 669 670 /* 671 * Make sure the feature is enabled and activate it if necessary. 672 * Since we're setting a limit, ensure the on-disk counts are valid. 673 * This is only called by the ioctl path when setting a limit value. 674 * 675 * We do not need to validate the new limit, since users who can change the 676 * limit are also allowed to exceed the limit. 677 */ 678 int 679 dsl_dir_activate_fs_ss_limit(const char *ddname) 680 { 681 int error; 682 683 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check, 684 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0, 685 ZFS_SPACE_CHECK_RESERVED); 686 687 if (error == EALREADY) 688 error = 0; 689 690 return (error); 691 } 692 693 /* 694 * Used to determine if the filesystem_limit or snapshot_limit should be 695 * enforced. We allow the limit to be exceeded if the user has permission to 696 * write the property value. We pass in the creds that we got in the open 697 * context since we will always be the GZ root in syncing context. We also have 698 * to handle the case where we are allowed to change the limit on the current 699 * dataset, but there may be another limit in the tree above. 700 * 701 * We can never modify these two properties within a non-global zone. In 702 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We 703 * can't use that function since we are already holding the dp_config_rwlock. 704 * In addition, we already have the dd and dealing with snapshots is simplified 705 * in this code. 706 */ 707 708 typedef enum { 709 ENFORCE_ALWAYS, 710 ENFORCE_NEVER, 711 ENFORCE_ABOVE 712 } enforce_res_t; 713 714 static enforce_res_t 715 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr) 716 { 717 enforce_res_t enforce = ENFORCE_ALWAYS; 718 uint64_t obj; 719 dsl_dataset_t *ds; 720 uint64_t zoned; 721 722 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 723 prop == ZFS_PROP_SNAPSHOT_LIMIT); 724 725 #ifdef _KERNEL 726 if (crgetzoneid(cr) != GLOBAL_ZONEID) 727 return (ENFORCE_ALWAYS); 728 729 if (secpolicy_zfs(cr) == 0) 730 return (ENFORCE_NEVER); 731 #endif 732 733 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0) 734 return (ENFORCE_ALWAYS); 735 736 ASSERT(dsl_pool_config_held(dd->dd_pool)); 737 738 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0) 739 return (ENFORCE_ALWAYS); 740 741 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) { 742 /* Only root can access zoned fs's from the GZ */ 743 enforce = ENFORCE_ALWAYS; 744 } else { 745 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0) 746 enforce = ENFORCE_ABOVE; 747 } 748 749 dsl_dataset_rele(ds, FTAG); 750 return (enforce); 751 } 752 753 /* 754 * Check if adding additional child filesystem(s) would exceed any filesystem 755 * limits or adding additional snapshot(s) would exceed any snapshot limits. 756 * The prop argument indicates which limit to check. 757 * 758 * Note that all filesystem limits up to the root (or the highest 759 * initialized) filesystem or the given ancestor must be satisfied. 760 */ 761 int 762 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop, 763 dsl_dir_t *ancestor, cred_t *cr) 764 { 765 objset_t *os = dd->dd_pool->dp_meta_objset; 766 uint64_t limit, count; 767 char *count_prop; 768 enforce_res_t enforce; 769 int err = 0; 770 771 ASSERT(dsl_pool_config_held(dd->dd_pool)); 772 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT || 773 prop == ZFS_PROP_SNAPSHOT_LIMIT); 774 775 /* 776 * If we're allowed to change the limit, don't enforce the limit 777 * e.g. this can happen if a snapshot is taken by an administrative 778 * user in the global zone (i.e. a recursive snapshot by root). 779 * However, we must handle the case of delegated permissions where we 780 * are allowed to change the limit on the current dataset, but there 781 * is another limit in the tree above. 782 */ 783 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr); 784 if (enforce == ENFORCE_NEVER) 785 return (0); 786 787 /* 788 * e.g. if renaming a dataset with no snapshots, count adjustment 789 * is 0. 790 */ 791 if (delta == 0) 792 return (0); 793 794 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) { 795 /* 796 * We don't enforce the limit for temporary snapshots. This is 797 * indicated by a NULL cred_t argument. 798 */ 799 if (cr == NULL) 800 return (0); 801 802 count_prop = DD_FIELD_SNAPSHOT_COUNT; 803 } else { 804 count_prop = DD_FIELD_FILESYSTEM_COUNT; 805 } 806 807 /* 808 * If an ancestor has been provided, stop checking the limit once we 809 * hit that dir. We need this during rename so that we don't overcount 810 * the check once we recurse up to the common ancestor. 811 */ 812 if (ancestor == dd) 813 return (0); 814 815 /* 816 * If we hit an uninitialized node while recursing up the tree, we can 817 * stop since we know there is no limit here (or above). The counts are 818 * not valid on this node and we know we won't touch this node's counts. 819 */ 820 if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object, 821 count_prop, sizeof (count), 1, &count) == ENOENT) 822 return (0); 823 824 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL, 825 B_FALSE); 826 if (err != 0) 827 return (err); 828 829 /* Is there a limit which we've hit? */ 830 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit) 831 return (SET_ERROR(EDQUOT)); 832 833 if (dd->dd_parent != NULL) 834 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop, 835 ancestor, cr); 836 837 return (err); 838 } 839 840 /* 841 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all 842 * parents. When a new filesystem/snapshot is created, increment the count on 843 * all parents, and when a filesystem/snapshot is destroyed, decrement the 844 * count. 845 */ 846 void 847 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop, 848 dmu_tx_t *tx) 849 { 850 int err; 851 objset_t *os = dd->dd_pool->dp_meta_objset; 852 uint64_t count; 853 854 ASSERT(dsl_pool_config_held(dd->dd_pool)); 855 ASSERT(dmu_tx_is_syncing(tx)); 856 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 || 857 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0); 858 859 /* 860 * When we receive an incremental stream into a filesystem that already 861 * exists, a temporary clone is created. We don't count this temporary 862 * clone, whose name begins with a '%'. We also ignore hidden ($FREE, 863 * $MOS & $ORIGIN) objsets. 864 */ 865 if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') && 866 strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0) 867 return; 868 869 /* 870 * e.g. if renaming a dataset with no snapshots, count adjustment is 0 871 */ 872 if (delta == 0) 873 return; 874 875 /* 876 * If we hit an uninitialized node while recursing up the tree, we can 877 * stop since we know the counts are not valid on this node and we 878 * know we shouldn't touch this node's counts. An uninitialized count 879 * on the node indicates that either the feature has not yet been 880 * activated or there are no limits on this part of the tree. 881 */ 882 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object, 883 prop, sizeof (count), 1, &count)) == ENOENT) 884 return; 885 VERIFY0(err); 886 887 count += delta; 888 /* Use a signed verify to make sure we're not neg. */ 889 VERIFY3S(count, >=, 0); 890 891 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count, 892 tx)); 893 894 /* Roll up this additional count into our ancestors */ 895 if (dd->dd_parent != NULL) 896 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx); 897 } 898 899 uint64_t 900 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name, 901 dmu_tx_t *tx) 902 { 903 objset_t *mos = dp->dp_meta_objset; 904 uint64_t ddobj; 905 dsl_dir_phys_t *ddphys; 906 dmu_buf_t *dbuf; 907 908 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0, 909 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx); 910 if (pds) { 911 VERIFY(0 == zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj, 912 name, sizeof (uint64_t), 1, &ddobj, tx)); 913 } else { 914 /* it's the root dir */ 915 VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT, 916 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx)); 917 } 918 VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf)); 919 dmu_buf_will_dirty(dbuf, tx); 920 ddphys = dbuf->db_data; 921 922 ddphys->dd_creation_time = gethrestime_sec(); 923 if (pds) { 924 ddphys->dd_parent_obj = pds->dd_object; 925 926 /* update the filesystem counts */ 927 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx); 928 } 929 ddphys->dd_props_zapobj = zap_create(mos, 930 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx); 931 ddphys->dd_child_dir_zapobj = zap_create(mos, 932 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx); 933 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN) 934 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN; 935 dmu_buf_rele(dbuf, FTAG); 936 937 return (ddobj); 938 } 939 940 boolean_t 941 dsl_dir_is_clone(dsl_dir_t *dd) 942 { 943 return (dsl_dir_phys(dd)->dd_origin_obj && 944 (dd->dd_pool->dp_origin_snap == NULL || 945 dsl_dir_phys(dd)->dd_origin_obj != 946 dd->dd_pool->dp_origin_snap->ds_object)); 947 } 948 949 void 950 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv) 951 { 952 mutex_enter(&dd->dd_lock); 953 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED, 954 dsl_dir_phys(dd)->dd_used_bytes); 955 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA, 956 dsl_dir_phys(dd)->dd_quota); 957 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION, 958 dsl_dir_phys(dd)->dd_reserved); 959 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO, 960 dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 : 961 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 / 962 dsl_dir_phys(dd)->dd_compressed_bytes)); 963 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED, 964 dsl_dir_phys(dd)->dd_uncompressed_bytes); 965 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 966 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP, 967 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]); 968 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS, 969 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]); 970 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV, 971 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]); 972 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD, 973 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] + 974 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]); 975 } 976 mutex_exit(&dd->dd_lock); 977 978 if (dsl_dir_is_zapified(dd)) { 979 uint64_t count; 980 objset_t *os = dd->dd_pool->dp_meta_objset; 981 982 if (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT, 983 sizeof (count), 1, &count) == 0) { 984 dsl_prop_nvlist_add_uint64(nv, 985 ZFS_PROP_FILESYSTEM_COUNT, count); 986 } 987 if (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT, 988 sizeof (count), 1, &count) == 0) { 989 dsl_prop_nvlist_add_uint64(nv, 990 ZFS_PROP_SNAPSHOT_COUNT, count); 991 } 992 } 993 994 if (dsl_dir_is_clone(dd)) { 995 dsl_dataset_t *ds; 996 char buf[ZFS_MAX_DATASET_NAME_LEN]; 997 998 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, 999 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds)); 1000 dsl_dataset_name(ds, buf); 1001 dsl_dataset_rele(ds, FTAG); 1002 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf); 1003 } 1004 } 1005 1006 void 1007 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx) 1008 { 1009 dsl_pool_t *dp = dd->dd_pool; 1010 1011 ASSERT(dsl_dir_phys(dd)); 1012 1013 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) { 1014 /* up the hold count until we can be written out */ 1015 dmu_buf_add_ref(dd->dd_dbuf, dd); 1016 } 1017 } 1018 1019 static int64_t 1020 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta) 1021 { 1022 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved); 1023 uint64_t new_accounted = 1024 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved); 1025 return (new_accounted - old_accounted); 1026 } 1027 1028 void 1029 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx) 1030 { 1031 ASSERT(dmu_tx_is_syncing(tx)); 1032 1033 mutex_enter(&dd->dd_lock); 1034 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]); 1035 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg, 1036 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024); 1037 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0; 1038 mutex_exit(&dd->dd_lock); 1039 1040 /* release the hold from dsl_dir_dirty */ 1041 dmu_buf_rele(dd->dd_dbuf, dd); 1042 } 1043 1044 static uint64_t 1045 dsl_dir_space_towrite(dsl_dir_t *dd) 1046 { 1047 uint64_t space = 0; 1048 int i; 1049 1050 ASSERT(MUTEX_HELD(&dd->dd_lock)); 1051 1052 for (i = 0; i < TXG_SIZE; i++) { 1053 space += dd->dd_space_towrite[i&TXG_MASK]; 1054 ASSERT3U(dd->dd_space_towrite[i&TXG_MASK], >=, 0); 1055 } 1056 return (space); 1057 } 1058 1059 /* 1060 * How much space would dd have available if ancestor had delta applied 1061 * to it? If ondiskonly is set, we're only interested in what's 1062 * on-disk, not estimated pending changes. 1063 */ 1064 uint64_t 1065 dsl_dir_space_available(dsl_dir_t *dd, 1066 dsl_dir_t *ancestor, int64_t delta, int ondiskonly) 1067 { 1068 uint64_t parentspace, myspace, quota, used; 1069 1070 /* 1071 * If there are no restrictions otherwise, assume we have 1072 * unlimited space available. 1073 */ 1074 quota = UINT64_MAX; 1075 parentspace = UINT64_MAX; 1076 1077 if (dd->dd_parent != NULL) { 1078 parentspace = dsl_dir_space_available(dd->dd_parent, 1079 ancestor, delta, ondiskonly); 1080 } 1081 1082 mutex_enter(&dd->dd_lock); 1083 if (dsl_dir_phys(dd)->dd_quota != 0) 1084 quota = dsl_dir_phys(dd)->dd_quota; 1085 used = dsl_dir_phys(dd)->dd_used_bytes; 1086 if (!ondiskonly) 1087 used += dsl_dir_space_towrite(dd); 1088 1089 if (dd->dd_parent == NULL) { 1090 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE); 1091 quota = MIN(quota, poolsize); 1092 } 1093 1094 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) { 1095 /* 1096 * We have some space reserved, in addition to what our 1097 * parent gave us. 1098 */ 1099 parentspace += dsl_dir_phys(dd)->dd_reserved - used; 1100 } 1101 1102 if (dd == ancestor) { 1103 ASSERT(delta <= 0); 1104 ASSERT(used >= -delta); 1105 used += delta; 1106 if (parentspace != UINT64_MAX) 1107 parentspace -= delta; 1108 } 1109 1110 if (used > quota) { 1111 /* over quota */ 1112 myspace = 0; 1113 } else { 1114 /* 1115 * the lesser of the space provided by our parent and 1116 * the space left in our quota 1117 */ 1118 myspace = MIN(parentspace, quota - used); 1119 } 1120 1121 mutex_exit(&dd->dd_lock); 1122 1123 return (myspace); 1124 } 1125 1126 struct tempreserve { 1127 list_node_t tr_node; 1128 dsl_dir_t *tr_ds; 1129 uint64_t tr_size; 1130 }; 1131 1132 static int 1133 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree, 1134 boolean_t ignorequota, boolean_t checkrefquota, list_t *tr_list, 1135 dmu_tx_t *tx, boolean_t first) 1136 { 1137 uint64_t txg = tx->tx_txg; 1138 uint64_t est_inflight, used_on_disk, quota, parent_rsrv; 1139 uint64_t deferred = 0; 1140 struct tempreserve *tr; 1141 int retval = EDQUOT; 1142 int txgidx = txg & TXG_MASK; 1143 int i; 1144 uint64_t ref_rsrv = 0; 1145 1146 ASSERT3U(txg, !=, 0); 1147 ASSERT3S(asize, >, 0); 1148 1149 mutex_enter(&dd->dd_lock); 1150 1151 /* 1152 * Check against the dsl_dir's quota. We don't add in the delta 1153 * when checking for over-quota because they get one free hit. 1154 */ 1155 est_inflight = dsl_dir_space_towrite(dd); 1156 for (i = 0; i < TXG_SIZE; i++) 1157 est_inflight += dd->dd_tempreserved[i]; 1158 used_on_disk = dsl_dir_phys(dd)->dd_used_bytes; 1159 1160 /* 1161 * On the first iteration, fetch the dataset's used-on-disk and 1162 * refreservation values. Also, if checkrefquota is set, test if 1163 * allocating this space would exceed the dataset's refquota. 1164 */ 1165 if (first && tx->tx_objset) { 1166 int error; 1167 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset; 1168 1169 error = dsl_dataset_check_quota(ds, checkrefquota, 1170 asize, est_inflight, &used_on_disk, &ref_rsrv); 1171 if (error) { 1172 mutex_exit(&dd->dd_lock); 1173 return (error); 1174 } 1175 } 1176 1177 /* 1178 * If this transaction will result in a net free of space, 1179 * we want to let it through. 1180 */ 1181 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0) 1182 quota = UINT64_MAX; 1183 else 1184 quota = dsl_dir_phys(dd)->dd_quota; 1185 1186 /* 1187 * Adjust the quota against the actual pool size at the root 1188 * minus any outstanding deferred frees. 1189 * To ensure that it's possible to remove files from a full 1190 * pool without inducing transient overcommits, we throttle 1191 * netfree transactions against a quota that is slightly larger, 1192 * but still within the pool's allocation slop. In cases where 1193 * we're very close to full, this will allow a steady trickle of 1194 * removes to get through. 1195 */ 1196 if (dd->dd_parent == NULL) { 1197 spa_t *spa = dd->dd_pool->dp_spa; 1198 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree); 1199 deferred = metaslab_class_get_deferred(spa_normal_class(spa)); 1200 if (poolsize - deferred < quota) { 1201 quota = poolsize - deferred; 1202 retval = ENOSPC; 1203 } 1204 } 1205 1206 /* 1207 * If they are requesting more space, and our current estimate 1208 * is over quota, they get to try again unless the actual 1209 * on-disk is over quota and there are no pending changes (which 1210 * may free up space for us). 1211 */ 1212 if (used_on_disk + (late_edquot ? 0 : est_inflight) >= quota) { 1213 if ((late_edquot == 0 && est_inflight > early_edquot_threshold) || 1214 used_on_disk + early_edquot_threshold < quota || 1215 (retval == ENOSPC && used_on_disk < quota + deferred)) 1216 retval = ERESTART; 1217 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK " 1218 "quota=%lluK tr=%lluK err=%d\n", 1219 used_on_disk>>10, est_inflight>>10, 1220 quota>>10, asize>>10, retval); 1221 mutex_exit(&dd->dd_lock); 1222 return (SET_ERROR(retval)); 1223 } 1224 1225 /* We need to up our estimated delta before dropping dd_lock */ 1226 dd->dd_tempreserved[txgidx] += asize; 1227 1228 parent_rsrv = parent_delta(dd, used_on_disk + est_inflight, 1229 asize - ref_rsrv); 1230 mutex_exit(&dd->dd_lock); 1231 1232 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1233 tr->tr_ds = dd; 1234 tr->tr_size = asize; 1235 list_insert_tail(tr_list, tr); 1236 1237 /* see if it's OK with our parent */ 1238 if (dd->dd_parent && parent_rsrv) { 1239 boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0); 1240 1241 return (dsl_dir_tempreserve_impl(dd->dd_parent, 1242 parent_rsrv, netfree, ismos, TRUE, tr_list, tx, FALSE)); 1243 } else { 1244 return (0); 1245 } 1246 } 1247 1248 /* 1249 * Reserve space in this dsl_dir, to be used in this tx's txg. 1250 * After the space has been dirtied (and dsl_dir_willuse_space() 1251 * has been called), the reservation should be canceled, using 1252 * dsl_dir_tempreserve_clear(). 1253 */ 1254 int 1255 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize, 1256 uint64_t fsize, uint64_t usize, void **tr_cookiep, dmu_tx_t *tx) 1257 { 1258 int err; 1259 list_t *tr_list; 1260 1261 if (asize == 0) { 1262 *tr_cookiep = NULL; 1263 return (0); 1264 } 1265 1266 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 1267 list_create(tr_list, sizeof (struct tempreserve), 1268 offsetof(struct tempreserve, tr_node)); 1269 ASSERT3S(asize, >, 0); 1270 ASSERT3S(fsize, >=, 0); 1271 1272 err = arc_tempreserve_space(lsize, tx->tx_txg); 1273 if (err == 0) { 1274 struct tempreserve *tr; 1275 1276 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP); 1277 tr->tr_size = lsize; 1278 list_insert_tail(tr_list, tr); 1279 } else { 1280 if (err == EAGAIN) { 1281 /* 1282 * If arc_memory_throttle() detected that pageout 1283 * is running and we are low on memory, we delay new 1284 * non-pageout transactions to give pageout an 1285 * advantage. 1286 * 1287 * It is unfortunate to be delaying while the caller's 1288 * locks are held. 1289 */ 1290 txg_delay(dd->dd_pool, tx->tx_txg, 1291 MSEC2NSEC(10), MSEC2NSEC(10)); 1292 err = SET_ERROR(ERESTART); 1293 } 1294 } 1295 1296 if (err == 0) { 1297 err = dsl_dir_tempreserve_impl(dd, asize, fsize >= asize, 1298 FALSE, asize > usize, tr_list, tx, TRUE); 1299 } 1300 1301 if (err != 0) 1302 dsl_dir_tempreserve_clear(tr_list, tx); 1303 else 1304 *tr_cookiep = tr_list; 1305 1306 return (err); 1307 } 1308 1309 /* 1310 * Clear a temporary reservation that we previously made with 1311 * dsl_dir_tempreserve_space(). 1312 */ 1313 void 1314 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx) 1315 { 1316 int txgidx = tx->tx_txg & TXG_MASK; 1317 list_t *tr_list = tr_cookie; 1318 struct tempreserve *tr; 1319 1320 ASSERT3U(tx->tx_txg, !=, 0); 1321 1322 if (tr_cookie == NULL) 1323 return; 1324 1325 while ((tr = list_head(tr_list)) != NULL) { 1326 if (tr->tr_ds) { 1327 mutex_enter(&tr->tr_ds->dd_lock); 1328 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=, 1329 tr->tr_size); 1330 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size; 1331 mutex_exit(&tr->tr_ds->dd_lock); 1332 } else { 1333 arc_tempreserve_clear(tr->tr_size); 1334 } 1335 list_remove(tr_list, tr); 1336 kmem_free(tr, sizeof (struct tempreserve)); 1337 } 1338 1339 kmem_free(tr_list, sizeof (list_t)); 1340 } 1341 1342 /* 1343 * This should be called from open context when we think we're going to write 1344 * or free space, for example when dirtying data. Be conservative; it's okay 1345 * to write less space or free more, but we don't want to write more or free 1346 * less than the amount specified. 1347 */ 1348 void 1349 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx) 1350 { 1351 int64_t parent_space; 1352 uint64_t est_used; 1353 1354 mutex_enter(&dd->dd_lock); 1355 if (space > 0) 1356 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space; 1357 1358 est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes; 1359 parent_space = parent_delta(dd, est_used, space); 1360 mutex_exit(&dd->dd_lock); 1361 1362 /* Make sure that we clean up dd_space_to* */ 1363 dsl_dir_dirty(dd, tx); 1364 1365 /* XXX this is potentially expensive and unnecessary... */ 1366 if (parent_space && dd->dd_parent) 1367 dsl_dir_willuse_space(dd->dd_parent, parent_space, tx); 1368 } 1369 1370 /* call from syncing context when we actually write/free space for this dd */ 1371 void 1372 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type, 1373 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx) 1374 { 1375 int64_t accounted_delta; 1376 1377 /* 1378 * dsl_dataset_set_refreservation_sync_impl() calls this with 1379 * dd_lock held, so that it can atomically update 1380 * ds->ds_reserved and the dsl_dir accounting, so that 1381 * dsl_dataset_check_quota() can see dataset and dir accounting 1382 * consistently. 1383 */ 1384 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock); 1385 1386 ASSERT(dmu_tx_is_syncing(tx)); 1387 ASSERT(type < DD_USED_NUM); 1388 1389 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1390 1391 if (needlock) 1392 mutex_enter(&dd->dd_lock); 1393 accounted_delta = 1394 parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used); 1395 ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used); 1396 ASSERT(compressed >= 0 || 1397 dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed); 1398 ASSERT(uncompressed >= 0 || 1399 dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed); 1400 dsl_dir_phys(dd)->dd_used_bytes += used; 1401 dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed; 1402 dsl_dir_phys(dd)->dd_compressed_bytes += compressed; 1403 1404 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) { 1405 ASSERT(used > 0 || 1406 dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used); 1407 dsl_dir_phys(dd)->dd_used_breakdown[type] += used; 1408 #ifdef DEBUG 1409 dd_used_t t; 1410 uint64_t u = 0; 1411 for (t = 0; t < DD_USED_NUM; t++) 1412 u += dsl_dir_phys(dd)->dd_used_breakdown[t]; 1413 ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes); 1414 #endif 1415 } 1416 if (needlock) 1417 mutex_exit(&dd->dd_lock); 1418 1419 if (dd->dd_parent != NULL) { 1420 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1421 accounted_delta, compressed, uncompressed, tx); 1422 dsl_dir_transfer_space(dd->dd_parent, 1423 used - accounted_delta, 1424 DD_USED_CHILD_RSRV, DD_USED_CHILD, tx); 1425 } 1426 } 1427 1428 void 1429 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta, 1430 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx) 1431 { 1432 ASSERT(dmu_tx_is_syncing(tx)); 1433 ASSERT(oldtype < DD_USED_NUM); 1434 ASSERT(newtype < DD_USED_NUM); 1435 1436 if (delta == 0 || 1437 !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN)) 1438 return; 1439 1440 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1441 mutex_enter(&dd->dd_lock); 1442 ASSERT(delta > 0 ? 1443 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta : 1444 dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta); 1445 ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta)); 1446 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta; 1447 dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta; 1448 mutex_exit(&dd->dd_lock); 1449 } 1450 1451 typedef struct dsl_dir_set_qr_arg { 1452 const char *ddsqra_name; 1453 zprop_source_t ddsqra_source; 1454 uint64_t ddsqra_value; 1455 } dsl_dir_set_qr_arg_t; 1456 1457 static int 1458 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx) 1459 { 1460 dsl_dir_set_qr_arg_t *ddsqra = arg; 1461 dsl_pool_t *dp = dmu_tx_pool(tx); 1462 dsl_dataset_t *ds; 1463 int error; 1464 uint64_t towrite, newval; 1465 1466 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1467 if (error != 0) 1468 return (error); 1469 1470 error = dsl_prop_predict(ds->ds_dir, "quota", 1471 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1472 if (error != 0) { 1473 dsl_dataset_rele(ds, FTAG); 1474 return (error); 1475 } 1476 1477 if (newval == 0) { 1478 dsl_dataset_rele(ds, FTAG); 1479 return (0); 1480 } 1481 1482 mutex_enter(&ds->ds_dir->dd_lock); 1483 /* 1484 * If we are doing the preliminary check in open context, and 1485 * there are pending changes, then don't fail it, since the 1486 * pending changes could under-estimate the amount of space to be 1487 * freed up. 1488 */ 1489 towrite = dsl_dir_space_towrite(ds->ds_dir); 1490 if ((dmu_tx_is_syncing(tx) || towrite == 0) && 1491 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved || 1492 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) { 1493 error = SET_ERROR(ENOSPC); 1494 } 1495 mutex_exit(&ds->ds_dir->dd_lock); 1496 dsl_dataset_rele(ds, FTAG); 1497 return (error); 1498 } 1499 1500 static void 1501 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx) 1502 { 1503 dsl_dir_set_qr_arg_t *ddsqra = arg; 1504 dsl_pool_t *dp = dmu_tx_pool(tx); 1505 dsl_dataset_t *ds; 1506 uint64_t newval; 1507 1508 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1509 1510 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1511 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA), 1512 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1513 &ddsqra->ddsqra_value, tx); 1514 1515 VERIFY0(dsl_prop_get_int_ds(ds, 1516 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval)); 1517 } else { 1518 newval = ddsqra->ddsqra_value; 1519 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1520 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval); 1521 } 1522 1523 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx); 1524 mutex_enter(&ds->ds_dir->dd_lock); 1525 dsl_dir_phys(ds->ds_dir)->dd_quota = newval; 1526 mutex_exit(&ds->ds_dir->dd_lock); 1527 dsl_dataset_rele(ds, FTAG); 1528 } 1529 1530 int 1531 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota) 1532 { 1533 dsl_dir_set_qr_arg_t ddsqra; 1534 1535 ddsqra.ddsqra_name = ddname; 1536 ddsqra.ddsqra_source = source; 1537 ddsqra.ddsqra_value = quota; 1538 1539 return (dsl_sync_task(ddname, dsl_dir_set_quota_check, 1540 dsl_dir_set_quota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE)); 1541 } 1542 1543 int 1544 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx) 1545 { 1546 dsl_dir_set_qr_arg_t *ddsqra = arg; 1547 dsl_pool_t *dp = dmu_tx_pool(tx); 1548 dsl_dataset_t *ds; 1549 dsl_dir_t *dd; 1550 uint64_t newval, used, avail; 1551 int error; 1552 1553 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds); 1554 if (error != 0) 1555 return (error); 1556 dd = ds->ds_dir; 1557 1558 /* 1559 * If we are doing the preliminary check in open context, the 1560 * space estimates may be inaccurate. 1561 */ 1562 if (!dmu_tx_is_syncing(tx)) { 1563 dsl_dataset_rele(ds, FTAG); 1564 return (0); 1565 } 1566 1567 error = dsl_prop_predict(ds->ds_dir, 1568 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1569 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval); 1570 if (error != 0) { 1571 dsl_dataset_rele(ds, FTAG); 1572 return (error); 1573 } 1574 1575 mutex_enter(&dd->dd_lock); 1576 used = dsl_dir_phys(dd)->dd_used_bytes; 1577 mutex_exit(&dd->dd_lock); 1578 1579 if (dd->dd_parent) { 1580 avail = dsl_dir_space_available(dd->dd_parent, 1581 NULL, 0, FALSE); 1582 } else { 1583 avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used; 1584 } 1585 1586 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) { 1587 uint64_t delta = MAX(used, newval) - 1588 MAX(used, dsl_dir_phys(dd)->dd_reserved); 1589 1590 if (delta > avail || 1591 (dsl_dir_phys(dd)->dd_quota > 0 && 1592 newval > dsl_dir_phys(dd)->dd_quota)) 1593 error = SET_ERROR(ENOSPC); 1594 } 1595 1596 dsl_dataset_rele(ds, FTAG); 1597 return (error); 1598 } 1599 1600 void 1601 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx) 1602 { 1603 uint64_t used; 1604 int64_t delta; 1605 1606 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1607 1608 mutex_enter(&dd->dd_lock); 1609 used = dsl_dir_phys(dd)->dd_used_bytes; 1610 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved); 1611 dsl_dir_phys(dd)->dd_reserved = value; 1612 1613 if (dd->dd_parent != NULL) { 1614 /* Roll up this additional usage into our ancestors */ 1615 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1616 delta, 0, 0, tx); 1617 } 1618 mutex_exit(&dd->dd_lock); 1619 } 1620 1621 1622 static void 1623 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx) 1624 { 1625 dsl_dir_set_qr_arg_t *ddsqra = arg; 1626 dsl_pool_t *dp = dmu_tx_pool(tx); 1627 dsl_dataset_t *ds; 1628 uint64_t newval; 1629 1630 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds)); 1631 1632 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) { 1633 dsl_prop_set_sync_impl(ds, 1634 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1635 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1, 1636 &ddsqra->ddsqra_value, tx); 1637 1638 VERIFY0(dsl_prop_get_int_ds(ds, 1639 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval)); 1640 } else { 1641 newval = ddsqra->ddsqra_value; 1642 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld", 1643 zfs_prop_to_name(ZFS_PROP_RESERVATION), 1644 (longlong_t)newval); 1645 } 1646 1647 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx); 1648 dsl_dataset_rele(ds, FTAG); 1649 } 1650 1651 int 1652 dsl_dir_set_reservation(const char *ddname, zprop_source_t source, 1653 uint64_t reservation) 1654 { 1655 dsl_dir_set_qr_arg_t ddsqra; 1656 1657 ddsqra.ddsqra_name = ddname; 1658 ddsqra.ddsqra_source = source; 1659 ddsqra.ddsqra_value = reservation; 1660 1661 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check, 1662 dsl_dir_set_reservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE)); 1663 } 1664 1665 static dsl_dir_t * 1666 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2) 1667 { 1668 for (; ds1; ds1 = ds1->dd_parent) { 1669 dsl_dir_t *dd; 1670 for (dd = ds2; dd; dd = dd->dd_parent) { 1671 if (ds1 == dd) 1672 return (dd); 1673 } 1674 } 1675 return (NULL); 1676 } 1677 1678 /* 1679 * If delta is applied to dd, how much of that delta would be applied to 1680 * ancestor? Syncing context only. 1681 */ 1682 static int64_t 1683 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor) 1684 { 1685 if (dd == ancestor) 1686 return (delta); 1687 1688 mutex_enter(&dd->dd_lock); 1689 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta); 1690 mutex_exit(&dd->dd_lock); 1691 return (would_change(dd->dd_parent, delta, ancestor)); 1692 } 1693 1694 typedef struct dsl_dir_rename_arg { 1695 const char *ddra_oldname; 1696 const char *ddra_newname; 1697 cred_t *ddra_cred; 1698 } dsl_dir_rename_arg_t; 1699 1700 /* ARGSUSED */ 1701 static int 1702 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1703 { 1704 int *deltap = arg; 1705 char namebuf[ZFS_MAX_DATASET_NAME_LEN]; 1706 1707 dsl_dataset_name(ds, namebuf); 1708 1709 if (strlen(namebuf) + *deltap >= ZFS_MAX_DATASET_NAME_LEN) 1710 return (SET_ERROR(ENAMETOOLONG)); 1711 return (0); 1712 } 1713 1714 static int 1715 dsl_dir_rename_check(void *arg, dmu_tx_t *tx) 1716 { 1717 dsl_dir_rename_arg_t *ddra = arg; 1718 dsl_pool_t *dp = dmu_tx_pool(tx); 1719 dsl_dir_t *dd, *newparent; 1720 const char *mynewname; 1721 int error; 1722 int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname); 1723 1724 /* target dir should exist */ 1725 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL); 1726 if (error != 0) 1727 return (error); 1728 1729 /* new parent should exist */ 1730 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG, 1731 &newparent, &mynewname); 1732 if (error != 0) { 1733 dsl_dir_rele(dd, FTAG); 1734 return (error); 1735 } 1736 1737 /* can't rename to different pool */ 1738 if (dd->dd_pool != newparent->dd_pool) { 1739 dsl_dir_rele(newparent, FTAG); 1740 dsl_dir_rele(dd, FTAG); 1741 return (SET_ERROR(ENXIO)); 1742 } 1743 1744 /* new name should not already exist */ 1745 if (mynewname == NULL) { 1746 dsl_dir_rele(newparent, FTAG); 1747 dsl_dir_rele(dd, FTAG); 1748 return (SET_ERROR(EEXIST)); 1749 } 1750 1751 /* if the name length is growing, validate child name lengths */ 1752 if (delta > 0) { 1753 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename, 1754 &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1755 if (error != 0) { 1756 dsl_dir_rele(newparent, FTAG); 1757 dsl_dir_rele(dd, FTAG); 1758 return (error); 1759 } 1760 } 1761 1762 if (dmu_tx_is_syncing(tx)) { 1763 if (spa_feature_is_active(dp->dp_spa, 1764 SPA_FEATURE_FS_SS_LIMIT)) { 1765 /* 1766 * Although this is the check function and we don't 1767 * normally make on-disk changes in check functions, 1768 * we need to do that here. 1769 * 1770 * Ensure this portion of the tree's counts have been 1771 * initialized in case the new parent has limits set. 1772 */ 1773 dsl_dir_init_fs_ss_count(dd, tx); 1774 } 1775 } 1776 1777 if (newparent != dd->dd_parent) { 1778 /* is there enough space? */ 1779 uint64_t myspace = 1780 MAX(dsl_dir_phys(dd)->dd_used_bytes, 1781 dsl_dir_phys(dd)->dd_reserved); 1782 objset_t *os = dd->dd_pool->dp_meta_objset; 1783 uint64_t fs_cnt = 0; 1784 uint64_t ss_cnt = 0; 1785 1786 if (dsl_dir_is_zapified(dd)) { 1787 int err; 1788 1789 err = zap_lookup(os, dd->dd_object, 1790 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 1791 &fs_cnt); 1792 if (err != ENOENT && err != 0) { 1793 dsl_dir_rele(newparent, FTAG); 1794 dsl_dir_rele(dd, FTAG); 1795 return (err); 1796 } 1797 1798 /* 1799 * have to add 1 for the filesystem itself that we're 1800 * moving 1801 */ 1802 fs_cnt++; 1803 1804 err = zap_lookup(os, dd->dd_object, 1805 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 1806 &ss_cnt); 1807 if (err != ENOENT && err != 0) { 1808 dsl_dir_rele(newparent, FTAG); 1809 dsl_dir_rele(dd, FTAG); 1810 return (err); 1811 } 1812 } 1813 1814 /* no rename into our descendant */ 1815 if (closest_common_ancestor(dd, newparent) == dd) { 1816 dsl_dir_rele(newparent, FTAG); 1817 dsl_dir_rele(dd, FTAG); 1818 return (SET_ERROR(EINVAL)); 1819 } 1820 1821 error = dsl_dir_transfer_possible(dd->dd_parent, 1822 newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred); 1823 if (error != 0) { 1824 dsl_dir_rele(newparent, FTAG); 1825 dsl_dir_rele(dd, FTAG); 1826 return (error); 1827 } 1828 } 1829 1830 dsl_dir_rele(newparent, FTAG); 1831 dsl_dir_rele(dd, FTAG); 1832 return (0); 1833 } 1834 1835 static void 1836 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx) 1837 { 1838 dsl_dir_rename_arg_t *ddra = arg; 1839 dsl_pool_t *dp = dmu_tx_pool(tx); 1840 dsl_dir_t *dd, *newparent; 1841 const char *mynewname; 1842 int error; 1843 objset_t *mos = dp->dp_meta_objset; 1844 1845 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL)); 1846 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent, 1847 &mynewname)); 1848 1849 /* Log this before we change the name. */ 1850 spa_history_log_internal_dd(dd, "rename", tx, 1851 "-> %s", ddra->ddra_newname); 1852 1853 if (newparent != dd->dd_parent) { 1854 objset_t *os = dd->dd_pool->dp_meta_objset; 1855 uint64_t fs_cnt = 0; 1856 uint64_t ss_cnt = 0; 1857 1858 /* 1859 * We already made sure the dd counts were initialized in the 1860 * check function. 1861 */ 1862 if (spa_feature_is_active(dp->dp_spa, 1863 SPA_FEATURE_FS_SS_LIMIT)) { 1864 VERIFY0(zap_lookup(os, dd->dd_object, 1865 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1, 1866 &fs_cnt)); 1867 /* add 1 for the filesystem itself that we're moving */ 1868 fs_cnt++; 1869 1870 VERIFY0(zap_lookup(os, dd->dd_object, 1871 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1, 1872 &ss_cnt)); 1873 } 1874 1875 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt, 1876 DD_FIELD_FILESYSTEM_COUNT, tx); 1877 dsl_fs_ss_count_adjust(newparent, fs_cnt, 1878 DD_FIELD_FILESYSTEM_COUNT, tx); 1879 1880 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt, 1881 DD_FIELD_SNAPSHOT_COUNT, tx); 1882 dsl_fs_ss_count_adjust(newparent, ss_cnt, 1883 DD_FIELD_SNAPSHOT_COUNT, tx); 1884 1885 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD, 1886 -dsl_dir_phys(dd)->dd_used_bytes, 1887 -dsl_dir_phys(dd)->dd_compressed_bytes, 1888 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 1889 dsl_dir_diduse_space(newparent, DD_USED_CHILD, 1890 dsl_dir_phys(dd)->dd_used_bytes, 1891 dsl_dir_phys(dd)->dd_compressed_bytes, 1892 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx); 1893 1894 if (dsl_dir_phys(dd)->dd_reserved > 1895 dsl_dir_phys(dd)->dd_used_bytes) { 1896 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved - 1897 dsl_dir_phys(dd)->dd_used_bytes; 1898 1899 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV, 1900 -unused_rsrv, 0, 0, tx); 1901 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV, 1902 unused_rsrv, 0, 0, tx); 1903 } 1904 } 1905 1906 dmu_buf_will_dirty(dd->dd_dbuf, tx); 1907 1908 /* remove from old parent zapobj */ 1909 error = zap_remove(mos, 1910 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj, 1911 dd->dd_myname, tx); 1912 ASSERT0(error); 1913 1914 (void) strcpy(dd->dd_myname, mynewname); 1915 dsl_dir_rele(dd->dd_parent, dd); 1916 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object; 1917 VERIFY0(dsl_dir_hold_obj(dp, 1918 newparent->dd_object, NULL, dd, &dd->dd_parent)); 1919 1920 /* add to new parent zapobj */ 1921 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj, 1922 dd->dd_myname, 8, 1, &dd->dd_object, tx)); 1923 1924 dsl_prop_notify_all(dd); 1925 1926 dsl_dir_rele(newparent, FTAG); 1927 dsl_dir_rele(dd, FTAG); 1928 } 1929 1930 int 1931 dsl_dir_rename(const char *oldname, const char *newname) 1932 { 1933 dsl_dir_rename_arg_t ddra; 1934 1935 ddra.ddra_oldname = oldname; 1936 ddra.ddra_newname = newname; 1937 ddra.ddra_cred = CRED(); 1938 1939 return (dsl_sync_task(oldname, 1940 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra, 1941 3, ZFS_SPACE_CHECK_RESERVED)); 1942 } 1943 1944 int 1945 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd, 1946 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr) 1947 { 1948 dsl_dir_t *ancestor; 1949 int64_t adelta; 1950 uint64_t avail; 1951 int err; 1952 1953 ancestor = closest_common_ancestor(sdd, tdd); 1954 adelta = would_change(sdd, -space, ancestor); 1955 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE); 1956 if (avail < space) 1957 return (SET_ERROR(ENOSPC)); 1958 1959 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT, 1960 ancestor, cr); 1961 if (err != 0) 1962 return (err); 1963 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT, 1964 ancestor, cr); 1965 if (err != 0) 1966 return (err); 1967 1968 return (0); 1969 } 1970 1971 timestruc_t 1972 dsl_dir_snap_cmtime(dsl_dir_t *dd) 1973 { 1974 timestruc_t t; 1975 1976 mutex_enter(&dd->dd_lock); 1977 t = dd->dd_snap_cmtime; 1978 mutex_exit(&dd->dd_lock); 1979 1980 return (t); 1981 } 1982 1983 void 1984 dsl_dir_snap_cmtime_update(dsl_dir_t *dd) 1985 { 1986 timestruc_t t; 1987 1988 gethrestime(&t); 1989 mutex_enter(&dd->dd_lock); 1990 dd->dd_snap_cmtime = t; 1991 mutex_exit(&dd->dd_lock); 1992 } 1993 1994 void 1995 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx) 1996 { 1997 objset_t *mos = dd->dd_pool->dp_meta_objset; 1998 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx); 1999 } 2000 2001 boolean_t 2002 dsl_dir_is_zapified(dsl_dir_t *dd) 2003 { 2004 dmu_object_info_t doi; 2005 2006 dmu_object_info_from_db(dd->dd_dbuf, &doi); 2007 return (doi.doi_type == DMU_OTN_ZAP_METADATA); 2008 } 2009