xref: /titanic_52/usr/src/lib/libc/i386/fp/_F_cplx_div.c (revision 7c478bd95313f5f23a4c958a745db2134aa03244)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * _F_cplx_div(z, w) returns z / w with infinities handled according
31  * to C99.
32  *
33  * If z and w are both finite and w is nonzero, _F_cplx_div(z, w)
34  * delivers the complex quotient q according to the usual formula:
35  * let a = Re(z), b = Im(z), c = Re(w), and d = Im(w); then q = x +
36  * I * y where x = (a * c + b * d) / r and y = (b * c - a * d) / r
37  * with r = c * c + d * d.  This implementation computes intermediate
38  * results in extended precision to avoid premature underflow or over-
39  * flow.
40  *
41  * If z is neither NaN nor zero and w is zero, or if z is infinite
42  * and w is finite and nonzero, _F_cplx_div delivers an infinite
43  * result.  If z is finite and w is infinite, _F_cplx_div delivers
44  * a zero result.
45  *
46  * If z and w are both zero or both infinite, or if either z or w is
47  * a complex NaN, _F_cplx_div delivers NaN + I * NaN.  C99 doesn't
48  * specify these cases.
49  *
50  * This implementation can raise spurious invalid operation, inexact,
51  * and division-by-zero exceptions.  C99 allows this.
52  *
53  * Warning: Do not attempt to "optimize" this code by removing multi-
54  * plications by zero.
55  */
56 
57 #if !defined(i386) && !defined(__i386) && !defined(__amd64)
58 #error This code is for x86 only
59 #endif
60 
61 static union {
62 	int	i;
63 	float	f;
64 } inf = {
65 	0x7f800000
66 };
67 
68 /*
69  * Return +1 if x is +Inf, -1 if x is -Inf, and 0 otherwise
70  */
71 static int
72 testinff(float x)
73 {
74 	union {
75 		int	i;
76 		float	f;
77 	} xx;
78 
79 	xx.f = x;
80 	return ((((xx.i << 1) - 0xff000000) == 0)? (1 | (xx.i >> 31)) : 0);
81 }
82 
83 float _Complex
84 _F_cplx_div(float _Complex z, float _Complex w)
85 {
86 	float _Complex	v;
87 	union {
88 		int	i;
89 		float	f;
90 	} cc, dd;
91 	float		a, b, c, d;
92 	long double	r, x, y;
93 	int		i, j, recalc;
94 
95 	/*
96 	 * The following is equivalent to
97 	 *
98 	 *  a = crealf(z); b = cimagf(z);
99 	 *  c = crealf(w); d = cimagf(w);
100 	 */
101 	a = ((float *)&z)[0];
102 	b = ((float *)&z)[1];
103 	c = ((float *)&w)[0];
104 	d = ((float *)&w)[1];
105 
106 	r = (long double)c * c + (long double)d * d;
107 
108 	if (r == 0.0f) {
109 		/* w is zero; multiply z by 1/Re(w) - I * Im(w) */
110 		c = 1.0f / c;
111 		i = testinff(a);
112 		j = testinff(b);
113 		if (i | j) { /* z is infinite */
114 			a = i;
115 			b = j;
116 		}
117 		((float *)&v)[0] = a * c + b * d;
118 		((float *)&v)[1] = b * c - a * d;
119 		return (v);
120 	}
121 
122 	r = 1.0f / r;
123 	x = ((long double)a * c + (long double)b * d) * r;
124 	y = ((long double)b * c - (long double)a * d) * r;
125 
126 	if (x != x && y != y) {
127 		/*
128 		 * Both x and y are NaN, so z and w can't both be finite
129 		 * and nonzero.  Since we handled the case w = 0 above,
130 		 * the only cases to check here are when one of z or w
131 		 * is infinite.
132 		 */
133 		r = 1.0f;
134 		recalc = 0;
135 		i = testinff(a);
136 		j = testinff(b);
137 		if (i | j) { /* z is infinite */
138 			/* "factor out" infinity */
139 			a = i;
140 			b = j;
141 			r = inf.f;
142 			recalc = 1;
143 		}
144 		i = testinff(c);
145 		j = testinff(d);
146 		if (i | j) { /* w is infinite */
147 			/*
148 			 * "factor out" infinity, being careful to preserve
149 			 * signs of finite values
150 			 */
151 			cc.f = c;
152 			dd.f = d;
153 			c = i? i : ((cc.i < 0)? -0.0f : 0.0f);
154 			d = j? j : ((dd.i < 0)? -0.0f : 0.0f);
155 			r *= 0.0f;
156 			recalc = 1;
157 		}
158 		if (recalc) {
159 			x = ((long double)a * c + (long double)b * d) * r;
160 			y = ((long double)b * c - (long double)a * d) * r;
161 		}
162 	}
163 
164 	/*
165 	 * The following is equivalent to
166 	 *
167 	 *  return x + I * y;
168 	 */
169 	((float *)&v)[0] = (float)x;
170 	((float *)&v)[1] = (float)y;
171 	return (v);
172 }
173