xref: /titanic_52/usr/src/cmd/mdb/common/modules/genunix/leaky_subr.c (revision cbdcbd056f15c9c9fd82d5543b3a502677c4d391)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <mdb/mdb_param.h>
30 #include <mdb/mdb_modapi.h>
31 
32 #include <sys/fs/ufs_inode.h>
33 #include <sys/kmem_impl.h>
34 #include <sys/vmem_impl.h>
35 #include <sys/modctl.h>
36 #include <sys/kobj.h>
37 #include <sys/kobj_impl.h>
38 #include <vm/seg_vn.h>
39 #include <vm/as.h>
40 #include <vm/seg_map.h>
41 #include <mdb/mdb_ctf.h>
42 
43 #include "kmem.h"
44 #include "leaky_impl.h"
45 
46 /*
47  * This file defines the genunix target for leaky.c.  There are three types
48  * of buffers in the kernel's heap:  TYPE_VMEM, for kmem_oversize allocations,
49  * TYPE_KMEM, for kmem_cache_alloc() allocations bufctl_audit_ts, and
50  * TYPE_CACHE, for kmem_cache_alloc() allocation without bufctl_audit_ts.
51  *
52  * See "leaky_impl.h" for the target interface definition.
53  */
54 
55 #define	TYPE_VMEM	0		/* lkb_data is the vmem_seg's size */
56 #define	TYPE_CACHE	1		/* lkb_cid is the bufctl's cache */
57 #define	TYPE_KMEM	2		/* lkb_cid is the bufctl's cache */
58 
59 #define	LKM_CTL_BUFCTL	0	/* normal allocation, PTR is bufctl */
60 #define	LKM_CTL_VMSEG	1	/* oversize allocation, PTR is vmem_seg_t */
61 #define	LKM_CTL_CACHE	2	/* normal alloc, non-debug, PTR is cache */
62 #define	LKM_CTL_MASK	3L
63 
64 #define	LKM_CTL(ptr, type)	(LKM_CTLPTR(ptr) | (type))
65 #define	LKM_CTLPTR(ctl)		((uintptr_t)(ctl) & ~(LKM_CTL_MASK))
66 #define	LKM_CTLTYPE(ctl)	((uintptr_t)(ctl) &  (LKM_CTL_MASK))
67 
68 static int kmem_lite_count = 0;	/* cache of the kernel's version */
69 
70 /*ARGSUSED*/
71 static int
72 leaky_mtab(uintptr_t addr, const kmem_bufctl_audit_t *bcp, leak_mtab_t **lmp)
73 {
74 	leak_mtab_t *lm = (*lmp)++;
75 
76 	lm->lkm_base = (uintptr_t)bcp->bc_addr;
77 	lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_BUFCTL);
78 
79 	return (WALK_NEXT);
80 }
81 
82 /*ARGSUSED*/
83 static int
84 leaky_mtab_addr(uintptr_t addr, void *ignored, leak_mtab_t **lmp)
85 {
86 	leak_mtab_t *lm = (*lmp)++;
87 
88 	lm->lkm_base = addr;
89 
90 	return (WALK_NEXT);
91 }
92 
93 static int
94 leaky_seg(uintptr_t addr, const vmem_seg_t *seg, leak_mtab_t **lmp)
95 {
96 	leak_mtab_t *lm = (*lmp)++;
97 
98 	lm->lkm_base = seg->vs_start;
99 	lm->lkm_limit = seg->vs_end;
100 	lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_VMSEG);
101 
102 	return (WALK_NEXT);
103 }
104 
105 static int
106 leaky_vmem_interested(const vmem_t *vmem)
107 {
108 	if (strcmp(vmem->vm_name, "kmem_oversize") != 0 &&
109 	    strcmp(vmem->vm_name, "static_alloc") != 0)
110 		return (0);
111 	return (1);
112 }
113 
114 static int
115 leaky_vmem(uintptr_t addr, const vmem_t *vmem, leak_mtab_t **lmp)
116 {
117 	if (!leaky_vmem_interested(vmem))
118 		return (WALK_NEXT);
119 
120 	if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)leaky_seg, lmp, addr) == -1)
121 		mdb_warn("can't walk vmem_alloc for kmem_oversize (%p)", addr);
122 
123 	return (WALK_NEXT);
124 }
125 
126 /*ARGSUSED*/
127 static int
128 leaky_estimate_vmem(uintptr_t addr, const vmem_t *vmem, size_t *est)
129 {
130 	if (!leaky_vmem_interested(vmem))
131 		return (WALK_NEXT);
132 
133 	*est += (int)(vmem->vm_kstat.vk_alloc.value.ui64 -
134 	    vmem->vm_kstat.vk_free.value.ui64);
135 
136 	return (WALK_NEXT);
137 }
138 
139 static int
140 leaky_interested(const kmem_cache_t *c)
141 {
142 	vmem_t vmem;
143 
144 	/*
145 	 * ignore HAT-related caches that happen to derive from kmem_default
146 	 */
147 	if (strcmp(c->cache_name, "sfmmu1_cache") == 0 ||
148 	    strcmp(c->cache_name, "sf_hment_cache") == 0 ||
149 	    strcmp(c->cache_name, "pa_hment_cache") == 0)
150 		return (0);
151 
152 	if (mdb_vread(&vmem, sizeof (vmem), (uintptr_t)c->cache_arena) == -1) {
153 		mdb_warn("cannot read arena %p for cache '%s'",
154 		    (uintptr_t)c->cache_arena, c->cache_name);
155 		return (0);
156 	}
157 
158 	/*
159 	 * If this cache isn't allocating from the kmem_default,
160 	 * kmem_firewall, or static vmem arenas, we're not interested.
161 	 */
162 	if (strcmp(vmem.vm_name, "kmem_default") != 0 &&
163 	    strcmp(vmem.vm_name, "kmem_firewall") != 0 &&
164 	    strcmp(vmem.vm_name, "static") != 0)
165 		return (0);
166 
167 	return (1);
168 }
169 
170 static int
171 leaky_estimate(uintptr_t addr, const kmem_cache_t *c, size_t *est)
172 {
173 	if (!leaky_interested(c))
174 		return (WALK_NEXT);
175 
176 	*est += kmem_estimate_allocated(addr, c);
177 
178 	return (WALK_NEXT);
179 }
180 
181 /*ARGSUSED*/
182 static int
183 leaky_cache(uintptr_t addr, const kmem_cache_t *c, leak_mtab_t **lmp)
184 {
185 	leak_mtab_t *lm = *lmp;
186 	mdb_walk_cb_t cb;
187 	const char *walk;
188 	int audit = (c->cache_flags & KMF_AUDIT);
189 
190 	if (!leaky_interested(c))
191 		return (WALK_NEXT);
192 
193 	if (audit) {
194 		walk = "bufctl";
195 		cb = (mdb_walk_cb_t)leaky_mtab;
196 	} else {
197 		walk = "kmem";
198 		cb = (mdb_walk_cb_t)leaky_mtab_addr;
199 	}
200 	if (mdb_pwalk(walk, cb, lmp, addr) == -1) {
201 		mdb_warn("can't walk kmem for cache %p (%s)", addr,
202 		    c->cache_name);
203 		return (WALK_DONE);
204 	}
205 
206 	for (; lm < *lmp; lm++) {
207 		lm->lkm_limit = lm->lkm_base + c->cache_bufsize;
208 		if (!audit)
209 			lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_CACHE);
210 	}
211 
212 	return (WALK_NEXT);
213 }
214 
215 /*ARGSUSED*/
216 static int
217 leaky_scan_buffer(uintptr_t addr, const void *ignored, const kmem_cache_t *c)
218 {
219 	leaky_grep(addr, c->cache_bufsize);
220 
221 	/*
222 	 * free, constructed KMF_LITE buffers keep their first uint64_t in
223 	 * their buftag's redzone.
224 	 */
225 	if (c->cache_flags & KMF_LITE) {
226 		/* LINTED alignment */
227 		kmem_buftag_t *btp = KMEM_BUFTAG(c, addr);
228 		leaky_grep((uintptr_t)&btp->bt_redzone,
229 		    sizeof (btp->bt_redzone));
230 	}
231 
232 	return (WALK_NEXT);
233 }
234 
235 /*ARGSUSED*/
236 static int
237 leaky_scan_cache(uintptr_t addr, const kmem_cache_t *c, void *ignored)
238 {
239 	if (!leaky_interested(c))
240 		return (WALK_NEXT);
241 
242 	/*
243 	 * Scan all of the free, constructed buffers, since they may have
244 	 * pointers to allocated objects.
245 	 */
246 	if (mdb_pwalk("freemem_constructed",
247 	    (mdb_walk_cb_t)leaky_scan_buffer, (void *)c, addr) == -1) {
248 		mdb_warn("can't walk freemem_constructed for cache %p (%s)",
249 		    addr, c->cache_name);
250 		return (WALK_DONE);
251 	}
252 
253 	return (WALK_NEXT);
254 }
255 
256 /*ARGSUSED*/
257 static int
258 leaky_modctl(uintptr_t addr, const struct modctl *m, int *ignored)
259 {
260 	struct module mod;
261 	char name[MODMAXNAMELEN];
262 
263 	if (m->mod_mp == NULL)
264 		return (WALK_NEXT);
265 
266 	if (mdb_vread(&mod, sizeof (mod), (uintptr_t)m->mod_mp) == -1) {
267 		mdb_warn("couldn't read modctl %p's module", addr);
268 		return (WALK_NEXT);
269 	}
270 
271 	if (mdb_readstr(name, sizeof (name), (uintptr_t)m->mod_modname) == -1)
272 		(void) mdb_snprintf(name, sizeof (name), "0x%p", addr);
273 
274 	leaky_grep((uintptr_t)m->mod_mp, sizeof (struct module));
275 	leaky_grep((uintptr_t)mod.data, mod.data_size);
276 	leaky_grep((uintptr_t)mod.bss, mod.bss_size);
277 
278 	return (WALK_NEXT);
279 }
280 
281 static int
282 leaky_thread(uintptr_t addr, const kthread_t *t, unsigned long *pagesize)
283 {
284 	uintptr_t size, base = (uintptr_t)t->t_stkbase;
285 	uintptr_t stk = (uintptr_t)t->t_stk;
286 
287 	/*
288 	 * If this thread isn't in memory, we can't look at its stack.  This
289 	 * may result in false positives, so we print a warning.
290 	 */
291 	if (!(t->t_schedflag & TS_LOAD)) {
292 		mdb_printf("findleaks: thread %p's stack swapped out; "
293 		    "false positives possible\n", addr);
294 		return (WALK_NEXT);
295 	}
296 
297 	if (t->t_state != TS_FREE)
298 		leaky_grep(base, stk - base);
299 
300 	/*
301 	 * There is always gunk hanging out between t_stk and the page
302 	 * boundary.  If this thread structure wasn't kmem allocated,
303 	 * this will include the thread structure itself.  If the thread
304 	 * _is_ kmem allocated, we'll be able to get to it via allthreads.
305 	 */
306 	size = *pagesize - (stk & (*pagesize - 1));
307 
308 	leaky_grep(stk, size);
309 
310 	return (WALK_NEXT);
311 }
312 
313 /*ARGSUSED*/
314 static int
315 leaky_kstat(uintptr_t addr, vmem_seg_t *seg, void *ignored)
316 {
317 	leaky_grep(seg->vs_start, seg->vs_end - seg->vs_start);
318 
319 	return (WALK_NEXT);
320 }
321 
322 static void
323 leaky_kludge(void)
324 {
325 	GElf_Sym sym;
326 	mdb_ctf_id_t id, rid;
327 
328 	int max_mem_nodes;
329 	uintptr_t *counters;
330 	size_t ncounters;
331 	ssize_t hwpm_size;
332 	int idx;
333 
334 	/*
335 	 * Because of DR, the page counters (which live in the kmem64 segment)
336 	 * can point into kmem_alloc()ed memory.  The "page_counters" array
337 	 * is multi-dimensional, and each entry points to an array of
338 	 * "hw_page_map_t"s which is "max_mem_nodes" in length.
339 	 *
340 	 * To keep this from having too much grotty knowledge of internals,
341 	 * we use CTF data to get the size of the structure.  For simplicity,
342 	 * we treat the page_counters array as a flat array of pointers, and
343 	 * use its size to determine how much to scan.  Unused entries will
344 	 * be NULL.
345 	 */
346 	if (mdb_lookup_by_name("page_counters", &sym) == -1) {
347 		mdb_warn("unable to lookup page_counters");
348 		return;
349 	}
350 
351 	if (mdb_readvar(&max_mem_nodes, "max_mem_nodes") == -1) {
352 		mdb_warn("unable to read max_mem_nodes");
353 		return;
354 	}
355 
356 	if (mdb_ctf_lookup_by_name("unix`hw_page_map_t", &id) == -1 ||
357 	    mdb_ctf_type_resolve(id, &rid) == -1 ||
358 	    (hwpm_size = mdb_ctf_type_size(rid)) < 0) {
359 		mdb_warn("unable to lookup unix`hw_page_map_t");
360 		return;
361 	}
362 
363 	counters = mdb_alloc(sym.st_size, UM_SLEEP | UM_GC);
364 
365 	if (mdb_vread(counters, sym.st_size, (uintptr_t)sym.st_value) == -1) {
366 		mdb_warn("unable to read page_counters");
367 		return;
368 	}
369 
370 	ncounters = sym.st_size / sizeof (counters);
371 
372 	for (idx = 0; idx < ncounters; idx++) {
373 		uintptr_t addr = counters[idx];
374 		if (addr != 0)
375 			leaky_grep(addr, hwpm_size * max_mem_nodes);
376 	}
377 }
378 
379 int
380 leaky_subr_estimate(size_t *estp)
381 {
382 	uintptr_t panicstr;
383 	int state;
384 
385 	if ((state = mdb_get_state()) == MDB_STATE_RUNNING) {
386 		mdb_warn("findleaks: can only be run on a system "
387 		    "dump or under kmdb; see dumpadm(1M)\n");
388 		return (DCMD_ERR);
389 	}
390 
391 	if (mdb_readvar(&panicstr, "panicstr") == -1) {
392 		mdb_warn("can't read variable 'panicstr'");
393 		return (DCMD_ERR);
394 	}
395 
396 	if (state != MDB_STATE_STOPPED && panicstr == NULL) {
397 		mdb_warn("findleaks: cannot be run on a live dump.\n");
398 		return (DCMD_ERR);
399 	}
400 
401 	if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_estimate, estp) == -1) {
402 		mdb_warn("couldn't walk 'kmem_cache'");
403 		return (DCMD_ERR);
404 	}
405 
406 	if (*estp == 0) {
407 		mdb_warn("findleaks: no buffers found\n");
408 		return (DCMD_ERR);
409 	}
410 
411 	if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_estimate_vmem, estp) == -1) {
412 		mdb_warn("couldn't walk 'vmem'");
413 		return (DCMD_ERR);
414 	}
415 
416 	return (DCMD_OK);
417 }
418 
419 int
420 leaky_subr_fill(leak_mtab_t **lmpp)
421 {
422 	if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_vmem, lmpp) == -1) {
423 		mdb_warn("couldn't walk 'vmem'");
424 		return (DCMD_ERR);
425 	}
426 
427 	if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_cache, lmpp) == -1) {
428 		mdb_warn("couldn't walk 'kmem_cache'");
429 		return (DCMD_ERR);
430 	}
431 
432 	if (mdb_readvar(&kmem_lite_count, "kmem_lite_count") == -1) {
433 		mdb_warn("couldn't read 'kmem_lite_count'");
434 		kmem_lite_count = 0;
435 	} else if (kmem_lite_count > 16) {
436 		mdb_warn("kmem_lite_count nonsensical, ignored\n");
437 		kmem_lite_count = 0;
438 	}
439 
440 	return (DCMD_OK);
441 }
442 
443 int
444 leaky_subr_run(void)
445 {
446 	unsigned long ps = PAGESIZE;
447 	uintptr_t kstat_arena;
448 	uintptr_t dmods;
449 
450 	leaky_kludge();
451 
452 	if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_scan_cache,
453 	    NULL) == -1) {
454 		mdb_warn("couldn't walk 'kmem_cache'");
455 		return (DCMD_ERR);
456 	}
457 
458 	if (mdb_walk("modctl", (mdb_walk_cb_t)leaky_modctl, NULL) == -1) {
459 		mdb_warn("couldn't walk 'modctl'");
460 		return (DCMD_ERR);
461 	}
462 
463 	/*
464 	 * If kmdb is loaded, we need to walk it's module list, since kmdb
465 	 * modctl structures can reference kmem allocations.
466 	 */
467 	if ((mdb_readvar(&dmods, "kdi_dmods") != -1) && (dmods != NULL))
468 		(void) mdb_pwalk("modctl", (mdb_walk_cb_t)leaky_modctl,
469 		    NULL, dmods);
470 
471 	if (mdb_walk("thread", (mdb_walk_cb_t)leaky_thread, &ps) == -1) {
472 		mdb_warn("couldn't walk 'thread'");
473 		return (DCMD_ERR);
474 	}
475 
476 	if (mdb_walk("deathrow", (mdb_walk_cb_t)leaky_thread, &ps) == -1) {
477 		mdb_warn("couldn't walk 'deathrow'");
478 		return (DCMD_ERR);
479 	}
480 
481 	if (mdb_readvar(&kstat_arena, "kstat_arena") == -1) {
482 		mdb_warn("couldn't read 'kstat_arena'");
483 		return (DCMD_ERR);
484 	}
485 
486 	if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)leaky_kstat,
487 	    NULL, kstat_arena) == -1) {
488 		mdb_warn("couldn't walk kstat vmem arena");
489 		return (DCMD_ERR);
490 	}
491 
492 	return (DCMD_OK);
493 }
494 
495 void
496 leaky_subr_add_leak(leak_mtab_t *lmp)
497 {
498 	uintptr_t addr = LKM_CTLPTR(lmp->lkm_bufctl);
499 	size_t depth;
500 
501 	switch (LKM_CTLTYPE(lmp->lkm_bufctl)) {
502 	case LKM_CTL_VMSEG: {
503 		vmem_seg_t vs;
504 
505 		if (mdb_vread(&vs, sizeof (vs), addr) == -1) {
506 			mdb_warn("couldn't read leaked vmem_seg at addr %p",
507 			    addr);
508 			return;
509 		}
510 		depth = MIN(vs.vs_depth, VMEM_STACK_DEPTH);
511 
512 		leaky_add_leak(TYPE_VMEM, addr, vs.vs_start, vs.vs_timestamp,
513 		    vs.vs_stack, depth, 0, (vs.vs_end - vs.vs_start));
514 		break;
515 	}
516 	case LKM_CTL_BUFCTL: {
517 		kmem_bufctl_audit_t bc;
518 
519 		if (mdb_vread(&bc, sizeof (bc), addr) == -1) {
520 			mdb_warn("couldn't read leaked bufctl at addr %p",
521 			    addr);
522 			return;
523 		}
524 
525 		depth = MIN(bc.bc_depth, KMEM_STACK_DEPTH);
526 
527 		/*
528 		 * The top of the stack will be kmem_cache_alloc+offset.
529 		 * Since the offset in kmem_cache_alloc() isn't interesting
530 		 * we skip that frame for the purposes of uniquifying stacks.
531 		 *
532 		 * We also use the cache pointer as the leaks's cid, to
533 		 * prevent the coalescing of leaks from different caches.
534 		 */
535 		if (depth > 0)
536 			depth--;
537 		leaky_add_leak(TYPE_KMEM, addr, (uintptr_t)bc.bc_addr,
538 		    bc.bc_timestamp, bc.bc_stack + 1, depth,
539 		    (uintptr_t)bc.bc_cache, 0);
540 		break;
541 	}
542 	case LKM_CTL_CACHE: {
543 		kmem_cache_t cache;
544 		kmem_buftag_lite_t bt;
545 		pc_t caller;
546 		int depth = 0;
547 
548 		/*
549 		 * For KMF_LITE caches, we can get the allocation PC
550 		 * out of the buftag structure.
551 		 */
552 		if (mdb_vread(&cache, sizeof (cache), addr) != -1 &&
553 		    (cache.cache_flags & KMF_LITE) &&
554 		    kmem_lite_count > 0 &&
555 		    mdb_vread(&bt, sizeof (bt),
556 		    /* LINTED alignment */
557 		    (uintptr_t)KMEM_BUFTAG(&cache, lmp->lkm_base)) != -1) {
558 			caller = bt.bt_history[0];
559 			depth = 1;
560 		}
561 		leaky_add_leak(TYPE_CACHE, lmp->lkm_base, lmp->lkm_base, 0,
562 		    &caller, depth, addr, addr);
563 		break;
564 	}
565 	default:
566 		mdb_warn("internal error: invalid leak_bufctl_t\n");
567 		break;
568 	}
569 }
570 
571 static void
572 leaky_subr_caller(const pc_t *stack, uint_t depth, char *buf, uintptr_t *pcp)
573 {
574 	int i;
575 	GElf_Sym sym;
576 	uintptr_t pc = 0;
577 
578 	buf[0] = 0;
579 
580 	for (i = 0; i < depth; i++) {
581 		pc = stack[i];
582 
583 		if (mdb_lookup_by_addr(pc,
584 		    MDB_SYM_FUZZY, buf, MDB_SYM_NAMLEN, &sym) == -1)
585 			continue;
586 		if (strncmp(buf, "kmem_", 5) == 0)
587 			continue;
588 		if (strncmp(buf, "vmem_", 5) == 0)
589 			continue;
590 		*pcp = pc;
591 
592 		return;
593 	}
594 
595 	/*
596 	 * We're only here if the entire call chain begins with "kmem_";
597 	 * this shouldn't happen, but we'll just use the last caller.
598 	 */
599 	*pcp = pc;
600 }
601 
602 int
603 leaky_subr_bufctl_cmp(const leak_bufctl_t *lhs, const leak_bufctl_t *rhs)
604 {
605 	char lbuf[MDB_SYM_NAMLEN], rbuf[MDB_SYM_NAMLEN];
606 	uintptr_t lcaller, rcaller;
607 	int rval;
608 
609 	leaky_subr_caller(lhs->lkb_stack, lhs->lkb_depth, lbuf, &lcaller);
610 	leaky_subr_caller(rhs->lkb_stack, lhs->lkb_depth, rbuf, &rcaller);
611 
612 	if (rval = strcmp(lbuf, rbuf))
613 		return (rval);
614 
615 	if (lcaller < rcaller)
616 		return (-1);
617 
618 	if (lcaller > rcaller)
619 		return (1);
620 
621 	if (lhs->lkb_data < rhs->lkb_data)
622 		return (-1);
623 
624 	if (lhs->lkb_data > rhs->lkb_data)
625 		return (1);
626 
627 	return (0);
628 }
629 
630 /*
631  * Global state variables used by the leaky_subr_dump_* routines.  Note that
632  * they are carefully cleared before use.
633  */
634 static int lk_vmem_seen;
635 static int lk_cache_seen;
636 static int lk_kmem_seen;
637 static size_t lk_ttl;
638 static size_t lk_bytes;
639 
640 void
641 leaky_subr_dump_start(int type)
642 {
643 	switch (type) {
644 	case TYPE_VMEM:
645 		lk_vmem_seen = 0;
646 		break;
647 	case TYPE_CACHE:
648 		lk_cache_seen = 0;
649 		break;
650 	case TYPE_KMEM:
651 		lk_kmem_seen = 0;
652 		break;
653 	default:
654 		break;
655 	}
656 
657 	lk_ttl = 0;
658 	lk_bytes = 0;
659 }
660 
661 void
662 leaky_subr_dump(const leak_bufctl_t *lkb, int verbose)
663 {
664 	const leak_bufctl_t *cur;
665 	kmem_cache_t cache;
666 	size_t min, max, size;
667 	char sz[30];
668 	char c[MDB_SYM_NAMLEN];
669 	uintptr_t caller;
670 
671 	if (verbose) {
672 		lk_ttl = 0;
673 		lk_bytes = 0;
674 	}
675 
676 	switch (lkb->lkb_type) {
677 	case TYPE_VMEM:
678 		if (!verbose && !lk_vmem_seen) {
679 			lk_vmem_seen = 1;
680 			mdb_printf("%-16s %7s %?s %s\n",
681 			    "BYTES", "LEAKED", "VMEM_SEG", "CALLER");
682 		}
683 
684 		min = max = lkb->lkb_data;
685 
686 		for (cur = lkb; cur != NULL; cur = cur->lkb_next) {
687 			size = cur->lkb_data;
688 
689 			if (size < min)
690 				min = size;
691 			if (size > max)
692 				max = size;
693 
694 			lk_ttl++;
695 			lk_bytes += size;
696 		}
697 
698 		if (min == max)
699 			(void) mdb_snprintf(sz, sizeof (sz), "%ld", min);
700 		else
701 			(void) mdb_snprintf(sz, sizeof (sz), "%ld-%ld",
702 			    min, max);
703 
704 		if (!verbose) {
705 			leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth,
706 			    c, &caller);
707 
708 			if (caller != 0) {
709 				(void) mdb_snprintf(c, sizeof (c),
710 				    "%a", caller);
711 			} else {
712 				(void) mdb_snprintf(c, sizeof (c),
713 				    "%s", "?");
714 			}
715 			mdb_printf("%-16s %7d %?p %s\n", sz, lkb->lkb_dups + 1,
716 			    lkb->lkb_addr, c);
717 		} else {
718 			mdb_arg_t v;
719 
720 			if (lk_ttl == 1)
721 				mdb_printf("kmem_oversize leak: 1 vmem_seg, "
722 				    "%ld bytes\n", lk_bytes);
723 			else
724 				mdb_printf("kmem_oversize leak: %d vmem_segs, "
725 				    "%s bytes each, %ld bytes total\n",
726 				    lk_ttl, sz, lk_bytes);
727 
728 			v.a_type = MDB_TYPE_STRING;
729 			v.a_un.a_str = "-v";
730 
731 			if (mdb_call_dcmd("vmem_seg", lkb->lkb_addr,
732 			    DCMD_ADDRSPEC, 1, &v) == -1) {
733 				mdb_warn("'%p::vmem_seg -v' failed",
734 				    lkb->lkb_addr);
735 			}
736 		}
737 		return;
738 
739 	case TYPE_CACHE:
740 		if (!verbose && !lk_cache_seen) {
741 			lk_cache_seen = 1;
742 			if (lk_vmem_seen)
743 				mdb_printf("\n");
744 			mdb_printf("%-?s %7s %?s %s\n",
745 			    "CACHE", "LEAKED", "BUFFER", "CALLER");
746 		}
747 
748 		if (mdb_vread(&cache, sizeof (cache), lkb->lkb_data) == -1) {
749 			/*
750 			 * This _really_ shouldn't happen; we shouldn't
751 			 * have been able to get this far if this
752 			 * cache wasn't readable.
753 			 */
754 			mdb_warn("can't read cache %p for leaked "
755 			    "buffer %p", lkb->lkb_data, lkb->lkb_addr);
756 			return;
757 		}
758 
759 		lk_ttl += lkb->lkb_dups + 1;
760 		lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize;
761 
762 		caller = (lkb->lkb_depth == 0) ? 0 : lkb->lkb_stack[0];
763 		if (caller != 0) {
764 			(void) mdb_snprintf(c, sizeof (c), "%a", caller);
765 		} else {
766 			(void) mdb_snprintf(c, sizeof (c),
767 			    "%s", (verbose) ? "" : "?");
768 		}
769 
770 		if (!verbose) {
771 			mdb_printf("%0?p %7d %0?p %s\n", lkb->lkb_cid,
772 			    lkb->lkb_dups + 1, lkb->lkb_addr, c);
773 		} else {
774 			if (lk_ttl == 1)
775 				mdb_printf("%s leak: 1 buffer, %ld bytes,\n",
776 				    cache.cache_name, lk_bytes);
777 			else
778 				mdb_printf("%s leak: %d buffers, "
779 				    "%ld bytes each, %ld bytes total,\n",
780 				    cache.cache_name, lk_ttl,
781 				    cache.cache_bufsize, lk_bytes);
782 
783 			mdb_printf("    sample addr %p%s%s\n",
784 			    lkb->lkb_addr, (caller == 0) ? "" : ", caller ", c);
785 		}
786 		return;
787 
788 	case TYPE_KMEM:
789 		if (!verbose && !lk_kmem_seen) {
790 			lk_kmem_seen = 1;
791 			if (lk_vmem_seen || lk_cache_seen)
792 				mdb_printf("\n");
793 			mdb_printf("%-?s %7s %?s %s\n",
794 			    "CACHE", "LEAKED", "BUFCTL", "CALLER");
795 		}
796 
797 		if (mdb_vread(&cache, sizeof (cache), lkb->lkb_cid) == -1) {
798 			/*
799 			 * This _really_ shouldn't happen; we shouldn't
800 			 * have been able to get this far if this
801 			 * cache wasn't readable.
802 			 */
803 			mdb_warn("can't read cache %p for leaked "
804 			    "bufctl %p", lkb->lkb_cid, lkb->lkb_addr);
805 			return;
806 		}
807 
808 		lk_ttl += lkb->lkb_dups + 1;
809 		lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize;
810 
811 		if (!verbose) {
812 			leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth,
813 			    c, &caller);
814 
815 			if (caller != 0) {
816 				(void) mdb_snprintf(c, sizeof (c),
817 				    "%a", caller);
818 			} else {
819 				(void) mdb_snprintf(c, sizeof (c),
820 				    "%s", "?");
821 			}
822 			mdb_printf("%0?p %7d %0?p %s\n", lkb->lkb_cid,
823 			    lkb->lkb_dups + 1, lkb->lkb_addr, c);
824 		} else {
825 			mdb_arg_t v;
826 
827 			if (lk_ttl == 1)
828 				mdb_printf("%s leak: 1 buffer, %ld bytes\n",
829 				    cache.cache_name, lk_bytes);
830 			else
831 				mdb_printf("%s leak: %d buffers, "
832 				    "%ld bytes each, %ld bytes total\n",
833 				    cache.cache_name, lk_ttl,
834 				    cache.cache_bufsize, lk_bytes);
835 
836 			v.a_type = MDB_TYPE_STRING;
837 			v.a_un.a_str = "-v";
838 
839 			if (mdb_call_dcmd("bufctl", lkb->lkb_addr,
840 			    DCMD_ADDRSPEC, 1, &v) == -1) {
841 				mdb_warn("'%p::bufctl -v' failed",
842 				    lkb->lkb_addr);
843 			}
844 		}
845 		return;
846 
847 	default:
848 		return;
849 	}
850 }
851 
852 void
853 leaky_subr_dump_end(int type)
854 {
855 	int i;
856 	int width;
857 	const char *leaks;
858 
859 	switch (type) {
860 	case TYPE_VMEM:
861 		if (!lk_vmem_seen)
862 			return;
863 
864 		width = 16;
865 		leaks = "kmem_oversize leak";
866 		break;
867 
868 	case TYPE_CACHE:
869 		if (!lk_cache_seen)
870 			return;
871 
872 		width = sizeof (uintptr_t) * 2;
873 		leaks = "buffer";
874 		break;
875 
876 	case TYPE_KMEM:
877 		if (!lk_kmem_seen)
878 			return;
879 
880 		width = sizeof (uintptr_t) * 2;
881 		leaks = "buffer";
882 		break;
883 
884 	default:
885 		return;
886 	}
887 
888 	for (i = 0; i < 72; i++)
889 		mdb_printf("-");
890 	mdb_printf("\n%*s %7ld %s%s, %ld byte%s\n",
891 	    width, "Total", lk_ttl, leaks, (lk_ttl == 1) ? "" : "s",
892 	    lk_bytes, (lk_bytes == 1) ? "" : "s");
893 }
894 
895 int
896 leaky_subr_invoke_callback(const leak_bufctl_t *lkb, mdb_walk_cb_t cb,
897     void *cbdata)
898 {
899 	kmem_bufctl_audit_t bc;
900 	vmem_seg_t vs;
901 
902 	switch (lkb->lkb_type) {
903 	case TYPE_VMEM:
904 		if (mdb_vread(&vs, sizeof (vs), lkb->lkb_addr) == -1) {
905 			mdb_warn("unable to read vmem_seg at %p",
906 			    lkb->lkb_addr);
907 			return (WALK_NEXT);
908 		}
909 		return (cb(lkb->lkb_addr, &vs, cbdata));
910 
911 	case TYPE_CACHE:
912 		return (cb(lkb->lkb_addr, NULL, cbdata));
913 
914 	case TYPE_KMEM:
915 		if (mdb_vread(&bc, sizeof (bc), lkb->lkb_addr) == -1) {
916 			mdb_warn("unable to read bufctl at %p",
917 			    lkb->lkb_addr);
918 			return (WALK_NEXT);
919 		}
920 		return (cb(lkb->lkb_addr, &bc, cbdata));
921 	default:
922 		return (WALK_NEXT);
923 	}
924 }
925