1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * MAC Services Module 29 * 30 * The GLDv3 framework locking - The MAC layer 31 * -------------------------------------------- 32 * 33 * The MAC layer is central to the GLD framework and can provide the locking 34 * framework needed for itself and for the use of MAC clients. MAC end points 35 * are fairly disjoint and don't share a lot of state. So a coarse grained 36 * multi-threading scheme is to single thread all create/modify/delete or set 37 * type of control operations on a per mac end point while allowing data threads 38 * concurrently. 39 * 40 * Control operations (set) that modify a mac end point are always serialized on 41 * a per mac end point basis, We have at most 1 such thread per mac end point 42 * at a time. 43 * 44 * All other operations that are not serialized are essentially multi-threaded. 45 * For example a control operation (get) like getting statistics which may not 46 * care about reading values atomically or data threads sending or receiving 47 * data. Mostly these type of operations don't modify the control state. Any 48 * state these operations care about are protected using traditional locks. 49 * 50 * The perimeter only serializes serial operations. It does not imply there 51 * aren't any other concurrent operations. However a serialized operation may 52 * sometimes need to make sure it is the only thread. In this case it needs 53 * to use reference counting mechanisms to cv_wait until any current data 54 * threads are done. 55 * 56 * The mac layer itself does not hold any locks across a call to another layer. 57 * The perimeter is however held across a down call to the driver to make the 58 * whole control operation atomic with respect to other control operations. 59 * Also the data path and get type control operations may proceed concurrently. 60 * These operations synchronize with the single serial operation on a given mac 61 * end point using regular locks. The perimeter ensures that conflicting 62 * operations like say a mac_multicast_add and a mac_multicast_remove on the 63 * same mac end point don't interfere with each other and also ensures that the 64 * changes in the mac layer and the call to the underlying driver to say add a 65 * multicast address are done atomically without interference from a thread 66 * trying to delete the same address. 67 * 68 * For example, consider 69 * mac_multicst_add() 70 * { 71 * mac_perimeter_enter(); serialize all control operations 72 * 73 * grab list lock protect against access by data threads 74 * add to list 75 * drop list lock 76 * 77 * call driver's mi_multicst 78 * 79 * mac_perimeter_exit(); 80 * } 81 * 82 * To lessen the number of serialization locks and simplify the lock hierarchy, 83 * we serialize all the control operations on a per mac end point by using a 84 * single serialization lock called the perimeter. We allow recursive entry into 85 * the perimeter to facilitate use of this mechanism by both the mac client and 86 * the MAC layer itself. 87 * 88 * MAC client means an entity that does an operation on a mac handle 89 * obtained from a mac_open/mac_client_open. Similarly MAC driver means 90 * an entity that does an operation on a mac handle obtained from a 91 * mac_register. An entity could be both client and driver but on different 92 * handles eg. aggr. and should only make the corresponding mac interface calls 93 * i.e. mac driver interface or mac client interface as appropriate for that 94 * mac handle. 95 * 96 * General rules. 97 * ------------- 98 * 99 * R1. The lock order of upcall threads is natually opposite to downcall 100 * threads. Hence upcalls must not hold any locks across layers for fear of 101 * recursive lock enter and lock order violation. This applies to all layers. 102 * 103 * R2. The perimeter is just another lock. Since it is held in the down 104 * direction, acquiring the perimeter in an upcall is prohibited as it would 105 * cause a deadlock. This applies to all layers. 106 * 107 * Note that upcalls that need to grab the mac perimeter (for example 108 * mac_notify upcalls) can still achieve that by posting the request to a 109 * thread, which can then grab all the required perimeters and locks in the 110 * right global order. Note that in the above example the mac layer iself 111 * won't grab the mac perimeter in the mac_notify upcall, instead the upcall 112 * to the client must do that. Please see the aggr code for an example. 113 * 114 * MAC client rules 115 * ---------------- 116 * 117 * R3. A MAC client may use the MAC provided perimeter facility to serialize 118 * control operations on a per mac end point. It does this by by acquring 119 * and holding the perimeter across a sequence of calls to the mac layer. 120 * This ensures atomicity across the entire block of mac calls. In this 121 * model the MAC client must not hold any client locks across the calls to 122 * the mac layer. This model is the preferred solution. 123 * 124 * R4. However if a MAC client has a lot of global state across all mac end 125 * points the per mac end point serialization may not be sufficient. In this 126 * case the client may choose to use global locks or use its own serialization. 127 * To avoid deadlocks, these client layer locks held across the mac calls 128 * in the control path must never be acquired by the data path for the reason 129 * mentioned below. 130 * 131 * (Assume that a control operation that holds a client lock blocks in the 132 * mac layer waiting for upcall reference counts to drop to zero. If an upcall 133 * data thread that holds this reference count, tries to acquire the same 134 * client lock subsequently it will deadlock). 135 * 136 * A MAC client may follow either the R3 model or the R4 model, but can't 137 * mix both. In the former, the hierarchy is Perim -> client locks, but in 138 * the latter it is client locks -> Perim. 139 * 140 * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able 141 * context since they may block while trying to acquire the perimeter. 142 * In addition some calls may block waiting for upcall refcnts to come down to 143 * zero. 144 * 145 * R6. MAC clients must make sure that they are single threaded and all threads 146 * from the top (in particular data threads) have finished before calling 147 * mac_client_close. The MAC framework does not track the number of client 148 * threads using the mac client handle. Also mac clients must make sure 149 * they have undone all the control operations before calling mac_client_close. 150 * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding 151 * mac_unicast_add/mac_multicast_add. 152 * 153 * MAC framework rules 154 * ------------------- 155 * 156 * R7. The mac layer itself must not hold any mac layer locks (except the mac 157 * perimeter) across a call to any other layer from the mac layer. The call to 158 * any other layer could be via mi_* entry points, classifier entry points into 159 * the driver or via upcall pointers into layers above. The mac perimeter may 160 * be acquired or held only in the down direction, for e.g. when calling into 161 * a mi_* driver enty point to provide atomicity of the operation. 162 * 163 * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across 164 * mac driver interfaces, the MAC layer must provide a cut out for control 165 * interfaces like upcall notifications and start them in a separate thread. 166 * 167 * R9. Note that locking order also implies a plumbing order. For example 168 * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt 169 * to plumb in any other order must be failed at mac_open time, otherwise it 170 * could lead to deadlocks due to inverse locking order. 171 * 172 * R10. MAC driver interfaces must not block since the driver could call them 173 * in interrupt context. 174 * 175 * R11. Walkers must preferably not hold any locks while calling walker 176 * callbacks. Instead these can operate on reference counts. In simple 177 * callbacks it may be ok to hold a lock and call the callbacks, but this is 178 * harder to maintain in the general case of arbitrary callbacks. 179 * 180 * R12. The MAC layer must protect upcall notification callbacks using reference 181 * counts rather than holding locks across the callbacks. 182 * 183 * R13. Given the variety of drivers, it is preferable if the MAC layer can make 184 * sure that any pointers (such as mac ring pointers) it passes to the driver 185 * remain valid until mac unregister time. Currently the mac layer achieves 186 * this by using generation numbers for rings and freeing the mac rings only 187 * at unregister time. The MAC layer must provide a layer of indirection and 188 * must not expose underlying driver rings or driver data structures/pointers 189 * directly to MAC clients. 190 * 191 * MAC driver rules 192 * ---------------- 193 * 194 * R14. It would be preferable if MAC drivers don't hold any locks across any 195 * mac call. However at a minimum they must not hold any locks across data 196 * upcalls. They must also make sure that all references to mac data structures 197 * are cleaned up and that it is single threaded at mac_unregister time. 198 * 199 * R15. MAC driver interfaces don't block and so the action may be done 200 * asynchronously in a separate thread as for example handling notifications. 201 * The driver must not assume that the action is complete when the call 202 * returns. 203 * 204 * R16. Drivers must maintain a generation number per Rx ring, and pass it 205 * back to mac_rx_ring(); They are expected to increment the generation 206 * number whenever the ring's stop routine is invoked. 207 * See comments in mac_rx_ring(); 208 * 209 * R17 Similarly mi_stop is another synchronization point and the driver must 210 * ensure that all upcalls are done and there won't be any future upcall 211 * before returning from mi_stop. 212 * 213 * R18. The driver may assume that all set/modify control operations via 214 * the mi_* entry points are single threaded on a per mac end point. 215 * 216 * Lock and Perimeter hierarchy scenarios 217 * --------------------------------------- 218 * 219 * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] 220 * 221 * ft_lock -> fe_lock [mac_flow_lookup] 222 * 223 * mi_rw_lock -> fe_lock [mac_bcast_send] 224 * 225 * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] 226 * 227 * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] 228 * 229 * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] 230 * 231 * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac 232 * client to driver. In the case of clients that explictly use the mac provided 233 * perimeter mechanism for its serialization, the hierarchy is 234 * Perimeter -> mac layer locks, since the client never holds any locks across 235 * the mac calls. In the case of clients that use its own locks the hierarchy 236 * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly 237 * calls mac_perim_enter/exit in this case. 238 * 239 * Subflow creation rules 240 * --------------------------- 241 * o In case of a user specified cpulist present on underlying link and flows, 242 * the flows cpulist must be a subset of the underlying link. 243 * o In case of a user specified fanout mode present on link and flow, the 244 * subflow fanout count has to be less than or equal to that of the 245 * underlying link. The cpu-bindings for the subflows will be a subset of 246 * the underlying link. 247 * o In case if no cpulist specified on both underlying link and flow, the 248 * underlying link relies on a MAC tunable to provide out of box fanout. 249 * The subflow will have no cpulist (the subflow will be unbound) 250 * o In case if no cpulist is specified on the underlying link, a subflow can 251 * carry either a user-specified cpulist or fanout count. The cpu-bindings 252 * for the subflow will not adhere to restriction that they need to be subset 253 * of the underlying link. 254 * o In case where the underlying link is carrying either a user specified 255 * cpulist or fanout mode and for a unspecified subflow, the subflow will be 256 * created unbound. 257 * o While creating unbound subflows, bandwidth mode changes attempt to 258 * figure a right fanout count. In such cases the fanout count will override 259 * the unbound cpu-binding behavior. 260 * o In addition to this, while cycling between flow and link properties, we 261 * impose a restriction that if a link property has a subflow with 262 * user-specified attributes, we will not allow changing the link property. 263 * The administrator needs to reset all the user specified properties for the 264 * subflows before attempting a link property change. 265 * Some of the above rules can be overridden by specifying additional command 266 * line options while creating or modifying link or subflow properties. 267 */ 268 269 #include <sys/types.h> 270 #include <sys/conf.h> 271 #include <sys/id_space.h> 272 #include <sys/esunddi.h> 273 #include <sys/stat.h> 274 #include <sys/mkdev.h> 275 #include <sys/stream.h> 276 #include <sys/strsun.h> 277 #include <sys/strsubr.h> 278 #include <sys/dlpi.h> 279 #include <sys/modhash.h> 280 #include <sys/mac_provider.h> 281 #include <sys/mac_client_impl.h> 282 #include <sys/mac_soft_ring.h> 283 #include <sys/mac_impl.h> 284 #include <sys/mac.h> 285 #include <sys/dls.h> 286 #include <sys/dld.h> 287 #include <sys/modctl.h> 288 #include <sys/fs/dv_node.h> 289 #include <sys/thread.h> 290 #include <sys/proc.h> 291 #include <sys/callb.h> 292 #include <sys/cpuvar.h> 293 #include <sys/atomic.h> 294 #include <sys/bitmap.h> 295 #include <sys/sdt.h> 296 #include <sys/mac_flow.h> 297 #include <sys/ddi_intr_impl.h> 298 #include <sys/disp.h> 299 #include <sys/sdt.h> 300 #include <sys/vnic.h> 301 #include <sys/vnic_impl.h> 302 #include <sys/vlan.h> 303 #include <inet/ip.h> 304 #include <inet/ip6.h> 305 #include <sys/exacct.h> 306 #include <sys/exacct_impl.h> 307 #include <inet/nd.h> 308 #include <sys/ethernet.h> 309 310 #define IMPL_HASHSZ 67 /* prime */ 311 312 kmem_cache_t *i_mac_impl_cachep; 313 mod_hash_t *i_mac_impl_hash; 314 krwlock_t i_mac_impl_lock; 315 uint_t i_mac_impl_count; 316 static kmem_cache_t *mac_ring_cache; 317 static id_space_t *minor_ids; 318 static uint32_t minor_count; 319 320 /* 321 * Logging stuff. Perhaps mac_logging_interval could be broken into 322 * mac_flow_log_interval and mac_link_log_interval if we want to be 323 * able to schedule them differently. 324 */ 325 uint_t mac_logging_interval; 326 boolean_t mac_flow_log_enable; 327 boolean_t mac_link_log_enable; 328 timeout_id_t mac_logging_timer; 329 330 /* for debugging, see MAC_DBG_PRT() in mac_impl.h */ 331 int mac_dbg = 0; 332 333 #define MACTYPE_KMODDIR "mac" 334 #define MACTYPE_HASHSZ 67 335 static mod_hash_t *i_mactype_hash; 336 /* 337 * i_mactype_lock synchronizes threads that obtain references to mactype_t 338 * structures through i_mactype_getplugin(). 339 */ 340 static kmutex_t i_mactype_lock; 341 342 /* 343 * mac_tx_percpu_cnt 344 * 345 * Number of per cpu locks per mac_client_impl_t. Used by the transmit side 346 * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. 347 * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. 348 * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. 349 */ 350 int mac_tx_percpu_cnt; 351 int mac_tx_percpu_cnt_max = 128; 352 353 /* 354 * Call back functions for the bridge module. These are guaranteed to be valid 355 * when holding a reference on a link or when holding mip->mi_bridge_lock and 356 * mi_bridge_link is non-NULL. 357 */ 358 mac_bridge_tx_t mac_bridge_tx_cb; 359 mac_bridge_rx_t mac_bridge_rx_cb; 360 mac_bridge_ref_t mac_bridge_ref_cb; 361 mac_bridge_ls_t mac_bridge_ls_cb; 362 363 static int i_mac_constructor(void *, void *, int); 364 static void i_mac_destructor(void *, void *); 365 static int i_mac_ring_ctor(void *, void *, int); 366 static void i_mac_ring_dtor(void *, void *); 367 static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); 368 void mac_tx_client_flush(mac_client_impl_t *); 369 void mac_tx_client_block(mac_client_impl_t *); 370 static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); 371 static int mac_start_group_and_rings(mac_group_t *); 372 static void mac_stop_group_and_rings(mac_group_t *); 373 374 /* 375 * Module initialization functions. 376 */ 377 378 void 379 mac_init(void) 380 { 381 mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : 382 boot_max_ncpus); 383 384 /* Upper bound is mac_tx_percpu_cnt_max */ 385 if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) 386 mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; 387 388 if (mac_tx_percpu_cnt < 1) { 389 /* Someone set max_tx_percpu_cnt_max to 0 or less */ 390 mac_tx_percpu_cnt = 1; 391 } 392 393 ASSERT(mac_tx_percpu_cnt >= 1); 394 mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); 395 /* 396 * Make it of the form 2**N - 1 in the range 397 * [0 .. mac_tx_percpu_cnt_max - 1] 398 */ 399 mac_tx_percpu_cnt--; 400 401 i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", 402 sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, 403 NULL, NULL, NULL, 0); 404 ASSERT(i_mac_impl_cachep != NULL); 405 406 mac_ring_cache = kmem_cache_create("mac_ring_cache", 407 sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, 408 NULL, NULL, 0); 409 ASSERT(mac_ring_cache != NULL); 410 411 i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", 412 IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, 413 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 414 rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); 415 416 mac_flow_init(); 417 mac_soft_ring_init(); 418 mac_bcast_init(); 419 mac_client_init(); 420 421 i_mac_impl_count = 0; 422 423 i_mactype_hash = mod_hash_create_extended("mactype_hash", 424 MACTYPE_HASHSZ, 425 mod_hash_null_keydtor, mod_hash_null_valdtor, 426 mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); 427 428 /* 429 * Allocate an id space to manage minor numbers. The range of the 430 * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This 431 * leaves half of the 32-bit minors available for driver private use. 432 */ 433 minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, 434 MAC_PRIVATE_MINOR-1); 435 ASSERT(minor_ids != NULL); 436 minor_count = 0; 437 438 /* Let's default to 20 seconds */ 439 mac_logging_interval = 20; 440 mac_flow_log_enable = B_FALSE; 441 mac_link_log_enable = B_FALSE; 442 mac_logging_timer = 0; 443 } 444 445 int 446 mac_fini(void) 447 { 448 if (i_mac_impl_count > 0 || minor_count > 0) 449 return (EBUSY); 450 451 id_space_destroy(minor_ids); 452 mac_flow_fini(); 453 454 mod_hash_destroy_hash(i_mac_impl_hash); 455 rw_destroy(&i_mac_impl_lock); 456 457 mac_client_fini(); 458 kmem_cache_destroy(mac_ring_cache); 459 460 mod_hash_destroy_hash(i_mactype_hash); 461 mac_soft_ring_finish(); 462 return (0); 463 } 464 465 void 466 mac_init_ops(struct dev_ops *ops, const char *name) 467 { 468 dld_init_ops(ops, name); 469 } 470 471 void 472 mac_fini_ops(struct dev_ops *ops) 473 { 474 dld_fini_ops(ops); 475 } 476 477 /*ARGSUSED*/ 478 static int 479 i_mac_constructor(void *buf, void *arg, int kmflag) 480 { 481 mac_impl_t *mip = buf; 482 483 bzero(buf, sizeof (mac_impl_t)); 484 485 mip->mi_linkstate = LINK_STATE_UNKNOWN; 486 487 mutex_init(&mip->mi_lock, NULL, MUTEX_DRIVER, NULL); 488 rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); 489 mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); 490 mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); 491 mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); 492 493 mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; 494 cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 495 mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; 496 cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); 497 498 mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL); 499 500 return (0); 501 } 502 503 /*ARGSUSED*/ 504 static void 505 i_mac_destructor(void *buf, void *arg) 506 { 507 mac_impl_t *mip = buf; 508 mac_cb_info_t *mcbi; 509 510 ASSERT(mip->mi_ref == 0); 511 ASSERT(mip->mi_active == 0); 512 ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); 513 ASSERT(mip->mi_devpromisc == 0); 514 ASSERT(mip->mi_ksp == NULL); 515 ASSERT(mip->mi_kstat_count == 0); 516 ASSERT(mip->mi_nclients == 0); 517 ASSERT(mip->mi_nactiveclients == 0); 518 ASSERT(mip->mi_single_active_client == NULL); 519 ASSERT(mip->mi_state_flags == 0); 520 ASSERT(mip->mi_factory_addr == NULL); 521 ASSERT(mip->mi_factory_addr_num == 0); 522 ASSERT(mip->mi_default_tx_ring == NULL); 523 524 mcbi = &mip->mi_notify_cb_info; 525 ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); 526 ASSERT(mip->mi_notify_bits == 0); 527 ASSERT(mip->mi_notify_thread == NULL); 528 ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); 529 mcbi->mcbi_lockp = NULL; 530 531 mcbi = &mip->mi_promisc_cb_info; 532 ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); 533 ASSERT(mip->mi_promisc_list == NULL); 534 ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); 535 mcbi->mcbi_lockp = NULL; 536 537 ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); 538 ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); 539 540 mutex_destroy(&mip->mi_lock); 541 rw_destroy(&mip->mi_rw_lock); 542 543 mutex_destroy(&mip->mi_promisc_lock); 544 cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); 545 mutex_destroy(&mip->mi_notify_lock); 546 cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); 547 mutex_destroy(&mip->mi_ring_lock); 548 549 ASSERT(mip->mi_bridge_link == NULL); 550 } 551 552 /* ARGSUSED */ 553 static int 554 i_mac_ring_ctor(void *buf, void *arg, int kmflag) 555 { 556 mac_ring_t *ring = (mac_ring_t *)buf; 557 558 bzero(ring, sizeof (mac_ring_t)); 559 cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); 560 mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); 561 ring->mr_state = MR_FREE; 562 return (0); 563 } 564 565 /* ARGSUSED */ 566 static void 567 i_mac_ring_dtor(void *buf, void *arg) 568 { 569 mac_ring_t *ring = (mac_ring_t *)buf; 570 571 cv_destroy(&ring->mr_cv); 572 mutex_destroy(&ring->mr_lock); 573 } 574 575 /* 576 * Common functions to do mac callback addition and deletion. Currently this is 577 * used by promisc callbacks and notify callbacks. List addition and deletion 578 * need to take care of list walkers. List walkers in general, can't hold list 579 * locks and make upcall callbacks due to potential lock order and recursive 580 * reentry issues. Instead list walkers increment the list walker count to mark 581 * the presence of a walker thread. Addition can be carefully done to ensure 582 * that the list walker always sees either the old list or the new list. 583 * However the deletion can't be done while the walker is active, instead the 584 * deleting thread simply marks the entry as logically deleted. The last walker 585 * physically deletes and frees up the logically deleted entries when the walk 586 * is complete. 587 */ 588 void 589 mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 590 mac_cb_t *mcb_elem) 591 { 592 mac_cb_t *p; 593 mac_cb_t **pp; 594 595 /* Verify it is not already in the list */ 596 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 597 if (p == mcb_elem) 598 break; 599 } 600 VERIFY(p == NULL); 601 602 /* 603 * Add it to the head of the callback list. The membar ensures that 604 * the following list pointer manipulations reach global visibility 605 * in exactly the program order below. 606 */ 607 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 608 609 mcb_elem->mcb_nextp = *mcb_head; 610 membar_producer(); 611 *mcb_head = mcb_elem; 612 } 613 614 /* 615 * Mark the entry as logically deleted. If there aren't any walkers unlink 616 * from the list. In either case return the corresponding status. 617 */ 618 boolean_t 619 mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, 620 mac_cb_t *mcb_elem) 621 { 622 mac_cb_t *p; 623 mac_cb_t **pp; 624 625 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 626 /* 627 * Search the callback list for the entry to be removed 628 */ 629 for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { 630 if (p == mcb_elem) 631 break; 632 } 633 VERIFY(p != NULL); 634 635 /* 636 * If there are walkers just mark it as deleted and the last walker 637 * will remove from the list and free it. 638 */ 639 if (mcbi->mcbi_walker_cnt != 0) { 640 p->mcb_flags |= MCB_CONDEMNED; 641 mcbi->mcbi_del_cnt++; 642 return (B_FALSE); 643 } 644 645 ASSERT(mcbi->mcbi_del_cnt == 0); 646 *pp = p->mcb_nextp; 647 p->mcb_nextp = NULL; 648 return (B_TRUE); 649 } 650 651 /* 652 * Wait for all pending callback removals to be completed 653 */ 654 void 655 mac_callback_remove_wait(mac_cb_info_t *mcbi) 656 { 657 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 658 while (mcbi->mcbi_del_cnt != 0) { 659 DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); 660 cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); 661 } 662 } 663 664 /* 665 * The last mac callback walker does the cleanup. Walk the list and unlik 666 * all the logically deleted entries and construct a temporary list of 667 * removed entries. Return the list of removed entries to the caller. 668 */ 669 mac_cb_t * 670 mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) 671 { 672 mac_cb_t *p; 673 mac_cb_t **pp; 674 mac_cb_t *rmlist = NULL; /* List of removed elements */ 675 int cnt = 0; 676 677 ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); 678 ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); 679 680 pp = mcb_head; 681 while (*pp != NULL) { 682 if ((*pp)->mcb_flags & MCB_CONDEMNED) { 683 p = *pp; 684 *pp = p->mcb_nextp; 685 p->mcb_nextp = rmlist; 686 rmlist = p; 687 cnt++; 688 continue; 689 } 690 pp = &(*pp)->mcb_nextp; 691 } 692 693 ASSERT(mcbi->mcbi_del_cnt == cnt); 694 mcbi->mcbi_del_cnt = 0; 695 return (rmlist); 696 } 697 698 boolean_t 699 mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 700 { 701 mac_cb_t *mcb; 702 703 /* Verify it is not already in the list */ 704 for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { 705 if (mcb == mcb_elem) 706 return (B_TRUE); 707 } 708 709 return (B_FALSE); 710 } 711 712 boolean_t 713 mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) 714 { 715 boolean_t found; 716 717 mutex_enter(mcbi->mcbi_lockp); 718 found = mac_callback_lookup(mcb_headp, mcb_elem); 719 mutex_exit(mcbi->mcbi_lockp); 720 721 return (found); 722 } 723 724 /* Free the list of removed callbacks */ 725 void 726 mac_callback_free(mac_cb_t *rmlist) 727 { 728 mac_cb_t *mcb; 729 mac_cb_t *mcb_next; 730 731 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 732 mcb_next = mcb->mcb_nextp; 733 kmem_free(mcb->mcb_objp, mcb->mcb_objsize); 734 } 735 } 736 737 /* 738 * The promisc callbacks are in 2 lists, one off the 'mip' and another off the 739 * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there 740 * is only a single shared total walker count, and an entry can't be physically 741 * unlinked if a walker is active on either list. The last walker does this 742 * cleanup of logically deleted entries. 743 */ 744 void 745 i_mac_promisc_walker_cleanup(mac_impl_t *mip) 746 { 747 mac_cb_t *rmlist; 748 mac_cb_t *mcb; 749 mac_cb_t *mcb_next; 750 mac_promisc_impl_t *mpip; 751 752 /* 753 * Construct a temporary list of deleted callbacks by walking the 754 * the mi_promisc_list. Then for each entry in the temporary list, 755 * remove it from the mci_promisc_list and free the entry. 756 */ 757 rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info, 758 &mip->mi_promisc_list); 759 760 for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { 761 mcb_next = mcb->mcb_nextp; 762 mpip = (mac_promisc_impl_t *)mcb->mcb_objp; 763 VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, 764 &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link)); 765 mcb->mcb_flags = 0; 766 mcb->mcb_nextp = NULL; 767 kmem_cache_free(mac_promisc_impl_cache, mpip); 768 } 769 } 770 771 void 772 i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) 773 { 774 mac_cb_info_t *mcbi; 775 776 /* 777 * Signal the notify thread even after mi_ref has become zero and 778 * mi_disabled is set. The synchronization with the notify thread 779 * happens in mac_unregister and that implies the driver must make 780 * sure it is single-threaded (with respect to mac calls) and that 781 * all pending mac calls have returned before it calls mac_unregister 782 */ 783 rw_enter(&i_mac_impl_lock, RW_READER); 784 if (mip->mi_state_flags & MIS_DISABLED) 785 goto exit; 786 787 /* 788 * Guard against incorrect notifications. (Running a newer 789 * mac client against an older implementation?) 790 */ 791 if (type >= MAC_NNOTE) 792 goto exit; 793 794 mcbi = &mip->mi_notify_cb_info; 795 mutex_enter(mcbi->mcbi_lockp); 796 mip->mi_notify_bits |= (1 << type); 797 cv_broadcast(&mcbi->mcbi_cv); 798 mutex_exit(mcbi->mcbi_lockp); 799 800 exit: 801 rw_exit(&i_mac_impl_lock); 802 } 803 804 /* 805 * Mac serialization primitives. Please see the block comment at the 806 * top of the file. 807 */ 808 void 809 i_mac_perim_enter(mac_impl_t *mip) 810 { 811 mac_client_impl_t *mcip; 812 813 if (mip->mi_state_flags & MIS_IS_VNIC) { 814 /* 815 * This is a VNIC. Return the lower mac since that is what 816 * we want to serialize on. 817 */ 818 mcip = mac_vnic_lower(mip); 819 mip = mcip->mci_mip; 820 } 821 822 mutex_enter(&mip->mi_perim_lock); 823 if (mip->mi_perim_owner == curthread) { 824 mip->mi_perim_ocnt++; 825 mutex_exit(&mip->mi_perim_lock); 826 return; 827 } 828 829 while (mip->mi_perim_owner != NULL) 830 cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); 831 832 mip->mi_perim_owner = curthread; 833 ASSERT(mip->mi_perim_ocnt == 0); 834 mip->mi_perim_ocnt++; 835 #ifdef DEBUG 836 mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, 837 MAC_PERIM_STACK_DEPTH); 838 #endif 839 mutex_exit(&mip->mi_perim_lock); 840 } 841 842 int 843 i_mac_perim_enter_nowait(mac_impl_t *mip) 844 { 845 /* 846 * The vnic is a special case, since the serialization is done based 847 * on the lower mac. If the lower mac is busy, it does not imply the 848 * vnic can't be unregistered. But in the case of other drivers, 849 * a busy perimeter or open mac handles implies that the mac is busy 850 * and can't be unregistered. 851 */ 852 if (mip->mi_state_flags & MIS_IS_VNIC) { 853 i_mac_perim_enter(mip); 854 return (0); 855 } 856 857 mutex_enter(&mip->mi_perim_lock); 858 if (mip->mi_perim_owner != NULL) { 859 mutex_exit(&mip->mi_perim_lock); 860 return (EBUSY); 861 } 862 ASSERT(mip->mi_perim_ocnt == 0); 863 mip->mi_perim_owner = curthread; 864 mip->mi_perim_ocnt++; 865 mutex_exit(&mip->mi_perim_lock); 866 867 return (0); 868 } 869 870 void 871 i_mac_perim_exit(mac_impl_t *mip) 872 { 873 mac_client_impl_t *mcip; 874 875 if (mip->mi_state_flags & MIS_IS_VNIC) { 876 /* 877 * This is a VNIC. Return the lower mac since that is what 878 * we want to serialize on. 879 */ 880 mcip = mac_vnic_lower(mip); 881 mip = mcip->mci_mip; 882 } 883 884 ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); 885 886 mutex_enter(&mip->mi_perim_lock); 887 if (--mip->mi_perim_ocnt == 0) { 888 mip->mi_perim_owner = NULL; 889 cv_signal(&mip->mi_perim_cv); 890 } 891 mutex_exit(&mip->mi_perim_lock); 892 } 893 894 /* 895 * Returns whether the current thread holds the mac perimeter. Used in making 896 * assertions. 897 */ 898 boolean_t 899 mac_perim_held(mac_handle_t mh) 900 { 901 mac_impl_t *mip = (mac_impl_t *)mh; 902 mac_client_impl_t *mcip; 903 904 if (mip->mi_state_flags & MIS_IS_VNIC) { 905 /* 906 * This is a VNIC. Return the lower mac since that is what 907 * we want to serialize on. 908 */ 909 mcip = mac_vnic_lower(mip); 910 mip = mcip->mci_mip; 911 } 912 return (mip->mi_perim_owner == curthread); 913 } 914 915 /* 916 * mac client interfaces to enter the mac perimeter of a mac end point, given 917 * its mac handle, or macname or linkid. 918 */ 919 void 920 mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) 921 { 922 mac_impl_t *mip = (mac_impl_t *)mh; 923 924 i_mac_perim_enter(mip); 925 /* 926 * The mac_perim_handle_t returned encodes the 'mip' and whether a 927 * mac_open has been done internally while entering the perimeter. 928 * This information is used in mac_perim_exit 929 */ 930 MAC_ENCODE_MPH(*mphp, mip, 0); 931 } 932 933 int 934 mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) 935 { 936 int err; 937 mac_handle_t mh; 938 939 if ((err = mac_open(name, &mh)) != 0) 940 return (err); 941 942 mac_perim_enter_by_mh(mh, mphp); 943 MAC_ENCODE_MPH(*mphp, mh, 1); 944 return (0); 945 } 946 947 int 948 mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) 949 { 950 int err; 951 mac_handle_t mh; 952 953 if ((err = mac_open_by_linkid(linkid, &mh)) != 0) 954 return (err); 955 956 mac_perim_enter_by_mh(mh, mphp); 957 MAC_ENCODE_MPH(*mphp, mh, 1); 958 return (0); 959 } 960 961 void 962 mac_perim_exit(mac_perim_handle_t mph) 963 { 964 mac_impl_t *mip; 965 boolean_t need_close; 966 967 MAC_DECODE_MPH(mph, mip, need_close); 968 i_mac_perim_exit(mip); 969 if (need_close) 970 mac_close((mac_handle_t)mip); 971 } 972 973 int 974 mac_hold(const char *macname, mac_impl_t **pmip) 975 { 976 mac_impl_t *mip; 977 int err; 978 979 /* 980 * Check the device name length to make sure it won't overflow our 981 * buffer. 982 */ 983 if (strlen(macname) >= MAXNAMELEN) 984 return (EINVAL); 985 986 /* 987 * Look up its entry in the global hash table. 988 */ 989 rw_enter(&i_mac_impl_lock, RW_WRITER); 990 err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, 991 (mod_hash_val_t *)&mip); 992 993 if (err != 0) { 994 rw_exit(&i_mac_impl_lock); 995 return (ENOENT); 996 } 997 998 if (mip->mi_state_flags & MIS_DISABLED) { 999 rw_exit(&i_mac_impl_lock); 1000 return (ENOENT); 1001 } 1002 1003 if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { 1004 rw_exit(&i_mac_impl_lock); 1005 return (EBUSY); 1006 } 1007 1008 mip->mi_ref++; 1009 rw_exit(&i_mac_impl_lock); 1010 1011 *pmip = mip; 1012 return (0); 1013 } 1014 1015 void 1016 mac_rele(mac_impl_t *mip) 1017 { 1018 rw_enter(&i_mac_impl_lock, RW_WRITER); 1019 ASSERT(mip->mi_ref != 0); 1020 if (--mip->mi_ref == 0) { 1021 ASSERT(mip->mi_nactiveclients == 0 && 1022 !(mip->mi_state_flags & MIS_EXCLUSIVE)); 1023 } 1024 rw_exit(&i_mac_impl_lock); 1025 } 1026 1027 /* 1028 * Private GLDv3 function to start a MAC instance. 1029 */ 1030 int 1031 mac_start(mac_handle_t mh) 1032 { 1033 mac_impl_t *mip = (mac_impl_t *)mh; 1034 int err = 0; 1035 1036 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1037 ASSERT(mip->mi_start != NULL); 1038 1039 /* 1040 * Check whether the device is already started. 1041 */ 1042 if (mip->mi_active++ == 0) { 1043 mac_ring_t *ring = NULL; 1044 1045 /* 1046 * Start the device. 1047 */ 1048 err = mip->mi_start(mip->mi_driver); 1049 if (err != 0) { 1050 mip->mi_active--; 1051 return (err); 1052 } 1053 1054 /* 1055 * Start the default tx ring. 1056 */ 1057 if (mip->mi_default_tx_ring != NULL) { 1058 1059 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1060 err = mac_start_ring(ring); 1061 if (err != 0) { 1062 mip->mi_active--; 1063 return (err); 1064 } 1065 ring->mr_state = MR_INUSE; 1066 } 1067 1068 if (mip->mi_rx_groups != NULL) { 1069 /* 1070 * Start the default ring, since it will be needed 1071 * to receive broadcast and multicast traffic for 1072 * both primary and non-primary MAC clients. 1073 */ 1074 mac_group_t *grp = &mip->mi_rx_groups[0]; 1075 1076 ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); 1077 err = mac_start_group_and_rings(grp); 1078 if (err != 0) { 1079 mip->mi_active--; 1080 if (ring != NULL) { 1081 mac_stop_ring(ring); 1082 ring->mr_state = MR_FREE; 1083 } 1084 return (err); 1085 } 1086 mac_set_rx_group_state(grp, MAC_GROUP_STATE_SHARED); 1087 } 1088 } 1089 1090 return (err); 1091 } 1092 1093 /* 1094 * Private GLDv3 function to stop a MAC instance. 1095 */ 1096 void 1097 mac_stop(mac_handle_t mh) 1098 { 1099 mac_impl_t *mip = (mac_impl_t *)mh; 1100 1101 ASSERT(mip->mi_stop != NULL); 1102 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1103 1104 /* 1105 * Check whether the device is still needed. 1106 */ 1107 ASSERT(mip->mi_active != 0); 1108 if (--mip->mi_active == 0) { 1109 if (mip->mi_rx_groups != NULL) { 1110 /* 1111 * There should be no more active clients since the 1112 * MAC is being stopped. Stop the default RX group 1113 * and transition it back to registered state. 1114 */ 1115 mac_group_t *grp = &mip->mi_rx_groups[0]; 1116 1117 /* 1118 * When clients are torn down, the groups 1119 * are release via mac_release_rx_group which 1120 * knows the the default group is always in 1121 * started mode since broadcast uses it. So 1122 * we can assert that their are no clients 1123 * (since mac_bcast_add doesn't register itself 1124 * as a client) and group is in SHARED state. 1125 */ 1126 ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); 1127 ASSERT(MAC_RX_GROUP_NO_CLIENT(grp) && 1128 mip->mi_nactiveclients == 0); 1129 mac_stop_group_and_rings(grp); 1130 mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED); 1131 } 1132 1133 if (mip->mi_default_tx_ring != NULL) { 1134 mac_ring_t *ring; 1135 1136 ring = (mac_ring_t *)mip->mi_default_tx_ring; 1137 mac_stop_ring(ring); 1138 ring->mr_state = MR_FREE; 1139 } 1140 1141 /* 1142 * Stop the device. 1143 */ 1144 mip->mi_stop(mip->mi_driver); 1145 } 1146 } 1147 1148 int 1149 i_mac_promisc_set(mac_impl_t *mip, boolean_t on) 1150 { 1151 int err = 0; 1152 1153 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1154 ASSERT(mip->mi_setpromisc != NULL); 1155 1156 if (on) { 1157 /* 1158 * Enable promiscuous mode on the device if not yet enabled. 1159 */ 1160 if (mip->mi_devpromisc++ == 0) { 1161 err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); 1162 if (err != 0) { 1163 mip->mi_devpromisc--; 1164 return (err); 1165 } 1166 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1167 } 1168 } else { 1169 if (mip->mi_devpromisc == 0) 1170 return (EPROTO); 1171 1172 /* 1173 * Disable promiscuous mode on the device if this is the last 1174 * enabling. 1175 */ 1176 if (--mip->mi_devpromisc == 0) { 1177 err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); 1178 if (err != 0) { 1179 mip->mi_devpromisc++; 1180 return (err); 1181 } 1182 i_mac_notify(mip, MAC_NOTE_DEVPROMISC); 1183 } 1184 } 1185 1186 return (0); 1187 } 1188 1189 /* 1190 * The promiscuity state can change any time. If the caller needs to take 1191 * actions that are atomic with the promiscuity state, then the caller needs 1192 * to bracket the entire sequence with mac_perim_enter/exit 1193 */ 1194 boolean_t 1195 mac_promisc_get(mac_handle_t mh) 1196 { 1197 mac_impl_t *mip = (mac_impl_t *)mh; 1198 1199 /* 1200 * Return the current promiscuity. 1201 */ 1202 return (mip->mi_devpromisc != 0); 1203 } 1204 1205 /* 1206 * Invoked at MAC instance attach time to initialize the list 1207 * of factory MAC addresses supported by a MAC instance. This function 1208 * builds a local cache in the mac_impl_t for the MAC addresses 1209 * supported by the underlying hardware. The MAC clients themselves 1210 * use the mac_addr_factory*() functions to query and reserve 1211 * factory MAC addresses. 1212 */ 1213 void 1214 mac_addr_factory_init(mac_impl_t *mip) 1215 { 1216 mac_capab_multifactaddr_t capab; 1217 uint8_t *addr; 1218 int i; 1219 1220 /* 1221 * First round to see how many factory MAC addresses are available. 1222 */ 1223 bzero(&capab, sizeof (capab)); 1224 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, 1225 &capab) || (capab.mcm_naddr == 0)) { 1226 /* 1227 * The MAC instance doesn't support multiple factory 1228 * MAC addresses, we're done here. 1229 */ 1230 return; 1231 } 1232 1233 /* 1234 * Allocate the space and get all the factory addresses. 1235 */ 1236 addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); 1237 capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); 1238 1239 mip->mi_factory_addr_num = capab.mcm_naddr; 1240 mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * 1241 sizeof (mac_factory_addr_t), KM_SLEEP); 1242 1243 for (i = 0; i < capab.mcm_naddr; i++) { 1244 bcopy(addr + i * MAXMACADDRLEN, 1245 mip->mi_factory_addr[i].mfa_addr, 1246 mip->mi_type->mt_addr_length); 1247 mip->mi_factory_addr[i].mfa_in_use = B_FALSE; 1248 } 1249 1250 kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); 1251 } 1252 1253 void 1254 mac_addr_factory_fini(mac_impl_t *mip) 1255 { 1256 if (mip->mi_factory_addr == NULL) { 1257 ASSERT(mip->mi_factory_addr_num == 0); 1258 return; 1259 } 1260 1261 kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * 1262 sizeof (mac_factory_addr_t)); 1263 1264 mip->mi_factory_addr = NULL; 1265 mip->mi_factory_addr_num = 0; 1266 } 1267 1268 /* 1269 * Reserve a factory MAC address. If *slot is set to -1, the function 1270 * attempts to reserve any of the available factory MAC addresses and 1271 * returns the reserved slot id. If no slots are available, the function 1272 * returns ENOSPC. If *slot is not set to -1, the function reserves 1273 * the specified slot if it is available, or returns EBUSY is the slot 1274 * is already used. Returns ENOTSUP if the underlying MAC does not 1275 * support multiple factory addresses. If the slot number is not -1 but 1276 * is invalid, returns EINVAL. 1277 */ 1278 int 1279 mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) 1280 { 1281 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1282 mac_impl_t *mip = mcip->mci_mip; 1283 int i, ret = 0; 1284 1285 i_mac_perim_enter(mip); 1286 /* 1287 * Protect against concurrent readers that may need a self-consistent 1288 * view of the factory addresses 1289 */ 1290 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1291 1292 if (mip->mi_factory_addr_num == 0) { 1293 ret = ENOTSUP; 1294 goto bail; 1295 } 1296 1297 if (*slot != -1) { 1298 /* check the specified slot */ 1299 if (*slot < 1 || *slot > mip->mi_factory_addr_num) { 1300 ret = EINVAL; 1301 goto bail; 1302 } 1303 if (mip->mi_factory_addr[*slot-1].mfa_in_use) { 1304 ret = EBUSY; 1305 goto bail; 1306 } 1307 } else { 1308 /* pick the next available slot */ 1309 for (i = 0; i < mip->mi_factory_addr_num; i++) { 1310 if (!mip->mi_factory_addr[i].mfa_in_use) 1311 break; 1312 } 1313 1314 if (i == mip->mi_factory_addr_num) { 1315 ret = ENOSPC; 1316 goto bail; 1317 } 1318 *slot = i+1; 1319 } 1320 1321 mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; 1322 mip->mi_factory_addr[*slot-1].mfa_client = mcip; 1323 1324 bail: 1325 rw_exit(&mip->mi_rw_lock); 1326 i_mac_perim_exit(mip); 1327 return (ret); 1328 } 1329 1330 /* 1331 * Release the specified factory MAC address slot. 1332 */ 1333 void 1334 mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) 1335 { 1336 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1337 mac_impl_t *mip = mcip->mci_mip; 1338 1339 i_mac_perim_enter(mip); 1340 /* 1341 * Protect against concurrent readers that may need a self-consistent 1342 * view of the factory addresses 1343 */ 1344 rw_enter(&mip->mi_rw_lock, RW_WRITER); 1345 1346 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1347 ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); 1348 1349 mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; 1350 1351 rw_exit(&mip->mi_rw_lock); 1352 i_mac_perim_exit(mip); 1353 } 1354 1355 /* 1356 * Stores in mac_addr the value of the specified MAC address. Returns 1357 * 0 on success, or EINVAL if the slot number is not valid for the MAC. 1358 * The caller must provide a string of at least MAXNAMELEN bytes. 1359 */ 1360 void 1361 mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, 1362 uint_t *addr_len, char *client_name, boolean_t *in_use_arg) 1363 { 1364 mac_impl_t *mip = (mac_impl_t *)mh; 1365 boolean_t in_use; 1366 1367 ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); 1368 1369 /* 1370 * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter 1371 * and mi_rw_lock 1372 */ 1373 rw_enter(&mip->mi_rw_lock, RW_READER); 1374 bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); 1375 *addr_len = mip->mi_type->mt_addr_length; 1376 in_use = mip->mi_factory_addr[slot-1].mfa_in_use; 1377 if (in_use && client_name != NULL) { 1378 bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, 1379 client_name, MAXNAMELEN); 1380 } 1381 if (in_use_arg != NULL) 1382 *in_use_arg = in_use; 1383 rw_exit(&mip->mi_rw_lock); 1384 } 1385 1386 /* 1387 * Returns the number of factory MAC addresses (in addition to the 1388 * primary MAC address), 0 if the underlying MAC doesn't support 1389 * that feature. 1390 */ 1391 uint_t 1392 mac_addr_factory_num(mac_handle_t mh) 1393 { 1394 mac_impl_t *mip = (mac_impl_t *)mh; 1395 1396 return (mip->mi_factory_addr_num); 1397 } 1398 1399 1400 void 1401 mac_rx_group_unmark(mac_group_t *grp, uint_t flag) 1402 { 1403 mac_ring_t *ring; 1404 1405 for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) 1406 ring->mr_flag &= ~flag; 1407 } 1408 1409 /* 1410 * The following mac_hwrings_xxx() functions are private mac client functions 1411 * used by the aggr driver to access and control the underlying HW Rx group 1412 * and rings. In this case, the aggr driver has exclusive control of the 1413 * underlying HW Rx group/rings, it calls the following functions to 1414 * start/stop the HW Rx rings, disable/enable polling, add/remove mac' 1415 * addresses, or set up the Rx callback. 1416 */ 1417 /* ARGSUSED */ 1418 static void 1419 mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, 1420 mblk_t *mp_chain, boolean_t loopback) 1421 { 1422 mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; 1423 mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; 1424 mac_direct_rx_t proc; 1425 void *arg1; 1426 mac_resource_handle_t arg2; 1427 1428 proc = srs_rx->sr_func; 1429 arg1 = srs_rx->sr_arg1; 1430 arg2 = mac_srs->srs_mrh; 1431 1432 proc(arg1, arg2, mp_chain, NULL); 1433 } 1434 1435 /* 1436 * This function is called to get the list of HW rings that are reserved by 1437 * an exclusive mac client. 1438 * 1439 * Return value: the number of HW rings. 1440 */ 1441 int 1442 mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, 1443 mac_ring_handle_t *hwrh, mac_ring_type_t rtype) 1444 { 1445 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1446 int cnt = 0; 1447 1448 switch (rtype) { 1449 case MAC_RING_TYPE_RX: { 1450 flow_entry_t *flent = mcip->mci_flent; 1451 mac_group_t *grp; 1452 mac_ring_t *ring; 1453 1454 grp = flent->fe_rx_ring_group; 1455 /* 1456 * The mac client did not reserve any RX group, return directly. 1457 * This is probably because the underlying MAC does not support 1458 * any groups. 1459 */ 1460 *hwgh = NULL; 1461 if (grp == NULL) 1462 return (0); 1463 /* 1464 * This group must be reserved by this mac client. 1465 */ 1466 ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && 1467 (mch == (mac_client_handle_t) 1468 (MAC_RX_GROUP_ONLY_CLIENT(grp)))); 1469 for (ring = grp->mrg_rings; 1470 ring != NULL; ring = ring->mr_next, cnt++) { 1471 ASSERT(cnt < MAX_RINGS_PER_GROUP); 1472 hwrh[cnt] = (mac_ring_handle_t)ring; 1473 } 1474 *hwgh = (mac_group_handle_t)grp; 1475 return (cnt); 1476 } 1477 case MAC_RING_TYPE_TX: { 1478 mac_soft_ring_set_t *tx_srs; 1479 mac_srs_tx_t *tx; 1480 1481 tx_srs = MCIP_TX_SRS(mcip); 1482 tx = &tx_srs->srs_tx; 1483 for (; cnt < tx->st_ring_count; cnt++) 1484 hwrh[cnt] = tx->st_rings[cnt]; 1485 return (cnt); 1486 } 1487 default: 1488 ASSERT(B_FALSE); 1489 return (-1); 1490 } 1491 } 1492 1493 /* 1494 * Setup the RX callback of the mac client which exclusively controls HW ring. 1495 */ 1496 void 1497 mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh) 1498 { 1499 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1500 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1501 1502 mac_srs->srs_mrh = prh; 1503 mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; 1504 } 1505 1506 void 1507 mac_hwring_teardown(mac_ring_handle_t hwrh) 1508 { 1509 mac_ring_t *hw_ring = (mac_ring_t *)hwrh; 1510 mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; 1511 1512 mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; 1513 mac_srs->srs_mrh = NULL; 1514 } 1515 1516 int 1517 mac_hwring_disable_intr(mac_ring_handle_t rh) 1518 { 1519 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1520 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1521 1522 return (intr->mi_disable(intr->mi_handle)); 1523 } 1524 1525 int 1526 mac_hwring_enable_intr(mac_ring_handle_t rh) 1527 { 1528 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1529 mac_intr_t *intr = &rr_ring->mr_info.mri_intr; 1530 1531 return (intr->mi_enable(intr->mi_handle)); 1532 } 1533 1534 int 1535 mac_hwring_start(mac_ring_handle_t rh) 1536 { 1537 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1538 1539 MAC_RING_UNMARK(rr_ring, MR_QUIESCE); 1540 return (0); 1541 } 1542 1543 void 1544 mac_hwring_stop(mac_ring_handle_t rh) 1545 { 1546 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1547 1548 mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); 1549 } 1550 1551 mblk_t * 1552 mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) 1553 { 1554 mac_ring_t *rr_ring = (mac_ring_t *)rh; 1555 mac_ring_info_t *info = &rr_ring->mr_info; 1556 1557 return (info->mri_poll(info->mri_driver, bytes_to_pickup)); 1558 } 1559 1560 /* 1561 * Send packets through the selected tx ring. 1562 */ 1563 mblk_t * 1564 mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp) 1565 { 1566 mac_ring_t *ring = (mac_ring_t *)rh; 1567 mac_ring_info_t *info = &ring->mr_info; 1568 1569 ASSERT(ring->mr_type == MAC_RING_TYPE_TX && 1570 ring->mr_state >= MR_INUSE); 1571 return (info->mri_tx(info->mri_driver, mp)); 1572 } 1573 1574 int 1575 mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) 1576 { 1577 mac_group_t *group = (mac_group_t *)gh; 1578 1579 return (mac_group_addmac(group, addr)); 1580 } 1581 1582 int 1583 mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) 1584 { 1585 mac_group_t *group = (mac_group_t *)gh; 1586 1587 return (mac_group_remmac(group, addr)); 1588 } 1589 1590 /* 1591 * Set the RX group to be shared/reserved. Note that the group must be 1592 * started/stopped outside of this function. 1593 */ 1594 void 1595 mac_set_rx_group_state(mac_group_t *grp, mac_group_state_t state) 1596 { 1597 /* 1598 * If there is no change in the group state, just return. 1599 */ 1600 if (grp->mrg_state == state) 1601 return; 1602 1603 switch (state) { 1604 case MAC_GROUP_STATE_RESERVED: 1605 /* 1606 * Successfully reserved the group. 1607 * 1608 * Given that there is an exclusive client controlling this 1609 * group, we enable the group level polling when available, 1610 * so that SRSs get to turn on/off individual rings they's 1611 * assigned to. 1612 */ 1613 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1614 1615 if (GROUP_INTR_DISABLE_FUNC(grp) != NULL) 1616 GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1617 1618 break; 1619 1620 case MAC_GROUP_STATE_SHARED: 1621 /* 1622 * Set all rings of this group to software classified. 1623 * If the group has an overriding interrupt, then re-enable it. 1624 */ 1625 ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); 1626 1627 if (GROUP_INTR_ENABLE_FUNC(grp) != NULL) 1628 GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); 1629 1630 /* The ring is not available for reservations any more */ 1631 break; 1632 1633 case MAC_GROUP_STATE_REGISTERED: 1634 /* Also callable from mac_register, perim is not held */ 1635 break; 1636 1637 default: 1638 ASSERT(B_FALSE); 1639 break; 1640 } 1641 1642 grp->mrg_state = state; 1643 } 1644 1645 /* 1646 * Quiesce future hardware classified packets for the specified Rx ring 1647 */ 1648 static void 1649 mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) 1650 { 1651 ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); 1652 ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); 1653 1654 mutex_enter(&rx_ring->mr_lock); 1655 rx_ring->mr_flag |= ring_flag; 1656 while (rx_ring->mr_refcnt != 0) 1657 cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); 1658 mutex_exit(&rx_ring->mr_lock); 1659 } 1660 1661 /* 1662 * Please see mac_tx for details about the per cpu locking scheme 1663 */ 1664 static void 1665 mac_tx_lock_all(mac_client_impl_t *mcip) 1666 { 1667 int i; 1668 1669 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1670 mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1671 } 1672 1673 static void 1674 mac_tx_unlock_all(mac_client_impl_t *mcip) 1675 { 1676 int i; 1677 1678 for (i = mac_tx_percpu_cnt; i >= 0; i--) 1679 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1680 } 1681 1682 static void 1683 mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) 1684 { 1685 int i; 1686 1687 for (i = mac_tx_percpu_cnt; i > 0; i--) 1688 mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); 1689 } 1690 1691 static int 1692 mac_tx_sum_refcnt(mac_client_impl_t *mcip) 1693 { 1694 int i; 1695 int refcnt = 0; 1696 1697 for (i = 0; i <= mac_tx_percpu_cnt; i++) 1698 refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; 1699 1700 return (refcnt); 1701 } 1702 1703 /* 1704 * Stop future Tx packets coming down from the client in preparation for 1705 * quiescing the Tx side. This is needed for dynamic reclaim and reassignment 1706 * of rings between clients 1707 */ 1708 void 1709 mac_tx_client_block(mac_client_impl_t *mcip) 1710 { 1711 mac_tx_lock_all(mcip); 1712 mcip->mci_tx_flag |= MCI_TX_QUIESCE; 1713 while (mac_tx_sum_refcnt(mcip) != 0) { 1714 mac_tx_unlock_allbutzero(mcip); 1715 cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1716 mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); 1717 mac_tx_lock_all(mcip); 1718 } 1719 mac_tx_unlock_all(mcip); 1720 } 1721 1722 void 1723 mac_tx_client_unblock(mac_client_impl_t *mcip) 1724 { 1725 mac_tx_lock_all(mcip); 1726 mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; 1727 mac_tx_unlock_all(mcip); 1728 /* 1729 * We may fail to disable flow control for the last MAC_NOTE_TX 1730 * notification because the MAC client is quiesced. Send the 1731 * notification again. 1732 */ 1733 i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); 1734 } 1735 1736 /* 1737 * Wait for an SRS to quiesce. The SRS worker will signal us when the 1738 * quiesce is done. 1739 */ 1740 static void 1741 mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) 1742 { 1743 mutex_enter(&srs->srs_lock); 1744 while (!(srs->srs_state & srs_flag)) 1745 cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); 1746 mutex_exit(&srs->srs_lock); 1747 } 1748 1749 /* 1750 * Quiescing an Rx SRS is achieved by the following sequence. The protocol 1751 * works bottom up by cutting off packet flow from the bottommost point in the 1752 * mac, then the SRS, and then the soft rings. There are 2 use cases of this 1753 * mechanism. One is a temporary quiesce of the SRS, such as say while changing 1754 * the Rx callbacks. Another use case is Rx SRS teardown. In the former case 1755 * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used 1756 * for the SRS and MR flags. In the former case the threads pause waiting for 1757 * a restart, while in the latter case the threads exit. The Tx SRS teardown 1758 * is also mostly similar to the above. 1759 * 1760 * 1. Stop future hardware classified packets at the lowest level in the mac. 1761 * Remove any hardware classification rule (CONDEMNED case) and mark the 1762 * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt 1763 * from increasing. Upcalls from the driver that come through hardware 1764 * classification will be dropped in mac_rx from now on. Then we wait for 1765 * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are 1766 * sure there aren't any upcall threads from the driver through hardware 1767 * classification. In the case of SRS teardown we also remove the 1768 * classification rule in the driver. 1769 * 1770 * 2. Stop future software classified packets by marking the flow entry with 1771 * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from 1772 * increasing. We also remove the flow entry from the table in the latter 1773 * case. Then wait for the fe_refcnt to reach an appropriate quiescent value 1774 * that indicates there aren't any active threads using that flow entry. 1775 * 1776 * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, 1777 * SRS worker thread, and the soft ring threads are quiesced in sequence 1778 * with the SRS worker thread serving as a master controller. This 1779 * mechansim is explained in mac_srs_worker_quiesce(). 1780 * 1781 * The restart mechanism to reactivate the SRS and softrings is explained 1782 * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the 1783 * restart sequence. 1784 */ 1785 void 1786 mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 1787 { 1788 flow_entry_t *flent = srs->srs_flent; 1789 uint_t mr_flag, srs_done_flag; 1790 1791 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1792 ASSERT(!(srs->srs_type & SRST_TX)); 1793 1794 if (srs_quiesce_flag == SRS_CONDEMNED) { 1795 mr_flag = MR_CONDEMNED; 1796 srs_done_flag = SRS_CONDEMNED_DONE; 1797 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1798 mac_srs_client_poll_disable(srs->srs_mcip, srs); 1799 } else { 1800 ASSERT(srs_quiesce_flag == SRS_QUIESCE); 1801 mr_flag = MR_QUIESCE; 1802 srs_done_flag = SRS_QUIESCE_DONE; 1803 if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) 1804 mac_srs_client_poll_quiesce(srs->srs_mcip, srs); 1805 } 1806 1807 if (srs->srs_ring != NULL) { 1808 mac_rx_ring_quiesce(srs->srs_ring, mr_flag); 1809 } else { 1810 /* 1811 * SRS is driven by software classification. In case 1812 * of CONDEMNED, the top level teardown functions will 1813 * deal with flow removal. 1814 */ 1815 if (srs_quiesce_flag != SRS_CONDEMNED) { 1816 FLOW_MARK(flent, FE_QUIESCE); 1817 mac_flow_wait(flent, FLOW_DRIVER_UPCALL); 1818 } 1819 } 1820 1821 /* 1822 * Signal the SRS to quiesce itself, and then cv_wait for the 1823 * SRS quiesce to complete. The SRS worker thread will wake us 1824 * up when the quiesce is complete 1825 */ 1826 mac_srs_signal(srs, srs_quiesce_flag); 1827 mac_srs_quiesce_wait(srs, srs_done_flag); 1828 } 1829 1830 /* 1831 * Remove an SRS. 1832 */ 1833 void 1834 mac_rx_srs_remove(mac_soft_ring_set_t *srs) 1835 { 1836 flow_entry_t *flent = srs->srs_flent; 1837 int i; 1838 1839 mac_rx_srs_quiesce(srs, SRS_CONDEMNED); 1840 /* 1841 * Locate and remove our entry in the fe_rx_srs[] array, and 1842 * adjust the fe_rx_srs array entries and array count by 1843 * moving the last entry into the vacated spot. 1844 */ 1845 mutex_enter(&flent->fe_lock); 1846 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1847 if (flent->fe_rx_srs[i] == srs) 1848 break; 1849 } 1850 1851 ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); 1852 if (i != flent->fe_rx_srs_cnt - 1) { 1853 flent->fe_rx_srs[i] = 1854 flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; 1855 i = flent->fe_rx_srs_cnt - 1; 1856 } 1857 1858 flent->fe_rx_srs[i] = NULL; 1859 flent->fe_rx_srs_cnt--; 1860 mutex_exit(&flent->fe_lock); 1861 1862 mac_srs_free(srs); 1863 } 1864 1865 static void 1866 mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) 1867 { 1868 mutex_enter(&srs->srs_lock); 1869 srs->srs_state &= ~flag; 1870 mutex_exit(&srs->srs_lock); 1871 } 1872 1873 void 1874 mac_rx_srs_restart(mac_soft_ring_set_t *srs) 1875 { 1876 flow_entry_t *flent = srs->srs_flent; 1877 mac_ring_t *mr; 1878 1879 ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); 1880 ASSERT((srs->srs_type & SRST_TX) == 0); 1881 1882 /* 1883 * This handles a change in the number of SRSs between the quiesce and 1884 * and restart operation of a flow. 1885 */ 1886 if (!SRS_QUIESCED(srs)) 1887 return; 1888 1889 /* 1890 * Signal the SRS to restart itself. Wait for the restart to complete 1891 * Note that we only restart the SRS if it is not marked as 1892 * permanently quiesced. 1893 */ 1894 if (!SRS_QUIESCED_PERMANENT(srs)) { 1895 mac_srs_signal(srs, SRS_RESTART); 1896 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 1897 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 1898 1899 mac_srs_client_poll_restart(srs->srs_mcip, srs); 1900 } 1901 1902 /* Finally clear the flags to let the packets in */ 1903 mr = srs->srs_ring; 1904 if (mr != NULL) { 1905 MAC_RING_UNMARK(mr, MR_QUIESCE); 1906 /* In case the ring was stopped, safely restart it */ 1907 (void) mac_start_ring(mr); 1908 } else { 1909 FLOW_UNMARK(flent, FE_QUIESCE); 1910 } 1911 } 1912 1913 /* 1914 * Temporary quiesce of a flow and associated Rx SRS. 1915 * Please see block comment above mac_rx_classify_flow_rem. 1916 */ 1917 /* ARGSUSED */ 1918 int 1919 mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) 1920 { 1921 int i; 1922 1923 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1924 mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], 1925 SRS_QUIESCE); 1926 } 1927 return (0); 1928 } 1929 1930 /* 1931 * Restart a flow and associated Rx SRS that has been quiesced temporarily 1932 * Please see block comment above mac_rx_classify_flow_rem 1933 */ 1934 /* ARGSUSED */ 1935 int 1936 mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) 1937 { 1938 int i; 1939 1940 for (i = 0; i < flent->fe_rx_srs_cnt; i++) 1941 mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); 1942 1943 return (0); 1944 } 1945 1946 void 1947 mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) 1948 { 1949 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1950 flow_entry_t *flent = mcip->mci_flent; 1951 mac_impl_t *mip = mcip->mci_mip; 1952 mac_soft_ring_set_t *mac_srs; 1953 int i; 1954 1955 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1956 1957 if (flent == NULL) 1958 return; 1959 1960 for (i = 0; i < flent->fe_rx_srs_cnt; i++) { 1961 mac_srs = flent->fe_rx_srs[i]; 1962 mutex_enter(&mac_srs->srs_lock); 1963 if (on) 1964 mac_srs->srs_state |= SRS_QUIESCE_PERM; 1965 else 1966 mac_srs->srs_state &= ~SRS_QUIESCE_PERM; 1967 mutex_exit(&mac_srs->srs_lock); 1968 } 1969 } 1970 1971 void 1972 mac_rx_client_quiesce(mac_client_handle_t mch) 1973 { 1974 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1975 mac_impl_t *mip = mcip->mci_mip; 1976 1977 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1978 1979 if (MCIP_DATAPATH_SETUP(mcip)) { 1980 (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, 1981 NULL); 1982 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 1983 mac_rx_classify_flow_quiesce, NULL); 1984 } 1985 } 1986 1987 void 1988 mac_rx_client_restart(mac_client_handle_t mch) 1989 { 1990 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 1991 mac_impl_t *mip = mcip->mci_mip; 1992 1993 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 1994 1995 if (MCIP_DATAPATH_SETUP(mcip)) { 1996 (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); 1997 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 1998 mac_rx_classify_flow_restart, NULL); 1999 } 2000 } 2001 2002 /* 2003 * This function only quiesces the Tx SRS and softring worker threads. Callers 2004 * need to make sure that there aren't any mac client threads doing current or 2005 * future transmits in the mac before calling this function. 2006 */ 2007 void 2008 mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) 2009 { 2010 mac_client_impl_t *mcip = srs->srs_mcip; 2011 2012 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2013 2014 ASSERT(srs->srs_type & SRST_TX); 2015 ASSERT(srs_quiesce_flag == SRS_CONDEMNED || 2016 srs_quiesce_flag == SRS_QUIESCE); 2017 2018 /* 2019 * Signal the SRS to quiesce itself, and then cv_wait for the 2020 * SRS quiesce to complete. The SRS worker thread will wake us 2021 * up when the quiesce is complete 2022 */ 2023 mac_srs_signal(srs, srs_quiesce_flag); 2024 mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? 2025 SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); 2026 } 2027 2028 void 2029 mac_tx_srs_restart(mac_soft_ring_set_t *srs) 2030 { 2031 /* 2032 * Resizing the fanout could result in creation of new SRSs. 2033 * They may not necessarily be in the quiesced state in which 2034 * case it need be restarted 2035 */ 2036 if (!SRS_QUIESCED(srs)) 2037 return; 2038 2039 mac_srs_signal(srs, SRS_RESTART); 2040 mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); 2041 mac_srs_clear_flag(srs, SRS_RESTART_DONE); 2042 } 2043 2044 /* 2045 * Temporary quiesce of a flow and associated Rx SRS. 2046 * Please see block comment above mac_rx_srs_quiesce 2047 */ 2048 /* ARGSUSED */ 2049 int 2050 mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) 2051 { 2052 /* 2053 * The fe_tx_srs is null for a subflow on an interface that is 2054 * not plumbed 2055 */ 2056 if (flent->fe_tx_srs != NULL) 2057 mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); 2058 return (0); 2059 } 2060 2061 /* ARGSUSED */ 2062 int 2063 mac_tx_flow_restart(flow_entry_t *flent, void *arg) 2064 { 2065 /* 2066 * The fe_tx_srs is null for a subflow on an interface that is 2067 * not plumbed 2068 */ 2069 if (flent->fe_tx_srs != NULL) 2070 mac_tx_srs_restart(flent->fe_tx_srs); 2071 return (0); 2072 } 2073 2074 void 2075 mac_tx_client_quiesce(mac_client_impl_t *mcip, uint_t srs_quiesce_flag) 2076 { 2077 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2078 2079 mac_tx_client_block(mcip); 2080 if (MCIP_TX_SRS(mcip) != NULL) { 2081 mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); 2082 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2083 mac_tx_flow_quiesce, NULL); 2084 } 2085 } 2086 2087 void 2088 mac_tx_client_restart(mac_client_impl_t *mcip) 2089 { 2090 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2091 2092 mac_tx_client_unblock(mcip); 2093 if (MCIP_TX_SRS(mcip) != NULL) { 2094 mac_tx_srs_restart(MCIP_TX_SRS(mcip)); 2095 (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, 2096 mac_tx_flow_restart, NULL); 2097 } 2098 } 2099 2100 void 2101 mac_tx_client_flush(mac_client_impl_t *mcip) 2102 { 2103 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 2104 2105 mac_tx_client_quiesce(mcip, SRS_QUIESCE); 2106 mac_tx_client_restart(mcip); 2107 } 2108 2109 void 2110 mac_client_quiesce(mac_client_impl_t *mcip) 2111 { 2112 mac_rx_client_quiesce((mac_client_handle_t)mcip); 2113 mac_tx_client_quiesce(mcip, SRS_QUIESCE); 2114 } 2115 2116 void 2117 mac_client_restart(mac_client_impl_t *mcip) 2118 { 2119 mac_rx_client_restart((mac_client_handle_t)mcip); 2120 mac_tx_client_restart(mcip); 2121 } 2122 2123 /* 2124 * Allocate a minor number. 2125 */ 2126 minor_t 2127 mac_minor_hold(boolean_t sleep) 2128 { 2129 minor_t minor; 2130 2131 /* 2132 * Grab a value from the arena. 2133 */ 2134 atomic_add_32(&minor_count, 1); 2135 2136 if (sleep) 2137 minor = (uint_t)id_alloc(minor_ids); 2138 else 2139 minor = (uint_t)id_alloc_nosleep(minor_ids); 2140 2141 if (minor == 0) { 2142 atomic_add_32(&minor_count, -1); 2143 return (0); 2144 } 2145 2146 return (minor); 2147 } 2148 2149 /* 2150 * Release a previously allocated minor number. 2151 */ 2152 void 2153 mac_minor_rele(minor_t minor) 2154 { 2155 /* 2156 * Return the value to the arena. 2157 */ 2158 id_free(minor_ids, minor); 2159 atomic_add_32(&minor_count, -1); 2160 } 2161 2162 uint32_t 2163 mac_no_notification(mac_handle_t mh) 2164 { 2165 mac_impl_t *mip = (mac_impl_t *)mh; 2166 2167 return (((mip->mi_state_flags & MIS_LEGACY) != 0) ? 2168 mip->mi_capab_legacy.ml_unsup_note : 0); 2169 } 2170 2171 /* 2172 * Prevent any new opens of this mac in preparation for unregister 2173 */ 2174 int 2175 i_mac_disable(mac_impl_t *mip) 2176 { 2177 mac_client_impl_t *mcip; 2178 2179 rw_enter(&i_mac_impl_lock, RW_WRITER); 2180 if (mip->mi_state_flags & MIS_DISABLED) { 2181 /* Already disabled, return success */ 2182 rw_exit(&i_mac_impl_lock); 2183 return (0); 2184 } 2185 /* 2186 * See if there are any other references to this mac_t (e.g., VLAN's). 2187 * If so return failure. If all the other checks below pass, then 2188 * set mi_disabled atomically under the i_mac_impl_lock to prevent 2189 * any new VLAN's from being created or new mac client opens of this 2190 * mac end point. 2191 */ 2192 if (mip->mi_ref > 0) { 2193 rw_exit(&i_mac_impl_lock); 2194 return (EBUSY); 2195 } 2196 2197 /* 2198 * mac clients must delete all multicast groups they join before 2199 * closing. bcast groups are reference counted, the last client 2200 * to delete the group will wait till the group is physically 2201 * deleted. Since all clients have closed this mac end point 2202 * mi_bcast_ngrps must be zero at this point 2203 */ 2204 ASSERT(mip->mi_bcast_ngrps == 0); 2205 2206 /* 2207 * Don't let go of this if it has some flows. 2208 * All other code guarantees no flows are added to a disabled 2209 * mac, therefore it is sufficient to check for the flow table 2210 * only here. 2211 */ 2212 mcip = mac_primary_client_handle(mip); 2213 if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { 2214 rw_exit(&i_mac_impl_lock); 2215 return (ENOTEMPTY); 2216 } 2217 2218 mip->mi_state_flags |= MIS_DISABLED; 2219 rw_exit(&i_mac_impl_lock); 2220 return (0); 2221 } 2222 2223 int 2224 mac_disable_nowait(mac_handle_t mh) 2225 { 2226 mac_impl_t *mip = (mac_impl_t *)mh; 2227 int err; 2228 2229 if ((err = i_mac_perim_enter_nowait(mip)) != 0) 2230 return (err); 2231 err = i_mac_disable(mip); 2232 i_mac_perim_exit(mip); 2233 return (err); 2234 } 2235 2236 int 2237 mac_disable(mac_handle_t mh) 2238 { 2239 mac_impl_t *mip = (mac_impl_t *)mh; 2240 int err; 2241 2242 i_mac_perim_enter(mip); 2243 err = i_mac_disable(mip); 2244 i_mac_perim_exit(mip); 2245 2246 /* 2247 * Clean up notification thread and wait for it to exit. 2248 */ 2249 if (err == 0) 2250 i_mac_notify_exit(mip); 2251 2252 return (err); 2253 } 2254 2255 /* 2256 * Called when the MAC instance has a non empty flow table, to de-multiplex 2257 * incoming packets to the right flow. 2258 * The MAC's rw lock is assumed held as a READER. 2259 */ 2260 /* ARGSUSED */ 2261 static mblk_t * 2262 mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) 2263 { 2264 flow_entry_t *flent = NULL; 2265 uint_t flags = FLOW_INBOUND; 2266 int err; 2267 2268 /* 2269 * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN 2270 * to mac_flow_lookup() so that the VLAN packets can be successfully 2271 * passed to the non-VLAN aggregation flows. 2272 * 2273 * Note that there is possibly a race between this and 2274 * mac_unicast_remove/add() and VLAN packets could be incorrectly 2275 * classified to non-VLAN flows of non-aggregation mac clients. These 2276 * VLAN packets will be then filtered out by the mac module. 2277 */ 2278 if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0) 2279 flags |= FLOW_IGNORE_VLAN; 2280 2281 err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); 2282 if (err != 0) { 2283 /* no registered receive function */ 2284 return (mp); 2285 } else { 2286 mac_client_impl_t *mcip; 2287 2288 /* 2289 * This flent might just be an additional one on the MAC client, 2290 * i.e. for classification purposes (different fdesc), however 2291 * the resources, SRS et. al., are in the mci_flent, so if 2292 * this isn't the mci_flent, we need to get it. 2293 */ 2294 if ((mcip = flent->fe_mcip) != NULL && 2295 mcip->mci_flent != flent) { 2296 FLOW_REFRELE(flent); 2297 flent = mcip->mci_flent; 2298 FLOW_TRY_REFHOLD(flent, err); 2299 if (err != 0) 2300 return (mp); 2301 } 2302 (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, 2303 B_FALSE); 2304 FLOW_REFRELE(flent); 2305 } 2306 return (NULL); 2307 } 2308 2309 mblk_t * 2310 mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) 2311 { 2312 mac_impl_t *mip = (mac_impl_t *)mh; 2313 mblk_t *bp, *bp1, **bpp, *list = NULL; 2314 2315 /* 2316 * We walk the chain and attempt to classify each packet. 2317 * The packets that couldn't be classified will be returned 2318 * back to the caller. 2319 */ 2320 bp = mp_chain; 2321 bpp = &list; 2322 while (bp != NULL) { 2323 bp1 = bp; 2324 bp = bp->b_next; 2325 bp1->b_next = NULL; 2326 2327 if (mac_rx_classify(mip, mrh, bp1) != NULL) { 2328 *bpp = bp1; 2329 bpp = &bp1->b_next; 2330 } 2331 } 2332 return (list); 2333 } 2334 2335 static int 2336 mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) 2337 { 2338 mac_ring_handle_t ring = arg; 2339 2340 if (flent->fe_tx_srs) 2341 mac_tx_srs_wakeup(flent->fe_tx_srs, ring); 2342 return (0); 2343 } 2344 2345 void 2346 i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) 2347 { 2348 mac_client_impl_t *cclient; 2349 mac_soft_ring_set_t *mac_srs; 2350 2351 /* 2352 * After grabbing the mi_rw_lock, the list of clients can't change. 2353 * If there are any clients mi_disabled must be B_FALSE and can't 2354 * get set since there are clients. If there aren't any clients we 2355 * don't do anything. In any case the mip has to be valid. The driver 2356 * must make sure that it goes single threaded (with respect to mac 2357 * calls) and wait for all pending mac calls to finish before calling 2358 * mac_unregister. 2359 */ 2360 rw_enter(&i_mac_impl_lock, RW_READER); 2361 if (mip->mi_state_flags & MIS_DISABLED) { 2362 rw_exit(&i_mac_impl_lock); 2363 return; 2364 } 2365 2366 /* 2367 * Get MAC tx srs from walking mac_client_handle list. 2368 */ 2369 rw_enter(&mip->mi_rw_lock, RW_READER); 2370 for (cclient = mip->mi_clients_list; cclient != NULL; 2371 cclient = cclient->mci_client_next) { 2372 if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) 2373 mac_tx_srs_wakeup(mac_srs, ring); 2374 (void) mac_flow_walk(cclient->mci_subflow_tab, 2375 mac_tx_flow_srs_wakeup, ring); 2376 } 2377 rw_exit(&mip->mi_rw_lock); 2378 rw_exit(&i_mac_impl_lock); 2379 } 2380 2381 /* ARGSUSED */ 2382 void 2383 mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, 2384 boolean_t add) 2385 { 2386 mac_impl_t *mip = (mac_impl_t *)mh; 2387 2388 i_mac_perim_enter((mac_impl_t *)mh); 2389 /* 2390 * If no specific refresh function was given then default to the 2391 * driver's m_multicst entry point. 2392 */ 2393 if (refresh == NULL) { 2394 refresh = mip->mi_multicst; 2395 arg = mip->mi_driver; 2396 } 2397 2398 mac_bcast_refresh(mip, refresh, arg, add); 2399 i_mac_perim_exit((mac_impl_t *)mh); 2400 } 2401 2402 void 2403 mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) 2404 { 2405 mac_impl_t *mip = (mac_impl_t *)mh; 2406 2407 /* 2408 * If no specific refresh function was given then default to the 2409 * driver's m_promisc entry point. 2410 */ 2411 if (refresh == NULL) { 2412 refresh = mip->mi_setpromisc; 2413 arg = mip->mi_driver; 2414 } 2415 ASSERT(refresh != NULL); 2416 2417 /* 2418 * Call the refresh function with the current promiscuity. 2419 */ 2420 refresh(arg, (mip->mi_devpromisc != 0)); 2421 } 2422 2423 /* 2424 * The mac client requests that the mac not to change its margin size to 2425 * be less than the specified value. If "current" is B_TRUE, then the client 2426 * requests the mac not to change its margin size to be smaller than the 2427 * current size. Further, return the current margin size value in this case. 2428 * 2429 * We keep every requested size in an ordered list from largest to smallest. 2430 */ 2431 int 2432 mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) 2433 { 2434 mac_impl_t *mip = (mac_impl_t *)mh; 2435 mac_margin_req_t **pp, *p; 2436 int err = 0; 2437 2438 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2439 if (current) 2440 *marginp = mip->mi_margin; 2441 2442 /* 2443 * If the current margin value cannot satisfy the margin requested, 2444 * return ENOTSUP directly. 2445 */ 2446 if (*marginp > mip->mi_margin) { 2447 err = ENOTSUP; 2448 goto done; 2449 } 2450 2451 /* 2452 * Check whether the given margin is already in the list. If so, 2453 * bump the reference count. 2454 */ 2455 for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { 2456 if (p->mmr_margin == *marginp) { 2457 /* 2458 * The margin requested is already in the list, 2459 * so just bump the reference count. 2460 */ 2461 p->mmr_ref++; 2462 goto done; 2463 } 2464 if (p->mmr_margin < *marginp) 2465 break; 2466 } 2467 2468 2469 p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); 2470 p->mmr_margin = *marginp; 2471 p->mmr_ref++; 2472 p->mmr_nextp = *pp; 2473 *pp = p; 2474 2475 done: 2476 rw_exit(&(mip->mi_rw_lock)); 2477 return (err); 2478 } 2479 2480 /* 2481 * The mac client requests to cancel its previous mac_margin_add() request. 2482 * We remove the requested margin size from the list. 2483 */ 2484 int 2485 mac_margin_remove(mac_handle_t mh, uint32_t margin) 2486 { 2487 mac_impl_t *mip = (mac_impl_t *)mh; 2488 mac_margin_req_t **pp, *p; 2489 int err = 0; 2490 2491 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2492 /* 2493 * Find the entry in the list for the given margin. 2494 */ 2495 for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { 2496 if (p->mmr_margin == margin) { 2497 if (--p->mmr_ref == 0) 2498 break; 2499 2500 /* 2501 * There is still a reference to this address so 2502 * there's nothing more to do. 2503 */ 2504 goto done; 2505 } 2506 } 2507 2508 /* 2509 * We did not find an entry for the given margin. 2510 */ 2511 if (p == NULL) { 2512 err = ENOENT; 2513 goto done; 2514 } 2515 2516 ASSERT(p->mmr_ref == 0); 2517 2518 /* 2519 * Remove it from the list. 2520 */ 2521 *pp = p->mmr_nextp; 2522 kmem_free(p, sizeof (mac_margin_req_t)); 2523 done: 2524 rw_exit(&(mip->mi_rw_lock)); 2525 return (err); 2526 } 2527 2528 boolean_t 2529 mac_margin_update(mac_handle_t mh, uint32_t margin) 2530 { 2531 mac_impl_t *mip = (mac_impl_t *)mh; 2532 uint32_t margin_needed = 0; 2533 2534 rw_enter(&(mip->mi_rw_lock), RW_WRITER); 2535 2536 if (mip->mi_mmrp != NULL) 2537 margin_needed = mip->mi_mmrp->mmr_margin; 2538 2539 if (margin_needed <= margin) 2540 mip->mi_margin = margin; 2541 2542 rw_exit(&(mip->mi_rw_lock)); 2543 2544 if (margin_needed <= margin) 2545 i_mac_notify(mip, MAC_NOTE_MARGIN); 2546 2547 return (margin_needed <= margin); 2548 } 2549 2550 /* 2551 * MAC Type Plugin functions. 2552 */ 2553 2554 mactype_t * 2555 mactype_getplugin(const char *pname) 2556 { 2557 mactype_t *mtype = NULL; 2558 boolean_t tried_modload = B_FALSE; 2559 2560 mutex_enter(&i_mactype_lock); 2561 2562 find_registered_mactype: 2563 if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, 2564 (mod_hash_val_t *)&mtype) != 0) { 2565 if (!tried_modload) { 2566 /* 2567 * If the plugin has not yet been loaded, then 2568 * attempt to load it now. If modload() succeeds, 2569 * the plugin should have registered using 2570 * mactype_register(), in which case we can go back 2571 * and attempt to find it again. 2572 */ 2573 if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { 2574 tried_modload = B_TRUE; 2575 goto find_registered_mactype; 2576 } 2577 } 2578 } else { 2579 /* 2580 * Note that there's no danger that the plugin we've loaded 2581 * could be unloaded between the modload() step and the 2582 * reference count bump here, as we're holding 2583 * i_mactype_lock, which mactype_unregister() also holds. 2584 */ 2585 atomic_inc_32(&mtype->mt_ref); 2586 } 2587 2588 mutex_exit(&i_mactype_lock); 2589 return (mtype); 2590 } 2591 2592 mactype_register_t * 2593 mactype_alloc(uint_t mactype_version) 2594 { 2595 mactype_register_t *mtrp; 2596 2597 /* 2598 * Make sure there isn't a version mismatch between the plugin and 2599 * the framework. In the future, if multiple versions are 2600 * supported, this check could become more sophisticated. 2601 */ 2602 if (mactype_version != MACTYPE_VERSION) 2603 return (NULL); 2604 2605 mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); 2606 mtrp->mtr_version = mactype_version; 2607 return (mtrp); 2608 } 2609 2610 void 2611 mactype_free(mactype_register_t *mtrp) 2612 { 2613 kmem_free(mtrp, sizeof (mactype_register_t)); 2614 } 2615 2616 int 2617 mactype_register(mactype_register_t *mtrp) 2618 { 2619 mactype_t *mtp; 2620 mactype_ops_t *ops = mtrp->mtr_ops; 2621 2622 /* Do some sanity checking before we register this MAC type. */ 2623 if (mtrp->mtr_ident == NULL || ops == NULL) 2624 return (EINVAL); 2625 2626 /* 2627 * Verify that all mandatory callbacks are set in the ops 2628 * vector. 2629 */ 2630 if (ops->mtops_unicst_verify == NULL || 2631 ops->mtops_multicst_verify == NULL || 2632 ops->mtops_sap_verify == NULL || 2633 ops->mtops_header == NULL || 2634 ops->mtops_header_info == NULL) { 2635 return (EINVAL); 2636 } 2637 2638 mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); 2639 mtp->mt_ident = mtrp->mtr_ident; 2640 mtp->mt_ops = *ops; 2641 mtp->mt_type = mtrp->mtr_mactype; 2642 mtp->mt_nativetype = mtrp->mtr_nativetype; 2643 mtp->mt_addr_length = mtrp->mtr_addrlen; 2644 if (mtrp->mtr_brdcst_addr != NULL) { 2645 mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); 2646 bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, 2647 mtrp->mtr_addrlen); 2648 } 2649 2650 mtp->mt_stats = mtrp->mtr_stats; 2651 mtp->mt_statcount = mtrp->mtr_statcount; 2652 2653 mtp->mt_mapping = mtrp->mtr_mapping; 2654 mtp->mt_mappingcount = mtrp->mtr_mappingcount; 2655 2656 if (mod_hash_insert(i_mactype_hash, 2657 (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { 2658 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2659 kmem_free(mtp, sizeof (*mtp)); 2660 return (EEXIST); 2661 } 2662 return (0); 2663 } 2664 2665 int 2666 mactype_unregister(const char *ident) 2667 { 2668 mactype_t *mtp; 2669 mod_hash_val_t val; 2670 int err; 2671 2672 /* 2673 * Let's not allow MAC drivers to use this plugin while we're 2674 * trying to unregister it. Holding i_mactype_lock also prevents a 2675 * plugin from unregistering while a MAC driver is attempting to 2676 * hold a reference to it in i_mactype_getplugin(). 2677 */ 2678 mutex_enter(&i_mactype_lock); 2679 2680 if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, 2681 (mod_hash_val_t *)&mtp)) != 0) { 2682 /* A plugin is trying to unregister, but it never registered. */ 2683 err = ENXIO; 2684 goto done; 2685 } 2686 2687 if (mtp->mt_ref != 0) { 2688 err = EBUSY; 2689 goto done; 2690 } 2691 2692 err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); 2693 ASSERT(err == 0); 2694 if (err != 0) { 2695 /* This should never happen, thus the ASSERT() above. */ 2696 err = EINVAL; 2697 goto done; 2698 } 2699 ASSERT(mtp == (mactype_t *)val); 2700 2701 if (mtp->mt_brdcst_addr != NULL) 2702 kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); 2703 kmem_free(mtp, sizeof (mactype_t)); 2704 done: 2705 mutex_exit(&i_mactype_lock); 2706 return (err); 2707 } 2708 2709 /* 2710 * mac_set_prop() sets mac or hardware driver properties: 2711 * MAC resource properties include maxbw, priority, and cpu binding list. 2712 * Driver properties are private properties to the hardware, such as mtu 2713 * and speed. There's one other MAC property -- the PVID. 2714 * If the property is a driver property, mac_set_prop() calls driver's callback 2715 * function to set it. 2716 * If the property is a mac resource property, mac_set_prop() invokes 2717 * mac_set_resources() which will cache the property value in mac_impl_t and 2718 * may call mac_client_set_resource() to update property value of the primary 2719 * mac client, if it exists. 2720 */ 2721 int 2722 mac_set_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize) 2723 { 2724 int err = ENOTSUP; 2725 mac_impl_t *mip = (mac_impl_t *)mh; 2726 2727 ASSERT(MAC_PERIM_HELD(mh)); 2728 2729 switch (macprop->mp_id) { 2730 case MAC_PROP_MAXBW: 2731 case MAC_PROP_PRIO: 2732 case MAC_PROP_BIND_CPU: { 2733 mac_resource_props_t mrp; 2734 2735 /* If it is mac property, call mac_set_resources() */ 2736 if (valsize < sizeof (mac_resource_props_t)) 2737 return (EINVAL); 2738 bcopy(val, &mrp, sizeof (mrp)); 2739 err = mac_set_resources(mh, &mrp); 2740 break; 2741 } 2742 2743 case MAC_PROP_PVID: 2744 if (valsize < sizeof (uint16_t) || 2745 (mip->mi_state_flags & MIS_IS_VNIC)) 2746 return (EINVAL); 2747 err = mac_set_pvid(mh, *(uint16_t *)val); 2748 break; 2749 2750 case MAC_PROP_MTU: { 2751 uint32_t mtu; 2752 2753 if (valsize < sizeof (mtu)) 2754 return (EINVAL); 2755 bcopy(val, &mtu, sizeof (mtu)); 2756 err = mac_set_mtu(mh, mtu, NULL); 2757 break; 2758 } 2759 2760 case MAC_PROP_LLIMIT: 2761 case MAC_PROP_LDECAY: { 2762 uint32_t learnval; 2763 2764 if (valsize < sizeof (learnval) || 2765 (mip->mi_state_flags & MIS_IS_VNIC)) 2766 return (EINVAL); 2767 bcopy(val, &learnval, sizeof (learnval)); 2768 if (learnval == 0 && macprop->mp_id == MAC_PROP_LDECAY) 2769 return (EINVAL); 2770 if (macprop->mp_id == MAC_PROP_LLIMIT) 2771 mip->mi_llimit = learnval; 2772 else 2773 mip->mi_ldecay = learnval; 2774 err = 0; 2775 break; 2776 } 2777 2778 default: 2779 /* For other driver properties, call driver's callback */ 2780 if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { 2781 err = mip->mi_callbacks->mc_setprop(mip->mi_driver, 2782 macprop->mp_name, macprop->mp_id, valsize, val); 2783 } 2784 } 2785 return (err); 2786 } 2787 2788 /* 2789 * mac_get_prop() gets mac or hardware driver properties. 2790 * 2791 * If the property is a driver property, mac_get_prop() calls driver's callback 2792 * function to get it. 2793 * If the property is a mac property, mac_get_prop() invokes mac_get_resources() 2794 * which returns the cached value in mac_impl_t. 2795 */ 2796 int 2797 mac_get_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize, 2798 uint_t *perm) 2799 { 2800 int err = ENOTSUP; 2801 mac_impl_t *mip = (mac_impl_t *)mh; 2802 link_state_t link_state; 2803 boolean_t is_getprop, is_setprop; 2804 2805 is_getprop = (mip->mi_callbacks->mc_callbacks & MC_GETPROP); 2806 is_setprop = (mip->mi_callbacks->mc_callbacks & MC_SETPROP); 2807 2808 switch (macprop->mp_id) { 2809 case MAC_PROP_MAXBW: 2810 case MAC_PROP_PRIO: 2811 case MAC_PROP_BIND_CPU: { 2812 mac_resource_props_t mrp; 2813 2814 /* If mac property, read from cache */ 2815 if (valsize < sizeof (mac_resource_props_t)) 2816 return (EINVAL); 2817 mac_get_resources(mh, &mrp); 2818 bcopy(&mrp, val, sizeof (mac_resource_props_t)); 2819 return (0); 2820 } 2821 2822 case MAC_PROP_PVID: 2823 if (valsize < sizeof (uint16_t) || 2824 (mip->mi_state_flags & MIS_IS_VNIC)) 2825 return (EINVAL); 2826 *(uint16_t *)val = mac_get_pvid(mh); 2827 return (0); 2828 2829 case MAC_PROP_LLIMIT: 2830 case MAC_PROP_LDECAY: 2831 if (valsize < sizeof (uint32_t) || 2832 (mip->mi_state_flags & MIS_IS_VNIC)) 2833 return (EINVAL); 2834 if (macprop->mp_id == MAC_PROP_LLIMIT) 2835 bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit)); 2836 else 2837 bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay)); 2838 return (0); 2839 2840 case MAC_PROP_MTU: { 2841 uint32_t sdu; 2842 mac_propval_range_t range; 2843 2844 if ((macprop->mp_flags & MAC_PROP_POSSIBLE) != 0) { 2845 if (valsize < sizeof (mac_propval_range_t)) 2846 return (EINVAL); 2847 if (is_getprop) { 2848 err = mip->mi_callbacks->mc_getprop(mip-> 2849 mi_driver, macprop->mp_name, macprop->mp_id, 2850 macprop->mp_flags, valsize, val, perm); 2851 } 2852 /* 2853 * If the driver doesn't have *_m_getprop defined or 2854 * if the driver doesn't support setting MTU then 2855 * return the CURRENT value as POSSIBLE value. 2856 */ 2857 if (!is_getprop || err == ENOTSUP) { 2858 mac_sdu_get(mh, NULL, &sdu); 2859 range.mpr_count = 1; 2860 range.mpr_type = MAC_PROPVAL_UINT32; 2861 range.range_uint32[0].mpur_min = 2862 range.range_uint32[0].mpur_max = sdu; 2863 bcopy(&range, val, sizeof (range)); 2864 err = 0; 2865 } 2866 return (err); 2867 } 2868 if (valsize < sizeof (sdu)) 2869 return (EINVAL); 2870 if ((macprop->mp_flags & MAC_PROP_DEFAULT) == 0) { 2871 mac_sdu_get(mh, NULL, &sdu); 2872 bcopy(&sdu, val, sizeof (sdu)); 2873 if (is_setprop && (mip->mi_callbacks->mc_setprop(mip-> 2874 mi_driver, macprop->mp_name, macprop->mp_id, 2875 valsize, val) == 0)) { 2876 *perm = MAC_PROP_PERM_RW; 2877 } else { 2878 *perm = MAC_PROP_PERM_READ; 2879 } 2880 return (0); 2881 } else { 2882 if (mip->mi_info.mi_media == DL_ETHER) { 2883 sdu = ETHERMTU; 2884 bcopy(&sdu, val, sizeof (sdu)); 2885 2886 return (0); 2887 } 2888 /* 2889 * ask driver for its default. 2890 */ 2891 break; 2892 } 2893 } 2894 case MAC_PROP_STATUS: 2895 if (valsize < sizeof (link_state)) 2896 return (EINVAL); 2897 *perm = MAC_PROP_PERM_READ; 2898 link_state = mac_link_get(mh); 2899 bcopy(&link_state, val, sizeof (link_state)); 2900 return (0); 2901 default: 2902 break; 2903 2904 } 2905 /* If driver property, request from driver */ 2906 if (is_getprop) { 2907 err = mip->mi_callbacks->mc_getprop(mip->mi_driver, 2908 macprop->mp_name, macprop->mp_id, macprop->mp_flags, 2909 valsize, val, perm); 2910 } 2911 return (err); 2912 } 2913 2914 int 2915 mac_fastpath_disable(mac_handle_t mh) 2916 { 2917 mac_impl_t *mip = (mac_impl_t *)mh; 2918 2919 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 2920 return (0); 2921 2922 return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver)); 2923 } 2924 2925 void 2926 mac_fastpath_enable(mac_handle_t mh) 2927 { 2928 mac_impl_t *mip = (mac_impl_t *)mh; 2929 2930 if ((mip->mi_state_flags & MIS_LEGACY) == 0) 2931 return; 2932 2933 mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver); 2934 } 2935 2936 void 2937 mac_register_priv_prop(mac_impl_t *mip, mac_priv_prop_t *mpp, uint_t nprop) 2938 { 2939 mac_priv_prop_t *mpriv; 2940 2941 if (mpp == NULL) 2942 return; 2943 2944 mpriv = kmem_zalloc(nprop * sizeof (*mpriv), KM_SLEEP); 2945 (void) memcpy(mpriv, mpp, nprop * sizeof (*mpriv)); 2946 mip->mi_priv_prop = mpriv; 2947 mip->mi_priv_prop_count = nprop; 2948 } 2949 2950 void 2951 mac_unregister_priv_prop(mac_impl_t *mip) 2952 { 2953 mac_priv_prop_t *mpriv; 2954 2955 mpriv = mip->mi_priv_prop; 2956 if (mpriv != NULL) { 2957 kmem_free(mpriv, mip->mi_priv_prop_count * sizeof (*mpriv)); 2958 mip->mi_priv_prop = NULL; 2959 } 2960 mip->mi_priv_prop_count = 0; 2961 } 2962 2963 /* 2964 * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure 2965 * (by invoking mac_rx()) even after processing mac_stop_ring(). In such 2966 * cases if MAC free's the ring structure after mac_stop_ring(), any 2967 * illegal access to the ring structure coming from the driver will panic 2968 * the system. In order to protect the system from such inadverent access, 2969 * we maintain a cache of rings in the mac_impl_t after they get free'd up. 2970 * When packets are received on free'd up rings, MAC (through the generation 2971 * count mechanism) will drop such packets. 2972 */ 2973 static mac_ring_t * 2974 mac_ring_alloc(mac_impl_t *mip, mac_capab_rings_t *cap_rings) 2975 { 2976 mac_ring_t *ring; 2977 2978 if (cap_rings->mr_type == MAC_RING_TYPE_RX) { 2979 mutex_enter(&mip->mi_ring_lock); 2980 if (mip->mi_ring_freelist != NULL) { 2981 ring = mip->mi_ring_freelist; 2982 mip->mi_ring_freelist = ring->mr_next; 2983 bzero(ring, sizeof (mac_ring_t)); 2984 } else { 2985 ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); 2986 } 2987 mutex_exit(&mip->mi_ring_lock); 2988 } else { 2989 ring = kmem_zalloc(sizeof (mac_ring_t), KM_SLEEP); 2990 } 2991 ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); 2992 return (ring); 2993 } 2994 2995 static void 2996 mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) 2997 { 2998 if (ring->mr_type == MAC_RING_TYPE_RX) { 2999 mutex_enter(&mip->mi_ring_lock); 3000 ring->mr_state = MR_FREE; 3001 ring->mr_flag = 0; 3002 ring->mr_next = mip->mi_ring_freelist; 3003 mip->mi_ring_freelist = ring; 3004 mutex_exit(&mip->mi_ring_lock); 3005 } else { 3006 kmem_free(ring, sizeof (mac_ring_t)); 3007 } 3008 } 3009 3010 static void 3011 mac_ring_freeall(mac_impl_t *mip) 3012 { 3013 mac_ring_t *ring_next; 3014 mutex_enter(&mip->mi_ring_lock); 3015 mac_ring_t *ring = mip->mi_ring_freelist; 3016 while (ring != NULL) { 3017 ring_next = ring->mr_next; 3018 kmem_cache_free(mac_ring_cache, ring); 3019 ring = ring_next; 3020 } 3021 mip->mi_ring_freelist = NULL; 3022 mutex_exit(&mip->mi_ring_lock); 3023 } 3024 3025 int 3026 mac_start_ring(mac_ring_t *ring) 3027 { 3028 int rv = 0; 3029 3030 if (ring->mr_start != NULL) 3031 rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); 3032 3033 return (rv); 3034 } 3035 3036 void 3037 mac_stop_ring(mac_ring_t *ring) 3038 { 3039 if (ring->mr_stop != NULL) 3040 ring->mr_stop(ring->mr_driver); 3041 3042 /* 3043 * Increment the ring generation number for this ring. 3044 */ 3045 ring->mr_gen_num++; 3046 } 3047 3048 int 3049 mac_start_group(mac_group_t *group) 3050 { 3051 int rv = 0; 3052 3053 if (group->mrg_start != NULL) 3054 rv = group->mrg_start(group->mrg_driver); 3055 3056 return (rv); 3057 } 3058 3059 void 3060 mac_stop_group(mac_group_t *group) 3061 { 3062 if (group->mrg_stop != NULL) 3063 group->mrg_stop(group->mrg_driver); 3064 } 3065 3066 /* 3067 * Called from mac_start() on the default Rx group. Broadcast and multicast 3068 * packets are received only on the default group. Hence the default group 3069 * needs to be up even if the primary client is not up, for the other groups 3070 * to be functional. We do this by calling this function at mac_start time 3071 * itself. However the broadcast packets that are received can't make their 3072 * way beyond mac_rx until a mac client creates a broadcast flow. 3073 */ 3074 static int 3075 mac_start_group_and_rings(mac_group_t *group) 3076 { 3077 mac_ring_t *ring; 3078 int rv = 0; 3079 3080 ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); 3081 if ((rv = mac_start_group(group)) != 0) 3082 return (rv); 3083 3084 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3085 ASSERT(ring->mr_state == MR_FREE); 3086 if ((rv = mac_start_ring(ring)) != 0) 3087 goto error; 3088 ring->mr_state = MR_INUSE; 3089 ring->mr_classify_type = MAC_SW_CLASSIFIER; 3090 } 3091 return (0); 3092 3093 error: 3094 mac_stop_group_and_rings(group); 3095 return (rv); 3096 } 3097 3098 /* Called from mac_stop on the default Rx group */ 3099 static void 3100 mac_stop_group_and_rings(mac_group_t *group) 3101 { 3102 mac_ring_t *ring; 3103 3104 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 3105 if (ring->mr_state != MR_FREE) { 3106 mac_stop_ring(ring); 3107 ring->mr_state = MR_FREE; 3108 ring->mr_flag = 0; 3109 ring->mr_classify_type = MAC_NO_CLASSIFIER; 3110 } 3111 } 3112 mac_stop_group(group); 3113 } 3114 3115 3116 static mac_ring_t * 3117 mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, 3118 mac_capab_rings_t *cap_rings) 3119 { 3120 mac_ring_t *ring; 3121 mac_ring_info_t ring_info; 3122 3123 ring = mac_ring_alloc(mip, cap_rings); 3124 3125 /* Prepare basic information of ring */ 3126 ring->mr_index = index; 3127 ring->mr_type = group->mrg_type; 3128 ring->mr_gh = (mac_group_handle_t)group; 3129 3130 /* Insert the new ring to the list. */ 3131 ring->mr_next = group->mrg_rings; 3132 group->mrg_rings = ring; 3133 3134 /* Zero to reuse the info data structure */ 3135 bzero(&ring_info, sizeof (ring_info)); 3136 3137 /* Query ring information from driver */ 3138 cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, 3139 index, &ring_info, (mac_ring_handle_t)ring); 3140 3141 ring->mr_info = ring_info; 3142 3143 /* Update ring's status */ 3144 ring->mr_state = MR_FREE; 3145 ring->mr_flag = 0; 3146 3147 /* Update the ring count of the group */ 3148 group->mrg_cur_count++; 3149 return (ring); 3150 } 3151 3152 /* 3153 * Rings are chained together for easy regrouping. 3154 */ 3155 static void 3156 mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, 3157 mac_capab_rings_t *cap_rings) 3158 { 3159 int index; 3160 3161 /* 3162 * Initialize all ring members of this group. Size of zero will not 3163 * enter the loop, so it's safe for initializing an empty group. 3164 */ 3165 for (index = size - 1; index >= 0; index--) 3166 (void) mac_init_ring(mip, group, index, cap_rings); 3167 } 3168 3169 int 3170 mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3171 { 3172 mac_capab_rings_t *cap_rings; 3173 mac_group_t *group, *groups; 3174 mac_group_info_t group_info; 3175 uint_t group_free = 0; 3176 uint_t ring_left; 3177 mac_ring_t *ring; 3178 int g, err = 0; 3179 3180 switch (rtype) { 3181 case MAC_RING_TYPE_RX: 3182 ASSERT(mip->mi_rx_groups == NULL); 3183 3184 cap_rings = &mip->mi_rx_rings_cap; 3185 cap_rings->mr_type = MAC_RING_TYPE_RX; 3186 break; 3187 case MAC_RING_TYPE_TX: 3188 ASSERT(mip->mi_tx_groups == NULL); 3189 3190 cap_rings = &mip->mi_tx_rings_cap; 3191 cap_rings->mr_type = MAC_RING_TYPE_TX; 3192 break; 3193 default: 3194 ASSERT(B_FALSE); 3195 } 3196 3197 if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, 3198 cap_rings)) 3199 return (0); 3200 3201 /* 3202 * Allocate a contiguous buffer for all groups. 3203 */ 3204 groups = kmem_zalloc(sizeof (mac_group_t) * (cap_rings->mr_gnum + 1), 3205 KM_SLEEP); 3206 3207 ring_left = cap_rings->mr_rnum; 3208 3209 /* 3210 * Get all ring groups if any, and get their ring members 3211 * if any. 3212 */ 3213 for (g = 0; g < cap_rings->mr_gnum; g++) { 3214 group = groups + g; 3215 3216 /* Prepare basic information of the group */ 3217 group->mrg_index = g; 3218 group->mrg_type = rtype; 3219 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3220 group->mrg_mh = (mac_handle_t)mip; 3221 group->mrg_next = group + 1; 3222 3223 /* Zero to reuse the info data structure */ 3224 bzero(&group_info, sizeof (group_info)); 3225 3226 /* Query group information from driver */ 3227 cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, 3228 (mac_group_handle_t)group); 3229 3230 switch (cap_rings->mr_group_type) { 3231 case MAC_GROUP_TYPE_DYNAMIC: 3232 if (cap_rings->mr_gaddring == NULL || 3233 cap_rings->mr_gremring == NULL) { 3234 DTRACE_PROBE3( 3235 mac__init__rings_no_addremring, 3236 char *, mip->mi_name, 3237 mac_group_add_ring_t, 3238 cap_rings->mr_gaddring, 3239 mac_group_add_ring_t, 3240 cap_rings->mr_gremring); 3241 err = EINVAL; 3242 goto bail; 3243 } 3244 3245 switch (rtype) { 3246 case MAC_RING_TYPE_RX: 3247 /* 3248 * The first RX group must have non-zero 3249 * rings, and the following groups must 3250 * have zero rings. 3251 */ 3252 if (g == 0 && group_info.mgi_count == 0) { 3253 DTRACE_PROBE1( 3254 mac__init__rings__rx__def__zero, 3255 char *, mip->mi_name); 3256 err = EINVAL; 3257 goto bail; 3258 } 3259 if (g > 0 && group_info.mgi_count != 0) { 3260 DTRACE_PROBE3( 3261 mac__init__rings__rx__nonzero, 3262 char *, mip->mi_name, 3263 int, g, int, group_info.mgi_count); 3264 err = EINVAL; 3265 goto bail; 3266 } 3267 break; 3268 case MAC_RING_TYPE_TX: 3269 /* 3270 * All TX ring groups must have zero rings. 3271 */ 3272 if (group_info.mgi_count != 0) { 3273 DTRACE_PROBE3( 3274 mac__init__rings__tx__nonzero, 3275 char *, mip->mi_name, 3276 int, g, int, group_info.mgi_count); 3277 err = EINVAL; 3278 goto bail; 3279 } 3280 break; 3281 } 3282 break; 3283 case MAC_GROUP_TYPE_STATIC: 3284 /* 3285 * Note that an empty group is allowed, e.g., an aggr 3286 * would start with an empty group. 3287 */ 3288 break; 3289 default: 3290 /* unknown group type */ 3291 DTRACE_PROBE2(mac__init__rings__unknown__type, 3292 char *, mip->mi_name, 3293 int, cap_rings->mr_group_type); 3294 err = EINVAL; 3295 goto bail; 3296 } 3297 3298 3299 /* 3300 * Driver must register group->mgi_addmac/remmac() for rx groups 3301 * to support multiple MAC addresses. 3302 */ 3303 if (rtype == MAC_RING_TYPE_RX) { 3304 if ((group_info.mgi_addmac == NULL) || 3305 (group_info.mgi_addmac == NULL)) 3306 goto bail; 3307 } 3308 3309 /* Cache driver-supplied information */ 3310 group->mrg_info = group_info; 3311 3312 /* Update the group's status and group count. */ 3313 mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED); 3314 group_free++; 3315 3316 group->mrg_rings = NULL; 3317 group->mrg_cur_count = 0; 3318 mac_init_group(mip, group, group_info.mgi_count, cap_rings); 3319 ring_left -= group_info.mgi_count; 3320 3321 /* The current group size should be equal to default value */ 3322 ASSERT(group->mrg_cur_count == group_info.mgi_count); 3323 } 3324 3325 /* Build up a dummy group for free resources as a pool */ 3326 group = groups + cap_rings->mr_gnum; 3327 3328 /* Prepare basic information of the group */ 3329 group->mrg_index = -1; 3330 group->mrg_type = rtype; 3331 group->mrg_state = MAC_GROUP_STATE_UNINIT; 3332 group->mrg_mh = (mac_handle_t)mip; 3333 group->mrg_next = NULL; 3334 3335 /* 3336 * If there are ungrouped rings, allocate a continuous buffer for 3337 * remaining resources. 3338 */ 3339 if (ring_left != 0) { 3340 group->mrg_rings = NULL; 3341 group->mrg_cur_count = 0; 3342 mac_init_group(mip, group, ring_left, cap_rings); 3343 3344 /* The current group size should be equal to ring_left */ 3345 ASSERT(group->mrg_cur_count == ring_left); 3346 3347 ring_left = 0; 3348 3349 /* Update this group's status */ 3350 mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED); 3351 } else 3352 group->mrg_rings = NULL; 3353 3354 ASSERT(ring_left == 0); 3355 3356 bail: 3357 /* Cache other important information to finalize the initialization */ 3358 switch (rtype) { 3359 case MAC_RING_TYPE_RX: 3360 mip->mi_rx_group_type = cap_rings->mr_group_type; 3361 mip->mi_rx_group_count = cap_rings->mr_gnum; 3362 mip->mi_rx_groups = groups; 3363 break; 3364 case MAC_RING_TYPE_TX: 3365 mip->mi_tx_group_type = cap_rings->mr_group_type; 3366 mip->mi_tx_group_count = cap_rings->mr_gnum; 3367 mip->mi_tx_group_free = group_free; 3368 mip->mi_tx_groups = groups; 3369 3370 /* 3371 * Ring 0 is used as the default one and it could be assigned 3372 * to a client as well. 3373 */ 3374 group = groups + cap_rings->mr_gnum; 3375 ring = group->mrg_rings; 3376 while ((ring->mr_index != 0) && (ring->mr_next != NULL)) 3377 ring = ring->mr_next; 3378 ASSERT(ring->mr_index == 0); 3379 mip->mi_default_tx_ring = (mac_ring_handle_t)ring; 3380 break; 3381 default: 3382 ASSERT(B_FALSE); 3383 } 3384 3385 if (err != 0) 3386 mac_free_rings(mip, rtype); 3387 3388 return (err); 3389 } 3390 3391 /* 3392 * Called to free all ring groups with particular type. It's supposed all groups 3393 * have been released by clinet. 3394 */ 3395 void 3396 mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) 3397 { 3398 mac_group_t *group, *groups; 3399 uint_t group_count; 3400 3401 switch (rtype) { 3402 case MAC_RING_TYPE_RX: 3403 if (mip->mi_rx_groups == NULL) 3404 return; 3405 3406 groups = mip->mi_rx_groups; 3407 group_count = mip->mi_rx_group_count; 3408 3409 mip->mi_rx_groups = NULL; 3410 mip->mi_rx_group_count = 0; 3411 break; 3412 case MAC_RING_TYPE_TX: 3413 ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); 3414 3415 if (mip->mi_tx_groups == NULL) 3416 return; 3417 3418 groups = mip->mi_tx_groups; 3419 group_count = mip->mi_tx_group_count; 3420 3421 mip->mi_tx_groups = NULL; 3422 mip->mi_tx_group_count = 0; 3423 mip->mi_tx_group_free = 0; 3424 mip->mi_default_tx_ring = NULL; 3425 break; 3426 default: 3427 ASSERT(B_FALSE); 3428 } 3429 3430 for (group = groups; group != NULL; group = group->mrg_next) { 3431 mac_ring_t *ring; 3432 3433 if (group->mrg_cur_count == 0) 3434 continue; 3435 3436 ASSERT(group->mrg_rings != NULL); 3437 3438 while ((ring = group->mrg_rings) != NULL) { 3439 group->mrg_rings = ring->mr_next; 3440 mac_ring_free(mip, ring); 3441 } 3442 } 3443 3444 /* Free all the cached rings */ 3445 mac_ring_freeall(mip); 3446 /* Free the block of group data strutures */ 3447 kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); 3448 } 3449 3450 /* 3451 * Associate a MAC address with a receive group. 3452 * 3453 * The return value of this function should always be checked properly, because 3454 * any type of failure could cause unexpected results. A group can be added 3455 * or removed with a MAC address only after it has been reserved. Ideally, 3456 * a successful reservation always leads to calling mac_group_addmac() to 3457 * steer desired traffic. Failure of adding an unicast MAC address doesn't 3458 * always imply that the group is functioning abnormally. 3459 * 3460 * Currently this function is called everywhere, and it reflects assumptions 3461 * about MAC addresses in the implementation. CR 6735196. 3462 */ 3463 int 3464 mac_group_addmac(mac_group_t *group, const uint8_t *addr) 3465 { 3466 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 3467 ASSERT(group->mrg_info.mgi_addmac != NULL); 3468 3469 return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); 3470 } 3471 3472 /* 3473 * Remove the association between MAC address and receive group. 3474 */ 3475 int 3476 mac_group_remmac(mac_group_t *group, const uint8_t *addr) 3477 { 3478 ASSERT(group->mrg_type == MAC_RING_TYPE_RX); 3479 ASSERT(group->mrg_info.mgi_remmac != NULL); 3480 3481 return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); 3482 } 3483 3484 /* 3485 * Release a ring in use by marking it MR_FREE. 3486 * Any other client may reserve it for its use. 3487 */ 3488 void 3489 mac_release_tx_ring(mac_ring_handle_t rh) 3490 { 3491 mac_ring_t *ring = (mac_ring_t *)rh; 3492 mac_group_t *group = (mac_group_t *)ring->mr_gh; 3493 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3494 3495 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3496 ASSERT(ring->mr_state != MR_FREE); 3497 3498 /* 3499 * Default tx ring will be released by mac_stop(). 3500 */ 3501 if (rh == mip->mi_default_tx_ring) 3502 return; 3503 3504 mac_stop_ring(ring); 3505 3506 ring->mr_state = MR_FREE; 3507 ring->mr_flag = 0; 3508 } 3509 3510 /* 3511 * This is the entry point for packets transmitted through the bridging code. 3512 * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh' 3513 * pointer may be NULL to select the default ring. 3514 */ 3515 mblk_t * 3516 mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp) 3517 { 3518 mac_handle_t mh; 3519 3520 /* 3521 * Once we take a reference on the bridge link, the bridge 3522 * module itself can't unload, so the callback pointers are 3523 * stable. 3524 */ 3525 mutex_enter(&mip->mi_bridge_lock); 3526 if ((mh = mip->mi_bridge_link) != NULL) 3527 mac_bridge_ref_cb(mh, B_TRUE); 3528 mutex_exit(&mip->mi_bridge_lock); 3529 if (mh == NULL) { 3530 MAC_RING_TX(mip, rh, mp, mp); 3531 } else { 3532 mp = mac_bridge_tx_cb(mh, rh, mp); 3533 mac_bridge_ref_cb(mh, B_FALSE); 3534 } 3535 3536 return (mp); 3537 } 3538 3539 /* 3540 * Find a ring from its index. 3541 */ 3542 mac_ring_t * 3543 mac_find_ring(mac_group_t *group, int index) 3544 { 3545 mac_ring_t *ring = group->mrg_rings; 3546 3547 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) 3548 if (ring->mr_index == index) 3549 break; 3550 3551 return (ring); 3552 } 3553 /* 3554 * Add a ring to an existing group. 3555 * 3556 * The ring must be either passed directly (for example if the ring 3557 * movement is initiated by the framework), or specified through a driver 3558 * index (for example when the ring is added by the driver. 3559 * 3560 * The caller needs to call mac_perim_enter() before calling this function. 3561 */ 3562 int 3563 i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) 3564 { 3565 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3566 mac_capab_rings_t *cap_rings; 3567 boolean_t driver_call = (ring == NULL); 3568 mac_group_type_t group_type; 3569 int ret = 0; 3570 3571 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3572 3573 switch (group->mrg_type) { 3574 case MAC_RING_TYPE_RX: 3575 cap_rings = &mip->mi_rx_rings_cap; 3576 group_type = mip->mi_rx_group_type; 3577 break; 3578 case MAC_RING_TYPE_TX: 3579 cap_rings = &mip->mi_tx_rings_cap; 3580 group_type = mip->mi_tx_group_type; 3581 break; 3582 default: 3583 ASSERT(B_FALSE); 3584 } 3585 3586 /* 3587 * There should be no ring with the same ring index in the target 3588 * group. 3589 */ 3590 ASSERT(mac_find_ring(group, driver_call ? index : ring->mr_index) == 3591 NULL); 3592 3593 if (driver_call) { 3594 /* 3595 * The function is called as a result of a request from 3596 * a driver to add a ring to an existing group, for example 3597 * from the aggregation driver. Allocate a new mac_ring_t 3598 * for that ring. 3599 */ 3600 ring = mac_init_ring(mip, group, index, cap_rings); 3601 ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); 3602 } else { 3603 /* 3604 * The function is called as a result of a MAC layer request 3605 * to add a ring to an existing group. In this case the 3606 * ring is being moved between groups, which requires 3607 * the underlying driver to support dynamic grouping, 3608 * and the mac_ring_t already exists. 3609 */ 3610 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 3611 ASSERT(cap_rings->mr_gaddring != NULL); 3612 ASSERT(ring->mr_gh == NULL); 3613 } 3614 3615 /* 3616 * At this point the ring should not be in use, and it should be 3617 * of the right for the target group. 3618 */ 3619 ASSERT(ring->mr_state < MR_INUSE); 3620 ASSERT(ring->mr_srs == NULL); 3621 ASSERT(ring->mr_type == group->mrg_type); 3622 3623 if (!driver_call) { 3624 /* 3625 * Add the driver level hardware ring if the process was not 3626 * initiated by the driver, and the target group is not the 3627 * group. 3628 */ 3629 if (group->mrg_driver != NULL) { 3630 cap_rings->mr_gaddring(group->mrg_driver, 3631 ring->mr_driver, ring->mr_type); 3632 } 3633 3634 /* 3635 * Insert the ring ahead existing rings. 3636 */ 3637 ring->mr_next = group->mrg_rings; 3638 group->mrg_rings = ring; 3639 ring->mr_gh = (mac_group_handle_t)group; 3640 group->mrg_cur_count++; 3641 } 3642 3643 /* 3644 * If the group has not been actively used, we're done. 3645 */ 3646 if (group->mrg_index != -1 && 3647 group->mrg_state < MAC_GROUP_STATE_RESERVED) 3648 return (0); 3649 3650 /* 3651 * Set up SRS/SR according to the ring type. 3652 */ 3653 switch (ring->mr_type) { 3654 case MAC_RING_TYPE_RX: 3655 /* 3656 * Setup SRS on top of the new ring if the group is 3657 * reserved for someones exclusive use. 3658 */ 3659 if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { 3660 flow_entry_t *flent; 3661 mac_client_impl_t *mcip; 3662 3663 mcip = MAC_RX_GROUP_ONLY_CLIENT(group); 3664 ASSERT(mcip != NULL); 3665 flent = mcip->mci_flent; 3666 ASSERT(flent->fe_rx_srs_cnt > 0); 3667 mac_srs_group_setup(mcip, flent, group, SRST_LINK); 3668 } 3669 break; 3670 case MAC_RING_TYPE_TX: 3671 /* 3672 * For TX this function is only invoked during the 3673 * initial creation of a group when a share is 3674 * associated with a MAC client. So the datapath is not 3675 * yet setup, and will be setup later after the 3676 * group has been reserved and populated. 3677 */ 3678 break; 3679 default: 3680 ASSERT(B_FALSE); 3681 } 3682 3683 /* 3684 * Start the ring if needed. Failure causes to undo the grouping action. 3685 */ 3686 if ((ret = mac_start_ring(ring)) != 0) { 3687 if (ring->mr_type == MAC_RING_TYPE_RX) { 3688 if (ring->mr_srs != NULL) { 3689 mac_rx_srs_remove(ring->mr_srs); 3690 ring->mr_srs = NULL; 3691 } 3692 } 3693 if (!driver_call) { 3694 cap_rings->mr_gremring(group->mrg_driver, 3695 ring->mr_driver, ring->mr_type); 3696 } 3697 group->mrg_cur_count--; 3698 group->mrg_rings = ring->mr_next; 3699 3700 ring->mr_gh = NULL; 3701 3702 if (driver_call) 3703 mac_ring_free(mip, ring); 3704 3705 return (ret); 3706 } 3707 3708 /* 3709 * Update the ring's state. 3710 */ 3711 ring->mr_state = MR_INUSE; 3712 MAC_RING_UNMARK(ring, MR_INCIPIENT); 3713 return (0); 3714 } 3715 3716 /* 3717 * Remove a ring from it's current group. MAC internal function for dynamic 3718 * grouping. 3719 * 3720 * The caller needs to call mac_perim_enter() before calling this function. 3721 */ 3722 void 3723 i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, 3724 boolean_t driver_call) 3725 { 3726 mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; 3727 mac_capab_rings_t *cap_rings = NULL; 3728 mac_group_type_t group_type; 3729 3730 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3731 3732 ASSERT(mac_find_ring(group, ring->mr_index) == ring); 3733 ASSERT((mac_group_t *)ring->mr_gh == group); 3734 ASSERT(ring->mr_type == group->mrg_type); 3735 3736 switch (ring->mr_type) { 3737 case MAC_RING_TYPE_RX: 3738 group_type = mip->mi_rx_group_type; 3739 cap_rings = &mip->mi_rx_rings_cap; 3740 3741 if (group->mrg_state >= MAC_GROUP_STATE_RESERVED) 3742 mac_stop_ring(ring); 3743 3744 /* 3745 * Only hardware classified packets hold a reference to the 3746 * ring all the way up the Rx path. mac_rx_srs_remove() 3747 * will take care of quiescing the Rx path and removing the 3748 * SRS. The software classified path neither holds a reference 3749 * nor any association with the ring in mac_rx. 3750 */ 3751 if (ring->mr_srs != NULL) { 3752 mac_rx_srs_remove(ring->mr_srs); 3753 ring->mr_srs = NULL; 3754 } 3755 ring->mr_state = MR_FREE; 3756 ring->mr_flag = 0; 3757 3758 break; 3759 case MAC_RING_TYPE_TX: 3760 /* 3761 * For TX this function is only invoked in two 3762 * cases: 3763 * 3764 * 1) In the case of a failure during the 3765 * initial creation of a group when a share is 3766 * associated with a MAC client. So the SRS is not 3767 * yet setup, and will be setup later after the 3768 * group has been reserved and populated. 3769 * 3770 * 2) From mac_release_tx_group() when freeing 3771 * a TX SRS. 3772 * 3773 * In both cases the SRS and its soft rings are 3774 * already quiesced. 3775 */ 3776 ASSERT(!driver_call); 3777 group_type = mip->mi_tx_group_type; 3778 cap_rings = &mip->mi_tx_rings_cap; 3779 break; 3780 default: 3781 ASSERT(B_FALSE); 3782 } 3783 3784 /* 3785 * Remove the ring from the group. 3786 */ 3787 if (ring == group->mrg_rings) 3788 group->mrg_rings = ring->mr_next; 3789 else { 3790 mac_ring_t *pre; 3791 3792 pre = group->mrg_rings; 3793 while (pre->mr_next != ring) 3794 pre = pre->mr_next; 3795 pre->mr_next = ring->mr_next; 3796 } 3797 group->mrg_cur_count--; 3798 3799 if (!driver_call) { 3800 ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); 3801 ASSERT(cap_rings->mr_gremring != NULL); 3802 3803 /* 3804 * Remove the driver level hardware ring. 3805 */ 3806 if (group->mrg_driver != NULL) { 3807 cap_rings->mr_gremring(group->mrg_driver, 3808 ring->mr_driver, ring->mr_type); 3809 } 3810 } 3811 3812 ring->mr_gh = NULL; 3813 if (driver_call) { 3814 mac_ring_free(mip, ring); 3815 } else { 3816 ring->mr_state = MR_FREE; 3817 ring->mr_flag = 0; 3818 } 3819 } 3820 3821 /* 3822 * Move a ring to the target group. If needed, remove the ring from the group 3823 * that it currently belongs to. 3824 * 3825 * The caller need to enter MAC's perimeter by calling mac_perim_enter(). 3826 */ 3827 static int 3828 mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) 3829 { 3830 mac_group_t *s_group = (mac_group_t *)ring->mr_gh; 3831 int rv; 3832 3833 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3834 ASSERT(d_group != NULL); 3835 ASSERT(s_group->mrg_mh == d_group->mrg_mh); 3836 3837 if (s_group == d_group) 3838 return (0); 3839 3840 /* 3841 * Remove it from current group first. 3842 */ 3843 if (s_group != NULL) 3844 i_mac_group_rem_ring(s_group, ring, B_FALSE); 3845 3846 /* 3847 * Add it to the new group. 3848 */ 3849 rv = i_mac_group_add_ring(d_group, ring, 0); 3850 if (rv != 0) { 3851 /* 3852 * Failed to add ring back to source group. If 3853 * that fails, the ring is stuck in limbo, log message. 3854 */ 3855 if (i_mac_group_add_ring(s_group, ring, 0)) { 3856 cmn_err(CE_WARN, "%s: failed to move ring %p\n", 3857 mip->mi_name, (void *)ring); 3858 } 3859 } 3860 3861 return (rv); 3862 } 3863 3864 /* 3865 * Find a MAC address according to its value. 3866 */ 3867 mac_address_t * 3868 mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) 3869 { 3870 mac_address_t *map; 3871 3872 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3873 3874 for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { 3875 if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) 3876 break; 3877 } 3878 3879 return (map); 3880 } 3881 3882 /* 3883 * Check whether the MAC address is shared by multiple clients. 3884 */ 3885 boolean_t 3886 mac_check_macaddr_shared(mac_address_t *map) 3887 { 3888 ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); 3889 3890 return (map->ma_nusers > 1); 3891 } 3892 3893 /* 3894 * Remove the specified MAC address from the MAC address list and free it. 3895 */ 3896 static void 3897 mac_free_macaddr(mac_address_t *map) 3898 { 3899 mac_impl_t *mip = map->ma_mip; 3900 3901 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3902 ASSERT(mip->mi_addresses != NULL); 3903 3904 map = mac_find_macaddr(mip, map->ma_addr); 3905 3906 ASSERT(map != NULL); 3907 ASSERT(map->ma_nusers == 0); 3908 3909 if (map == mip->mi_addresses) { 3910 mip->mi_addresses = map->ma_next; 3911 } else { 3912 mac_address_t *pre; 3913 3914 pre = mip->mi_addresses; 3915 while (pre->ma_next != map) 3916 pre = pre->ma_next; 3917 pre->ma_next = map->ma_next; 3918 } 3919 3920 kmem_free(map, sizeof (mac_address_t)); 3921 } 3922 3923 /* 3924 * Add a MAC address reference for a client. If the desired MAC address 3925 * exists, add a reference to it. Otherwise, add the new address by adding 3926 * it to a reserved group or setting promiscuous mode. Won't try different 3927 * group is the group is non-NULL, so the caller must explictly share 3928 * default group when needed. 3929 * 3930 * Note, the primary MAC address is initialized at registration time, so 3931 * to add it to default group only need to activate it if its reference 3932 * count is still zero. Also, some drivers may not have advertised RINGS 3933 * capability. 3934 */ 3935 int 3936 mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr, 3937 boolean_t use_hw) 3938 { 3939 mac_address_t *map; 3940 int err = 0; 3941 boolean_t allocated_map = B_FALSE; 3942 3943 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 3944 3945 map = mac_find_macaddr(mip, mac_addr); 3946 3947 /* 3948 * If the new MAC address has not been added. Allocate a new one 3949 * and set it up. 3950 */ 3951 if (map == NULL) { 3952 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 3953 map->ma_len = mip->mi_type->mt_addr_length; 3954 bcopy(mac_addr, map->ma_addr, map->ma_len); 3955 map->ma_nusers = 0; 3956 map->ma_group = group; 3957 map->ma_mip = mip; 3958 3959 /* add the new MAC address to the head of the address list */ 3960 map->ma_next = mip->mi_addresses; 3961 mip->mi_addresses = map; 3962 3963 allocated_map = B_TRUE; 3964 } 3965 3966 ASSERT(map->ma_group == group); 3967 3968 /* 3969 * If the MAC address is already in use, simply account for the 3970 * new client. 3971 */ 3972 if (map->ma_nusers++ > 0) 3973 return (0); 3974 3975 /* 3976 * Activate this MAC address by adding it to the reserved group. 3977 */ 3978 if (group != NULL) { 3979 err = mac_group_addmac(group, (const uint8_t *)mac_addr); 3980 if (err == 0) { 3981 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 3982 return (0); 3983 } 3984 } 3985 3986 /* 3987 * The MAC address addition failed. If the client requires a 3988 * hardware classified MAC address, fail the operation. 3989 */ 3990 if (use_hw) { 3991 err = ENOSPC; 3992 goto bail; 3993 } 3994 3995 /* 3996 * Try promiscuous mode. 3997 * 3998 * For drivers that don't advertise RINGS capability, do 3999 * nothing for the primary address. 4000 */ 4001 if ((group == NULL) && 4002 (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { 4003 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 4004 return (0); 4005 } 4006 4007 /* 4008 * Enable promiscuous mode in order to receive traffic 4009 * to the new MAC address. 4010 */ 4011 if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) { 4012 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; 4013 return (0); 4014 } 4015 4016 /* 4017 * Free the MAC address that could not be added. Don't free 4018 * a pre-existing address, it could have been the entry 4019 * for the primary MAC address which was pre-allocated by 4020 * mac_init_macaddr(), and which must remain on the list. 4021 */ 4022 bail: 4023 map->ma_nusers--; 4024 if (allocated_map) 4025 mac_free_macaddr(map); 4026 return (err); 4027 } 4028 4029 /* 4030 * Remove a reference to a MAC address. This may cause to remove the MAC 4031 * address from an associated group or to turn off promiscuous mode. 4032 * The caller needs to handle the failure properly. 4033 */ 4034 int 4035 mac_remove_macaddr(mac_address_t *map) 4036 { 4037 mac_impl_t *mip = map->ma_mip; 4038 int err = 0; 4039 4040 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4041 4042 ASSERT(map == mac_find_macaddr(mip, map->ma_addr)); 4043 4044 /* 4045 * If it's not the last client using this MAC address, only update 4046 * the MAC clients count. 4047 */ 4048 if (--map->ma_nusers > 0) 4049 return (0); 4050 4051 /* 4052 * The MAC address is no longer used by any MAC client, so remove 4053 * it from its associated group, or turn off promiscuous mode 4054 * if it was enabled for the MAC address. 4055 */ 4056 switch (map->ma_type) { 4057 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 4058 /* 4059 * Don't free the preset primary address for drivers that 4060 * don't advertise RINGS capability. 4061 */ 4062 if (map->ma_group == NULL) 4063 return (0); 4064 4065 err = mac_group_remmac(map->ma_group, map->ma_addr); 4066 break; 4067 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 4068 err = i_mac_promisc_set(mip, B_FALSE); 4069 break; 4070 default: 4071 ASSERT(B_FALSE); 4072 } 4073 4074 if (err != 0) 4075 return (err); 4076 4077 /* 4078 * We created MAC address for the primary one at registration, so we 4079 * won't free it here. mac_fini_macaddr() will take care of it. 4080 */ 4081 if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) 4082 mac_free_macaddr(map); 4083 4084 return (0); 4085 } 4086 4087 /* 4088 * Update an existing MAC address. The caller need to make sure that the new 4089 * value has not been used. 4090 */ 4091 int 4092 mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) 4093 { 4094 mac_impl_t *mip = map->ma_mip; 4095 int err = 0; 4096 4097 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4098 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 4099 4100 switch (map->ma_type) { 4101 case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: 4102 /* 4103 * Update the primary address for drivers that are not 4104 * RINGS capable. 4105 */ 4106 if (map->ma_group == NULL) { 4107 err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) 4108 mac_addr); 4109 if (err != 0) 4110 return (err); 4111 break; 4112 } 4113 4114 /* 4115 * If this MAC address is not currently in use, 4116 * simply break out and update the value. 4117 */ 4118 if (map->ma_nusers == 0) 4119 break; 4120 4121 /* 4122 * Need to replace the MAC address associated with a group. 4123 */ 4124 err = mac_group_remmac(map->ma_group, map->ma_addr); 4125 if (err != 0) 4126 return (err); 4127 4128 err = mac_group_addmac(map->ma_group, mac_addr); 4129 4130 /* 4131 * Failure hints hardware error. The MAC layer needs to 4132 * have error notification facility to handle this. 4133 * Now, simply try to restore the value. 4134 */ 4135 if (err != 0) 4136 (void) mac_group_addmac(map->ma_group, map->ma_addr); 4137 4138 break; 4139 case MAC_ADDRESS_TYPE_UNICAST_PROMISC: 4140 /* 4141 * Need to do nothing more if in promiscuous mode. 4142 */ 4143 break; 4144 default: 4145 ASSERT(B_FALSE); 4146 } 4147 4148 /* 4149 * Successfully replaced the MAC address. 4150 */ 4151 if (err == 0) 4152 bcopy(mac_addr, map->ma_addr, map->ma_len); 4153 4154 return (err); 4155 } 4156 4157 /* 4158 * Freshen the MAC address with new value. Its caller must have updated the 4159 * hardware MAC address before calling this function. 4160 * This funcitons is supposed to be used to handle the MAC address change 4161 * notification from underlying drivers. 4162 */ 4163 void 4164 mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) 4165 { 4166 mac_impl_t *mip = map->ma_mip; 4167 4168 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4169 ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); 4170 4171 /* 4172 * Freshen the MAC address with new value. 4173 */ 4174 bcopy(mac_addr, map->ma_addr, map->ma_len); 4175 bcopy(mac_addr, mip->mi_addr, map->ma_len); 4176 4177 /* 4178 * Update all MAC clients that share this MAC address. 4179 */ 4180 mac_unicast_update_clients(mip, map); 4181 } 4182 4183 /* 4184 * Set up the primary MAC address. 4185 */ 4186 void 4187 mac_init_macaddr(mac_impl_t *mip) 4188 { 4189 mac_address_t *map; 4190 4191 /* 4192 * The reference count is initialized to zero, until it's really 4193 * activated. 4194 */ 4195 map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); 4196 map->ma_len = mip->mi_type->mt_addr_length; 4197 bcopy(mip->mi_addr, map->ma_addr, map->ma_len); 4198 4199 /* 4200 * If driver advertises RINGS capability, it shouldn't have initialized 4201 * its primary MAC address. For other drivers, including VNIC, the 4202 * primary address must work after registration. 4203 */ 4204 if (mip->mi_rx_groups == NULL) 4205 map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; 4206 4207 /* 4208 * The primary MAC address is reserved for default group according 4209 * to current design. 4210 */ 4211 map->ma_group = mip->mi_rx_groups; 4212 map->ma_mip = mip; 4213 4214 mip->mi_addresses = map; 4215 } 4216 4217 /* 4218 * Clean up the primary MAC address. Note, only one primary MAC address 4219 * is allowed. All other MAC addresses must have been freed appropriately. 4220 */ 4221 void 4222 mac_fini_macaddr(mac_impl_t *mip) 4223 { 4224 mac_address_t *map = mip->mi_addresses; 4225 4226 if (map == NULL) 4227 return; 4228 4229 /* 4230 * If mi_addresses is initialized, there should be exactly one 4231 * entry left on the list with no users. 4232 */ 4233 ASSERT(map->ma_nusers == 0); 4234 ASSERT(map->ma_next == NULL); 4235 4236 kmem_free(map, sizeof (mac_address_t)); 4237 mip->mi_addresses = NULL; 4238 } 4239 4240 /* 4241 * Logging related functions. 4242 */ 4243 4244 /* Write the Flow description to the log file */ 4245 int 4246 mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) 4247 { 4248 flow_desc_t *fdesc; 4249 mac_resource_props_t *mrp; 4250 net_desc_t ndesc; 4251 4252 bzero(&ndesc, sizeof (net_desc_t)); 4253 4254 /* 4255 * Grab the fe_lock to see a self-consistent fe_flow_desc. 4256 * Updates to the fe_flow_desc are done under the fe_lock 4257 */ 4258 mutex_enter(&flent->fe_lock); 4259 fdesc = &flent->fe_flow_desc; 4260 mrp = &flent->fe_resource_props; 4261 4262 ndesc.nd_name = flent->fe_flow_name; 4263 ndesc.nd_devname = mcip->mci_name; 4264 bcopy(fdesc->fd_src_mac, ndesc.nd_ehost, ETHERADDRL); 4265 bcopy(fdesc->fd_dst_mac, ndesc.nd_edest, ETHERADDRL); 4266 ndesc.nd_sap = htonl(fdesc->fd_sap); 4267 ndesc.nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; 4268 ndesc.nd_bw_limit = mrp->mrp_maxbw; 4269 if (ndesc.nd_isv4) { 4270 ndesc.nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); 4271 ndesc.nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); 4272 } else { 4273 bcopy(&fdesc->fd_local_addr, ndesc.nd_saddr, IPV6_ADDR_LEN); 4274 bcopy(&fdesc->fd_remote_addr, ndesc.nd_daddr, IPV6_ADDR_LEN); 4275 } 4276 ndesc.nd_sport = htons(fdesc->fd_local_port); 4277 ndesc.nd_dport = htons(fdesc->fd_remote_port); 4278 ndesc.nd_protocol = (uint8_t)fdesc->fd_protocol; 4279 mutex_exit(&flent->fe_lock); 4280 4281 return (exacct_commit_netinfo((void *)&ndesc, EX_NET_FLDESC_REC)); 4282 } 4283 4284 /* Write the Flow statistics to the log file */ 4285 int 4286 mac_write_flow_stats(flow_entry_t *flent) 4287 { 4288 flow_stats_t *fl_stats; 4289 net_stat_t nstat; 4290 4291 fl_stats = &flent->fe_flowstats; 4292 nstat.ns_name = flent->fe_flow_name; 4293 nstat.ns_ibytes = fl_stats->fs_rbytes; 4294 nstat.ns_obytes = fl_stats->fs_obytes; 4295 nstat.ns_ipackets = fl_stats->fs_ipackets; 4296 nstat.ns_opackets = fl_stats->fs_opackets; 4297 nstat.ns_ierrors = fl_stats->fs_ierrors; 4298 nstat.ns_oerrors = fl_stats->fs_oerrors; 4299 4300 return (exacct_commit_netinfo((void *)&nstat, EX_NET_FLSTAT_REC)); 4301 } 4302 4303 /* Write the Link Description to the log file */ 4304 int 4305 mac_write_link_desc(mac_client_impl_t *mcip) 4306 { 4307 net_desc_t ndesc; 4308 flow_entry_t *flent = mcip->mci_flent; 4309 4310 bzero(&ndesc, sizeof (net_desc_t)); 4311 4312 ndesc.nd_name = mcip->mci_name; 4313 ndesc.nd_devname = mcip->mci_name; 4314 ndesc.nd_isv4 = B_TRUE; 4315 /* 4316 * Grab the fe_lock to see a self-consistent fe_flow_desc. 4317 * Updates to the fe_flow_desc are done under the fe_lock 4318 * after removing the flent from the flow table. 4319 */ 4320 mutex_enter(&flent->fe_lock); 4321 bcopy(flent->fe_flow_desc.fd_src_mac, ndesc.nd_ehost, ETHERADDRL); 4322 mutex_exit(&flent->fe_lock); 4323 4324 return (exacct_commit_netinfo((void *)&ndesc, EX_NET_LNDESC_REC)); 4325 } 4326 4327 /* Write the Link statistics to the log file */ 4328 int 4329 mac_write_link_stats(mac_client_impl_t *mcip) 4330 { 4331 net_stat_t nstat; 4332 4333 nstat.ns_name = mcip->mci_name; 4334 nstat.ns_ibytes = mcip->mci_stat_ibytes; 4335 nstat.ns_obytes = mcip->mci_stat_obytes; 4336 nstat.ns_ipackets = mcip->mci_stat_ipackets; 4337 nstat.ns_opackets = mcip->mci_stat_opackets; 4338 nstat.ns_ierrors = mcip->mci_stat_ierrors; 4339 nstat.ns_oerrors = mcip->mci_stat_oerrors; 4340 4341 return (exacct_commit_netinfo((void *)&nstat, EX_NET_LNSTAT_REC)); 4342 } 4343 4344 /* 4345 * For a given flow, if the descrition has not been logged before, do it now. 4346 * If it is a VNIC, then we have collected information about it from the MAC 4347 * table, so skip it. 4348 */ 4349 /*ARGSUSED*/ 4350 static int 4351 mac_log_flowinfo(flow_entry_t *flent, void *args) 4352 { 4353 mac_client_impl_t *mcip = flent->fe_mcip; 4354 4355 if (mcip == NULL) 4356 return (0); 4357 4358 /* 4359 * If the name starts with "vnic", and fe_user_generated is true (to 4360 * exclude the mcast and active flow entries created implicitly for 4361 * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, 4362 * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. 4363 */ 4364 if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && 4365 (flent->fe_type & FLOW_USER) != 0) { 4366 return (0); 4367 } 4368 4369 if (!flent->fe_desc_logged) { 4370 /* 4371 * We don't return error because we want to continu the 4372 * walk in case this is the last walk which means we 4373 * need to reset fe_desc_logged in all the flows. 4374 */ 4375 if (mac_write_flow_desc(flent, mcip) != 0) 4376 return (0); 4377 flent->fe_desc_logged = B_TRUE; 4378 } 4379 4380 /* 4381 * Regardless of the error, we want to proceed in case we have to 4382 * reset fe_desc_logged. 4383 */ 4384 (void) mac_write_flow_stats(flent); 4385 4386 if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) 4387 flent->fe_desc_logged = B_FALSE; 4388 4389 return (0); 4390 } 4391 4392 typedef struct i_mac_log_state_s { 4393 boolean_t mi_last; 4394 int mi_fenable; 4395 int mi_lenable; 4396 } i_mac_log_state_t; 4397 4398 /* 4399 * Walk the mac_impl_ts and log the description for each mac client of this mac, 4400 * if it hasn't already been done. Additionally, log statistics for the link as 4401 * well. Walk the flow table and log information for each flow as well. 4402 * If it is the last walk (mci_last), then we turn off mci_desc_logged (and 4403 * also fe_desc_logged, if flow logging is on) since we want to log the 4404 * description if and when logging is restarted. 4405 */ 4406 /*ARGSUSED*/ 4407 static uint_t 4408 i_mac_log_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 4409 { 4410 mac_impl_t *mip = (mac_impl_t *)val; 4411 i_mac_log_state_t *lstate = (i_mac_log_state_t *)arg; 4412 int ret; 4413 mac_client_impl_t *mcip; 4414 4415 /* 4416 * Only walk the client list for NIC and etherstub 4417 */ 4418 if ((mip->mi_state_flags & MIS_DISABLED) || 4419 ((mip->mi_state_flags & MIS_IS_VNIC) && 4420 (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) 4421 return (MH_WALK_CONTINUE); 4422 4423 for (mcip = mip->mi_clients_list; mcip != NULL; 4424 mcip = mcip->mci_client_next) { 4425 if (!MCIP_DATAPATH_SETUP(mcip)) 4426 continue; 4427 if (lstate->mi_lenable) { 4428 if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { 4429 ret = mac_write_link_desc(mcip); 4430 if (ret != 0) { 4431 /* 4432 * We can't terminate it if this is the last 4433 * walk, else there might be some links with 4434 * mi_desc_logged set to true, which means 4435 * their description won't be logged the next 4436 * time logging is started (similarly for the 4437 * flows within such links). We can continue 4438 * without walking the flow table (i.e. to 4439 * set fe_desc_logged to false) because we 4440 * won't have written any flow stuff for this 4441 * link as we haven't logged the link itself. 4442 */ 4443 if (lstate->mi_last) 4444 return (MH_WALK_CONTINUE); 4445 else 4446 return (MH_WALK_TERMINATE); 4447 } 4448 mcip->mci_state_flags |= MCIS_DESC_LOGGED; 4449 } 4450 } 4451 4452 if (mac_write_link_stats(mcip) != 0 && !lstate->mi_last) 4453 return (MH_WALK_TERMINATE); 4454 4455 if (lstate->mi_last) 4456 mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; 4457 4458 if (lstate->mi_fenable) { 4459 if (mcip->mci_subflow_tab != NULL) { 4460 (void) mac_flow_walk(mcip->mci_subflow_tab, 4461 mac_log_flowinfo, mip); 4462 } 4463 } 4464 } 4465 return (MH_WALK_CONTINUE); 4466 } 4467 4468 /* 4469 * The timer thread that runs every mac_logging_interval seconds and logs 4470 * link and/or flow information. 4471 */ 4472 /* ARGSUSED */ 4473 void 4474 mac_log_linkinfo(void *arg) 4475 { 4476 i_mac_log_state_t lstate; 4477 4478 rw_enter(&i_mac_impl_lock, RW_READER); 4479 if (!mac_flow_log_enable && !mac_link_log_enable) { 4480 rw_exit(&i_mac_impl_lock); 4481 return; 4482 } 4483 lstate.mi_fenable = mac_flow_log_enable; 4484 lstate.mi_lenable = mac_link_log_enable; 4485 lstate.mi_last = B_FALSE; 4486 rw_exit(&i_mac_impl_lock); 4487 4488 mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate); 4489 4490 rw_enter(&i_mac_impl_lock, RW_WRITER); 4491 if (mac_flow_log_enable || mac_link_log_enable) { 4492 mac_logging_timer = timeout(mac_log_linkinfo, NULL, 4493 SEC_TO_TICK(mac_logging_interval)); 4494 } 4495 rw_exit(&i_mac_impl_lock); 4496 } 4497 4498 typedef struct i_mac_fastpath_state_s { 4499 boolean_t mf_disable; 4500 int mf_err; 4501 } i_mac_fastpath_state_t; 4502 4503 /*ARGSUSED*/ 4504 static uint_t 4505 i_mac_fastpath_disable_walker(mod_hash_key_t key, mod_hash_val_t *val, 4506 void *arg) 4507 { 4508 i_mac_fastpath_state_t *state = arg; 4509 mac_handle_t mh = (mac_handle_t)val; 4510 4511 if (state->mf_disable) 4512 state->mf_err = mac_fastpath_disable(mh); 4513 else 4514 mac_fastpath_enable(mh); 4515 4516 return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE); 4517 } 4518 4519 /* 4520 * Start the logging timer. 4521 */ 4522 int 4523 mac_start_logusage(mac_logtype_t type, uint_t interval) 4524 { 4525 i_mac_fastpath_state_t state = {B_TRUE, 0}; 4526 int err; 4527 4528 rw_enter(&i_mac_impl_lock, RW_WRITER); 4529 switch (type) { 4530 case MAC_LOGTYPE_FLOW: 4531 if (mac_flow_log_enable) { 4532 rw_exit(&i_mac_impl_lock); 4533 return (0); 4534 } 4535 /* FALLTHRU */ 4536 case MAC_LOGTYPE_LINK: 4537 if (mac_link_log_enable) { 4538 rw_exit(&i_mac_impl_lock); 4539 return (0); 4540 } 4541 break; 4542 default: 4543 ASSERT(0); 4544 } 4545 4546 /* Disable fastpath */ 4547 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_disable_walker, &state); 4548 if ((err = state.mf_err) != 0) { 4549 /* Reenable fastpath */ 4550 state.mf_disable = B_FALSE; 4551 state.mf_err = 0; 4552 mod_hash_walk(i_mac_impl_hash, 4553 i_mac_fastpath_disable_walker, &state); 4554 rw_exit(&i_mac_impl_lock); 4555 return (err); 4556 } 4557 4558 switch (type) { 4559 case MAC_LOGTYPE_FLOW: 4560 mac_flow_log_enable = B_TRUE; 4561 /* FALLTHRU */ 4562 case MAC_LOGTYPE_LINK: 4563 mac_link_log_enable = B_TRUE; 4564 break; 4565 } 4566 4567 mac_logging_interval = interval; 4568 rw_exit(&i_mac_impl_lock); 4569 mac_log_linkinfo(NULL); 4570 return (0); 4571 } 4572 4573 /* 4574 * Stop the logging timer if both Link and Flow logging are turned off. 4575 */ 4576 void 4577 mac_stop_logusage(mac_logtype_t type) 4578 { 4579 i_mac_log_state_t lstate; 4580 i_mac_fastpath_state_t state = {B_FALSE, 0}; 4581 4582 rw_enter(&i_mac_impl_lock, RW_WRITER); 4583 lstate.mi_fenable = mac_flow_log_enable; 4584 lstate.mi_lenable = mac_link_log_enable; 4585 4586 /* Last walk */ 4587 lstate.mi_last = B_TRUE; 4588 4589 switch (type) { 4590 case MAC_LOGTYPE_FLOW: 4591 if (lstate.mi_fenable) { 4592 ASSERT(mac_link_log_enable); 4593 mac_flow_log_enable = B_FALSE; 4594 mac_link_log_enable = B_FALSE; 4595 break; 4596 } 4597 /* FALLTHRU */ 4598 case MAC_LOGTYPE_LINK: 4599 if (!lstate.mi_lenable || mac_flow_log_enable) { 4600 rw_exit(&i_mac_impl_lock); 4601 return; 4602 } 4603 mac_link_log_enable = B_FALSE; 4604 break; 4605 default: 4606 ASSERT(0); 4607 } 4608 4609 /* Reenable fastpath */ 4610 mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_disable_walker, &state); 4611 4612 rw_exit(&i_mac_impl_lock); 4613 (void) untimeout(mac_logging_timer); 4614 mac_logging_timer = 0; 4615 4616 /* Last walk */ 4617 mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate); 4618 } 4619 4620 /* 4621 * Walk the rx and tx SRS/SRs for a flow and update the priority value. 4622 */ 4623 void 4624 mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) 4625 { 4626 pri_t pri; 4627 int count; 4628 mac_soft_ring_set_t *mac_srs; 4629 4630 if (flent->fe_rx_srs_cnt <= 0) 4631 return; 4632 4633 if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == 4634 SRST_FLOW) { 4635 pri = FLOW_PRIORITY(mcip->mci_min_pri, 4636 mcip->mci_max_pri, 4637 flent->fe_resource_props.mrp_priority); 4638 } else { 4639 pri = mcip->mci_max_pri; 4640 } 4641 4642 for (count = 0; count < flent->fe_rx_srs_cnt; count++) { 4643 mac_srs = flent->fe_rx_srs[count]; 4644 mac_update_srs_priority(mac_srs, pri); 4645 } 4646 /* 4647 * If we have a Tx SRS, we need to modify all the threads associated 4648 * with it. 4649 */ 4650 if (flent->fe_tx_srs != NULL) 4651 mac_update_srs_priority(flent->fe_tx_srs, pri); 4652 } 4653 4654 /* 4655 * RX and TX rings are reserved according to different semantics depending 4656 * on the requests from the MAC clients and type of rings: 4657 * 4658 * On the Tx side, by default we reserve individual rings, independently from 4659 * the groups. 4660 * 4661 * On the Rx side, the reservation is at the granularity of the group 4662 * of rings, and used for v12n level 1 only. It has a special case for the 4663 * primary client. 4664 * 4665 * If a share is allocated to a MAC client, we allocate a TX group and an 4666 * RX group to the client, and assign TX rings and RX rings to these 4667 * groups according to information gathered from the driver through 4668 * the share capability. 4669 * 4670 * The foreseable evolution of Rx rings will handle v12n level 2 and higher 4671 * to allocate individual rings out of a group and program the hw classifier 4672 * based on IP address or higher level criteria. 4673 */ 4674 4675 /* 4676 * mac_reserve_tx_ring() 4677 * Reserve a unused ring by marking it with MR_INUSE state. 4678 * As reserved, the ring is ready to function. 4679 * 4680 * Notes for Hybrid I/O: 4681 * 4682 * If a specific ring is needed, it is specified through the desired_ring 4683 * argument. Otherwise that argument is set to NULL. 4684 * If the desired ring was previous allocated to another client, this 4685 * function swaps it with a new ring from the group of unassigned rings. 4686 */ 4687 mac_ring_t * 4688 mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) 4689 { 4690 mac_group_t *group; 4691 mac_ring_t *ring; 4692 4693 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 4694 4695 if (mip->mi_tx_groups == NULL) 4696 return (NULL); 4697 4698 /* 4699 * Find an available ring and start it before changing its status. 4700 * The unassigned rings are at the end of the mi_tx_groups 4701 * array. 4702 */ 4703 group = mip->mi_tx_groups + mip->mi_tx_group_count; 4704 4705 for (ring = group->mrg_rings; ring != NULL; 4706 ring = ring->mr_next) { 4707 if (desired_ring == NULL) { 4708 if (ring->mr_state == MR_FREE) 4709 /* wanted any free ring and found one */ 4710 break; 4711 } else { 4712 mac_ring_t *sring; 4713 mac_client_impl_t *client; 4714 mac_soft_ring_set_t *srs; 4715 4716 if (ring != desired_ring) 4717 /* wants a desired ring but this one ain't it */ 4718 continue; 4719 4720 if (ring->mr_state == MR_FREE) 4721 break; 4722 4723 /* 4724 * Found the desired ring but it's already in use. 4725 * Swap it with a new ring. 4726 */ 4727 4728 /* find the client which owns that ring */ 4729 for (client = mip->mi_clients_list; client != NULL; 4730 client = client->mci_client_next) { 4731 srs = MCIP_TX_SRS(client); 4732 if (srs != NULL && mac_tx_srs_ring_present(srs, 4733 desired_ring)) { 4734 /* found our ring */ 4735 break; 4736 } 4737 } 4738 if (client == NULL) { 4739 /* 4740 * The TX ring is in use, but it's not 4741 * associated with any clients, so it 4742 * has to be the default ring. In that 4743 * case we can simply assign a new ring 4744 * as the default ring, and we're done. 4745 */ 4746 ASSERT(mip->mi_default_tx_ring == 4747 (mac_ring_handle_t)desired_ring); 4748 4749 /* 4750 * Quiesce all clients on top of 4751 * the NIC to make sure there are no 4752 * pending threads still relying on 4753 * that default ring, for example 4754 * the multicast path. 4755 */ 4756 for (client = mip->mi_clients_list; 4757 client != NULL; 4758 client = client->mci_client_next) { 4759 mac_tx_client_quiesce(client, 4760 SRS_QUIESCE); 4761 } 4762 4763 mip->mi_default_tx_ring = (mac_ring_handle_t) 4764 mac_reserve_tx_ring(mip, NULL); 4765 4766 /* resume the clients */ 4767 for (client = mip->mi_clients_list; 4768 client != NULL; 4769 client = client->mci_client_next) 4770 mac_tx_client_restart(client); 4771 4772 break; 4773 } 4774 4775 /* 4776 * Note that we cannot simply invoke the group 4777 * add/rem routines since the client doesn't have a 4778 * TX group. So we need to instead add/remove 4779 * the rings from the SRS. 4780 */ 4781 ASSERT(client->mci_share == NULL); 4782 4783 /* first quiece the client */ 4784 mac_tx_client_quiesce(client, SRS_QUIESCE); 4785 4786 /* give a new ring to the client... */ 4787 sring = mac_reserve_tx_ring(mip, NULL); 4788 if (sring != NULL) { 4789 /* 4790 * There are no other available ring 4791 * on that MAC instance. The client 4792 * will fallback to the shared TX 4793 * ring. 4794 */ 4795 mac_tx_srs_add_ring(srs, sring); 4796 } 4797 4798 /* ... in exchange for our desired ring */ 4799 mac_tx_srs_del_ring(srs, desired_ring); 4800 4801 /* restart the client */ 4802 mac_tx_client_restart(client); 4803 4804 if (mip->mi_default_tx_ring == 4805 (mac_ring_handle_t)desired_ring) { 4806 /* 4807 * The desired ring is the default ring, 4808 * and there are one or more clients 4809 * using that default ring directly. 4810 */ 4811 mip->mi_default_tx_ring = 4812 (mac_ring_handle_t)sring; 4813 /* 4814 * Find clients using default ring and 4815 * swap it with the new default ring. 4816 */ 4817 for (client = mip->mi_clients_list; 4818 client != NULL; 4819 client = client->mci_client_next) { 4820 srs = MCIP_TX_SRS(client); 4821 if (srs != NULL && 4822 mac_tx_srs_ring_present(srs, 4823 desired_ring)) { 4824 /* first quiece the client */ 4825 mac_tx_client_quiesce(client, 4826 SRS_QUIESCE); 4827 4828 /* 4829 * Give it the new default 4830 * ring, and remove the old 4831 * one. 4832 */ 4833 if (sring != NULL) { 4834 mac_tx_srs_add_ring(srs, 4835 sring); 4836 } 4837 mac_tx_srs_del_ring(srs, 4838 desired_ring); 4839 4840 /* restart the client */ 4841 mac_tx_client_restart(client); 4842 } 4843 } 4844 } 4845 break; 4846 } 4847 } 4848 4849 if (ring != NULL) { 4850 if (mac_start_ring(ring) != 0) 4851 return (NULL); 4852 ring->mr_state = MR_INUSE; 4853 } 4854 4855 return (ring); 4856 } 4857 4858 /* 4859 * Minimum number of rings to leave in the default TX group when allocating 4860 * rings to new clients. 4861 */ 4862 static uint_t mac_min_rx_default_rings = 1; 4863 4864 /* 4865 * Populate a zero-ring group with rings. If the share is non-NULL, 4866 * the rings are chosen according to that share. 4867 * Invoked after allocating a new RX or TX group through 4868 * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. 4869 * Returns zero on success, an errno otherwise. 4870 */ 4871 int 4872 i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, 4873 mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share) 4874 { 4875 mac_ring_t **rings, *tmp_ring[1], *ring; 4876 uint_t nrings; 4877 int rv, i, j; 4878 4879 ASSERT(mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC && 4880 mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC); 4881 ASSERT(new_group->mrg_cur_count == 0); 4882 4883 /* 4884 * First find the rings to allocate to the group. 4885 */ 4886 if (share != NULL) { 4887 /* get rings through ms_squery() */ 4888 mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); 4889 ASSERT(nrings != 0); 4890 rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), 4891 KM_SLEEP); 4892 mip->mi_share_capab.ms_squery(share, ring_type, 4893 (mac_ring_handle_t *)rings, &nrings); 4894 } else { 4895 /* this function is called for TX only with a share */ 4896 ASSERT(ring_type == MAC_RING_TYPE_RX); 4897 /* 4898 * Pick one ring from default group. 4899 * 4900 * for now pick the second ring which requires the first ring 4901 * at index 0 to stay in the default group, since it is the 4902 * ring which carries the multicast traffic. 4903 * We need a better way for a driver to indicate this, 4904 * for example a per-ring flag. 4905 */ 4906 for (ring = src_group->mrg_rings; ring != NULL; 4907 ring = ring->mr_next) { 4908 if (ring->mr_index != 0) 4909 break; 4910 } 4911 ASSERT(ring != NULL); 4912 nrings = 1; 4913 tmp_ring[0] = ring; 4914 rings = tmp_ring; 4915 } 4916 4917 switch (ring_type) { 4918 case MAC_RING_TYPE_RX: 4919 if (src_group->mrg_cur_count - nrings < 4920 mac_min_rx_default_rings) { 4921 /* we ran out of rings */ 4922 return (ENOSPC); 4923 } 4924 4925 /* move receive rings to new group */ 4926 for (i = 0; i < nrings; i++) { 4927 rv = mac_group_mov_ring(mip, new_group, rings[i]); 4928 if (rv != 0) { 4929 /* move rings back on failure */ 4930 for (j = 0; j < i; j++) { 4931 (void) mac_group_mov_ring(mip, 4932 src_group, rings[j]); 4933 } 4934 return (rv); 4935 } 4936 } 4937 break; 4938 4939 case MAC_RING_TYPE_TX: { 4940 mac_ring_t *tmp_ring; 4941 4942 /* move the TX rings to the new group */ 4943 ASSERT(src_group == NULL); 4944 for (i = 0; i < nrings; i++) { 4945 /* get the desired ring */ 4946 tmp_ring = mac_reserve_tx_ring(mip, rings[i]); 4947 ASSERT(tmp_ring == rings[i]); 4948 rv = mac_group_mov_ring(mip, new_group, rings[i]); 4949 if (rv != 0) { 4950 /* cleanup on failure */ 4951 for (j = 0; j < i; j++) { 4952 (void) mac_group_mov_ring(mip, 4953 mip->mi_tx_groups + 4954 mip->mi_tx_group_count, rings[j]); 4955 } 4956 } 4957 } 4958 break; 4959 } 4960 } 4961 4962 if (share != NULL) { 4963 /* add group to share */ 4964 mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); 4965 /* free temporary array of rings */ 4966 kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); 4967 } 4968 4969 return (0); 4970 } 4971 4972 void 4973 mac_rx_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) 4974 { 4975 mac_grp_client_t *mgcp; 4976 4977 for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { 4978 if (mgcp->mgc_client == mcip) 4979 break; 4980 } 4981 4982 VERIFY(mgcp == NULL); 4983 4984 mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); 4985 mgcp->mgc_client = mcip; 4986 mgcp->mgc_next = grp->mrg_clients; 4987 grp->mrg_clients = mgcp; 4988 4989 } 4990 4991 void 4992 mac_rx_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) 4993 { 4994 mac_grp_client_t *mgcp, **pprev; 4995 4996 for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; 4997 pprev = &mgcp->mgc_next, mgcp = *pprev) { 4998 if (mgcp->mgc_client == mcip) 4999 break; 5000 } 5001 5002 ASSERT(mgcp != NULL); 5003 5004 *pprev = mgcp->mgc_next; 5005 kmem_free(mgcp, sizeof (mac_grp_client_t)); 5006 } 5007 5008 /* 5009 * mac_reserve_rx_group() 5010 * 5011 * Finds an available group and exclusively reserves it for a client. 5012 * The group is chosen to suit the flow's resource controls (bandwidth and 5013 * fanout requirements) and the address type. 5014 * If the requestor is the pimary MAC then return the group with the 5015 * largest number of rings, otherwise the default ring when available. 5016 */ 5017 mac_group_t * 5018 mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, 5019 mac_rx_group_reserve_type_t rtype) 5020 { 5021 mac_share_handle_t share = mcip->mci_share; 5022 mac_impl_t *mip = mcip->mci_mip; 5023 mac_group_t *grp = NULL; 5024 int i, start, loopcount; 5025 int err; 5026 mac_address_t *map; 5027 5028 ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); 5029 5030 /* Check if a group already has this mac address (case of VLANs) */ 5031 if ((map = mac_find_macaddr(mip, mac_addr)) != NULL) 5032 return (map->ma_group); 5033 5034 if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0 || 5035 rtype == MAC_RX_NO_RESERVE) 5036 return (NULL); 5037 5038 /* 5039 * Try to exclusively reserve a RX group. 5040 * 5041 * For flows requires SW_RING it always goes to the default group 5042 * (Until we can explicitely call out default groups (CR 6695600), 5043 * we assume that the default group is always at position zero); 5044 * 5045 * For flows requires HW_DEFAULT_RING (unicast flow of the primary 5046 * client), try to reserve the default RX group only. 5047 * 5048 * For flows requires HW_RING (unicast flow of other clients), try 5049 * to reserve non-default RX group then the default group. 5050 */ 5051 switch (rtype) { 5052 case MAC_RX_RESERVE_DEFAULT: 5053 start = 0; 5054 loopcount = 1; 5055 break; 5056 case MAC_RX_RESERVE_NONDEFAULT: 5057 start = 1; 5058 loopcount = mip->mi_rx_group_count; 5059 } 5060 5061 for (i = start; i < start + loopcount; i++) { 5062 grp = &mip->mi_rx_groups[i % mip->mi_rx_group_count]; 5063 5064 DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, 5065 int, grp->mrg_index, mac_group_state_t, grp->mrg_state); 5066 5067 /* 5068 * Check to see whether this mac client is the only client 5069 * on this RX group. If not, we cannot exclusively reserve 5070 * this RX group. 5071 */ 5072 if (!MAC_RX_GROUP_NO_CLIENT(grp) && 5073 (MAC_RX_GROUP_ONLY_CLIENT(grp) != mcip)) { 5074 continue; 5075 } 5076 5077 /* 5078 * This group could already be SHARED by other multicast 5079 * flows on this client. In that case, the group would 5080 * be shared and has already been started. 5081 */ 5082 ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); 5083 5084 if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && 5085 (mac_start_group(grp) != 0)) { 5086 continue; 5087 } 5088 5089 if ((i % mip->mi_rx_group_count) == 0 || 5090 mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) { 5091 break; 5092 } 5093 5094 ASSERT(grp->mrg_cur_count == 0); 5095 5096 /* 5097 * Populate the group. Rings should be taken 5098 * from the default group at position 0 for now. 5099 */ 5100 5101 err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, 5102 &mip->mi_rx_groups[0], grp, share); 5103 if (err == 0) 5104 break; 5105 5106 DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, 5107 mip->mi_name, int, grp->mrg_index, int, err); 5108 5109 /* 5110 * It's a dynamic group but the grouping operation failed. 5111 */ 5112 mac_stop_group(grp); 5113 } 5114 5115 if (i == start + loopcount) 5116 return (NULL); 5117 5118 ASSERT(grp != NULL); 5119 5120 DTRACE_PROBE2(rx__group__reserved, 5121 char *, mip->mi_name, int, grp->mrg_index); 5122 return (grp); 5123 } 5124 5125 /* 5126 * mac_rx_release_group() 5127 * 5128 * This is called when there are no clients left for the group. 5129 * The group is stopped and marked MAC_GROUP_STATE_REGISTERED, 5130 * and if it is a non default group, the shares are removed and 5131 * all rings are assigned back to default group. 5132 */ 5133 void 5134 mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) 5135 { 5136 mac_impl_t *mip = mcip->mci_mip; 5137 mac_ring_t *ring; 5138 5139 ASSERT(group != &mip->mi_rx_groups[0]); 5140 5141 /* 5142 * This is the case where there are no clients left. Any 5143 * SRS etc on this group have also be quiesced. 5144 */ 5145 for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { 5146 if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { 5147 ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); 5148 /* 5149 * Remove the SRS associated with the HW ring. 5150 * As a result, polling will be disabled. 5151 */ 5152 ring->mr_srs = NULL; 5153 } 5154 ASSERT(ring->mr_state == MR_INUSE); 5155 mac_stop_ring(ring); 5156 ring->mr_state = MR_FREE; 5157 ring->mr_flag = 0; 5158 } 5159 5160 /* remove group from share */ 5161 if (mcip->mci_share != NULL) { 5162 mip->mi_share_capab.ms_sremove(mcip->mci_share, 5163 group->mrg_driver); 5164 } 5165 5166 if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { 5167 mac_ring_t *ring; 5168 5169 /* 5170 * Rings were dynamically allocated to group. 5171 * Move rings back to default group. 5172 */ 5173 while ((ring = group->mrg_rings) != NULL) { 5174 (void) mac_group_mov_ring(mip, 5175 &mip->mi_rx_groups[0], ring); 5176 } 5177 } 5178 mac_stop_group(group); 5179 /* 5180 * Possible improvement: See if we can assign the group just released 5181 * to a another client of the mip 5182 */ 5183 } 5184 5185 /* 5186 * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() 5187 * when a share was allocated to the client. 5188 */ 5189 mac_group_t * 5190 mac_reserve_tx_group(mac_impl_t *mip, mac_share_handle_t share) 5191 { 5192 mac_group_t *grp; 5193 int rv, i; 5194 5195 /* 5196 * TX groups are currently allocated only to MAC clients 5197 * which are associated with a share. Since we have a fixed 5198 * number of share and groups, and we already successfully 5199 * allocated a share, find an available TX group. 5200 */ 5201 ASSERT(share != NULL); 5202 ASSERT(mip->mi_tx_group_free > 0); 5203 5204 for (i = 0; i < mip->mi_tx_group_count; i++) { 5205 grp = &mip->mi_tx_groups[i]; 5206 5207 if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || 5208 (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) 5209 continue; 5210 5211 rv = mac_start_group(grp); 5212 ASSERT(rv == 0); 5213 5214 grp->mrg_state = MAC_GROUP_STATE_RESERVED; 5215 break; 5216 } 5217 5218 ASSERT(grp != NULL); 5219 5220 /* 5221 * Populate the group. Rings should be taken from the group 5222 * of unassigned rings, which is past the array of TX 5223 * groups adversized by the driver. 5224 */ 5225 rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, NULL, 5226 grp, share); 5227 if (rv != 0) { 5228 DTRACE_PROBE3(tx__group__reserve__alloc__rings, 5229 char *, mip->mi_name, int, grp->mrg_index, int, rv); 5230 5231 mac_stop_group(grp); 5232 grp->mrg_state = MAC_GROUP_STATE_UNINIT; 5233 5234 return (NULL); 5235 } 5236 5237 mip->mi_tx_group_free--; 5238 5239 return (grp); 5240 } 5241 5242 void 5243 mac_release_tx_group(mac_impl_t *mip, mac_group_t *grp) 5244 { 5245 mac_client_impl_t *mcip = grp->mrg_tx_client; 5246 mac_share_handle_t share = mcip->mci_share; 5247 mac_ring_t *ring; 5248 5249 ASSERT(mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC); 5250 ASSERT(share != NULL); 5251 ASSERT(grp->mrg_state == MAC_GROUP_STATE_RESERVED); 5252 5253 mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); 5254 while ((ring = grp->mrg_rings) != NULL) { 5255 /* move the ring back to the pool */ 5256 (void) mac_group_mov_ring(mip, mip->mi_tx_groups + 5257 mip->mi_tx_group_count, ring); 5258 } 5259 mac_stop_group(grp); 5260 mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED); 5261 grp->mrg_tx_client = NULL; 5262 mip->mi_tx_group_free++; 5263 } 5264 5265 /* 5266 * This is a 1-time control path activity initiated by the client (IP). 5267 * The mac perimeter protects against other simultaneous control activities, 5268 * for example an ioctl that attempts to change the degree of fanout and 5269 * increase or decrease the number of softrings associated with this Tx SRS. 5270 */ 5271 static mac_tx_notify_cb_t * 5272 mac_client_tx_notify_add(mac_client_impl_t *mcip, 5273 mac_tx_notify_t notify, void *arg) 5274 { 5275 mac_cb_info_t *mcbi; 5276 mac_tx_notify_cb_t *mtnfp; 5277 5278 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 5279 5280 mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); 5281 mtnfp->mtnf_fn = notify; 5282 mtnfp->mtnf_arg = arg; 5283 mtnfp->mtnf_link.mcb_objp = mtnfp; 5284 mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); 5285 mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; 5286 5287 mcbi = &mcip->mci_tx_notify_cb_info; 5288 mutex_enter(mcbi->mcbi_lockp); 5289 mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); 5290 mutex_exit(mcbi->mcbi_lockp); 5291 return (mtnfp); 5292 } 5293 5294 static void 5295 mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) 5296 { 5297 mac_cb_info_t *mcbi; 5298 mac_cb_t **cblist; 5299 5300 ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); 5301 5302 if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, 5303 &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { 5304 cmn_err(CE_WARN, 5305 "mac_client_tx_notify_remove: callback not " 5306 "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); 5307 return; 5308 } 5309 5310 mcbi = &mcip->mci_tx_notify_cb_info; 5311 cblist = &mcip->mci_tx_notify_cb_list; 5312 mutex_enter(mcbi->mcbi_lockp); 5313 if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) 5314 kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); 5315 else 5316 mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); 5317 mutex_exit(mcbi->mcbi_lockp); 5318 } 5319 5320 /* 5321 * mac_client_tx_notify(): 5322 * call to add and remove flow control callback routine. 5323 */ 5324 mac_tx_notify_handle_t 5325 mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, 5326 void *ptr) 5327 { 5328 mac_client_impl_t *mcip = (mac_client_impl_t *)mch; 5329 mac_tx_notify_cb_t *mtnfp = NULL; 5330 5331 i_mac_perim_enter(mcip->mci_mip); 5332 5333 if (callb_func != NULL) { 5334 /* Add a notify callback */ 5335 mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); 5336 } else { 5337 mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); 5338 } 5339 i_mac_perim_exit(mcip->mci_mip); 5340 5341 return ((mac_tx_notify_handle_t)mtnfp); 5342 } 5343 5344 void 5345 mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf, 5346 mac_bridge_ref_t reff, mac_bridge_ls_t lsf) 5347 { 5348 mac_bridge_tx_cb = txf; 5349 mac_bridge_rx_cb = rxf; 5350 mac_bridge_ref_cb = reff; 5351 mac_bridge_ls_cb = lsf; 5352 } 5353 5354 int 5355 mac_bridge_set(mac_handle_t mh, mac_handle_t link) 5356 { 5357 mac_impl_t *mip = (mac_impl_t *)mh; 5358 int retv; 5359 5360 mutex_enter(&mip->mi_bridge_lock); 5361 if (mip->mi_bridge_link == NULL) { 5362 mip->mi_bridge_link = link; 5363 retv = 0; 5364 } else { 5365 retv = EBUSY; 5366 } 5367 mutex_exit(&mip->mi_bridge_lock); 5368 if (retv == 0) { 5369 mac_poll_state_change(mh, B_FALSE); 5370 mac_capab_update(mh); 5371 } 5372 return (retv); 5373 } 5374 5375 /* 5376 * Disable bridging on the indicated link. 5377 */ 5378 void 5379 mac_bridge_clear(mac_handle_t mh, mac_handle_t link) 5380 { 5381 mac_impl_t *mip = (mac_impl_t *)mh; 5382 5383 mutex_enter(&mip->mi_bridge_lock); 5384 ASSERT(mip->mi_bridge_link == link); 5385 mip->mi_bridge_link = NULL; 5386 mutex_exit(&mip->mi_bridge_lock); 5387 mac_poll_state_change(mh, B_TRUE); 5388 mac_capab_update(mh); 5389 } 5390 5391 void 5392 mac_no_active(mac_handle_t mh) 5393 { 5394 mac_impl_t *mip = (mac_impl_t *)mh; 5395 5396 i_mac_perim_enter(mip); 5397 mip->mi_state_flags |= MIS_NO_ACTIVE; 5398 i_mac_perim_exit(mip); 5399 } 5400