/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * MAC Services Module * * The GLDv3 framework locking - The MAC layer * -------------------------------------------- * * The MAC layer is central to the GLD framework and can provide the locking * framework needed for itself and for the use of MAC clients. MAC end points * are fairly disjoint and don't share a lot of state. So a coarse grained * multi-threading scheme is to single thread all create/modify/delete or set * type of control operations on a per mac end point while allowing data threads * concurrently. * * Control operations (set) that modify a mac end point are always serialized on * a per mac end point basis, We have at most 1 such thread per mac end point * at a time. * * All other operations that are not serialized are essentially multi-threaded. * For example a control operation (get) like getting statistics which may not * care about reading values atomically or data threads sending or receiving * data. Mostly these type of operations don't modify the control state. Any * state these operations care about are protected using traditional locks. * * The perimeter only serializes serial operations. It does not imply there * aren't any other concurrent operations. However a serialized operation may * sometimes need to make sure it is the only thread. In this case it needs * to use reference counting mechanisms to cv_wait until any current data * threads are done. * * The mac layer itself does not hold any locks across a call to another layer. * The perimeter is however held across a down call to the driver to make the * whole control operation atomic with respect to other control operations. * Also the data path and get type control operations may proceed concurrently. * These operations synchronize with the single serial operation on a given mac * end point using regular locks. The perimeter ensures that conflicting * operations like say a mac_multicast_add and a mac_multicast_remove on the * same mac end point don't interfere with each other and also ensures that the * changes in the mac layer and the call to the underlying driver to say add a * multicast address are done atomically without interference from a thread * trying to delete the same address. * * For example, consider * mac_multicst_add() * { * mac_perimeter_enter(); serialize all control operations * * grab list lock protect against access by data threads * add to list * drop list lock * * call driver's mi_multicst * * mac_perimeter_exit(); * } * * To lessen the number of serialization locks and simplify the lock hierarchy, * we serialize all the control operations on a per mac end point by using a * single serialization lock called the perimeter. We allow recursive entry into * the perimeter to facilitate use of this mechanism by both the mac client and * the MAC layer itself. * * MAC client means an entity that does an operation on a mac handle * obtained from a mac_open/mac_client_open. Similarly MAC driver means * an entity that does an operation on a mac handle obtained from a * mac_register. An entity could be both client and driver but on different * handles eg. aggr. and should only make the corresponding mac interface calls * i.e. mac driver interface or mac client interface as appropriate for that * mac handle. * * General rules. * ------------- * * R1. The lock order of upcall threads is natually opposite to downcall * threads. Hence upcalls must not hold any locks across layers for fear of * recursive lock enter and lock order violation. This applies to all layers. * * R2. The perimeter is just another lock. Since it is held in the down * direction, acquiring the perimeter in an upcall is prohibited as it would * cause a deadlock. This applies to all layers. * * Note that upcalls that need to grab the mac perimeter (for example * mac_notify upcalls) can still achieve that by posting the request to a * thread, which can then grab all the required perimeters and locks in the * right global order. Note that in the above example the mac layer iself * won't grab the mac perimeter in the mac_notify upcall, instead the upcall * to the client must do that. Please see the aggr code for an example. * * MAC client rules * ---------------- * * R3. A MAC client may use the MAC provided perimeter facility to serialize * control operations on a per mac end point. It does this by by acquring * and holding the perimeter across a sequence of calls to the mac layer. * This ensures atomicity across the entire block of mac calls. In this * model the MAC client must not hold any client locks across the calls to * the mac layer. This model is the preferred solution. * * R4. However if a MAC client has a lot of global state across all mac end * points the per mac end point serialization may not be sufficient. In this * case the client may choose to use global locks or use its own serialization. * To avoid deadlocks, these client layer locks held across the mac calls * in the control path must never be acquired by the data path for the reason * mentioned below. * * (Assume that a control operation that holds a client lock blocks in the * mac layer waiting for upcall reference counts to drop to zero. If an upcall * data thread that holds this reference count, tries to acquire the same * client lock subsequently it will deadlock). * * A MAC client may follow either the R3 model or the R4 model, but can't * mix both. In the former, the hierarchy is Perim -> client locks, but in * the latter it is client locks -> Perim. * * R5. MAC clients must make MAC calls (excluding data calls) in a cv_wait'able * context since they may block while trying to acquire the perimeter. * In addition some calls may block waiting for upcall refcnts to come down to * zero. * * R6. MAC clients must make sure that they are single threaded and all threads * from the top (in particular data threads) have finished before calling * mac_client_close. The MAC framework does not track the number of client * threads using the mac client handle. Also mac clients must make sure * they have undone all the control operations before calling mac_client_close. * For example mac_unicast_remove/mac_multicast_remove to undo the corresponding * mac_unicast_add/mac_multicast_add. * * MAC framework rules * ------------------- * * R7. The mac layer itself must not hold any mac layer locks (except the mac * perimeter) across a call to any other layer from the mac layer. The call to * any other layer could be via mi_* entry points, classifier entry points into * the driver or via upcall pointers into layers above. The mac perimeter may * be acquired or held only in the down direction, for e.g. when calling into * a mi_* driver enty point to provide atomicity of the operation. * * R8. Since it is not guaranteed (see R14) that drivers won't hold locks across * mac driver interfaces, the MAC layer must provide a cut out for control * interfaces like upcall notifications and start them in a separate thread. * * R9. Note that locking order also implies a plumbing order. For example * VNICs are allowed to be created over aggrs, but not vice-versa. An attempt * to plumb in any other order must be failed at mac_open time, otherwise it * could lead to deadlocks due to inverse locking order. * * R10. MAC driver interfaces must not block since the driver could call them * in interrupt context. * * R11. Walkers must preferably not hold any locks while calling walker * callbacks. Instead these can operate on reference counts. In simple * callbacks it may be ok to hold a lock and call the callbacks, but this is * harder to maintain in the general case of arbitrary callbacks. * * R12. The MAC layer must protect upcall notification callbacks using reference * counts rather than holding locks across the callbacks. * * R13. Given the variety of drivers, it is preferable if the MAC layer can make * sure that any pointers (such as mac ring pointers) it passes to the driver * remain valid until mac unregister time. Currently the mac layer achieves * this by using generation numbers for rings and freeing the mac rings only * at unregister time. The MAC layer must provide a layer of indirection and * must not expose underlying driver rings or driver data structures/pointers * directly to MAC clients. * * MAC driver rules * ---------------- * * R14. It would be preferable if MAC drivers don't hold any locks across any * mac call. However at a minimum they must not hold any locks across data * upcalls. They must also make sure that all references to mac data structures * are cleaned up and that it is single threaded at mac_unregister time. * * R15. MAC driver interfaces don't block and so the action may be done * asynchronously in a separate thread as for example handling notifications. * The driver must not assume that the action is complete when the call * returns. * * R16. Drivers must maintain a generation number per Rx ring, and pass it * back to mac_rx_ring(); They are expected to increment the generation * number whenever the ring's stop routine is invoked. * See comments in mac_rx_ring(); * * R17 Similarly mi_stop is another synchronization point and the driver must * ensure that all upcalls are done and there won't be any future upcall * before returning from mi_stop. * * R18. The driver may assume that all set/modify control operations via * the mi_* entry points are single threaded on a per mac end point. * * Lock and Perimeter hierarchy scenarios * --------------------------------------- * * i_mac_impl_lock -> mi_rw_lock -> srs_lock -> s_ring_lock[i_mac_tx_srs_notify] * * ft_lock -> fe_lock [mac_flow_lookup] * * mi_rw_lock -> fe_lock [mac_bcast_send] * * srs_lock -> mac_bw_lock [mac_rx_srs_drain_bw] * * cpu_lock -> mac_srs_g_lock -> srs_lock -> s_ring_lock [mac_walk_srs_and_bind] * * i_dls_devnet_lock -> mac layer locks [dls_devnet_rename] * * Perimeters are ordered P1 -> P2 -> P3 from top to bottom in order of mac * client to driver. In the case of clients that explictly use the mac provided * perimeter mechanism for its serialization, the hierarchy is * Perimeter -> mac layer locks, since the client never holds any locks across * the mac calls. In the case of clients that use its own locks the hierarchy * is Client locks -> Mac Perim -> Mac layer locks. The client never explicitly * calls mac_perim_enter/exit in this case. * * Subflow creation rules * --------------------------- * o In case of a user specified cpulist present on underlying link and flows, * the flows cpulist must be a subset of the underlying link. * o In case of a user specified fanout mode present on link and flow, the * subflow fanout count has to be less than or equal to that of the * underlying link. The cpu-bindings for the subflows will be a subset of * the underlying link. * o In case if no cpulist specified on both underlying link and flow, the * underlying link relies on a MAC tunable to provide out of box fanout. * The subflow will have no cpulist (the subflow will be unbound) * o In case if no cpulist is specified on the underlying link, a subflow can * carry either a user-specified cpulist or fanout count. The cpu-bindings * for the subflow will not adhere to restriction that they need to be subset * of the underlying link. * o In case where the underlying link is carrying either a user specified * cpulist or fanout mode and for a unspecified subflow, the subflow will be * created unbound. * o While creating unbound subflows, bandwidth mode changes attempt to * figure a right fanout count. In such cases the fanout count will override * the unbound cpu-binding behavior. * o In addition to this, while cycling between flow and link properties, we * impose a restriction that if a link property has a subflow with * user-specified attributes, we will not allow changing the link property. * The administrator needs to reset all the user specified properties for the * subflows before attempting a link property change. * Some of the above rules can be overridden by specifying additional command * line options while creating or modifying link or subflow properties. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define IMPL_HASHSZ 67 /* prime */ kmem_cache_t *i_mac_impl_cachep; mod_hash_t *i_mac_impl_hash; krwlock_t i_mac_impl_lock; uint_t i_mac_impl_count; static kmem_cache_t *mac_ring_cache; static id_space_t *minor_ids; static uint32_t minor_count; /* * Logging stuff. Perhaps mac_logging_interval could be broken into * mac_flow_log_interval and mac_link_log_interval if we want to be * able to schedule them differently. */ uint_t mac_logging_interval; boolean_t mac_flow_log_enable; boolean_t mac_link_log_enable; timeout_id_t mac_logging_timer; /* for debugging, see MAC_DBG_PRT() in mac_impl.h */ int mac_dbg = 0; #define MACTYPE_KMODDIR "mac" #define MACTYPE_HASHSZ 67 static mod_hash_t *i_mactype_hash; /* * i_mactype_lock synchronizes threads that obtain references to mactype_t * structures through i_mactype_getplugin(). */ static kmutex_t i_mactype_lock; /* * mac_tx_percpu_cnt * * Number of per cpu locks per mac_client_impl_t. Used by the transmit side * in mac_tx to reduce lock contention. This is sized at boot time in mac_init. * mac_tx_percpu_cnt_max is settable in /etc/system and must be a power of 2. * Per cpu locks may be disabled by setting mac_tx_percpu_cnt_max to 1. */ int mac_tx_percpu_cnt; int mac_tx_percpu_cnt_max = 128; /* * Call back functions for the bridge module. These are guaranteed to be valid * when holding a reference on a link or when holding mip->mi_bridge_lock and * mi_bridge_link is non-NULL. */ mac_bridge_tx_t mac_bridge_tx_cb; mac_bridge_rx_t mac_bridge_rx_cb; mac_bridge_ref_t mac_bridge_ref_cb; mac_bridge_ls_t mac_bridge_ls_cb; static int i_mac_constructor(void *, void *, int); static void i_mac_destructor(void *, void *); static int i_mac_ring_ctor(void *, void *, int); static void i_mac_ring_dtor(void *, void *); static mblk_t *mac_rx_classify(mac_impl_t *, mac_resource_handle_t, mblk_t *); void mac_tx_client_flush(mac_client_impl_t *); void mac_tx_client_block(mac_client_impl_t *); static void mac_rx_ring_quiesce(mac_ring_t *, uint_t); static int mac_start_group_and_rings(mac_group_t *); static void mac_stop_group_and_rings(mac_group_t *); /* * Module initialization functions. */ void mac_init(void) { mac_tx_percpu_cnt = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus); /* Upper bound is mac_tx_percpu_cnt_max */ if (mac_tx_percpu_cnt > mac_tx_percpu_cnt_max) mac_tx_percpu_cnt = mac_tx_percpu_cnt_max; if (mac_tx_percpu_cnt < 1) { /* Someone set max_tx_percpu_cnt_max to 0 or less */ mac_tx_percpu_cnt = 1; } ASSERT(mac_tx_percpu_cnt >= 1); mac_tx_percpu_cnt = (1 << highbit(mac_tx_percpu_cnt - 1)); /* * Make it of the form 2**N - 1 in the range * [0 .. mac_tx_percpu_cnt_max - 1] */ mac_tx_percpu_cnt--; i_mac_impl_cachep = kmem_cache_create("mac_impl_cache", sizeof (mac_impl_t), 0, i_mac_constructor, i_mac_destructor, NULL, NULL, NULL, 0); ASSERT(i_mac_impl_cachep != NULL); mac_ring_cache = kmem_cache_create("mac_ring_cache", sizeof (mac_ring_t), 0, i_mac_ring_ctor, i_mac_ring_dtor, NULL, NULL, NULL, 0); ASSERT(mac_ring_cache != NULL); i_mac_impl_hash = mod_hash_create_extended("mac_impl_hash", IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); rw_init(&i_mac_impl_lock, NULL, RW_DEFAULT, NULL); mac_flow_init(); mac_soft_ring_init(); mac_bcast_init(); mac_client_init(); i_mac_impl_count = 0; i_mactype_hash = mod_hash_create_extended("mactype_hash", MACTYPE_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); /* * Allocate an id space to manage minor numbers. The range of the * space will be from MAC_MAX_MINOR+1 to MAC_PRIVATE_MINOR-1. This * leaves half of the 32-bit minors available for driver private use. */ minor_ids = id_space_create("mac_minor_ids", MAC_MAX_MINOR+1, MAC_PRIVATE_MINOR-1); ASSERT(minor_ids != NULL); minor_count = 0; /* Let's default to 20 seconds */ mac_logging_interval = 20; mac_flow_log_enable = B_FALSE; mac_link_log_enable = B_FALSE; mac_logging_timer = 0; } int mac_fini(void) { if (i_mac_impl_count > 0 || minor_count > 0) return (EBUSY); id_space_destroy(minor_ids); mac_flow_fini(); mod_hash_destroy_hash(i_mac_impl_hash); rw_destroy(&i_mac_impl_lock); mac_client_fini(); kmem_cache_destroy(mac_ring_cache); mod_hash_destroy_hash(i_mactype_hash); mac_soft_ring_finish(); return (0); } void mac_init_ops(struct dev_ops *ops, const char *name) { dld_init_ops(ops, name); } void mac_fini_ops(struct dev_ops *ops) { dld_fini_ops(ops); } /*ARGSUSED*/ static int i_mac_constructor(void *buf, void *arg, int kmflag) { mac_impl_t *mip = buf; bzero(buf, sizeof (mac_impl_t)); mip->mi_linkstate = LINK_STATE_UNKNOWN; mutex_init(&mip->mi_lock, NULL, MUTEX_DRIVER, NULL); rw_init(&mip->mi_rw_lock, NULL, RW_DRIVER, NULL); mutex_init(&mip->mi_notify_lock, NULL, MUTEX_DRIVER, NULL); mutex_init(&mip->mi_promisc_lock, NULL, MUTEX_DRIVER, NULL); mutex_init(&mip->mi_ring_lock, NULL, MUTEX_DEFAULT, NULL); mip->mi_notify_cb_info.mcbi_lockp = &mip->mi_notify_lock; cv_init(&mip->mi_notify_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); mip->mi_promisc_cb_info.mcbi_lockp = &mip->mi_promisc_lock; cv_init(&mip->mi_promisc_cb_info.mcbi_cv, NULL, CV_DRIVER, NULL); mutex_init(&mip->mi_bridge_lock, NULL, MUTEX_DEFAULT, NULL); return (0); } /*ARGSUSED*/ static void i_mac_destructor(void *buf, void *arg) { mac_impl_t *mip = buf; mac_cb_info_t *mcbi; ASSERT(mip->mi_ref == 0); ASSERT(mip->mi_active == 0); ASSERT(mip->mi_linkstate == LINK_STATE_UNKNOWN); ASSERT(mip->mi_devpromisc == 0); ASSERT(mip->mi_ksp == NULL); ASSERT(mip->mi_kstat_count == 0); ASSERT(mip->mi_nclients == 0); ASSERT(mip->mi_nactiveclients == 0); ASSERT(mip->mi_single_active_client == NULL); ASSERT(mip->mi_state_flags == 0); ASSERT(mip->mi_factory_addr == NULL); ASSERT(mip->mi_factory_addr_num == 0); ASSERT(mip->mi_default_tx_ring == NULL); mcbi = &mip->mi_notify_cb_info; ASSERT(mcbi->mcbi_del_cnt == 0 && mcbi->mcbi_walker_cnt == 0); ASSERT(mip->mi_notify_bits == 0); ASSERT(mip->mi_notify_thread == NULL); ASSERT(mcbi->mcbi_lockp == &mip->mi_notify_lock); mcbi->mcbi_lockp = NULL; mcbi = &mip->mi_promisc_cb_info; ASSERT(mcbi->mcbi_del_cnt == 0 && mip->mi_promisc_list == NULL); ASSERT(mip->mi_promisc_list == NULL); ASSERT(mcbi->mcbi_lockp == &mip->mi_promisc_lock); mcbi->mcbi_lockp = NULL; ASSERT(mip->mi_bcast_ngrps == 0 && mip->mi_bcast_grp == NULL); ASSERT(mip->mi_perim_owner == NULL && mip->mi_perim_ocnt == 0); mutex_destroy(&mip->mi_lock); rw_destroy(&mip->mi_rw_lock); mutex_destroy(&mip->mi_promisc_lock); cv_destroy(&mip->mi_promisc_cb_info.mcbi_cv); mutex_destroy(&mip->mi_notify_lock); cv_destroy(&mip->mi_notify_cb_info.mcbi_cv); mutex_destroy(&mip->mi_ring_lock); ASSERT(mip->mi_bridge_link == NULL); } /* ARGSUSED */ static int i_mac_ring_ctor(void *buf, void *arg, int kmflag) { mac_ring_t *ring = (mac_ring_t *)buf; bzero(ring, sizeof (mac_ring_t)); cv_init(&ring->mr_cv, NULL, CV_DEFAULT, NULL); mutex_init(&ring->mr_lock, NULL, MUTEX_DEFAULT, NULL); ring->mr_state = MR_FREE; return (0); } /* ARGSUSED */ static void i_mac_ring_dtor(void *buf, void *arg) { mac_ring_t *ring = (mac_ring_t *)buf; cv_destroy(&ring->mr_cv); mutex_destroy(&ring->mr_lock); } /* * Common functions to do mac callback addition and deletion. Currently this is * used by promisc callbacks and notify callbacks. List addition and deletion * need to take care of list walkers. List walkers in general, can't hold list * locks and make upcall callbacks due to potential lock order and recursive * reentry issues. Instead list walkers increment the list walker count to mark * the presence of a walker thread. Addition can be carefully done to ensure * that the list walker always sees either the old list or the new list. * However the deletion can't be done while the walker is active, instead the * deleting thread simply marks the entry as logically deleted. The last walker * physically deletes and frees up the logically deleted entries when the walk * is complete. */ void mac_callback_add(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, mac_cb_t *mcb_elem) { mac_cb_t *p; mac_cb_t **pp; /* Verify it is not already in the list */ for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { if (p == mcb_elem) break; } VERIFY(p == NULL); /* * Add it to the head of the callback list. The membar ensures that * the following list pointer manipulations reach global visibility * in exactly the program order below. */ ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); mcb_elem->mcb_nextp = *mcb_head; membar_producer(); *mcb_head = mcb_elem; } /* * Mark the entry as logically deleted. If there aren't any walkers unlink * from the list. In either case return the corresponding status. */ boolean_t mac_callback_remove(mac_cb_info_t *mcbi, mac_cb_t **mcb_head, mac_cb_t *mcb_elem) { mac_cb_t *p; mac_cb_t **pp; ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); /* * Search the callback list for the entry to be removed */ for (pp = mcb_head; (p = *pp) != NULL; pp = &p->mcb_nextp) { if (p == mcb_elem) break; } VERIFY(p != NULL); /* * If there are walkers just mark it as deleted and the last walker * will remove from the list and free it. */ if (mcbi->mcbi_walker_cnt != 0) { p->mcb_flags |= MCB_CONDEMNED; mcbi->mcbi_del_cnt++; return (B_FALSE); } ASSERT(mcbi->mcbi_del_cnt == 0); *pp = p->mcb_nextp; p->mcb_nextp = NULL; return (B_TRUE); } /* * Wait for all pending callback removals to be completed */ void mac_callback_remove_wait(mac_cb_info_t *mcbi) { ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); while (mcbi->mcbi_del_cnt != 0) { DTRACE_PROBE1(need_wait, mac_cb_info_t *, mcbi); cv_wait(&mcbi->mcbi_cv, mcbi->mcbi_lockp); } } /* * The last mac callback walker does the cleanup. Walk the list and unlik * all the logically deleted entries and construct a temporary list of * removed entries. Return the list of removed entries to the caller. */ mac_cb_t * mac_callback_walker_cleanup(mac_cb_info_t *mcbi, mac_cb_t **mcb_head) { mac_cb_t *p; mac_cb_t **pp; mac_cb_t *rmlist = NULL; /* List of removed elements */ int cnt = 0; ASSERT(MUTEX_HELD(mcbi->mcbi_lockp)); ASSERT(mcbi->mcbi_del_cnt != 0 && mcbi->mcbi_walker_cnt == 0); pp = mcb_head; while (*pp != NULL) { if ((*pp)->mcb_flags & MCB_CONDEMNED) { p = *pp; *pp = p->mcb_nextp; p->mcb_nextp = rmlist; rmlist = p; cnt++; continue; } pp = &(*pp)->mcb_nextp; } ASSERT(mcbi->mcbi_del_cnt == cnt); mcbi->mcbi_del_cnt = 0; return (rmlist); } boolean_t mac_callback_lookup(mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) { mac_cb_t *mcb; /* Verify it is not already in the list */ for (mcb = *mcb_headp; mcb != NULL; mcb = mcb->mcb_nextp) { if (mcb == mcb_elem) return (B_TRUE); } return (B_FALSE); } boolean_t mac_callback_find(mac_cb_info_t *mcbi, mac_cb_t **mcb_headp, mac_cb_t *mcb_elem) { boolean_t found; mutex_enter(mcbi->mcbi_lockp); found = mac_callback_lookup(mcb_headp, mcb_elem); mutex_exit(mcbi->mcbi_lockp); return (found); } /* Free the list of removed callbacks */ void mac_callback_free(mac_cb_t *rmlist) { mac_cb_t *mcb; mac_cb_t *mcb_next; for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { mcb_next = mcb->mcb_nextp; kmem_free(mcb->mcb_objp, mcb->mcb_objsize); } } /* * The promisc callbacks are in 2 lists, one off the 'mip' and another off the * 'mcip' threaded by mpi_mi_link and mpi_mci_link respectively. However there * is only a single shared total walker count, and an entry can't be physically * unlinked if a walker is active on either list. The last walker does this * cleanup of logically deleted entries. */ void i_mac_promisc_walker_cleanup(mac_impl_t *mip) { mac_cb_t *rmlist; mac_cb_t *mcb; mac_cb_t *mcb_next; mac_promisc_impl_t *mpip; /* * Construct a temporary list of deleted callbacks by walking the * the mi_promisc_list. Then for each entry in the temporary list, * remove it from the mci_promisc_list and free the entry. */ rmlist = mac_callback_walker_cleanup(&mip->mi_promisc_cb_info, &mip->mi_promisc_list); for (mcb = rmlist; mcb != NULL; mcb = mcb_next) { mcb_next = mcb->mcb_nextp; mpip = (mac_promisc_impl_t *)mcb->mcb_objp; VERIFY(mac_callback_remove(&mip->mi_promisc_cb_info, &mpip->mpi_mcip->mci_promisc_list, &mpip->mpi_mci_link)); mcb->mcb_flags = 0; mcb->mcb_nextp = NULL; kmem_cache_free(mac_promisc_impl_cache, mpip); } } void i_mac_notify(mac_impl_t *mip, mac_notify_type_t type) { mac_cb_info_t *mcbi; /* * Signal the notify thread even after mi_ref has become zero and * mi_disabled is set. The synchronization with the notify thread * happens in mac_unregister and that implies the driver must make * sure it is single-threaded (with respect to mac calls) and that * all pending mac calls have returned before it calls mac_unregister */ rw_enter(&i_mac_impl_lock, RW_READER); if (mip->mi_state_flags & MIS_DISABLED) goto exit; /* * Guard against incorrect notifications. (Running a newer * mac client against an older implementation?) */ if (type >= MAC_NNOTE) goto exit; mcbi = &mip->mi_notify_cb_info; mutex_enter(mcbi->mcbi_lockp); mip->mi_notify_bits |= (1 << type); cv_broadcast(&mcbi->mcbi_cv); mutex_exit(mcbi->mcbi_lockp); exit: rw_exit(&i_mac_impl_lock); } /* * Mac serialization primitives. Please see the block comment at the * top of the file. */ void i_mac_perim_enter(mac_impl_t *mip) { mac_client_impl_t *mcip; if (mip->mi_state_flags & MIS_IS_VNIC) { /* * This is a VNIC. Return the lower mac since that is what * we want to serialize on. */ mcip = mac_vnic_lower(mip); mip = mcip->mci_mip; } mutex_enter(&mip->mi_perim_lock); if (mip->mi_perim_owner == curthread) { mip->mi_perim_ocnt++; mutex_exit(&mip->mi_perim_lock); return; } while (mip->mi_perim_owner != NULL) cv_wait(&mip->mi_perim_cv, &mip->mi_perim_lock); mip->mi_perim_owner = curthread; ASSERT(mip->mi_perim_ocnt == 0); mip->mi_perim_ocnt++; #ifdef DEBUG mip->mi_perim_stack_depth = getpcstack(mip->mi_perim_stack, MAC_PERIM_STACK_DEPTH); #endif mutex_exit(&mip->mi_perim_lock); } int i_mac_perim_enter_nowait(mac_impl_t *mip) { /* * The vnic is a special case, since the serialization is done based * on the lower mac. If the lower mac is busy, it does not imply the * vnic can't be unregistered. But in the case of other drivers, * a busy perimeter or open mac handles implies that the mac is busy * and can't be unregistered. */ if (mip->mi_state_flags & MIS_IS_VNIC) { i_mac_perim_enter(mip); return (0); } mutex_enter(&mip->mi_perim_lock); if (mip->mi_perim_owner != NULL) { mutex_exit(&mip->mi_perim_lock); return (EBUSY); } ASSERT(mip->mi_perim_ocnt == 0); mip->mi_perim_owner = curthread; mip->mi_perim_ocnt++; mutex_exit(&mip->mi_perim_lock); return (0); } void i_mac_perim_exit(mac_impl_t *mip) { mac_client_impl_t *mcip; if (mip->mi_state_flags & MIS_IS_VNIC) { /* * This is a VNIC. Return the lower mac since that is what * we want to serialize on. */ mcip = mac_vnic_lower(mip); mip = mcip->mci_mip; } ASSERT(mip->mi_perim_owner == curthread && mip->mi_perim_ocnt != 0); mutex_enter(&mip->mi_perim_lock); if (--mip->mi_perim_ocnt == 0) { mip->mi_perim_owner = NULL; cv_signal(&mip->mi_perim_cv); } mutex_exit(&mip->mi_perim_lock); } /* * Returns whether the current thread holds the mac perimeter. Used in making * assertions. */ boolean_t mac_perim_held(mac_handle_t mh) { mac_impl_t *mip = (mac_impl_t *)mh; mac_client_impl_t *mcip; if (mip->mi_state_flags & MIS_IS_VNIC) { /* * This is a VNIC. Return the lower mac since that is what * we want to serialize on. */ mcip = mac_vnic_lower(mip); mip = mcip->mci_mip; } return (mip->mi_perim_owner == curthread); } /* * mac client interfaces to enter the mac perimeter of a mac end point, given * its mac handle, or macname or linkid. */ void mac_perim_enter_by_mh(mac_handle_t mh, mac_perim_handle_t *mphp) { mac_impl_t *mip = (mac_impl_t *)mh; i_mac_perim_enter(mip); /* * The mac_perim_handle_t returned encodes the 'mip' and whether a * mac_open has been done internally while entering the perimeter. * This information is used in mac_perim_exit */ MAC_ENCODE_MPH(*mphp, mip, 0); } int mac_perim_enter_by_macname(const char *name, mac_perim_handle_t *mphp) { int err; mac_handle_t mh; if ((err = mac_open(name, &mh)) != 0) return (err); mac_perim_enter_by_mh(mh, mphp); MAC_ENCODE_MPH(*mphp, mh, 1); return (0); } int mac_perim_enter_by_linkid(datalink_id_t linkid, mac_perim_handle_t *mphp) { int err; mac_handle_t mh; if ((err = mac_open_by_linkid(linkid, &mh)) != 0) return (err); mac_perim_enter_by_mh(mh, mphp); MAC_ENCODE_MPH(*mphp, mh, 1); return (0); } void mac_perim_exit(mac_perim_handle_t mph) { mac_impl_t *mip; boolean_t need_close; MAC_DECODE_MPH(mph, mip, need_close); i_mac_perim_exit(mip); if (need_close) mac_close((mac_handle_t)mip); } int mac_hold(const char *macname, mac_impl_t **pmip) { mac_impl_t *mip; int err; /* * Check the device name length to make sure it won't overflow our * buffer. */ if (strlen(macname) >= MAXNAMELEN) return (EINVAL); /* * Look up its entry in the global hash table. */ rw_enter(&i_mac_impl_lock, RW_WRITER); err = mod_hash_find(i_mac_impl_hash, (mod_hash_key_t)macname, (mod_hash_val_t *)&mip); if (err != 0) { rw_exit(&i_mac_impl_lock); return (ENOENT); } if (mip->mi_state_flags & MIS_DISABLED) { rw_exit(&i_mac_impl_lock); return (ENOENT); } if (mip->mi_state_flags & MIS_EXCLUSIVE_HELD) { rw_exit(&i_mac_impl_lock); return (EBUSY); } mip->mi_ref++; rw_exit(&i_mac_impl_lock); *pmip = mip; return (0); } void mac_rele(mac_impl_t *mip) { rw_enter(&i_mac_impl_lock, RW_WRITER); ASSERT(mip->mi_ref != 0); if (--mip->mi_ref == 0) { ASSERT(mip->mi_nactiveclients == 0 && !(mip->mi_state_flags & MIS_EXCLUSIVE)); } rw_exit(&i_mac_impl_lock); } /* * Private GLDv3 function to start a MAC instance. */ int mac_start(mac_handle_t mh) { mac_impl_t *mip = (mac_impl_t *)mh; int err = 0; ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); ASSERT(mip->mi_start != NULL); /* * Check whether the device is already started. */ if (mip->mi_active++ == 0) { mac_ring_t *ring = NULL; /* * Start the device. */ err = mip->mi_start(mip->mi_driver); if (err != 0) { mip->mi_active--; return (err); } /* * Start the default tx ring. */ if (mip->mi_default_tx_ring != NULL) { ring = (mac_ring_t *)mip->mi_default_tx_ring; err = mac_start_ring(ring); if (err != 0) { mip->mi_active--; return (err); } ring->mr_state = MR_INUSE; } if (mip->mi_rx_groups != NULL) { /* * Start the default ring, since it will be needed * to receive broadcast and multicast traffic for * both primary and non-primary MAC clients. */ mac_group_t *grp = &mip->mi_rx_groups[0]; ASSERT(grp->mrg_state == MAC_GROUP_STATE_REGISTERED); err = mac_start_group_and_rings(grp); if (err != 0) { mip->mi_active--; if (ring != NULL) { mac_stop_ring(ring); ring->mr_state = MR_FREE; } return (err); } mac_set_rx_group_state(grp, MAC_GROUP_STATE_SHARED); } } return (err); } /* * Private GLDv3 function to stop a MAC instance. */ void mac_stop(mac_handle_t mh) { mac_impl_t *mip = (mac_impl_t *)mh; ASSERT(mip->mi_stop != NULL); ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); /* * Check whether the device is still needed. */ ASSERT(mip->mi_active != 0); if (--mip->mi_active == 0) { if (mip->mi_rx_groups != NULL) { /* * There should be no more active clients since the * MAC is being stopped. Stop the default RX group * and transition it back to registered state. */ mac_group_t *grp = &mip->mi_rx_groups[0]; /* * When clients are torn down, the groups * are release via mac_release_rx_group which * knows the the default group is always in * started mode since broadcast uses it. So * we can assert that their are no clients * (since mac_bcast_add doesn't register itself * as a client) and group is in SHARED state. */ ASSERT(grp->mrg_state == MAC_GROUP_STATE_SHARED); ASSERT(MAC_RX_GROUP_NO_CLIENT(grp) && mip->mi_nactiveclients == 0); mac_stop_group_and_rings(grp); mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED); } if (mip->mi_default_tx_ring != NULL) { mac_ring_t *ring; ring = (mac_ring_t *)mip->mi_default_tx_ring; mac_stop_ring(ring); ring->mr_state = MR_FREE; } /* * Stop the device. */ mip->mi_stop(mip->mi_driver); } } int i_mac_promisc_set(mac_impl_t *mip, boolean_t on) { int err = 0; ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); ASSERT(mip->mi_setpromisc != NULL); if (on) { /* * Enable promiscuous mode on the device if not yet enabled. */ if (mip->mi_devpromisc++ == 0) { err = mip->mi_setpromisc(mip->mi_driver, B_TRUE); if (err != 0) { mip->mi_devpromisc--; return (err); } i_mac_notify(mip, MAC_NOTE_DEVPROMISC); } } else { if (mip->mi_devpromisc == 0) return (EPROTO); /* * Disable promiscuous mode on the device if this is the last * enabling. */ if (--mip->mi_devpromisc == 0) { err = mip->mi_setpromisc(mip->mi_driver, B_FALSE); if (err != 0) { mip->mi_devpromisc++; return (err); } i_mac_notify(mip, MAC_NOTE_DEVPROMISC); } } return (0); } /* * The promiscuity state can change any time. If the caller needs to take * actions that are atomic with the promiscuity state, then the caller needs * to bracket the entire sequence with mac_perim_enter/exit */ boolean_t mac_promisc_get(mac_handle_t mh) { mac_impl_t *mip = (mac_impl_t *)mh; /* * Return the current promiscuity. */ return (mip->mi_devpromisc != 0); } /* * Invoked at MAC instance attach time to initialize the list * of factory MAC addresses supported by a MAC instance. This function * builds a local cache in the mac_impl_t for the MAC addresses * supported by the underlying hardware. The MAC clients themselves * use the mac_addr_factory*() functions to query and reserve * factory MAC addresses. */ void mac_addr_factory_init(mac_impl_t *mip) { mac_capab_multifactaddr_t capab; uint8_t *addr; int i; /* * First round to see how many factory MAC addresses are available. */ bzero(&capab, sizeof (capab)); if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_MULTIFACTADDR, &capab) || (capab.mcm_naddr == 0)) { /* * The MAC instance doesn't support multiple factory * MAC addresses, we're done here. */ return; } /* * Allocate the space and get all the factory addresses. */ addr = kmem_alloc(capab.mcm_naddr * MAXMACADDRLEN, KM_SLEEP); capab.mcm_getaddr(mip->mi_driver, capab.mcm_naddr, addr); mip->mi_factory_addr_num = capab.mcm_naddr; mip->mi_factory_addr = kmem_zalloc(mip->mi_factory_addr_num * sizeof (mac_factory_addr_t), KM_SLEEP); for (i = 0; i < capab.mcm_naddr; i++) { bcopy(addr + i * MAXMACADDRLEN, mip->mi_factory_addr[i].mfa_addr, mip->mi_type->mt_addr_length); mip->mi_factory_addr[i].mfa_in_use = B_FALSE; } kmem_free(addr, capab.mcm_naddr * MAXMACADDRLEN); } void mac_addr_factory_fini(mac_impl_t *mip) { if (mip->mi_factory_addr == NULL) { ASSERT(mip->mi_factory_addr_num == 0); return; } kmem_free(mip->mi_factory_addr, mip->mi_factory_addr_num * sizeof (mac_factory_addr_t)); mip->mi_factory_addr = NULL; mip->mi_factory_addr_num = 0; } /* * Reserve a factory MAC address. If *slot is set to -1, the function * attempts to reserve any of the available factory MAC addresses and * returns the reserved slot id. If no slots are available, the function * returns ENOSPC. If *slot is not set to -1, the function reserves * the specified slot if it is available, or returns EBUSY is the slot * is already used. Returns ENOTSUP if the underlying MAC does not * support multiple factory addresses. If the slot number is not -1 but * is invalid, returns EINVAL. */ int mac_addr_factory_reserve(mac_client_handle_t mch, int *slot) { mac_client_impl_t *mcip = (mac_client_impl_t *)mch; mac_impl_t *mip = mcip->mci_mip; int i, ret = 0; i_mac_perim_enter(mip); /* * Protect against concurrent readers that may need a self-consistent * view of the factory addresses */ rw_enter(&mip->mi_rw_lock, RW_WRITER); if (mip->mi_factory_addr_num == 0) { ret = ENOTSUP; goto bail; } if (*slot != -1) { /* check the specified slot */ if (*slot < 1 || *slot > mip->mi_factory_addr_num) { ret = EINVAL; goto bail; } if (mip->mi_factory_addr[*slot-1].mfa_in_use) { ret = EBUSY; goto bail; } } else { /* pick the next available slot */ for (i = 0; i < mip->mi_factory_addr_num; i++) { if (!mip->mi_factory_addr[i].mfa_in_use) break; } if (i == mip->mi_factory_addr_num) { ret = ENOSPC; goto bail; } *slot = i+1; } mip->mi_factory_addr[*slot-1].mfa_in_use = B_TRUE; mip->mi_factory_addr[*slot-1].mfa_client = mcip; bail: rw_exit(&mip->mi_rw_lock); i_mac_perim_exit(mip); return (ret); } /* * Release the specified factory MAC address slot. */ void mac_addr_factory_release(mac_client_handle_t mch, uint_t slot) { mac_client_impl_t *mcip = (mac_client_impl_t *)mch; mac_impl_t *mip = mcip->mci_mip; i_mac_perim_enter(mip); /* * Protect against concurrent readers that may need a self-consistent * view of the factory addresses */ rw_enter(&mip->mi_rw_lock, RW_WRITER); ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); ASSERT(mip->mi_factory_addr[slot-1].mfa_in_use); mip->mi_factory_addr[slot-1].mfa_in_use = B_FALSE; rw_exit(&mip->mi_rw_lock); i_mac_perim_exit(mip); } /* * Stores in mac_addr the value of the specified MAC address. Returns * 0 on success, or EINVAL if the slot number is not valid for the MAC. * The caller must provide a string of at least MAXNAMELEN bytes. */ void mac_addr_factory_value(mac_handle_t mh, int slot, uchar_t *mac_addr, uint_t *addr_len, char *client_name, boolean_t *in_use_arg) { mac_impl_t *mip = (mac_impl_t *)mh; boolean_t in_use; ASSERT(slot > 0 && slot <= mip->mi_factory_addr_num); /* * Readers need to hold mi_rw_lock. Writers need to hold mac perimeter * and mi_rw_lock */ rw_enter(&mip->mi_rw_lock, RW_READER); bcopy(mip->mi_factory_addr[slot-1].mfa_addr, mac_addr, MAXMACADDRLEN); *addr_len = mip->mi_type->mt_addr_length; in_use = mip->mi_factory_addr[slot-1].mfa_in_use; if (in_use && client_name != NULL) { bcopy(mip->mi_factory_addr[slot-1].mfa_client->mci_name, client_name, MAXNAMELEN); } if (in_use_arg != NULL) *in_use_arg = in_use; rw_exit(&mip->mi_rw_lock); } /* * Returns the number of factory MAC addresses (in addition to the * primary MAC address), 0 if the underlying MAC doesn't support * that feature. */ uint_t mac_addr_factory_num(mac_handle_t mh) { mac_impl_t *mip = (mac_impl_t *)mh; return (mip->mi_factory_addr_num); } void mac_rx_group_unmark(mac_group_t *grp, uint_t flag) { mac_ring_t *ring; for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next) ring->mr_flag &= ~flag; } /* * The following mac_hwrings_xxx() functions are private mac client functions * used by the aggr driver to access and control the underlying HW Rx group * and rings. In this case, the aggr driver has exclusive control of the * underlying HW Rx group/rings, it calls the following functions to * start/stop the HW Rx rings, disable/enable polling, add/remove mac' * addresses, or set up the Rx callback. */ /* ARGSUSED */ static void mac_hwrings_rx_process(void *arg, mac_resource_handle_t srs, mblk_t *mp_chain, boolean_t loopback) { mac_soft_ring_set_t *mac_srs = (mac_soft_ring_set_t *)srs; mac_srs_rx_t *srs_rx = &mac_srs->srs_rx; mac_direct_rx_t proc; void *arg1; mac_resource_handle_t arg2; proc = srs_rx->sr_func; arg1 = srs_rx->sr_arg1; arg2 = mac_srs->srs_mrh; proc(arg1, arg2, mp_chain, NULL); } /* * This function is called to get the list of HW rings that are reserved by * an exclusive mac client. * * Return value: the number of HW rings. */ int mac_hwrings_get(mac_client_handle_t mch, mac_group_handle_t *hwgh, mac_ring_handle_t *hwrh, mac_ring_type_t rtype) { mac_client_impl_t *mcip = (mac_client_impl_t *)mch; int cnt = 0; switch (rtype) { case MAC_RING_TYPE_RX: { flow_entry_t *flent = mcip->mci_flent; mac_group_t *grp; mac_ring_t *ring; grp = flent->fe_rx_ring_group; /* * The mac client did not reserve any RX group, return directly. * This is probably because the underlying MAC does not support * any groups. */ *hwgh = NULL; if (grp == NULL) return (0); /* * This group must be reserved by this mac client. */ ASSERT((grp->mrg_state == MAC_GROUP_STATE_RESERVED) && (mch == (mac_client_handle_t) (MAC_RX_GROUP_ONLY_CLIENT(grp)))); for (ring = grp->mrg_rings; ring != NULL; ring = ring->mr_next, cnt++) { ASSERT(cnt < MAX_RINGS_PER_GROUP); hwrh[cnt] = (mac_ring_handle_t)ring; } *hwgh = (mac_group_handle_t)grp; return (cnt); } case MAC_RING_TYPE_TX: { mac_soft_ring_set_t *tx_srs; mac_srs_tx_t *tx; tx_srs = MCIP_TX_SRS(mcip); tx = &tx_srs->srs_tx; for (; cnt < tx->st_ring_count; cnt++) hwrh[cnt] = tx->st_rings[cnt]; return (cnt); } default: ASSERT(B_FALSE); return (-1); } } /* * Setup the RX callback of the mac client which exclusively controls HW ring. */ void mac_hwring_setup(mac_ring_handle_t hwrh, mac_resource_handle_t prh) { mac_ring_t *hw_ring = (mac_ring_t *)hwrh; mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; mac_srs->srs_mrh = prh; mac_srs->srs_rx.sr_lower_proc = mac_hwrings_rx_process; } void mac_hwring_teardown(mac_ring_handle_t hwrh) { mac_ring_t *hw_ring = (mac_ring_t *)hwrh; mac_soft_ring_set_t *mac_srs = hw_ring->mr_srs; mac_srs->srs_rx.sr_lower_proc = mac_rx_srs_process; mac_srs->srs_mrh = NULL; } int mac_hwring_disable_intr(mac_ring_handle_t rh) { mac_ring_t *rr_ring = (mac_ring_t *)rh; mac_intr_t *intr = &rr_ring->mr_info.mri_intr; return (intr->mi_disable(intr->mi_handle)); } int mac_hwring_enable_intr(mac_ring_handle_t rh) { mac_ring_t *rr_ring = (mac_ring_t *)rh; mac_intr_t *intr = &rr_ring->mr_info.mri_intr; return (intr->mi_enable(intr->mi_handle)); } int mac_hwring_start(mac_ring_handle_t rh) { mac_ring_t *rr_ring = (mac_ring_t *)rh; MAC_RING_UNMARK(rr_ring, MR_QUIESCE); return (0); } void mac_hwring_stop(mac_ring_handle_t rh) { mac_ring_t *rr_ring = (mac_ring_t *)rh; mac_rx_ring_quiesce(rr_ring, MR_QUIESCE); } mblk_t * mac_hwring_poll(mac_ring_handle_t rh, int bytes_to_pickup) { mac_ring_t *rr_ring = (mac_ring_t *)rh; mac_ring_info_t *info = &rr_ring->mr_info; return (info->mri_poll(info->mri_driver, bytes_to_pickup)); } /* * Send packets through the selected tx ring. */ mblk_t * mac_hwring_tx(mac_ring_handle_t rh, mblk_t *mp) { mac_ring_t *ring = (mac_ring_t *)rh; mac_ring_info_t *info = &ring->mr_info; ASSERT(ring->mr_type == MAC_RING_TYPE_TX && ring->mr_state >= MR_INUSE); return (info->mri_tx(info->mri_driver, mp)); } int mac_hwgroup_addmac(mac_group_handle_t gh, const uint8_t *addr) { mac_group_t *group = (mac_group_t *)gh; return (mac_group_addmac(group, addr)); } int mac_hwgroup_remmac(mac_group_handle_t gh, const uint8_t *addr) { mac_group_t *group = (mac_group_t *)gh; return (mac_group_remmac(group, addr)); } /* * Set the RX group to be shared/reserved. Note that the group must be * started/stopped outside of this function. */ void mac_set_rx_group_state(mac_group_t *grp, mac_group_state_t state) { /* * If there is no change in the group state, just return. */ if (grp->mrg_state == state) return; switch (state) { case MAC_GROUP_STATE_RESERVED: /* * Successfully reserved the group. * * Given that there is an exclusive client controlling this * group, we enable the group level polling when available, * so that SRSs get to turn on/off individual rings they's * assigned to. */ ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); if (GROUP_INTR_DISABLE_FUNC(grp) != NULL) GROUP_INTR_DISABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); break; case MAC_GROUP_STATE_SHARED: /* * Set all rings of this group to software classified. * If the group has an overriding interrupt, then re-enable it. */ ASSERT(MAC_PERIM_HELD(grp->mrg_mh)); if (GROUP_INTR_ENABLE_FUNC(grp) != NULL) GROUP_INTR_ENABLE_FUNC(grp)(GROUP_INTR_HANDLE(grp)); /* The ring is not available for reservations any more */ break; case MAC_GROUP_STATE_REGISTERED: /* Also callable from mac_register, perim is not held */ break; default: ASSERT(B_FALSE); break; } grp->mrg_state = state; } /* * Quiesce future hardware classified packets for the specified Rx ring */ static void mac_rx_ring_quiesce(mac_ring_t *rx_ring, uint_t ring_flag) { ASSERT(rx_ring->mr_classify_type == MAC_HW_CLASSIFIER); ASSERT(ring_flag == MR_CONDEMNED || ring_flag == MR_QUIESCE); mutex_enter(&rx_ring->mr_lock); rx_ring->mr_flag |= ring_flag; while (rx_ring->mr_refcnt != 0) cv_wait(&rx_ring->mr_cv, &rx_ring->mr_lock); mutex_exit(&rx_ring->mr_lock); } /* * Please see mac_tx for details about the per cpu locking scheme */ static void mac_tx_lock_all(mac_client_impl_t *mcip) { int i; for (i = 0; i <= mac_tx_percpu_cnt; i++) mutex_enter(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); } static void mac_tx_unlock_all(mac_client_impl_t *mcip) { int i; for (i = mac_tx_percpu_cnt; i >= 0; i--) mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); } static void mac_tx_unlock_allbutzero(mac_client_impl_t *mcip) { int i; for (i = mac_tx_percpu_cnt; i > 0; i--) mutex_exit(&mcip->mci_tx_pcpu[i].pcpu_tx_lock); } static int mac_tx_sum_refcnt(mac_client_impl_t *mcip) { int i; int refcnt = 0; for (i = 0; i <= mac_tx_percpu_cnt; i++) refcnt += mcip->mci_tx_pcpu[i].pcpu_tx_refcnt; return (refcnt); } /* * Stop future Tx packets coming down from the client in preparation for * quiescing the Tx side. This is needed for dynamic reclaim and reassignment * of rings between clients */ void mac_tx_client_block(mac_client_impl_t *mcip) { mac_tx_lock_all(mcip); mcip->mci_tx_flag |= MCI_TX_QUIESCE; while (mac_tx_sum_refcnt(mcip) != 0) { mac_tx_unlock_allbutzero(mcip); cv_wait(&mcip->mci_tx_cv, &mcip->mci_tx_pcpu[0].pcpu_tx_lock); mutex_exit(&mcip->mci_tx_pcpu[0].pcpu_tx_lock); mac_tx_lock_all(mcip); } mac_tx_unlock_all(mcip); } void mac_tx_client_unblock(mac_client_impl_t *mcip) { mac_tx_lock_all(mcip); mcip->mci_tx_flag &= ~MCI_TX_QUIESCE; mac_tx_unlock_all(mcip); /* * We may fail to disable flow control for the last MAC_NOTE_TX * notification because the MAC client is quiesced. Send the * notification again. */ i_mac_notify(mcip->mci_mip, MAC_NOTE_TX); } /* * Wait for an SRS to quiesce. The SRS worker will signal us when the * quiesce is done. */ static void mac_srs_quiesce_wait(mac_soft_ring_set_t *srs, uint_t srs_flag) { mutex_enter(&srs->srs_lock); while (!(srs->srs_state & srs_flag)) cv_wait(&srs->srs_quiesce_done_cv, &srs->srs_lock); mutex_exit(&srs->srs_lock); } /* * Quiescing an Rx SRS is achieved by the following sequence. The protocol * works bottom up by cutting off packet flow from the bottommost point in the * mac, then the SRS, and then the soft rings. There are 2 use cases of this * mechanism. One is a temporary quiesce of the SRS, such as say while changing * the Rx callbacks. Another use case is Rx SRS teardown. In the former case * the QUIESCE prefix/suffix is used and in the latter the CONDEMNED is used * for the SRS and MR flags. In the former case the threads pause waiting for * a restart, while in the latter case the threads exit. The Tx SRS teardown * is also mostly similar to the above. * * 1. Stop future hardware classified packets at the lowest level in the mac. * Remove any hardware classification rule (CONDEMNED case) and mark the * rings as CONDEMNED or QUIESCE as appropriate. This prevents the mr_refcnt * from increasing. Upcalls from the driver that come through hardware * classification will be dropped in mac_rx from now on. Then we wait for * the mr_refcnt to drop to zero. When the mr_refcnt reaches zero we are * sure there aren't any upcall threads from the driver through hardware * classification. In the case of SRS teardown we also remove the * classification rule in the driver. * * 2. Stop future software classified packets by marking the flow entry with * FE_QUIESCE or FE_CONDEMNED as appropriate which prevents the refcnt from * increasing. We also remove the flow entry from the table in the latter * case. Then wait for the fe_refcnt to reach an appropriate quiescent value * that indicates there aren't any active threads using that flow entry. * * 3. Quiesce the SRS and softrings by signaling the SRS. The SRS poll thread, * SRS worker thread, and the soft ring threads are quiesced in sequence * with the SRS worker thread serving as a master controller. This * mechansim is explained in mac_srs_worker_quiesce(). * * The restart mechanism to reactivate the SRS and softrings is explained * in mac_srs_worker_restart(). Here we just signal the SRS worker to start the * restart sequence. */ void mac_rx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) { flow_entry_t *flent = srs->srs_flent; uint_t mr_flag, srs_done_flag; ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); ASSERT(!(srs->srs_type & SRST_TX)); if (srs_quiesce_flag == SRS_CONDEMNED) { mr_flag = MR_CONDEMNED; srs_done_flag = SRS_CONDEMNED_DONE; if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) mac_srs_client_poll_disable(srs->srs_mcip, srs); } else { ASSERT(srs_quiesce_flag == SRS_QUIESCE); mr_flag = MR_QUIESCE; srs_done_flag = SRS_QUIESCE_DONE; if (srs->srs_type & SRST_CLIENT_POLL_ENABLED) mac_srs_client_poll_quiesce(srs->srs_mcip, srs); } if (srs->srs_ring != NULL) { mac_rx_ring_quiesce(srs->srs_ring, mr_flag); } else { /* * SRS is driven by software classification. In case * of CONDEMNED, the top level teardown functions will * deal with flow removal. */ if (srs_quiesce_flag != SRS_CONDEMNED) { FLOW_MARK(flent, FE_QUIESCE); mac_flow_wait(flent, FLOW_DRIVER_UPCALL); } } /* * Signal the SRS to quiesce itself, and then cv_wait for the * SRS quiesce to complete. The SRS worker thread will wake us * up when the quiesce is complete */ mac_srs_signal(srs, srs_quiesce_flag); mac_srs_quiesce_wait(srs, srs_done_flag); } /* * Remove an SRS. */ void mac_rx_srs_remove(mac_soft_ring_set_t *srs) { flow_entry_t *flent = srs->srs_flent; int i; mac_rx_srs_quiesce(srs, SRS_CONDEMNED); /* * Locate and remove our entry in the fe_rx_srs[] array, and * adjust the fe_rx_srs array entries and array count by * moving the last entry into the vacated spot. */ mutex_enter(&flent->fe_lock); for (i = 0; i < flent->fe_rx_srs_cnt; i++) { if (flent->fe_rx_srs[i] == srs) break; } ASSERT(i != 0 && i < flent->fe_rx_srs_cnt); if (i != flent->fe_rx_srs_cnt - 1) { flent->fe_rx_srs[i] = flent->fe_rx_srs[flent->fe_rx_srs_cnt - 1]; i = flent->fe_rx_srs_cnt - 1; } flent->fe_rx_srs[i] = NULL; flent->fe_rx_srs_cnt--; mutex_exit(&flent->fe_lock); mac_srs_free(srs); } static void mac_srs_clear_flag(mac_soft_ring_set_t *srs, uint_t flag) { mutex_enter(&srs->srs_lock); srs->srs_state &= ~flag; mutex_exit(&srs->srs_lock); } void mac_rx_srs_restart(mac_soft_ring_set_t *srs) { flow_entry_t *flent = srs->srs_flent; mac_ring_t *mr; ASSERT(MAC_PERIM_HELD((mac_handle_t)FLENT_TO_MIP(flent))); ASSERT((srs->srs_type & SRST_TX) == 0); /* * This handles a change in the number of SRSs between the quiesce and * and restart operation of a flow. */ if (!SRS_QUIESCED(srs)) return; /* * Signal the SRS to restart itself. Wait for the restart to complete * Note that we only restart the SRS if it is not marked as * permanently quiesced. */ if (!SRS_QUIESCED_PERMANENT(srs)) { mac_srs_signal(srs, SRS_RESTART); mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); mac_srs_clear_flag(srs, SRS_RESTART_DONE); mac_srs_client_poll_restart(srs->srs_mcip, srs); } /* Finally clear the flags to let the packets in */ mr = srs->srs_ring; if (mr != NULL) { MAC_RING_UNMARK(mr, MR_QUIESCE); /* In case the ring was stopped, safely restart it */ (void) mac_start_ring(mr); } else { FLOW_UNMARK(flent, FE_QUIESCE); } } /* * Temporary quiesce of a flow and associated Rx SRS. * Please see block comment above mac_rx_classify_flow_rem. */ /* ARGSUSED */ int mac_rx_classify_flow_quiesce(flow_entry_t *flent, void *arg) { int i; for (i = 0; i < flent->fe_rx_srs_cnt; i++) { mac_rx_srs_quiesce((mac_soft_ring_set_t *)flent->fe_rx_srs[i], SRS_QUIESCE); } return (0); } /* * Restart a flow and associated Rx SRS that has been quiesced temporarily * Please see block comment above mac_rx_classify_flow_rem */ /* ARGSUSED */ int mac_rx_classify_flow_restart(flow_entry_t *flent, void *arg) { int i; for (i = 0; i < flent->fe_rx_srs_cnt; i++) mac_rx_srs_restart((mac_soft_ring_set_t *)flent->fe_rx_srs[i]); return (0); } void mac_srs_perm_quiesce(mac_client_handle_t mch, boolean_t on) { mac_client_impl_t *mcip = (mac_client_impl_t *)mch; flow_entry_t *flent = mcip->mci_flent; mac_impl_t *mip = mcip->mci_mip; mac_soft_ring_set_t *mac_srs; int i; ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); if (flent == NULL) return; for (i = 0; i < flent->fe_rx_srs_cnt; i++) { mac_srs = flent->fe_rx_srs[i]; mutex_enter(&mac_srs->srs_lock); if (on) mac_srs->srs_state |= SRS_QUIESCE_PERM; else mac_srs->srs_state &= ~SRS_QUIESCE_PERM; mutex_exit(&mac_srs->srs_lock); } } void mac_rx_client_quiesce(mac_client_handle_t mch) { mac_client_impl_t *mcip = (mac_client_impl_t *)mch; mac_impl_t *mip = mcip->mci_mip; ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); if (MCIP_DATAPATH_SETUP(mcip)) { (void) mac_rx_classify_flow_quiesce(mcip->mci_flent, NULL); (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, mac_rx_classify_flow_quiesce, NULL); } } void mac_rx_client_restart(mac_client_handle_t mch) { mac_client_impl_t *mcip = (mac_client_impl_t *)mch; mac_impl_t *mip = mcip->mci_mip; ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); if (MCIP_DATAPATH_SETUP(mcip)) { (void) mac_rx_classify_flow_restart(mcip->mci_flent, NULL); (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, mac_rx_classify_flow_restart, NULL); } } /* * This function only quiesces the Tx SRS and softring worker threads. Callers * need to make sure that there aren't any mac client threads doing current or * future transmits in the mac before calling this function. */ void mac_tx_srs_quiesce(mac_soft_ring_set_t *srs, uint_t srs_quiesce_flag) { mac_client_impl_t *mcip = srs->srs_mcip; ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); ASSERT(srs->srs_type & SRST_TX); ASSERT(srs_quiesce_flag == SRS_CONDEMNED || srs_quiesce_flag == SRS_QUIESCE); /* * Signal the SRS to quiesce itself, and then cv_wait for the * SRS quiesce to complete. The SRS worker thread will wake us * up when the quiesce is complete */ mac_srs_signal(srs, srs_quiesce_flag); mac_srs_quiesce_wait(srs, srs_quiesce_flag == SRS_QUIESCE ? SRS_QUIESCE_DONE : SRS_CONDEMNED_DONE); } void mac_tx_srs_restart(mac_soft_ring_set_t *srs) { /* * Resizing the fanout could result in creation of new SRSs. * They may not necessarily be in the quiesced state in which * case it need be restarted */ if (!SRS_QUIESCED(srs)) return; mac_srs_signal(srs, SRS_RESTART); mac_srs_quiesce_wait(srs, SRS_RESTART_DONE); mac_srs_clear_flag(srs, SRS_RESTART_DONE); } /* * Temporary quiesce of a flow and associated Rx SRS. * Please see block comment above mac_rx_srs_quiesce */ /* ARGSUSED */ int mac_tx_flow_quiesce(flow_entry_t *flent, void *arg) { /* * The fe_tx_srs is null for a subflow on an interface that is * not plumbed */ if (flent->fe_tx_srs != NULL) mac_tx_srs_quiesce(flent->fe_tx_srs, SRS_QUIESCE); return (0); } /* ARGSUSED */ int mac_tx_flow_restart(flow_entry_t *flent, void *arg) { /* * The fe_tx_srs is null for a subflow on an interface that is * not plumbed */ if (flent->fe_tx_srs != NULL) mac_tx_srs_restart(flent->fe_tx_srs); return (0); } void mac_tx_client_quiesce(mac_client_impl_t *mcip, uint_t srs_quiesce_flag) { ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); mac_tx_client_block(mcip); if (MCIP_TX_SRS(mcip) != NULL) { mac_tx_srs_quiesce(MCIP_TX_SRS(mcip), srs_quiesce_flag); (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, mac_tx_flow_quiesce, NULL); } } void mac_tx_client_restart(mac_client_impl_t *mcip) { ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); mac_tx_client_unblock(mcip); if (MCIP_TX_SRS(mcip) != NULL) { mac_tx_srs_restart(MCIP_TX_SRS(mcip)); (void) mac_flow_walk_nolock(mcip->mci_subflow_tab, mac_tx_flow_restart, NULL); } } void mac_tx_client_flush(mac_client_impl_t *mcip) { ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); mac_tx_client_quiesce(mcip, SRS_QUIESCE); mac_tx_client_restart(mcip); } void mac_client_quiesce(mac_client_impl_t *mcip) { mac_rx_client_quiesce((mac_client_handle_t)mcip); mac_tx_client_quiesce(mcip, SRS_QUIESCE); } void mac_client_restart(mac_client_impl_t *mcip) { mac_rx_client_restart((mac_client_handle_t)mcip); mac_tx_client_restart(mcip); } /* * Allocate a minor number. */ minor_t mac_minor_hold(boolean_t sleep) { minor_t minor; /* * Grab a value from the arena. */ atomic_add_32(&minor_count, 1); if (sleep) minor = (uint_t)id_alloc(minor_ids); else minor = (uint_t)id_alloc_nosleep(minor_ids); if (minor == 0) { atomic_add_32(&minor_count, -1); return (0); } return (minor); } /* * Release a previously allocated minor number. */ void mac_minor_rele(minor_t minor) { /* * Return the value to the arena. */ id_free(minor_ids, minor); atomic_add_32(&minor_count, -1); } uint32_t mac_no_notification(mac_handle_t mh) { mac_impl_t *mip = (mac_impl_t *)mh; return (((mip->mi_state_flags & MIS_LEGACY) != 0) ? mip->mi_capab_legacy.ml_unsup_note : 0); } /* * Prevent any new opens of this mac in preparation for unregister */ int i_mac_disable(mac_impl_t *mip) { mac_client_impl_t *mcip; rw_enter(&i_mac_impl_lock, RW_WRITER); if (mip->mi_state_flags & MIS_DISABLED) { /* Already disabled, return success */ rw_exit(&i_mac_impl_lock); return (0); } /* * See if there are any other references to this mac_t (e.g., VLAN's). * If so return failure. If all the other checks below pass, then * set mi_disabled atomically under the i_mac_impl_lock to prevent * any new VLAN's from being created or new mac client opens of this * mac end point. */ if (mip->mi_ref > 0) { rw_exit(&i_mac_impl_lock); return (EBUSY); } /* * mac clients must delete all multicast groups they join before * closing. bcast groups are reference counted, the last client * to delete the group will wait till the group is physically * deleted. Since all clients have closed this mac end point * mi_bcast_ngrps must be zero at this point */ ASSERT(mip->mi_bcast_ngrps == 0); /* * Don't let go of this if it has some flows. * All other code guarantees no flows are added to a disabled * mac, therefore it is sufficient to check for the flow table * only here. */ mcip = mac_primary_client_handle(mip); if ((mcip != NULL) && mac_link_has_flows((mac_client_handle_t)mcip)) { rw_exit(&i_mac_impl_lock); return (ENOTEMPTY); } mip->mi_state_flags |= MIS_DISABLED; rw_exit(&i_mac_impl_lock); return (0); } int mac_disable_nowait(mac_handle_t mh) { mac_impl_t *mip = (mac_impl_t *)mh; int err; if ((err = i_mac_perim_enter_nowait(mip)) != 0) return (err); err = i_mac_disable(mip); i_mac_perim_exit(mip); return (err); } int mac_disable(mac_handle_t mh) { mac_impl_t *mip = (mac_impl_t *)mh; int err; i_mac_perim_enter(mip); err = i_mac_disable(mip); i_mac_perim_exit(mip); /* * Clean up notification thread and wait for it to exit. */ if (err == 0) i_mac_notify_exit(mip); return (err); } /* * Called when the MAC instance has a non empty flow table, to de-multiplex * incoming packets to the right flow. * The MAC's rw lock is assumed held as a READER. */ /* ARGSUSED */ static mblk_t * mac_rx_classify(mac_impl_t *mip, mac_resource_handle_t mrh, mblk_t *mp) { flow_entry_t *flent = NULL; uint_t flags = FLOW_INBOUND; int err; /* * If the mac is a port of an aggregation, pass FLOW_IGNORE_VLAN * to mac_flow_lookup() so that the VLAN packets can be successfully * passed to the non-VLAN aggregation flows. * * Note that there is possibly a race between this and * mac_unicast_remove/add() and VLAN packets could be incorrectly * classified to non-VLAN flows of non-aggregation mac clients. These * VLAN packets will be then filtered out by the mac module. */ if ((mip->mi_state_flags & MIS_EXCLUSIVE) != 0) flags |= FLOW_IGNORE_VLAN; err = mac_flow_lookup(mip->mi_flow_tab, mp, flags, &flent); if (err != 0) { /* no registered receive function */ return (mp); } else { mac_client_impl_t *mcip; /* * This flent might just be an additional one on the MAC client, * i.e. for classification purposes (different fdesc), however * the resources, SRS et. al., are in the mci_flent, so if * this isn't the mci_flent, we need to get it. */ if ((mcip = flent->fe_mcip) != NULL && mcip->mci_flent != flent) { FLOW_REFRELE(flent); flent = mcip->mci_flent; FLOW_TRY_REFHOLD(flent, err); if (err != 0) return (mp); } (flent->fe_cb_fn)(flent->fe_cb_arg1, flent->fe_cb_arg2, mp, B_FALSE); FLOW_REFRELE(flent); } return (NULL); } mblk_t * mac_rx_flow(mac_handle_t mh, mac_resource_handle_t mrh, mblk_t *mp_chain) { mac_impl_t *mip = (mac_impl_t *)mh; mblk_t *bp, *bp1, **bpp, *list = NULL; /* * We walk the chain and attempt to classify each packet. * The packets that couldn't be classified will be returned * back to the caller. */ bp = mp_chain; bpp = &list; while (bp != NULL) { bp1 = bp; bp = bp->b_next; bp1->b_next = NULL; if (mac_rx_classify(mip, mrh, bp1) != NULL) { *bpp = bp1; bpp = &bp1->b_next; } } return (list); } static int mac_tx_flow_srs_wakeup(flow_entry_t *flent, void *arg) { mac_ring_handle_t ring = arg; if (flent->fe_tx_srs) mac_tx_srs_wakeup(flent->fe_tx_srs, ring); return (0); } void i_mac_tx_srs_notify(mac_impl_t *mip, mac_ring_handle_t ring) { mac_client_impl_t *cclient; mac_soft_ring_set_t *mac_srs; /* * After grabbing the mi_rw_lock, the list of clients can't change. * If there are any clients mi_disabled must be B_FALSE and can't * get set since there are clients. If there aren't any clients we * don't do anything. In any case the mip has to be valid. The driver * must make sure that it goes single threaded (with respect to mac * calls) and wait for all pending mac calls to finish before calling * mac_unregister. */ rw_enter(&i_mac_impl_lock, RW_READER); if (mip->mi_state_flags & MIS_DISABLED) { rw_exit(&i_mac_impl_lock); return; } /* * Get MAC tx srs from walking mac_client_handle list. */ rw_enter(&mip->mi_rw_lock, RW_READER); for (cclient = mip->mi_clients_list; cclient != NULL; cclient = cclient->mci_client_next) { if ((mac_srs = MCIP_TX_SRS(cclient)) != NULL) mac_tx_srs_wakeup(mac_srs, ring); (void) mac_flow_walk(cclient->mci_subflow_tab, mac_tx_flow_srs_wakeup, ring); } rw_exit(&mip->mi_rw_lock); rw_exit(&i_mac_impl_lock); } /* ARGSUSED */ void mac_multicast_refresh(mac_handle_t mh, mac_multicst_t refresh, void *arg, boolean_t add) { mac_impl_t *mip = (mac_impl_t *)mh; i_mac_perim_enter((mac_impl_t *)mh); /* * If no specific refresh function was given then default to the * driver's m_multicst entry point. */ if (refresh == NULL) { refresh = mip->mi_multicst; arg = mip->mi_driver; } mac_bcast_refresh(mip, refresh, arg, add); i_mac_perim_exit((mac_impl_t *)mh); } void mac_promisc_refresh(mac_handle_t mh, mac_setpromisc_t refresh, void *arg) { mac_impl_t *mip = (mac_impl_t *)mh; /* * If no specific refresh function was given then default to the * driver's m_promisc entry point. */ if (refresh == NULL) { refresh = mip->mi_setpromisc; arg = mip->mi_driver; } ASSERT(refresh != NULL); /* * Call the refresh function with the current promiscuity. */ refresh(arg, (mip->mi_devpromisc != 0)); } /* * The mac client requests that the mac not to change its margin size to * be less than the specified value. If "current" is B_TRUE, then the client * requests the mac not to change its margin size to be smaller than the * current size. Further, return the current margin size value in this case. * * We keep every requested size in an ordered list from largest to smallest. */ int mac_margin_add(mac_handle_t mh, uint32_t *marginp, boolean_t current) { mac_impl_t *mip = (mac_impl_t *)mh; mac_margin_req_t **pp, *p; int err = 0; rw_enter(&(mip->mi_rw_lock), RW_WRITER); if (current) *marginp = mip->mi_margin; /* * If the current margin value cannot satisfy the margin requested, * return ENOTSUP directly. */ if (*marginp > mip->mi_margin) { err = ENOTSUP; goto done; } /* * Check whether the given margin is already in the list. If so, * bump the reference count. */ for (pp = &mip->mi_mmrp; (p = *pp) != NULL; pp = &p->mmr_nextp) { if (p->mmr_margin == *marginp) { /* * The margin requested is already in the list, * so just bump the reference count. */ p->mmr_ref++; goto done; } if (p->mmr_margin < *marginp) break; } p = kmem_zalloc(sizeof (mac_margin_req_t), KM_SLEEP); p->mmr_margin = *marginp; p->mmr_ref++; p->mmr_nextp = *pp; *pp = p; done: rw_exit(&(mip->mi_rw_lock)); return (err); } /* * The mac client requests to cancel its previous mac_margin_add() request. * We remove the requested margin size from the list. */ int mac_margin_remove(mac_handle_t mh, uint32_t margin) { mac_impl_t *mip = (mac_impl_t *)mh; mac_margin_req_t **pp, *p; int err = 0; rw_enter(&(mip->mi_rw_lock), RW_WRITER); /* * Find the entry in the list for the given margin. */ for (pp = &(mip->mi_mmrp); (p = *pp) != NULL; pp = &(p->mmr_nextp)) { if (p->mmr_margin == margin) { if (--p->mmr_ref == 0) break; /* * There is still a reference to this address so * there's nothing more to do. */ goto done; } } /* * We did not find an entry for the given margin. */ if (p == NULL) { err = ENOENT; goto done; } ASSERT(p->mmr_ref == 0); /* * Remove it from the list. */ *pp = p->mmr_nextp; kmem_free(p, sizeof (mac_margin_req_t)); done: rw_exit(&(mip->mi_rw_lock)); return (err); } boolean_t mac_margin_update(mac_handle_t mh, uint32_t margin) { mac_impl_t *mip = (mac_impl_t *)mh; uint32_t margin_needed = 0; rw_enter(&(mip->mi_rw_lock), RW_WRITER); if (mip->mi_mmrp != NULL) margin_needed = mip->mi_mmrp->mmr_margin; if (margin_needed <= margin) mip->mi_margin = margin; rw_exit(&(mip->mi_rw_lock)); if (margin_needed <= margin) i_mac_notify(mip, MAC_NOTE_MARGIN); return (margin_needed <= margin); } /* * MAC Type Plugin functions. */ mactype_t * mactype_getplugin(const char *pname) { mactype_t *mtype = NULL; boolean_t tried_modload = B_FALSE; mutex_enter(&i_mactype_lock); find_registered_mactype: if (mod_hash_find(i_mactype_hash, (mod_hash_key_t)pname, (mod_hash_val_t *)&mtype) != 0) { if (!tried_modload) { /* * If the plugin has not yet been loaded, then * attempt to load it now. If modload() succeeds, * the plugin should have registered using * mactype_register(), in which case we can go back * and attempt to find it again. */ if (modload(MACTYPE_KMODDIR, (char *)pname) != -1) { tried_modload = B_TRUE; goto find_registered_mactype; } } } else { /* * Note that there's no danger that the plugin we've loaded * could be unloaded between the modload() step and the * reference count bump here, as we're holding * i_mactype_lock, which mactype_unregister() also holds. */ atomic_inc_32(&mtype->mt_ref); } mutex_exit(&i_mactype_lock); return (mtype); } mactype_register_t * mactype_alloc(uint_t mactype_version) { mactype_register_t *mtrp; /* * Make sure there isn't a version mismatch between the plugin and * the framework. In the future, if multiple versions are * supported, this check could become more sophisticated. */ if (mactype_version != MACTYPE_VERSION) return (NULL); mtrp = kmem_zalloc(sizeof (mactype_register_t), KM_SLEEP); mtrp->mtr_version = mactype_version; return (mtrp); } void mactype_free(mactype_register_t *mtrp) { kmem_free(mtrp, sizeof (mactype_register_t)); } int mactype_register(mactype_register_t *mtrp) { mactype_t *mtp; mactype_ops_t *ops = mtrp->mtr_ops; /* Do some sanity checking before we register this MAC type. */ if (mtrp->mtr_ident == NULL || ops == NULL) return (EINVAL); /* * Verify that all mandatory callbacks are set in the ops * vector. */ if (ops->mtops_unicst_verify == NULL || ops->mtops_multicst_verify == NULL || ops->mtops_sap_verify == NULL || ops->mtops_header == NULL || ops->mtops_header_info == NULL) { return (EINVAL); } mtp = kmem_zalloc(sizeof (*mtp), KM_SLEEP); mtp->mt_ident = mtrp->mtr_ident; mtp->mt_ops = *ops; mtp->mt_type = mtrp->mtr_mactype; mtp->mt_nativetype = mtrp->mtr_nativetype; mtp->mt_addr_length = mtrp->mtr_addrlen; if (mtrp->mtr_brdcst_addr != NULL) { mtp->mt_brdcst_addr = kmem_alloc(mtrp->mtr_addrlen, KM_SLEEP); bcopy(mtrp->mtr_brdcst_addr, mtp->mt_brdcst_addr, mtrp->mtr_addrlen); } mtp->mt_stats = mtrp->mtr_stats; mtp->mt_statcount = mtrp->mtr_statcount; mtp->mt_mapping = mtrp->mtr_mapping; mtp->mt_mappingcount = mtrp->mtr_mappingcount; if (mod_hash_insert(i_mactype_hash, (mod_hash_key_t)mtp->mt_ident, (mod_hash_val_t)mtp) != 0) { kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); kmem_free(mtp, sizeof (*mtp)); return (EEXIST); } return (0); } int mactype_unregister(const char *ident) { mactype_t *mtp; mod_hash_val_t val; int err; /* * Let's not allow MAC drivers to use this plugin while we're * trying to unregister it. Holding i_mactype_lock also prevents a * plugin from unregistering while a MAC driver is attempting to * hold a reference to it in i_mactype_getplugin(). */ mutex_enter(&i_mactype_lock); if ((err = mod_hash_find(i_mactype_hash, (mod_hash_key_t)ident, (mod_hash_val_t *)&mtp)) != 0) { /* A plugin is trying to unregister, but it never registered. */ err = ENXIO; goto done; } if (mtp->mt_ref != 0) { err = EBUSY; goto done; } err = mod_hash_remove(i_mactype_hash, (mod_hash_key_t)ident, &val); ASSERT(err == 0); if (err != 0) { /* This should never happen, thus the ASSERT() above. */ err = EINVAL; goto done; } ASSERT(mtp == (mactype_t *)val); if (mtp->mt_brdcst_addr != NULL) kmem_free(mtp->mt_brdcst_addr, mtp->mt_addr_length); kmem_free(mtp, sizeof (mactype_t)); done: mutex_exit(&i_mactype_lock); return (err); } /* * mac_set_prop() sets mac or hardware driver properties: * MAC resource properties include maxbw, priority, and cpu binding list. * Driver properties are private properties to the hardware, such as mtu * and speed. There's one other MAC property -- the PVID. * If the property is a driver property, mac_set_prop() calls driver's callback * function to set it. * If the property is a mac resource property, mac_set_prop() invokes * mac_set_resources() which will cache the property value in mac_impl_t and * may call mac_client_set_resource() to update property value of the primary * mac client, if it exists. */ int mac_set_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize) { int err = ENOTSUP; mac_impl_t *mip = (mac_impl_t *)mh; ASSERT(MAC_PERIM_HELD(mh)); switch (macprop->mp_id) { case MAC_PROP_MAXBW: case MAC_PROP_PRIO: case MAC_PROP_BIND_CPU: { mac_resource_props_t mrp; /* If it is mac property, call mac_set_resources() */ if (valsize < sizeof (mac_resource_props_t)) return (EINVAL); bcopy(val, &mrp, sizeof (mrp)); err = mac_set_resources(mh, &mrp); break; } case MAC_PROP_PVID: if (valsize < sizeof (uint16_t) || (mip->mi_state_flags & MIS_IS_VNIC)) return (EINVAL); err = mac_set_pvid(mh, *(uint16_t *)val); break; case MAC_PROP_MTU: { uint32_t mtu; if (valsize < sizeof (mtu)) return (EINVAL); bcopy(val, &mtu, sizeof (mtu)); err = mac_set_mtu(mh, mtu, NULL); break; } case MAC_PROP_LLIMIT: case MAC_PROP_LDECAY: { uint32_t learnval; if (valsize < sizeof (learnval) || (mip->mi_state_flags & MIS_IS_VNIC)) return (EINVAL); bcopy(val, &learnval, sizeof (learnval)); if (learnval == 0 && macprop->mp_id == MAC_PROP_LDECAY) return (EINVAL); if (macprop->mp_id == MAC_PROP_LLIMIT) mip->mi_llimit = learnval; else mip->mi_ldecay = learnval; err = 0; break; } default: /* For other driver properties, call driver's callback */ if (mip->mi_callbacks->mc_callbacks & MC_SETPROP) { err = mip->mi_callbacks->mc_setprop(mip->mi_driver, macprop->mp_name, macprop->mp_id, valsize, val); } } return (err); } /* * mac_get_prop() gets mac or hardware driver properties. * * If the property is a driver property, mac_get_prop() calls driver's callback * function to get it. * If the property is a mac property, mac_get_prop() invokes mac_get_resources() * which returns the cached value in mac_impl_t. */ int mac_get_prop(mac_handle_t mh, mac_prop_t *macprop, void *val, uint_t valsize, uint_t *perm) { int err = ENOTSUP; mac_impl_t *mip = (mac_impl_t *)mh; link_state_t link_state; boolean_t is_getprop, is_setprop; is_getprop = (mip->mi_callbacks->mc_callbacks & MC_GETPROP); is_setprop = (mip->mi_callbacks->mc_callbacks & MC_SETPROP); switch (macprop->mp_id) { case MAC_PROP_MAXBW: case MAC_PROP_PRIO: case MAC_PROP_BIND_CPU: { mac_resource_props_t mrp; /* If mac property, read from cache */ if (valsize < sizeof (mac_resource_props_t)) return (EINVAL); mac_get_resources(mh, &mrp); bcopy(&mrp, val, sizeof (mac_resource_props_t)); return (0); } case MAC_PROP_PVID: if (valsize < sizeof (uint16_t) || (mip->mi_state_flags & MIS_IS_VNIC)) return (EINVAL); *(uint16_t *)val = mac_get_pvid(mh); return (0); case MAC_PROP_LLIMIT: case MAC_PROP_LDECAY: if (valsize < sizeof (uint32_t) || (mip->mi_state_flags & MIS_IS_VNIC)) return (EINVAL); if (macprop->mp_id == MAC_PROP_LLIMIT) bcopy(&mip->mi_llimit, val, sizeof (mip->mi_llimit)); else bcopy(&mip->mi_ldecay, val, sizeof (mip->mi_ldecay)); return (0); case MAC_PROP_MTU: { uint32_t sdu; mac_propval_range_t range; if ((macprop->mp_flags & MAC_PROP_POSSIBLE) != 0) { if (valsize < sizeof (mac_propval_range_t)) return (EINVAL); if (is_getprop) { err = mip->mi_callbacks->mc_getprop(mip-> mi_driver, macprop->mp_name, macprop->mp_id, macprop->mp_flags, valsize, val, perm); } /* * If the driver doesn't have *_m_getprop defined or * if the driver doesn't support setting MTU then * return the CURRENT value as POSSIBLE value. */ if (!is_getprop || err == ENOTSUP) { mac_sdu_get(mh, NULL, &sdu); range.mpr_count = 1; range.mpr_type = MAC_PROPVAL_UINT32; range.range_uint32[0].mpur_min = range.range_uint32[0].mpur_max = sdu; bcopy(&range, val, sizeof (range)); err = 0; } return (err); } if (valsize < sizeof (sdu)) return (EINVAL); if ((macprop->mp_flags & MAC_PROP_DEFAULT) == 0) { mac_sdu_get(mh, NULL, &sdu); bcopy(&sdu, val, sizeof (sdu)); if (is_setprop && (mip->mi_callbacks->mc_setprop(mip-> mi_driver, macprop->mp_name, macprop->mp_id, valsize, val) == 0)) { *perm = MAC_PROP_PERM_RW; } else { *perm = MAC_PROP_PERM_READ; } return (0); } else { if (mip->mi_info.mi_media == DL_ETHER) { sdu = ETHERMTU; bcopy(&sdu, val, sizeof (sdu)); return (0); } /* * ask driver for its default. */ break; } } case MAC_PROP_STATUS: if (valsize < sizeof (link_state)) return (EINVAL); *perm = MAC_PROP_PERM_READ; link_state = mac_link_get(mh); bcopy(&link_state, val, sizeof (link_state)); return (0); default: break; } /* If driver property, request from driver */ if (is_getprop) { err = mip->mi_callbacks->mc_getprop(mip->mi_driver, macprop->mp_name, macprop->mp_id, macprop->mp_flags, valsize, val, perm); } return (err); } int mac_fastpath_disable(mac_handle_t mh) { mac_impl_t *mip = (mac_impl_t *)mh; if ((mip->mi_state_flags & MIS_LEGACY) == 0) return (0); return (mip->mi_capab_legacy.ml_fastpath_disable(mip->mi_driver)); } void mac_fastpath_enable(mac_handle_t mh) { mac_impl_t *mip = (mac_impl_t *)mh; if ((mip->mi_state_flags & MIS_LEGACY) == 0) return; mip->mi_capab_legacy.ml_fastpath_enable(mip->mi_driver); } void mac_register_priv_prop(mac_impl_t *mip, mac_priv_prop_t *mpp, uint_t nprop) { mac_priv_prop_t *mpriv; if (mpp == NULL) return; mpriv = kmem_zalloc(nprop * sizeof (*mpriv), KM_SLEEP); (void) memcpy(mpriv, mpp, nprop * sizeof (*mpriv)); mip->mi_priv_prop = mpriv; mip->mi_priv_prop_count = nprop; } void mac_unregister_priv_prop(mac_impl_t *mip) { mac_priv_prop_t *mpriv; mpriv = mip->mi_priv_prop; if (mpriv != NULL) { kmem_free(mpriv, mip->mi_priv_prop_count * sizeof (*mpriv)); mip->mi_priv_prop = NULL; } mip->mi_priv_prop_count = 0; } /* * mac_ring_t 'mr' macros. Some rogue drivers may access ring structure * (by invoking mac_rx()) even after processing mac_stop_ring(). In such * cases if MAC free's the ring structure after mac_stop_ring(), any * illegal access to the ring structure coming from the driver will panic * the system. In order to protect the system from such inadverent access, * we maintain a cache of rings in the mac_impl_t after they get free'd up. * When packets are received on free'd up rings, MAC (through the generation * count mechanism) will drop such packets. */ static mac_ring_t * mac_ring_alloc(mac_impl_t *mip, mac_capab_rings_t *cap_rings) { mac_ring_t *ring; if (cap_rings->mr_type == MAC_RING_TYPE_RX) { mutex_enter(&mip->mi_ring_lock); if (mip->mi_ring_freelist != NULL) { ring = mip->mi_ring_freelist; mip->mi_ring_freelist = ring->mr_next; bzero(ring, sizeof (mac_ring_t)); } else { ring = kmem_cache_alloc(mac_ring_cache, KM_SLEEP); } mutex_exit(&mip->mi_ring_lock); } else { ring = kmem_zalloc(sizeof (mac_ring_t), KM_SLEEP); } ASSERT((ring != NULL) && (ring->mr_state == MR_FREE)); return (ring); } static void mac_ring_free(mac_impl_t *mip, mac_ring_t *ring) { if (ring->mr_type == MAC_RING_TYPE_RX) { mutex_enter(&mip->mi_ring_lock); ring->mr_state = MR_FREE; ring->mr_flag = 0; ring->mr_next = mip->mi_ring_freelist; mip->mi_ring_freelist = ring; mutex_exit(&mip->mi_ring_lock); } else { kmem_free(ring, sizeof (mac_ring_t)); } } static void mac_ring_freeall(mac_impl_t *mip) { mac_ring_t *ring_next; mutex_enter(&mip->mi_ring_lock); mac_ring_t *ring = mip->mi_ring_freelist; while (ring != NULL) { ring_next = ring->mr_next; kmem_cache_free(mac_ring_cache, ring); ring = ring_next; } mip->mi_ring_freelist = NULL; mutex_exit(&mip->mi_ring_lock); } int mac_start_ring(mac_ring_t *ring) { int rv = 0; if (ring->mr_start != NULL) rv = ring->mr_start(ring->mr_driver, ring->mr_gen_num); return (rv); } void mac_stop_ring(mac_ring_t *ring) { if (ring->mr_stop != NULL) ring->mr_stop(ring->mr_driver); /* * Increment the ring generation number for this ring. */ ring->mr_gen_num++; } int mac_start_group(mac_group_t *group) { int rv = 0; if (group->mrg_start != NULL) rv = group->mrg_start(group->mrg_driver); return (rv); } void mac_stop_group(mac_group_t *group) { if (group->mrg_stop != NULL) group->mrg_stop(group->mrg_driver); } /* * Called from mac_start() on the default Rx group. Broadcast and multicast * packets are received only on the default group. Hence the default group * needs to be up even if the primary client is not up, for the other groups * to be functional. We do this by calling this function at mac_start time * itself. However the broadcast packets that are received can't make their * way beyond mac_rx until a mac client creates a broadcast flow. */ static int mac_start_group_and_rings(mac_group_t *group) { mac_ring_t *ring; int rv = 0; ASSERT(group->mrg_state == MAC_GROUP_STATE_REGISTERED); if ((rv = mac_start_group(group)) != 0) return (rv); for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { ASSERT(ring->mr_state == MR_FREE); if ((rv = mac_start_ring(ring)) != 0) goto error; ring->mr_state = MR_INUSE; ring->mr_classify_type = MAC_SW_CLASSIFIER; } return (0); error: mac_stop_group_and_rings(group); return (rv); } /* Called from mac_stop on the default Rx group */ static void mac_stop_group_and_rings(mac_group_t *group) { mac_ring_t *ring; for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { if (ring->mr_state != MR_FREE) { mac_stop_ring(ring); ring->mr_state = MR_FREE; ring->mr_flag = 0; ring->mr_classify_type = MAC_NO_CLASSIFIER; } } mac_stop_group(group); } static mac_ring_t * mac_init_ring(mac_impl_t *mip, mac_group_t *group, int index, mac_capab_rings_t *cap_rings) { mac_ring_t *ring; mac_ring_info_t ring_info; ring = mac_ring_alloc(mip, cap_rings); /* Prepare basic information of ring */ ring->mr_index = index; ring->mr_type = group->mrg_type; ring->mr_gh = (mac_group_handle_t)group; /* Insert the new ring to the list. */ ring->mr_next = group->mrg_rings; group->mrg_rings = ring; /* Zero to reuse the info data structure */ bzero(&ring_info, sizeof (ring_info)); /* Query ring information from driver */ cap_rings->mr_rget(mip->mi_driver, group->mrg_type, group->mrg_index, index, &ring_info, (mac_ring_handle_t)ring); ring->mr_info = ring_info; /* Update ring's status */ ring->mr_state = MR_FREE; ring->mr_flag = 0; /* Update the ring count of the group */ group->mrg_cur_count++; return (ring); } /* * Rings are chained together for easy regrouping. */ static void mac_init_group(mac_impl_t *mip, mac_group_t *group, int size, mac_capab_rings_t *cap_rings) { int index; /* * Initialize all ring members of this group. Size of zero will not * enter the loop, so it's safe for initializing an empty group. */ for (index = size - 1; index >= 0; index--) (void) mac_init_ring(mip, group, index, cap_rings); } int mac_init_rings(mac_impl_t *mip, mac_ring_type_t rtype) { mac_capab_rings_t *cap_rings; mac_group_t *group, *groups; mac_group_info_t group_info; uint_t group_free = 0; uint_t ring_left; mac_ring_t *ring; int g, err = 0; switch (rtype) { case MAC_RING_TYPE_RX: ASSERT(mip->mi_rx_groups == NULL); cap_rings = &mip->mi_rx_rings_cap; cap_rings->mr_type = MAC_RING_TYPE_RX; break; case MAC_RING_TYPE_TX: ASSERT(mip->mi_tx_groups == NULL); cap_rings = &mip->mi_tx_rings_cap; cap_rings->mr_type = MAC_RING_TYPE_TX; break; default: ASSERT(B_FALSE); } if (!i_mac_capab_get((mac_handle_t)mip, MAC_CAPAB_RINGS, cap_rings)) return (0); /* * Allocate a contiguous buffer for all groups. */ groups = kmem_zalloc(sizeof (mac_group_t) * (cap_rings->mr_gnum + 1), KM_SLEEP); ring_left = cap_rings->mr_rnum; /* * Get all ring groups if any, and get their ring members * if any. */ for (g = 0; g < cap_rings->mr_gnum; g++) { group = groups + g; /* Prepare basic information of the group */ group->mrg_index = g; group->mrg_type = rtype; group->mrg_state = MAC_GROUP_STATE_UNINIT; group->mrg_mh = (mac_handle_t)mip; group->mrg_next = group + 1; /* Zero to reuse the info data structure */ bzero(&group_info, sizeof (group_info)); /* Query group information from driver */ cap_rings->mr_gget(mip->mi_driver, rtype, g, &group_info, (mac_group_handle_t)group); switch (cap_rings->mr_group_type) { case MAC_GROUP_TYPE_DYNAMIC: if (cap_rings->mr_gaddring == NULL || cap_rings->mr_gremring == NULL) { DTRACE_PROBE3( mac__init__rings_no_addremring, char *, mip->mi_name, mac_group_add_ring_t, cap_rings->mr_gaddring, mac_group_add_ring_t, cap_rings->mr_gremring); err = EINVAL; goto bail; } switch (rtype) { case MAC_RING_TYPE_RX: /* * The first RX group must have non-zero * rings, and the following groups must * have zero rings. */ if (g == 0 && group_info.mgi_count == 0) { DTRACE_PROBE1( mac__init__rings__rx__def__zero, char *, mip->mi_name); err = EINVAL; goto bail; } if (g > 0 && group_info.mgi_count != 0) { DTRACE_PROBE3( mac__init__rings__rx__nonzero, char *, mip->mi_name, int, g, int, group_info.mgi_count); err = EINVAL; goto bail; } break; case MAC_RING_TYPE_TX: /* * All TX ring groups must have zero rings. */ if (group_info.mgi_count != 0) { DTRACE_PROBE3( mac__init__rings__tx__nonzero, char *, mip->mi_name, int, g, int, group_info.mgi_count); err = EINVAL; goto bail; } break; } break; case MAC_GROUP_TYPE_STATIC: /* * Note that an empty group is allowed, e.g., an aggr * would start with an empty group. */ break; default: /* unknown group type */ DTRACE_PROBE2(mac__init__rings__unknown__type, char *, mip->mi_name, int, cap_rings->mr_group_type); err = EINVAL; goto bail; } /* * Driver must register group->mgi_addmac/remmac() for rx groups * to support multiple MAC addresses. */ if (rtype == MAC_RING_TYPE_RX) { if ((group_info.mgi_addmac == NULL) || (group_info.mgi_addmac == NULL)) goto bail; } /* Cache driver-supplied information */ group->mrg_info = group_info; /* Update the group's status and group count. */ mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED); group_free++; group->mrg_rings = NULL; group->mrg_cur_count = 0; mac_init_group(mip, group, group_info.mgi_count, cap_rings); ring_left -= group_info.mgi_count; /* The current group size should be equal to default value */ ASSERT(group->mrg_cur_count == group_info.mgi_count); } /* Build up a dummy group for free resources as a pool */ group = groups + cap_rings->mr_gnum; /* Prepare basic information of the group */ group->mrg_index = -1; group->mrg_type = rtype; group->mrg_state = MAC_GROUP_STATE_UNINIT; group->mrg_mh = (mac_handle_t)mip; group->mrg_next = NULL; /* * If there are ungrouped rings, allocate a continuous buffer for * remaining resources. */ if (ring_left != 0) { group->mrg_rings = NULL; group->mrg_cur_count = 0; mac_init_group(mip, group, ring_left, cap_rings); /* The current group size should be equal to ring_left */ ASSERT(group->mrg_cur_count == ring_left); ring_left = 0; /* Update this group's status */ mac_set_rx_group_state(group, MAC_GROUP_STATE_REGISTERED); } else group->mrg_rings = NULL; ASSERT(ring_left == 0); bail: /* Cache other important information to finalize the initialization */ switch (rtype) { case MAC_RING_TYPE_RX: mip->mi_rx_group_type = cap_rings->mr_group_type; mip->mi_rx_group_count = cap_rings->mr_gnum; mip->mi_rx_groups = groups; break; case MAC_RING_TYPE_TX: mip->mi_tx_group_type = cap_rings->mr_group_type; mip->mi_tx_group_count = cap_rings->mr_gnum; mip->mi_tx_group_free = group_free; mip->mi_tx_groups = groups; /* * Ring 0 is used as the default one and it could be assigned * to a client as well. */ group = groups + cap_rings->mr_gnum; ring = group->mrg_rings; while ((ring->mr_index != 0) && (ring->mr_next != NULL)) ring = ring->mr_next; ASSERT(ring->mr_index == 0); mip->mi_default_tx_ring = (mac_ring_handle_t)ring; break; default: ASSERT(B_FALSE); } if (err != 0) mac_free_rings(mip, rtype); return (err); } /* * Called to free all ring groups with particular type. It's supposed all groups * have been released by clinet. */ void mac_free_rings(mac_impl_t *mip, mac_ring_type_t rtype) { mac_group_t *group, *groups; uint_t group_count; switch (rtype) { case MAC_RING_TYPE_RX: if (mip->mi_rx_groups == NULL) return; groups = mip->mi_rx_groups; group_count = mip->mi_rx_group_count; mip->mi_rx_groups = NULL; mip->mi_rx_group_count = 0; break; case MAC_RING_TYPE_TX: ASSERT(mip->mi_tx_group_count == mip->mi_tx_group_free); if (mip->mi_tx_groups == NULL) return; groups = mip->mi_tx_groups; group_count = mip->mi_tx_group_count; mip->mi_tx_groups = NULL; mip->mi_tx_group_count = 0; mip->mi_tx_group_free = 0; mip->mi_default_tx_ring = NULL; break; default: ASSERT(B_FALSE); } for (group = groups; group != NULL; group = group->mrg_next) { mac_ring_t *ring; if (group->mrg_cur_count == 0) continue; ASSERT(group->mrg_rings != NULL); while ((ring = group->mrg_rings) != NULL) { group->mrg_rings = ring->mr_next; mac_ring_free(mip, ring); } } /* Free all the cached rings */ mac_ring_freeall(mip); /* Free the block of group data strutures */ kmem_free(groups, sizeof (mac_group_t) * (group_count + 1)); } /* * Associate a MAC address with a receive group. * * The return value of this function should always be checked properly, because * any type of failure could cause unexpected results. A group can be added * or removed with a MAC address only after it has been reserved. Ideally, * a successful reservation always leads to calling mac_group_addmac() to * steer desired traffic. Failure of adding an unicast MAC address doesn't * always imply that the group is functioning abnormally. * * Currently this function is called everywhere, and it reflects assumptions * about MAC addresses in the implementation. CR 6735196. */ int mac_group_addmac(mac_group_t *group, const uint8_t *addr) { ASSERT(group->mrg_type == MAC_RING_TYPE_RX); ASSERT(group->mrg_info.mgi_addmac != NULL); return (group->mrg_info.mgi_addmac(group->mrg_info.mgi_driver, addr)); } /* * Remove the association between MAC address and receive group. */ int mac_group_remmac(mac_group_t *group, const uint8_t *addr) { ASSERT(group->mrg_type == MAC_RING_TYPE_RX); ASSERT(group->mrg_info.mgi_remmac != NULL); return (group->mrg_info.mgi_remmac(group->mrg_info.mgi_driver, addr)); } /* * Release a ring in use by marking it MR_FREE. * Any other client may reserve it for its use. */ void mac_release_tx_ring(mac_ring_handle_t rh) { mac_ring_t *ring = (mac_ring_t *)rh; mac_group_t *group = (mac_group_t *)ring->mr_gh; mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); ASSERT(ring->mr_state != MR_FREE); /* * Default tx ring will be released by mac_stop(). */ if (rh == mip->mi_default_tx_ring) return; mac_stop_ring(ring); ring->mr_state = MR_FREE; ring->mr_flag = 0; } /* * This is the entry point for packets transmitted through the bridging code. * If no bridge is in place, MAC_RING_TX transmits using tx ring. The 'rh' * pointer may be NULL to select the default ring. */ mblk_t * mac_bridge_tx(mac_impl_t *mip, mac_ring_handle_t rh, mblk_t *mp) { mac_handle_t mh; /* * Once we take a reference on the bridge link, the bridge * module itself can't unload, so the callback pointers are * stable. */ mutex_enter(&mip->mi_bridge_lock); if ((mh = mip->mi_bridge_link) != NULL) mac_bridge_ref_cb(mh, B_TRUE); mutex_exit(&mip->mi_bridge_lock); if (mh == NULL) { MAC_RING_TX(mip, rh, mp, mp); } else { mp = mac_bridge_tx_cb(mh, rh, mp); mac_bridge_ref_cb(mh, B_FALSE); } return (mp); } /* * Find a ring from its index. */ mac_ring_t * mac_find_ring(mac_group_t *group, int index) { mac_ring_t *ring = group->mrg_rings; for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) if (ring->mr_index == index) break; return (ring); } /* * Add a ring to an existing group. * * The ring must be either passed directly (for example if the ring * movement is initiated by the framework), or specified through a driver * index (for example when the ring is added by the driver. * * The caller needs to call mac_perim_enter() before calling this function. */ int i_mac_group_add_ring(mac_group_t *group, mac_ring_t *ring, int index) { mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; mac_capab_rings_t *cap_rings; boolean_t driver_call = (ring == NULL); mac_group_type_t group_type; int ret = 0; ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); switch (group->mrg_type) { case MAC_RING_TYPE_RX: cap_rings = &mip->mi_rx_rings_cap; group_type = mip->mi_rx_group_type; break; case MAC_RING_TYPE_TX: cap_rings = &mip->mi_tx_rings_cap; group_type = mip->mi_tx_group_type; break; default: ASSERT(B_FALSE); } /* * There should be no ring with the same ring index in the target * group. */ ASSERT(mac_find_ring(group, driver_call ? index : ring->mr_index) == NULL); if (driver_call) { /* * The function is called as a result of a request from * a driver to add a ring to an existing group, for example * from the aggregation driver. Allocate a new mac_ring_t * for that ring. */ ring = mac_init_ring(mip, group, index, cap_rings); ASSERT(group->mrg_state > MAC_GROUP_STATE_UNINIT); } else { /* * The function is called as a result of a MAC layer request * to add a ring to an existing group. In this case the * ring is being moved between groups, which requires * the underlying driver to support dynamic grouping, * and the mac_ring_t already exists. */ ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); ASSERT(cap_rings->mr_gaddring != NULL); ASSERT(ring->mr_gh == NULL); } /* * At this point the ring should not be in use, and it should be * of the right for the target group. */ ASSERT(ring->mr_state < MR_INUSE); ASSERT(ring->mr_srs == NULL); ASSERT(ring->mr_type == group->mrg_type); if (!driver_call) { /* * Add the driver level hardware ring if the process was not * initiated by the driver, and the target group is not the * group. */ if (group->mrg_driver != NULL) { cap_rings->mr_gaddring(group->mrg_driver, ring->mr_driver, ring->mr_type); } /* * Insert the ring ahead existing rings. */ ring->mr_next = group->mrg_rings; group->mrg_rings = ring; ring->mr_gh = (mac_group_handle_t)group; group->mrg_cur_count++; } /* * If the group has not been actively used, we're done. */ if (group->mrg_index != -1 && group->mrg_state < MAC_GROUP_STATE_RESERVED) return (0); /* * Set up SRS/SR according to the ring type. */ switch (ring->mr_type) { case MAC_RING_TYPE_RX: /* * Setup SRS on top of the new ring if the group is * reserved for someones exclusive use. */ if (group->mrg_state == MAC_GROUP_STATE_RESERVED) { flow_entry_t *flent; mac_client_impl_t *mcip; mcip = MAC_RX_GROUP_ONLY_CLIENT(group); ASSERT(mcip != NULL); flent = mcip->mci_flent; ASSERT(flent->fe_rx_srs_cnt > 0); mac_srs_group_setup(mcip, flent, group, SRST_LINK); } break; case MAC_RING_TYPE_TX: /* * For TX this function is only invoked during the * initial creation of a group when a share is * associated with a MAC client. So the datapath is not * yet setup, and will be setup later after the * group has been reserved and populated. */ break; default: ASSERT(B_FALSE); } /* * Start the ring if needed. Failure causes to undo the grouping action. */ if ((ret = mac_start_ring(ring)) != 0) { if (ring->mr_type == MAC_RING_TYPE_RX) { if (ring->mr_srs != NULL) { mac_rx_srs_remove(ring->mr_srs); ring->mr_srs = NULL; } } if (!driver_call) { cap_rings->mr_gremring(group->mrg_driver, ring->mr_driver, ring->mr_type); } group->mrg_cur_count--; group->mrg_rings = ring->mr_next; ring->mr_gh = NULL; if (driver_call) mac_ring_free(mip, ring); return (ret); } /* * Update the ring's state. */ ring->mr_state = MR_INUSE; MAC_RING_UNMARK(ring, MR_INCIPIENT); return (0); } /* * Remove a ring from it's current group. MAC internal function for dynamic * grouping. * * The caller needs to call mac_perim_enter() before calling this function. */ void i_mac_group_rem_ring(mac_group_t *group, mac_ring_t *ring, boolean_t driver_call) { mac_impl_t *mip = (mac_impl_t *)group->mrg_mh; mac_capab_rings_t *cap_rings = NULL; mac_group_type_t group_type; ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); ASSERT(mac_find_ring(group, ring->mr_index) == ring); ASSERT((mac_group_t *)ring->mr_gh == group); ASSERT(ring->mr_type == group->mrg_type); switch (ring->mr_type) { case MAC_RING_TYPE_RX: group_type = mip->mi_rx_group_type; cap_rings = &mip->mi_rx_rings_cap; if (group->mrg_state >= MAC_GROUP_STATE_RESERVED) mac_stop_ring(ring); /* * Only hardware classified packets hold a reference to the * ring all the way up the Rx path. mac_rx_srs_remove() * will take care of quiescing the Rx path and removing the * SRS. The software classified path neither holds a reference * nor any association with the ring in mac_rx. */ if (ring->mr_srs != NULL) { mac_rx_srs_remove(ring->mr_srs); ring->mr_srs = NULL; } ring->mr_state = MR_FREE; ring->mr_flag = 0; break; case MAC_RING_TYPE_TX: /* * For TX this function is only invoked in two * cases: * * 1) In the case of a failure during the * initial creation of a group when a share is * associated with a MAC client. So the SRS is not * yet setup, and will be setup later after the * group has been reserved and populated. * * 2) From mac_release_tx_group() when freeing * a TX SRS. * * In both cases the SRS and its soft rings are * already quiesced. */ ASSERT(!driver_call); group_type = mip->mi_tx_group_type; cap_rings = &mip->mi_tx_rings_cap; break; default: ASSERT(B_FALSE); } /* * Remove the ring from the group. */ if (ring == group->mrg_rings) group->mrg_rings = ring->mr_next; else { mac_ring_t *pre; pre = group->mrg_rings; while (pre->mr_next != ring) pre = pre->mr_next; pre->mr_next = ring->mr_next; } group->mrg_cur_count--; if (!driver_call) { ASSERT(group_type == MAC_GROUP_TYPE_DYNAMIC); ASSERT(cap_rings->mr_gremring != NULL); /* * Remove the driver level hardware ring. */ if (group->mrg_driver != NULL) { cap_rings->mr_gremring(group->mrg_driver, ring->mr_driver, ring->mr_type); } } ring->mr_gh = NULL; if (driver_call) { mac_ring_free(mip, ring); } else { ring->mr_state = MR_FREE; ring->mr_flag = 0; } } /* * Move a ring to the target group. If needed, remove the ring from the group * that it currently belongs to. * * The caller need to enter MAC's perimeter by calling mac_perim_enter(). */ static int mac_group_mov_ring(mac_impl_t *mip, mac_group_t *d_group, mac_ring_t *ring) { mac_group_t *s_group = (mac_group_t *)ring->mr_gh; int rv; ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); ASSERT(d_group != NULL); ASSERT(s_group->mrg_mh == d_group->mrg_mh); if (s_group == d_group) return (0); /* * Remove it from current group first. */ if (s_group != NULL) i_mac_group_rem_ring(s_group, ring, B_FALSE); /* * Add it to the new group. */ rv = i_mac_group_add_ring(d_group, ring, 0); if (rv != 0) { /* * Failed to add ring back to source group. If * that fails, the ring is stuck in limbo, log message. */ if (i_mac_group_add_ring(s_group, ring, 0)) { cmn_err(CE_WARN, "%s: failed to move ring %p\n", mip->mi_name, (void *)ring); } } return (rv); } /* * Find a MAC address according to its value. */ mac_address_t * mac_find_macaddr(mac_impl_t *mip, uint8_t *mac_addr) { mac_address_t *map; ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); for (map = mip->mi_addresses; map != NULL; map = map->ma_next) { if (bcmp(mac_addr, map->ma_addr, map->ma_len) == 0) break; } return (map); } /* * Check whether the MAC address is shared by multiple clients. */ boolean_t mac_check_macaddr_shared(mac_address_t *map) { ASSERT(MAC_PERIM_HELD((mac_handle_t)map->ma_mip)); return (map->ma_nusers > 1); } /* * Remove the specified MAC address from the MAC address list and free it. */ static void mac_free_macaddr(mac_address_t *map) { mac_impl_t *mip = map->ma_mip; ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); ASSERT(mip->mi_addresses != NULL); map = mac_find_macaddr(mip, map->ma_addr); ASSERT(map != NULL); ASSERT(map->ma_nusers == 0); if (map == mip->mi_addresses) { mip->mi_addresses = map->ma_next; } else { mac_address_t *pre; pre = mip->mi_addresses; while (pre->ma_next != map) pre = pre->ma_next; pre->ma_next = map->ma_next; } kmem_free(map, sizeof (mac_address_t)); } /* * Add a MAC address reference for a client. If the desired MAC address * exists, add a reference to it. Otherwise, add the new address by adding * it to a reserved group or setting promiscuous mode. Won't try different * group is the group is non-NULL, so the caller must explictly share * default group when needed. * * Note, the primary MAC address is initialized at registration time, so * to add it to default group only need to activate it if its reference * count is still zero. Also, some drivers may not have advertised RINGS * capability. */ int mac_add_macaddr(mac_impl_t *mip, mac_group_t *group, uint8_t *mac_addr, boolean_t use_hw) { mac_address_t *map; int err = 0; boolean_t allocated_map = B_FALSE; ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); map = mac_find_macaddr(mip, mac_addr); /* * If the new MAC address has not been added. Allocate a new one * and set it up. */ if (map == NULL) { map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); map->ma_len = mip->mi_type->mt_addr_length; bcopy(mac_addr, map->ma_addr, map->ma_len); map->ma_nusers = 0; map->ma_group = group; map->ma_mip = mip; /* add the new MAC address to the head of the address list */ map->ma_next = mip->mi_addresses; mip->mi_addresses = map; allocated_map = B_TRUE; } ASSERT(map->ma_group == group); /* * If the MAC address is already in use, simply account for the * new client. */ if (map->ma_nusers++ > 0) return (0); /* * Activate this MAC address by adding it to the reserved group. */ if (group != NULL) { err = mac_group_addmac(group, (const uint8_t *)mac_addr); if (err == 0) { map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; return (0); } } /* * The MAC address addition failed. If the client requires a * hardware classified MAC address, fail the operation. */ if (use_hw) { err = ENOSPC; goto bail; } /* * Try promiscuous mode. * * For drivers that don't advertise RINGS capability, do * nothing for the primary address. */ if ((group == NULL) && (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) == 0)) { map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; return (0); } /* * Enable promiscuous mode in order to receive traffic * to the new MAC address. */ if ((err = i_mac_promisc_set(mip, B_TRUE)) == 0) { map->ma_type = MAC_ADDRESS_TYPE_UNICAST_PROMISC; return (0); } /* * Free the MAC address that could not be added. Don't free * a pre-existing address, it could have been the entry * for the primary MAC address which was pre-allocated by * mac_init_macaddr(), and which must remain on the list. */ bail: map->ma_nusers--; if (allocated_map) mac_free_macaddr(map); return (err); } /* * Remove a reference to a MAC address. This may cause to remove the MAC * address from an associated group or to turn off promiscuous mode. * The caller needs to handle the failure properly. */ int mac_remove_macaddr(mac_address_t *map) { mac_impl_t *mip = map->ma_mip; int err = 0; ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); ASSERT(map == mac_find_macaddr(mip, map->ma_addr)); /* * If it's not the last client using this MAC address, only update * the MAC clients count. */ if (--map->ma_nusers > 0) return (0); /* * The MAC address is no longer used by any MAC client, so remove * it from its associated group, or turn off promiscuous mode * if it was enabled for the MAC address. */ switch (map->ma_type) { case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: /* * Don't free the preset primary address for drivers that * don't advertise RINGS capability. */ if (map->ma_group == NULL) return (0); err = mac_group_remmac(map->ma_group, map->ma_addr); break; case MAC_ADDRESS_TYPE_UNICAST_PROMISC: err = i_mac_promisc_set(mip, B_FALSE); break; default: ASSERT(B_FALSE); } if (err != 0) return (err); /* * We created MAC address for the primary one at registration, so we * won't free it here. mac_fini_macaddr() will take care of it. */ if (bcmp(map->ma_addr, mip->mi_addr, map->ma_len) != 0) mac_free_macaddr(map); return (0); } /* * Update an existing MAC address. The caller need to make sure that the new * value has not been used. */ int mac_update_macaddr(mac_address_t *map, uint8_t *mac_addr) { mac_impl_t *mip = map->ma_mip; int err = 0; ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); switch (map->ma_type) { case MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED: /* * Update the primary address for drivers that are not * RINGS capable. */ if (map->ma_group == NULL) { err = mip->mi_unicst(mip->mi_driver, (const uint8_t *) mac_addr); if (err != 0) return (err); break; } /* * If this MAC address is not currently in use, * simply break out and update the value. */ if (map->ma_nusers == 0) break; /* * Need to replace the MAC address associated with a group. */ err = mac_group_remmac(map->ma_group, map->ma_addr); if (err != 0) return (err); err = mac_group_addmac(map->ma_group, mac_addr); /* * Failure hints hardware error. The MAC layer needs to * have error notification facility to handle this. * Now, simply try to restore the value. */ if (err != 0) (void) mac_group_addmac(map->ma_group, map->ma_addr); break; case MAC_ADDRESS_TYPE_UNICAST_PROMISC: /* * Need to do nothing more if in promiscuous mode. */ break; default: ASSERT(B_FALSE); } /* * Successfully replaced the MAC address. */ if (err == 0) bcopy(mac_addr, map->ma_addr, map->ma_len); return (err); } /* * Freshen the MAC address with new value. Its caller must have updated the * hardware MAC address before calling this function. * This funcitons is supposed to be used to handle the MAC address change * notification from underlying drivers. */ void mac_freshen_macaddr(mac_address_t *map, uint8_t *mac_addr) { mac_impl_t *mip = map->ma_mip; ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); ASSERT(mac_find_macaddr(mip, mac_addr) == NULL); /* * Freshen the MAC address with new value. */ bcopy(mac_addr, map->ma_addr, map->ma_len); bcopy(mac_addr, mip->mi_addr, map->ma_len); /* * Update all MAC clients that share this MAC address. */ mac_unicast_update_clients(mip, map); } /* * Set up the primary MAC address. */ void mac_init_macaddr(mac_impl_t *mip) { mac_address_t *map; /* * The reference count is initialized to zero, until it's really * activated. */ map = kmem_zalloc(sizeof (mac_address_t), KM_SLEEP); map->ma_len = mip->mi_type->mt_addr_length; bcopy(mip->mi_addr, map->ma_addr, map->ma_len); /* * If driver advertises RINGS capability, it shouldn't have initialized * its primary MAC address. For other drivers, including VNIC, the * primary address must work after registration. */ if (mip->mi_rx_groups == NULL) map->ma_type = MAC_ADDRESS_TYPE_UNICAST_CLASSIFIED; /* * The primary MAC address is reserved for default group according * to current design. */ map->ma_group = mip->mi_rx_groups; map->ma_mip = mip; mip->mi_addresses = map; } /* * Clean up the primary MAC address. Note, only one primary MAC address * is allowed. All other MAC addresses must have been freed appropriately. */ void mac_fini_macaddr(mac_impl_t *mip) { mac_address_t *map = mip->mi_addresses; if (map == NULL) return; /* * If mi_addresses is initialized, there should be exactly one * entry left on the list with no users. */ ASSERT(map->ma_nusers == 0); ASSERT(map->ma_next == NULL); kmem_free(map, sizeof (mac_address_t)); mip->mi_addresses = NULL; } /* * Logging related functions. */ /* Write the Flow description to the log file */ int mac_write_flow_desc(flow_entry_t *flent, mac_client_impl_t *mcip) { flow_desc_t *fdesc; mac_resource_props_t *mrp; net_desc_t ndesc; bzero(&ndesc, sizeof (net_desc_t)); /* * Grab the fe_lock to see a self-consistent fe_flow_desc. * Updates to the fe_flow_desc are done under the fe_lock */ mutex_enter(&flent->fe_lock); fdesc = &flent->fe_flow_desc; mrp = &flent->fe_resource_props; ndesc.nd_name = flent->fe_flow_name; ndesc.nd_devname = mcip->mci_name; bcopy(fdesc->fd_src_mac, ndesc.nd_ehost, ETHERADDRL); bcopy(fdesc->fd_dst_mac, ndesc.nd_edest, ETHERADDRL); ndesc.nd_sap = htonl(fdesc->fd_sap); ndesc.nd_isv4 = (uint8_t)fdesc->fd_ipversion == IPV4_VERSION; ndesc.nd_bw_limit = mrp->mrp_maxbw; if (ndesc.nd_isv4) { ndesc.nd_saddr[3] = htonl(fdesc->fd_local_addr.s6_addr32[3]); ndesc.nd_daddr[3] = htonl(fdesc->fd_remote_addr.s6_addr32[3]); } else { bcopy(&fdesc->fd_local_addr, ndesc.nd_saddr, IPV6_ADDR_LEN); bcopy(&fdesc->fd_remote_addr, ndesc.nd_daddr, IPV6_ADDR_LEN); } ndesc.nd_sport = htons(fdesc->fd_local_port); ndesc.nd_dport = htons(fdesc->fd_remote_port); ndesc.nd_protocol = (uint8_t)fdesc->fd_protocol; mutex_exit(&flent->fe_lock); return (exacct_commit_netinfo((void *)&ndesc, EX_NET_FLDESC_REC)); } /* Write the Flow statistics to the log file */ int mac_write_flow_stats(flow_entry_t *flent) { flow_stats_t *fl_stats; net_stat_t nstat; fl_stats = &flent->fe_flowstats; nstat.ns_name = flent->fe_flow_name; nstat.ns_ibytes = fl_stats->fs_rbytes; nstat.ns_obytes = fl_stats->fs_obytes; nstat.ns_ipackets = fl_stats->fs_ipackets; nstat.ns_opackets = fl_stats->fs_opackets; nstat.ns_ierrors = fl_stats->fs_ierrors; nstat.ns_oerrors = fl_stats->fs_oerrors; return (exacct_commit_netinfo((void *)&nstat, EX_NET_FLSTAT_REC)); } /* Write the Link Description to the log file */ int mac_write_link_desc(mac_client_impl_t *mcip) { net_desc_t ndesc; flow_entry_t *flent = mcip->mci_flent; bzero(&ndesc, sizeof (net_desc_t)); ndesc.nd_name = mcip->mci_name; ndesc.nd_devname = mcip->mci_name; ndesc.nd_isv4 = B_TRUE; /* * Grab the fe_lock to see a self-consistent fe_flow_desc. * Updates to the fe_flow_desc are done under the fe_lock * after removing the flent from the flow table. */ mutex_enter(&flent->fe_lock); bcopy(flent->fe_flow_desc.fd_src_mac, ndesc.nd_ehost, ETHERADDRL); mutex_exit(&flent->fe_lock); return (exacct_commit_netinfo((void *)&ndesc, EX_NET_LNDESC_REC)); } /* Write the Link statistics to the log file */ int mac_write_link_stats(mac_client_impl_t *mcip) { net_stat_t nstat; nstat.ns_name = mcip->mci_name; nstat.ns_ibytes = mcip->mci_stat_ibytes; nstat.ns_obytes = mcip->mci_stat_obytes; nstat.ns_ipackets = mcip->mci_stat_ipackets; nstat.ns_opackets = mcip->mci_stat_opackets; nstat.ns_ierrors = mcip->mci_stat_ierrors; nstat.ns_oerrors = mcip->mci_stat_oerrors; return (exacct_commit_netinfo((void *)&nstat, EX_NET_LNSTAT_REC)); } /* * For a given flow, if the descrition has not been logged before, do it now. * If it is a VNIC, then we have collected information about it from the MAC * table, so skip it. */ /*ARGSUSED*/ static int mac_log_flowinfo(flow_entry_t *flent, void *args) { mac_client_impl_t *mcip = flent->fe_mcip; if (mcip == NULL) return (0); /* * If the name starts with "vnic", and fe_user_generated is true (to * exclude the mcast and active flow entries created implicitly for * a vnic, it is a VNIC flow. i.e. vnic1 is a vnic flow, * vnic/bge1/mcast1 is not and neither is vnic/bge1/active. */ if (strncasecmp(flent->fe_flow_name, "vnic", 4) == 0 && (flent->fe_type & FLOW_USER) != 0) { return (0); } if (!flent->fe_desc_logged) { /* * We don't return error because we want to continu the * walk in case this is the last walk which means we * need to reset fe_desc_logged in all the flows. */ if (mac_write_flow_desc(flent, mcip) != 0) return (0); flent->fe_desc_logged = B_TRUE; } /* * Regardless of the error, we want to proceed in case we have to * reset fe_desc_logged. */ (void) mac_write_flow_stats(flent); if (mcip != NULL && !(mcip->mci_state_flags & MCIS_DESC_LOGGED)) flent->fe_desc_logged = B_FALSE; return (0); } typedef struct i_mac_log_state_s { boolean_t mi_last; int mi_fenable; int mi_lenable; } i_mac_log_state_t; /* * Walk the mac_impl_ts and log the description for each mac client of this mac, * if it hasn't already been done. Additionally, log statistics for the link as * well. Walk the flow table and log information for each flow as well. * If it is the last walk (mci_last), then we turn off mci_desc_logged (and * also fe_desc_logged, if flow logging is on) since we want to log the * description if and when logging is restarted. */ /*ARGSUSED*/ static uint_t i_mac_log_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) { mac_impl_t *mip = (mac_impl_t *)val; i_mac_log_state_t *lstate = (i_mac_log_state_t *)arg; int ret; mac_client_impl_t *mcip; /* * Only walk the client list for NIC and etherstub */ if ((mip->mi_state_flags & MIS_DISABLED) || ((mip->mi_state_flags & MIS_IS_VNIC) && (mac_get_lower_mac_handle((mac_handle_t)mip) != NULL))) return (MH_WALK_CONTINUE); for (mcip = mip->mi_clients_list; mcip != NULL; mcip = mcip->mci_client_next) { if (!MCIP_DATAPATH_SETUP(mcip)) continue; if (lstate->mi_lenable) { if (!(mcip->mci_state_flags & MCIS_DESC_LOGGED)) { ret = mac_write_link_desc(mcip); if (ret != 0) { /* * We can't terminate it if this is the last * walk, else there might be some links with * mi_desc_logged set to true, which means * their description won't be logged the next * time logging is started (similarly for the * flows within such links). We can continue * without walking the flow table (i.e. to * set fe_desc_logged to false) because we * won't have written any flow stuff for this * link as we haven't logged the link itself. */ if (lstate->mi_last) return (MH_WALK_CONTINUE); else return (MH_WALK_TERMINATE); } mcip->mci_state_flags |= MCIS_DESC_LOGGED; } } if (mac_write_link_stats(mcip) != 0 && !lstate->mi_last) return (MH_WALK_TERMINATE); if (lstate->mi_last) mcip->mci_state_flags &= ~MCIS_DESC_LOGGED; if (lstate->mi_fenable) { if (mcip->mci_subflow_tab != NULL) { (void) mac_flow_walk(mcip->mci_subflow_tab, mac_log_flowinfo, mip); } } } return (MH_WALK_CONTINUE); } /* * The timer thread that runs every mac_logging_interval seconds and logs * link and/or flow information. */ /* ARGSUSED */ void mac_log_linkinfo(void *arg) { i_mac_log_state_t lstate; rw_enter(&i_mac_impl_lock, RW_READER); if (!mac_flow_log_enable && !mac_link_log_enable) { rw_exit(&i_mac_impl_lock); return; } lstate.mi_fenable = mac_flow_log_enable; lstate.mi_lenable = mac_link_log_enable; lstate.mi_last = B_FALSE; rw_exit(&i_mac_impl_lock); mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate); rw_enter(&i_mac_impl_lock, RW_WRITER); if (mac_flow_log_enable || mac_link_log_enable) { mac_logging_timer = timeout(mac_log_linkinfo, NULL, SEC_TO_TICK(mac_logging_interval)); } rw_exit(&i_mac_impl_lock); } typedef struct i_mac_fastpath_state_s { boolean_t mf_disable; int mf_err; } i_mac_fastpath_state_t; /*ARGSUSED*/ static uint_t i_mac_fastpath_disable_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg) { i_mac_fastpath_state_t *state = arg; mac_handle_t mh = (mac_handle_t)val; if (state->mf_disable) state->mf_err = mac_fastpath_disable(mh); else mac_fastpath_enable(mh); return (state->mf_err == 0 ? MH_WALK_CONTINUE : MH_WALK_TERMINATE); } /* * Start the logging timer. */ int mac_start_logusage(mac_logtype_t type, uint_t interval) { i_mac_fastpath_state_t state = {B_TRUE, 0}; int err; rw_enter(&i_mac_impl_lock, RW_WRITER); switch (type) { case MAC_LOGTYPE_FLOW: if (mac_flow_log_enable) { rw_exit(&i_mac_impl_lock); return (0); } /* FALLTHRU */ case MAC_LOGTYPE_LINK: if (mac_link_log_enable) { rw_exit(&i_mac_impl_lock); return (0); } break; default: ASSERT(0); } /* Disable fastpath */ mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_disable_walker, &state); if ((err = state.mf_err) != 0) { /* Reenable fastpath */ state.mf_disable = B_FALSE; state.mf_err = 0; mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_disable_walker, &state); rw_exit(&i_mac_impl_lock); return (err); } switch (type) { case MAC_LOGTYPE_FLOW: mac_flow_log_enable = B_TRUE; /* FALLTHRU */ case MAC_LOGTYPE_LINK: mac_link_log_enable = B_TRUE; break; } mac_logging_interval = interval; rw_exit(&i_mac_impl_lock); mac_log_linkinfo(NULL); return (0); } /* * Stop the logging timer if both Link and Flow logging are turned off. */ void mac_stop_logusage(mac_logtype_t type) { i_mac_log_state_t lstate; i_mac_fastpath_state_t state = {B_FALSE, 0}; rw_enter(&i_mac_impl_lock, RW_WRITER); lstate.mi_fenable = mac_flow_log_enable; lstate.mi_lenable = mac_link_log_enable; /* Last walk */ lstate.mi_last = B_TRUE; switch (type) { case MAC_LOGTYPE_FLOW: if (lstate.mi_fenable) { ASSERT(mac_link_log_enable); mac_flow_log_enable = B_FALSE; mac_link_log_enable = B_FALSE; break; } /* FALLTHRU */ case MAC_LOGTYPE_LINK: if (!lstate.mi_lenable || mac_flow_log_enable) { rw_exit(&i_mac_impl_lock); return; } mac_link_log_enable = B_FALSE; break; default: ASSERT(0); } /* Reenable fastpath */ mod_hash_walk(i_mac_impl_hash, i_mac_fastpath_disable_walker, &state); rw_exit(&i_mac_impl_lock); (void) untimeout(mac_logging_timer); mac_logging_timer = 0; /* Last walk */ mod_hash_walk(i_mac_impl_hash, i_mac_log_walker, &lstate); } /* * Walk the rx and tx SRS/SRs for a flow and update the priority value. */ void mac_flow_update_priority(mac_client_impl_t *mcip, flow_entry_t *flent) { pri_t pri; int count; mac_soft_ring_set_t *mac_srs; if (flent->fe_rx_srs_cnt <= 0) return; if (((mac_soft_ring_set_t *)flent->fe_rx_srs[0])->srs_type == SRST_FLOW) { pri = FLOW_PRIORITY(mcip->mci_min_pri, mcip->mci_max_pri, flent->fe_resource_props.mrp_priority); } else { pri = mcip->mci_max_pri; } for (count = 0; count < flent->fe_rx_srs_cnt; count++) { mac_srs = flent->fe_rx_srs[count]; mac_update_srs_priority(mac_srs, pri); } /* * If we have a Tx SRS, we need to modify all the threads associated * with it. */ if (flent->fe_tx_srs != NULL) mac_update_srs_priority(flent->fe_tx_srs, pri); } /* * RX and TX rings are reserved according to different semantics depending * on the requests from the MAC clients and type of rings: * * On the Tx side, by default we reserve individual rings, independently from * the groups. * * On the Rx side, the reservation is at the granularity of the group * of rings, and used for v12n level 1 only. It has a special case for the * primary client. * * If a share is allocated to a MAC client, we allocate a TX group and an * RX group to the client, and assign TX rings and RX rings to these * groups according to information gathered from the driver through * the share capability. * * The foreseable evolution of Rx rings will handle v12n level 2 and higher * to allocate individual rings out of a group and program the hw classifier * based on IP address or higher level criteria. */ /* * mac_reserve_tx_ring() * Reserve a unused ring by marking it with MR_INUSE state. * As reserved, the ring is ready to function. * * Notes for Hybrid I/O: * * If a specific ring is needed, it is specified through the desired_ring * argument. Otherwise that argument is set to NULL. * If the desired ring was previous allocated to another client, this * function swaps it with a new ring from the group of unassigned rings. */ mac_ring_t * mac_reserve_tx_ring(mac_impl_t *mip, mac_ring_t *desired_ring) { mac_group_t *group; mac_ring_t *ring; ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); if (mip->mi_tx_groups == NULL) return (NULL); /* * Find an available ring and start it before changing its status. * The unassigned rings are at the end of the mi_tx_groups * array. */ group = mip->mi_tx_groups + mip->mi_tx_group_count; for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { if (desired_ring == NULL) { if (ring->mr_state == MR_FREE) /* wanted any free ring and found one */ break; } else { mac_ring_t *sring; mac_client_impl_t *client; mac_soft_ring_set_t *srs; if (ring != desired_ring) /* wants a desired ring but this one ain't it */ continue; if (ring->mr_state == MR_FREE) break; /* * Found the desired ring but it's already in use. * Swap it with a new ring. */ /* find the client which owns that ring */ for (client = mip->mi_clients_list; client != NULL; client = client->mci_client_next) { srs = MCIP_TX_SRS(client); if (srs != NULL && mac_tx_srs_ring_present(srs, desired_ring)) { /* found our ring */ break; } } if (client == NULL) { /* * The TX ring is in use, but it's not * associated with any clients, so it * has to be the default ring. In that * case we can simply assign a new ring * as the default ring, and we're done. */ ASSERT(mip->mi_default_tx_ring == (mac_ring_handle_t)desired_ring); /* * Quiesce all clients on top of * the NIC to make sure there are no * pending threads still relying on * that default ring, for example * the multicast path. */ for (client = mip->mi_clients_list; client != NULL; client = client->mci_client_next) { mac_tx_client_quiesce(client, SRS_QUIESCE); } mip->mi_default_tx_ring = (mac_ring_handle_t) mac_reserve_tx_ring(mip, NULL); /* resume the clients */ for (client = mip->mi_clients_list; client != NULL; client = client->mci_client_next) mac_tx_client_restart(client); break; } /* * Note that we cannot simply invoke the group * add/rem routines since the client doesn't have a * TX group. So we need to instead add/remove * the rings from the SRS. */ ASSERT(client->mci_share == NULL); /* first quiece the client */ mac_tx_client_quiesce(client, SRS_QUIESCE); /* give a new ring to the client... */ sring = mac_reserve_tx_ring(mip, NULL); if (sring != NULL) { /* * There are no other available ring * on that MAC instance. The client * will fallback to the shared TX * ring. */ mac_tx_srs_add_ring(srs, sring); } /* ... in exchange for our desired ring */ mac_tx_srs_del_ring(srs, desired_ring); /* restart the client */ mac_tx_client_restart(client); if (mip->mi_default_tx_ring == (mac_ring_handle_t)desired_ring) { /* * The desired ring is the default ring, * and there are one or more clients * using that default ring directly. */ mip->mi_default_tx_ring = (mac_ring_handle_t)sring; /* * Find clients using default ring and * swap it with the new default ring. */ for (client = mip->mi_clients_list; client != NULL; client = client->mci_client_next) { srs = MCIP_TX_SRS(client); if (srs != NULL && mac_tx_srs_ring_present(srs, desired_ring)) { /* first quiece the client */ mac_tx_client_quiesce(client, SRS_QUIESCE); /* * Give it the new default * ring, and remove the old * one. */ if (sring != NULL) { mac_tx_srs_add_ring(srs, sring); } mac_tx_srs_del_ring(srs, desired_ring); /* restart the client */ mac_tx_client_restart(client); } } } break; } } if (ring != NULL) { if (mac_start_ring(ring) != 0) return (NULL); ring->mr_state = MR_INUSE; } return (ring); } /* * Minimum number of rings to leave in the default TX group when allocating * rings to new clients. */ static uint_t mac_min_rx_default_rings = 1; /* * Populate a zero-ring group with rings. If the share is non-NULL, * the rings are chosen according to that share. * Invoked after allocating a new RX or TX group through * mac_reserve_rx_group() or mac_reserve_tx_group(), respectively. * Returns zero on success, an errno otherwise. */ int i_mac_group_allocate_rings(mac_impl_t *mip, mac_ring_type_t ring_type, mac_group_t *src_group, mac_group_t *new_group, mac_share_handle_t share) { mac_ring_t **rings, *tmp_ring[1], *ring; uint_t nrings; int rv, i, j; ASSERT(mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC && mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC); ASSERT(new_group->mrg_cur_count == 0); /* * First find the rings to allocate to the group. */ if (share != NULL) { /* get rings through ms_squery() */ mip->mi_share_capab.ms_squery(share, ring_type, NULL, &nrings); ASSERT(nrings != 0); rings = kmem_alloc(nrings * sizeof (mac_ring_handle_t), KM_SLEEP); mip->mi_share_capab.ms_squery(share, ring_type, (mac_ring_handle_t *)rings, &nrings); } else { /* this function is called for TX only with a share */ ASSERT(ring_type == MAC_RING_TYPE_RX); /* * Pick one ring from default group. * * for now pick the second ring which requires the first ring * at index 0 to stay in the default group, since it is the * ring which carries the multicast traffic. * We need a better way for a driver to indicate this, * for example a per-ring flag. */ for (ring = src_group->mrg_rings; ring != NULL; ring = ring->mr_next) { if (ring->mr_index != 0) break; } ASSERT(ring != NULL); nrings = 1; tmp_ring[0] = ring; rings = tmp_ring; } switch (ring_type) { case MAC_RING_TYPE_RX: if (src_group->mrg_cur_count - nrings < mac_min_rx_default_rings) { /* we ran out of rings */ return (ENOSPC); } /* move receive rings to new group */ for (i = 0; i < nrings; i++) { rv = mac_group_mov_ring(mip, new_group, rings[i]); if (rv != 0) { /* move rings back on failure */ for (j = 0; j < i; j++) { (void) mac_group_mov_ring(mip, src_group, rings[j]); } return (rv); } } break; case MAC_RING_TYPE_TX: { mac_ring_t *tmp_ring; /* move the TX rings to the new group */ ASSERT(src_group == NULL); for (i = 0; i < nrings; i++) { /* get the desired ring */ tmp_ring = mac_reserve_tx_ring(mip, rings[i]); ASSERT(tmp_ring == rings[i]); rv = mac_group_mov_ring(mip, new_group, rings[i]); if (rv != 0) { /* cleanup on failure */ for (j = 0; j < i; j++) { (void) mac_group_mov_ring(mip, mip->mi_tx_groups + mip->mi_tx_group_count, rings[j]); } } } break; } } if (share != NULL) { /* add group to share */ mip->mi_share_capab.ms_sadd(share, new_group->mrg_driver); /* free temporary array of rings */ kmem_free(rings, nrings * sizeof (mac_ring_handle_t)); } return (0); } void mac_rx_group_add_client(mac_group_t *grp, mac_client_impl_t *mcip) { mac_grp_client_t *mgcp; for (mgcp = grp->mrg_clients; mgcp != NULL; mgcp = mgcp->mgc_next) { if (mgcp->mgc_client == mcip) break; } VERIFY(mgcp == NULL); mgcp = kmem_zalloc(sizeof (mac_grp_client_t), KM_SLEEP); mgcp->mgc_client = mcip; mgcp->mgc_next = grp->mrg_clients; grp->mrg_clients = mgcp; } void mac_rx_group_remove_client(mac_group_t *grp, mac_client_impl_t *mcip) { mac_grp_client_t *mgcp, **pprev; for (pprev = &grp->mrg_clients, mgcp = *pprev; mgcp != NULL; pprev = &mgcp->mgc_next, mgcp = *pprev) { if (mgcp->mgc_client == mcip) break; } ASSERT(mgcp != NULL); *pprev = mgcp->mgc_next; kmem_free(mgcp, sizeof (mac_grp_client_t)); } /* * mac_reserve_rx_group() * * Finds an available group and exclusively reserves it for a client. * The group is chosen to suit the flow's resource controls (bandwidth and * fanout requirements) and the address type. * If the requestor is the pimary MAC then return the group with the * largest number of rings, otherwise the default ring when available. */ mac_group_t * mac_reserve_rx_group(mac_client_impl_t *mcip, uint8_t *mac_addr, mac_rx_group_reserve_type_t rtype) { mac_share_handle_t share = mcip->mci_share; mac_impl_t *mip = mcip->mci_mip; mac_group_t *grp = NULL; int i, start, loopcount; int err; mac_address_t *map; ASSERT(MAC_PERIM_HELD((mac_handle_t)mip)); /* Check if a group already has this mac address (case of VLANs) */ if ((map = mac_find_macaddr(mip, mac_addr)) != NULL) return (map->ma_group); if (mip->mi_rx_groups == NULL || mip->mi_rx_group_count == 0 || rtype == MAC_RX_NO_RESERVE) return (NULL); /* * Try to exclusively reserve a RX group. * * For flows requires SW_RING it always goes to the default group * (Until we can explicitely call out default groups (CR 6695600), * we assume that the default group is always at position zero); * * For flows requires HW_DEFAULT_RING (unicast flow of the primary * client), try to reserve the default RX group only. * * For flows requires HW_RING (unicast flow of other clients), try * to reserve non-default RX group then the default group. */ switch (rtype) { case MAC_RX_RESERVE_DEFAULT: start = 0; loopcount = 1; break; case MAC_RX_RESERVE_NONDEFAULT: start = 1; loopcount = mip->mi_rx_group_count; } for (i = start; i < start + loopcount; i++) { grp = &mip->mi_rx_groups[i % mip->mi_rx_group_count]; DTRACE_PROBE3(rx__group__trying, char *, mip->mi_name, int, grp->mrg_index, mac_group_state_t, grp->mrg_state); /* * Check to see whether this mac client is the only client * on this RX group. If not, we cannot exclusively reserve * this RX group. */ if (!MAC_RX_GROUP_NO_CLIENT(grp) && (MAC_RX_GROUP_ONLY_CLIENT(grp) != mcip)) { continue; } /* * This group could already be SHARED by other multicast * flows on this client. In that case, the group would * be shared and has already been started. */ ASSERT(grp->mrg_state != MAC_GROUP_STATE_UNINIT); if ((grp->mrg_state == MAC_GROUP_STATE_REGISTERED) && (mac_start_group(grp) != 0)) { continue; } if ((i % mip->mi_rx_group_count) == 0 || mip->mi_rx_group_type != MAC_GROUP_TYPE_DYNAMIC) { break; } ASSERT(grp->mrg_cur_count == 0); /* * Populate the group. Rings should be taken * from the default group at position 0 for now. */ err = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_RX, &mip->mi_rx_groups[0], grp, share); if (err == 0) break; DTRACE_PROBE3(rx__group__reserve__alloc__rings, char *, mip->mi_name, int, grp->mrg_index, int, err); /* * It's a dynamic group but the grouping operation failed. */ mac_stop_group(grp); } if (i == start + loopcount) return (NULL); ASSERT(grp != NULL); DTRACE_PROBE2(rx__group__reserved, char *, mip->mi_name, int, grp->mrg_index); return (grp); } /* * mac_rx_release_group() * * This is called when there are no clients left for the group. * The group is stopped and marked MAC_GROUP_STATE_REGISTERED, * and if it is a non default group, the shares are removed and * all rings are assigned back to default group. */ void mac_release_rx_group(mac_client_impl_t *mcip, mac_group_t *group) { mac_impl_t *mip = mcip->mci_mip; mac_ring_t *ring; ASSERT(group != &mip->mi_rx_groups[0]); /* * This is the case where there are no clients left. Any * SRS etc on this group have also be quiesced. */ for (ring = group->mrg_rings; ring != NULL; ring = ring->mr_next) { if (ring->mr_classify_type == MAC_HW_CLASSIFIER) { ASSERT(group->mrg_state == MAC_GROUP_STATE_RESERVED); /* * Remove the SRS associated with the HW ring. * As a result, polling will be disabled. */ ring->mr_srs = NULL; } ASSERT(ring->mr_state == MR_INUSE); mac_stop_ring(ring); ring->mr_state = MR_FREE; ring->mr_flag = 0; } /* remove group from share */ if (mcip->mci_share != NULL) { mip->mi_share_capab.ms_sremove(mcip->mci_share, group->mrg_driver); } if (mip->mi_rx_group_type == MAC_GROUP_TYPE_DYNAMIC) { mac_ring_t *ring; /* * Rings were dynamically allocated to group. * Move rings back to default group. */ while ((ring = group->mrg_rings) != NULL) { (void) mac_group_mov_ring(mip, &mip->mi_rx_groups[0], ring); } } mac_stop_group(group); /* * Possible improvement: See if we can assign the group just released * to a another client of the mip */ } /* * Reserves a TX group for the specified share. Invoked by mac_tx_srs_setup() * when a share was allocated to the client. */ mac_group_t * mac_reserve_tx_group(mac_impl_t *mip, mac_share_handle_t share) { mac_group_t *grp; int rv, i; /* * TX groups are currently allocated only to MAC clients * which are associated with a share. Since we have a fixed * number of share and groups, and we already successfully * allocated a share, find an available TX group. */ ASSERT(share != NULL); ASSERT(mip->mi_tx_group_free > 0); for (i = 0; i < mip->mi_tx_group_count; i++) { grp = &mip->mi_tx_groups[i]; if ((grp->mrg_state == MAC_GROUP_STATE_RESERVED) || (grp->mrg_state == MAC_GROUP_STATE_UNINIT)) continue; rv = mac_start_group(grp); ASSERT(rv == 0); grp->mrg_state = MAC_GROUP_STATE_RESERVED; break; } ASSERT(grp != NULL); /* * Populate the group. Rings should be taken from the group * of unassigned rings, which is past the array of TX * groups adversized by the driver. */ rv = i_mac_group_allocate_rings(mip, MAC_RING_TYPE_TX, NULL, grp, share); if (rv != 0) { DTRACE_PROBE3(tx__group__reserve__alloc__rings, char *, mip->mi_name, int, grp->mrg_index, int, rv); mac_stop_group(grp); grp->mrg_state = MAC_GROUP_STATE_UNINIT; return (NULL); } mip->mi_tx_group_free--; return (grp); } void mac_release_tx_group(mac_impl_t *mip, mac_group_t *grp) { mac_client_impl_t *mcip = grp->mrg_tx_client; mac_share_handle_t share = mcip->mci_share; mac_ring_t *ring; ASSERT(mip->mi_tx_group_type == MAC_GROUP_TYPE_DYNAMIC); ASSERT(share != NULL); ASSERT(grp->mrg_state == MAC_GROUP_STATE_RESERVED); mip->mi_share_capab.ms_sremove(share, grp->mrg_driver); while ((ring = grp->mrg_rings) != NULL) { /* move the ring back to the pool */ (void) mac_group_mov_ring(mip, mip->mi_tx_groups + mip->mi_tx_group_count, ring); } mac_stop_group(grp); mac_set_rx_group_state(grp, MAC_GROUP_STATE_REGISTERED); grp->mrg_tx_client = NULL; mip->mi_tx_group_free++; } /* * This is a 1-time control path activity initiated by the client (IP). * The mac perimeter protects against other simultaneous control activities, * for example an ioctl that attempts to change the degree of fanout and * increase or decrease the number of softrings associated with this Tx SRS. */ static mac_tx_notify_cb_t * mac_client_tx_notify_add(mac_client_impl_t *mcip, mac_tx_notify_t notify, void *arg) { mac_cb_info_t *mcbi; mac_tx_notify_cb_t *mtnfp; ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); mtnfp = kmem_zalloc(sizeof (mac_tx_notify_cb_t), KM_SLEEP); mtnfp->mtnf_fn = notify; mtnfp->mtnf_arg = arg; mtnfp->mtnf_link.mcb_objp = mtnfp; mtnfp->mtnf_link.mcb_objsize = sizeof (mac_tx_notify_cb_t); mtnfp->mtnf_link.mcb_flags = MCB_TX_NOTIFY_CB_T; mcbi = &mcip->mci_tx_notify_cb_info; mutex_enter(mcbi->mcbi_lockp); mac_callback_add(mcbi, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link); mutex_exit(mcbi->mcbi_lockp); return (mtnfp); } static void mac_client_tx_notify_remove(mac_client_impl_t *mcip, mac_tx_notify_cb_t *mtnfp) { mac_cb_info_t *mcbi; mac_cb_t **cblist; ASSERT(MAC_PERIM_HELD((mac_handle_t)mcip->mci_mip)); if (!mac_callback_find(&mcip->mci_tx_notify_cb_info, &mcip->mci_tx_notify_cb_list, &mtnfp->mtnf_link)) { cmn_err(CE_WARN, "mac_client_tx_notify_remove: callback not " "found, mcip 0x%p mtnfp 0x%p", (void *)mcip, (void *)mtnfp); return; } mcbi = &mcip->mci_tx_notify_cb_info; cblist = &mcip->mci_tx_notify_cb_list; mutex_enter(mcbi->mcbi_lockp); if (mac_callback_remove(mcbi, cblist, &mtnfp->mtnf_link)) kmem_free(mtnfp, sizeof (mac_tx_notify_cb_t)); else mac_callback_remove_wait(&mcip->mci_tx_notify_cb_info); mutex_exit(mcbi->mcbi_lockp); } /* * mac_client_tx_notify(): * call to add and remove flow control callback routine. */ mac_tx_notify_handle_t mac_client_tx_notify(mac_client_handle_t mch, mac_tx_notify_t callb_func, void *ptr) { mac_client_impl_t *mcip = (mac_client_impl_t *)mch; mac_tx_notify_cb_t *mtnfp = NULL; i_mac_perim_enter(mcip->mci_mip); if (callb_func != NULL) { /* Add a notify callback */ mtnfp = mac_client_tx_notify_add(mcip, callb_func, ptr); } else { mac_client_tx_notify_remove(mcip, (mac_tx_notify_cb_t *)ptr); } i_mac_perim_exit(mcip->mci_mip); return ((mac_tx_notify_handle_t)mtnfp); } void mac_bridge_vectors(mac_bridge_tx_t txf, mac_bridge_rx_t rxf, mac_bridge_ref_t reff, mac_bridge_ls_t lsf) { mac_bridge_tx_cb = txf; mac_bridge_rx_cb = rxf; mac_bridge_ref_cb = reff; mac_bridge_ls_cb = lsf; } int mac_bridge_set(mac_handle_t mh, mac_handle_t link) { mac_impl_t *mip = (mac_impl_t *)mh; int retv; mutex_enter(&mip->mi_bridge_lock); if (mip->mi_bridge_link == NULL) { mip->mi_bridge_link = link; retv = 0; } else { retv = EBUSY; } mutex_exit(&mip->mi_bridge_lock); if (retv == 0) { mac_poll_state_change(mh, B_FALSE); mac_capab_update(mh); } return (retv); } /* * Disable bridging on the indicated link. */ void mac_bridge_clear(mac_handle_t mh, mac_handle_t link) { mac_impl_t *mip = (mac_impl_t *)mh; mutex_enter(&mip->mi_bridge_lock); ASSERT(mip->mi_bridge_link == link); mip->mi_bridge_link = NULL; mutex_exit(&mip->mi_bridge_lock); mac_poll_state_change(mh, B_TRUE); mac_capab_update(mh); } void mac_no_active(mac_handle_t mh) { mac_impl_t *mip = (mac_impl_t *)mh; i_mac_perim_enter(mip); mip->mi_state_flags |= MIS_NO_ACTIVE; i_mac_perim_exit(mip); }