1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/user.h> 35 #include <sys/systm.h> 36 #include <sys/sysinfo.h> 37 #include <sys/var.h> 38 #include <sys/errno.h> 39 #include <sys/cmn_err.h> 40 #include <sys/debug.h> 41 #include <sys/inline.h> 42 #include <sys/disp.h> 43 #include <sys/class.h> 44 #include <sys/bitmap.h> 45 #include <sys/kmem.h> 46 #include <sys/cpuvar.h> 47 #include <sys/vtrace.h> 48 #include <sys/tnf.h> 49 #include <sys/cpupart.h> 50 #include <sys/lgrp.h> 51 #include <sys/pg.h> 52 #include <sys/cmt.h> 53 #include <sys/bitset.h> 54 #include <sys/schedctl.h> 55 #include <sys/atomic.h> 56 #include <sys/dtrace.h> 57 #include <sys/sdt.h> 58 #include <sys/archsystm.h> 59 60 #include <vm/as.h> 61 62 #define BOUND_CPU 0x1 63 #define BOUND_PARTITION 0x2 64 #define BOUND_INTR 0x4 65 66 /* Dispatch queue allocation structure and functions */ 67 struct disp_queue_info { 68 disp_t *dp; 69 dispq_t *olddispq; 70 dispq_t *newdispq; 71 ulong_t *olddqactmap; 72 ulong_t *newdqactmap; 73 int oldnglobpris; 74 }; 75 static void disp_dq_alloc(struct disp_queue_info *dptr, int numpris, 76 disp_t *dp); 77 static void disp_dq_assign(struct disp_queue_info *dptr, int numpris); 78 static void disp_dq_free(struct disp_queue_info *dptr); 79 80 /* platform-specific routine to call when processor is idle */ 81 static void generic_idle_cpu(); 82 void (*idle_cpu)() = generic_idle_cpu; 83 84 /* routines invoked when a CPU enters/exits the idle loop */ 85 static void idle_enter(); 86 static void idle_exit(); 87 88 /* platform-specific routine to call when thread is enqueued */ 89 static void generic_enq_thread(cpu_t *, int); 90 void (*disp_enq_thread)(cpu_t *, int) = generic_enq_thread; 91 92 pri_t kpreemptpri; /* priority where kernel preemption applies */ 93 pri_t upreemptpri = 0; /* priority where normal preemption applies */ 94 pri_t intr_pri; /* interrupt thread priority base level */ 95 96 #define KPQPRI -1 /* pri where cpu affinity is dropped for kpq */ 97 pri_t kpqpri = KPQPRI; /* can be set in /etc/system */ 98 disp_t cpu0_disp; /* boot CPU's dispatch queue */ 99 disp_lock_t swapped_lock; /* lock swapped threads and swap queue */ 100 int nswapped; /* total number of swapped threads */ 101 void disp_swapped_enq(kthread_t *tp); 102 static void disp_swapped_setrun(kthread_t *tp); 103 static void cpu_resched(cpu_t *cp, pri_t tpri); 104 105 /* 106 * If this is set, only interrupt threads will cause kernel preemptions. 107 * This is done by changing the value of kpreemptpri. kpreemptpri 108 * will either be the max sysclass pri + 1 or the min interrupt pri. 109 */ 110 int only_intr_kpreempt; 111 112 extern void set_idle_cpu(int cpun); 113 extern void unset_idle_cpu(int cpun); 114 static void setkpdq(kthread_t *tp, int borf); 115 #define SETKP_BACK 0 116 #define SETKP_FRONT 1 117 /* 118 * Parameter that determines how recently a thread must have run 119 * on the CPU to be considered loosely-bound to that CPU to reduce 120 * cold cache effects. The interval is in hertz. 121 */ 122 #define RECHOOSE_INTERVAL 3 123 int rechoose_interval = RECHOOSE_INTERVAL; 124 125 /* 126 * Parameter that determines how long (in nanoseconds) a thread must 127 * be sitting on a run queue before it can be stolen by another CPU 128 * to reduce migrations. The interval is in nanoseconds. 129 * 130 * The nosteal_nsec should be set by platform code cmp_set_nosteal_interval() 131 * to an appropriate value. nosteal_nsec is set to NOSTEAL_UNINITIALIZED 132 * here indicating it is uninitiallized. 133 * Setting nosteal_nsec to 0 effectively disables the nosteal 'protection'. 134 * 135 */ 136 #define NOSTEAL_UNINITIALIZED (-1) 137 hrtime_t nosteal_nsec = NOSTEAL_UNINITIALIZED; 138 extern void cmp_set_nosteal_interval(void); 139 140 id_t defaultcid; /* system "default" class; see dispadmin(1M) */ 141 142 disp_lock_t transition_lock; /* lock on transitioning threads */ 143 disp_lock_t stop_lock; /* lock on stopped threads */ 144 145 static void cpu_dispqalloc(int numpris); 146 147 /* 148 * This gets returned by disp_getwork/disp_getbest if we couldn't steal 149 * a thread because it was sitting on its run queue for a very short 150 * period of time. 151 */ 152 #define T_DONTSTEAL (kthread_t *)(-1) /* returned by disp_getwork/getbest */ 153 154 static kthread_t *disp_getwork(cpu_t *to); 155 static kthread_t *disp_getbest(disp_t *from); 156 static kthread_t *disp_ratify(kthread_t *tp, disp_t *kpq); 157 158 void swtch_to(kthread_t *); 159 160 /* 161 * dispatcher and scheduler initialization 162 */ 163 164 /* 165 * disp_setup - Common code to calculate and allocate dispatcher 166 * variables and structures based on the maximum priority. 167 */ 168 static void 169 disp_setup(pri_t maxglobpri, pri_t oldnglobpris) 170 { 171 pri_t newnglobpris; 172 173 ASSERT(MUTEX_HELD(&cpu_lock)); 174 175 newnglobpris = maxglobpri + 1 + LOCK_LEVEL; 176 177 if (newnglobpris > oldnglobpris) { 178 /* 179 * Allocate new kp queues for each CPU partition. 180 */ 181 cpupart_kpqalloc(newnglobpris); 182 183 /* 184 * Allocate new dispatch queues for each CPU. 185 */ 186 cpu_dispqalloc(newnglobpris); 187 188 /* 189 * compute new interrupt thread base priority 190 */ 191 intr_pri = maxglobpri; 192 if (only_intr_kpreempt) { 193 kpreemptpri = intr_pri + 1; 194 if (kpqpri == KPQPRI) 195 kpqpri = kpreemptpri; 196 } 197 v.v_nglobpris = newnglobpris; 198 } 199 } 200 201 /* 202 * dispinit - Called to initialize all loaded classes and the 203 * dispatcher framework. 204 */ 205 void 206 dispinit(void) 207 { 208 id_t cid; 209 pri_t maxglobpri; 210 pri_t cl_maxglobpri; 211 212 maxglobpri = -1; 213 214 /* 215 * Initialize transition lock, which will always be set. 216 */ 217 DISP_LOCK_INIT(&transition_lock); 218 disp_lock_enter_high(&transition_lock); 219 DISP_LOCK_INIT(&stop_lock); 220 221 mutex_enter(&cpu_lock); 222 CPU->cpu_disp->disp_maxrunpri = -1; 223 CPU->cpu_disp->disp_max_unbound_pri = -1; 224 225 /* 226 * Initialize the default CPU partition. 227 */ 228 cpupart_initialize_default(); 229 /* 230 * Call the class specific initialization functions for 231 * all pre-installed schedulers. 232 * 233 * We pass the size of a class specific parameter 234 * buffer to each of the initialization functions 235 * to try to catch problems with backward compatibility 236 * of class modules. 237 * 238 * For example a new class module running on an old system 239 * which didn't provide sufficiently large parameter buffers 240 * would be bad news. Class initialization modules can check for 241 * this and take action if they detect a problem. 242 */ 243 244 for (cid = 0; cid < nclass; cid++) { 245 sclass_t *sc; 246 247 sc = &sclass[cid]; 248 if (SCHED_INSTALLED(sc)) { 249 cl_maxglobpri = sc->cl_init(cid, PC_CLPARMSZ, 250 &sc->cl_funcs); 251 if (cl_maxglobpri > maxglobpri) 252 maxglobpri = cl_maxglobpri; 253 } 254 } 255 kpreemptpri = (pri_t)v.v_maxsyspri + 1; 256 if (kpqpri == KPQPRI) 257 kpqpri = kpreemptpri; 258 259 ASSERT(maxglobpri >= 0); 260 disp_setup(maxglobpri, 0); 261 262 mutex_exit(&cpu_lock); 263 264 /* 265 * Platform specific sticky scheduler setup. 266 */ 267 if (nosteal_nsec == NOSTEAL_UNINITIALIZED) 268 cmp_set_nosteal_interval(); 269 270 /* 271 * Get the default class ID; this may be later modified via 272 * dispadmin(1M). This will load the class (normally TS) and that will 273 * call disp_add(), which is why we had to drop cpu_lock first. 274 */ 275 if (getcid(defaultclass, &defaultcid) != 0) { 276 cmn_err(CE_PANIC, "Couldn't load default scheduling class '%s'", 277 defaultclass); 278 } 279 } 280 281 /* 282 * disp_add - Called with class pointer to initialize the dispatcher 283 * for a newly loaded class. 284 */ 285 void 286 disp_add(sclass_t *clp) 287 { 288 pri_t maxglobpri; 289 pri_t cl_maxglobpri; 290 291 mutex_enter(&cpu_lock); 292 /* 293 * Initialize the scheduler class. 294 */ 295 maxglobpri = (pri_t)(v.v_nglobpris - LOCK_LEVEL - 1); 296 cl_maxglobpri = clp->cl_init(clp - sclass, PC_CLPARMSZ, &clp->cl_funcs); 297 if (cl_maxglobpri > maxglobpri) 298 maxglobpri = cl_maxglobpri; 299 300 /* 301 * Save old queue information. Since we're initializing a 302 * new scheduling class which has just been loaded, then 303 * the size of the dispq may have changed. We need to handle 304 * that here. 305 */ 306 disp_setup(maxglobpri, v.v_nglobpris); 307 308 mutex_exit(&cpu_lock); 309 } 310 311 312 /* 313 * For each CPU, allocate new dispatch queues 314 * with the stated number of priorities. 315 */ 316 static void 317 cpu_dispqalloc(int numpris) 318 { 319 cpu_t *cpup; 320 struct disp_queue_info *disp_mem; 321 int i, num; 322 323 ASSERT(MUTEX_HELD(&cpu_lock)); 324 325 disp_mem = kmem_zalloc(NCPU * 326 sizeof (struct disp_queue_info), KM_SLEEP); 327 328 /* 329 * This routine must allocate all of the memory before stopping 330 * the cpus because it must not sleep in kmem_alloc while the 331 * CPUs are stopped. Locks they hold will not be freed until they 332 * are restarted. 333 */ 334 i = 0; 335 cpup = cpu_list; 336 do { 337 disp_dq_alloc(&disp_mem[i], numpris, cpup->cpu_disp); 338 i++; 339 cpup = cpup->cpu_next; 340 } while (cpup != cpu_list); 341 num = i; 342 343 pause_cpus(NULL); 344 for (i = 0; i < num; i++) 345 disp_dq_assign(&disp_mem[i], numpris); 346 start_cpus(); 347 348 /* 349 * I must free all of the memory after starting the cpus because 350 * I can not risk sleeping in kmem_free while the cpus are stopped. 351 */ 352 for (i = 0; i < num; i++) 353 disp_dq_free(&disp_mem[i]); 354 355 kmem_free(disp_mem, NCPU * sizeof (struct disp_queue_info)); 356 } 357 358 static void 359 disp_dq_alloc(struct disp_queue_info *dptr, int numpris, disp_t *dp) 360 { 361 dptr->newdispq = kmem_zalloc(numpris * sizeof (dispq_t), KM_SLEEP); 362 dptr->newdqactmap = kmem_zalloc(((numpris / BT_NBIPUL) + 1) * 363 sizeof (long), KM_SLEEP); 364 dptr->dp = dp; 365 } 366 367 static void 368 disp_dq_assign(struct disp_queue_info *dptr, int numpris) 369 { 370 disp_t *dp; 371 372 dp = dptr->dp; 373 dptr->olddispq = dp->disp_q; 374 dptr->olddqactmap = dp->disp_qactmap; 375 dptr->oldnglobpris = dp->disp_npri; 376 377 ASSERT(dptr->oldnglobpris < numpris); 378 379 if (dptr->olddispq != NULL) { 380 /* 381 * Use kcopy because bcopy is platform-specific 382 * and could block while we might have paused the cpus. 383 */ 384 (void) kcopy(dptr->olddispq, dptr->newdispq, 385 dptr->oldnglobpris * sizeof (dispq_t)); 386 (void) kcopy(dptr->olddqactmap, dptr->newdqactmap, 387 ((dptr->oldnglobpris / BT_NBIPUL) + 1) * 388 sizeof (long)); 389 } 390 dp->disp_q = dptr->newdispq; 391 dp->disp_qactmap = dptr->newdqactmap; 392 dp->disp_q_limit = &dptr->newdispq[numpris]; 393 dp->disp_npri = numpris; 394 } 395 396 static void 397 disp_dq_free(struct disp_queue_info *dptr) 398 { 399 if (dptr->olddispq != NULL) 400 kmem_free(dptr->olddispq, 401 dptr->oldnglobpris * sizeof (dispq_t)); 402 if (dptr->olddqactmap != NULL) 403 kmem_free(dptr->olddqactmap, 404 ((dptr->oldnglobpris / BT_NBIPUL) + 1) * sizeof (long)); 405 } 406 407 /* 408 * For a newly created CPU, initialize the dispatch queue. 409 * This is called before the CPU is known through cpu[] or on any lists. 410 */ 411 void 412 disp_cpu_init(cpu_t *cp) 413 { 414 disp_t *dp; 415 dispq_t *newdispq; 416 ulong_t *newdqactmap; 417 418 ASSERT(MUTEX_HELD(&cpu_lock)); /* protect dispatcher queue sizes */ 419 420 if (cp == cpu0_disp.disp_cpu) 421 dp = &cpu0_disp; 422 else 423 dp = kmem_alloc(sizeof (disp_t), KM_SLEEP); 424 bzero(dp, sizeof (disp_t)); 425 cp->cpu_disp = dp; 426 dp->disp_cpu = cp; 427 dp->disp_maxrunpri = -1; 428 dp->disp_max_unbound_pri = -1; 429 DISP_LOCK_INIT(&cp->cpu_thread_lock); 430 /* 431 * Allocate memory for the dispatcher queue headers 432 * and the active queue bitmap. 433 */ 434 newdispq = kmem_zalloc(v.v_nglobpris * sizeof (dispq_t), KM_SLEEP); 435 newdqactmap = kmem_zalloc(((v.v_nglobpris / BT_NBIPUL) + 1) * 436 sizeof (long), KM_SLEEP); 437 dp->disp_q = newdispq; 438 dp->disp_qactmap = newdqactmap; 439 dp->disp_q_limit = &newdispq[v.v_nglobpris]; 440 dp->disp_npri = v.v_nglobpris; 441 } 442 443 void 444 disp_cpu_fini(cpu_t *cp) 445 { 446 ASSERT(MUTEX_HELD(&cpu_lock)); 447 448 disp_kp_free(cp->cpu_disp); 449 if (cp->cpu_disp != &cpu0_disp) 450 kmem_free(cp->cpu_disp, sizeof (disp_t)); 451 } 452 453 /* 454 * Allocate new, larger kpreempt dispatch queue to replace the old one. 455 */ 456 void 457 disp_kp_alloc(disp_t *dq, pri_t npri) 458 { 459 struct disp_queue_info mem_info; 460 461 if (npri > dq->disp_npri) { 462 /* 463 * Allocate memory for the new array. 464 */ 465 disp_dq_alloc(&mem_info, npri, dq); 466 467 /* 468 * We need to copy the old structures to the new 469 * and free the old. 470 */ 471 disp_dq_assign(&mem_info, npri); 472 disp_dq_free(&mem_info); 473 } 474 } 475 476 /* 477 * Free dispatch queue. 478 * Used for the kpreempt queues for a removed CPU partition and 479 * for the per-CPU queues of deleted CPUs. 480 */ 481 void 482 disp_kp_free(disp_t *dq) 483 { 484 struct disp_queue_info mem_info; 485 486 mem_info.olddispq = dq->disp_q; 487 mem_info.olddqactmap = dq->disp_qactmap; 488 mem_info.oldnglobpris = dq->disp_npri; 489 disp_dq_free(&mem_info); 490 } 491 492 /* 493 * End dispatcher and scheduler initialization. 494 */ 495 496 /* 497 * See if there's anything to do other than remain idle. 498 * Return non-zero if there is. 499 * 500 * This function must be called with high spl, or with 501 * kernel preemption disabled to prevent the partition's 502 * active cpu list from changing while being traversed. 503 * 504 * This is essentially a simpler version of disp_getwork() 505 * to be called by CPUs preparing to "halt". 506 */ 507 int 508 disp_anywork(void) 509 { 510 cpu_t *cp = CPU; 511 cpu_t *ocp; 512 volatile int *local_nrunnable = &cp->cpu_disp->disp_nrunnable; 513 514 if (!(cp->cpu_flags & CPU_OFFLINE)) { 515 if (CP_MAXRUNPRI(cp->cpu_part) >= 0) 516 return (1); 517 518 for (ocp = cp->cpu_next_part; ocp != cp; 519 ocp = ocp->cpu_next_part) { 520 ASSERT(CPU_ACTIVE(ocp)); 521 522 /* 523 * Something has appeared on the local run queue. 524 */ 525 if (*local_nrunnable > 0) 526 return (1); 527 /* 528 * If we encounter another idle CPU that will 529 * soon be trolling around through disp_anywork() 530 * terminate our walk here and let this other CPU 531 * patrol the next part of the list. 532 */ 533 if (ocp->cpu_dispatch_pri == -1 && 534 (ocp->cpu_disp_flags & CPU_DISP_HALTED) == 0) 535 return (0); 536 /* 537 * Work can be taken from another CPU if: 538 * - There is unbound work on the run queue 539 * - That work isn't a thread undergoing a 540 * - context switch on an otherwise empty queue. 541 * - The CPU isn't running the idle loop. 542 */ 543 if (ocp->cpu_disp->disp_max_unbound_pri != -1 && 544 !((ocp->cpu_disp_flags & CPU_DISP_DONTSTEAL) && 545 ocp->cpu_disp->disp_nrunnable == 1) && 546 ocp->cpu_dispatch_pri != -1) 547 return (1); 548 } 549 } 550 return (0); 551 } 552 553 /* 554 * Called when CPU enters the idle loop 555 */ 556 static void 557 idle_enter() 558 { 559 cpu_t *cp = CPU; 560 561 new_cpu_mstate(CMS_IDLE, gethrtime_unscaled()); 562 CPU_STATS_ADDQ(cp, sys, idlethread, 1); 563 set_idle_cpu(cp->cpu_id); /* arch-dependent hook */ 564 } 565 566 /* 567 * Called when CPU exits the idle loop 568 */ 569 static void 570 idle_exit() 571 { 572 cpu_t *cp = CPU; 573 574 new_cpu_mstate(CMS_SYSTEM, gethrtime_unscaled()); 575 unset_idle_cpu(cp->cpu_id); /* arch-dependent hook */ 576 } 577 578 /* 579 * Idle loop. 580 */ 581 void 582 idle() 583 { 584 struct cpu *cp = CPU; /* pointer to this CPU */ 585 kthread_t *t; /* taken thread */ 586 587 idle_enter(); 588 589 /* 590 * Uniprocessor version of idle loop. 591 * Do this until notified that we're on an actual multiprocessor. 592 */ 593 while (ncpus == 1) { 594 if (cp->cpu_disp->disp_nrunnable == 0) { 595 (*idle_cpu)(); 596 continue; 597 } 598 idle_exit(); 599 swtch(); 600 601 idle_enter(); /* returned from swtch */ 602 } 603 604 /* 605 * Multiprocessor idle loop. 606 */ 607 for (;;) { 608 /* 609 * If CPU is completely quiesced by p_online(2), just wait 610 * here with minimal bus traffic until put online. 611 */ 612 while (cp->cpu_flags & CPU_QUIESCED) 613 (*idle_cpu)(); 614 615 if (cp->cpu_disp->disp_nrunnable != 0) { 616 idle_exit(); 617 swtch(); 618 } else { 619 if (cp->cpu_flags & CPU_OFFLINE) 620 continue; 621 if ((t = disp_getwork(cp)) == NULL) { 622 if (cp->cpu_chosen_level != -1) { 623 disp_t *dp = cp->cpu_disp; 624 disp_t *kpq; 625 626 disp_lock_enter(&dp->disp_lock); 627 /* 628 * Set kpq under lock to prevent 629 * migration between partitions. 630 */ 631 kpq = &cp->cpu_part->cp_kp_queue; 632 if (kpq->disp_maxrunpri == -1) 633 cp->cpu_chosen_level = -1; 634 disp_lock_exit(&dp->disp_lock); 635 } 636 (*idle_cpu)(); 637 continue; 638 } 639 /* 640 * If there was a thread but we couldn't steal 641 * it, then keep trying. 642 */ 643 if (t == T_DONTSTEAL) 644 continue; 645 idle_exit(); 646 swtch_to(t); 647 } 648 idle_enter(); /* returned from swtch/swtch_to */ 649 } 650 } 651 652 653 /* 654 * Preempt the currently running thread in favor of the highest 655 * priority thread. The class of the current thread controls 656 * where it goes on the dispatcher queues. If panicking, turn 657 * preemption off. 658 */ 659 void 660 preempt() 661 { 662 kthread_t *t = curthread; 663 klwp_t *lwp = ttolwp(curthread); 664 665 if (panicstr) 666 return; 667 668 TRACE_0(TR_FAC_DISP, TR_PREEMPT_START, "preempt_start"); 669 670 thread_lock(t); 671 672 if (t->t_state != TS_ONPROC || t->t_disp_queue != CPU->cpu_disp) { 673 /* 674 * this thread has already been chosen to be run on 675 * another CPU. Clear kprunrun on this CPU since we're 676 * already headed for swtch(). 677 */ 678 CPU->cpu_kprunrun = 0; 679 thread_unlock_nopreempt(t); 680 TRACE_0(TR_FAC_DISP, TR_PREEMPT_END, "preempt_end"); 681 } else { 682 if (lwp != NULL) 683 lwp->lwp_ru.nivcsw++; 684 CPU_STATS_ADDQ(CPU, sys, inv_swtch, 1); 685 THREAD_TRANSITION(t); 686 CL_PREEMPT(t); 687 DTRACE_SCHED(preempt); 688 thread_unlock_nopreempt(t); 689 690 TRACE_0(TR_FAC_DISP, TR_PREEMPT_END, "preempt_end"); 691 692 swtch(); /* clears CPU->cpu_runrun via disp() */ 693 } 694 } 695 696 extern kthread_t *thread_unpin(); 697 698 /* 699 * disp() - find the highest priority thread for this processor to run, and 700 * set it in TS_ONPROC state so that resume() can be called to run it. 701 */ 702 static kthread_t * 703 disp() 704 { 705 cpu_t *cpup; 706 disp_t *dp; 707 kthread_t *tp; 708 dispq_t *dq; 709 int maxrunword; 710 pri_t pri; 711 disp_t *kpq; 712 713 TRACE_0(TR_FAC_DISP, TR_DISP_START, "disp_start"); 714 715 cpup = CPU; 716 /* 717 * Find the highest priority loaded, runnable thread. 718 */ 719 dp = cpup->cpu_disp; 720 721 reschedule: 722 /* 723 * If there is more important work on the global queue with a better 724 * priority than the maximum on this CPU, take it now. 725 */ 726 kpq = &cpup->cpu_part->cp_kp_queue; 727 while ((pri = kpq->disp_maxrunpri) >= 0 && 728 pri >= dp->disp_maxrunpri && 729 (cpup->cpu_flags & CPU_OFFLINE) == 0 && 730 (tp = disp_getbest(kpq)) != NULL) { 731 if (disp_ratify(tp, kpq) != NULL) { 732 TRACE_1(TR_FAC_DISP, TR_DISP_END, 733 "disp_end:tid %p", tp); 734 return (tp); 735 } 736 } 737 738 disp_lock_enter(&dp->disp_lock); 739 pri = dp->disp_maxrunpri; 740 741 /* 742 * If there is nothing to run, look at what's runnable on other queues. 743 * Choose the idle thread if the CPU is quiesced. 744 * Note that CPUs that have the CPU_OFFLINE flag set can still run 745 * interrupt threads, which will be the only threads on the CPU's own 746 * queue, but cannot run threads from other queues. 747 */ 748 if (pri == -1) { 749 if (!(cpup->cpu_flags & CPU_OFFLINE)) { 750 disp_lock_exit(&dp->disp_lock); 751 if ((tp = disp_getwork(cpup)) == NULL || 752 tp == T_DONTSTEAL) { 753 tp = cpup->cpu_idle_thread; 754 (void) splhigh(); 755 THREAD_ONPROC(tp, cpup); 756 cpup->cpu_dispthread = tp; 757 cpup->cpu_dispatch_pri = -1; 758 cpup->cpu_runrun = cpup->cpu_kprunrun = 0; 759 cpup->cpu_chosen_level = -1; 760 } 761 } else { 762 disp_lock_exit_high(&dp->disp_lock); 763 tp = cpup->cpu_idle_thread; 764 THREAD_ONPROC(tp, cpup); 765 cpup->cpu_dispthread = tp; 766 cpup->cpu_dispatch_pri = -1; 767 cpup->cpu_runrun = cpup->cpu_kprunrun = 0; 768 cpup->cpu_chosen_level = -1; 769 } 770 TRACE_1(TR_FAC_DISP, TR_DISP_END, 771 "disp_end:tid %p", tp); 772 return (tp); 773 } 774 775 dq = &dp->disp_q[pri]; 776 tp = dq->dq_first; 777 778 ASSERT(tp != NULL); 779 ASSERT(tp->t_schedflag & TS_LOAD); /* thread must be swapped in */ 780 781 DTRACE_SCHED2(dequeue, kthread_t *, tp, disp_t *, dp); 782 783 /* 784 * Found it so remove it from queue. 785 */ 786 dp->disp_nrunnable--; 787 dq->dq_sruncnt--; 788 if ((dq->dq_first = tp->t_link) == NULL) { 789 ulong_t *dqactmap = dp->disp_qactmap; 790 791 ASSERT(dq->dq_sruncnt == 0); 792 dq->dq_last = NULL; 793 794 /* 795 * The queue is empty, so the corresponding bit needs to be 796 * turned off in dqactmap. If nrunnable != 0 just took the 797 * last runnable thread off the 798 * highest queue, so recompute disp_maxrunpri. 799 */ 800 maxrunword = pri >> BT_ULSHIFT; 801 dqactmap[maxrunword] &= ~BT_BIW(pri); 802 803 if (dp->disp_nrunnable == 0) { 804 dp->disp_max_unbound_pri = -1; 805 dp->disp_maxrunpri = -1; 806 } else { 807 int ipri; 808 809 ipri = bt_gethighbit(dqactmap, maxrunword); 810 dp->disp_maxrunpri = ipri; 811 if (ipri < dp->disp_max_unbound_pri) 812 dp->disp_max_unbound_pri = ipri; 813 } 814 } else { 815 tp->t_link = NULL; 816 } 817 818 /* 819 * Set TS_DONT_SWAP flag to prevent another processor from swapping 820 * out this thread before we have a chance to run it. 821 * While running, it is protected against swapping by t_lock. 822 */ 823 tp->t_schedflag |= TS_DONT_SWAP; 824 cpup->cpu_dispthread = tp; /* protected by spl only */ 825 cpup->cpu_dispatch_pri = pri; 826 ASSERT(pri == DISP_PRIO(tp)); 827 thread_onproc(tp, cpup); /* set t_state to TS_ONPROC */ 828 disp_lock_exit_high(&dp->disp_lock); /* drop run queue lock */ 829 830 ASSERT(tp != NULL); 831 TRACE_1(TR_FAC_DISP, TR_DISP_END, 832 "disp_end:tid %p", tp); 833 834 if (disp_ratify(tp, kpq) == NULL) 835 goto reschedule; 836 837 return (tp); 838 } 839 840 /* 841 * swtch() 842 * Find best runnable thread and run it. 843 * Called with the current thread already switched to a new state, 844 * on a sleep queue, run queue, stopped, and not zombied. 845 * May be called at any spl level less than or equal to LOCK_LEVEL. 846 * Always drops spl to the base level (spl0()). 847 */ 848 void 849 swtch() 850 { 851 kthread_t *t = curthread; 852 kthread_t *next; 853 cpu_t *cp; 854 855 TRACE_0(TR_FAC_DISP, TR_SWTCH_START, "swtch_start"); 856 857 if (t->t_flag & T_INTR_THREAD) 858 cpu_intr_swtch_enter(t); 859 860 if (t->t_intr != NULL) { 861 /* 862 * We are an interrupt thread. Setup and return 863 * the interrupted thread to be resumed. 864 */ 865 (void) splhigh(); /* block other scheduler action */ 866 cp = CPU; /* now protected against migration */ 867 ASSERT(CPU_ON_INTR(cp) == 0); /* not called with PIL > 10 */ 868 CPU_STATS_ADDQ(cp, sys, pswitch, 1); 869 CPU_STATS_ADDQ(cp, sys, intrblk, 1); 870 next = thread_unpin(); 871 TRACE_0(TR_FAC_DISP, TR_RESUME_START, "resume_start"); 872 resume_from_intr(next); 873 } else { 874 #ifdef DEBUG 875 if (t->t_state == TS_ONPROC && 876 t->t_disp_queue->disp_cpu == CPU && 877 t->t_preempt == 0) { 878 thread_lock(t); 879 ASSERT(t->t_state != TS_ONPROC || 880 t->t_disp_queue->disp_cpu != CPU || 881 t->t_preempt != 0); /* cannot migrate */ 882 thread_unlock_nopreempt(t); 883 } 884 #endif /* DEBUG */ 885 cp = CPU; 886 next = disp(); /* returns with spl high */ 887 ASSERT(CPU_ON_INTR(cp) == 0); /* not called with PIL > 10 */ 888 889 /* OK to steal anything left on run queue */ 890 cp->cpu_disp_flags &= ~CPU_DISP_DONTSTEAL; 891 892 if (next != t) { 893 hrtime_t now; 894 895 now = gethrtime_unscaled(); 896 pg_ev_thread_swtch(cp, now, t, next); 897 898 /* 899 * If t was previously in the TS_ONPROC state, 900 * setfrontdq and setbackdq won't have set its t_waitrq. 901 * Since we now finally know that we're switching away 902 * from this thread, set its t_waitrq if it is on a run 903 * queue. 904 */ 905 if ((t->t_state == TS_RUN) && (t->t_waitrq == 0)) { 906 t->t_waitrq = now; 907 } 908 909 /* 910 * restore mstate of thread that we are switching to 911 */ 912 restore_mstate(next); 913 914 CPU_STATS_ADDQ(cp, sys, pswitch, 1); 915 cp->cpu_last_swtch = t->t_disp_time = ddi_get_lbolt(); 916 TRACE_0(TR_FAC_DISP, TR_RESUME_START, "resume_start"); 917 918 if (dtrace_vtime_active) 919 dtrace_vtime_switch(next); 920 921 resume(next); 922 /* 923 * The TR_RESUME_END and TR_SWTCH_END trace points 924 * appear at the end of resume(), because we may not 925 * return here 926 */ 927 } else { 928 if (t->t_flag & T_INTR_THREAD) 929 cpu_intr_swtch_exit(t); 930 931 pg_ev_thread_remain(cp, t); 932 933 DTRACE_SCHED(remain__cpu); 934 TRACE_0(TR_FAC_DISP, TR_SWTCH_END, "swtch_end"); 935 (void) spl0(); 936 } 937 } 938 } 939 940 /* 941 * swtch_from_zombie() 942 * Special case of swtch(), which allows checks for TS_ZOMB to be 943 * eliminated from normal resume. 944 * Find best runnable thread and run it. 945 * Called with the current thread zombied. 946 * Zombies cannot migrate, so CPU references are safe. 947 */ 948 void 949 swtch_from_zombie() 950 { 951 kthread_t *next; 952 cpu_t *cpu = CPU; 953 954 TRACE_0(TR_FAC_DISP, TR_SWTCH_START, "swtch_start"); 955 956 ASSERT(curthread->t_state == TS_ZOMB); 957 958 next = disp(); /* returns with spl high */ 959 ASSERT(CPU_ON_INTR(CPU) == 0); /* not called with PIL > 10 */ 960 CPU_STATS_ADDQ(CPU, sys, pswitch, 1); 961 ASSERT(next != curthread); 962 TRACE_0(TR_FAC_DISP, TR_RESUME_START, "resume_start"); 963 964 pg_ev_thread_swtch(cpu, gethrtime_unscaled(), curthread, next); 965 966 restore_mstate(next); 967 968 if (dtrace_vtime_active) 969 dtrace_vtime_switch(next); 970 971 resume_from_zombie(next); 972 /* 973 * The TR_RESUME_END and TR_SWTCH_END trace points 974 * appear at the end of resume(), because we certainly will not 975 * return here 976 */ 977 } 978 979 #if defined(DEBUG) && (defined(DISP_DEBUG) || defined(lint)) 980 981 /* 982 * search_disp_queues() 983 * Search the given dispatch queues for thread tp. 984 * Return 1 if tp is found, otherwise return 0. 985 */ 986 static int 987 search_disp_queues(disp_t *dp, kthread_t *tp) 988 { 989 dispq_t *dq; 990 dispq_t *eq; 991 992 disp_lock_enter_high(&dp->disp_lock); 993 994 for (dq = dp->disp_q, eq = dp->disp_q_limit; dq < eq; ++dq) { 995 kthread_t *rp; 996 997 ASSERT(dq->dq_last == NULL || dq->dq_last->t_link == NULL); 998 999 for (rp = dq->dq_first; rp; rp = rp->t_link) 1000 if (tp == rp) { 1001 disp_lock_exit_high(&dp->disp_lock); 1002 return (1); 1003 } 1004 } 1005 disp_lock_exit_high(&dp->disp_lock); 1006 1007 return (0); 1008 } 1009 1010 /* 1011 * thread_on_queue() 1012 * Search all per-CPU dispatch queues and all partition-wide kpreempt 1013 * queues for thread tp. Return 1 if tp is found, otherwise return 0. 1014 */ 1015 static int 1016 thread_on_queue(kthread_t *tp) 1017 { 1018 cpu_t *cp; 1019 struct cpupart *part; 1020 1021 ASSERT(getpil() >= DISP_LEVEL); 1022 1023 /* 1024 * Search the per-CPU dispatch queues for tp. 1025 */ 1026 cp = CPU; 1027 do { 1028 if (search_disp_queues(cp->cpu_disp, tp)) 1029 return (1); 1030 } while ((cp = cp->cpu_next_onln) != CPU); 1031 1032 /* 1033 * Search the partition-wide kpreempt queues for tp. 1034 */ 1035 part = CPU->cpu_part; 1036 do { 1037 if (search_disp_queues(&part->cp_kp_queue, tp)) 1038 return (1); 1039 } while ((part = part->cp_next) != CPU->cpu_part); 1040 1041 return (0); 1042 } 1043 1044 #else 1045 1046 #define thread_on_queue(tp) 0 /* ASSERT must be !thread_on_queue */ 1047 1048 #endif /* DEBUG */ 1049 1050 /* 1051 * like swtch(), but switch to a specified thread taken from another CPU. 1052 * called with spl high.. 1053 */ 1054 void 1055 swtch_to(kthread_t *next) 1056 { 1057 cpu_t *cp = CPU; 1058 hrtime_t now; 1059 1060 TRACE_0(TR_FAC_DISP, TR_SWTCH_START, "swtch_start"); 1061 1062 /* 1063 * Update context switch statistics. 1064 */ 1065 CPU_STATS_ADDQ(cp, sys, pswitch, 1); 1066 1067 TRACE_0(TR_FAC_DISP, TR_RESUME_START, "resume_start"); 1068 1069 now = gethrtime_unscaled(); 1070 pg_ev_thread_swtch(cp, now, curthread, next); 1071 1072 /* OK to steal anything left on run queue */ 1073 cp->cpu_disp_flags &= ~CPU_DISP_DONTSTEAL; 1074 1075 /* record last execution time */ 1076 cp->cpu_last_swtch = curthread->t_disp_time = ddi_get_lbolt(); 1077 1078 /* 1079 * If t was previously in the TS_ONPROC state, setfrontdq and setbackdq 1080 * won't have set its t_waitrq. Since we now finally know that we're 1081 * switching away from this thread, set its t_waitrq if it is on a run 1082 * queue. 1083 */ 1084 if ((curthread->t_state == TS_RUN) && (curthread->t_waitrq == 0)) { 1085 curthread->t_waitrq = now; 1086 } 1087 1088 /* restore next thread to previously running microstate */ 1089 restore_mstate(next); 1090 1091 if (dtrace_vtime_active) 1092 dtrace_vtime_switch(next); 1093 1094 resume(next); 1095 /* 1096 * The TR_RESUME_END and TR_SWTCH_END trace points 1097 * appear at the end of resume(), because we may not 1098 * return here 1099 */ 1100 } 1101 1102 #define CPU_IDLING(pri) ((pri) == -1) 1103 1104 static void 1105 cpu_resched(cpu_t *cp, pri_t tpri) 1106 { 1107 int call_poke_cpu = 0; 1108 pri_t cpupri = cp->cpu_dispatch_pri; 1109 1110 if (!CPU_IDLING(cpupri) && (cpupri < tpri)) { 1111 TRACE_2(TR_FAC_DISP, TR_CPU_RESCHED, 1112 "CPU_RESCHED:Tpri %d Cpupri %d", tpri, cpupri); 1113 if (tpri >= upreemptpri && cp->cpu_runrun == 0) { 1114 cp->cpu_runrun = 1; 1115 aston(cp->cpu_dispthread); 1116 if (tpri < kpreemptpri && cp != CPU) 1117 call_poke_cpu = 1; 1118 } 1119 if (tpri >= kpreemptpri && cp->cpu_kprunrun == 0) { 1120 cp->cpu_kprunrun = 1; 1121 if (cp != CPU) 1122 call_poke_cpu = 1; 1123 } 1124 } 1125 1126 /* 1127 * Propagate cpu_runrun, and cpu_kprunrun to global visibility. 1128 */ 1129 membar_enter(); 1130 1131 if (call_poke_cpu) 1132 poke_cpu(cp->cpu_id); 1133 } 1134 1135 /* 1136 * setbackdq() keeps runqs balanced such that the difference in length 1137 * between the chosen runq and the next one is no more than RUNQ_MAX_DIFF. 1138 * For threads with priorities below RUNQ_MATCH_PRI levels, the runq's lengths 1139 * must match. When per-thread TS_RUNQMATCH flag is set, setbackdq() will 1140 * try to keep runqs perfectly balanced regardless of the thread priority. 1141 */ 1142 #define RUNQ_MATCH_PRI 16 /* pri below which queue lengths must match */ 1143 #define RUNQ_MAX_DIFF 2 /* maximum runq length difference */ 1144 #define RUNQ_LEN(cp, pri) ((cp)->cpu_disp->disp_q[pri].dq_sruncnt) 1145 1146 /* 1147 * Macro that evaluates to true if it is likely that the thread has cache 1148 * warmth. This is based on the amount of time that has elapsed since the 1149 * thread last ran. If that amount of time is less than "rechoose_interval" 1150 * ticks, then we decide that the thread has enough cache warmth to warrant 1151 * some affinity for t->t_cpu. 1152 */ 1153 #define THREAD_HAS_CACHE_WARMTH(thread) \ 1154 ((thread == curthread) || \ 1155 ((ddi_get_lbolt() - thread->t_disp_time) <= rechoose_interval)) 1156 /* 1157 * Put the specified thread on the back of the dispatcher 1158 * queue corresponding to its current priority. 1159 * 1160 * Called with the thread in transition, onproc or stopped state 1161 * and locked (transition implies locked) and at high spl. 1162 * Returns with the thread in TS_RUN state and still locked. 1163 */ 1164 void 1165 setbackdq(kthread_t *tp) 1166 { 1167 dispq_t *dq; 1168 disp_t *dp; 1169 cpu_t *cp; 1170 pri_t tpri; 1171 int bound; 1172 boolean_t self; 1173 1174 ASSERT(THREAD_LOCK_HELD(tp)); 1175 ASSERT((tp->t_schedflag & TS_ALLSTART) == 0); 1176 ASSERT(!thread_on_queue(tp)); /* make sure tp isn't on a runq */ 1177 1178 /* 1179 * If thread is "swapped" or on the swap queue don't 1180 * queue it, but wake sched. 1181 */ 1182 if ((tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) != TS_LOAD) { 1183 disp_swapped_setrun(tp); 1184 return; 1185 } 1186 1187 self = (tp == curthread); 1188 1189 if (tp->t_bound_cpu || tp->t_weakbound_cpu) 1190 bound = 1; 1191 else 1192 bound = 0; 1193 1194 tpri = DISP_PRIO(tp); 1195 if (ncpus == 1) 1196 cp = tp->t_cpu; 1197 else if (!bound) { 1198 if (tpri >= kpqpri) { 1199 setkpdq(tp, SETKP_BACK); 1200 return; 1201 } 1202 1203 /* 1204 * We'll generally let this thread continue to run where 1205 * it last ran...but will consider migration if: 1206 * - We thread probably doesn't have much cache warmth. 1207 * - The CPU where it last ran is the target of an offline 1208 * request. 1209 * - The thread last ran outside it's home lgroup. 1210 */ 1211 if ((!THREAD_HAS_CACHE_WARMTH(tp)) || 1212 (tp->t_cpu == cpu_inmotion)) { 1213 cp = disp_lowpri_cpu(tp->t_cpu, tp->t_lpl, tpri, NULL); 1214 } else if (!LGRP_CONTAINS_CPU(tp->t_lpl->lpl_lgrp, tp->t_cpu)) { 1215 cp = disp_lowpri_cpu(tp->t_cpu, tp->t_lpl, tpri, 1216 self ? tp->t_cpu : NULL); 1217 } else { 1218 cp = tp->t_cpu; 1219 } 1220 1221 if (tp->t_cpupart == cp->cpu_part) { 1222 int qlen; 1223 1224 /* 1225 * Perform any CMT load balancing 1226 */ 1227 cp = cmt_balance(tp, cp); 1228 1229 /* 1230 * Balance across the run queues 1231 */ 1232 qlen = RUNQ_LEN(cp, tpri); 1233 if (tpri >= RUNQ_MATCH_PRI && 1234 !(tp->t_schedflag & TS_RUNQMATCH)) 1235 qlen -= RUNQ_MAX_DIFF; 1236 if (qlen > 0) { 1237 cpu_t *newcp; 1238 1239 if (tp->t_lpl->lpl_lgrpid == LGRP_ROOTID) { 1240 newcp = cp->cpu_next_part; 1241 } else if ((newcp = cp->cpu_next_lpl) == cp) { 1242 newcp = cp->cpu_next_part; 1243 } 1244 1245 if (RUNQ_LEN(newcp, tpri) < qlen) { 1246 DTRACE_PROBE3(runq__balance, 1247 kthread_t *, tp, 1248 cpu_t *, cp, cpu_t *, newcp); 1249 cp = newcp; 1250 } 1251 } 1252 } else { 1253 /* 1254 * Migrate to a cpu in the new partition. 1255 */ 1256 cp = disp_lowpri_cpu(tp->t_cpupart->cp_cpulist, 1257 tp->t_lpl, tp->t_pri, NULL); 1258 } 1259 ASSERT((cp->cpu_flags & CPU_QUIESCED) == 0); 1260 } else { 1261 /* 1262 * It is possible that t_weakbound_cpu != t_bound_cpu (for 1263 * a short time until weak binding that existed when the 1264 * strong binding was established has dropped) so we must 1265 * favour weak binding over strong. 1266 */ 1267 cp = tp->t_weakbound_cpu ? 1268 tp->t_weakbound_cpu : tp->t_bound_cpu; 1269 } 1270 /* 1271 * A thread that is ONPROC may be temporarily placed on the run queue 1272 * but then chosen to run again by disp. If the thread we're placing on 1273 * the queue is in TS_ONPROC state, don't set its t_waitrq until a 1274 * replacement process is actually scheduled in swtch(). In this 1275 * situation, curthread is the only thread that could be in the ONPROC 1276 * state. 1277 */ 1278 if ((!self) && (tp->t_waitrq == 0)) { 1279 hrtime_t curtime; 1280 1281 curtime = gethrtime_unscaled(); 1282 (void) cpu_update_pct(tp, curtime); 1283 tp->t_waitrq = curtime; 1284 } else { 1285 (void) cpu_update_pct(tp, gethrtime_unscaled()); 1286 } 1287 1288 dp = cp->cpu_disp; 1289 disp_lock_enter_high(&dp->disp_lock); 1290 1291 DTRACE_SCHED3(enqueue, kthread_t *, tp, disp_t *, dp, int, 0); 1292 TRACE_3(TR_FAC_DISP, TR_BACKQ, "setbackdq:pri %d cpu %p tid %p", 1293 tpri, cp, tp); 1294 1295 #ifndef NPROBE 1296 /* Kernel probe */ 1297 if (tnf_tracing_active) 1298 tnf_thread_queue(tp, cp, tpri); 1299 #endif /* NPROBE */ 1300 1301 ASSERT(tpri >= 0 && tpri < dp->disp_npri); 1302 1303 THREAD_RUN(tp, &dp->disp_lock); /* set t_state to TS_RUN */ 1304 tp->t_disp_queue = dp; 1305 tp->t_link = NULL; 1306 1307 dq = &dp->disp_q[tpri]; 1308 dp->disp_nrunnable++; 1309 if (!bound) 1310 dp->disp_steal = 0; 1311 membar_enter(); 1312 1313 if (dq->dq_sruncnt++ != 0) { 1314 ASSERT(dq->dq_first != NULL); 1315 dq->dq_last->t_link = tp; 1316 dq->dq_last = tp; 1317 } else { 1318 ASSERT(dq->dq_first == NULL); 1319 ASSERT(dq->dq_last == NULL); 1320 dq->dq_first = dq->dq_last = tp; 1321 BT_SET(dp->disp_qactmap, tpri); 1322 if (tpri > dp->disp_maxrunpri) { 1323 dp->disp_maxrunpri = tpri; 1324 membar_enter(); 1325 cpu_resched(cp, tpri); 1326 } 1327 } 1328 1329 if (!bound && tpri > dp->disp_max_unbound_pri) { 1330 if (self && dp->disp_max_unbound_pri == -1 && cp == CPU) { 1331 /* 1332 * If there are no other unbound threads on the 1333 * run queue, don't allow other CPUs to steal 1334 * this thread while we are in the middle of a 1335 * context switch. We may just switch to it 1336 * again right away. CPU_DISP_DONTSTEAL is cleared 1337 * in swtch and swtch_to. 1338 */ 1339 cp->cpu_disp_flags |= CPU_DISP_DONTSTEAL; 1340 } 1341 dp->disp_max_unbound_pri = tpri; 1342 } 1343 (*disp_enq_thread)(cp, bound); 1344 } 1345 1346 /* 1347 * Put the specified thread on the front of the dispatcher 1348 * queue corresponding to its current priority. 1349 * 1350 * Called with the thread in transition, onproc or stopped state 1351 * and locked (transition implies locked) and at high spl. 1352 * Returns with the thread in TS_RUN state and still locked. 1353 */ 1354 void 1355 setfrontdq(kthread_t *tp) 1356 { 1357 disp_t *dp; 1358 dispq_t *dq; 1359 cpu_t *cp; 1360 pri_t tpri; 1361 int bound; 1362 1363 ASSERT(THREAD_LOCK_HELD(tp)); 1364 ASSERT((tp->t_schedflag & TS_ALLSTART) == 0); 1365 ASSERT(!thread_on_queue(tp)); /* make sure tp isn't on a runq */ 1366 1367 /* 1368 * If thread is "swapped" or on the swap queue don't 1369 * queue it, but wake sched. 1370 */ 1371 if ((tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) != TS_LOAD) { 1372 disp_swapped_setrun(tp); 1373 return; 1374 } 1375 1376 if (tp->t_bound_cpu || tp->t_weakbound_cpu) 1377 bound = 1; 1378 else 1379 bound = 0; 1380 1381 tpri = DISP_PRIO(tp); 1382 if (ncpus == 1) 1383 cp = tp->t_cpu; 1384 else if (!bound) { 1385 if (tpri >= kpqpri) { 1386 setkpdq(tp, SETKP_FRONT); 1387 return; 1388 } 1389 cp = tp->t_cpu; 1390 if (tp->t_cpupart == cp->cpu_part) { 1391 /* 1392 * We'll generally let this thread continue to run 1393 * where it last ran, but will consider migration if: 1394 * - The thread last ran outside it's home lgroup. 1395 * - The CPU where it last ran is the target of an 1396 * offline request (a thread_nomigrate() on the in 1397 * motion CPU relies on this when forcing a preempt). 1398 * - The thread isn't the highest priority thread where 1399 * it last ran, and it is considered not likely to 1400 * have significant cache warmth. 1401 */ 1402 if ((!LGRP_CONTAINS_CPU(tp->t_lpl->lpl_lgrp, cp)) || 1403 (cp == cpu_inmotion)) { 1404 cp = disp_lowpri_cpu(tp->t_cpu, tp->t_lpl, tpri, 1405 (tp == curthread) ? cp : NULL); 1406 } else if ((tpri < cp->cpu_disp->disp_maxrunpri) && 1407 (!THREAD_HAS_CACHE_WARMTH(tp))) { 1408 cp = disp_lowpri_cpu(tp->t_cpu, tp->t_lpl, tpri, 1409 NULL); 1410 } 1411 } else { 1412 /* 1413 * Migrate to a cpu in the new partition. 1414 */ 1415 cp = disp_lowpri_cpu(tp->t_cpupart->cp_cpulist, 1416 tp->t_lpl, tp->t_pri, NULL); 1417 } 1418 ASSERT((cp->cpu_flags & CPU_QUIESCED) == 0); 1419 } else { 1420 /* 1421 * It is possible that t_weakbound_cpu != t_bound_cpu (for 1422 * a short time until weak binding that existed when the 1423 * strong binding was established has dropped) so we must 1424 * favour weak binding over strong. 1425 */ 1426 cp = tp->t_weakbound_cpu ? 1427 tp->t_weakbound_cpu : tp->t_bound_cpu; 1428 } 1429 1430 /* 1431 * A thread that is ONPROC may be temporarily placed on the run queue 1432 * but then chosen to run again by disp. If the thread we're placing on 1433 * the queue is in TS_ONPROC state, don't set its t_waitrq until a 1434 * replacement process is actually scheduled in swtch(). In this 1435 * situation, curthread is the only thread that could be in the ONPROC 1436 * state. 1437 */ 1438 if ((tp != curthread) && (tp->t_waitrq == 0)) { 1439 hrtime_t curtime; 1440 1441 curtime = gethrtime_unscaled(); 1442 (void) cpu_update_pct(tp, curtime); 1443 tp->t_waitrq = curtime; 1444 } else { 1445 (void) cpu_update_pct(tp, gethrtime_unscaled()); 1446 } 1447 1448 dp = cp->cpu_disp; 1449 disp_lock_enter_high(&dp->disp_lock); 1450 1451 TRACE_2(TR_FAC_DISP, TR_FRONTQ, "frontq:pri %d tid %p", tpri, tp); 1452 DTRACE_SCHED3(enqueue, kthread_t *, tp, disp_t *, dp, int, 1); 1453 1454 #ifndef NPROBE 1455 /* Kernel probe */ 1456 if (tnf_tracing_active) 1457 tnf_thread_queue(tp, cp, tpri); 1458 #endif /* NPROBE */ 1459 1460 ASSERT(tpri >= 0 && tpri < dp->disp_npri); 1461 1462 THREAD_RUN(tp, &dp->disp_lock); /* set TS_RUN state and lock */ 1463 tp->t_disp_queue = dp; 1464 1465 dq = &dp->disp_q[tpri]; 1466 dp->disp_nrunnable++; 1467 if (!bound) 1468 dp->disp_steal = 0; 1469 membar_enter(); 1470 1471 if (dq->dq_sruncnt++ != 0) { 1472 ASSERT(dq->dq_last != NULL); 1473 tp->t_link = dq->dq_first; 1474 dq->dq_first = tp; 1475 } else { 1476 ASSERT(dq->dq_last == NULL); 1477 ASSERT(dq->dq_first == NULL); 1478 tp->t_link = NULL; 1479 dq->dq_first = dq->dq_last = tp; 1480 BT_SET(dp->disp_qactmap, tpri); 1481 if (tpri > dp->disp_maxrunpri) { 1482 dp->disp_maxrunpri = tpri; 1483 membar_enter(); 1484 cpu_resched(cp, tpri); 1485 } 1486 } 1487 1488 if (!bound && tpri > dp->disp_max_unbound_pri) { 1489 if (tp == curthread && dp->disp_max_unbound_pri == -1 && 1490 cp == CPU) { 1491 /* 1492 * If there are no other unbound threads on the 1493 * run queue, don't allow other CPUs to steal 1494 * this thread while we are in the middle of a 1495 * context switch. We may just switch to it 1496 * again right away. CPU_DISP_DONTSTEAL is cleared 1497 * in swtch and swtch_to. 1498 */ 1499 cp->cpu_disp_flags |= CPU_DISP_DONTSTEAL; 1500 } 1501 dp->disp_max_unbound_pri = tpri; 1502 } 1503 (*disp_enq_thread)(cp, bound); 1504 } 1505 1506 /* 1507 * Put a high-priority unbound thread on the kp queue 1508 */ 1509 static void 1510 setkpdq(kthread_t *tp, int borf) 1511 { 1512 dispq_t *dq; 1513 disp_t *dp; 1514 cpu_t *cp; 1515 pri_t tpri; 1516 1517 tpri = DISP_PRIO(tp); 1518 1519 dp = &tp->t_cpupart->cp_kp_queue; 1520 disp_lock_enter_high(&dp->disp_lock); 1521 1522 TRACE_2(TR_FAC_DISP, TR_FRONTQ, "frontq:pri %d tid %p", tpri, tp); 1523 1524 ASSERT(tpri >= 0 && tpri < dp->disp_npri); 1525 DTRACE_SCHED3(enqueue, kthread_t *, tp, disp_t *, dp, int, borf); 1526 THREAD_RUN(tp, &dp->disp_lock); /* set t_state to TS_RUN */ 1527 tp->t_disp_queue = dp; 1528 dp->disp_nrunnable++; 1529 dq = &dp->disp_q[tpri]; 1530 1531 if (dq->dq_sruncnt++ != 0) { 1532 if (borf == SETKP_BACK) { 1533 ASSERT(dq->dq_first != NULL); 1534 tp->t_link = NULL; 1535 dq->dq_last->t_link = tp; 1536 dq->dq_last = tp; 1537 } else { 1538 ASSERT(dq->dq_last != NULL); 1539 tp->t_link = dq->dq_first; 1540 dq->dq_first = tp; 1541 } 1542 } else { 1543 if (borf == SETKP_BACK) { 1544 ASSERT(dq->dq_first == NULL); 1545 ASSERT(dq->dq_last == NULL); 1546 dq->dq_first = dq->dq_last = tp; 1547 } else { 1548 ASSERT(dq->dq_last == NULL); 1549 ASSERT(dq->dq_first == NULL); 1550 tp->t_link = NULL; 1551 dq->dq_first = dq->dq_last = tp; 1552 } 1553 BT_SET(dp->disp_qactmap, tpri); 1554 if (tpri > dp->disp_max_unbound_pri) 1555 dp->disp_max_unbound_pri = tpri; 1556 if (tpri > dp->disp_maxrunpri) { 1557 dp->disp_maxrunpri = tpri; 1558 membar_enter(); 1559 } 1560 } 1561 1562 cp = tp->t_cpu; 1563 if (tp->t_cpupart != cp->cpu_part) { 1564 /* migrate to a cpu in the new partition */ 1565 cp = tp->t_cpupart->cp_cpulist; 1566 } 1567 cp = disp_lowpri_cpu(cp, tp->t_lpl, tp->t_pri, NULL); 1568 disp_lock_enter_high(&cp->cpu_disp->disp_lock); 1569 ASSERT((cp->cpu_flags & CPU_QUIESCED) == 0); 1570 1571 #ifndef NPROBE 1572 /* Kernel probe */ 1573 if (tnf_tracing_active) 1574 tnf_thread_queue(tp, cp, tpri); 1575 #endif /* NPROBE */ 1576 1577 if (cp->cpu_chosen_level < tpri) 1578 cp->cpu_chosen_level = tpri; 1579 cpu_resched(cp, tpri); 1580 disp_lock_exit_high(&cp->cpu_disp->disp_lock); 1581 (*disp_enq_thread)(cp, 0); 1582 } 1583 1584 /* 1585 * Remove a thread from the dispatcher queue if it is on it. 1586 * It is not an error if it is not found but we return whether 1587 * or not it was found in case the caller wants to check. 1588 */ 1589 int 1590 dispdeq(kthread_t *tp) 1591 { 1592 disp_t *dp; 1593 dispq_t *dq; 1594 kthread_t *rp; 1595 kthread_t *trp; 1596 kthread_t **ptp; 1597 int tpri; 1598 1599 ASSERT(THREAD_LOCK_HELD(tp)); 1600 1601 if (tp->t_state != TS_RUN) 1602 return (0); 1603 1604 /* 1605 * The thread is "swapped" or is on the swap queue and 1606 * hence no longer on the run queue, so return true. 1607 */ 1608 if ((tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) != TS_LOAD) 1609 return (1); 1610 1611 tpri = DISP_PRIO(tp); 1612 dp = tp->t_disp_queue; 1613 ASSERT(tpri < dp->disp_npri); 1614 dq = &dp->disp_q[tpri]; 1615 ptp = &dq->dq_first; 1616 rp = *ptp; 1617 trp = NULL; 1618 1619 ASSERT(dq->dq_last == NULL || dq->dq_last->t_link == NULL); 1620 1621 /* 1622 * Search for thread in queue. 1623 * Double links would simplify this at the expense of disp/setrun. 1624 */ 1625 while (rp != tp && rp != NULL) { 1626 trp = rp; 1627 ptp = &trp->t_link; 1628 rp = trp->t_link; 1629 } 1630 1631 if (rp == NULL) { 1632 panic("dispdeq: thread not on queue"); 1633 } 1634 1635 DTRACE_SCHED2(dequeue, kthread_t *, tp, disp_t *, dp); 1636 1637 /* 1638 * Found it so remove it from queue. 1639 */ 1640 if ((*ptp = rp->t_link) == NULL) 1641 dq->dq_last = trp; 1642 1643 dp->disp_nrunnable--; 1644 if (--dq->dq_sruncnt == 0) { 1645 dp->disp_qactmap[tpri >> BT_ULSHIFT] &= ~BT_BIW(tpri); 1646 if (dp->disp_nrunnable == 0) { 1647 dp->disp_max_unbound_pri = -1; 1648 dp->disp_maxrunpri = -1; 1649 } else if (tpri == dp->disp_maxrunpri) { 1650 int ipri; 1651 1652 ipri = bt_gethighbit(dp->disp_qactmap, 1653 dp->disp_maxrunpri >> BT_ULSHIFT); 1654 if (ipri < dp->disp_max_unbound_pri) 1655 dp->disp_max_unbound_pri = ipri; 1656 dp->disp_maxrunpri = ipri; 1657 } 1658 } 1659 tp->t_link = NULL; 1660 THREAD_TRANSITION(tp); /* put in intermediate state */ 1661 return (1); 1662 } 1663 1664 1665 /* 1666 * dq_sruninc and dq_srundec are public functions for 1667 * incrementing/decrementing the sruncnts when a thread on 1668 * a dispatcher queue is made schedulable/unschedulable by 1669 * resetting the TS_LOAD flag. 1670 * 1671 * The caller MUST have the thread lock and therefore the dispatcher 1672 * queue lock so that the operation which changes 1673 * the flag, the operation that checks the status of the thread to 1674 * determine if it's on a disp queue AND the call to this function 1675 * are one atomic operation with respect to interrupts. 1676 */ 1677 1678 /* 1679 * Called by sched AFTER TS_LOAD flag is set on a swapped, runnable thread. 1680 */ 1681 void 1682 dq_sruninc(kthread_t *t) 1683 { 1684 ASSERT(t->t_state == TS_RUN); 1685 ASSERT(t->t_schedflag & TS_LOAD); 1686 1687 THREAD_TRANSITION(t); 1688 setfrontdq(t); 1689 } 1690 1691 /* 1692 * See comment on calling conventions above. 1693 * Called by sched BEFORE TS_LOAD flag is cleared on a runnable thread. 1694 */ 1695 void 1696 dq_srundec(kthread_t *t) 1697 { 1698 ASSERT(t->t_schedflag & TS_LOAD); 1699 1700 (void) dispdeq(t); 1701 disp_swapped_enq(t); 1702 } 1703 1704 /* 1705 * Change the dispatcher lock of thread to the "swapped_lock" 1706 * and return with thread lock still held. 1707 * 1708 * Called with thread_lock held, in transition state, and at high spl. 1709 */ 1710 void 1711 disp_swapped_enq(kthread_t *tp) 1712 { 1713 ASSERT(THREAD_LOCK_HELD(tp)); 1714 ASSERT(tp->t_schedflag & TS_LOAD); 1715 1716 switch (tp->t_state) { 1717 case TS_RUN: 1718 disp_lock_enter_high(&swapped_lock); 1719 THREAD_SWAP(tp, &swapped_lock); /* set TS_RUN state and lock */ 1720 break; 1721 case TS_ONPROC: 1722 disp_lock_enter_high(&swapped_lock); 1723 THREAD_TRANSITION(tp); 1724 wake_sched_sec = 1; /* tell clock to wake sched */ 1725 THREAD_SWAP(tp, &swapped_lock); /* set TS_RUN state and lock */ 1726 break; 1727 default: 1728 panic("disp_swapped: tp: %p bad t_state", (void *)tp); 1729 } 1730 } 1731 1732 /* 1733 * This routine is called by setbackdq/setfrontdq if the thread is 1734 * not loaded or loaded and on the swap queue. 1735 * 1736 * Thread state TS_SLEEP implies that a swapped thread 1737 * has been woken up and needs to be swapped in by the swapper. 1738 * 1739 * Thread state TS_RUN, it implies that the priority of a swapped 1740 * thread is being increased by scheduling class (e.g. ts_update). 1741 */ 1742 static void 1743 disp_swapped_setrun(kthread_t *tp) 1744 { 1745 ASSERT(THREAD_LOCK_HELD(tp)); 1746 ASSERT((tp->t_schedflag & (TS_LOAD | TS_ON_SWAPQ)) != TS_LOAD); 1747 1748 switch (tp->t_state) { 1749 case TS_SLEEP: 1750 disp_lock_enter_high(&swapped_lock); 1751 /* 1752 * Wakeup sched immediately (i.e., next tick) if the 1753 * thread priority is above maxclsyspri. 1754 */ 1755 if (DISP_PRIO(tp) > maxclsyspri) 1756 wake_sched = 1; 1757 else 1758 wake_sched_sec = 1; 1759 THREAD_RUN(tp, &swapped_lock); /* set TS_RUN state and lock */ 1760 break; 1761 case TS_RUN: /* called from ts_update */ 1762 break; 1763 default: 1764 panic("disp_swapped_setrun: tp: %p bad t_state", (void *)tp); 1765 } 1766 } 1767 1768 /* 1769 * Make a thread give up its processor. Find the processor on 1770 * which this thread is executing, and have that processor 1771 * preempt. 1772 * 1773 * We allow System Duty Cycle (SDC) threads to be preempted even if 1774 * they are running at kernel priorities. To implement this, we always 1775 * set cpu_kprunrun; this ensures preempt() will be called. Since SDC 1776 * calls cpu_surrender() very often, we only preempt if there is anyone 1777 * competing with us. 1778 */ 1779 void 1780 cpu_surrender(kthread_t *tp) 1781 { 1782 cpu_t *cpup; 1783 int max_pri; 1784 int max_run_pri; 1785 klwp_t *lwp; 1786 1787 ASSERT(THREAD_LOCK_HELD(tp)); 1788 1789 if (tp->t_state != TS_ONPROC) 1790 return; 1791 cpup = tp->t_disp_queue->disp_cpu; /* CPU thread dispatched to */ 1792 max_pri = cpup->cpu_disp->disp_maxrunpri; /* best pri of that CPU */ 1793 max_run_pri = CP_MAXRUNPRI(cpup->cpu_part); 1794 if (max_pri < max_run_pri) 1795 max_pri = max_run_pri; 1796 1797 if (tp->t_cid == sysdccid) { 1798 uint_t t_pri = DISP_PRIO(tp); 1799 if (t_pri > max_pri) 1800 return; /* we are not competing w/ anyone */ 1801 cpup->cpu_runrun = cpup->cpu_kprunrun = 1; 1802 } else { 1803 cpup->cpu_runrun = 1; 1804 if (max_pri >= kpreemptpri && cpup->cpu_kprunrun == 0) { 1805 cpup->cpu_kprunrun = 1; 1806 } 1807 } 1808 1809 /* 1810 * Propagate cpu_runrun, and cpu_kprunrun to global visibility. 1811 */ 1812 membar_enter(); 1813 1814 DTRACE_SCHED1(surrender, kthread_t *, tp); 1815 1816 /* 1817 * Make the target thread take an excursion through trap() 1818 * to do preempt() (unless we're already in trap or post_syscall, 1819 * calling cpu_surrender via CL_TRAPRET). 1820 */ 1821 if (tp != curthread || (lwp = tp->t_lwp) == NULL || 1822 lwp->lwp_state != LWP_USER) { 1823 aston(tp); 1824 if (cpup != CPU) 1825 poke_cpu(cpup->cpu_id); 1826 } 1827 TRACE_2(TR_FAC_DISP, TR_CPU_SURRENDER, 1828 "cpu_surrender:tid %p cpu %p", tp, cpup); 1829 } 1830 1831 /* 1832 * Commit to and ratify a scheduling decision 1833 */ 1834 /*ARGSUSED*/ 1835 static kthread_t * 1836 disp_ratify(kthread_t *tp, disp_t *kpq) 1837 { 1838 pri_t tpri, maxpri; 1839 pri_t maxkpri; 1840 cpu_t *cpup; 1841 1842 ASSERT(tp != NULL); 1843 /* 1844 * Commit to, then ratify scheduling decision 1845 */ 1846 cpup = CPU; 1847 if (cpup->cpu_runrun != 0) 1848 cpup->cpu_runrun = 0; 1849 if (cpup->cpu_kprunrun != 0) 1850 cpup->cpu_kprunrun = 0; 1851 if (cpup->cpu_chosen_level != -1) 1852 cpup->cpu_chosen_level = -1; 1853 membar_enter(); 1854 tpri = DISP_PRIO(tp); 1855 maxpri = cpup->cpu_disp->disp_maxrunpri; 1856 maxkpri = kpq->disp_maxrunpri; 1857 if (maxpri < maxkpri) 1858 maxpri = maxkpri; 1859 if (tpri < maxpri) { 1860 /* 1861 * should have done better 1862 * put this one back and indicate to try again 1863 */ 1864 cpup->cpu_dispthread = curthread; /* fixup dispthread */ 1865 cpup->cpu_dispatch_pri = DISP_PRIO(curthread); 1866 thread_lock_high(tp); 1867 THREAD_TRANSITION(tp); 1868 setfrontdq(tp); 1869 thread_unlock_nopreempt(tp); 1870 1871 tp = NULL; 1872 } 1873 return (tp); 1874 } 1875 1876 /* 1877 * See if there is any work on the dispatcher queue for other CPUs. 1878 * If there is, dequeue the best thread and return. 1879 */ 1880 static kthread_t * 1881 disp_getwork(cpu_t *cp) 1882 { 1883 cpu_t *ocp; /* other CPU */ 1884 cpu_t *ocp_start; 1885 cpu_t *tcp; /* target local CPU */ 1886 kthread_t *tp; 1887 kthread_t *retval = NULL; 1888 pri_t maxpri; 1889 disp_t *kpq; /* kp queue for this partition */ 1890 lpl_t *lpl, *lpl_leaf; 1891 int leafidx, startidx; 1892 hrtime_t stealtime; 1893 lgrp_id_t local_id; 1894 1895 maxpri = -1; 1896 tcp = NULL; 1897 1898 kpq = &cp->cpu_part->cp_kp_queue; 1899 while (kpq->disp_maxrunpri >= 0) { 1900 /* 1901 * Try to take a thread from the kp_queue. 1902 */ 1903 tp = (disp_getbest(kpq)); 1904 if (tp) 1905 return (disp_ratify(tp, kpq)); 1906 } 1907 1908 kpreempt_disable(); /* protect the cpu_active list */ 1909 1910 /* 1911 * Try to find something to do on another CPU's run queue. 1912 * Loop through all other CPUs looking for the one with the highest 1913 * priority unbound thread. 1914 * 1915 * On NUMA machines, the partition's CPUs are consulted in order of 1916 * distance from the current CPU. This way, the first available 1917 * work found is also the closest, and will suffer the least 1918 * from being migrated. 1919 */ 1920 lpl = lpl_leaf = cp->cpu_lpl; 1921 local_id = lpl_leaf->lpl_lgrpid; 1922 leafidx = startidx = 0; 1923 1924 /* 1925 * This loop traverses the lpl hierarchy. Higher level lpls represent 1926 * broader levels of locality 1927 */ 1928 do { 1929 /* This loop iterates over the lpl's leaves */ 1930 do { 1931 if (lpl_leaf != cp->cpu_lpl) 1932 ocp = lpl_leaf->lpl_cpus; 1933 else 1934 ocp = cp->cpu_next_lpl; 1935 1936 /* This loop iterates over the CPUs in the leaf */ 1937 ocp_start = ocp; 1938 do { 1939 pri_t pri; 1940 1941 ASSERT(CPU_ACTIVE(ocp)); 1942 1943 /* 1944 * End our stroll around this lpl if: 1945 * 1946 * - Something became runnable on the local 1947 * queue...which also ends our stroll around 1948 * the partition. 1949 * 1950 * - We happen across another idle CPU. 1951 * Since it is patrolling the next portion 1952 * of the lpl's list (assuming it's not 1953 * halted, or busy servicing an interrupt), 1954 * move to the next higher level of locality. 1955 */ 1956 if (cp->cpu_disp->disp_nrunnable != 0) { 1957 kpreempt_enable(); 1958 return (NULL); 1959 } 1960 if (ocp->cpu_dispatch_pri == -1) { 1961 if (ocp->cpu_disp_flags & 1962 CPU_DISP_HALTED || 1963 ocp->cpu_intr_actv != 0) 1964 continue; 1965 else 1966 goto next_level; 1967 } 1968 1969 /* 1970 * If there's only one thread and the CPU 1971 * is in the middle of a context switch, 1972 * or it's currently running the idle thread, 1973 * don't steal it. 1974 */ 1975 if ((ocp->cpu_disp_flags & 1976 CPU_DISP_DONTSTEAL) && 1977 ocp->cpu_disp->disp_nrunnable == 1) 1978 continue; 1979 1980 pri = ocp->cpu_disp->disp_max_unbound_pri; 1981 if (pri > maxpri) { 1982 /* 1983 * Don't steal threads that we attempted 1984 * to steal recently until they're ready 1985 * to be stolen again. 1986 */ 1987 stealtime = ocp->cpu_disp->disp_steal; 1988 if (stealtime == 0 || 1989 stealtime - gethrtime() <= 0) { 1990 maxpri = pri; 1991 tcp = ocp; 1992 } else { 1993 /* 1994 * Don't update tcp, just set 1995 * the retval to T_DONTSTEAL, so 1996 * that if no acceptable CPUs 1997 * are found the return value 1998 * will be T_DONTSTEAL rather 1999 * then NULL. 2000 */ 2001 retval = T_DONTSTEAL; 2002 } 2003 } 2004 } while ((ocp = ocp->cpu_next_lpl) != ocp_start); 2005 2006 /* 2007 * Iterate to the next leaf lpl in the resource set 2008 * at this level of locality. If we hit the end of 2009 * the set, wrap back around to the beginning. 2010 * 2011 * Note: This iteration is NULL terminated for a reason 2012 * see lpl_topo_bootstrap() in lgrp.c for details. 2013 */ 2014 if ((lpl_leaf = lpl->lpl_rset[++leafidx]) == NULL) { 2015 leafidx = 0; 2016 lpl_leaf = lpl->lpl_rset[leafidx]; 2017 } 2018 } while (leafidx != startidx); 2019 2020 next_level: 2021 /* 2022 * Expand the search to include farther away CPUs (next 2023 * locality level). The closer CPUs that have already been 2024 * checked will be checked again. In doing so, idle CPUs 2025 * will tend to be more aggresive about stealing from CPUs 2026 * that are closer (since the closer CPUs will be considered 2027 * more often). 2028 * Begin at this level with the CPUs local leaf lpl. 2029 */ 2030 if ((lpl = lpl->lpl_parent) != NULL) { 2031 leafidx = startidx = lpl->lpl_id2rset[local_id]; 2032 lpl_leaf = lpl->lpl_rset[leafidx]; 2033 } 2034 } while (!tcp && lpl); 2035 2036 kpreempt_enable(); 2037 2038 /* 2039 * If another queue looks good, and there is still nothing on 2040 * the local queue, try to transfer one or more threads 2041 * from it to our queue. 2042 */ 2043 if (tcp && cp->cpu_disp->disp_nrunnable == 0) { 2044 tp = disp_getbest(tcp->cpu_disp); 2045 if (tp == NULL || tp == T_DONTSTEAL) 2046 return (tp); 2047 return (disp_ratify(tp, kpq)); 2048 } 2049 return (retval); 2050 } 2051 2052 2053 /* 2054 * disp_fix_unbound_pri() 2055 * Determines the maximum priority of unbound threads on the queue. 2056 * The priority is kept for the queue, but is only increased, never 2057 * reduced unless some CPU is looking for something on that queue. 2058 * 2059 * The priority argument is the known upper limit. 2060 * 2061 * Perhaps this should be kept accurately, but that probably means 2062 * separate bitmaps for bound and unbound threads. Since only idled 2063 * CPUs will have to do this recalculation, it seems better this way. 2064 */ 2065 static void 2066 disp_fix_unbound_pri(disp_t *dp, pri_t pri) 2067 { 2068 kthread_t *tp; 2069 dispq_t *dq; 2070 ulong_t *dqactmap = dp->disp_qactmap; 2071 ulong_t mapword; 2072 int wx; 2073 2074 ASSERT(DISP_LOCK_HELD(&dp->disp_lock)); 2075 2076 ASSERT(pri >= 0); /* checked by caller */ 2077 2078 /* 2079 * Start the search at the next lowest priority below the supplied 2080 * priority. This depends on the bitmap implementation. 2081 */ 2082 do { 2083 wx = pri >> BT_ULSHIFT; /* index of word in map */ 2084 2085 /* 2086 * Form mask for all lower priorities in the word. 2087 */ 2088 mapword = dqactmap[wx] & (BT_BIW(pri) - 1); 2089 2090 /* 2091 * Get next lower active priority. 2092 */ 2093 if (mapword != 0) { 2094 pri = (wx << BT_ULSHIFT) + highbit(mapword) - 1; 2095 } else if (wx > 0) { 2096 pri = bt_gethighbit(dqactmap, wx - 1); /* sign extend */ 2097 if (pri < 0) 2098 break; 2099 } else { 2100 pri = -1; 2101 break; 2102 } 2103 2104 /* 2105 * Search the queue for unbound, runnable threads. 2106 */ 2107 dq = &dp->disp_q[pri]; 2108 tp = dq->dq_first; 2109 2110 while (tp && (tp->t_bound_cpu || tp->t_weakbound_cpu)) { 2111 tp = tp->t_link; 2112 } 2113 2114 /* 2115 * If a thread was found, set the priority and return. 2116 */ 2117 } while (tp == NULL); 2118 2119 /* 2120 * pri holds the maximum unbound thread priority or -1. 2121 */ 2122 if (dp->disp_max_unbound_pri != pri) 2123 dp->disp_max_unbound_pri = pri; 2124 } 2125 2126 /* 2127 * disp_adjust_unbound_pri() - thread is becoming unbound, so we should 2128 * check if the CPU to which is was previously bound should have 2129 * its disp_max_unbound_pri increased. 2130 */ 2131 void 2132 disp_adjust_unbound_pri(kthread_t *tp) 2133 { 2134 disp_t *dp; 2135 pri_t tpri; 2136 2137 ASSERT(THREAD_LOCK_HELD(tp)); 2138 2139 /* 2140 * Don't do anything if the thread is not bound, or 2141 * currently not runnable or swapped out. 2142 */ 2143 if (tp->t_bound_cpu == NULL || 2144 tp->t_state != TS_RUN || 2145 tp->t_schedflag & TS_ON_SWAPQ) 2146 return; 2147 2148 tpri = DISP_PRIO(tp); 2149 dp = tp->t_bound_cpu->cpu_disp; 2150 ASSERT(tpri >= 0 && tpri < dp->disp_npri); 2151 if (tpri > dp->disp_max_unbound_pri) 2152 dp->disp_max_unbound_pri = tpri; 2153 } 2154 2155 /* 2156 * disp_getbest() 2157 * De-queue the highest priority unbound runnable thread. 2158 * Returns with the thread unlocked and onproc but at splhigh (like disp()). 2159 * Returns NULL if nothing found. 2160 * Returns T_DONTSTEAL if the thread was not stealable. 2161 * so that the caller will try again later. 2162 * 2163 * Passed a pointer to a dispatch queue not associated with this CPU, and 2164 * its type. 2165 */ 2166 static kthread_t * 2167 disp_getbest(disp_t *dp) 2168 { 2169 kthread_t *tp; 2170 dispq_t *dq; 2171 pri_t pri; 2172 cpu_t *cp, *tcp; 2173 boolean_t allbound; 2174 2175 disp_lock_enter(&dp->disp_lock); 2176 2177 /* 2178 * If there is nothing to run, or the CPU is in the middle of a 2179 * context switch of the only thread, return NULL. 2180 */ 2181 tcp = dp->disp_cpu; 2182 cp = CPU; 2183 pri = dp->disp_max_unbound_pri; 2184 if (pri == -1 || 2185 (tcp != NULL && (tcp->cpu_disp_flags & CPU_DISP_DONTSTEAL) && 2186 tcp->cpu_disp->disp_nrunnable == 1)) { 2187 disp_lock_exit_nopreempt(&dp->disp_lock); 2188 return (NULL); 2189 } 2190 2191 dq = &dp->disp_q[pri]; 2192 2193 2194 /* 2195 * Assume that all threads are bound on this queue, and change it 2196 * later when we find out that it is not the case. 2197 */ 2198 allbound = B_TRUE; 2199 for (tp = dq->dq_first; tp != NULL; tp = tp->t_link) { 2200 hrtime_t now, nosteal, rqtime; 2201 2202 /* 2203 * Skip over bound threads which could be here even 2204 * though disp_max_unbound_pri indicated this level. 2205 */ 2206 if (tp->t_bound_cpu || tp->t_weakbound_cpu) 2207 continue; 2208 2209 /* 2210 * We've got some unbound threads on this queue, so turn 2211 * the allbound flag off now. 2212 */ 2213 allbound = B_FALSE; 2214 2215 /* 2216 * The thread is a candidate for stealing from its run queue. We 2217 * don't want to steal threads that became runnable just a 2218 * moment ago. This improves CPU affinity for threads that get 2219 * preempted for short periods of time and go back on the run 2220 * queue. 2221 * 2222 * We want to let it stay on its run queue if it was only placed 2223 * there recently and it was running on the same CPU before that 2224 * to preserve its cache investment. For the thread to remain on 2225 * its run queue, ALL of the following conditions must be 2226 * satisfied: 2227 * 2228 * - the disp queue should not be the kernel preemption queue 2229 * - delayed idle stealing should not be disabled 2230 * - nosteal_nsec should be non-zero 2231 * - it should run with user priority 2232 * - it should be on the run queue of the CPU where it was 2233 * running before being placed on the run queue 2234 * - it should be the only thread on the run queue (to prevent 2235 * extra scheduling latency for other threads) 2236 * - it should sit on the run queue for less than per-chip 2237 * nosteal interval or global nosteal interval 2238 * - in case of CPUs with shared cache it should sit in a run 2239 * queue of a CPU from a different chip 2240 * 2241 * The checks are arranged so that the ones that are faster are 2242 * placed earlier. 2243 */ 2244 if (tcp == NULL || 2245 pri >= minclsyspri || 2246 tp->t_cpu != tcp) 2247 break; 2248 2249 /* 2250 * Steal immediately if, due to CMT processor architecture 2251 * migraiton between cp and tcp would incur no performance 2252 * penalty. 2253 */ 2254 if (pg_cmt_can_migrate(cp, tcp)) 2255 break; 2256 2257 nosteal = nosteal_nsec; 2258 if (nosteal == 0) 2259 break; 2260 2261 /* 2262 * Calculate time spent sitting on run queue 2263 */ 2264 now = gethrtime_unscaled(); 2265 rqtime = now - tp->t_waitrq; 2266 scalehrtime(&rqtime); 2267 2268 /* 2269 * Steal immediately if the time spent on this run queue is more 2270 * than allowed nosteal delay. 2271 * 2272 * Negative rqtime check is needed here to avoid infinite 2273 * stealing delays caused by unlikely but not impossible 2274 * drifts between CPU times on different CPUs. 2275 */ 2276 if (rqtime > nosteal || rqtime < 0) 2277 break; 2278 2279 DTRACE_PROBE4(nosteal, kthread_t *, tp, 2280 cpu_t *, tcp, cpu_t *, cp, hrtime_t, rqtime); 2281 scalehrtime(&now); 2282 /* 2283 * Calculate when this thread becomes stealable 2284 */ 2285 now += (nosteal - rqtime); 2286 2287 /* 2288 * Calculate time when some thread becomes stealable 2289 */ 2290 if (now < dp->disp_steal) 2291 dp->disp_steal = now; 2292 } 2293 2294 /* 2295 * If there were no unbound threads on this queue, find the queue 2296 * where they are and then return later. The value of 2297 * disp_max_unbound_pri is not always accurate because it isn't 2298 * reduced until another idle CPU looks for work. 2299 */ 2300 if (allbound) 2301 disp_fix_unbound_pri(dp, pri); 2302 2303 /* 2304 * If we reached the end of the queue and found no unbound threads 2305 * then return NULL so that other CPUs will be considered. If there 2306 * are unbound threads but they cannot yet be stolen, then 2307 * return T_DONTSTEAL and try again later. 2308 */ 2309 if (tp == NULL) { 2310 disp_lock_exit_nopreempt(&dp->disp_lock); 2311 return (allbound ? NULL : T_DONTSTEAL); 2312 } 2313 2314 /* 2315 * Found a runnable, unbound thread, so remove it from queue. 2316 * dispdeq() requires that we have the thread locked, and we do, 2317 * by virtue of holding the dispatch queue lock. dispdeq() will 2318 * put the thread in transition state, thereby dropping the dispq 2319 * lock. 2320 */ 2321 2322 #ifdef DEBUG 2323 { 2324 int thread_was_on_queue; 2325 2326 thread_was_on_queue = dispdeq(tp); /* drops disp_lock */ 2327 ASSERT(thread_was_on_queue); 2328 } 2329 2330 #else /* DEBUG */ 2331 (void) dispdeq(tp); /* drops disp_lock */ 2332 #endif /* DEBUG */ 2333 2334 /* 2335 * Reset the disp_queue steal time - we do not know what is the smallest 2336 * value across the queue is. 2337 */ 2338 dp->disp_steal = 0; 2339 2340 tp->t_schedflag |= TS_DONT_SWAP; 2341 2342 /* 2343 * Setup thread to run on the current CPU. 2344 */ 2345 tp->t_disp_queue = cp->cpu_disp; 2346 2347 cp->cpu_dispthread = tp; /* protected by spl only */ 2348 cp->cpu_dispatch_pri = pri; 2349 2350 /* 2351 * There can be a memory synchronization race between disp_getbest() 2352 * and disp_ratify() vs cpu_resched() where cpu_resched() is trying 2353 * to preempt the current thread to run the enqueued thread while 2354 * disp_getbest() and disp_ratify() are changing the current thread 2355 * to the stolen thread. This may lead to a situation where 2356 * cpu_resched() tries to preempt the wrong thread and the 2357 * stolen thread continues to run on the CPU which has been tagged 2358 * for preemption. 2359 * Later the clock thread gets enqueued but doesn't get to run on the 2360 * CPU causing the system to hang. 2361 * 2362 * To avoid this, grabbing and dropping the disp_lock (which does 2363 * a memory barrier) is needed to synchronize the execution of 2364 * cpu_resched() with disp_getbest() and disp_ratify() and 2365 * synchronize the memory read and written by cpu_resched(), 2366 * disp_getbest(), and disp_ratify() with each other. 2367 * (see CR#6482861 for more details). 2368 */ 2369 disp_lock_enter_high(&cp->cpu_disp->disp_lock); 2370 disp_lock_exit_high(&cp->cpu_disp->disp_lock); 2371 2372 ASSERT(pri == DISP_PRIO(tp)); 2373 2374 DTRACE_PROBE3(steal, kthread_t *, tp, cpu_t *, tcp, cpu_t *, cp); 2375 2376 thread_onproc(tp, cp); /* set t_state to TS_ONPROC */ 2377 2378 /* 2379 * Return with spl high so that swtch() won't need to raise it. 2380 * The disp_lock was dropped by dispdeq(). 2381 */ 2382 2383 return (tp); 2384 } 2385 2386 /* 2387 * disp_bound_common() - common routine for higher level functions 2388 * that check for bound threads under certain conditions. 2389 * If 'threadlistsafe' is set then there is no need to acquire 2390 * pidlock to stop the thread list from changing (eg, if 2391 * disp_bound_* is called with cpus paused). 2392 */ 2393 static int 2394 disp_bound_common(cpu_t *cp, int threadlistsafe, int flag) 2395 { 2396 int found = 0; 2397 kthread_t *tp; 2398 2399 ASSERT(flag); 2400 2401 if (!threadlistsafe) 2402 mutex_enter(&pidlock); 2403 tp = curthread; /* faster than allthreads */ 2404 do { 2405 if (tp->t_state != TS_FREE) { 2406 /* 2407 * If an interrupt thread is busy, but the 2408 * caller doesn't care (i.e. BOUND_INTR is off), 2409 * then just ignore it and continue through. 2410 */ 2411 if ((tp->t_flag & T_INTR_THREAD) && 2412 !(flag & BOUND_INTR)) 2413 continue; 2414 2415 /* 2416 * Skip the idle thread for the CPU 2417 * we're about to set offline. 2418 */ 2419 if (tp == cp->cpu_idle_thread) 2420 continue; 2421 2422 /* 2423 * Skip the pause thread for the CPU 2424 * we're about to set offline. 2425 */ 2426 if (tp == cp->cpu_pause_thread) 2427 continue; 2428 2429 if ((flag & BOUND_CPU) && 2430 (tp->t_bound_cpu == cp || 2431 tp->t_bind_cpu == cp->cpu_id || 2432 tp->t_weakbound_cpu == cp)) { 2433 found = 1; 2434 break; 2435 } 2436 2437 if ((flag & BOUND_PARTITION) && 2438 (tp->t_cpupart == cp->cpu_part)) { 2439 found = 1; 2440 break; 2441 } 2442 } 2443 } while ((tp = tp->t_next) != curthread && found == 0); 2444 if (!threadlistsafe) 2445 mutex_exit(&pidlock); 2446 return (found); 2447 } 2448 2449 /* 2450 * disp_bound_threads - return nonzero if threads are bound to the processor. 2451 * Called infrequently. Keep this simple. 2452 * Includes threads that are asleep or stopped but not onproc. 2453 */ 2454 int 2455 disp_bound_threads(cpu_t *cp, int threadlistsafe) 2456 { 2457 return (disp_bound_common(cp, threadlistsafe, BOUND_CPU)); 2458 } 2459 2460 /* 2461 * disp_bound_anythreads - return nonzero if _any_ threads are bound 2462 * to the given processor, including interrupt threads. 2463 */ 2464 int 2465 disp_bound_anythreads(cpu_t *cp, int threadlistsafe) 2466 { 2467 return (disp_bound_common(cp, threadlistsafe, BOUND_CPU | BOUND_INTR)); 2468 } 2469 2470 /* 2471 * disp_bound_partition - return nonzero if threads are bound to the same 2472 * partition as the processor. 2473 * Called infrequently. Keep this simple. 2474 * Includes threads that are asleep or stopped but not onproc. 2475 */ 2476 int 2477 disp_bound_partition(cpu_t *cp, int threadlistsafe) 2478 { 2479 return (disp_bound_common(cp, threadlistsafe, BOUND_PARTITION)); 2480 } 2481 2482 /* 2483 * disp_cpu_inactive - make a CPU inactive by moving all of its unbound 2484 * threads to other CPUs. 2485 */ 2486 void 2487 disp_cpu_inactive(cpu_t *cp) 2488 { 2489 kthread_t *tp; 2490 disp_t *dp = cp->cpu_disp; 2491 dispq_t *dq; 2492 pri_t pri; 2493 int wasonq; 2494 2495 disp_lock_enter(&dp->disp_lock); 2496 while ((pri = dp->disp_max_unbound_pri) != -1) { 2497 dq = &dp->disp_q[pri]; 2498 tp = dq->dq_first; 2499 2500 /* 2501 * Skip over bound threads. 2502 */ 2503 while (tp != NULL && tp->t_bound_cpu != NULL) { 2504 tp = tp->t_link; 2505 } 2506 2507 if (tp == NULL) { 2508 /* disp_max_unbound_pri must be inaccurate, so fix it */ 2509 disp_fix_unbound_pri(dp, pri); 2510 continue; 2511 } 2512 2513 wasonq = dispdeq(tp); /* drops disp_lock */ 2514 ASSERT(wasonq); 2515 ASSERT(tp->t_weakbound_cpu == NULL); 2516 2517 setbackdq(tp); 2518 /* 2519 * Called from cpu_offline: 2520 * 2521 * cp has already been removed from the list of active cpus 2522 * and tp->t_cpu has been changed so there is no risk of 2523 * tp ending up back on cp. 2524 * 2525 * Called from cpupart_move_cpu: 2526 * 2527 * The cpu has moved to a new cpupart. Any threads that 2528 * were on it's dispatch queues before the move remain 2529 * in the old partition and can't run in the new partition. 2530 */ 2531 ASSERT(tp->t_cpu != cp); 2532 thread_unlock(tp); 2533 2534 disp_lock_enter(&dp->disp_lock); 2535 } 2536 disp_lock_exit(&dp->disp_lock); 2537 } 2538 2539 /* 2540 * disp_lowpri_cpu - find CPU running the lowest priority thread. 2541 * The hint passed in is used as a starting point so we don't favor 2542 * CPU 0 or any other CPU. The caller should pass in the most recently 2543 * used CPU for the thread. 2544 * 2545 * The lgroup and priority are used to determine the best CPU to run on 2546 * in a NUMA machine. The lgroup specifies which CPUs are closest while 2547 * the thread priority will indicate whether the thread will actually run 2548 * there. To pick the best CPU, the CPUs inside and outside of the given 2549 * lgroup which are running the lowest priority threads are found. The 2550 * remote CPU is chosen only if the thread will not run locally on a CPU 2551 * within the lgroup, but will run on the remote CPU. If the thread 2552 * cannot immediately run on any CPU, the best local CPU will be chosen. 2553 * 2554 * The lpl specified also identifies the cpu partition from which 2555 * disp_lowpri_cpu should select a CPU. 2556 * 2557 * curcpu is used to indicate that disp_lowpri_cpu is being called on 2558 * behalf of the current thread. (curthread is looking for a new cpu) 2559 * In this case, cpu_dispatch_pri for this thread's cpu should be 2560 * ignored. 2561 * 2562 * If a cpu is the target of an offline request then try to avoid it. 2563 * 2564 * This function must be called at either high SPL, or with preemption 2565 * disabled, so that the "hint" CPU cannot be removed from the online 2566 * CPU list while we are traversing it. 2567 */ 2568 cpu_t * 2569 disp_lowpri_cpu(cpu_t *hint, lpl_t *lpl, pri_t tpri, cpu_t *curcpu) 2570 { 2571 cpu_t *bestcpu; 2572 cpu_t *besthomecpu; 2573 cpu_t *cp, *cpstart; 2574 2575 pri_t bestpri; 2576 pri_t cpupri; 2577 2578 klgrpset_t done; 2579 klgrpset_t cur_set; 2580 2581 lpl_t *lpl_iter, *lpl_leaf; 2582 int i; 2583 2584 /* 2585 * Scan for a CPU currently running the lowest priority thread. 2586 * Cannot get cpu_lock here because it is adaptive. 2587 * We do not require lock on CPU list. 2588 */ 2589 ASSERT(hint != NULL); 2590 ASSERT(lpl != NULL); 2591 ASSERT(lpl->lpl_ncpu > 0); 2592 2593 /* 2594 * First examine local CPUs. Note that it's possible the hint CPU 2595 * passed in in remote to the specified home lgroup. If our priority 2596 * isn't sufficient enough such that we can run immediately at home, 2597 * then examine CPUs remote to our home lgroup. 2598 * We would like to give preference to CPUs closest to "home". 2599 * If we can't find a CPU where we'll run at a given level 2600 * of locality, we expand our search to include the next level. 2601 */ 2602 bestcpu = besthomecpu = NULL; 2603 klgrpset_clear(done); 2604 /* start with lpl we were passed */ 2605 2606 lpl_iter = lpl; 2607 2608 do { 2609 2610 bestpri = SHRT_MAX; 2611 klgrpset_clear(cur_set); 2612 2613 for (i = 0; i < lpl_iter->lpl_nrset; i++) { 2614 lpl_leaf = lpl_iter->lpl_rset[i]; 2615 if (klgrpset_ismember(done, lpl_leaf->lpl_lgrpid)) 2616 continue; 2617 2618 klgrpset_add(cur_set, lpl_leaf->lpl_lgrpid); 2619 2620 if (hint->cpu_lpl == lpl_leaf) 2621 cp = cpstart = hint; 2622 else 2623 cp = cpstart = lpl_leaf->lpl_cpus; 2624 2625 do { 2626 if (cp == curcpu) 2627 cpupri = -1; 2628 else if (cp == cpu_inmotion) 2629 cpupri = SHRT_MAX; 2630 else 2631 cpupri = cp->cpu_dispatch_pri; 2632 if (cp->cpu_disp->disp_maxrunpri > cpupri) 2633 cpupri = cp->cpu_disp->disp_maxrunpri; 2634 if (cp->cpu_chosen_level > cpupri) 2635 cpupri = cp->cpu_chosen_level; 2636 if (cpupri < bestpri) { 2637 if (CPU_IDLING(cpupri)) { 2638 ASSERT((cp->cpu_flags & 2639 CPU_QUIESCED) == 0); 2640 return (cp); 2641 } 2642 bestcpu = cp; 2643 bestpri = cpupri; 2644 } 2645 } while ((cp = cp->cpu_next_lpl) != cpstart); 2646 } 2647 2648 if (bestcpu && (tpri > bestpri)) { 2649 ASSERT((bestcpu->cpu_flags & CPU_QUIESCED) == 0); 2650 return (bestcpu); 2651 } 2652 if (besthomecpu == NULL) 2653 besthomecpu = bestcpu; 2654 /* 2655 * Add the lgrps we just considered to the "done" set 2656 */ 2657 klgrpset_or(done, cur_set); 2658 2659 } while ((lpl_iter = lpl_iter->lpl_parent) != NULL); 2660 2661 /* 2662 * The specified priority isn't high enough to run immediately 2663 * anywhere, so just return the best CPU from the home lgroup. 2664 */ 2665 ASSERT((besthomecpu->cpu_flags & CPU_QUIESCED) == 0); 2666 return (besthomecpu); 2667 } 2668 2669 /* 2670 * This routine provides the generic idle cpu function for all processors. 2671 * If a processor has some specific code to execute when idle (say, to stop 2672 * the pipeline and save power) then that routine should be defined in the 2673 * processors specific code (module_xx.c) and the global variable idle_cpu 2674 * set to that function. 2675 */ 2676 static void 2677 generic_idle_cpu(void) 2678 { 2679 } 2680 2681 /*ARGSUSED*/ 2682 static void 2683 generic_enq_thread(cpu_t *cpu, int bound) 2684 { 2685 } 2686