xref: /titanic_51/usr/src/lib/libm/common/R/__sincosf.c (revision 25c28e83beb90e7c80452a7c818c5e6f73a07dc8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  */
25 /*
26  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
27  * Use is subject to license terms.
28  */
29 
30 #include "libm.h"
31 
32 /* INDENT OFF */
33 /*
34  * void __k_sincosf(double x, float *s, float *c);
35  * kernel (float) sincos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
36  * Input x is in double and assumed to be bounded by ~pi/4 in magnitude.
37  *
38  * Method: Let z = x * x, then
39  *      S(x) = x(S0 + S1*z)(S2 + S3*z + z*z)
40  *	C(x) = (C0 + C1*z + C2*z*z) * (C3 + C4*z + z*z)
41  * where
42  *	S0 =   1.85735322054308378716204874632872525989806770558e-0003
43  *	S1 =  -1.95035094218403635082921458859320791358115801259e-0004
44  *	S2 =   5.38400550766074785970952495168558701485841707252e+0002
45  *	S3 =  -3.31975110777873728964197739157371509422022905947e+0001
46  *	C0 =   1.09349482127188401868272000389539985058873853699e-0003
47  *	C1 =  -5.03324285989964979398034700054920226866107675091e-0004
48  *	C2 =   2.43792880266971107750418061559602239831538067410e-0005
49  *	C3 =   9.14499072605666582228127405245558035523741471271e+0002
50  *	C4 =  -3.63151270591815439197122504991683846785293207730e+0001
51  *
52  * The remez error in S is bound by  |(sin(x) - S(x))/x| < 2**(-28.2)
53  * The remez error in C is bound by  |cos(x) - C(x)| < 2**(-34.2)
54  *
55  * Constants:
56  * The hexadecimal values are the intended ones for the following constants.
57  * The decimal values may be used, provided that the compiler will convert
58  * from decimal to binary accurately enough to produce the hexadecimal values
59  * shown.
60  */
61 /* INDENT ON */
62 
63 static const double q[] = {
64 /* S0 = */  1.85735322054308378716204874632872525989806770558e-0003,
65 /* S1 = */ -1.95035094218403635082921458859320791358115801259e-0004,
66 /* S2 = */  5.38400550766074785970952495168558701485841707252e+0002,
67 /* S3 = */ -3.31975110777873728964197739157371509422022905947e+0001,
68 /* C0 = */  1.09349482127188401868272000389539985058873853699e-0003,
69 /* C1 = */ -5.03324285989964979398034700054920226866107675091e-0004,
70 /* C2 = */  2.43792880266971107750418061559602239831538067410e-0005,
71 /* C3 = */  9.14499072605666582228127405245558035523741471271e+0002,
72 /* C4 = */ -3.63151270591815439197122504991683846785293207730e+0001,
73 };
74 
75 
76 #define	S0	q[0]
77 #define	S1	q[1]
78 #define	S2	q[2]
79 #define	S3	q[3]
80 #define	C0	q[4]
81 #define	C1	q[5]
82 #define	C2	q[6]
83 #define	C3	q[7]
84 #define	C4	q[8]
85 
86 void
87 __k_sincosf(double x, float *s, float *c) {
88 	double z;
89 	int hx;
90 
91 	hx = ((int *) &x)[HIWORD];	/* hx = leading x */
92 	/* small argument */
93 	if ((hx & ~0x80000000) < 0x3f100000) {	/* if |x| < 2**-14 */
94 		*s = (float) x; *c = (float) 1;
95 		if ((int) x == 0)	/* raise inexact if x != 0 */
96 			return;
97 	}
98 	z = x * x;
99 	*s = (float) ((x * (S0 + z * S1)) * (S2 + z * (S3 + z)));
100 	*c = (float) (((C0 + z * C1) + (z * z) * C2) * (C3 + z * (C4 + z)));
101 }
102