xref: /titanic_51/usr/src/cmd/fm/modules/common/zfs-diagnosis/zfs_de.c (revision 69a6f7175eaa5e5a2a38a92e6e522062e898f570)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
25  */
26 
27 #include <assert.h>
28 #include <stddef.h>
29 #include <strings.h>
30 #include <libuutil.h>
31 #include <libzfs.h>
32 #include <fm/fmd_api.h>
33 #include <fm/libtopo.h>
34 #include <sys/types.h>
35 #include <sys/time.h>
36 #include <sys/fs/zfs.h>
37 #include <sys/fm/protocol.h>
38 #include <sys/fm/fs/zfs.h>
39 
40 /*
41  * Our serd engines are named 'zfs_<pool_guid>_<vdev_guid>_{checksum,io}'.  This
42  * #define reserves enough space for two 64-bit hex values plus the length of
43  * the longest string.
44  */
45 #define	MAX_SERDLEN	(16 * 2 + sizeof ("zfs___checksum"))
46 
47 /*
48  * On-disk case structure.  This must maintain backwards compatibility with
49  * previous versions of the DE.  By default, any members appended to the end
50  * will be filled with zeros if they don't exist in a previous version.
51  */
52 typedef struct zfs_case_data {
53 	uint64_t	zc_version;
54 	uint64_t	zc_ena;
55 	uint64_t	zc_pool_guid;
56 	uint64_t	zc_vdev_guid;
57 	int		zc_has_timer;		/* defunct */
58 	int		zc_pool_state;
59 	char		zc_serd_checksum[MAX_SERDLEN];
60 	char		zc_serd_io[MAX_SERDLEN];
61 	int		zc_has_remove_timer;
62 } zfs_case_data_t;
63 
64 /*
65  * Time-of-day
66  */
67 typedef struct er_timeval {
68 	uint64_t	ertv_sec;
69 	uint64_t	ertv_nsec;
70 } er_timeval_t;
71 
72 /*
73  * In-core case structure.
74  */
75 typedef struct zfs_case {
76 	boolean_t	zc_present;
77 	uint32_t	zc_version;
78 	zfs_case_data_t	zc_data;
79 	fmd_case_t	*zc_case;
80 	uu_list_node_t	zc_node;
81 	id_t		zc_remove_timer;
82 	char		*zc_fru;
83 	er_timeval_t	zc_when;
84 } zfs_case_t;
85 
86 #define	CASE_DATA			"data"
87 #define	CASE_FRU			"fru"
88 #define	CASE_DATA_VERSION_INITIAL	1
89 #define	CASE_DATA_VERSION_SERD		2
90 
91 typedef struct zfs_de_stats {
92 	fmd_stat_t	old_drops;
93 	fmd_stat_t	dev_drops;
94 	fmd_stat_t	vdev_drops;
95 	fmd_stat_t	import_drops;
96 	fmd_stat_t	resource_drops;
97 } zfs_de_stats_t;
98 
99 zfs_de_stats_t zfs_stats = {
100 	{ "old_drops", FMD_TYPE_UINT64, "ereports dropped (from before load)" },
101 	{ "dev_drops", FMD_TYPE_UINT64, "ereports dropped (dev during open)"},
102 	{ "vdev_drops", FMD_TYPE_UINT64, "ereports dropped (weird vdev types)"},
103 	{ "import_drops", FMD_TYPE_UINT64, "ereports dropped (during import)" },
104 	{ "resource_drops", FMD_TYPE_UINT64, "resource related ereports" }
105 };
106 
107 static hrtime_t zfs_remove_timeout;
108 
109 uu_list_pool_t *zfs_case_pool;
110 uu_list_t *zfs_cases;
111 
112 #define	ZFS_MAKE_RSRC(type)	\
113     FM_RSRC_CLASS "." ZFS_ERROR_CLASS "." type
114 #define	ZFS_MAKE_EREPORT(type)	\
115     FM_EREPORT_CLASS "." ZFS_ERROR_CLASS "." type
116 
117 /*
118  * Write out the persistent representation of an active case.
119  */
120 static void
121 zfs_case_serialize(fmd_hdl_t *hdl, zfs_case_t *zcp)
122 {
123 	/*
124 	 * Always update cases to the latest version, even if they were the
125 	 * previous version when unserialized.
126 	 */
127 	zcp->zc_data.zc_version = CASE_DATA_VERSION_SERD;
128 	fmd_buf_write(hdl, zcp->zc_case, CASE_DATA, &zcp->zc_data,
129 	    sizeof (zcp->zc_data));
130 
131 	if (zcp->zc_fru != NULL)
132 		fmd_buf_write(hdl, zcp->zc_case, CASE_FRU, zcp->zc_fru,
133 		    strlen(zcp->zc_fru));
134 }
135 
136 /*
137  * Read back the persistent representation of an active case.
138  */
139 static zfs_case_t *
140 zfs_case_unserialize(fmd_hdl_t *hdl, fmd_case_t *cp)
141 {
142 	zfs_case_t *zcp;
143 	size_t frulen;
144 
145 	zcp = fmd_hdl_zalloc(hdl, sizeof (zfs_case_t), FMD_SLEEP);
146 	zcp->zc_case = cp;
147 
148 	fmd_buf_read(hdl, cp, CASE_DATA, &zcp->zc_data,
149 	    sizeof (zcp->zc_data));
150 
151 	if (zcp->zc_data.zc_version > CASE_DATA_VERSION_SERD) {
152 		fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
153 		return (NULL);
154 	}
155 
156 	if ((frulen = fmd_buf_size(hdl, zcp->zc_case, CASE_FRU)) > 0) {
157 		zcp->zc_fru = fmd_hdl_alloc(hdl, frulen + 1, FMD_SLEEP);
158 		fmd_buf_read(hdl, zcp->zc_case, CASE_FRU, zcp->zc_fru,
159 		    frulen);
160 		zcp->zc_fru[frulen] = '\0';
161 	}
162 
163 	/*
164 	 * fmd_buf_read() will have already zeroed out the remainder of the
165 	 * buffer, so we don't have to do anything special if the version
166 	 * doesn't include the SERD engine name.
167 	 */
168 
169 	if (zcp->zc_data.zc_has_remove_timer)
170 		zcp->zc_remove_timer = fmd_timer_install(hdl, zcp,
171 		    NULL, zfs_remove_timeout);
172 
173 	(void) uu_list_insert_before(zfs_cases, NULL, zcp);
174 
175 	fmd_case_setspecific(hdl, cp, zcp);
176 
177 	return (zcp);
178 }
179 
180 /*
181  * Iterate over any active cases.  If any cases are associated with a pool or
182  * vdev which is no longer present on the system, close the associated case.
183  */
184 static void
185 zfs_mark_vdev(uint64_t pool_guid, nvlist_t *vd, er_timeval_t *loaded)
186 {
187 	uint64_t vdev_guid;
188 	uint_t c, children;
189 	nvlist_t **child;
190 	zfs_case_t *zcp;
191 	int ret;
192 
193 	ret = nvlist_lookup_uint64(vd, ZPOOL_CONFIG_GUID, &vdev_guid);
194 	assert(ret == 0);
195 
196 	/*
197 	 * Mark any cases associated with this (pool, vdev) pair.
198 	 */
199 	for (zcp = uu_list_first(zfs_cases); zcp != NULL;
200 	    zcp = uu_list_next(zfs_cases, zcp)) {
201 		if (zcp->zc_data.zc_pool_guid == pool_guid &&
202 		    zcp->zc_data.zc_vdev_guid == vdev_guid) {
203 			zcp->zc_present = B_TRUE;
204 			zcp->zc_when = *loaded;
205 		}
206 	}
207 
208 	/*
209 	 * Iterate over all children.
210 	 */
211 	if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_CHILDREN, &child,
212 	    &children) == 0) {
213 		for (c = 0; c < children; c++)
214 			zfs_mark_vdev(pool_guid, child[c], loaded);
215 	}
216 
217 	if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_L2CACHE, &child,
218 	    &children) == 0) {
219 		for (c = 0; c < children; c++)
220 			zfs_mark_vdev(pool_guid, child[c], loaded);
221 	}
222 
223 	if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_SPARES, &child,
224 	    &children) == 0) {
225 		for (c = 0; c < children; c++)
226 			zfs_mark_vdev(pool_guid, child[c], loaded);
227 	}
228 }
229 
230 /*ARGSUSED*/
231 static int
232 zfs_mark_pool(zpool_handle_t *zhp, void *unused)
233 {
234 	zfs_case_t *zcp;
235 	uint64_t pool_guid;
236 	uint64_t *tod;
237 	er_timeval_t loaded = { 0 };
238 	nvlist_t *config, *vd;
239 	uint_t nelem = 0;
240 	int ret;
241 
242 	pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL);
243 	/*
244 	 * Mark any cases associated with just this pool.
245 	 */
246 	for (zcp = uu_list_first(zfs_cases); zcp != NULL;
247 	    zcp = uu_list_next(zfs_cases, zcp)) {
248 		if (zcp->zc_data.zc_pool_guid == pool_guid &&
249 		    zcp->zc_data.zc_vdev_guid == 0)
250 			zcp->zc_present = B_TRUE;
251 	}
252 
253 	if ((config = zpool_get_config(zhp, NULL)) == NULL) {
254 		zpool_close(zhp);
255 		return (-1);
256 	}
257 
258 	(void) nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_LOADED_TIME,
259 	    &tod, &nelem);
260 	if (nelem == 2) {
261 		loaded.ertv_sec = tod[0];
262 		loaded.ertv_nsec = tod[1];
263 		for (zcp = uu_list_first(zfs_cases); zcp != NULL;
264 		    zcp = uu_list_next(zfs_cases, zcp)) {
265 			if (zcp->zc_data.zc_pool_guid == pool_guid &&
266 			    zcp->zc_data.zc_vdev_guid == 0) {
267 				zcp->zc_when = loaded;
268 			}
269 		}
270 	}
271 
272 	ret = nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vd);
273 	assert(ret == 0);
274 
275 	zfs_mark_vdev(pool_guid, vd, &loaded);
276 
277 	zpool_close(zhp);
278 
279 	return (0);
280 }
281 
282 struct load_time_arg {
283 	uint64_t lt_guid;
284 	er_timeval_t *lt_time;
285 	boolean_t lt_found;
286 };
287 
288 static int
289 zpool_find_load_time(zpool_handle_t *zhp, void *arg)
290 {
291 	struct load_time_arg *lta = arg;
292 	uint64_t pool_guid;
293 	uint64_t *tod;
294 	nvlist_t *config;
295 	uint_t nelem;
296 
297 	if (lta->lt_found) {
298 		zpool_close(zhp);
299 		return (0);
300 	}
301 
302 	pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL);
303 	if (pool_guid != lta->lt_guid) {
304 		zpool_close(zhp);
305 		return (0);
306 	}
307 
308 	if ((config = zpool_get_config(zhp, NULL)) == NULL) {
309 		zpool_close(zhp);
310 		return (-1);
311 	}
312 
313 	if (nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_LOADED_TIME,
314 	    &tod, &nelem) == 0 && nelem == 2) {
315 		lta->lt_found = B_TRUE;
316 		lta->lt_time->ertv_sec = tod[0];
317 		lta->lt_time->ertv_nsec = tod[1];
318 	}
319 
320 	zpool_close(zhp);
321 
322 	return (0);
323 }
324 
325 static void
326 zfs_purge_cases(fmd_hdl_t *hdl)
327 {
328 	zfs_case_t *zcp;
329 	uu_list_walk_t *walk;
330 	libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl);
331 
332 	/*
333 	 * There is no way to open a pool by GUID, or lookup a vdev by GUID.  No
334 	 * matter what we do, we're going to have to stomach a O(vdevs * cases)
335 	 * algorithm.  In reality, both quantities are likely so small that
336 	 * neither will matter. Given that iterating over pools is more
337 	 * expensive than iterating over the in-memory case list, we opt for a
338 	 * 'present' flag in each case that starts off cleared.  We then iterate
339 	 * over all pools, marking those that are still present, and removing
340 	 * those that aren't found.
341 	 *
342 	 * Note that we could also construct an FMRI and rely on
343 	 * fmd_nvl_fmri_present(), but this would end up doing the same search.
344 	 */
345 
346 	/*
347 	 * Mark the cases an not present.
348 	 */
349 	for (zcp = uu_list_first(zfs_cases); zcp != NULL;
350 	    zcp = uu_list_next(zfs_cases, zcp))
351 		zcp->zc_present = B_FALSE;
352 
353 	/*
354 	 * Iterate over all pools and mark the pools and vdevs found.  If this
355 	 * fails (most probably because we're out of memory), then don't close
356 	 * any of the cases and we cannot be sure they are accurate.
357 	 */
358 	if (zpool_iter(zhdl, zfs_mark_pool, NULL) != 0)
359 		return;
360 
361 	/*
362 	 * Remove those cases which were not found.
363 	 */
364 	walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST);
365 	while ((zcp = uu_list_walk_next(walk)) != NULL) {
366 		if (!zcp->zc_present)
367 			fmd_case_close(hdl, zcp->zc_case);
368 	}
369 	uu_list_walk_end(walk);
370 }
371 
372 /*
373  * Construct the name of a serd engine given the pool/vdev GUID and type (io or
374  * checksum).
375  */
376 static void
377 zfs_serd_name(char *buf, uint64_t pool_guid, uint64_t vdev_guid,
378     const char *type)
379 {
380 	(void) snprintf(buf, MAX_SERDLEN, "zfs_%llx_%llx_%s", pool_guid,
381 	    vdev_guid, type);
382 }
383 
384 /*
385  * Solve a given ZFS case.  This first checks to make sure the diagnosis is
386  * still valid, as well as cleaning up any pending timer associated with the
387  * case.
388  */
389 static void
390 zfs_case_solve(fmd_hdl_t *hdl, zfs_case_t *zcp, const char *faultname,
391     boolean_t checkunusable)
392 {
393 	libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl);
394 	nvlist_t *detector, *fault;
395 	boolean_t serialize;
396 	nvlist_t *fmri, *fru;
397 	topo_hdl_t *thp;
398 	int err;
399 
400 	/*
401 	 * Construct the detector from the case data.  The detector is in the
402 	 * ZFS scheme, and is either the pool or the vdev, depending on whether
403 	 * this is a vdev or pool fault.
404 	 */
405 	detector = fmd_nvl_alloc(hdl, FMD_SLEEP);
406 
407 	(void) nvlist_add_uint8(detector, FM_VERSION, ZFS_SCHEME_VERSION0);
408 	(void) nvlist_add_string(detector, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS);
409 	(void) nvlist_add_uint64(detector, FM_FMRI_ZFS_POOL,
410 	    zcp->zc_data.zc_pool_guid);
411 	if (zcp->zc_data.zc_vdev_guid != 0) {
412 		(void) nvlist_add_uint64(detector, FM_FMRI_ZFS_VDEV,
413 		    zcp->zc_data.zc_vdev_guid);
414 	}
415 
416 	/*
417 	 * We also want to make sure that the detector (pool or vdev) properly
418 	 * reflects the diagnosed state, when the fault corresponds to internal
419 	 * ZFS state (i.e. not checksum or I/O error-induced).  Otherwise, a
420 	 * device which was unavailable early in boot (because the driver/file
421 	 * wasn't available) and is now healthy will be mis-diagnosed.
422 	 */
423 	if (!fmd_nvl_fmri_present(hdl, detector) ||
424 	    (checkunusable && !fmd_nvl_fmri_unusable(hdl, detector))) {
425 		fmd_case_close(hdl, zcp->zc_case);
426 		nvlist_free(detector);
427 		return;
428 	}
429 
430 
431 	fru = NULL;
432 	if (zcp->zc_fru != NULL &&
433 	    (thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION)) != NULL) {
434 		/*
435 		 * If the vdev had an associated FRU, then get the FRU nvlist
436 		 * from the topo handle and use that in the suspect list.  We
437 		 * explicitly lookup the FRU because the fmri reported from the
438 		 * kernel may not have up to date details about the disk itself
439 		 * (serial, part, etc).
440 		 */
441 		if (topo_fmri_str2nvl(thp, zcp->zc_fru, &fmri, &err) == 0) {
442 			/*
443 			 * If the disk is part of the system chassis, but the
444 			 * FRU indicates a different chassis ID than our
445 			 * current system, then ignore the error.  This
446 			 * indicates that the device was part of another
447 			 * cluster head, and for obvious reasons cannot be
448 			 * imported on this system.
449 			 */
450 			if (libzfs_fru_notself(zhdl, zcp->zc_fru)) {
451 				fmd_case_close(hdl, zcp->zc_case);
452 				nvlist_free(fmri);
453 				fmd_hdl_topo_rele(hdl, thp);
454 				nvlist_free(detector);
455 				return;
456 			}
457 
458 			/*
459 			 * If the device is no longer present on the system, or
460 			 * topo_fmri_fru() fails for other reasons, then fall
461 			 * back to the fmri specified in the vdev.
462 			 */
463 			if (topo_fmri_fru(thp, fmri, &fru, &err) != 0)
464 				fru = fmd_nvl_dup(hdl, fmri, FMD_SLEEP);
465 			nvlist_free(fmri);
466 		}
467 
468 		fmd_hdl_topo_rele(hdl, thp);
469 	}
470 
471 	fault = fmd_nvl_create_fault(hdl, faultname, 100, detector,
472 	    fru, detector);
473 	fmd_case_add_suspect(hdl, zcp->zc_case, fault);
474 
475 	nvlist_free(fru);
476 
477 	fmd_case_solve(hdl, zcp->zc_case);
478 
479 	serialize = B_FALSE;
480 	if (zcp->zc_data.zc_has_remove_timer) {
481 		fmd_timer_remove(hdl, zcp->zc_remove_timer);
482 		zcp->zc_data.zc_has_remove_timer = 0;
483 		serialize = B_TRUE;
484 	}
485 	if (serialize)
486 		zfs_case_serialize(hdl, zcp);
487 
488 	nvlist_free(detector);
489 }
490 
491 /*
492  * This #define and function access a private interface of the FMA
493  * framework.  Ereports include a time-of-day upper bound.
494  * We want to look at that so we can compare it to when pools get
495  * loaded.
496  */
497 #define	FMD_EVN_TOD	"__tod"
498 
499 static boolean_t
500 timeval_earlier(er_timeval_t *a, er_timeval_t *b)
501 {
502 	return (a->ertv_sec < b->ertv_sec ||
503 	    (a->ertv_sec == b->ertv_sec && a->ertv_nsec < b->ertv_nsec));
504 }
505 
506 /*ARGSUSED*/
507 static void
508 zfs_ereport_when(fmd_hdl_t *hdl, nvlist_t *nvl, er_timeval_t *when)
509 {
510 	uint64_t *tod;
511 	uint_t	nelem;
512 
513 	if (nvlist_lookup_uint64_array(nvl, FMD_EVN_TOD, &tod, &nelem) == 0 &&
514 	    nelem == 2) {
515 		when->ertv_sec = tod[0];
516 		when->ertv_nsec = tod[1];
517 	} else {
518 		when->ertv_sec = when->ertv_nsec = UINT64_MAX;
519 	}
520 }
521 
522 /*
523  * Main fmd entry point.
524  */
525 /*ARGSUSED*/
526 static void
527 zfs_fm_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl, const char *class)
528 {
529 	zfs_case_t *zcp, *dcp;
530 	int32_t pool_state;
531 	uint64_t ena, pool_guid, vdev_guid;
532 	er_timeval_t pool_load;
533 	er_timeval_t er_when;
534 	nvlist_t *detector;
535 	boolean_t pool_found = B_FALSE;
536 	boolean_t isresource;
537 	char *fru, *type;
538 
539 	/*
540 	 * We subscribe to notifications for vdev or pool removal.  In these
541 	 * cases, there may be cases that no longer apply.  Purge any cases
542 	 * that no longer apply.
543 	 */
544 	if (fmd_nvl_class_match(hdl, nvl, "resource.sysevent.EC_zfs.*")) {
545 		zfs_purge_cases(hdl);
546 		zfs_stats.resource_drops.fmds_value.ui64++;
547 		return;
548 	}
549 
550 	isresource = fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.*");
551 
552 	if (isresource) {
553 		/*
554 		 * For resources, we don't have a normal payload.
555 		 */
556 		if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
557 		    &vdev_guid) != 0)
558 			pool_state = SPA_LOAD_OPEN;
559 		else
560 			pool_state = SPA_LOAD_NONE;
561 		detector = NULL;
562 	} else {
563 		(void) nvlist_lookup_nvlist(nvl,
564 		    FM_EREPORT_DETECTOR, &detector);
565 		(void) nvlist_lookup_int32(nvl,
566 		    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, &pool_state);
567 	}
568 
569 	/*
570 	 * We also ignore all ereports generated during an import of a pool,
571 	 * since the only possible fault (.pool) would result in import failure,
572 	 * and hence no persistent fault.  Some day we may want to do something
573 	 * with these ereports, so we continue generating them internally.
574 	 */
575 	if (pool_state == SPA_LOAD_IMPORT) {
576 		zfs_stats.import_drops.fmds_value.ui64++;
577 		return;
578 	}
579 
580 	/*
581 	 * Device I/O errors are ignored during pool open.
582 	 */
583 	if (pool_state == SPA_LOAD_OPEN &&
584 	    (fmd_nvl_class_match(hdl, nvl,
585 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) ||
586 	    fmd_nvl_class_match(hdl, nvl,
587 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) ||
588 	    fmd_nvl_class_match(hdl, nvl,
589 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE)))) {
590 		zfs_stats.dev_drops.fmds_value.ui64++;
591 		return;
592 	}
593 
594 	/*
595 	 * We ignore ereports for anything except disks and files.
596 	 */
597 	if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
598 	    &type) == 0) {
599 		if (strcmp(type, VDEV_TYPE_DISK) != 0 &&
600 		    strcmp(type, VDEV_TYPE_FILE) != 0) {
601 			zfs_stats.vdev_drops.fmds_value.ui64++;
602 			return;
603 		}
604 	}
605 
606 	/*
607 	 * Determine if this ereport corresponds to an open case.  Previous
608 	 * incarnations of this DE used the ENA to chain events together as
609 	 * part of the same case.  The problem with this is that we rely on
610 	 * global uniqueness of cases based on (pool_guid, vdev_guid) pair when
611 	 * generating SERD engines.  Instead, we have a case for each vdev or
612 	 * pool, regardless of the ENA.
613 	 */
614 	(void) nvlist_lookup_uint64(nvl,
615 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, &pool_guid);
616 	if (nvlist_lookup_uint64(nvl,
617 	    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0)
618 		vdev_guid = 0;
619 	if (nvlist_lookup_uint64(nvl, FM_EREPORT_ENA, &ena) != 0)
620 		ena = 0;
621 
622 	zfs_ereport_when(hdl, nvl, &er_when);
623 
624 	for (zcp = uu_list_first(zfs_cases); zcp != NULL;
625 	    zcp = uu_list_next(zfs_cases, zcp)) {
626 		if (zcp->zc_data.zc_pool_guid == pool_guid) {
627 			pool_found = B_TRUE;
628 			pool_load = zcp->zc_when;
629 		}
630 		if (zcp->zc_data.zc_vdev_guid == vdev_guid)
631 			break;
632 	}
633 
634 	if (pool_found) {
635 		fmd_hdl_debug(hdl, "pool %llx, "
636 		    "ereport time %lld.%lld, pool load time = %lld.%lld\n",
637 		    pool_guid, er_when.ertv_sec, er_when.ertv_nsec,
638 		    pool_load.ertv_sec, pool_load.ertv_nsec);
639 	}
640 
641 	/*
642 	 * Avoid falsely accusing a pool of being faulty.  Do so by
643 	 * not replaying ereports that were generated prior to the
644 	 * current import.  If the failure that generated them was
645 	 * transient because the device was actually removed but we
646 	 * didn't receive the normal asynchronous notification, we
647 	 * don't want to mark it as faulted and potentially panic. If
648 	 * there is still a problem we'd expect not to be able to
649 	 * import the pool, or that new ereports will be generated
650 	 * once the pool is used.
651 	 */
652 	if (pool_found && timeval_earlier(&er_when, &pool_load)) {
653 		zfs_stats.old_drops.fmds_value.ui64++;
654 		return;
655 	}
656 
657 	if (!pool_found) {
658 		/*
659 		 * Haven't yet seen this pool, but same situation
660 		 * may apply.
661 		 */
662 		libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl);
663 		struct load_time_arg la;
664 
665 		la.lt_guid = pool_guid;
666 		la.lt_time = &pool_load;
667 		la.lt_found = B_FALSE;
668 
669 		if (zhdl != NULL &&
670 		    zpool_iter(zhdl, zpool_find_load_time, &la) == 0 &&
671 		    la.lt_found == B_TRUE) {
672 			pool_found = B_TRUE;
673 			fmd_hdl_debug(hdl, "pool %llx, "
674 			    "ereport time %lld.%lld, "
675 			    "pool load time = %lld.%lld\n",
676 			    pool_guid, er_when.ertv_sec, er_when.ertv_nsec,
677 			    pool_load.ertv_sec, pool_load.ertv_nsec);
678 			if (timeval_earlier(&er_when, &pool_load)) {
679 				zfs_stats.old_drops.fmds_value.ui64++;
680 				return;
681 			}
682 		}
683 	}
684 
685 	if (zcp == NULL) {
686 		fmd_case_t *cs;
687 		zfs_case_data_t data = { 0 };
688 
689 		/*
690 		 * If this is one of our 'fake' resource ereports, and there is
691 		 * no case open, simply discard it.
692 		 */
693 		if (isresource) {
694 			zfs_stats.resource_drops.fmds_value.ui64++;
695 			return;
696 		}
697 
698 		/*
699 		 * Open a new case.
700 		 */
701 		cs = fmd_case_open(hdl, NULL);
702 
703 		/*
704 		 * Initialize the case buffer.  To commonize code, we actually
705 		 * create the buffer with existing data, and then call
706 		 * zfs_case_unserialize() to instantiate the in-core structure.
707 		 */
708 		fmd_buf_create(hdl, cs, CASE_DATA,
709 		    sizeof (zfs_case_data_t));
710 
711 		data.zc_version = CASE_DATA_VERSION_SERD;
712 		data.zc_ena = ena;
713 		data.zc_pool_guid = pool_guid;
714 		data.zc_vdev_guid = vdev_guid;
715 		data.zc_pool_state = (int)pool_state;
716 
717 		fmd_buf_write(hdl, cs, CASE_DATA, &data, sizeof (data));
718 
719 		zcp = zfs_case_unserialize(hdl, cs);
720 		assert(zcp != NULL);
721 		if (pool_found)
722 			zcp->zc_when = pool_load;
723 	}
724 
725 
726 	/*
727 	 * If this is an ereport for a case with an associated vdev FRU, make
728 	 * sure it is accurate and up to date.
729 	 */
730 	if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
731 	    &fru) == 0) {
732 		topo_hdl_t *thp = fmd_hdl_topo_hold(hdl, TOPO_VERSION);
733 		if (zcp->zc_fru == NULL ||
734 		    !topo_fmri_strcmp(thp, zcp->zc_fru, fru)) {
735 			if (zcp->zc_fru != NULL) {
736 				fmd_hdl_strfree(hdl, zcp->zc_fru);
737 				fmd_buf_destroy(hdl, zcp->zc_case, CASE_FRU);
738 			}
739 			zcp->zc_fru = fmd_hdl_strdup(hdl, fru, FMD_SLEEP);
740 			zfs_case_serialize(hdl, zcp);
741 		}
742 		fmd_hdl_topo_rele(hdl, thp);
743 	}
744 
745 	if (isresource) {
746 		if (fmd_nvl_class_match(hdl, nvl,
747 		    ZFS_MAKE_RSRC(FM_RESOURCE_AUTOREPLACE))) {
748 			/*
749 			 * The 'resource.fs.zfs.autoreplace' event indicates
750 			 * that the pool was loaded with the 'autoreplace'
751 			 * property set.  In this case, any pending device
752 			 * failures should be ignored, as the asynchronous
753 			 * autoreplace handling will take care of them.
754 			 */
755 			fmd_case_close(hdl, zcp->zc_case);
756 		} else if (fmd_nvl_class_match(hdl, nvl,
757 		    ZFS_MAKE_RSRC(FM_RESOURCE_REMOVED))) {
758 			/*
759 			 * The 'resource.fs.zfs.removed' event indicates that
760 			 * device removal was detected, and the device was
761 			 * closed asynchronously.  If this is the case, we
762 			 * assume that any recent I/O errors were due to the
763 			 * device removal, not any fault of the device itself.
764 			 * We reset the SERD engine, and cancel any pending
765 			 * timers.
766 			 */
767 			if (zcp->zc_data.zc_has_remove_timer) {
768 				fmd_timer_remove(hdl, zcp->zc_remove_timer);
769 				zcp->zc_data.zc_has_remove_timer = 0;
770 				zfs_case_serialize(hdl, zcp);
771 			}
772 			if (zcp->zc_data.zc_serd_io[0] != '\0')
773 				fmd_serd_reset(hdl,
774 				    zcp->zc_data.zc_serd_io);
775 			if (zcp->zc_data.zc_serd_checksum[0] != '\0')
776 				fmd_serd_reset(hdl,
777 				    zcp->zc_data.zc_serd_checksum);
778 		}
779 		zfs_stats.resource_drops.fmds_value.ui64++;
780 		return;
781 	}
782 
783 	/*
784 	 * Associate the ereport with this case.
785 	 */
786 	fmd_case_add_ereport(hdl, zcp->zc_case, ep);
787 
788 	/*
789 	 * Don't do anything else if this case is already solved.
790 	 */
791 	if (fmd_case_solved(hdl, zcp->zc_case))
792 		return;
793 
794 	/*
795 	 * Determine if we should solve the case and generate a fault.  We solve
796 	 * a case if:
797 	 *
798 	 * 	a. A pool failed to open (ereport.fs.zfs.pool)
799 	 * 	b. A device failed to open (ereport.fs.zfs.pool) while a pool
800 	 *	   was up and running.
801 	 *
802 	 * We may see a series of ereports associated with a pool open, all
803 	 * chained together by the same ENA.  If the pool open succeeds, then
804 	 * we'll see no further ereports.  To detect when a pool open has
805 	 * succeeded, we associate a timer with the event.  When it expires, we
806 	 * close the case.
807 	 */
808 	if (fmd_nvl_class_match(hdl, nvl,
809 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_POOL))) {
810 		/*
811 		 * Pool level fault.  Before solving the case, go through and
812 		 * close any open device cases that may be pending.
813 		 */
814 		for (dcp = uu_list_first(zfs_cases); dcp != NULL;
815 		    dcp = uu_list_next(zfs_cases, dcp)) {
816 			if (dcp->zc_data.zc_pool_guid ==
817 			    zcp->zc_data.zc_pool_guid &&
818 			    dcp->zc_data.zc_vdev_guid != 0)
819 				fmd_case_close(hdl, dcp->zc_case);
820 		}
821 
822 		zfs_case_solve(hdl, zcp, "fault.fs.zfs.pool", B_TRUE);
823 	} else if (fmd_nvl_class_match(hdl, nvl,
824 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_LOG_REPLAY))) {
825 		/*
826 		 * Pool level fault for reading the intent logs.
827 		 */
828 		zfs_case_solve(hdl, zcp, "fault.fs.zfs.log_replay", B_TRUE);
829 	} else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.vdev.*")) {
830 		/*
831 		 * Device fault.
832 		 */
833 		zfs_case_solve(hdl, zcp, "fault.fs.zfs.device",  B_TRUE);
834 	} else if (fmd_nvl_class_match(hdl, nvl,
835 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) ||
836 	    fmd_nvl_class_match(hdl, nvl,
837 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) ||
838 	    fmd_nvl_class_match(hdl, nvl,
839 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) ||
840 	    fmd_nvl_class_match(hdl, nvl,
841 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) {
842 		char *failmode = NULL;
843 		boolean_t checkremove = B_FALSE;
844 
845 		/*
846 		 * If this is a checksum or I/O error, then toss it into the
847 		 * appropriate SERD engine and check to see if it has fired.
848 		 * Ideally, we want to do something more sophisticated,
849 		 * (persistent errors for a single data block, etc).  For now,
850 		 * a single SERD engine is sufficient.
851 		 */
852 		if (fmd_nvl_class_match(hdl, nvl,
853 		    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO))) {
854 			if (zcp->zc_data.zc_serd_io[0] == '\0') {
855 				zfs_serd_name(zcp->zc_data.zc_serd_io,
856 				    pool_guid, vdev_guid, "io");
857 				fmd_serd_create(hdl, zcp->zc_data.zc_serd_io,
858 				    fmd_prop_get_int32(hdl, "io_N"),
859 				    fmd_prop_get_int64(hdl, "io_T"));
860 				zfs_case_serialize(hdl, zcp);
861 			}
862 			if (fmd_serd_record(hdl, zcp->zc_data.zc_serd_io, ep))
863 				checkremove = B_TRUE;
864 		} else if (fmd_nvl_class_match(hdl, nvl,
865 		    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM))) {
866 			if (zcp->zc_data.zc_serd_checksum[0] == '\0') {
867 				zfs_serd_name(zcp->zc_data.zc_serd_checksum,
868 				    pool_guid, vdev_guid, "checksum");
869 				fmd_serd_create(hdl,
870 				    zcp->zc_data.zc_serd_checksum,
871 				    fmd_prop_get_int32(hdl, "checksum_N"),
872 				    fmd_prop_get_int64(hdl, "checksum_T"));
873 				zfs_case_serialize(hdl, zcp);
874 			}
875 			if (fmd_serd_record(hdl,
876 			    zcp->zc_data.zc_serd_checksum, ep)) {
877 				zfs_case_solve(hdl, zcp,
878 				    "fault.fs.zfs.vdev.checksum", B_FALSE);
879 			}
880 		} else if (fmd_nvl_class_match(hdl, nvl,
881 		    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) &&
882 		    (nvlist_lookup_string(nvl,
883 		    FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, &failmode) == 0) &&
884 		    failmode != NULL) {
885 			if (strncmp(failmode, FM_EREPORT_FAILMODE_CONTINUE,
886 			    strlen(FM_EREPORT_FAILMODE_CONTINUE)) == 0) {
887 				zfs_case_solve(hdl, zcp,
888 				    "fault.fs.zfs.io_failure_continue",
889 				    B_FALSE);
890 			} else if (strncmp(failmode, FM_EREPORT_FAILMODE_WAIT,
891 			    strlen(FM_EREPORT_FAILMODE_WAIT)) == 0) {
892 				zfs_case_solve(hdl, zcp,
893 				    "fault.fs.zfs.io_failure_wait", B_FALSE);
894 			}
895 		} else if (fmd_nvl_class_match(hdl, nvl,
896 		    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) {
897 			checkremove = B_TRUE;
898 		}
899 
900 		/*
901 		 * Because I/O errors may be due to device removal, we postpone
902 		 * any diagnosis until we're sure that we aren't about to
903 		 * receive a 'resource.fs.zfs.removed' event.
904 		 */
905 		if (checkremove) {
906 			if (zcp->zc_data.zc_has_remove_timer)
907 				fmd_timer_remove(hdl, zcp->zc_remove_timer);
908 			zcp->zc_remove_timer = fmd_timer_install(hdl, zcp, NULL,
909 			    zfs_remove_timeout);
910 			if (!zcp->zc_data.zc_has_remove_timer) {
911 				zcp->zc_data.zc_has_remove_timer = 1;
912 				zfs_case_serialize(hdl, zcp);
913 			}
914 		}
915 	}
916 }
917 
918 /*
919  * The timeout is fired when we diagnosed an I/O error, and it was not due to
920  * device removal (which would cause the timeout to be cancelled).
921  */
922 /* ARGSUSED */
923 static void
924 zfs_fm_timeout(fmd_hdl_t *hdl, id_t id, void *data)
925 {
926 	zfs_case_t *zcp = data;
927 
928 	if (id == zcp->zc_remove_timer)
929 		zfs_case_solve(hdl, zcp, "fault.fs.zfs.vdev.io", B_FALSE);
930 }
931 
932 static void
933 zfs_fm_close(fmd_hdl_t *hdl, fmd_case_t *cs)
934 {
935 	zfs_case_t *zcp = fmd_case_getspecific(hdl, cs);
936 
937 	if (zcp->zc_data.zc_serd_checksum[0] != '\0')
938 		fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_checksum);
939 	if (zcp->zc_data.zc_serd_io[0] != '\0')
940 		fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_io);
941 	if (zcp->zc_data.zc_has_remove_timer)
942 		fmd_timer_remove(hdl, zcp->zc_remove_timer);
943 	uu_list_remove(zfs_cases, zcp);
944 	fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
945 }
946 
947 /*
948  * We use the fmd gc entry point to look for old cases that no longer apply.
949  * This allows us to keep our set of case data small in a long running system.
950  */
951 static void
952 zfs_fm_gc(fmd_hdl_t *hdl)
953 {
954 	zfs_purge_cases(hdl);
955 }
956 
957 static const fmd_hdl_ops_t fmd_ops = {
958 	zfs_fm_recv,	/* fmdo_recv */
959 	zfs_fm_timeout,	/* fmdo_timeout */
960 	zfs_fm_close,	/* fmdo_close */
961 	NULL,		/* fmdo_stats */
962 	zfs_fm_gc,	/* fmdo_gc */
963 };
964 
965 static const fmd_prop_t fmd_props[] = {
966 	{ "checksum_N", FMD_TYPE_UINT32, "10" },
967 	{ "checksum_T", FMD_TYPE_TIME, "10min" },
968 	{ "io_N", FMD_TYPE_UINT32, "10" },
969 	{ "io_T", FMD_TYPE_TIME, "10min" },
970 	{ "remove_timeout", FMD_TYPE_TIME, "15sec" },
971 	{ NULL, 0, NULL }
972 };
973 
974 static const fmd_hdl_info_t fmd_info = {
975 	"ZFS Diagnosis Engine", "1.0", &fmd_ops, fmd_props
976 };
977 
978 void
979 _fmd_init(fmd_hdl_t *hdl)
980 {
981 	fmd_case_t *cp;
982 	libzfs_handle_t *zhdl;
983 
984 	if ((zhdl = libzfs_init()) == NULL)
985 		return;
986 
987 	if ((zfs_case_pool = uu_list_pool_create("zfs_case_pool",
988 	    sizeof (zfs_case_t), offsetof(zfs_case_t, zc_node),
989 	    NULL, 0)) == NULL) {
990 		libzfs_fini(zhdl);
991 		return;
992 	}
993 
994 	if ((zfs_cases = uu_list_create(zfs_case_pool, NULL, 0)) == NULL) {
995 		uu_list_pool_destroy(zfs_case_pool);
996 		libzfs_fini(zhdl);
997 		return;
998 	}
999 
1000 	if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) {
1001 		uu_list_destroy(zfs_cases);
1002 		uu_list_pool_destroy(zfs_case_pool);
1003 		libzfs_fini(zhdl);
1004 		return;
1005 	}
1006 
1007 	fmd_hdl_setspecific(hdl, zhdl);
1008 
1009 	(void) fmd_stat_create(hdl, FMD_STAT_NOALLOC, sizeof (zfs_stats) /
1010 	    sizeof (fmd_stat_t), (fmd_stat_t *)&zfs_stats);
1011 
1012 	/*
1013 	 * Iterate over all active cases and unserialize the associated buffers,
1014 	 * adding them to our list of open cases.
1015 	 */
1016 	for (cp = fmd_case_next(hdl, NULL);
1017 	    cp != NULL; cp = fmd_case_next(hdl, cp))
1018 		(void) zfs_case_unserialize(hdl, cp);
1019 
1020 	/*
1021 	 * Clear out any old cases that are no longer valid.
1022 	 */
1023 	zfs_purge_cases(hdl);
1024 
1025 	zfs_remove_timeout = fmd_prop_get_int64(hdl, "remove_timeout");
1026 }
1027 
1028 void
1029 _fmd_fini(fmd_hdl_t *hdl)
1030 {
1031 	zfs_case_t *zcp;
1032 	uu_list_walk_t *walk;
1033 	libzfs_handle_t *zhdl;
1034 
1035 	/*
1036 	 * Remove all active cases.
1037 	 */
1038 	walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST);
1039 	while ((zcp = uu_list_walk_next(walk)) != NULL) {
1040 		uu_list_remove(zfs_cases, zcp);
1041 		fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
1042 	}
1043 	uu_list_walk_end(walk);
1044 
1045 	uu_list_destroy(zfs_cases);
1046 	uu_list_pool_destroy(zfs_case_pool);
1047 
1048 	zhdl = fmd_hdl_getspecific(hdl);
1049 	libzfs_fini(zhdl);
1050 }
1051