xref: /titanic_44/usr/src/uts/sun4u/io/todblade.c (revision b695575577bae0337af339d76949713bfe1c9013)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/conf.h>
28 #include <sys/kmem.h>
29 #include <sys/open.h>
30 #include <sys/ddi.h>
31 #include <sys/sunddi.h>
32 
33 #include <sys/todm5819.h>
34 #include <sys/modctl.h>
35 #include <sys/stat.h>
36 #include <sys/clock.h>
37 #include <sys/reboot.h>
38 #include <sys/machsystm.h>
39 #include <sys/poll.h>
40 #include <sys/pbio.h>
41 #include <sys/lom_priv.h>
42 
43 #define	WDOG_ON 1
44 #define	WDOG_OFF 0
45 
46 static timestruc_t	todbl_get(void);
47 static void		todbl_set(timestruc_t);
48 static uint_t		todbl_set_watchdog_timer(uint_t);
49 static uint_t		todbl_clear_watchdog_timer(void);
50 static void		todbl_set_power_alarm(timestruc_t);
51 static void		todbl_clear_power_alarm(void);
52 static uint64_t		todbl_get_cpufrequency(void);
53 
54 static todinfo_t	rtc_to_tod(struct rtc_t *);
55 static uint_t		read_rtc(struct rtc_t *);
56 static void		write_rtc_time(struct rtc_t *);
57 static uint_t		configure_wdog(uint8_t new_state);
58 
59 extern uint64_t		find_cpufrequency(volatile uint8_t *);
60 
61 /*
62  * External variables
63  */
64 extern int	watchdog_enable;
65 extern int	watchdog_available;
66 extern int	watchdog_activated;
67 extern uint_t   watchdog_timeout_seconds;
68 extern int	boothowto;
69 extern void	(*bsc_drv_func_ptr)(struct bscv_idi_info *);
70 
71 /*
72  * Global variables
73  */
74 int m5819_debug_flags;
75 uint8_t wdog_reset_on_timeout = 1;
76 static clock_t last_pat_lbt;
77 
78 
79 static struct modlmisc modlmisc = {
80 	&mod_miscops, "todblade module",
81 };
82 
83 static struct modlinkage modlinkage = {
84 	MODREV_1, &modlmisc, NULL
85 };
86 
87 
88 int
89 _init(void)
90 {
91 	if (strcmp(tod_module_name, "todblade") == 0) {
92 		RTC_PUT8(RTC_B, (RTC_DM | RTC_HM));
93 
94 		tod_ops.tod_get = todbl_get;
95 		tod_ops.tod_set = todbl_set;
96 		tod_ops.tod_set_watchdog_timer =
97 			todbl_set_watchdog_timer;
98 		tod_ops.tod_clear_watchdog_timer =
99 			todbl_clear_watchdog_timer;
100 		tod_ops.tod_set_power_alarm = todbl_set_power_alarm;
101 		tod_ops.tod_clear_power_alarm = todbl_clear_power_alarm;
102 		tod_ops.tod_get_cpufrequency = todbl_get_cpufrequency;
103 
104 		if (watchdog_enable && (boothowto & RB_DEBUG)) {
105 				watchdog_available = 0;
106 				cmn_err(CE_WARN, "todblade: kernel debugger "
107 				    "detected: hardware watchdog disabled");
108 		}
109 	}
110 	return (mod_install(&modlinkage));
111 }
112 
113 int
114 _fini(void)
115 {
116 	if (strcmp(tod_module_name, "todblade") == 0) {
117 		return (EBUSY);
118 	} else {
119 		return (mod_remove(&modlinkage));
120 	}
121 }
122 
123 /*
124  * The loadable-module _info(9E) entry point
125  */
126 int
127 _info(struct modinfo *modinfop)
128 {
129 	return (mod_info(&modlinkage, modinfop));
130 }
131 
132 
133 /*
134  * Read the current time from the clock chip and convert to UNIX form.
135  * Assumes that the year in the clock chip is valid.
136  * Must be called with tod_lock held.
137  */
138 static timestruc_t
139 todbl_get(void)
140 {
141 	int i;
142 	timestruc_t ts;
143 	struct rtc_t rtc;
144 	struct bscv_idi_info bscv_info;
145 
146 	ASSERT(MUTEX_HELD(&tod_lock));
147 
148 	/*
149 	 * We must check that the value of watchdog enable hasnt changed
150 	 * as its a user knob for turning it on and off
151 	 */
152 	if (watchdog_available) {
153 		if (watchdog_activated && !watchdog_enable) {
154 			(void) configure_wdog(WDOG_OFF);
155 		} else if (!watchdog_activated && watchdog_enable) {
156 			(void) configure_wdog(WDOG_ON);
157 		} else if (watchdog_activated &&
158 			    (ddi_get_lbolt() - last_pat_lbt) >=
159 			    SEC_TO_TICK(1)) {
160 			/*
161 			 * PAT THE WATCHDOG!!
162 			 * We dont want to accelerate the pat frequency
163 			 * when userland calls to the TOD_GET_DATE ioctl
164 			 * pass through here.
165 			 */
166 			bscv_info.type = BSCV_IDI_WDOG_PAT;
167 			bscv_info.data = NULL;
168 			bscv_info.size = 0;
169 			if (bsc_drv_func_ptr != NULL) {
170 				(*bsc_drv_func_ptr)(&bscv_info);
171 				last_pat_lbt = ddi_get_lbolt();
172 			}
173 		}
174 	}
175 
176 	/*
177 	 * Read from the tod, and if it isnt accessible wait
178 	 * before retrying.
179 	 */
180 	for (i = 0; i < TODM5819_UIP_RETRY_THRESH; i++) {
181 		if (read_rtc(&rtc))
182 			break;
183 		drv_usecwait(TODM5819_UIP_WAIT_USEC);
184 	}
185 	if (i == TODM5819_UIP_RETRY_THRESH) {
186 		/*
187 		 * We couldnt read from the tod
188 		 */
189 		tod_fault_reset();
190 		return (hrestime);
191 	}
192 
193 	DPRINTF("todbl_get: century=%d year=%d dom=%d hrs=%d\n",
194 	    rtc.rtc_century, rtc.rtc_year, rtc.rtc_dom, rtc.rtc_hrs);
195 
196 	ts.tv_sec = tod_to_utc(rtc_to_tod(&rtc));
197 	ts.tv_nsec = 0;
198 	return (ts);
199 }
200 
201 static todinfo_t
202 rtc_to_tod(struct rtc_t *rtc)
203 {
204 	todinfo_t tod;
205 
206 	/*
207 	 * tod_year is base 1900 so this code needs to adjust the true
208 	 * year retrieved from the rtc's century and year fields.
209 	 */
210 	tod.tod_year	= rtc->rtc_year + (rtc->rtc_century * 100) - 1900;
211 	tod.tod_month	= rtc->rtc_mon;
212 	tod.tod_day	= rtc->rtc_dom;
213 	tod.tod_dow	= rtc->rtc_dow;
214 	tod.tod_hour	= rtc->rtc_hrs;
215 	tod.tod_min	= rtc->rtc_min;
216 	tod.tod_sec	= rtc->rtc_sec;
217 
218 	return (tod);
219 }
220 
221 
222 static uint_t
223 read_rtc(struct rtc_t *rtc)
224 {
225 	int s;
226 	uint_t rtc_readable = 0;
227 
228 	s = splhi();
229 	/*
230 	 * If UIP bit is not set we have at least 274us
231 	 * to read the values.
232 	 */
233 	if (!(RTC_GET8(RTC_A) & RTC_UIP)) {
234 		rtc_readable = 1;
235 
236 		rtc->rtc_sec = RTC_GET8(RTC_SEC);
237 		rtc->rtc_asec = RTC_GET8(RTC_ASEC);
238 		rtc->rtc_min = RTC_GET8(RTC_MIN);
239 		rtc->rtc_amin = RTC_GET8(RTC_AMIN);
240 
241 		rtc->rtc_hrs = RTC_GET8(RTC_HRS);
242 		rtc->rtc_ahrs = RTC_GET8(RTC_AHRS);
243 		rtc->rtc_dow = RTC_GET8(RTC_DOW);
244 		rtc->rtc_dom = RTC_GET8(RTC_DOM);
245 		rtc->rtc_adom = RTC_GET8(RTC_D) & 0x3f;
246 
247 		rtc->rtc_mon = RTC_GET8(RTC_MON);
248 		rtc->rtc_year = RTC_GET8(RTC_YEAR);
249 		rtc->rtc_century = RTC_GET8(RTC_CENTURY);
250 		rtc->rtc_amon = 0;
251 
252 		/* Clear wakeup data */
253 		rtc->apc_wdwr = 0;
254 		rtc->apc_wdmr = 0;
255 		rtc->apc_wmr = 0;
256 		rtc->apc_wyr = 0;
257 		rtc->apc_wcr = 0;
258 	}
259 
260 	splx(s);
261 	return (rtc_readable);
262 }
263 
264 /*
265  * Write the specified time into the clock chip.
266  * Must be called with tod_lock held.
267  */
268 static void
269 todbl_set(timestruc_t ts)
270 {
271 	struct rtc_t	rtc;
272 	todinfo_t tod = utc_to_tod(ts.tv_sec);
273 	struct bscv_idi_info bscv_info;
274 	int year;
275 
276 	ASSERT(MUTEX_HELD(&tod_lock));
277 
278 	/* tod_year is base 1900 so this code needs to adjust */
279 	year = 1900 + tod.tod_year;
280 	rtc.rtc_year	= year % 100;
281 	rtc.rtc_century = year / 100;
282 	rtc.rtc_mon	= (uint8_t)tod.tod_month;
283 	rtc.rtc_dom	= (uint8_t)tod.tod_day;
284 	rtc.rtc_dow	= (uint8_t)tod.tod_dow;
285 	rtc.rtc_hrs	= (uint8_t)tod.tod_hour;
286 	rtc.rtc_min	= (uint8_t)tod.tod_min;
287 	rtc.rtc_sec	= (uint8_t)tod.tod_sec;
288 	DPRINTF("todbl_set: century=%d year=%d dom=%d hrs=%d\n",
289 	    rtc.rtc_century, rtc.rtc_year, rtc.rtc_dom, rtc.rtc_hrs);
290 
291 	write_rtc_time(&rtc);
292 
293 	/*
294 	 * Because of a generic solaris problem where calls to stime()
295 	 * starve calls to tod_get(), we need to check to see when the
296 	 * watchdog was last patted and pat it if necessary.
297 	 */
298 	if (watchdog_activated &&
299 	    (ddi_get_lbolt() - last_pat_lbt) >= SEC_TO_TICK(1)) {
300 		/*
301 		 * Pat the watchdog!
302 		 */
303 		bscv_info.type = BSCV_IDI_WDOG_PAT;
304 		bscv_info.data = NULL;
305 		bscv_info.size = 0;
306 		if (bsc_drv_func_ptr != NULL) {
307 			(*bsc_drv_func_ptr)(&bscv_info);
308 			last_pat_lbt = ddi_get_lbolt();
309 		}
310 	}
311 }
312 
313 static void
314 write_rtc_time(struct rtc_t *rtc)
315 {
316 	uint8_t	regb;
317 
318 	/*
319 	 * Freeze
320 	 */
321 	regb = RTC_GET8(RTC_B);
322 	RTC_PUT8(RTC_B, (regb | RTC_SET));
323 
324 	RTC_PUT8(RTC_SEC, (rtc->rtc_sec));
325 	RTC_PUT8(RTC_ASEC, (rtc->rtc_asec));
326 	RTC_PUT8(RTC_MIN, (rtc->rtc_min));
327 	RTC_PUT8(RTC_AMIN, (rtc->rtc_amin));
328 
329 	RTC_PUT8(RTC_HRS, (rtc->rtc_hrs));
330 	RTC_PUT8(RTC_AHRS, (rtc->rtc_ahrs));
331 	RTC_PUT8(RTC_DOW, (rtc->rtc_dow));
332 	RTC_PUT8(RTC_DOM, (rtc->rtc_dom));
333 
334 	RTC_PUT8(RTC_MON, (rtc->rtc_mon));
335 	RTC_PUT8(RTC_YEAR, (rtc->rtc_year));
336 	RTC_PUT8(RTC_CENTURY, (rtc->rtc_century));
337 
338 	/*
339 	 * Unfreeze
340 	 */
341 	RTC_PUT8(RTC_B, regb);
342 }
343 
344 
345 
346 /*
347  * The TOD alarm functionality is not supported on our platform
348  * as the interrupt is not wired, so do nothing.
349  */
350 /*ARGSUSED*/
351 static void
352 todbl_set_power_alarm(timestruc_t ts)
353 {
354 	ASSERT(MUTEX_HELD(&tod_lock));
355 }
356 
357 /*
358  * clear alarm interrupt
359  */
360 static void
361 todbl_clear_power_alarm(void)
362 {
363 	ASSERT(MUTEX_HELD(&tod_lock));
364 }
365 
366 /*
367  * Determine the cpu frequency by watching the TOD chip rollover twice.
368  * Cpu clock rate is determined by computing the ticks added (in tick register)
369  * during one second interval on TOD.
370  */
371 uint64_t
372 todbl_get_cpufrequency(void)
373 {
374 	ASSERT(MUTEX_HELD(&tod_lock));
375 	M5819_ADDR_REG = RTC_SEC;
376 	return (find_cpufrequency(v_rtc_data_reg));
377 }
378 
379 
380 static uint_t
381 todbl_set_watchdog_timer(uint_t timeoutval)
382 {
383 	/*
384 	 * We get started during kernel intilaisation only
385 	 * if watchdog_enable is set.
386 	 */
387 	ASSERT(MUTEX_HELD(&tod_lock));
388 
389 	if (watchdog_available && (!watchdog_activated ||
390 	    (watchdog_activated && (timeoutval != watchdog_timeout_seconds)))) {
391 		watchdog_timeout_seconds = timeoutval;
392 		if (configure_wdog(WDOG_ON))
393 			return (watchdog_timeout_seconds);
394 	}
395 	return (0);
396 }
397 
398 static uint_t
399 todbl_clear_watchdog_timer(void)
400 {
401 	/*
402 	 * The core kernel will call us here to disable the wdog when:
403 	 * 1. we're panicing
404 	 * 2. we're entering debug
405 	 * 3. we're rebooting
406 	 */
407 	ASSERT(MUTEX_HELD(&tod_lock));
408 
409 	if (watchdog_available && watchdog_activated) {
410 		watchdog_enable = 0;
411 		if (!configure_wdog(WDOG_OFF))
412 			return (0);
413 	}
414 	return (watchdog_timeout_seconds);
415 }
416 
417 static uint_t
418 configure_wdog(uint8_t new_state)
419 {
420 	bscv_wdog_t wdog_cmd;
421 	struct bscv_idi_info bscv_info;
422 
423 	if (new_state == WDOG_ON || new_state == WDOG_OFF) {
424 
425 		wdog_cmd.enable_wdog = new_state;
426 		wdog_cmd.wdog_timeout_s = watchdog_timeout_seconds;
427 		wdog_cmd.reset_system_on_timeout = wdog_reset_on_timeout;
428 		bscv_info.type = BSCV_IDI_WDOG_CFG;
429 		bscv_info.data = &wdog_cmd;
430 		bscv_info.size = sizeof (wdog_cmd);
431 
432 		if (bsc_drv_func_ptr != NULL) {
433 			watchdog_activated = new_state;
434 			(*bsc_drv_func_ptr)(&bscv_info);
435 			return (1);
436 		}
437 	}
438 	return (0);
439 
440 }
441