1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/types.h>
27 #include <sys/conf.h>
28 #include <sys/kmem.h>
29 #include <sys/open.h>
30 #include <sys/ddi.h>
31 #include <sys/sunddi.h>
32
33 #include <sys/todm5819.h>
34 #include <sys/modctl.h>
35 #include <sys/stat.h>
36 #include <sys/clock.h>
37 #include <sys/reboot.h>
38 #include <sys/machsystm.h>
39 #include <sys/poll.h>
40 #include <sys/pbio.h>
41 #include <sys/lom_priv.h>
42
43 #define WDOG_ON 1
44 #define WDOG_OFF 0
45
46 static timestruc_t todbl_get(void);
47 static void todbl_set(timestruc_t);
48 static uint_t todbl_set_watchdog_timer(uint_t);
49 static uint_t todbl_clear_watchdog_timer(void);
50 static void todbl_set_power_alarm(timestruc_t);
51 static void todbl_clear_power_alarm(void);
52 static uint64_t todbl_get_cpufrequency(void);
53
54 static todinfo_t rtc_to_tod(struct rtc_t *);
55 static uint_t read_rtc(struct rtc_t *);
56 static void write_rtc_time(struct rtc_t *);
57 static uint_t configure_wdog(uint8_t new_state);
58
59 extern uint64_t find_cpufrequency(volatile uint8_t *);
60
61 /*
62 * External variables
63 */
64 extern int watchdog_enable;
65 extern int watchdog_available;
66 extern int watchdog_activated;
67 extern uint_t watchdog_timeout_seconds;
68 extern int boothowto;
69 extern void (*bsc_drv_func_ptr)(struct bscv_idi_info *);
70
71 /*
72 * Global variables
73 */
74 int m5819_debug_flags;
75 uint8_t wdog_reset_on_timeout = 1;
76 static clock_t last_pat_lbt;
77
78
79 static struct modlmisc modlmisc = {
80 &mod_miscops, "todblade module",
81 };
82
83 static struct modlinkage modlinkage = {
84 MODREV_1, &modlmisc, NULL
85 };
86
87
88 int
_init(void)89 _init(void)
90 {
91 if (strcmp(tod_module_name, "todblade") == 0) {
92 RTC_PUT8(RTC_B, (RTC_DM | RTC_HM));
93
94 tod_ops.tod_get = todbl_get;
95 tod_ops.tod_set = todbl_set;
96 tod_ops.tod_set_watchdog_timer = todbl_set_watchdog_timer;
97 tod_ops.tod_clear_watchdog_timer = todbl_clear_watchdog_timer;
98 tod_ops.tod_set_power_alarm = todbl_set_power_alarm;
99 tod_ops.tod_clear_power_alarm = todbl_clear_power_alarm;
100 tod_ops.tod_get_cpufrequency = todbl_get_cpufrequency;
101
102 if (watchdog_enable && (boothowto & RB_DEBUG)) {
103 watchdog_available = 0;
104 cmn_err(CE_WARN, "todblade: kernel debugger "
105 "detected: hardware watchdog disabled");
106 }
107 }
108 return (mod_install(&modlinkage));
109 }
110
111 int
_fini(void)112 _fini(void)
113 {
114 if (strcmp(tod_module_name, "todblade") == 0) {
115 return (EBUSY);
116 } else {
117 return (mod_remove(&modlinkage));
118 }
119 }
120
121 /*
122 * The loadable-module _info(9E) entry point
123 */
124 int
_info(struct modinfo * modinfop)125 _info(struct modinfo *modinfop)
126 {
127 return (mod_info(&modlinkage, modinfop));
128 }
129
130
131 /*
132 * Read the current time from the clock chip and convert to UNIX form.
133 * Assumes that the year in the clock chip is valid.
134 * Must be called with tod_lock held.
135 */
136 static timestruc_t
todbl_get(void)137 todbl_get(void)
138 {
139 int i;
140 timestruc_t ts;
141 struct rtc_t rtc;
142 struct bscv_idi_info bscv_info;
143
144 ASSERT(MUTEX_HELD(&tod_lock));
145
146 /*
147 * We must check that the value of watchdog enable hasnt changed
148 * as its a user knob for turning it on and off
149 */
150 if (watchdog_available) {
151 if (watchdog_activated && !watchdog_enable) {
152 (void) configure_wdog(WDOG_OFF);
153 } else if (!watchdog_activated && watchdog_enable) {
154 (void) configure_wdog(WDOG_ON);
155 } else if (watchdog_activated &&
156 (ddi_get_lbolt() - last_pat_lbt) >= SEC_TO_TICK(1)) {
157 /*
158 * PAT THE WATCHDOG!!
159 * We dont want to accelerate the pat frequency
160 * when userland calls to the TOD_GET_DATE ioctl
161 * pass through here.
162 */
163 bscv_info.type = BSCV_IDI_WDOG_PAT;
164 bscv_info.data = NULL;
165 bscv_info.size = 0;
166 if (bsc_drv_func_ptr != NULL) {
167 (*bsc_drv_func_ptr)(&bscv_info);
168 last_pat_lbt = ddi_get_lbolt();
169 }
170 }
171 }
172
173 /*
174 * Read from the tod, and if it isnt accessible wait
175 * before retrying.
176 */
177 for (i = 0; i < TODM5819_UIP_RETRY_THRESH; i++) {
178 if (read_rtc(&rtc))
179 break;
180 drv_usecwait(TODM5819_UIP_WAIT_USEC);
181 }
182 if (i == TODM5819_UIP_RETRY_THRESH) {
183 /*
184 * We couldn't read from the TOD.
185 */
186 tod_status_set(TOD_GET_FAILED);
187 return (hrestime);
188 }
189
190 DPRINTF("todbl_get: century=%d year=%d dom=%d hrs=%d\n",
191 rtc.rtc_century, rtc.rtc_year, rtc.rtc_dom, rtc.rtc_hrs);
192
193 /* read was successful so ensure failure flag is clear */
194 tod_status_clear(TOD_GET_FAILED);
195
196 ts.tv_sec = tod_to_utc(rtc_to_tod(&rtc));
197 ts.tv_nsec = 0;
198 return (ts);
199 }
200
201 static todinfo_t
rtc_to_tod(struct rtc_t * rtc)202 rtc_to_tod(struct rtc_t *rtc)
203 {
204 todinfo_t tod;
205
206 /*
207 * tod_year is base 1900 so this code needs to adjust the true
208 * year retrieved from the rtc's century and year fields.
209 */
210 tod.tod_year = rtc->rtc_year + (rtc->rtc_century * 100) - 1900;
211 tod.tod_month = rtc->rtc_mon;
212 tod.tod_day = rtc->rtc_dom;
213 tod.tod_dow = rtc->rtc_dow;
214 tod.tod_hour = rtc->rtc_hrs;
215 tod.tod_min = rtc->rtc_min;
216 tod.tod_sec = rtc->rtc_sec;
217
218 return (tod);
219 }
220
221
222 static uint_t
read_rtc(struct rtc_t * rtc)223 read_rtc(struct rtc_t *rtc)
224 {
225 int s;
226 uint_t rtc_readable = 0;
227
228 s = splhi();
229 /*
230 * If UIP bit is not set we have at least 274us
231 * to read the values.
232 */
233 if (!(RTC_GET8(RTC_A) & RTC_UIP)) {
234 rtc_readable = 1;
235
236 rtc->rtc_sec = RTC_GET8(RTC_SEC);
237 rtc->rtc_asec = RTC_GET8(RTC_ASEC);
238 rtc->rtc_min = RTC_GET8(RTC_MIN);
239 rtc->rtc_amin = RTC_GET8(RTC_AMIN);
240
241 rtc->rtc_hrs = RTC_GET8(RTC_HRS);
242 rtc->rtc_ahrs = RTC_GET8(RTC_AHRS);
243 rtc->rtc_dow = RTC_GET8(RTC_DOW);
244 rtc->rtc_dom = RTC_GET8(RTC_DOM);
245 rtc->rtc_adom = RTC_GET8(RTC_D) & 0x3f;
246
247 rtc->rtc_mon = RTC_GET8(RTC_MON);
248 rtc->rtc_year = RTC_GET8(RTC_YEAR);
249 rtc->rtc_century = RTC_GET8(RTC_CENTURY);
250 rtc->rtc_amon = 0;
251
252 /* Clear wakeup data */
253 rtc->apc_wdwr = 0;
254 rtc->apc_wdmr = 0;
255 rtc->apc_wmr = 0;
256 rtc->apc_wyr = 0;
257 rtc->apc_wcr = 0;
258 }
259
260 splx(s);
261 return (rtc_readable);
262 }
263
264 /*
265 * Write the specified time into the clock chip.
266 * Must be called with tod_lock held.
267 */
268 static void
todbl_set(timestruc_t ts)269 todbl_set(timestruc_t ts)
270 {
271 struct rtc_t rtc;
272 todinfo_t tod = utc_to_tod(ts.tv_sec);
273 struct bscv_idi_info bscv_info;
274 int year;
275
276 ASSERT(MUTEX_HELD(&tod_lock));
277
278 /* tod_year is base 1900 so this code needs to adjust */
279 year = 1900 + tod.tod_year;
280 rtc.rtc_year = year % 100;
281 rtc.rtc_century = year / 100;
282 rtc.rtc_mon = (uint8_t)tod.tod_month;
283 rtc.rtc_dom = (uint8_t)tod.tod_day;
284 rtc.rtc_dow = (uint8_t)tod.tod_dow;
285 rtc.rtc_hrs = (uint8_t)tod.tod_hour;
286 rtc.rtc_min = (uint8_t)tod.tod_min;
287 rtc.rtc_sec = (uint8_t)tod.tod_sec;
288 DPRINTF("todbl_set: century=%d year=%d dom=%d hrs=%d\n",
289 rtc.rtc_century, rtc.rtc_year, rtc.rtc_dom, rtc.rtc_hrs);
290
291 write_rtc_time(&rtc);
292
293 /*
294 * Because of a generic solaris problem where calls to stime()
295 * starve calls to tod_get(), we need to check to see when the
296 * watchdog was last patted and pat it if necessary.
297 */
298 if (watchdog_activated &&
299 (ddi_get_lbolt() - last_pat_lbt) >= SEC_TO_TICK(1)) {
300 /*
301 * Pat the watchdog!
302 */
303 bscv_info.type = BSCV_IDI_WDOG_PAT;
304 bscv_info.data = NULL;
305 bscv_info.size = 0;
306 if (bsc_drv_func_ptr != NULL) {
307 (*bsc_drv_func_ptr)(&bscv_info);
308 last_pat_lbt = ddi_get_lbolt();
309 }
310 }
311 }
312
313 static void
write_rtc_time(struct rtc_t * rtc)314 write_rtc_time(struct rtc_t *rtc)
315 {
316 uint8_t regb;
317 int i;
318
319 /*
320 * Freeze
321 */
322 regb = RTC_GET8(RTC_B);
323 RTC_PUT8(RTC_B, (regb | RTC_SET));
324
325 /*
326 * If an update is in progress wait for the UIP flag to clear.
327 * If we write whilst UIP is still set there is a slight but real
328 * possibility of corrupting the RTC date and time registers.
329 *
330 * The expected wait is one internal cycle of the chip. We could
331 * simply spin but this may hang a CPU if we were to have a broken
332 * RTC chip where UIP is stuck, so we use a retry loop instead.
333 * No critical section is needed here as the UIP flag will not be
334 * re-asserted until we clear RTC_SET.
335 */
336 for (i = 0; i < TODM5819_UIP_RETRY_THRESH; i++) {
337 if (!(RTC_GET8(RTC_A) & RTC_UIP)) {
338 break;
339 }
340 drv_usecwait(TODM5819_UIP_WAIT_USEC);
341 }
342 if (i < TODM5819_UIP_RETRY_THRESH) {
343 RTC_PUT8(RTC_SEC, (rtc->rtc_sec));
344 RTC_PUT8(RTC_ASEC, (rtc->rtc_asec));
345 RTC_PUT8(RTC_MIN, (rtc->rtc_min));
346 RTC_PUT8(RTC_AMIN, (rtc->rtc_amin));
347
348 RTC_PUT8(RTC_HRS, (rtc->rtc_hrs));
349 RTC_PUT8(RTC_AHRS, (rtc->rtc_ahrs));
350 RTC_PUT8(RTC_DOW, (rtc->rtc_dow));
351 RTC_PUT8(RTC_DOM, (rtc->rtc_dom));
352
353 RTC_PUT8(RTC_MON, (rtc->rtc_mon));
354 RTC_PUT8(RTC_YEAR, (rtc->rtc_year));
355 RTC_PUT8(RTC_CENTURY, (rtc->rtc_century));
356 } else {
357 cmn_err(CE_WARN, "todblade: Could not write the RTC\n");
358 }
359
360 /*
361 * Unfreeze
362 */
363 RTC_PUT8(RTC_B, regb);
364 }
365
366
367
368 /*
369 * The TOD alarm functionality is not supported on our platform
370 * as the interrupt is not wired, so do nothing.
371 */
372 /*ARGSUSED*/
373 static void
todbl_set_power_alarm(timestruc_t ts)374 todbl_set_power_alarm(timestruc_t ts)
375 {
376 ASSERT(MUTEX_HELD(&tod_lock));
377 }
378
379 /*
380 * clear alarm interrupt
381 */
382 static void
todbl_clear_power_alarm(void)383 todbl_clear_power_alarm(void)
384 {
385 ASSERT(MUTEX_HELD(&tod_lock));
386 }
387
388 /*
389 * Determine the cpu frequency by watching the TOD chip rollover twice.
390 * Cpu clock rate is determined by computing the ticks added (in tick register)
391 * during one second interval on TOD.
392 */
393 uint64_t
todbl_get_cpufrequency(void)394 todbl_get_cpufrequency(void)
395 {
396 ASSERT(MUTEX_HELD(&tod_lock));
397 M5819_ADDR_REG = RTC_SEC;
398 return (find_cpufrequency(v_rtc_data_reg));
399 }
400
401
402 static uint_t
todbl_set_watchdog_timer(uint_t timeoutval)403 todbl_set_watchdog_timer(uint_t timeoutval)
404 {
405 /*
406 * We get started during kernel intilaisation only
407 * if watchdog_enable is set.
408 */
409 ASSERT(MUTEX_HELD(&tod_lock));
410
411 if (watchdog_available && (!watchdog_activated ||
412 (watchdog_activated && (timeoutval != watchdog_timeout_seconds)))) {
413 watchdog_timeout_seconds = timeoutval;
414 if (configure_wdog(WDOG_ON))
415 return (watchdog_timeout_seconds);
416 }
417 return (0);
418 }
419
420 static uint_t
todbl_clear_watchdog_timer(void)421 todbl_clear_watchdog_timer(void)
422 {
423 /*
424 * The core kernel will call us here to disable the wdog when:
425 * 1. we're panicing
426 * 2. we're entering debug
427 * 3. we're rebooting
428 */
429 ASSERT(MUTEX_HELD(&tod_lock));
430
431 if (watchdog_available && watchdog_activated) {
432 watchdog_enable = 0;
433 if (!configure_wdog(WDOG_OFF))
434 return (0);
435 }
436 return (watchdog_timeout_seconds);
437 }
438
439 static uint_t
configure_wdog(uint8_t new_state)440 configure_wdog(uint8_t new_state)
441 {
442 bscv_wdog_t wdog_cmd;
443 struct bscv_idi_info bscv_info;
444
445 if (new_state == WDOG_ON || new_state == WDOG_OFF) {
446
447 wdog_cmd.enable_wdog = new_state;
448 wdog_cmd.wdog_timeout_s = watchdog_timeout_seconds;
449 wdog_cmd.reset_system_on_timeout = wdog_reset_on_timeout;
450 bscv_info.type = BSCV_IDI_WDOG_CFG;
451 bscv_info.data = &wdog_cmd;
452 bscv_info.size = sizeof (wdog_cmd);
453
454 if (bsc_drv_func_ptr != NULL) {
455 watchdog_activated = new_state;
456 (*bsc_drv_func_ptr)(&bscv_info);
457 return (1);
458 }
459 }
460 return (0);
461
462 }
463