1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/dmu.h> 31 #include <sys/zap.h> 32 #include <sys/arc.h> 33 #include <sys/stat.h> 34 #include <sys/resource.h> 35 #include <sys/zil.h> 36 #include <sys/zil_impl.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/vdev.h> 39 #include <sys/dmu_tx.h> 40 41 /* 42 * The zfs intent log (ZIL) saves transaction records of system calls 43 * that change the file system in memory with enough information 44 * to be able to replay them. These are stored in memory until 45 * either the DMU transaction group (txg) commits them to the stable pool 46 * and they can be discarded, or they are flushed to the stable log 47 * (also in the pool) due to a fsync, O_DSYNC or other synchronous 48 * requirement. In the event of a panic or power fail then those log 49 * records (transactions) are replayed. 50 * 51 * There is one ZIL per file system. Its on-disk (pool) format consists 52 * of 3 parts: 53 * 54 * - ZIL header 55 * - ZIL blocks 56 * - ZIL records 57 * 58 * A log record holds a system call transaction. Log blocks can 59 * hold many log records and the blocks are chained together. 60 * Each ZIL block contains a block pointer (blkptr_t) to the next 61 * ZIL block in the chain. The ZIL header points to the first 62 * block in the chain. Note there is not a fixed place in the pool 63 * to hold blocks. They are dynamically allocated and freed as 64 * needed from the blocks available. Figure X shows the ZIL structure: 65 */ 66 67 /* 68 * This global ZIL switch affects all pools 69 */ 70 int zil_disable = 0; /* disable intent logging */ 71 72 /* 73 * Tunable parameter for debugging or performance analysis. Setting 74 * zfs_nocacheflush will cause corruption on power loss if a volatile 75 * out-of-order write cache is enabled. 76 */ 77 boolean_t zfs_nocacheflush = B_FALSE; 78 79 static kmem_cache_t *zil_lwb_cache; 80 81 static int 82 zil_dva_compare(const void *x1, const void *x2) 83 { 84 const dva_t *dva1 = x1; 85 const dva_t *dva2 = x2; 86 87 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) 88 return (-1); 89 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) 90 return (1); 91 92 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) 93 return (-1); 94 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) 95 return (1); 96 97 return (0); 98 } 99 100 static void 101 zil_dva_tree_init(avl_tree_t *t) 102 { 103 avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t), 104 offsetof(zil_dva_node_t, zn_node)); 105 } 106 107 static void 108 zil_dva_tree_fini(avl_tree_t *t) 109 { 110 zil_dva_node_t *zn; 111 void *cookie = NULL; 112 113 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 114 kmem_free(zn, sizeof (zil_dva_node_t)); 115 116 avl_destroy(t); 117 } 118 119 static int 120 zil_dva_tree_add(avl_tree_t *t, dva_t *dva) 121 { 122 zil_dva_node_t *zn; 123 avl_index_t where; 124 125 if (avl_find(t, dva, &where) != NULL) 126 return (EEXIST); 127 128 zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP); 129 zn->zn_dva = *dva; 130 avl_insert(t, zn, where); 131 132 return (0); 133 } 134 135 static zil_header_t * 136 zil_header_in_syncing_context(zilog_t *zilog) 137 { 138 return ((zil_header_t *)zilog->zl_header); 139 } 140 141 static void 142 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 143 { 144 zio_cksum_t *zc = &bp->blk_cksum; 145 146 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); 147 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); 148 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 149 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 150 } 151 152 /* 153 * Read a log block, make sure it's valid, and byteswap it if necessary. 154 */ 155 static int 156 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp) 157 { 158 blkptr_t blk = *bp; 159 zbookmark_t zb; 160 uint32_t aflags = ARC_WAIT; 161 int error; 162 163 zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET]; 164 zb.zb_object = 0; 165 zb.zb_level = -1; 166 zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ]; 167 168 *abufpp = NULL; 169 170 error = arc_read(NULL, zilog->zl_spa, &blk, byteswap_uint64_array, 171 arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | 172 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb); 173 174 if (error == 0) { 175 char *data = (*abufpp)->b_data; 176 uint64_t blksz = BP_GET_LSIZE(bp); 177 zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1; 178 zio_cksum_t cksum = bp->blk_cksum; 179 180 /* 181 * Sequence numbers should be... sequential. The checksum 182 * verifier for the next block should be bp's checksum plus 1. 183 */ 184 cksum.zc_word[ZIL_ZC_SEQ]++; 185 186 if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, sizeof (cksum))) 187 error = ESTALE; 188 else if (BP_IS_HOLE(&ztp->zit_next_blk)) 189 error = ENOENT; 190 else if (ztp->zit_nused > (blksz - sizeof (zil_trailer_t))) 191 error = EOVERFLOW; 192 193 if (error) { 194 VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1); 195 *abufpp = NULL; 196 } 197 } 198 199 dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid); 200 201 return (error); 202 } 203 204 /* 205 * Parse the intent log, and call parse_func for each valid record within. 206 * Return the highest sequence number. 207 */ 208 uint64_t 209 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 210 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) 211 { 212 const zil_header_t *zh = zilog->zl_header; 213 uint64_t claim_seq = zh->zh_claim_seq; 214 uint64_t seq = 0; 215 uint64_t max_seq = 0; 216 blkptr_t blk = zh->zh_log; 217 arc_buf_t *abuf; 218 char *lrbuf, *lrp; 219 zil_trailer_t *ztp; 220 int reclen, error; 221 222 if (BP_IS_HOLE(&blk)) 223 return (max_seq); 224 225 /* 226 * Starting at the block pointed to by zh_log we read the log chain. 227 * For each block in the chain we strongly check that block to 228 * ensure its validity. We stop when an invalid block is found. 229 * For each block pointer in the chain we call parse_blk_func(). 230 * For each record in each valid block we call parse_lr_func(). 231 * If the log has been claimed, stop if we encounter a sequence 232 * number greater than the highest claimed sequence number. 233 */ 234 zil_dva_tree_init(&zilog->zl_dva_tree); 235 for (;;) { 236 seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 237 238 if (claim_seq != 0 && seq > claim_seq) 239 break; 240 241 ASSERT(max_seq < seq); 242 max_seq = seq; 243 244 error = zil_read_log_block(zilog, &blk, &abuf); 245 246 if (parse_blk_func != NULL) 247 parse_blk_func(zilog, &blk, arg, txg); 248 249 if (error) 250 break; 251 252 lrbuf = abuf->b_data; 253 ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; 254 blk = ztp->zit_next_blk; 255 256 if (parse_lr_func == NULL) { 257 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 258 continue; 259 } 260 261 for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) { 262 lr_t *lr = (lr_t *)lrp; 263 reclen = lr->lrc_reclen; 264 ASSERT3U(reclen, >=, sizeof (lr_t)); 265 parse_lr_func(zilog, lr, arg, txg); 266 } 267 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 268 } 269 zil_dva_tree_fini(&zilog->zl_dva_tree); 270 271 return (max_seq); 272 } 273 274 /* ARGSUSED */ 275 static void 276 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) 277 { 278 spa_t *spa = zilog->zl_spa; 279 int err; 280 281 /* 282 * Claim log block if not already committed and not already claimed. 283 */ 284 if (bp->blk_birth >= first_txg && 285 zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) { 286 err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL)); 287 ASSERT(err == 0); 288 } 289 } 290 291 static void 292 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) 293 { 294 if (lrc->lrc_txtype == TX_WRITE) { 295 lr_write_t *lr = (lr_write_t *)lrc; 296 zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg); 297 } 298 } 299 300 /* ARGSUSED */ 301 static void 302 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) 303 { 304 zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx)); 305 } 306 307 static void 308 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) 309 { 310 /* 311 * If we previously claimed it, we need to free it. 312 */ 313 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) { 314 lr_write_t *lr = (lr_write_t *)lrc; 315 blkptr_t *bp = &lr->lr_blkptr; 316 if (bp->blk_birth >= claim_txg && 317 !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) { 318 (void) arc_free(NULL, zilog->zl_spa, 319 dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT); 320 } 321 } 322 } 323 324 /* 325 * Create an on-disk intent log. 326 */ 327 static void 328 zil_create(zilog_t *zilog) 329 { 330 const zil_header_t *zh = zilog->zl_header; 331 lwb_t *lwb; 332 uint64_t txg = 0; 333 dmu_tx_t *tx = NULL; 334 blkptr_t blk; 335 int error = 0; 336 337 /* 338 * Wait for any previous destroy to complete. 339 */ 340 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 341 342 ASSERT(zh->zh_claim_txg == 0); 343 ASSERT(zh->zh_replay_seq == 0); 344 345 blk = zh->zh_log; 346 347 /* 348 * If we don't already have an initial log block, allocate one now. 349 */ 350 if (BP_IS_HOLE(&blk)) { 351 tx = dmu_tx_create(zilog->zl_os); 352 (void) dmu_tx_assign(tx, TXG_WAIT); 353 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 354 txg = dmu_tx_get_txg(tx); 355 356 error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk, 357 NULL, txg); 358 359 if (error == 0) 360 zil_init_log_chain(zilog, &blk); 361 } 362 363 /* 364 * Allocate a log write buffer (lwb) for the first log block. 365 */ 366 if (error == 0) { 367 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 368 lwb->lwb_zilog = zilog; 369 lwb->lwb_blk = blk; 370 lwb->lwb_nused = 0; 371 lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk); 372 lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz); 373 lwb->lwb_max_txg = txg; 374 lwb->lwb_zio = NULL; 375 376 mutex_enter(&zilog->zl_lock); 377 list_insert_tail(&zilog->zl_lwb_list, lwb); 378 mutex_exit(&zilog->zl_lock); 379 } 380 381 /* 382 * If we just allocated the first log block, commit our transaction 383 * and wait for zil_sync() to stuff the block poiner into zh_log. 384 * (zh is part of the MOS, so we cannot modify it in open context.) 385 */ 386 if (tx != NULL) { 387 dmu_tx_commit(tx); 388 txg_wait_synced(zilog->zl_dmu_pool, txg); 389 } 390 391 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 392 } 393 394 /* 395 * In one tx, free all log blocks and clear the log header. 396 * If keep_first is set, then we're replaying a log with no content. 397 * We want to keep the first block, however, so that the first 398 * synchronous transaction doesn't require a txg_wait_synced() 399 * in zil_create(). We don't need to txg_wait_synced() here either 400 * when keep_first is set, because both zil_create() and zil_destroy() 401 * will wait for any in-progress destroys to complete. 402 */ 403 void 404 zil_destroy(zilog_t *zilog, boolean_t keep_first) 405 { 406 const zil_header_t *zh = zilog->zl_header; 407 lwb_t *lwb; 408 dmu_tx_t *tx; 409 uint64_t txg; 410 411 /* 412 * Wait for any previous destroy to complete. 413 */ 414 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 415 416 if (BP_IS_HOLE(&zh->zh_log)) 417 return; 418 419 tx = dmu_tx_create(zilog->zl_os); 420 (void) dmu_tx_assign(tx, TXG_WAIT); 421 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 422 txg = dmu_tx_get_txg(tx); 423 424 mutex_enter(&zilog->zl_lock); 425 426 /* 427 * It is possible for the ZIL to get the previously mounted zilog 428 * structure of the same dataset if quickly remounted and the dbuf 429 * eviction has not completed. In this case we can see a non 430 * empty lwb list and keep_first will be set. We fix this by 431 * clearing the keep_first. This will be slower but it's very rare. 432 */ 433 if (!list_is_empty(&zilog->zl_lwb_list) && keep_first) 434 keep_first = B_FALSE; 435 436 ASSERT3U(zilog->zl_destroy_txg, <, txg); 437 zilog->zl_destroy_txg = txg; 438 zilog->zl_keep_first = keep_first; 439 440 if (!list_is_empty(&zilog->zl_lwb_list)) { 441 ASSERT(zh->zh_claim_txg == 0); 442 ASSERT(!keep_first); 443 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 444 list_remove(&zilog->zl_lwb_list, lwb); 445 if (lwb->lwb_buf != NULL) 446 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 447 zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg); 448 kmem_cache_free(zil_lwb_cache, lwb); 449 } 450 } else { 451 if (!keep_first) { 452 (void) zil_parse(zilog, zil_free_log_block, 453 zil_free_log_record, tx, zh->zh_claim_txg); 454 } 455 } 456 mutex_exit(&zilog->zl_lock); 457 458 dmu_tx_commit(tx); 459 } 460 461 /* 462 * zil_rollback_destroy() is only called by the rollback code. 463 * We already have a syncing tx. Rollback has exclusive access to the 464 * dataset, so we don't have to worry about concurrent zil access. 465 * The actual freeing of any log blocks occurs in zil_sync() later in 466 * this txg syncing phase. 467 */ 468 void 469 zil_rollback_destroy(zilog_t *zilog, dmu_tx_t *tx) 470 { 471 const zil_header_t *zh = zilog->zl_header; 472 uint64_t txg; 473 474 if (BP_IS_HOLE(&zh->zh_log)) 475 return; 476 477 txg = dmu_tx_get_txg(tx); 478 ASSERT3U(zilog->zl_destroy_txg, <, txg); 479 zilog->zl_destroy_txg = txg; 480 zilog->zl_keep_first = B_FALSE; 481 482 /* 483 * Ensure there's no outstanding ZIL IO. No lwbs or just the 484 * unused one that allocated in advance is ok. 485 */ 486 ASSERT(zilog->zl_lwb_list.list_head.list_next == 487 zilog->zl_lwb_list.list_head.list_prev); 488 (void) zil_parse(zilog, zil_free_log_block, zil_free_log_record, 489 tx, zh->zh_claim_txg); 490 } 491 492 int 493 zil_claim(char *osname, void *txarg) 494 { 495 dmu_tx_t *tx = txarg; 496 uint64_t first_txg = dmu_tx_get_txg(tx); 497 zilog_t *zilog; 498 zil_header_t *zh; 499 objset_t *os; 500 int error; 501 502 error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os); 503 if (error) { 504 cmn_err(CE_WARN, "can't process intent log for %s", osname); 505 return (0); 506 } 507 508 zilog = dmu_objset_zil(os); 509 zh = zil_header_in_syncing_context(zilog); 510 511 /* 512 * Claim all log blocks if we haven't already done so, and remember 513 * the highest claimed sequence number. This ensures that if we can 514 * read only part of the log now (e.g. due to a missing device), 515 * but we can read the entire log later, we will not try to replay 516 * or destroy beyond the last block we successfully claimed. 517 */ 518 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 519 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 520 zh->zh_claim_txg = first_txg; 521 zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block, 522 zil_claim_log_record, tx, first_txg); 523 dsl_dataset_dirty(dmu_objset_ds(os), tx); 524 } 525 526 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 527 dmu_objset_close(os); 528 return (0); 529 } 530 531 static int 532 zil_vdev_compare(const void *x1, const void *x2) 533 { 534 uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 535 uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 536 537 if (v1 < v2) 538 return (-1); 539 if (v1 > v2) 540 return (1); 541 542 return (0); 543 } 544 545 void 546 zil_add_block(zilog_t *zilog, blkptr_t *bp) 547 { 548 avl_tree_t *t = &zilog->zl_vdev_tree; 549 avl_index_t where; 550 zil_vdev_node_t *zv, zvsearch; 551 int ndvas = BP_GET_NDVAS(bp); 552 int i; 553 554 if (zfs_nocacheflush) 555 return; 556 557 ASSERT(zilog->zl_writer); 558 559 /* 560 * Even though we're zl_writer, we still need a lock because the 561 * zl_get_data() callbacks may have dmu_sync() done callbacks 562 * that will run concurrently. 563 */ 564 mutex_enter(&zilog->zl_vdev_lock); 565 for (i = 0; i < ndvas; i++) { 566 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 567 if (avl_find(t, &zvsearch, &where) == NULL) { 568 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 569 zv->zv_vdev = zvsearch.zv_vdev; 570 avl_insert(t, zv, where); 571 } 572 } 573 mutex_exit(&zilog->zl_vdev_lock); 574 } 575 576 void 577 zil_flush_vdevs(zilog_t *zilog) 578 { 579 spa_t *spa = zilog->zl_spa; 580 avl_tree_t *t = &zilog->zl_vdev_tree; 581 void *cookie = NULL; 582 zil_vdev_node_t *zv; 583 zio_t *zio; 584 585 ASSERT(zilog->zl_writer); 586 587 /* 588 * We don't need zl_vdev_lock here because we're the zl_writer, 589 * and all zl_get_data() callbacks are done. 590 */ 591 if (avl_numnodes(t) == 0) 592 return; 593 594 spa_config_enter(spa, RW_READER, FTAG); 595 596 zio = zio_root(spa, NULL, NULL, 597 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 598 599 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 600 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 601 if (vd != NULL) 602 zio_flush(zio, vd); 603 kmem_free(zv, sizeof (*zv)); 604 } 605 606 /* 607 * Wait for all the flushes to complete. Not all devices actually 608 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. 609 */ 610 (void) zio_wait(zio); 611 612 spa_config_exit(spa, FTAG); 613 } 614 615 /* 616 * Function called when a log block write completes 617 */ 618 static void 619 zil_lwb_write_done(zio_t *zio) 620 { 621 lwb_t *lwb = zio->io_private; 622 zilog_t *zilog = lwb->lwb_zilog; 623 624 /* 625 * Now that we've written this log block, we have a stable pointer 626 * to the next block in the chain, so it's OK to let the txg in 627 * which we allocated the next block sync. 628 */ 629 txg_rele_to_sync(&lwb->lwb_txgh); 630 631 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 632 mutex_enter(&zilog->zl_lock); 633 lwb->lwb_buf = NULL; 634 if (zio->io_error) 635 zilog->zl_log_error = B_TRUE; 636 mutex_exit(&zilog->zl_lock); 637 } 638 639 /* 640 * Initialize the io for a log block. 641 * 642 * Note, we should not initialize the IO until we are about 643 * to use it, since zio_rewrite() does a spa_config_enter(). 644 */ 645 static void 646 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) 647 { 648 zbookmark_t zb; 649 650 zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET]; 651 zb.zb_object = 0; 652 zb.zb_level = -1; 653 zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 654 655 if (zilog->zl_root_zio == NULL) { 656 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, 657 ZIO_FLAG_CANFAIL); 658 } 659 if (lwb->lwb_zio == NULL) { 660 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 661 ZIO_CHECKSUM_ZILOG, &lwb->lwb_blk, lwb->lwb_buf, 662 lwb->lwb_sz, zil_lwb_write_done, lwb, 663 ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_CANFAIL, &zb); 664 } 665 } 666 667 /* 668 * Start a log block write and advance to the next log block. 669 * Calls are serialized. 670 */ 671 static lwb_t * 672 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) 673 { 674 lwb_t *nlwb; 675 zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1; 676 spa_t *spa = zilog->zl_spa; 677 blkptr_t *bp = &ztp->zit_next_blk; 678 uint64_t txg; 679 uint64_t zil_blksz; 680 int error; 681 682 ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb)); 683 684 /* 685 * Allocate the next block and save its address in this block 686 * before writing it in order to establish the log chain. 687 * Note that if the allocation of nlwb synced before we wrote 688 * the block that points at it (lwb), we'd leak it if we crashed. 689 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done(). 690 */ 691 txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh); 692 txg_rele_to_quiesce(&lwb->lwb_txgh); 693 694 /* 695 * Pick a ZIL blocksize. We request a size that is the 696 * maximum of the previous used size, the current used size and 697 * the amount waiting in the queue. 698 */ 699 zil_blksz = MAX(zilog->zl_prev_used, 700 zilog->zl_cur_used + sizeof (*ztp)); 701 zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp)); 702 zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t); 703 if (zil_blksz > ZIL_MAX_BLKSZ) 704 zil_blksz = ZIL_MAX_BLKSZ; 705 706 BP_ZERO(bp); 707 /* pass the old blkptr in order to spread log blocks across devs */ 708 error = zio_alloc_blk(spa, zil_blksz, bp, &lwb->lwb_blk, txg); 709 if (error) { 710 dmu_tx_t *tx = dmu_tx_create_assigned(zilog->zl_dmu_pool, txg); 711 712 /* 713 * We dirty the dataset to ensure that zil_sync() will 714 * be called to remove this lwb from our zl_lwb_list. 715 * Failing to do so, may leave an lwb with a NULL lwb_buf 716 * hanging around on the zl_lwb_list. 717 */ 718 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 719 dmu_tx_commit(tx); 720 721 /* 722 * Since we've just experienced an allocation failure so we 723 * terminate the current lwb and send it on its way. 724 */ 725 ztp->zit_pad = 0; 726 ztp->zit_nused = lwb->lwb_nused; 727 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 728 zio_nowait(lwb->lwb_zio); 729 730 /* 731 * By returning NULL the caller will call tx_wait_synced() 732 */ 733 return (NULL); 734 } 735 736 ASSERT3U(bp->blk_birth, ==, txg); 737 ztp->zit_pad = 0; 738 ztp->zit_nused = lwb->lwb_nused; 739 ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; 740 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 741 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 742 743 /* 744 * Allocate a new log write buffer (lwb). 745 */ 746 nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 747 748 nlwb->lwb_zilog = zilog; 749 nlwb->lwb_blk = *bp; 750 nlwb->lwb_nused = 0; 751 nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk); 752 nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz); 753 nlwb->lwb_max_txg = txg; 754 nlwb->lwb_zio = NULL; 755 756 /* 757 * Put new lwb at the end of the log chain 758 */ 759 mutex_enter(&zilog->zl_lock); 760 list_insert_tail(&zilog->zl_lwb_list, nlwb); 761 mutex_exit(&zilog->zl_lock); 762 763 /* Record the block for later vdev flushing */ 764 zil_add_block(zilog, &lwb->lwb_blk); 765 766 /* 767 * kick off the write for the old log block 768 */ 769 dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg); 770 ASSERT(lwb->lwb_zio); 771 zio_nowait(lwb->lwb_zio); 772 773 return (nlwb); 774 } 775 776 static lwb_t * 777 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) 778 { 779 lr_t *lrc = &itx->itx_lr; /* common log record */ 780 lr_write_t *lr = (lr_write_t *)lrc; 781 uint64_t txg = lrc->lrc_txg; 782 uint64_t reclen = lrc->lrc_reclen; 783 uint64_t dlen; 784 785 if (lwb == NULL) 786 return (NULL); 787 ASSERT(lwb->lwb_buf != NULL); 788 789 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) 790 dlen = P2ROUNDUP_TYPED( 791 lr->lr_length, sizeof (uint64_t), uint64_t); 792 else 793 dlen = 0; 794 795 zilog->zl_cur_used += (reclen + dlen); 796 797 zil_lwb_write_init(zilog, lwb); 798 799 /* 800 * If this record won't fit in the current log block, start a new one. 801 */ 802 if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 803 lwb = zil_lwb_write_start(zilog, lwb); 804 if (lwb == NULL) 805 return (NULL); 806 zil_lwb_write_init(zilog, lwb); 807 ASSERT(lwb->lwb_nused == 0); 808 if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { 809 txg_wait_synced(zilog->zl_dmu_pool, txg); 810 return (lwb); 811 } 812 } 813 814 /* 815 * Update the lrc_seq, to be log record sequence number. See zil.h 816 * Then copy the record to the log buffer. 817 */ 818 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ 819 bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen); 820 821 /* 822 * If it's a write, fetch the data or get its blkptr as appropriate. 823 */ 824 if (lrc->lrc_txtype == TX_WRITE) { 825 if (txg > spa_freeze_txg(zilog->zl_spa)) 826 txg_wait_synced(zilog->zl_dmu_pool, txg); 827 if (itx->itx_wr_state != WR_COPIED) { 828 char *dbuf; 829 int error; 830 831 /* alignment is guaranteed */ 832 lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused); 833 if (dlen) { 834 ASSERT(itx->itx_wr_state == WR_NEED_COPY); 835 dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen; 836 lr->lr_common.lrc_reclen += dlen; 837 } else { 838 ASSERT(itx->itx_wr_state == WR_INDIRECT); 839 dbuf = NULL; 840 } 841 error = zilog->zl_get_data( 842 itx->itx_private, lr, dbuf, lwb->lwb_zio); 843 if (error) { 844 ASSERT(error == ENOENT || error == EEXIST || 845 error == EALREADY); 846 return (lwb); 847 } 848 } 849 } 850 851 lwb->lwb_nused += reclen + dlen; 852 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 853 ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb)); 854 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); 855 856 return (lwb); 857 } 858 859 itx_t * 860 zil_itx_create(uint64_t txtype, size_t lrsize) 861 { 862 itx_t *itx; 863 864 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); 865 866 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); 867 itx->itx_lr.lrc_txtype = txtype; 868 itx->itx_lr.lrc_reclen = lrsize; 869 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ 870 itx->itx_lr.lrc_seq = 0; /* defensive */ 871 872 return (itx); 873 } 874 875 uint64_t 876 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 877 { 878 uint64_t seq; 879 880 ASSERT(itx->itx_lr.lrc_seq == 0); 881 882 mutex_enter(&zilog->zl_lock); 883 list_insert_tail(&zilog->zl_itx_list, itx); 884 zilog->zl_itx_list_sz += itx->itx_sod; 885 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 886 itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq; 887 mutex_exit(&zilog->zl_lock); 888 889 return (seq); 890 } 891 892 /* 893 * Free up all in-memory intent log transactions that have now been synced. 894 */ 895 static void 896 zil_itx_clean(zilog_t *zilog) 897 { 898 uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa); 899 uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa); 900 list_t clean_list; 901 itx_t *itx; 902 903 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 904 905 mutex_enter(&zilog->zl_lock); 906 /* wait for a log writer to finish walking list */ 907 while (zilog->zl_writer) { 908 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 909 } 910 911 /* 912 * Move the sync'd log transactions to a separate list so we can call 913 * kmem_free without holding the zl_lock. 914 * 915 * There is no need to set zl_writer as we don't drop zl_lock here 916 */ 917 while ((itx = list_head(&zilog->zl_itx_list)) != NULL && 918 itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) { 919 list_remove(&zilog->zl_itx_list, itx); 920 zilog->zl_itx_list_sz -= itx->itx_sod; 921 list_insert_tail(&clean_list, itx); 922 } 923 cv_broadcast(&zilog->zl_cv_writer); 924 mutex_exit(&zilog->zl_lock); 925 926 /* destroy sync'd log transactions */ 927 while ((itx = list_head(&clean_list)) != NULL) { 928 list_remove(&clean_list, itx); 929 kmem_free(itx, offsetof(itx_t, itx_lr) 930 + itx->itx_lr.lrc_reclen); 931 } 932 list_destroy(&clean_list); 933 } 934 935 /* 936 * If there are any in-memory intent log transactions which have now been 937 * synced then start up a taskq to free them. 938 */ 939 void 940 zil_clean(zilog_t *zilog) 941 { 942 itx_t *itx; 943 944 mutex_enter(&zilog->zl_lock); 945 itx = list_head(&zilog->zl_itx_list); 946 if ((itx != NULL) && 947 (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) { 948 (void) taskq_dispatch(zilog->zl_clean_taskq, 949 (void (*)(void *))zil_itx_clean, zilog, TQ_NOSLEEP); 950 } 951 mutex_exit(&zilog->zl_lock); 952 } 953 954 void 955 zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid) 956 { 957 uint64_t txg; 958 uint64_t commit_seq = 0; 959 itx_t *itx, *itx_next = (itx_t *)-1; 960 lwb_t *lwb; 961 spa_t *spa; 962 963 zilog->zl_writer = B_TRUE; 964 zilog->zl_root_zio = NULL; 965 spa = zilog->zl_spa; 966 967 if (zilog->zl_suspend) { 968 lwb = NULL; 969 } else { 970 lwb = list_tail(&zilog->zl_lwb_list); 971 if (lwb == NULL) { 972 /* 973 * Return if there's nothing to flush before we 974 * dirty the fs by calling zil_create() 975 */ 976 if (list_is_empty(&zilog->zl_itx_list)) { 977 zilog->zl_writer = B_FALSE; 978 return; 979 } 980 mutex_exit(&zilog->zl_lock); 981 zil_create(zilog); 982 mutex_enter(&zilog->zl_lock); 983 lwb = list_tail(&zilog->zl_lwb_list); 984 } 985 } 986 987 /* Loop through in-memory log transactions filling log blocks. */ 988 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); 989 for (;;) { 990 /* 991 * Find the next itx to push: 992 * Push all transactions related to specified foid and all 993 * other transactions except TX_WRITE, TX_TRUNCATE, 994 * TX_SETATTR and TX_ACL for all other files. 995 */ 996 if (itx_next != (itx_t *)-1) 997 itx = itx_next; 998 else 999 itx = list_head(&zilog->zl_itx_list); 1000 for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) { 1001 if (foid == 0) /* push all foids? */ 1002 break; 1003 if (itx->itx_sync) /* push all O_[D]SYNC */ 1004 break; 1005 switch (itx->itx_lr.lrc_txtype) { 1006 case TX_SETATTR: 1007 case TX_WRITE: 1008 case TX_TRUNCATE: 1009 case TX_ACL: 1010 /* lr_foid is same offset for these records */ 1011 if (((lr_write_t *)&itx->itx_lr)->lr_foid 1012 != foid) { 1013 continue; /* skip this record */ 1014 } 1015 } 1016 break; 1017 } 1018 if (itx == NULL) 1019 break; 1020 1021 if ((itx->itx_lr.lrc_seq > seq) && 1022 ((lwb == NULL) || (lwb->lwb_nused == 0) || 1023 (lwb->lwb_nused + itx->itx_sod > ZIL_BLK_DATA_SZ(lwb)))) { 1024 break; 1025 } 1026 1027 /* 1028 * Save the next pointer. Even though we soon drop 1029 * zl_lock all threads that may change the list 1030 * (another writer or zil_itx_clean) can't do so until 1031 * they have zl_writer. 1032 */ 1033 itx_next = list_next(&zilog->zl_itx_list, itx); 1034 list_remove(&zilog->zl_itx_list, itx); 1035 zilog->zl_itx_list_sz -= itx->itx_sod; 1036 mutex_exit(&zilog->zl_lock); 1037 txg = itx->itx_lr.lrc_txg; 1038 ASSERT(txg); 1039 1040 if (txg > spa_last_synced_txg(spa) || 1041 txg > spa_freeze_txg(spa)) 1042 lwb = zil_lwb_commit(zilog, itx, lwb); 1043 kmem_free(itx, offsetof(itx_t, itx_lr) 1044 + itx->itx_lr.lrc_reclen); 1045 mutex_enter(&zilog->zl_lock); 1046 } 1047 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); 1048 /* determine commit sequence number */ 1049 itx = list_head(&zilog->zl_itx_list); 1050 if (itx) 1051 commit_seq = itx->itx_lr.lrc_seq; 1052 else 1053 commit_seq = zilog->zl_itx_seq; 1054 mutex_exit(&zilog->zl_lock); 1055 1056 /* write the last block out */ 1057 if (lwb != NULL && lwb->lwb_zio != NULL) 1058 lwb = zil_lwb_write_start(zilog, lwb); 1059 1060 zilog->zl_prev_used = zilog->zl_cur_used; 1061 zilog->zl_cur_used = 0; 1062 1063 /* 1064 * Wait if necessary for the log blocks to be on stable storage. 1065 */ 1066 if (zilog->zl_root_zio) { 1067 DTRACE_PROBE1(zil__cw3, zilog_t *, zilog); 1068 (void) zio_wait(zilog->zl_root_zio); 1069 DTRACE_PROBE1(zil__cw4, zilog_t *, zilog); 1070 zil_flush_vdevs(zilog); 1071 } 1072 1073 if (zilog->zl_log_error || lwb == NULL) { 1074 zilog->zl_log_error = 0; 1075 txg_wait_synced(zilog->zl_dmu_pool, 0); 1076 } 1077 1078 mutex_enter(&zilog->zl_lock); 1079 zilog->zl_writer = B_FALSE; 1080 1081 ASSERT3U(commit_seq, >=, zilog->zl_commit_seq); 1082 zilog->zl_commit_seq = commit_seq; 1083 } 1084 1085 /* 1086 * Push zfs transactions to stable storage up to the supplied sequence number. 1087 * If foid is 0 push out all transactions, otherwise push only those 1088 * for that file or might have been used to create that file. 1089 */ 1090 void 1091 zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid) 1092 { 1093 if (zilog == NULL || seq == 0) 1094 return; 1095 1096 mutex_enter(&zilog->zl_lock); 1097 1098 seq = MIN(seq, zilog->zl_itx_seq); /* cap seq at largest itx seq */ 1099 1100 while (zilog->zl_writer) { 1101 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1102 if (seq < zilog->zl_commit_seq) { 1103 mutex_exit(&zilog->zl_lock); 1104 return; 1105 } 1106 } 1107 zil_commit_writer(zilog, seq, foid); /* drops zl_lock */ 1108 /* wake up others waiting on the commit */ 1109 cv_broadcast(&zilog->zl_cv_writer); 1110 mutex_exit(&zilog->zl_lock); 1111 } 1112 1113 /* 1114 * Called in syncing context to free committed log blocks and update log header. 1115 */ 1116 void 1117 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 1118 { 1119 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1120 uint64_t txg = dmu_tx_get_txg(tx); 1121 spa_t *spa = zilog->zl_spa; 1122 lwb_t *lwb; 1123 1124 mutex_enter(&zilog->zl_lock); 1125 1126 ASSERT(zilog->zl_stop_sync == 0); 1127 1128 zh->zh_replay_seq = zilog->zl_replay_seq[txg & TXG_MASK]; 1129 1130 if (zilog->zl_destroy_txg == txg) { 1131 blkptr_t blk = zh->zh_log; 1132 1133 ASSERT(list_head(&zilog->zl_lwb_list) == NULL); 1134 ASSERT(spa_sync_pass(spa) == 1); 1135 1136 bzero(zh, sizeof (zil_header_t)); 1137 bzero(zilog->zl_replay_seq, sizeof (zilog->zl_replay_seq)); 1138 1139 if (zilog->zl_keep_first) { 1140 /* 1141 * If this block was part of log chain that couldn't 1142 * be claimed because a device was missing during 1143 * zil_claim(), but that device later returns, 1144 * then this block could erroneously appear valid. 1145 * To guard against this, assign a new GUID to the new 1146 * log chain so it doesn't matter what blk points to. 1147 */ 1148 zil_init_log_chain(zilog, &blk); 1149 zh->zh_log = blk; 1150 } 1151 } 1152 1153 for (;;) { 1154 lwb = list_head(&zilog->zl_lwb_list); 1155 if (lwb == NULL) { 1156 mutex_exit(&zilog->zl_lock); 1157 return; 1158 } 1159 zh->zh_log = lwb->lwb_blk; 1160 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) 1161 break; 1162 list_remove(&zilog->zl_lwb_list, lwb); 1163 zio_free_blk(spa, &lwb->lwb_blk, txg); 1164 kmem_cache_free(zil_lwb_cache, lwb); 1165 1166 /* 1167 * If we don't have anything left in the lwb list then 1168 * we've had an allocation failure and we need to zero 1169 * out the zil_header blkptr so that we don't end 1170 * up freeing the same block twice. 1171 */ 1172 if (list_head(&zilog->zl_lwb_list) == NULL) 1173 BP_ZERO(&zh->zh_log); 1174 } 1175 mutex_exit(&zilog->zl_lock); 1176 } 1177 1178 void 1179 zil_init(void) 1180 { 1181 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 1182 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); 1183 } 1184 1185 void 1186 zil_fini(void) 1187 { 1188 kmem_cache_destroy(zil_lwb_cache); 1189 } 1190 1191 zilog_t * 1192 zil_alloc(objset_t *os, zil_header_t *zh_phys) 1193 { 1194 zilog_t *zilog; 1195 1196 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 1197 1198 zilog->zl_header = zh_phys; 1199 zilog->zl_os = os; 1200 zilog->zl_spa = dmu_objset_spa(os); 1201 zilog->zl_dmu_pool = dmu_objset_pool(os); 1202 zilog->zl_destroy_txg = TXG_INITIAL - 1; 1203 1204 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 1205 1206 list_create(&zilog->zl_itx_list, sizeof (itx_t), 1207 offsetof(itx_t, itx_node)); 1208 1209 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 1210 offsetof(lwb_t, lwb_node)); 1211 1212 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 1213 1214 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, 1215 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 1216 1217 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); 1218 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 1219 1220 return (zilog); 1221 } 1222 1223 void 1224 zil_free(zilog_t *zilog) 1225 { 1226 lwb_t *lwb; 1227 1228 zilog->zl_stop_sync = 1; 1229 1230 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 1231 list_remove(&zilog->zl_lwb_list, lwb); 1232 if (lwb->lwb_buf != NULL) 1233 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1234 kmem_cache_free(zil_lwb_cache, lwb); 1235 } 1236 list_destroy(&zilog->zl_lwb_list); 1237 1238 avl_destroy(&zilog->zl_vdev_tree); 1239 mutex_destroy(&zilog->zl_vdev_lock); 1240 1241 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1242 list_destroy(&zilog->zl_itx_list); 1243 mutex_destroy(&zilog->zl_lock); 1244 1245 cv_destroy(&zilog->zl_cv_writer); 1246 cv_destroy(&zilog->zl_cv_suspend); 1247 1248 kmem_free(zilog, sizeof (zilog_t)); 1249 } 1250 1251 /* 1252 * return true if the initial log block is not valid 1253 */ 1254 static int 1255 zil_empty(zilog_t *zilog) 1256 { 1257 const zil_header_t *zh = zilog->zl_header; 1258 arc_buf_t *abuf = NULL; 1259 1260 if (BP_IS_HOLE(&zh->zh_log)) 1261 return (1); 1262 1263 if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0) 1264 return (1); 1265 1266 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); 1267 return (0); 1268 } 1269 1270 /* 1271 * Open an intent log. 1272 */ 1273 zilog_t * 1274 zil_open(objset_t *os, zil_get_data_t *get_data) 1275 { 1276 zilog_t *zilog = dmu_objset_zil(os); 1277 1278 zilog->zl_get_data = get_data; 1279 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 1280 2, 2, TASKQ_PREPOPULATE); 1281 1282 return (zilog); 1283 } 1284 1285 /* 1286 * Close an intent log. 1287 */ 1288 void 1289 zil_close(zilog_t *zilog) 1290 { 1291 /* 1292 * If the log isn't already committed, mark the objset dirty 1293 * (so zil_sync() will be called) and wait for that txg to sync. 1294 */ 1295 if (!zil_is_committed(zilog)) { 1296 uint64_t txg; 1297 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1298 (void) dmu_tx_assign(tx, TXG_WAIT); 1299 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1300 txg = dmu_tx_get_txg(tx); 1301 dmu_tx_commit(tx); 1302 txg_wait_synced(zilog->zl_dmu_pool, txg); 1303 } 1304 1305 taskq_destroy(zilog->zl_clean_taskq); 1306 zilog->zl_clean_taskq = NULL; 1307 zilog->zl_get_data = NULL; 1308 1309 zil_itx_clean(zilog); 1310 ASSERT(list_head(&zilog->zl_itx_list) == NULL); 1311 } 1312 1313 /* 1314 * Suspend an intent log. While in suspended mode, we still honor 1315 * synchronous semantics, but we rely on txg_wait_synced() to do it. 1316 * We suspend the log briefly when taking a snapshot so that the snapshot 1317 * contains all the data it's supposed to, and has an empty intent log. 1318 */ 1319 int 1320 zil_suspend(zilog_t *zilog) 1321 { 1322 const zil_header_t *zh = zilog->zl_header; 1323 1324 mutex_enter(&zilog->zl_lock); 1325 if (zh->zh_claim_txg != 0) { /* unplayed log */ 1326 mutex_exit(&zilog->zl_lock); 1327 return (EBUSY); 1328 } 1329 if (zilog->zl_suspend++ != 0) { 1330 /* 1331 * Someone else already began a suspend. 1332 * Just wait for them to finish. 1333 */ 1334 while (zilog->zl_suspending) 1335 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 1336 ASSERT(BP_IS_HOLE(&zh->zh_log)); 1337 mutex_exit(&zilog->zl_lock); 1338 return (0); 1339 } 1340 zilog->zl_suspending = B_TRUE; 1341 mutex_exit(&zilog->zl_lock); 1342 1343 zil_commit(zilog, UINT64_MAX, 0); 1344 1345 /* 1346 * Wait for any in-flight log writes to complete. 1347 */ 1348 mutex_enter(&zilog->zl_lock); 1349 while (zilog->zl_writer) 1350 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1351 mutex_exit(&zilog->zl_lock); 1352 1353 zil_destroy(zilog, B_FALSE); 1354 1355 mutex_enter(&zilog->zl_lock); 1356 zilog->zl_suspending = B_FALSE; 1357 cv_broadcast(&zilog->zl_cv_suspend); 1358 mutex_exit(&zilog->zl_lock); 1359 1360 return (0); 1361 } 1362 1363 void 1364 zil_resume(zilog_t *zilog) 1365 { 1366 mutex_enter(&zilog->zl_lock); 1367 ASSERT(zilog->zl_suspend != 0); 1368 zilog->zl_suspend--; 1369 mutex_exit(&zilog->zl_lock); 1370 } 1371 1372 typedef struct zil_replay_arg { 1373 objset_t *zr_os; 1374 zil_replay_func_t **zr_replay; 1375 void *zr_arg; 1376 uint64_t *zr_txgp; 1377 boolean_t zr_byteswap; 1378 char *zr_lrbuf; 1379 } zil_replay_arg_t; 1380 1381 static void 1382 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) 1383 { 1384 zil_replay_arg_t *zr = zra; 1385 const zil_header_t *zh = zilog->zl_header; 1386 uint64_t reclen = lr->lrc_reclen; 1387 uint64_t txtype = lr->lrc_txtype; 1388 char *name; 1389 int pass, error, sunk; 1390 1391 if (zilog->zl_stop_replay) 1392 return; 1393 1394 if (lr->lrc_txg < claim_txg) /* already committed */ 1395 return; 1396 1397 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 1398 return; 1399 1400 /* Strip case-insensitive bit, still present in log record */ 1401 txtype &= ~TX_CI; 1402 1403 /* 1404 * Make a copy of the data so we can revise and extend it. 1405 */ 1406 bcopy(lr, zr->zr_lrbuf, reclen); 1407 1408 /* 1409 * The log block containing this lr may have been byteswapped 1410 * so that we can easily examine common fields like lrc_txtype. 1411 * However, the log is a mix of different data types, and only the 1412 * replay vectors know how to byteswap their records. Therefore, if 1413 * the lr was byteswapped, undo it before invoking the replay vector. 1414 */ 1415 if (zr->zr_byteswap) 1416 byteswap_uint64_array(zr->zr_lrbuf, reclen); 1417 1418 /* 1419 * If this is a TX_WRITE with a blkptr, suck in the data. 1420 */ 1421 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 1422 lr_write_t *lrw = (lr_write_t *)lr; 1423 blkptr_t *wbp = &lrw->lr_blkptr; 1424 uint64_t wlen = lrw->lr_length; 1425 char *wbuf = zr->zr_lrbuf + reclen; 1426 1427 if (BP_IS_HOLE(wbp)) { /* compressed to a hole */ 1428 bzero(wbuf, wlen); 1429 } else { 1430 /* 1431 * A subsequent write may have overwritten this block, 1432 * in which case wbp may have been been freed and 1433 * reallocated, and our read of wbp may fail with a 1434 * checksum error. We can safely ignore this because 1435 * the later write will provide the correct data. 1436 */ 1437 zbookmark_t zb; 1438 1439 zb.zb_objset = dmu_objset_id(zilog->zl_os); 1440 zb.zb_object = lrw->lr_foid; 1441 zb.zb_level = -1; 1442 zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp); 1443 1444 (void) zio_wait(zio_read(NULL, zilog->zl_spa, 1445 wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL, 1446 ZIO_PRIORITY_SYNC_READ, 1447 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb)); 1448 (void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen); 1449 } 1450 } 1451 1452 /* 1453 * We must now do two things atomically: replay this log record, 1454 * and update the log header to reflect the fact that we did so. 1455 * We use the DMU's ability to assign into a specific txg to do this. 1456 */ 1457 for (pass = 1, sunk = B_FALSE; /* CONSTANTCONDITION */; pass++) { 1458 uint64_t replay_txg; 1459 dmu_tx_t *replay_tx; 1460 1461 replay_tx = dmu_tx_create(zr->zr_os); 1462 error = dmu_tx_assign(replay_tx, TXG_WAIT); 1463 if (error) { 1464 dmu_tx_abort(replay_tx); 1465 break; 1466 } 1467 1468 replay_txg = dmu_tx_get_txg(replay_tx); 1469 1470 if (txtype == 0 || txtype >= TX_MAX_TYPE) { 1471 error = EINVAL; 1472 } else { 1473 /* 1474 * On the first pass, arrange for the replay vector 1475 * to fail its dmu_tx_assign(). That's the only way 1476 * to ensure that those code paths remain well tested. 1477 * 1478 * Only byteswap (if needed) on the 1st pass. 1479 */ 1480 *zr->zr_txgp = replay_txg - (pass == 1); 1481 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf, 1482 zr->zr_byteswap && pass == 1); 1483 *zr->zr_txgp = TXG_NOWAIT; 1484 } 1485 1486 if (error == 0) { 1487 dsl_dataset_dirty(dmu_objset_ds(zr->zr_os), replay_tx); 1488 zilog->zl_replay_seq[replay_txg & TXG_MASK] = 1489 lr->lrc_seq; 1490 } 1491 1492 dmu_tx_commit(replay_tx); 1493 1494 if (!error) 1495 return; 1496 1497 /* 1498 * The DMU's dnode layer doesn't see removes until the txg 1499 * commits, so a subsequent claim can spuriously fail with 1500 * EEXIST. So if we receive any error other than ERESTART 1501 * we try syncing out any removes then retrying the 1502 * transaction. 1503 */ 1504 if (error != ERESTART && !sunk) { 1505 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 1506 sunk = B_TRUE; 1507 continue; /* retry */ 1508 } 1509 1510 if (error != ERESTART) 1511 break; 1512 1513 if (pass != 1) 1514 txg_wait_open(spa_get_dsl(zilog->zl_spa), 1515 replay_txg + 1); 1516 1517 dprintf("pass %d, retrying\n", pass); 1518 } 1519 1520 ASSERT(error && error != ERESTART); 1521 name = kmem_alloc(MAXNAMELEN, KM_SLEEP); 1522 dmu_objset_name(zr->zr_os, name); 1523 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 1524 "dataset %s, seq 0x%llx, txtype %llu %s\n", 1525 error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype, 1526 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 1527 zilog->zl_stop_replay = 1; 1528 kmem_free(name, MAXNAMELEN); 1529 } 1530 1531 /* ARGSUSED */ 1532 static void 1533 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1534 { 1535 zilog->zl_replay_blks++; 1536 } 1537 1538 /* 1539 * If this dataset has a non-empty intent log, replay it and destroy it. 1540 */ 1541 void 1542 zil_replay(objset_t *os, void *arg, uint64_t *txgp, 1543 zil_replay_func_t *replay_func[TX_MAX_TYPE]) 1544 { 1545 zilog_t *zilog = dmu_objset_zil(os); 1546 const zil_header_t *zh = zilog->zl_header; 1547 zil_replay_arg_t zr; 1548 1549 if (zil_empty(zilog)) { 1550 zil_destroy(zilog, B_TRUE); 1551 return; 1552 } 1553 1554 zr.zr_os = os; 1555 zr.zr_replay = replay_func; 1556 zr.zr_arg = arg; 1557 zr.zr_txgp = txgp; 1558 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 1559 zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 1560 1561 /* 1562 * Wait for in-progress removes to sync before starting replay. 1563 */ 1564 txg_wait_synced(zilog->zl_dmu_pool, 0); 1565 1566 zilog->zl_stop_replay = 0; 1567 zilog->zl_replay_time = lbolt; 1568 ASSERT(zilog->zl_replay_blks == 0); 1569 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 1570 zh->zh_claim_txg); 1571 kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE); 1572 1573 zil_destroy(zilog, B_FALSE); 1574 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1575 } 1576 1577 /* 1578 * Report whether all transactions are committed 1579 */ 1580 int 1581 zil_is_committed(zilog_t *zilog) 1582 { 1583 lwb_t *lwb; 1584 int ret; 1585 1586 mutex_enter(&zilog->zl_lock); 1587 while (zilog->zl_writer) 1588 cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); 1589 1590 /* recent unpushed intent log transactions? */ 1591 if (!list_is_empty(&zilog->zl_itx_list)) { 1592 ret = B_FALSE; 1593 goto out; 1594 } 1595 1596 /* intent log never used? */ 1597 lwb = list_head(&zilog->zl_lwb_list); 1598 if (lwb == NULL) { 1599 ret = B_TRUE; 1600 goto out; 1601 } 1602 1603 /* 1604 * more than 1 log buffer means zil_sync() hasn't yet freed 1605 * entries after a txg has committed 1606 */ 1607 if (list_next(&zilog->zl_lwb_list, lwb)) { 1608 ret = B_FALSE; 1609 goto out; 1610 } 1611 1612 ASSERT(zil_empty(zilog)); 1613 ret = B_TRUE; 1614 out: 1615 cv_broadcast(&zilog->zl_cv_writer); 1616 mutex_exit(&zilog->zl_lock); 1617 return (ret); 1618 } 1619