/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include /* * The zfs intent log (ZIL) saves transaction records of system calls * that change the file system in memory with enough information * to be able to replay them. These are stored in memory until * either the DMU transaction group (txg) commits them to the stable pool * and they can be discarded, or they are flushed to the stable log * (also in the pool) due to a fsync, O_DSYNC or other synchronous * requirement. In the event of a panic or power fail then those log * records (transactions) are replayed. * * There is one ZIL per file system. Its on-disk (pool) format consists * of 3 parts: * * - ZIL header * - ZIL blocks * - ZIL records * * A log record holds a system call transaction. Log blocks can * hold many log records and the blocks are chained together. * Each ZIL block contains a block pointer (blkptr_t) to the next * ZIL block in the chain. The ZIL header points to the first * block in the chain. Note there is not a fixed place in the pool * to hold blocks. They are dynamically allocated and freed as * needed from the blocks available. Figure X shows the ZIL structure: */ /* * This global ZIL switch affects all pools */ int zil_disable = 0; /* disable intent logging */ /* * Tunable parameter for debugging or performance analysis. Setting * zfs_nocacheflush will cause corruption on power loss if a volatile * out-of-order write cache is enabled. */ boolean_t zfs_nocacheflush = B_FALSE; static kmem_cache_t *zil_lwb_cache; static int zil_dva_compare(const void *x1, const void *x2) { const dva_t *dva1 = x1; const dva_t *dva2 = x2; if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) return (-1); if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) return (1); if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) return (-1); if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) return (1); return (0); } static void zil_dva_tree_init(avl_tree_t *t) { avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t), offsetof(zil_dva_node_t, zn_node)); } static void zil_dva_tree_fini(avl_tree_t *t) { zil_dva_node_t *zn; void *cookie = NULL; while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) kmem_free(zn, sizeof (zil_dva_node_t)); avl_destroy(t); } static int zil_dva_tree_add(avl_tree_t *t, dva_t *dva) { zil_dva_node_t *zn; avl_index_t where; if (avl_find(t, dva, &where) != NULL) return (EEXIST); zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP); zn->zn_dva = *dva; avl_insert(t, zn, where); return (0); } static zil_header_t * zil_header_in_syncing_context(zilog_t *zilog) { return ((zil_header_t *)zilog->zl_header); } static void zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) { zio_cksum_t *zc = &bp->blk_cksum; zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); zc->zc_word[ZIL_ZC_SEQ] = 1ULL; } /* * Read a log block, make sure it's valid, and byteswap it if necessary. */ static int zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp) { blkptr_t blk = *bp; zbookmark_t zb; uint32_t aflags = ARC_WAIT; int error; zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET]; zb.zb_object = 0; zb.zb_level = -1; zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ]; *abufpp = NULL; error = arc_read(NULL, zilog->zl_spa, &blk, byteswap_uint64_array, arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb); if (error == 0) { char *data = (*abufpp)->b_data; uint64_t blksz = BP_GET_LSIZE(bp); zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1; zio_cksum_t cksum = bp->blk_cksum; /* * Sequence numbers should be... sequential. The checksum * verifier for the next block should be bp's checksum plus 1. */ cksum.zc_word[ZIL_ZC_SEQ]++; if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum, sizeof (cksum))) error = ESTALE; else if (BP_IS_HOLE(&ztp->zit_next_blk)) error = ENOENT; else if (ztp->zit_nused > (blksz - sizeof (zil_trailer_t))) error = EOVERFLOW; if (error) { VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1); *abufpp = NULL; } } dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid); return (error); } /* * Parse the intent log, and call parse_func for each valid record within. * Return the highest sequence number. */ uint64_t zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) { const zil_header_t *zh = zilog->zl_header; uint64_t claim_seq = zh->zh_claim_seq; uint64_t seq = 0; uint64_t max_seq = 0; blkptr_t blk = zh->zh_log; arc_buf_t *abuf; char *lrbuf, *lrp; zil_trailer_t *ztp; int reclen, error; if (BP_IS_HOLE(&blk)) return (max_seq); /* * Starting at the block pointed to by zh_log we read the log chain. * For each block in the chain we strongly check that block to * ensure its validity. We stop when an invalid block is found. * For each block pointer in the chain we call parse_blk_func(). * For each record in each valid block we call parse_lr_func(). * If the log has been claimed, stop if we encounter a sequence * number greater than the highest claimed sequence number. */ zil_dva_tree_init(&zilog->zl_dva_tree); for (;;) { seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; if (claim_seq != 0 && seq > claim_seq) break; ASSERT(max_seq < seq); max_seq = seq; error = zil_read_log_block(zilog, &blk, &abuf); if (parse_blk_func != NULL) parse_blk_func(zilog, &blk, arg, txg); if (error) break; lrbuf = abuf->b_data; ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1; blk = ztp->zit_next_blk; if (parse_lr_func == NULL) { VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); continue; } for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) { lr_t *lr = (lr_t *)lrp; reclen = lr->lrc_reclen; ASSERT3U(reclen, >=, sizeof (lr_t)); parse_lr_func(zilog, lr, arg, txg); } VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); } zil_dva_tree_fini(&zilog->zl_dva_tree); return (max_seq); } /* ARGSUSED */ static void zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) { spa_t *spa = zilog->zl_spa; int err; /* * Claim log block if not already committed and not already claimed. */ if (bp->blk_birth >= first_txg && zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) { err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL)); ASSERT(err == 0); } } static void zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) { if (lrc->lrc_txtype == TX_WRITE) { lr_write_t *lr = (lr_write_t *)lrc; zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg); } } /* ARGSUSED */ static void zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) { zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx)); } static void zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) { /* * If we previously claimed it, we need to free it. */ if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) { lr_write_t *lr = (lr_write_t *)lrc; blkptr_t *bp = &lr->lr_blkptr; if (bp->blk_birth >= claim_txg && !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) { (void) arc_free(NULL, zilog->zl_spa, dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT); } } } /* * Create an on-disk intent log. */ static void zil_create(zilog_t *zilog) { const zil_header_t *zh = zilog->zl_header; lwb_t *lwb; uint64_t txg = 0; dmu_tx_t *tx = NULL; blkptr_t blk; int error = 0; /* * Wait for any previous destroy to complete. */ txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); ASSERT(zh->zh_claim_txg == 0); ASSERT(zh->zh_replay_seq == 0); blk = zh->zh_log; /* * If we don't already have an initial log block, allocate one now. */ if (BP_IS_HOLE(&blk)) { tx = dmu_tx_create(zilog->zl_os); (void) dmu_tx_assign(tx, TXG_WAIT); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk, NULL, txg); if (error == 0) zil_init_log_chain(zilog, &blk); } /* * Allocate a log write buffer (lwb) for the first log block. */ if (error == 0) { lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); lwb->lwb_zilog = zilog; lwb->lwb_blk = blk; lwb->lwb_nused = 0; lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk); lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz); lwb->lwb_max_txg = txg; lwb->lwb_zio = NULL; mutex_enter(&zilog->zl_lock); list_insert_tail(&zilog->zl_lwb_list, lwb); mutex_exit(&zilog->zl_lock); } /* * If we just allocated the first log block, commit our transaction * and wait for zil_sync() to stuff the block poiner into zh_log. * (zh is part of the MOS, so we cannot modify it in open context.) */ if (tx != NULL) { dmu_tx_commit(tx); txg_wait_synced(zilog->zl_dmu_pool, txg); } ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); } /* * In one tx, free all log blocks and clear the log header. * If keep_first is set, then we're replaying a log with no content. * We want to keep the first block, however, so that the first * synchronous transaction doesn't require a txg_wait_synced() * in zil_create(). We don't need to txg_wait_synced() here either * when keep_first is set, because both zil_create() and zil_destroy() * will wait for any in-progress destroys to complete. */ void zil_destroy(zilog_t *zilog, boolean_t keep_first) { const zil_header_t *zh = zilog->zl_header; lwb_t *lwb; dmu_tx_t *tx; uint64_t txg; /* * Wait for any previous destroy to complete. */ txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); if (BP_IS_HOLE(&zh->zh_log)) return; tx = dmu_tx_create(zilog->zl_os); (void) dmu_tx_assign(tx, TXG_WAIT); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); mutex_enter(&zilog->zl_lock); /* * It is possible for the ZIL to get the previously mounted zilog * structure of the same dataset if quickly remounted and the dbuf * eviction has not completed. In this case we can see a non * empty lwb list and keep_first will be set. We fix this by * clearing the keep_first. This will be slower but it's very rare. */ if (!list_is_empty(&zilog->zl_lwb_list) && keep_first) keep_first = B_FALSE; ASSERT3U(zilog->zl_destroy_txg, <, txg); zilog->zl_destroy_txg = txg; zilog->zl_keep_first = keep_first; if (!list_is_empty(&zilog->zl_lwb_list)) { ASSERT(zh->zh_claim_txg == 0); ASSERT(!keep_first); while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { list_remove(&zilog->zl_lwb_list, lwb); if (lwb->lwb_buf != NULL) zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg); kmem_cache_free(zil_lwb_cache, lwb); } } else { if (!keep_first) { (void) zil_parse(zilog, zil_free_log_block, zil_free_log_record, tx, zh->zh_claim_txg); } } mutex_exit(&zilog->zl_lock); dmu_tx_commit(tx); } /* * zil_rollback_destroy() is only called by the rollback code. * We already have a syncing tx. Rollback has exclusive access to the * dataset, so we don't have to worry about concurrent zil access. * The actual freeing of any log blocks occurs in zil_sync() later in * this txg syncing phase. */ void zil_rollback_destroy(zilog_t *zilog, dmu_tx_t *tx) { const zil_header_t *zh = zilog->zl_header; uint64_t txg; if (BP_IS_HOLE(&zh->zh_log)) return; txg = dmu_tx_get_txg(tx); ASSERT3U(zilog->zl_destroy_txg, <, txg); zilog->zl_destroy_txg = txg; zilog->zl_keep_first = B_FALSE; /* * Ensure there's no outstanding ZIL IO. No lwbs or just the * unused one that allocated in advance is ok. */ ASSERT(zilog->zl_lwb_list.list_head.list_next == zilog->zl_lwb_list.list_head.list_prev); (void) zil_parse(zilog, zil_free_log_block, zil_free_log_record, tx, zh->zh_claim_txg); } int zil_claim(char *osname, void *txarg) { dmu_tx_t *tx = txarg; uint64_t first_txg = dmu_tx_get_txg(tx); zilog_t *zilog; zil_header_t *zh; objset_t *os; int error; error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os); if (error) { cmn_err(CE_WARN, "can't process intent log for %s", osname); return (0); } zilog = dmu_objset_zil(os); zh = zil_header_in_syncing_context(zilog); /* * Claim all log blocks if we haven't already done so, and remember * the highest claimed sequence number. This ensures that if we can * read only part of the log now (e.g. due to a missing device), * but we can read the entire log later, we will not try to replay * or destroy beyond the last block we successfully claimed. */ ASSERT3U(zh->zh_claim_txg, <=, first_txg); if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { zh->zh_claim_txg = first_txg; zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, first_txg); dsl_dataset_dirty(dmu_objset_ds(os), tx); } ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); dmu_objset_close(os); return (0); } static int zil_vdev_compare(const void *x1, const void *x2) { uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; if (v1 < v2) return (-1); if (v1 > v2) return (1); return (0); } void zil_add_block(zilog_t *zilog, blkptr_t *bp) { avl_tree_t *t = &zilog->zl_vdev_tree; avl_index_t where; zil_vdev_node_t *zv, zvsearch; int ndvas = BP_GET_NDVAS(bp); int i; if (zfs_nocacheflush) return; ASSERT(zilog->zl_writer); /* * Even though we're zl_writer, we still need a lock because the * zl_get_data() callbacks may have dmu_sync() done callbacks * that will run concurrently. */ mutex_enter(&zilog->zl_vdev_lock); for (i = 0; i < ndvas; i++) { zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); if (avl_find(t, &zvsearch, &where) == NULL) { zv = kmem_alloc(sizeof (*zv), KM_SLEEP); zv->zv_vdev = zvsearch.zv_vdev; avl_insert(t, zv, where); } } mutex_exit(&zilog->zl_vdev_lock); } void zil_flush_vdevs(zilog_t *zilog) { spa_t *spa = zilog->zl_spa; avl_tree_t *t = &zilog->zl_vdev_tree; void *cookie = NULL; zil_vdev_node_t *zv; zio_t *zio; ASSERT(zilog->zl_writer); /* * We don't need zl_vdev_lock here because we're the zl_writer, * and all zl_get_data() callbacks are done. */ if (avl_numnodes(t) == 0) return; spa_config_enter(spa, RW_READER, FTAG); zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); if (vd != NULL) zio_flush(zio, vd); kmem_free(zv, sizeof (*zv)); } /* * Wait for all the flushes to complete. Not all devices actually * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. */ (void) zio_wait(zio); spa_config_exit(spa, FTAG); } /* * Function called when a log block write completes */ static void zil_lwb_write_done(zio_t *zio) { lwb_t *lwb = zio->io_private; zilog_t *zilog = lwb->lwb_zilog; /* * Now that we've written this log block, we have a stable pointer * to the next block in the chain, so it's OK to let the txg in * which we allocated the next block sync. */ txg_rele_to_sync(&lwb->lwb_txgh); zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); mutex_enter(&zilog->zl_lock); lwb->lwb_buf = NULL; if (zio->io_error) zilog->zl_log_error = B_TRUE; mutex_exit(&zilog->zl_lock); } /* * Initialize the io for a log block. * * Note, we should not initialize the IO until we are about * to use it, since zio_rewrite() does a spa_config_enter(). */ static void zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) { zbookmark_t zb; zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET]; zb.zb_object = 0; zb.zb_level = -1; zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; if (zilog->zl_root_zio == NULL) { zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, ZIO_FLAG_CANFAIL); } if (lwb->lwb_zio == NULL) { lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, ZIO_CHECKSUM_ZILOG, &lwb->lwb_blk, lwb->lwb_buf, lwb->lwb_sz, zil_lwb_write_done, lwb, ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_CANFAIL, &zb); } } /* * Start a log block write and advance to the next log block. * Calls are serialized. */ static lwb_t * zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) { lwb_t *nlwb; zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1; spa_t *spa = zilog->zl_spa; blkptr_t *bp = &ztp->zit_next_blk; uint64_t txg; uint64_t zil_blksz; int error; ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb)); /* * Allocate the next block and save its address in this block * before writing it in order to establish the log chain. * Note that if the allocation of nlwb synced before we wrote * the block that points at it (lwb), we'd leak it if we crashed. * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done(). */ txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh); txg_rele_to_quiesce(&lwb->lwb_txgh); /* * Pick a ZIL blocksize. We request a size that is the * maximum of the previous used size, the current used size and * the amount waiting in the queue. */ zil_blksz = MAX(zilog->zl_prev_used, zilog->zl_cur_used + sizeof (*ztp)); zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp)); zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t); if (zil_blksz > ZIL_MAX_BLKSZ) zil_blksz = ZIL_MAX_BLKSZ; BP_ZERO(bp); /* pass the old blkptr in order to spread log blocks across devs */ error = zio_alloc_blk(spa, zil_blksz, bp, &lwb->lwb_blk, txg); if (error) { dmu_tx_t *tx = dmu_tx_create_assigned(zilog->zl_dmu_pool, txg); /* * We dirty the dataset to ensure that zil_sync() will * be called to remove this lwb from our zl_lwb_list. * Failing to do so, may leave an lwb with a NULL lwb_buf * hanging around on the zl_lwb_list. */ dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); dmu_tx_commit(tx); /* * Since we've just experienced an allocation failure so we * terminate the current lwb and send it on its way. */ ztp->zit_pad = 0; ztp->zit_nused = lwb->lwb_nused; ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; zio_nowait(lwb->lwb_zio); /* * By returning NULL the caller will call tx_wait_synced() */ return (NULL); } ASSERT3U(bp->blk_birth, ==, txg); ztp->zit_pad = 0; ztp->zit_nused = lwb->lwb_nused; ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum; bp->blk_cksum = lwb->lwb_blk.blk_cksum; bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; /* * Allocate a new log write buffer (lwb). */ nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); nlwb->lwb_zilog = zilog; nlwb->lwb_blk = *bp; nlwb->lwb_nused = 0; nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk); nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz); nlwb->lwb_max_txg = txg; nlwb->lwb_zio = NULL; /* * Put new lwb at the end of the log chain */ mutex_enter(&zilog->zl_lock); list_insert_tail(&zilog->zl_lwb_list, nlwb); mutex_exit(&zilog->zl_lock); /* Record the block for later vdev flushing */ zil_add_block(zilog, &lwb->lwb_blk); /* * kick off the write for the old log block */ dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg); ASSERT(lwb->lwb_zio); zio_nowait(lwb->lwb_zio); return (nlwb); } static lwb_t * zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) { lr_t *lrc = &itx->itx_lr; /* common log record */ lr_write_t *lr = (lr_write_t *)lrc; uint64_t txg = lrc->lrc_txg; uint64_t reclen = lrc->lrc_reclen; uint64_t dlen; if (lwb == NULL) return (NULL); ASSERT(lwb->lwb_buf != NULL); if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) dlen = P2ROUNDUP_TYPED( lr->lr_length, sizeof (uint64_t), uint64_t); else dlen = 0; zilog->zl_cur_used += (reclen + dlen); zil_lwb_write_init(zilog, lwb); /* * If this record won't fit in the current log block, start a new one. */ if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { lwb = zil_lwb_write_start(zilog, lwb); if (lwb == NULL) return (NULL); zil_lwb_write_init(zilog, lwb); ASSERT(lwb->lwb_nused == 0); if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) { txg_wait_synced(zilog->zl_dmu_pool, txg); return (lwb); } } /* * Update the lrc_seq, to be log record sequence number. See zil.h * Then copy the record to the log buffer. */ lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen); /* * If it's a write, fetch the data or get its blkptr as appropriate. */ if (lrc->lrc_txtype == TX_WRITE) { if (txg > spa_freeze_txg(zilog->zl_spa)) txg_wait_synced(zilog->zl_dmu_pool, txg); if (itx->itx_wr_state != WR_COPIED) { char *dbuf; int error; /* alignment is guaranteed */ lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused); if (dlen) { ASSERT(itx->itx_wr_state == WR_NEED_COPY); dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen; lr->lr_common.lrc_reclen += dlen; } else { ASSERT(itx->itx_wr_state == WR_INDIRECT); dbuf = NULL; } error = zilog->zl_get_data( itx->itx_private, lr, dbuf, lwb->lwb_zio); if (error) { ASSERT(error == ENOENT || error == EEXIST || error == EALREADY); return (lwb); } } } lwb->lwb_nused += reclen + dlen; lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb)); ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); return (lwb); } itx_t * zil_itx_create(uint64_t txtype, size_t lrsize) { itx_t *itx; lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); itx->itx_lr.lrc_txtype = txtype; itx->itx_lr.lrc_reclen = lrsize; itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ itx->itx_lr.lrc_seq = 0; /* defensive */ return (itx); } uint64_t zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) { uint64_t seq; ASSERT(itx->itx_lr.lrc_seq == 0); mutex_enter(&zilog->zl_lock); list_insert_tail(&zilog->zl_itx_list, itx); zilog->zl_itx_list_sz += itx->itx_sod; itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq; mutex_exit(&zilog->zl_lock); return (seq); } /* * Free up all in-memory intent log transactions that have now been synced. */ static void zil_itx_clean(zilog_t *zilog) { uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa); uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa); list_t clean_list; itx_t *itx; list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); mutex_enter(&zilog->zl_lock); /* wait for a log writer to finish walking list */ while (zilog->zl_writer) { cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); } /* * Move the sync'd log transactions to a separate list so we can call * kmem_free without holding the zl_lock. * * There is no need to set zl_writer as we don't drop zl_lock here */ while ((itx = list_head(&zilog->zl_itx_list)) != NULL && itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) { list_remove(&zilog->zl_itx_list, itx); zilog->zl_itx_list_sz -= itx->itx_sod; list_insert_tail(&clean_list, itx); } cv_broadcast(&zilog->zl_cv_writer); mutex_exit(&zilog->zl_lock); /* destroy sync'd log transactions */ while ((itx = list_head(&clean_list)) != NULL) { list_remove(&clean_list, itx); kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); } list_destroy(&clean_list); } /* * If there are any in-memory intent log transactions which have now been * synced then start up a taskq to free them. */ void zil_clean(zilog_t *zilog) { itx_t *itx; mutex_enter(&zilog->zl_lock); itx = list_head(&zilog->zl_itx_list); if ((itx != NULL) && (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) { (void) taskq_dispatch(zilog->zl_clean_taskq, (void (*)(void *))zil_itx_clean, zilog, TQ_NOSLEEP); } mutex_exit(&zilog->zl_lock); } void zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid) { uint64_t txg; uint64_t commit_seq = 0; itx_t *itx, *itx_next = (itx_t *)-1; lwb_t *lwb; spa_t *spa; zilog->zl_writer = B_TRUE; zilog->zl_root_zio = NULL; spa = zilog->zl_spa; if (zilog->zl_suspend) { lwb = NULL; } else { lwb = list_tail(&zilog->zl_lwb_list); if (lwb == NULL) { /* * Return if there's nothing to flush before we * dirty the fs by calling zil_create() */ if (list_is_empty(&zilog->zl_itx_list)) { zilog->zl_writer = B_FALSE; return; } mutex_exit(&zilog->zl_lock); zil_create(zilog); mutex_enter(&zilog->zl_lock); lwb = list_tail(&zilog->zl_lwb_list); } } /* Loop through in-memory log transactions filling log blocks. */ DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); for (;;) { /* * Find the next itx to push: * Push all transactions related to specified foid and all * other transactions except TX_WRITE, TX_TRUNCATE, * TX_SETATTR and TX_ACL for all other files. */ if (itx_next != (itx_t *)-1) itx = itx_next; else itx = list_head(&zilog->zl_itx_list); for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) { if (foid == 0) /* push all foids? */ break; if (itx->itx_sync) /* push all O_[D]SYNC */ break; switch (itx->itx_lr.lrc_txtype) { case TX_SETATTR: case TX_WRITE: case TX_TRUNCATE: case TX_ACL: /* lr_foid is same offset for these records */ if (((lr_write_t *)&itx->itx_lr)->lr_foid != foid) { continue; /* skip this record */ } } break; } if (itx == NULL) break; if ((itx->itx_lr.lrc_seq > seq) && ((lwb == NULL) || (lwb->lwb_nused == 0) || (lwb->lwb_nused + itx->itx_sod > ZIL_BLK_DATA_SZ(lwb)))) { break; } /* * Save the next pointer. Even though we soon drop * zl_lock all threads that may change the list * (another writer or zil_itx_clean) can't do so until * they have zl_writer. */ itx_next = list_next(&zilog->zl_itx_list, itx); list_remove(&zilog->zl_itx_list, itx); zilog->zl_itx_list_sz -= itx->itx_sod; mutex_exit(&zilog->zl_lock); txg = itx->itx_lr.lrc_txg; ASSERT(txg); if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa)) lwb = zil_lwb_commit(zilog, itx, lwb); kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); mutex_enter(&zilog->zl_lock); } DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); /* determine commit sequence number */ itx = list_head(&zilog->zl_itx_list); if (itx) commit_seq = itx->itx_lr.lrc_seq; else commit_seq = zilog->zl_itx_seq; mutex_exit(&zilog->zl_lock); /* write the last block out */ if (lwb != NULL && lwb->lwb_zio != NULL) lwb = zil_lwb_write_start(zilog, lwb); zilog->zl_prev_used = zilog->zl_cur_used; zilog->zl_cur_used = 0; /* * Wait if necessary for the log blocks to be on stable storage. */ if (zilog->zl_root_zio) { DTRACE_PROBE1(zil__cw3, zilog_t *, zilog); (void) zio_wait(zilog->zl_root_zio); DTRACE_PROBE1(zil__cw4, zilog_t *, zilog); zil_flush_vdevs(zilog); } if (zilog->zl_log_error || lwb == NULL) { zilog->zl_log_error = 0; txg_wait_synced(zilog->zl_dmu_pool, 0); } mutex_enter(&zilog->zl_lock); zilog->zl_writer = B_FALSE; ASSERT3U(commit_seq, >=, zilog->zl_commit_seq); zilog->zl_commit_seq = commit_seq; } /* * Push zfs transactions to stable storage up to the supplied sequence number. * If foid is 0 push out all transactions, otherwise push only those * for that file or might have been used to create that file. */ void zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid) { if (zilog == NULL || seq == 0) return; mutex_enter(&zilog->zl_lock); seq = MIN(seq, zilog->zl_itx_seq); /* cap seq at largest itx seq */ while (zilog->zl_writer) { cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); if (seq < zilog->zl_commit_seq) { mutex_exit(&zilog->zl_lock); return; } } zil_commit_writer(zilog, seq, foid); /* drops zl_lock */ /* wake up others waiting on the commit */ cv_broadcast(&zilog->zl_cv_writer); mutex_exit(&zilog->zl_lock); } /* * Called in syncing context to free committed log blocks and update log header. */ void zil_sync(zilog_t *zilog, dmu_tx_t *tx) { zil_header_t *zh = zil_header_in_syncing_context(zilog); uint64_t txg = dmu_tx_get_txg(tx); spa_t *spa = zilog->zl_spa; lwb_t *lwb; mutex_enter(&zilog->zl_lock); ASSERT(zilog->zl_stop_sync == 0); zh->zh_replay_seq = zilog->zl_replay_seq[txg & TXG_MASK]; if (zilog->zl_destroy_txg == txg) { blkptr_t blk = zh->zh_log; ASSERT(list_head(&zilog->zl_lwb_list) == NULL); ASSERT(spa_sync_pass(spa) == 1); bzero(zh, sizeof (zil_header_t)); bzero(zilog->zl_replay_seq, sizeof (zilog->zl_replay_seq)); if (zilog->zl_keep_first) { /* * If this block was part of log chain that couldn't * be claimed because a device was missing during * zil_claim(), but that device later returns, * then this block could erroneously appear valid. * To guard against this, assign a new GUID to the new * log chain so it doesn't matter what blk points to. */ zil_init_log_chain(zilog, &blk); zh->zh_log = blk; } } for (;;) { lwb = list_head(&zilog->zl_lwb_list); if (lwb == NULL) { mutex_exit(&zilog->zl_lock); return; } zh->zh_log = lwb->lwb_blk; if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) break; list_remove(&zilog->zl_lwb_list, lwb); zio_free_blk(spa, &lwb->lwb_blk, txg); kmem_cache_free(zil_lwb_cache, lwb); /* * If we don't have anything left in the lwb list then * we've had an allocation failure and we need to zero * out the zil_header blkptr so that we don't end * up freeing the same block twice. */ if (list_head(&zilog->zl_lwb_list) == NULL) BP_ZERO(&zh->zh_log); } mutex_exit(&zilog->zl_lock); } void zil_init(void) { zil_lwb_cache = kmem_cache_create("zil_lwb_cache", sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); } void zil_fini(void) { kmem_cache_destroy(zil_lwb_cache); } zilog_t * zil_alloc(objset_t *os, zil_header_t *zh_phys) { zilog_t *zilog; zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); zilog->zl_header = zh_phys; zilog->zl_os = os; zilog->zl_spa = dmu_objset_spa(os); zilog->zl_dmu_pool = dmu_objset_pool(os); zilog->zl_destroy_txg = TXG_INITIAL - 1; mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&zilog->zl_itx_list, sizeof (itx_t), offsetof(itx_t, itx_node)); list_create(&zilog->zl_lwb_list, sizeof (lwb_t), offsetof(lwb_t, lwb_node)); mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); return (zilog); } void zil_free(zilog_t *zilog) { lwb_t *lwb; zilog->zl_stop_sync = 1; while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { list_remove(&zilog->zl_lwb_list, lwb); if (lwb->lwb_buf != NULL) zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); kmem_cache_free(zil_lwb_cache, lwb); } list_destroy(&zilog->zl_lwb_list); avl_destroy(&zilog->zl_vdev_tree); mutex_destroy(&zilog->zl_vdev_lock); ASSERT(list_head(&zilog->zl_itx_list) == NULL); list_destroy(&zilog->zl_itx_list); mutex_destroy(&zilog->zl_lock); cv_destroy(&zilog->zl_cv_writer); cv_destroy(&zilog->zl_cv_suspend); kmem_free(zilog, sizeof (zilog_t)); } /* * return true if the initial log block is not valid */ static int zil_empty(zilog_t *zilog) { const zil_header_t *zh = zilog->zl_header; arc_buf_t *abuf = NULL; if (BP_IS_HOLE(&zh->zh_log)) return (1); if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0) return (1); VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); return (0); } /* * Open an intent log. */ zilog_t * zil_open(objset_t *os, zil_get_data_t *get_data) { zilog_t *zilog = dmu_objset_zil(os); zilog->zl_get_data = get_data; zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 2, 2, TASKQ_PREPOPULATE); return (zilog); } /* * Close an intent log. */ void zil_close(zilog_t *zilog) { /* * If the log isn't already committed, mark the objset dirty * (so zil_sync() will be called) and wait for that txg to sync. */ if (!zil_is_committed(zilog)) { uint64_t txg; dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); (void) dmu_tx_assign(tx, TXG_WAIT); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); dmu_tx_commit(tx); txg_wait_synced(zilog->zl_dmu_pool, txg); } taskq_destroy(zilog->zl_clean_taskq); zilog->zl_clean_taskq = NULL; zilog->zl_get_data = NULL; zil_itx_clean(zilog); ASSERT(list_head(&zilog->zl_itx_list) == NULL); } /* * Suspend an intent log. While in suspended mode, we still honor * synchronous semantics, but we rely on txg_wait_synced() to do it. * We suspend the log briefly when taking a snapshot so that the snapshot * contains all the data it's supposed to, and has an empty intent log. */ int zil_suspend(zilog_t *zilog) { const zil_header_t *zh = zilog->zl_header; mutex_enter(&zilog->zl_lock); if (zh->zh_claim_txg != 0) { /* unplayed log */ mutex_exit(&zilog->zl_lock); return (EBUSY); } if (zilog->zl_suspend++ != 0) { /* * Someone else already began a suspend. * Just wait for them to finish. */ while (zilog->zl_suspending) cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); ASSERT(BP_IS_HOLE(&zh->zh_log)); mutex_exit(&zilog->zl_lock); return (0); } zilog->zl_suspending = B_TRUE; mutex_exit(&zilog->zl_lock); zil_commit(zilog, UINT64_MAX, 0); /* * Wait for any in-flight log writes to complete. */ mutex_enter(&zilog->zl_lock); while (zilog->zl_writer) cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); mutex_exit(&zilog->zl_lock); zil_destroy(zilog, B_FALSE); mutex_enter(&zilog->zl_lock); zilog->zl_suspending = B_FALSE; cv_broadcast(&zilog->zl_cv_suspend); mutex_exit(&zilog->zl_lock); return (0); } void zil_resume(zilog_t *zilog) { mutex_enter(&zilog->zl_lock); ASSERT(zilog->zl_suspend != 0); zilog->zl_suspend--; mutex_exit(&zilog->zl_lock); } typedef struct zil_replay_arg { objset_t *zr_os; zil_replay_func_t **zr_replay; void *zr_arg; uint64_t *zr_txgp; boolean_t zr_byteswap; char *zr_lrbuf; } zil_replay_arg_t; static void zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) { zil_replay_arg_t *zr = zra; const zil_header_t *zh = zilog->zl_header; uint64_t reclen = lr->lrc_reclen; uint64_t txtype = lr->lrc_txtype; char *name; int pass, error, sunk; if (zilog->zl_stop_replay) return; if (lr->lrc_txg < claim_txg) /* already committed */ return; if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ return; /* Strip case-insensitive bit, still present in log record */ txtype &= ~TX_CI; /* * Make a copy of the data so we can revise and extend it. */ bcopy(lr, zr->zr_lrbuf, reclen); /* * The log block containing this lr may have been byteswapped * so that we can easily examine common fields like lrc_txtype. * However, the log is a mix of different data types, and only the * replay vectors know how to byteswap their records. Therefore, if * the lr was byteswapped, undo it before invoking the replay vector. */ if (zr->zr_byteswap) byteswap_uint64_array(zr->zr_lrbuf, reclen); /* * If this is a TX_WRITE with a blkptr, suck in the data. */ if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { lr_write_t *lrw = (lr_write_t *)lr; blkptr_t *wbp = &lrw->lr_blkptr; uint64_t wlen = lrw->lr_length; char *wbuf = zr->zr_lrbuf + reclen; if (BP_IS_HOLE(wbp)) { /* compressed to a hole */ bzero(wbuf, wlen); } else { /* * A subsequent write may have overwritten this block, * in which case wbp may have been been freed and * reallocated, and our read of wbp may fail with a * checksum error. We can safely ignore this because * the later write will provide the correct data. */ zbookmark_t zb; zb.zb_objset = dmu_objset_id(zilog->zl_os); zb.zb_object = lrw->lr_foid; zb.zb_level = -1; zb.zb_blkid = lrw->lr_offset / BP_GET_LSIZE(wbp); (void) zio_wait(zio_read(NULL, zilog->zl_spa, wbp, wbuf, BP_GET_LSIZE(wbp), NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb)); (void) memmove(wbuf, wbuf + lrw->lr_blkoff, wlen); } } /* * We must now do two things atomically: replay this log record, * and update the log header to reflect the fact that we did so. * We use the DMU's ability to assign into a specific txg to do this. */ for (pass = 1, sunk = B_FALSE; /* CONSTANTCONDITION */; pass++) { uint64_t replay_txg; dmu_tx_t *replay_tx; replay_tx = dmu_tx_create(zr->zr_os); error = dmu_tx_assign(replay_tx, TXG_WAIT); if (error) { dmu_tx_abort(replay_tx); break; } replay_txg = dmu_tx_get_txg(replay_tx); if (txtype == 0 || txtype >= TX_MAX_TYPE) { error = EINVAL; } else { /* * On the first pass, arrange for the replay vector * to fail its dmu_tx_assign(). That's the only way * to ensure that those code paths remain well tested. * * Only byteswap (if needed) on the 1st pass. */ *zr->zr_txgp = replay_txg - (pass == 1); error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf, zr->zr_byteswap && pass == 1); *zr->zr_txgp = TXG_NOWAIT; } if (error == 0) { dsl_dataset_dirty(dmu_objset_ds(zr->zr_os), replay_tx); zilog->zl_replay_seq[replay_txg & TXG_MASK] = lr->lrc_seq; } dmu_tx_commit(replay_tx); if (!error) return; /* * The DMU's dnode layer doesn't see removes until the txg * commits, so a subsequent claim can spuriously fail with * EEXIST. So if we receive any error other than ERESTART * we try syncing out any removes then retrying the * transaction. */ if (error != ERESTART && !sunk) { txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); sunk = B_TRUE; continue; /* retry */ } if (error != ERESTART) break; if (pass != 1) txg_wait_open(spa_get_dsl(zilog->zl_spa), replay_txg + 1); dprintf("pass %d, retrying\n", pass); } ASSERT(error && error != ERESTART); name = kmem_alloc(MAXNAMELEN, KM_SLEEP); dmu_objset_name(zr->zr_os, name); cmn_err(CE_WARN, "ZFS replay transaction error %d, " "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype, (lr->lrc_txtype & TX_CI) ? "CI" : ""); zilog->zl_stop_replay = 1; kmem_free(name, MAXNAMELEN); } /* ARGSUSED */ static void zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) { zilog->zl_replay_blks++; } /* * If this dataset has a non-empty intent log, replay it and destroy it. */ void zil_replay(objset_t *os, void *arg, uint64_t *txgp, zil_replay_func_t *replay_func[TX_MAX_TYPE]) { zilog_t *zilog = dmu_objset_zil(os); const zil_header_t *zh = zilog->zl_header; zil_replay_arg_t zr; if (zil_empty(zilog)) { zil_destroy(zilog, B_TRUE); return; } zr.zr_os = os; zr.zr_replay = replay_func; zr.zr_arg = arg; zr.zr_txgp = txgp; zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); /* * Wait for in-progress removes to sync before starting replay. */ txg_wait_synced(zilog->zl_dmu_pool, 0); zilog->zl_stop_replay = 0; zilog->zl_replay_time = lbolt; ASSERT(zilog->zl_replay_blks == 0); (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, zh->zh_claim_txg); kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE); zil_destroy(zilog, B_FALSE); txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); } /* * Report whether all transactions are committed */ int zil_is_committed(zilog_t *zilog) { lwb_t *lwb; int ret; mutex_enter(&zilog->zl_lock); while (zilog->zl_writer) cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock); /* recent unpushed intent log transactions? */ if (!list_is_empty(&zilog->zl_itx_list)) { ret = B_FALSE; goto out; } /* intent log never used? */ lwb = list_head(&zilog->zl_lwb_list); if (lwb == NULL) { ret = B_TRUE; goto out; } /* * more than 1 log buffer means zil_sync() hasn't yet freed * entries after a txg has committed */ if (list_next(&zilog->zl_lwb_list, lwb)) { ret = B_FALSE; goto out; } ASSERT(zil_empty(zilog)); ret = B_TRUE; out: cv_broadcast(&zilog->zl_cv_writer); mutex_exit(&zilog->zl_lock); return (ret); }