xref: /titanic_44/usr/src/cmd/troff/troff.d/draw.c (revision 09f67678c27dda8a89f87f1f408a87dd49ceb0e1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 1989 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 /*
34  * University Copyright- Copyright (c) 1982, 1986, 1988
35  * The Regents of the University of California
36  * All Rights Reserved
37  *
38  * University Acknowledgment- Portions of this document are derived from
39  * software developed by the University of California, Berkeley, and its
40  * contributors.
41  */
42 
43 #include	<stdio.h>
44 #include	<math.h>
45 #define	PI	3.141592654
46 #define	hmot(n)		hpos += n
47 #define	hgoto(n)	hpos = n
48 #define	vmot(n)		vgoto(vpos + n)
49 
50 extern	int	hpos;
51 extern	int	vpos;
52 extern	int	size;
53 extern	short	*pstab;
54 extern	int	DX;	/* step size in x */
55 extern	int	DY;	/* step size in y */
56 extern	int	drawdot;	/* character to use when drawing */
57 extern	int	drawsize;	/* shrink point size by this facter */
58 
59 int	maxdots	= 32000;	/* maximum number of dots in an object */
60 
61 #define	sgn(n)	((n > 0) ? 1 : ((n < 0) ? -1 : 0))
62 #define	abs(n)	((n) >= 0 ? (n) : -(n))
63 #define	max(x,y)	((x) > (y) ? (x) : (y))
64 #define	min(x,y)	((x) < (y) ? (x) : (y))
65 #define	arcmove(x,y)	{ hgoto(x); vmot(-vpos-(y)); }
66 
67 drawline(dx, dy, s)	/* draw line from here to dx, dy using s */
68 int dx, dy;
69 char *s;
70 {
71 	int xd, yd;
72 	float val, slope;
73 	int i, numdots;
74 	int dirmot, perp;
75 	int motincr, perpincr;
76 	int ohpos, ovpos, osize, ofont;
77 	float incrway;
78 
79 	int itemp; /*temp. storage for value returned byint function sgn*/
80 	osize = size;
81 	setsize(t_size(pstab[osize-1] / drawsize));
82 	ohpos = hpos;
83 	ovpos = vpos;
84 	xd = dx / DX;
85 	yd = dy / DX;
86 	if (xd == 0) {
87 		numdots = abs (yd);
88 		numdots = min(numdots, maxdots);
89 		motincr = DX * sgn (yd);
90 		for (i = 0; i < numdots; i++) {
91 			vmot(motincr);
92 			put1(drawdot);
93 		}
94 		vgoto(ovpos + dy);
95 		setsize(osize);
96 		return;
97 	}
98 	if (yd == 0) {
99 		numdots = abs (xd);
100 		motincr = DX * sgn (xd);
101 		for (i = 0; i < numdots; i++) {
102 			hmot(motincr);
103 			put1(drawdot);
104 		}
105 		hgoto(ohpos + dx);
106 		setsize(osize);
107 		return;
108 	}
109 	if (abs (xd) > abs (yd)) {
110 		val = slope = (float) xd/yd;
111 		numdots = abs (xd);
112 		numdots = min(numdots, maxdots);
113 		dirmot = 'h';
114 		perp = 'v';
115 		motincr = DX * sgn (xd);
116 		perpincr = DX * sgn (yd);
117 	}
118 	else {
119 		val = slope = (float) yd/xd;
120 		numdots = abs (yd);
121 		numdots = min(numdots, maxdots);
122 		dirmot = 'v';
123 		perp = 'h';
124 		motincr = DX * sgn (yd);
125 		perpincr = DX * sgn (xd);
126 	}
127 	incrway = itemp = sgn ((int) slope);
128 	for (i = 0; i < numdots; i++) {
129 		val -= incrway;
130 		if (dirmot == 'h')
131 			hmot(motincr);
132 		else
133 			vmot(motincr);
134 		if (val * slope < 0) {
135 			if (perp == 'h')
136 				hmot(perpincr);
137 			else
138 				vmot(perpincr);
139 			val += slope;
140 		}
141 		put1(drawdot);
142 	}
143 	hgoto(ohpos + dx);
144 	vgoto(ovpos + dy);
145 	setsize(osize);
146 }
147 
148 drawwig(s)	/* draw wiggly line */
149 	char *s;
150 {
151 	int x[50], y[50], xp, yp, pxp, pyp;
152 	float t1, t2, t3, w;
153 	int i, j, numdots, N;
154 	int osize, ofont;
155 	char temp[50], *p, *getstr();
156 
157 	osize = size;
158 	setsize(t_size(pstab[osize-1] / drawsize));
159 	p = s;
160 	for (N = 2; (p=getstr(p,temp)) != NULL && N < sizeof(x)/sizeof(x[0]); N++) {
161 		x[N] = atoi(temp);
162 		p = getstr(p, temp);
163 		y[N] = atoi(temp);
164 	}
165 	x[0] = x[1] = hpos;
166 	y[0] = y[1] = vpos;
167 	for (i = 1; i < N; i++) {
168 		x[i+1] += x[i];
169 		y[i+1] += y[i];
170 	}
171 	x[N] = x[N-1];
172 	y[N] = y[N-1];
173 	pxp = pyp = -9999;
174 	for (i = 0; i < N-1; i++) {	/* interval */
175 		numdots = (dist(x[i],y[i], x[i+1],y[i+1]) + dist(x[i+1],y[i+1], x[i+2],y[i+2])) / 2;
176 		numdots /= DX;
177 		numdots = min(numdots, maxdots);
178 		for (j = 0; j < numdots; j++) {	/* points within */
179 			w = (float) j / numdots;
180 			t1 = 0.5 * w * w;
181 			w = w - 0.5;
182 			t2 = 0.75 - w * w;
183 			w = w - 0.5;
184 			t3 = 0.5 * w * w;
185 			xp = t1 * x[i+2] + t2 * x[i+1] + t3 * x[i] + 0.5;
186 			yp = t1 * y[i+2] + t2 * y[i+1] + t3 * y[i] + 0.5;
187 			if (xp != pxp || yp != pyp) {
188 				hgoto(xp);
189 				vgoto(yp);
190 				put1(drawdot);
191 				pxp = xp;
192 				pyp = yp;
193 			}
194 		}
195 	}
196 	setsize(osize);
197 }
198 
199 char *getstr(p, temp)	/* copy next non-blank string from p to temp, update p */
200 char *p, *temp;
201 {
202 	while (*p == ' ' || *p == '\t' || *p == '\n')
203 		p++;
204 	if (*p == '\0') {
205 		temp[0] = 0;
206 		return(NULL);
207 	}
208 	while (*p != ' ' && *p != '\t' && *p != '\n' && *p != '\0')
209 		*temp++ = *p++;
210 	*temp = '\0';
211 	return(p);
212 }
213 
214 drawcirc(d)
215 {
216 	int xc, yc;
217 
218 	xc = hpos;
219 	yc = vpos;
220 	conicarc(hpos + d/2, -vpos, hpos, -vpos, hpos, -vpos, d/2, d/2);
221 	hgoto(xc + d);	/* circle goes to right side */
222 	vgoto(yc);
223 }
224 
225 dist(x1, y1, x2, y2)	/* integer distance from x1,y1 to x2,y2 */
226 {
227 	float dx, dy;
228 
229 	dx = x2 - x1;
230 	dy = y2 - y1;
231 	return sqrt(dx*dx + dy*dy) + 0.5;
232 }
233 
234 drawarc(dx1, dy1, dx2, dy2)
235 {
236 	int x0, y0, x2, y2, r;
237 
238 	x0 = hpos + dx1;	/* center */
239 	y0 = vpos + dy1;
240 	x2 = x0 + dx2;	/* "to" */
241 	y2 = y0 + dy2;
242 	r = sqrt((float) dx1 * dx1 + (float) dy1 * dy1) + 0.5;
243 	conicarc(x0, -y0, hpos, -vpos, x2, -y2, r, r);
244 }
245 
246 drawellip(a, b)
247 {
248 	int xc, yc;
249 
250 	xc = hpos;
251 	yc = vpos;
252 	conicarc(hpos + a/2, -vpos, hpos, -vpos, hpos, -vpos, a/2, b/2);
253 	hgoto(xc + a);
254 	vgoto(yc);
255 }
256 
257 #define sqr(x) (long int)(x)*(x)
258 
259 conicarc(x, y, x0, y0, x1, y1, a, b)
260 {
261 	/* based on Bresenham, CACM, Feb 77, pp 102-3 */
262 	/* by Chris Van Wyk */
263 	/* capitalized vars are an internal reference frame */
264 	long dotcount = 0;
265 	int osize, ofont;
266 	int	xs, ys, xt, yt, Xs, Ys, qs, Xt, Yt, qt,
267 		M1x, M1y, M2x, M2y, M3x, M3y,
268 		Q, move, Xc, Yc;
269 	int ox1, oy1;
270 	long	delta;
271 	float	xc, yc;
272 	float	radius, slope;
273 	float	xstep, ystep;
274 
275 	osize = size;
276 	setsize(t_size(pstab[osize-1] / drawsize));
277 	ox1 = x1;
278 	oy1 = y1;
279 	if (a != b)	/* an arc of an ellipse; internally, will still think of circle */
280 		if (a > b) {
281 			xstep = (float)a / b;
282 			ystep = 1;
283 			radius = b;
284 		} else {
285 			xstep = 1;
286 			ystep = (float)b / a;
287 			radius = a;
288 		}
289 	else {	/* a circular arc; radius is computed from center and first point */
290 		xstep = ystep = 1;
291 		radius = sqrt((float)(sqr(x0 - x) + sqr(y0 - y)));
292 	}
293 
294 
295 	xc = x0;
296 	yc = y0;
297 	/* now, use start and end point locations to figure out
298 	the angle at which start and end happen; use these
299 	angles with known radius to figure out where start
300 	and end should be
301 	*/
302 	slope = atan2((double)(y0 - y), (double)(x0 - x) );
303 	if (slope == 0.0 && x0 < x)
304 		slope = 3.14159265;
305 	x0 = x + radius * cos(slope) + 0.5;
306 	y0 = y + radius * sin(slope) + 0.5;
307 	slope = atan2((double)(y1 - y), (double)(x1 - x));
308 	if (slope == 0.0 && x1 < x)
309 		slope = 3.14159265;
310 	x1 = x + radius * cos(slope) + 0.5;
311 	y1 = y + radius * sin(slope) + 0.5;
312 	/* step 2: translate to zero-centered circle */
313 	xs = x0 - x;
314 	ys = y0 - y;
315 	xt = x1 - x;
316 	yt = y1 - y;
317 	/* step 3: normalize to first quadrant */
318 	if (xs < 0)
319 		if (ys < 0) {
320 			Xs = abs(ys);
321 			Ys = abs(xs);
322 			qs = 3;
323 			M1x = 0;
324 			M1y = -1;
325 			M2x = 1;
326 			M2y = -1;
327 			M3x = 1;
328 			M3y = 0;
329 		} else {
330 			Xs = abs(xs);
331 			Ys = abs(ys);
332 			qs = 2;
333 			M1x = -1;
334 			M1y = 0;
335 			M2x = -1;
336 			M2y = -1;
337 			M3x = 0;
338 			M3y = -1;
339 		}
340 	else if (ys < 0) {
341 		Xs = abs(xs);
342 		Ys = abs(ys);
343 		qs = 0;
344 		M1x = 1;
345 		M1y = 0;
346 		M2x = 1;
347 		M2y = 1;
348 		M3x = 0;
349 		M3y = 1;
350 	} else {
351 		Xs = abs(ys);
352 		Ys = abs(xs);
353 		qs = 1;
354 		M1x = 0;
355 		M1y = 1;
356 		M2x = -1;
357 		M2y = 1;
358 		M3x = -1;
359 		M3y = 0;
360 	}
361 
362 
363 	Xc = Xs;
364 	Yc = Ys;
365 	if (xt < 0)
366 		if (yt < 0) {
367 			Xt = abs(yt);
368 			Yt = abs(xt);
369 			qt = 3;
370 		} else {
371 			Xt = abs(xt);
372 			Yt = abs(yt);
373 			qt = 2;
374 		}
375 	else if (yt < 0) {
376 		Xt = abs(xt);
377 		Yt = abs(yt);
378 		qt = 0;
379 	} else {
380 		Xt = abs(yt);
381 		Yt = abs(xt);
382 		qt = 1;
383 	}
384 
385 
386 	/* step 4: calculate number of quadrant crossings */
387 	if (((4 + qt - qs)
388 	     % 4 == 0)
389 	     && (Xt <= Xs)
390 	     && (Yt >= Ys)
391 	    )
392 		Q = 3;
393 	else
394 		Q = (4 + qt - qs) % 4 - 1;
395 	/* step 5: calculate initial decision difference */
396 	delta = sqr(Xs + 1)
397 	 + sqr(Ys - 1)
398 	-sqr(xs)
399 	-sqr(ys);
400 	/* here begins the work of drawing
401    we hope it ends here too */
402 	while ((Q >= 0)
403 	     || ((Q > -2)
404 	     && ((Xt > Xc)
405 	     && (Yt < Yc)
406 	    )
407 	    )
408 	    ) {
409 		if (dotcount++ % DX == 0)
410 			putdot((int)xc, (int)yc);
411 		if (Yc < 0.5) {
412 			/* reinitialize */
413 			Xs = Xc = 0;
414 			Ys = Yc = sqrt((float)(sqr(xs) + sqr(ys)));
415 			delta = sqr(Xs + 1) + sqr(Ys - 1) - sqr(xs) - sqr(ys);
416 			Q--;
417 			M1x = M3x;
418 			M1y = M3y;
419 			 {
420 				int	T;
421 				T = M2y;
422 				M2y = M2x;
423 				M2x = -T;
424 				T = M3y;
425 				M3y = M3x;
426 				M3x = -T;
427 			}
428 		} else {
429 			if (delta <= 0)
430 				if (2 * delta + 2 * Yc - 1 <= 0)
431 					move = 1;
432 				else
433 					move = 2;
434 			else if (2 * delta - 2 * Xc - 1 <= 0)
435 				move = 2;
436 			else
437 				move = 3;
438 			switch (move) {
439 			case 1:
440 				Xc++;
441 				delta += 2 * Xc + 1;
442 				xc += M1x * xstep;
443 				yc += M1y * ystep;
444 				break;
445 			case 2:
446 				Xc++;
447 				Yc--;
448 				delta += 2 * Xc - 2 * Yc + 2;
449 				xc += M2x * xstep;
450 				yc += M2y * ystep;
451 				break;
452 			case 3:
453 				Yc--;
454 				delta -= 2 * Yc + 1;
455 				xc += M3x * xstep;
456 				yc += M3y * ystep;
457 				break;
458 			}
459 		}
460 	}
461 
462 
463 	setsize(osize);
464 	drawline((int)xc-ox1,(int)yc-oy1,".");
465 }
466 
467 putdot(x, y)
468 {
469 	arcmove(x, y);
470 	put1(drawdot);
471 }
472