/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 1989 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ #pragma ident "%Z%%M% %I% %E% SMI" /* * University Copyright- Copyright (c) 1982, 1986, 1988 * The Regents of the University of California * All Rights Reserved * * University Acknowledgment- Portions of this document are derived from * software developed by the University of California, Berkeley, and its * contributors. */ #include #include #define PI 3.141592654 #define hmot(n) hpos += n #define hgoto(n) hpos = n #define vmot(n) vgoto(vpos + n) extern int hpos; extern int vpos; extern int size; extern short *pstab; extern int DX; /* step size in x */ extern int DY; /* step size in y */ extern int drawdot; /* character to use when drawing */ extern int drawsize; /* shrink point size by this facter */ int maxdots = 32000; /* maximum number of dots in an object */ #define sgn(n) ((n > 0) ? 1 : ((n < 0) ? -1 : 0)) #define abs(n) ((n) >= 0 ? (n) : -(n)) #define max(x,y) ((x) > (y) ? (x) : (y)) #define min(x,y) ((x) < (y) ? (x) : (y)) #define arcmove(x,y) { hgoto(x); vmot(-vpos-(y)); } drawline(dx, dy, s) /* draw line from here to dx, dy using s */ int dx, dy; char *s; { int xd, yd; float val, slope; int i, numdots; int dirmot, perp; int motincr, perpincr; int ohpos, ovpos, osize, ofont; float incrway; int itemp; /*temp. storage for value returned byint function sgn*/ osize = size; setsize(t_size(pstab[osize-1] / drawsize)); ohpos = hpos; ovpos = vpos; xd = dx / DX; yd = dy / DX; if (xd == 0) { numdots = abs (yd); numdots = min(numdots, maxdots); motincr = DX * sgn (yd); for (i = 0; i < numdots; i++) { vmot(motincr); put1(drawdot); } vgoto(ovpos + dy); setsize(osize); return; } if (yd == 0) { numdots = abs (xd); motincr = DX * sgn (xd); for (i = 0; i < numdots; i++) { hmot(motincr); put1(drawdot); } hgoto(ohpos + dx); setsize(osize); return; } if (abs (xd) > abs (yd)) { val = slope = (float) xd/yd; numdots = abs (xd); numdots = min(numdots, maxdots); dirmot = 'h'; perp = 'v'; motincr = DX * sgn (xd); perpincr = DX * sgn (yd); } else { val = slope = (float) yd/xd; numdots = abs (yd); numdots = min(numdots, maxdots); dirmot = 'v'; perp = 'h'; motincr = DX * sgn (yd); perpincr = DX * sgn (xd); } incrway = itemp = sgn ((int) slope); for (i = 0; i < numdots; i++) { val -= incrway; if (dirmot == 'h') hmot(motincr); else vmot(motincr); if (val * slope < 0) { if (perp == 'h') hmot(perpincr); else vmot(perpincr); val += slope; } put1(drawdot); } hgoto(ohpos + dx); vgoto(ovpos + dy); setsize(osize); } drawwig(s) /* draw wiggly line */ char *s; { int x[50], y[50], xp, yp, pxp, pyp; float t1, t2, t3, w; int i, j, numdots, N; int osize, ofont; char temp[50], *p, *getstr(); osize = size; setsize(t_size(pstab[osize-1] / drawsize)); p = s; for (N = 2; (p=getstr(p,temp)) != NULL && N < sizeof(x)/sizeof(x[0]); N++) { x[N] = atoi(temp); p = getstr(p, temp); y[N] = atoi(temp); } x[0] = x[1] = hpos; y[0] = y[1] = vpos; for (i = 1; i < N; i++) { x[i+1] += x[i]; y[i+1] += y[i]; } x[N] = x[N-1]; y[N] = y[N-1]; pxp = pyp = -9999; for (i = 0; i < N-1; i++) { /* interval */ numdots = (dist(x[i],y[i], x[i+1],y[i+1]) + dist(x[i+1],y[i+1], x[i+2],y[i+2])) / 2; numdots /= DX; numdots = min(numdots, maxdots); for (j = 0; j < numdots; j++) { /* points within */ w = (float) j / numdots; t1 = 0.5 * w * w; w = w - 0.5; t2 = 0.75 - w * w; w = w - 0.5; t3 = 0.5 * w * w; xp = t1 * x[i+2] + t2 * x[i+1] + t3 * x[i] + 0.5; yp = t1 * y[i+2] + t2 * y[i+1] + t3 * y[i] + 0.5; if (xp != pxp || yp != pyp) { hgoto(xp); vgoto(yp); put1(drawdot); pxp = xp; pyp = yp; } } } setsize(osize); } char *getstr(p, temp) /* copy next non-blank string from p to temp, update p */ char *p, *temp; { while (*p == ' ' || *p == '\t' || *p == '\n') p++; if (*p == '\0') { temp[0] = 0; return(NULL); } while (*p != ' ' && *p != '\t' && *p != '\n' && *p != '\0') *temp++ = *p++; *temp = '\0'; return(p); } drawcirc(d) { int xc, yc; xc = hpos; yc = vpos; conicarc(hpos + d/2, -vpos, hpos, -vpos, hpos, -vpos, d/2, d/2); hgoto(xc + d); /* circle goes to right side */ vgoto(yc); } dist(x1, y1, x2, y2) /* integer distance from x1,y1 to x2,y2 */ { float dx, dy; dx = x2 - x1; dy = y2 - y1; return sqrt(dx*dx + dy*dy) + 0.5; } drawarc(dx1, dy1, dx2, dy2) { int x0, y0, x2, y2, r; x0 = hpos + dx1; /* center */ y0 = vpos + dy1; x2 = x0 + dx2; /* "to" */ y2 = y0 + dy2; r = sqrt((float) dx1 * dx1 + (float) dy1 * dy1) + 0.5; conicarc(x0, -y0, hpos, -vpos, x2, -y2, r, r); } drawellip(a, b) { int xc, yc; xc = hpos; yc = vpos; conicarc(hpos + a/2, -vpos, hpos, -vpos, hpos, -vpos, a/2, b/2); hgoto(xc + a); vgoto(yc); } #define sqr(x) (long int)(x)*(x) conicarc(x, y, x0, y0, x1, y1, a, b) { /* based on Bresenham, CACM, Feb 77, pp 102-3 */ /* by Chris Van Wyk */ /* capitalized vars are an internal reference frame */ long dotcount = 0; int osize, ofont; int xs, ys, xt, yt, Xs, Ys, qs, Xt, Yt, qt, M1x, M1y, M2x, M2y, M3x, M3y, Q, move, Xc, Yc; int ox1, oy1; long delta; float xc, yc; float radius, slope; float xstep, ystep; osize = size; setsize(t_size(pstab[osize-1] / drawsize)); ox1 = x1; oy1 = y1; if (a != b) /* an arc of an ellipse; internally, will still think of circle */ if (a > b) { xstep = (float)a / b; ystep = 1; radius = b; } else { xstep = 1; ystep = (float)b / a; radius = a; } else { /* a circular arc; radius is computed from center and first point */ xstep = ystep = 1; radius = sqrt((float)(sqr(x0 - x) + sqr(y0 - y))); } xc = x0; yc = y0; /* now, use start and end point locations to figure out the angle at which start and end happen; use these angles with known radius to figure out where start and end should be */ slope = atan2((double)(y0 - y), (double)(x0 - x) ); if (slope == 0.0 && x0 < x) slope = 3.14159265; x0 = x + radius * cos(slope) + 0.5; y0 = y + radius * sin(slope) + 0.5; slope = atan2((double)(y1 - y), (double)(x1 - x)); if (slope == 0.0 && x1 < x) slope = 3.14159265; x1 = x + radius * cos(slope) + 0.5; y1 = y + radius * sin(slope) + 0.5; /* step 2: translate to zero-centered circle */ xs = x0 - x; ys = y0 - y; xt = x1 - x; yt = y1 - y; /* step 3: normalize to first quadrant */ if (xs < 0) if (ys < 0) { Xs = abs(ys); Ys = abs(xs); qs = 3; M1x = 0; M1y = -1; M2x = 1; M2y = -1; M3x = 1; M3y = 0; } else { Xs = abs(xs); Ys = abs(ys); qs = 2; M1x = -1; M1y = 0; M2x = -1; M2y = -1; M3x = 0; M3y = -1; } else if (ys < 0) { Xs = abs(xs); Ys = abs(ys); qs = 0; M1x = 1; M1y = 0; M2x = 1; M2y = 1; M3x = 0; M3y = 1; } else { Xs = abs(ys); Ys = abs(xs); qs = 1; M1x = 0; M1y = 1; M2x = -1; M2y = 1; M3x = -1; M3y = 0; } Xc = Xs; Yc = Ys; if (xt < 0) if (yt < 0) { Xt = abs(yt); Yt = abs(xt); qt = 3; } else { Xt = abs(xt); Yt = abs(yt); qt = 2; } else if (yt < 0) { Xt = abs(xt); Yt = abs(yt); qt = 0; } else { Xt = abs(yt); Yt = abs(xt); qt = 1; } /* step 4: calculate number of quadrant crossings */ if (((4 + qt - qs) % 4 == 0) && (Xt <= Xs) && (Yt >= Ys) ) Q = 3; else Q = (4 + qt - qs) % 4 - 1; /* step 5: calculate initial decision difference */ delta = sqr(Xs + 1) + sqr(Ys - 1) -sqr(xs) -sqr(ys); /* here begins the work of drawing we hope it ends here too */ while ((Q >= 0) || ((Q > -2) && ((Xt > Xc) && (Yt < Yc) ) ) ) { if (dotcount++ % DX == 0) putdot((int)xc, (int)yc); if (Yc < 0.5) { /* reinitialize */ Xs = Xc = 0; Ys = Yc = sqrt((float)(sqr(xs) + sqr(ys))); delta = sqr(Xs + 1) + sqr(Ys - 1) - sqr(xs) - sqr(ys); Q--; M1x = M3x; M1y = M3y; { int T; T = M2y; M2y = M2x; M2x = -T; T = M3y; M3y = M3x; M3x = -T; } } else { if (delta <= 0) if (2 * delta + 2 * Yc - 1 <= 0) move = 1; else move = 2; else if (2 * delta - 2 * Xc - 1 <= 0) move = 2; else move = 3; switch (move) { case 1: Xc++; delta += 2 * Xc + 1; xc += M1x * xstep; yc += M1y * ystep; break; case 2: Xc++; Yc--; delta += 2 * Xc - 2 * Yc + 2; xc += M2x * xstep; yc += M2y * ystep; break; case 3: Yc--; delta -= 2 * Yc + 1; xc += M3x * xstep; yc += M3y * ystep; break; } } } setsize(osize); drawline((int)xc-ox1,(int)yc-oy1,"."); } putdot(x, y) { arcmove(x, y); put1(drawdot); }