1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <mdb/mdb_param.h> 30 #include <mdb/mdb_modapi.h> 31 #include <mdb/mdb_ks.h> 32 #include <mdb/mdb_ctf.h> 33 34 #include <sys/types.h> 35 #include <sys/thread.h> 36 #include <sys/session.h> 37 #include <sys/user.h> 38 #include <sys/proc.h> 39 #include <sys/var.h> 40 #include <sys/t_lock.h> 41 #include <sys/callo.h> 42 #include <sys/priocntl.h> 43 #include <sys/class.h> 44 #include <sys/regset.h> 45 #include <sys/stack.h> 46 #include <sys/cpuvar.h> 47 #include <sys/vnode.h> 48 #include <sys/vfs.h> 49 #include <sys/flock_impl.h> 50 #include <sys/kmem_impl.h> 51 #include <sys/vmem_impl.h> 52 #include <sys/kstat.h> 53 #include <vm/seg_vn.h> 54 #include <vm/anon.h> 55 #include <vm/as.h> 56 #include <vm/seg_map.h> 57 #include <sys/dditypes.h> 58 #include <sys/ddi_impldefs.h> 59 #include <sys/sysmacros.h> 60 #include <sys/sysconf.h> 61 #include <sys/task.h> 62 #include <sys/project.h> 63 #include <sys/taskq.h> 64 #include <sys/taskq_impl.h> 65 #include <sys/errorq_impl.h> 66 #include <sys/cred_impl.h> 67 #include <sys/zone.h> 68 #include <sys/panic.h> 69 #include <regex.h> 70 #include <sys/port_impl.h> 71 72 #include "contract.h" 73 #include "cpupart_mdb.h" 74 #include "devinfo.h" 75 #include "leaky.h" 76 #include "lgrp.h" 77 #include "list.h" 78 #include "log.h" 79 #include "kgrep.h" 80 #include "kmem.h" 81 #include "bio.h" 82 #include "streams.h" 83 #include "cyclic.h" 84 #include "findstack.h" 85 #include "ndievents.h" 86 #include "mmd.h" 87 #include "net.h" 88 #include "nvpair.h" 89 #include "ctxop.h" 90 #include "tsd.h" 91 #include "thread.h" 92 #include "memory.h" 93 #include "sobj.h" 94 #include "sysevent.h" 95 #include "rctl.h" 96 #include "typegraph.h" 97 #include "ldi.h" 98 #include "vfs.h" 99 #include "zone.h" 100 #include "modhash.h" 101 102 /* 103 * Surely this is defined somewhere... 104 */ 105 #define NINTR 16 106 107 #ifndef STACK_BIAS 108 #define STACK_BIAS 0 109 #endif 110 111 static char 112 pstat2ch(uchar_t state) 113 { 114 switch (state) { 115 case SSLEEP: return ('S'); 116 case SRUN: return ('R'); 117 case SZOMB: return ('Z'); 118 case SIDL: return ('I'); 119 case SONPROC: return ('O'); 120 case SSTOP: return ('T'); 121 default: return ('?'); 122 } 123 } 124 125 #define PS_PRTTHREADS 0x1 126 #define PS_PRTLWPS 0x2 127 #define PS_PSARGS 0x4 128 #define PS_TASKS 0x8 129 #define PS_PROJECTS 0x10 130 #define PS_ZONES 0x20 131 132 static int 133 ps_threadprint(uintptr_t addr, const void *data, void *private) 134 { 135 const kthread_t *t = (const kthread_t *)data; 136 uint_t prt_flags = *((uint_t *)private); 137 138 static const mdb_bitmask_t t_state_bits[] = { 139 { "TS_FREE", UINT_MAX, TS_FREE }, 140 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 141 { "TS_RUN", TS_RUN, TS_RUN }, 142 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 143 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 144 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 145 { NULL, 0, 0 } 146 }; 147 148 if (prt_flags & PS_PRTTHREADS) 149 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 150 151 if (prt_flags & PS_PRTLWPS) 152 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 153 154 return (WALK_NEXT); 155 } 156 157 int 158 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 159 { 160 uint_t prt_flags = 0; 161 proc_t pr; 162 struct pid pid, pgid, sid; 163 sess_t session; 164 cred_t cred; 165 task_t tk; 166 kproject_t pj; 167 zone_t zn; 168 169 if (!(flags & DCMD_ADDRSPEC)) { 170 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 171 mdb_warn("can't walk 'proc'"); 172 return (DCMD_ERR); 173 } 174 return (DCMD_OK); 175 } 176 177 if (mdb_getopts(argc, argv, 178 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 179 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 180 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 181 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 182 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 183 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 184 return (DCMD_USAGE); 185 186 if (DCMD_HDRSPEC(flags)) { 187 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 188 "S", "PID", "PPID", "PGID", "SID"); 189 if (prt_flags & PS_TASKS) 190 mdb_printf("%5s ", "TASK"); 191 if (prt_flags & PS_PROJECTS) 192 mdb_printf("%5s ", "PROJ"); 193 if (prt_flags & PS_ZONES) 194 mdb_printf("%5s ", "ZONE"); 195 mdb_printf("%6s %10s %?s %s%</u>\n", 196 "UID", "FLAGS", "ADDR", "NAME"); 197 } 198 199 mdb_vread(&pr, sizeof (pr), addr); 200 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 201 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 202 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 203 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 204 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 205 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 206 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 207 if (prt_flags & PS_PROJECTS) 208 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 209 if (prt_flags & PS_ZONES) 210 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 211 212 mdb_printf("%c %6d %6d %6d %6d ", 213 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 214 sid.pid_id); 215 if (prt_flags & PS_TASKS) 216 mdb_printf("%5d ", tk.tk_tkid); 217 if (prt_flags & PS_PROJECTS) 218 mdb_printf("%5d ", pj.kpj_id); 219 if (prt_flags & PS_ZONES) 220 mdb_printf("%5d ", zn.zone_id); 221 mdb_printf("%6d 0x%08x %0?p %s\n", 222 cred.cr_uid, pr.p_flag, addr, 223 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 224 225 if (prt_flags & ~PS_PSARGS) 226 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 227 228 return (DCMD_OK); 229 } 230 231 #define PG_NEWEST 0x0001 232 #define PG_OLDEST 0x0002 233 #define PG_PIPE_OUT 0x0004 234 235 typedef struct pgrep_data { 236 uint_t pg_flags; 237 uint_t pg_psflags; 238 uintptr_t pg_xaddr; 239 hrtime_t pg_xstart; 240 const char *pg_pat; 241 #ifndef _KMDB 242 regex_t pg_reg; 243 #endif 244 } pgrep_data_t; 245 246 /*ARGSUSED*/ 247 static int 248 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 249 { 250 const proc_t *prp = pdata; 251 pgrep_data_t *pgp = data; 252 #ifndef _KMDB 253 regmatch_t pmatch; 254 #endif 255 256 /* 257 * kmdb doesn't have access to the reg* functions, so we fall back 258 * to strstr. 259 */ 260 #ifdef _KMDB 261 if (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL) 262 return (WALK_NEXT); 263 #else 264 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 265 return (WALK_NEXT); 266 #endif 267 268 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 269 hrtime_t start; 270 271 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 272 prp->p_user.u_start.tv_nsec; 273 274 if (pgp->pg_flags & PG_NEWEST) { 275 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 276 pgp->pg_xaddr = addr; 277 pgp->pg_xstart = start; 278 } 279 } else { 280 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 281 pgp->pg_xaddr = addr; 282 pgp->pg_xstart = start; 283 } 284 } 285 286 } else if (pgp->pg_flags & PG_PIPE_OUT) { 287 mdb_printf("%p\n", addr); 288 289 } else { 290 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 291 mdb_warn("can't invoke 'ps'"); 292 return (WALK_DONE); 293 } 294 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 295 } 296 297 return (WALK_NEXT); 298 } 299 300 /*ARGSUSED*/ 301 int 302 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 303 { 304 pgrep_data_t pg; 305 int i; 306 #ifndef _KMDB 307 int err; 308 #endif 309 310 if (flags & DCMD_ADDRSPEC) 311 return (DCMD_USAGE); 312 313 pg.pg_flags = 0; 314 pg.pg_xaddr = 0; 315 316 i = mdb_getopts(argc, argv, 317 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 318 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 319 NULL); 320 321 argc -= i; 322 argv += i; 323 324 if (argc != 1) 325 return (DCMD_USAGE); 326 327 /* 328 * -n and -o are mutually exclusive. 329 */ 330 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 331 return (DCMD_USAGE); 332 333 if (argv->a_type != MDB_TYPE_STRING) 334 return (DCMD_USAGE); 335 336 if (flags & DCMD_PIPE_OUT) 337 pg.pg_flags |= PG_PIPE_OUT; 338 339 pg.pg_pat = argv->a_un.a_str; 340 if (DCMD_HDRSPEC(flags)) 341 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 342 else 343 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 344 345 #ifndef _KMDB 346 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 347 size_t nbytes; 348 char *buf; 349 350 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 351 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 352 (void) regerror(err, &pg.pg_reg, buf, nbytes); 353 mdb_warn("%s\n", buf); 354 355 return (DCMD_ERR); 356 } 357 #endif 358 359 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 360 mdb_warn("can't walk 'proc'"); 361 return (DCMD_ERR); 362 } 363 364 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 365 if (pg.pg_flags & PG_PIPE_OUT) { 366 mdb_printf("%p\n", pg.pg_xaddr); 367 } else { 368 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 369 0, NULL) != 0) { 370 mdb_warn("can't invoke 'ps'"); 371 return (DCMD_ERR); 372 } 373 } 374 } 375 376 return (DCMD_OK); 377 } 378 379 int 380 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 381 { 382 task_t tk; 383 kproject_t pj; 384 385 if (!(flags & DCMD_ADDRSPEC)) { 386 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 387 mdb_warn("can't walk task_cache"); 388 return (DCMD_ERR); 389 } 390 return (DCMD_OK); 391 } 392 if (DCMD_HDRSPEC(flags)) { 393 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 394 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 395 } 396 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 397 mdb_warn("can't read task_t structure at %p", addr); 398 return (DCMD_ERR); 399 } 400 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 401 mdb_warn("can't read project_t structure at %p", addr); 402 return (DCMD_ERR); 403 } 404 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 405 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 406 tk.tk_flags); 407 return (DCMD_OK); 408 } 409 410 int 411 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 412 { 413 kproject_t pj; 414 415 if (!(flags & DCMD_ADDRSPEC)) { 416 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 417 mdb_warn("can't walk projects"); 418 return (DCMD_ERR); 419 } 420 return (DCMD_OK); 421 } 422 if (DCMD_HDRSPEC(flags)) { 423 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 424 "ADDR", "PROJID", "ZONEID", "REFCNT"); 425 } 426 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 427 mdb_warn("can't read kproject_t structure at %p", addr); 428 return (DCMD_ERR); 429 } 430 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 431 pj.kpj_count); 432 return (DCMD_OK); 433 } 434 435 /*ARGSUSED*/ 436 int 437 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 438 { 439 callout_table_t *co_ktable[CALLOUT_TABLES]; 440 int co_kfanout; 441 callout_table_t co_table; 442 callout_t co_callout; 443 callout_t *co_ptr; 444 int co_id; 445 clock_t lbolt; 446 int i, j, k; 447 const char *lbolt_sym; 448 449 if ((flags & DCMD_ADDRSPEC) || argc != 0) 450 return (DCMD_USAGE); 451 452 if (mdb_prop_postmortem) 453 lbolt_sym = "panic_lbolt"; 454 else 455 lbolt_sym = "lbolt"; 456 457 if (mdb_readvar(&lbolt, lbolt_sym) == -1) { 458 mdb_warn("failed to read '%s'", lbolt_sym); 459 return (DCMD_ERR); 460 } 461 462 if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) { 463 mdb_warn("failed to read callout_fanout"); 464 return (DCMD_ERR); 465 } 466 467 if (mdb_readvar(&co_ktable, "callout_table") == -1) { 468 mdb_warn("failed to read callout_table"); 469 return (DCMD_ERR); 470 } 471 472 mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n", 473 "FUNCTION", "ARGUMENT", "ID", "TIME"); 474 475 for (i = 0; i < CALLOUT_NTYPES; i++) { 476 for (j = 0; j < co_kfanout; j++) { 477 478 co_id = CALLOUT_TABLE(i, j); 479 480 if (mdb_vread(&co_table, sizeof (co_table), 481 (uintptr_t)co_ktable[co_id]) == -1) { 482 mdb_warn("failed to read table at %p", 483 (uintptr_t)co_ktable[co_id]); 484 continue; 485 } 486 487 for (k = 0; k < CALLOUT_BUCKETS; k++) { 488 co_ptr = co_table.ct_idhash[k]; 489 490 while (co_ptr != NULL) { 491 mdb_vread(&co_callout, 492 sizeof (co_callout), 493 (uintptr_t)co_ptr); 494 495 mdb_printf("%-24a %0?p %0?lx %?lx " 496 "(T%+ld)\n", co_callout.c_func, 497 co_callout.c_arg, co_callout.c_xid, 498 co_callout.c_runtime, 499 co_callout.c_runtime - lbolt); 500 501 co_ptr = co_callout.c_idnext; 502 } 503 } 504 } 505 } 506 507 return (DCMD_OK); 508 } 509 510 /*ARGSUSED*/ 511 int 512 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 513 { 514 long num_classes, i; 515 sclass_t *class_tbl; 516 GElf_Sym g_sclass; 517 char class_name[PC_CLNMSZ]; 518 size_t tbl_size; 519 520 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 521 mdb_warn("failed to find symbol sclass\n"); 522 return (DCMD_ERR); 523 } 524 525 tbl_size = (size_t)g_sclass.st_size; 526 num_classes = tbl_size / (sizeof (sclass_t)); 527 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 528 529 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 530 mdb_warn("failed to read sclass"); 531 return (DCMD_ERR); 532 } 533 534 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 535 "INIT FCN", "CLASS FCN"); 536 537 for (i = 0; i < num_classes; i++) { 538 if (mdb_vread(class_name, sizeof (class_name), 539 (uintptr_t)class_tbl[i].cl_name) == -1) 540 (void) strcpy(class_name, "???"); 541 542 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 543 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 544 } 545 546 return (DCMD_OK); 547 } 548 549 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 550 551 int 552 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 553 { 554 uintptr_t rootdir; 555 vnode_t vn; 556 char buf[MAXPATHLEN]; 557 558 uint_t opt_F = FALSE; 559 560 if (mdb_getopts(argc, argv, 561 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 562 return (DCMD_USAGE); 563 564 if (!(flags & DCMD_ADDRSPEC)) { 565 mdb_warn("expected explicit vnode_t address before ::\n"); 566 return (DCMD_USAGE); 567 } 568 569 if (mdb_readvar(&rootdir, "rootdir") == -1) { 570 mdb_warn("failed to read rootdir"); 571 return (DCMD_ERR); 572 } 573 574 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 575 return (DCMD_ERR); 576 577 if (*buf == '\0') { 578 mdb_printf("??\n"); 579 return (DCMD_OK); 580 } 581 582 mdb_printf("%s", buf); 583 if (opt_F && buf[strlen(buf)-1] != '/' && 584 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 585 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 586 mdb_printf("\n"); 587 588 return (DCMD_OK); 589 } 590 591 int 592 ld_walk_init(mdb_walk_state_t *wsp) 593 { 594 wsp->walk_data = (void *)wsp->walk_addr; 595 return (WALK_NEXT); 596 } 597 598 int 599 ld_walk_step(mdb_walk_state_t *wsp) 600 { 601 int status; 602 lock_descriptor_t ld; 603 604 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 605 mdb_warn("couldn't read lock_descriptor_t at %p\n", 606 wsp->walk_addr); 607 return (WALK_ERR); 608 } 609 610 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 611 if (status == WALK_ERR) 612 return (WALK_ERR); 613 614 wsp->walk_addr = (uintptr_t)ld.l_next; 615 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 616 return (WALK_DONE); 617 618 return (status); 619 } 620 621 int 622 lg_walk_init(mdb_walk_state_t *wsp) 623 { 624 GElf_Sym sym; 625 626 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 627 mdb_warn("failed to find symbol 'lock_graph'\n"); 628 return (WALK_ERR); 629 } 630 631 wsp->walk_addr = (uintptr_t)sym.st_value; 632 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 633 634 return (WALK_NEXT); 635 } 636 637 typedef struct lg_walk_data { 638 uintptr_t startaddr; 639 mdb_walk_cb_t callback; 640 void *data; 641 } lg_walk_data_t; 642 643 /* 644 * We can't use ::walk lock_descriptor directly, because the head of each graph 645 * is really a dummy lock. Rather than trying to dynamically determine if this 646 * is a dummy node or not, we just filter out the initial element of the 647 * list. 648 */ 649 static int 650 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 651 { 652 lg_walk_data_t *lw = priv; 653 654 if (addr != lw->startaddr) 655 return (lw->callback(addr, data, lw->data)); 656 657 return (WALK_NEXT); 658 } 659 660 int 661 lg_walk_step(mdb_walk_state_t *wsp) 662 { 663 graph_t *graph; 664 lg_walk_data_t lw; 665 666 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 667 return (WALK_DONE); 668 669 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 670 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 671 return (WALK_ERR); 672 } 673 674 wsp->walk_addr += sizeof (graph); 675 676 if (graph == NULL) 677 return (WALK_NEXT); 678 679 lw.callback = wsp->walk_callback; 680 lw.data = wsp->walk_cbdata; 681 682 lw.startaddr = (uintptr_t)&(graph->active_locks); 683 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 684 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 685 return (WALK_ERR); 686 } 687 688 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 689 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 690 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 691 return (WALK_ERR); 692 } 693 694 return (WALK_NEXT); 695 } 696 697 /* 698 * The space available for the path corresponding to the locked vnode depends 699 * on whether we are printing 32- or 64-bit addresses. 700 */ 701 #ifdef _LP64 702 #define LM_VNPATHLEN 20 703 #else 704 #define LM_VNPATHLEN 30 705 #endif 706 707 /*ARGSUSED*/ 708 static int 709 lminfo_cb(uintptr_t addr, const void *data, void *priv) 710 { 711 const lock_descriptor_t *ld = data; 712 char buf[LM_VNPATHLEN]; 713 proc_t p; 714 715 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 716 addr, ld->l_type == F_RDLCK ? "RD" : 717 ld->l_type == F_WRLCK ? "WR" : "??", 718 ld->l_state, ld->l_flock.l_pid, 719 ld->l_flock.l_pid == 0 ? "<kernel>" : 720 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 721 "<defunct>" : p.p_user.u_comm, 722 ld->l_vnode); 723 724 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 725 sizeof (buf)); 726 mdb_printf("%s\n", buf); 727 728 return (WALK_NEXT); 729 } 730 731 /*ARGSUSED*/ 732 int 733 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 734 { 735 if (DCMD_HDRSPEC(flags)) 736 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 737 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 738 739 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 740 } 741 742 /*ARGSUSED*/ 743 int 744 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 745 { 746 struct seg s; 747 748 if (argc != 0) 749 return (DCMD_USAGE); 750 751 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) { 752 mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n", 753 "SEG", "BASE", "SIZE", "DATA", "OPS"); 754 } 755 756 if (mdb_vread(&s, sizeof (s), addr) == -1) { 757 mdb_warn("failed to read seg at %p", addr); 758 return (DCMD_ERR); 759 } 760 761 mdb_printf("%?p %?p %?lx %?p %a\n", 762 addr, s.s_base, s.s_size, s.s_data, s.s_ops); 763 764 return (DCMD_OK); 765 } 766 767 /*ARGSUSED*/ 768 static int 769 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres) 770 { 771 uintptr_t pp = 772 mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off); 773 774 if (pp != NULL) 775 (*nres)++; 776 777 return (WALK_NEXT); 778 } 779 780 static int 781 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 782 { 783 784 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 785 786 if (segvn == (uintptr_t)seg->s_ops) { 787 struct segvn_data svn; 788 int nres = 0; 789 790 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 791 792 if (svn.amp == NULL) { 793 mdb_printf(" %8s", ""); 794 goto drive_on; 795 } 796 797 /* 798 * We've got an amp for this segment; walk through 799 * the amp, and determine mappings. 800 */ 801 if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon, 802 &nres, (uintptr_t)svn.amp) == -1) 803 mdb_warn("failed to walk anon (amp=%p)", svn.amp); 804 805 mdb_printf(" %7dk", (nres * PAGESIZE) / 1024); 806 drive_on: 807 808 if (svn.vp != NULL) { 809 char buf[29]; 810 811 mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf)); 812 mdb_printf(" %s", buf); 813 } else 814 mdb_printf(" [ anon ]"); 815 } 816 817 mdb_printf("\n"); 818 return (WALK_NEXT); 819 } 820 821 static int 822 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 823 { 824 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 825 826 if (segvn == (uintptr_t)seg->s_ops) { 827 struct segvn_data svn; 828 829 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 830 831 if (svn.vp != NULL) { 832 mdb_printf(" %0?p", svn.vp); 833 } else { 834 mdb_printf(" [ anon ]"); 835 } 836 } 837 838 mdb_printf("\n"); 839 return (WALK_NEXT); 840 } 841 842 /*ARGSUSED*/ 843 int 844 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 845 { 846 uintptr_t segvn; 847 proc_t proc; 848 uint_t quick = FALSE; 849 mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg; 850 851 GElf_Sym sym; 852 853 if (!(flags & DCMD_ADDRSPEC)) 854 return (DCMD_USAGE); 855 856 if (mdb_getopts(argc, argv, 857 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc) 858 return (DCMD_USAGE); 859 860 if (mdb_vread(&proc, sizeof (proc), addr) == -1) { 861 mdb_warn("failed to read proc at %p", addr); 862 return (DCMD_ERR); 863 } 864 865 if (mdb_lookup_by_name("segvn_ops", &sym) == 0) 866 segvn = (uintptr_t)sym.st_value; 867 else 868 segvn = NULL; 869 870 mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE"); 871 872 if (quick) { 873 mdb_printf("VNODE\n"); 874 cb = (mdb_walk_cb_t)pmap_walk_seg_quick; 875 } else { 876 mdb_printf("%8s %s\n", "RES", "PATH"); 877 } 878 879 if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) { 880 mdb_warn("failed to walk segments of as %p", proc.p_as); 881 return (DCMD_ERR); 882 } 883 884 return (DCMD_OK); 885 } 886 887 typedef struct anon_walk_data { 888 uintptr_t *aw_levone; 889 uintptr_t *aw_levtwo; 890 int aw_nlevone; 891 int aw_levone_ndx; 892 int aw_levtwo_ndx; 893 struct anon_map aw_amp; 894 struct anon_hdr aw_ahp; 895 } anon_walk_data_t; 896 897 int 898 anon_walk_init(mdb_walk_state_t *wsp) 899 { 900 anon_walk_data_t *aw; 901 902 if (wsp->walk_addr == NULL) { 903 mdb_warn("anon walk doesn't support global walks\n"); 904 return (WALK_ERR); 905 } 906 907 aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP); 908 909 if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) { 910 mdb_warn("failed to read anon map at %p", wsp->walk_addr); 911 mdb_free(aw, sizeof (anon_walk_data_t)); 912 return (WALK_ERR); 913 } 914 915 if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp), 916 (uintptr_t)(aw->aw_amp.ahp)) == -1) { 917 mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp); 918 mdb_free(aw, sizeof (anon_walk_data_t)); 919 return (WALK_ERR); 920 } 921 922 if (aw->aw_ahp.size <= ANON_CHUNK_SIZE || 923 (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) { 924 aw->aw_nlevone = aw->aw_ahp.size; 925 aw->aw_levtwo = NULL; 926 } else { 927 aw->aw_nlevone = 928 (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 929 aw->aw_levtwo = 930 mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP); 931 } 932 933 aw->aw_levone = 934 mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP); 935 936 aw->aw_levone_ndx = 0; 937 aw->aw_levtwo_ndx = 0; 938 939 mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t), 940 (uintptr_t)aw->aw_ahp.array_chunk); 941 942 if (aw->aw_levtwo != NULL) { 943 while (aw->aw_levone[aw->aw_levone_ndx] == NULL) { 944 aw->aw_levone_ndx++; 945 if (aw->aw_levone_ndx == aw->aw_nlevone) { 946 mdb_warn("corrupt anon; couldn't" 947 "find ptr to lev two map"); 948 goto out; 949 } 950 } 951 952 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), 953 aw->aw_levone[aw->aw_levone_ndx]); 954 } 955 956 out: 957 wsp->walk_data = aw; 958 return (0); 959 } 960 961 int 962 anon_walk_step(mdb_walk_state_t *wsp) 963 { 964 int status; 965 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 966 struct anon anon; 967 uintptr_t anonptr; 968 969 again: 970 /* 971 * Once we've walked through level one, we're done. 972 */ 973 if (aw->aw_levone_ndx == aw->aw_nlevone) 974 return (WALK_DONE); 975 976 if (aw->aw_levtwo == NULL) { 977 anonptr = aw->aw_levone[aw->aw_levone_ndx]; 978 aw->aw_levone_ndx++; 979 } else { 980 anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx]; 981 aw->aw_levtwo_ndx++; 982 983 if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) { 984 aw->aw_levtwo_ndx = 0; 985 986 do { 987 aw->aw_levone_ndx++; 988 989 if (aw->aw_levone_ndx == aw->aw_nlevone) 990 return (WALK_DONE); 991 } while (aw->aw_levone[aw->aw_levone_ndx] == NULL); 992 993 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * 994 sizeof (uintptr_t), 995 aw->aw_levone[aw->aw_levone_ndx]); 996 } 997 } 998 999 if (anonptr != NULL) { 1000 mdb_vread(&anon, sizeof (anon), anonptr); 1001 status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata); 1002 } else 1003 goto again; 1004 1005 return (status); 1006 } 1007 1008 void 1009 anon_walk_fini(mdb_walk_state_t *wsp) 1010 { 1011 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 1012 1013 if (aw->aw_levtwo != NULL) 1014 mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t)); 1015 1016 mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t)); 1017 mdb_free(aw, sizeof (anon_walk_data_t)); 1018 } 1019 1020 /*ARGSUSED*/ 1021 int 1022 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1023 { 1024 if ((uintptr_t)f->f_vnode == *target) { 1025 mdb_printf("file %p\n", addr); 1026 *target = NULL; 1027 } 1028 1029 return (WALK_NEXT); 1030 } 1031 1032 /*ARGSUSED*/ 1033 int 1034 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1035 { 1036 uintptr_t t = *target; 1037 1038 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1039 mdb_warn("couldn't file walk proc %p", addr); 1040 return (WALK_ERR); 1041 } 1042 1043 if (t == NULL) 1044 mdb_printf("%p\n", addr); 1045 1046 return (WALK_NEXT); 1047 } 1048 1049 /*ARGSUSED*/ 1050 int 1051 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1052 { 1053 uintptr_t target = addr; 1054 1055 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1056 return (DCMD_USAGE); 1057 1058 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1059 mdb_warn("can't proc walk"); 1060 return (DCMD_ERR); 1061 } 1062 1063 return (DCMD_OK); 1064 } 1065 1066 typedef struct datafmt { 1067 char *hdr1; 1068 char *hdr2; 1069 char *dashes; 1070 char *fmt; 1071 } datafmt_t; 1072 1073 static datafmt_t kmemfmt[] = { 1074 { "cache ", "name ", 1075 "-------------------------", "%-25s " }, 1076 { " buf", " size", "------", "%6u " }, 1077 { " buf", "in use", "------", "%6u " }, 1078 { " buf", " total", "------", "%6u " }, 1079 { " memory", " in use", "---------", "%9u " }, 1080 { " alloc", " succeed", "---------", "%9u " }, 1081 { "alloc", " fail", "-----", "%5u " }, 1082 { NULL, NULL, NULL, NULL } 1083 }; 1084 1085 static datafmt_t vmemfmt[] = { 1086 { "vmem ", "name ", 1087 "-------------------------", "%-*s " }, 1088 { " memory", " in use", "---------", "%9llu " }, 1089 { " memory", " total", "----------", "%10llu " }, 1090 { " memory", " import", "---------", "%9llu " }, 1091 { " alloc", " succeed", "---------", "%9llu " }, 1092 { "alloc", " fail", "-----", "%5llu " }, 1093 { NULL, NULL, NULL, NULL } 1094 }; 1095 1096 /*ARGSUSED*/ 1097 static int 1098 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1099 { 1100 if (ccp->cc_rounds > 0) 1101 *avail += ccp->cc_rounds; 1102 if (ccp->cc_prounds > 0) 1103 *avail += ccp->cc_prounds; 1104 1105 return (WALK_NEXT); 1106 } 1107 1108 /*ARGSUSED*/ 1109 static int 1110 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1111 { 1112 *alloc += ccp->cc_alloc; 1113 1114 return (WALK_NEXT); 1115 } 1116 1117 /*ARGSUSED*/ 1118 static int 1119 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1120 { 1121 *avail += sp->slab_chunks - sp->slab_refcnt; 1122 1123 return (WALK_NEXT); 1124 } 1125 1126 typedef struct kmastat_vmem { 1127 uintptr_t kv_addr; 1128 struct kmastat_vmem *kv_next; 1129 int kv_meminuse; 1130 int kv_alloc; 1131 int kv_fail; 1132 } kmastat_vmem_t; 1133 1134 static int 1135 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_vmem_t **kvp) 1136 { 1137 kmastat_vmem_t *kv; 1138 datafmt_t *dfp = kmemfmt; 1139 int magsize; 1140 1141 int avail, alloc, total; 1142 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1143 cp->cache_slabsize; 1144 1145 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1146 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1147 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1148 1149 magsize = kmem_get_magsize(cp); 1150 1151 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1152 avail = cp->cache_full.ml_total * magsize; 1153 total = cp->cache_buftotal; 1154 1155 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 1156 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 1157 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 1158 1159 for (kv = *kvp; kv != NULL; kv = kv->kv_next) { 1160 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 1161 goto out; 1162 } 1163 1164 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 1165 kv->kv_next = *kvp; 1166 kv->kv_addr = (uintptr_t)cp->cache_arena; 1167 *kvp = kv; 1168 out: 1169 kv->kv_meminuse += meminuse; 1170 kv->kv_alloc += alloc; 1171 kv->kv_fail += cp->cache_alloc_fail; 1172 1173 mdb_printf((dfp++)->fmt, cp->cache_name); 1174 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 1175 mdb_printf((dfp++)->fmt, total - avail); 1176 mdb_printf((dfp++)->fmt, total); 1177 mdb_printf((dfp++)->fmt, meminuse); 1178 mdb_printf((dfp++)->fmt, alloc); 1179 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 1180 mdb_printf("\n"); 1181 1182 return (WALK_NEXT); 1183 } 1184 1185 static int 1186 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_vmem_t *kv) 1187 { 1188 size_t len; 1189 1190 while (kv != NULL && kv->kv_addr != addr) 1191 kv = kv->kv_next; 1192 1193 if (kv == NULL || kv->kv_alloc == 0) 1194 return (WALK_NEXT); 1195 1196 len = MIN(17, strlen(v->vm_name)); 1197 1198 mdb_printf("Total [%s]%*s %6s %6s %6s %9u %9u %5u\n", v->vm_name, 1199 17 - len, "", "", "", "", 1200 kv->kv_meminuse, kv->kv_alloc, kv->kv_fail); 1201 1202 return (WALK_NEXT); 1203 } 1204 1205 /*ARGSUSED*/ 1206 static int 1207 kmastat_vmem(uintptr_t addr, const vmem_t *v, void *ignored) 1208 { 1209 datafmt_t *dfp = vmemfmt; 1210 const vmem_kstat_t *vkp = &v->vm_kstat; 1211 uintptr_t paddr; 1212 vmem_t parent; 1213 int ident = 0; 1214 1215 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 1216 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 1217 mdb_warn("couldn't trace %p's ancestry", addr); 1218 ident = 0; 1219 break; 1220 } 1221 paddr = (uintptr_t)parent.vm_source; 1222 } 1223 1224 mdb_printf("%*s", ident, ""); 1225 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 1226 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64); 1227 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64); 1228 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64); 1229 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 1230 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 1231 1232 mdb_printf("\n"); 1233 1234 return (WALK_NEXT); 1235 } 1236 1237 /*ARGSUSED*/ 1238 int 1239 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1240 { 1241 kmastat_vmem_t *kv = NULL; 1242 datafmt_t *dfp; 1243 1244 if (argc != 0) 1245 return (DCMD_USAGE); 1246 1247 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1248 mdb_printf("%s ", dfp->hdr1); 1249 mdb_printf("\n"); 1250 1251 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1252 mdb_printf("%s ", dfp->hdr2); 1253 mdb_printf("\n"); 1254 1255 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1256 mdb_printf("%s ", dfp->dashes); 1257 mdb_printf("\n"); 1258 1259 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &kv) == -1) { 1260 mdb_warn("can't walk 'kmem_cache'"); 1261 return (DCMD_ERR); 1262 } 1263 1264 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1265 mdb_printf("%s ", dfp->dashes); 1266 mdb_printf("\n"); 1267 1268 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, kv) == -1) { 1269 mdb_warn("can't walk 'vmem'"); 1270 return (DCMD_ERR); 1271 } 1272 1273 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1274 mdb_printf("%s ", dfp->dashes); 1275 mdb_printf("\n"); 1276 1277 mdb_printf("\n"); 1278 1279 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1280 mdb_printf("%s ", dfp->hdr1); 1281 mdb_printf("\n"); 1282 1283 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1284 mdb_printf("%s ", dfp->hdr2); 1285 mdb_printf("\n"); 1286 1287 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1288 mdb_printf("%s ", dfp->dashes); 1289 mdb_printf("\n"); 1290 1291 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, NULL) == -1) { 1292 mdb_warn("can't walk 'vmem'"); 1293 return (DCMD_ERR); 1294 } 1295 1296 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1297 mdb_printf("%s ", dfp->dashes); 1298 mdb_printf("\n"); 1299 return (DCMD_OK); 1300 } 1301 1302 /* 1303 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 1304 * up of a set of 'struct seg's. We could just scan each seg en masse, but 1305 * unfortunately, a few of the segs are both large and sparse, so we could 1306 * spend quite a bit of time scanning VAs which have no backing pages. 1307 * 1308 * So for the few very sparse segs, we skip the segment itself, and scan 1309 * the allocated vmem_segs in the vmem arena which manages that part of kas. 1310 * Currently, we do this for: 1311 * 1312 * SEG VMEM ARENA 1313 * kvseg heap_arena 1314 * kvseg32 heap32_arena 1315 * kvseg_core heap_core_arena 1316 * 1317 * In addition, we skip the segkpm segment in its entirety, since it is very 1318 * sparse, and contains no new kernel data. 1319 */ 1320 typedef struct kgrep_walk_data { 1321 kgrep_cb_func *kg_cb; 1322 void *kg_cbdata; 1323 uintptr_t kg_kvseg; 1324 uintptr_t kg_kvseg32; 1325 uintptr_t kg_kvseg_core; 1326 uintptr_t kg_segkpm; 1327 uintptr_t kg_heap_lp_base; 1328 uintptr_t kg_heap_lp_end; 1329 } kgrep_walk_data_t; 1330 1331 static int 1332 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 1333 { 1334 uintptr_t base = (uintptr_t)seg->s_base; 1335 1336 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 1337 addr == kg->kg_kvseg_core) 1338 return (WALK_NEXT); 1339 1340 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 1341 return (WALK_NEXT); 1342 1343 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 1344 } 1345 1346 /*ARGSUSED*/ 1347 static int 1348 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1349 { 1350 /* 1351 * skip large page heap address range - it is scanned by walking 1352 * allocated vmem_segs in the heap_lp_arena 1353 */ 1354 if (seg->vs_start == kg->kg_heap_lp_base && 1355 seg->vs_end == kg->kg_heap_lp_end) 1356 return (WALK_NEXT); 1357 1358 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1359 } 1360 1361 /*ARGSUSED*/ 1362 static int 1363 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1364 { 1365 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1366 } 1367 1368 static int 1369 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 1370 { 1371 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 1372 1373 if (strcmp(vmem->vm_name, "heap") != 0 && 1374 strcmp(vmem->vm_name, "heap32") != 0 && 1375 strcmp(vmem->vm_name, "heap_core") != 0 && 1376 strcmp(vmem->vm_name, "heap_lp") != 0) 1377 return (WALK_NEXT); 1378 1379 if (strcmp(vmem->vm_name, "heap_lp") == 0) 1380 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 1381 1382 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 1383 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 1384 return (WALK_ERR); 1385 } 1386 1387 return (WALK_NEXT); 1388 } 1389 1390 int 1391 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 1392 { 1393 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 1394 kgrep_walk_data_t kg; 1395 1396 if (mdb_get_state() == MDB_STATE_RUNNING) { 1397 mdb_warn("kgrep can only be run on a system " 1398 "dump or under kmdb; see dumpadm(1M)\n"); 1399 return (DCMD_ERR); 1400 } 1401 1402 if (mdb_lookup_by_name("kas", &kas) == -1) { 1403 mdb_warn("failed to locate 'kas' symbol\n"); 1404 return (DCMD_ERR); 1405 } 1406 1407 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 1408 mdb_warn("failed to locate 'kvseg' symbol\n"); 1409 return (DCMD_ERR); 1410 } 1411 1412 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 1413 mdb_warn("failed to locate 'kvseg32' symbol\n"); 1414 return (DCMD_ERR); 1415 } 1416 1417 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 1418 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 1419 return (DCMD_ERR); 1420 } 1421 1422 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 1423 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 1424 return (DCMD_ERR); 1425 } 1426 1427 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 1428 mdb_warn("failed to read 'heap_lp_base'\n"); 1429 return (DCMD_ERR); 1430 } 1431 1432 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 1433 mdb_warn("failed to read 'heap_lp_end'\n"); 1434 return (DCMD_ERR); 1435 } 1436 1437 kg.kg_cb = cb; 1438 kg.kg_cbdata = cbdata; 1439 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 1440 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 1441 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 1442 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 1443 1444 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 1445 &kg, kas.st_value) == -1) { 1446 mdb_warn("failed to walk kas segments"); 1447 return (DCMD_ERR); 1448 } 1449 1450 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 1451 mdb_warn("failed to walk heap/heap32 vmem arenas"); 1452 return (DCMD_ERR); 1453 } 1454 1455 return (DCMD_OK); 1456 } 1457 1458 size_t 1459 kgrep_subr_pagesize(void) 1460 { 1461 return (PAGESIZE); 1462 } 1463 1464 typedef struct file_walk_data { 1465 struct uf_entry *fw_flist; 1466 int fw_flistsz; 1467 int fw_ndx; 1468 int fw_nofiles; 1469 } file_walk_data_t; 1470 1471 int 1472 file_walk_init(mdb_walk_state_t *wsp) 1473 { 1474 file_walk_data_t *fw; 1475 proc_t p; 1476 1477 if (wsp->walk_addr == NULL) { 1478 mdb_warn("file walk doesn't support global walks\n"); 1479 return (WALK_ERR); 1480 } 1481 1482 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 1483 1484 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 1485 mdb_free(fw, sizeof (file_walk_data_t)); 1486 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 1487 return (WALK_ERR); 1488 } 1489 1490 if (p.p_user.u_finfo.fi_nfiles == 0) { 1491 mdb_free(fw, sizeof (file_walk_data_t)); 1492 return (WALK_DONE); 1493 } 1494 1495 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 1496 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 1497 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 1498 1499 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 1500 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 1501 mdb_warn("failed to read file array at %p", 1502 p.p_user.u_finfo.fi_list); 1503 mdb_free(fw->fw_flist, fw->fw_flistsz); 1504 mdb_free(fw, sizeof (file_walk_data_t)); 1505 return (WALK_ERR); 1506 } 1507 1508 fw->fw_ndx = 0; 1509 wsp->walk_data = fw; 1510 1511 return (WALK_NEXT); 1512 } 1513 1514 int 1515 file_walk_step(mdb_walk_state_t *wsp) 1516 { 1517 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1518 struct file file; 1519 uintptr_t fp; 1520 1521 again: 1522 if (fw->fw_ndx == fw->fw_nofiles) 1523 return (WALK_DONE); 1524 1525 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 1526 goto again; 1527 1528 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1529 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1530 } 1531 1532 int 1533 allfile_walk_step(mdb_walk_state_t *wsp) 1534 { 1535 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1536 struct file file; 1537 uintptr_t fp; 1538 1539 if (fw->fw_ndx == fw->fw_nofiles) 1540 return (WALK_DONE); 1541 1542 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 1543 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1544 else 1545 bzero(&file, sizeof (file)); 1546 1547 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1548 } 1549 1550 void 1551 file_walk_fini(mdb_walk_state_t *wsp) 1552 { 1553 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1554 1555 mdb_free(fw->fw_flist, fw->fw_flistsz); 1556 mdb_free(fw, sizeof (file_walk_data_t)); 1557 } 1558 1559 int 1560 port_walk_init(mdb_walk_state_t *wsp) 1561 { 1562 if (wsp->walk_addr == NULL) { 1563 mdb_warn("port walk doesn't support global walks\n"); 1564 return (WALK_ERR); 1565 } 1566 1567 if (mdb_layered_walk("file", wsp) == -1) { 1568 mdb_warn("couldn't walk 'file'"); 1569 return (WALK_ERR); 1570 } 1571 return (WALK_NEXT); 1572 } 1573 1574 int 1575 port_walk_step(mdb_walk_state_t *wsp) 1576 { 1577 struct vnode vn; 1578 uintptr_t vp; 1579 uintptr_t pp; 1580 struct port port; 1581 1582 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 1583 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1584 mdb_warn("failed to read vnode_t at %p", vp); 1585 return (WALK_ERR); 1586 } 1587 if (vn.v_type != VPORT) 1588 return (WALK_NEXT); 1589 1590 pp = (uintptr_t)vn.v_data; 1591 if (mdb_vread(&port, sizeof (port), pp) == -1) { 1592 mdb_warn("failed to read port_t at %p", pp); 1593 return (WALK_ERR); 1594 } 1595 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 1596 } 1597 1598 typedef struct portev_walk_data { 1599 list_node_t *pev_node; 1600 list_node_t *pev_last; 1601 size_t pev_offset; 1602 } portev_walk_data_t; 1603 1604 int 1605 portev_walk_init(mdb_walk_state_t *wsp) 1606 { 1607 portev_walk_data_t *pevd; 1608 struct port port; 1609 struct vnode vn; 1610 struct list *list; 1611 uintptr_t vp; 1612 1613 if (wsp->walk_addr == NULL) { 1614 mdb_warn("portev walk doesn't support global walks\n"); 1615 return (WALK_ERR); 1616 } 1617 1618 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 1619 1620 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 1621 mdb_free(pevd, sizeof (portev_walk_data_t)); 1622 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 1623 return (WALK_ERR); 1624 } 1625 1626 vp = (uintptr_t)port.port_vnode; 1627 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1628 mdb_free(pevd, sizeof (portev_walk_data_t)); 1629 mdb_warn("failed to read vnode_t at %p", vp); 1630 return (WALK_ERR); 1631 } 1632 1633 if (vn.v_type != VPORT) { 1634 mdb_free(pevd, sizeof (portev_walk_data_t)); 1635 mdb_warn("input address (%p) does not point to an event port", 1636 wsp->walk_addr); 1637 return (WALK_ERR); 1638 } 1639 1640 if (port.port_queue.portq_nent == 0) { 1641 mdb_free(pevd, sizeof (portev_walk_data_t)); 1642 return (WALK_DONE); 1643 } 1644 list = &port.port_queue.portq_list; 1645 pevd->pev_offset = list->list_offset; 1646 pevd->pev_last = list->list_head.list_prev; 1647 pevd->pev_node = list->list_head.list_next; 1648 wsp->walk_data = pevd; 1649 return (WALK_NEXT); 1650 } 1651 1652 int 1653 portev_walk_step(mdb_walk_state_t *wsp) 1654 { 1655 portev_walk_data_t *pevd; 1656 struct port_kevent ev; 1657 uintptr_t evp; 1658 1659 pevd = (portev_walk_data_t *)wsp->walk_data; 1660 1661 if (pevd->pev_last == NULL) 1662 return (WALK_DONE); 1663 if (pevd->pev_node == pevd->pev_last) 1664 pevd->pev_last = NULL; /* last round */ 1665 1666 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 1667 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 1668 mdb_warn("failed to read port_kevent at %p", evp); 1669 return (WALK_DONE); 1670 } 1671 pevd->pev_node = ev.portkev_node.list_next; 1672 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 1673 } 1674 1675 void 1676 portev_walk_fini(mdb_walk_state_t *wsp) 1677 { 1678 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 1679 1680 if (pevd != NULL) 1681 mdb_free(pevd, sizeof (portev_walk_data_t)); 1682 } 1683 1684 typedef struct proc_walk_data { 1685 uintptr_t *pw_stack; 1686 int pw_depth; 1687 int pw_max; 1688 } proc_walk_data_t; 1689 1690 int 1691 proc_walk_init(mdb_walk_state_t *wsp) 1692 { 1693 GElf_Sym sym; 1694 proc_walk_data_t *pw; 1695 1696 if (wsp->walk_addr == NULL) { 1697 if (mdb_lookup_by_name("p0", &sym) == -1) { 1698 mdb_warn("failed to read 'practive'"); 1699 return (WALK_ERR); 1700 } 1701 wsp->walk_addr = (uintptr_t)sym.st_value; 1702 } 1703 1704 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 1705 1706 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 1707 mdb_warn("failed to read 'nproc'"); 1708 mdb_free(pw, sizeof (pw)); 1709 return (WALK_ERR); 1710 } 1711 1712 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 1713 wsp->walk_data = pw; 1714 1715 return (WALK_NEXT); 1716 } 1717 1718 int 1719 proc_walk_step(mdb_walk_state_t *wsp) 1720 { 1721 proc_walk_data_t *pw = wsp->walk_data; 1722 uintptr_t addr = wsp->walk_addr; 1723 uintptr_t cld, sib; 1724 1725 int status; 1726 proc_t pr; 1727 1728 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 1729 mdb_warn("failed to read proc at %p", addr); 1730 return (WALK_DONE); 1731 } 1732 1733 cld = (uintptr_t)pr.p_child; 1734 sib = (uintptr_t)pr.p_sibling; 1735 1736 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 1737 pw->pw_depth--; 1738 goto sib; 1739 } 1740 1741 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 1742 1743 if (status != WALK_NEXT) 1744 return (status); 1745 1746 if ((wsp->walk_addr = cld) != NULL) { 1747 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 1748 mdb_warn("proc %p has invalid p_child %p; skipping\n", 1749 addr, cld); 1750 goto sib; 1751 } 1752 1753 pw->pw_stack[pw->pw_depth++] = addr; 1754 1755 if (pw->pw_depth == pw->pw_max) { 1756 mdb_warn("depth %d exceeds max depth; try again\n", 1757 pw->pw_depth); 1758 return (WALK_DONE); 1759 } 1760 return (WALK_NEXT); 1761 } 1762 1763 sib: 1764 /* 1765 * We know that p0 has no siblings, and if another starting proc 1766 * was given, we don't want to walk its siblings anyway. 1767 */ 1768 if (pw->pw_depth == 0) 1769 return (WALK_DONE); 1770 1771 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 1772 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 1773 addr, sib); 1774 sib = NULL; 1775 } 1776 1777 if ((wsp->walk_addr = sib) == NULL) { 1778 if (pw->pw_depth > 0) { 1779 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 1780 return (WALK_NEXT); 1781 } 1782 return (WALK_DONE); 1783 } 1784 1785 return (WALK_NEXT); 1786 } 1787 1788 void 1789 proc_walk_fini(mdb_walk_state_t *wsp) 1790 { 1791 proc_walk_data_t *pw = wsp->walk_data; 1792 1793 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 1794 mdb_free(pw, sizeof (proc_walk_data_t)); 1795 } 1796 1797 int 1798 task_walk_init(mdb_walk_state_t *wsp) 1799 { 1800 task_t task; 1801 1802 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 1803 mdb_warn("failed to read task at %p", wsp->walk_addr); 1804 return (WALK_ERR); 1805 } 1806 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 1807 wsp->walk_data = task.tk_memb_list; 1808 return (WALK_NEXT); 1809 } 1810 1811 int 1812 task_walk_step(mdb_walk_state_t *wsp) 1813 { 1814 proc_t proc; 1815 int status; 1816 1817 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 1818 mdb_warn("failed to read proc at %p", wsp->walk_addr); 1819 return (WALK_DONE); 1820 } 1821 1822 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 1823 1824 if (proc.p_tasknext == wsp->walk_data) 1825 return (WALK_DONE); 1826 1827 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 1828 return (status); 1829 } 1830 1831 int 1832 project_walk_init(mdb_walk_state_t *wsp) 1833 { 1834 if (wsp->walk_addr == NULL) { 1835 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 1836 mdb_warn("failed to read 'proj0p'"); 1837 return (WALK_ERR); 1838 } 1839 } 1840 wsp->walk_data = (void *)wsp->walk_addr; 1841 return (WALK_NEXT); 1842 } 1843 1844 int 1845 project_walk_step(mdb_walk_state_t *wsp) 1846 { 1847 uintptr_t addr = wsp->walk_addr; 1848 kproject_t pj; 1849 int status; 1850 1851 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 1852 mdb_warn("failed to read project at %p", addr); 1853 return (WALK_DONE); 1854 } 1855 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 1856 if (status != WALK_NEXT) 1857 return (status); 1858 wsp->walk_addr = (uintptr_t)pj.kpj_next; 1859 if ((void *)wsp->walk_addr == wsp->walk_data) 1860 return (WALK_DONE); 1861 return (WALK_NEXT); 1862 } 1863 1864 static int 1865 generic_walk_step(mdb_walk_state_t *wsp) 1866 { 1867 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 1868 wsp->walk_cbdata)); 1869 } 1870 1871 struct aw_info { 1872 void *aw_buff; /* buffer to hold the tree's data structure */ 1873 avl_tree_t aw_tree; /* copy of avl_tree_t being walked */ 1874 }; 1875 1876 /* 1877 * common code used to find the addr of the the leftmost child below 1878 * an AVL node 1879 */ 1880 static uintptr_t 1881 avl_leftmostchild(uintptr_t addr, void * buff, size_t offset, size_t size) 1882 { 1883 avl_node_t *node = (avl_node_t *)((uintptr_t)buff + offset); 1884 1885 for (;;) { 1886 addr -= offset; 1887 if (mdb_vread(buff, size, addr) == -1) { 1888 mdb_warn("read of avl_node_t failed: %p", addr); 1889 return ((uintptr_t)-1L); 1890 } 1891 if (node->avl_child[0] == NULL) 1892 break; 1893 addr = (uintptr_t)node->avl_child[0]; 1894 } 1895 return (addr); 1896 } 1897 1898 /* 1899 * initialize a forward walk thru an avl tree. 1900 */ 1901 int 1902 avl_walk_init(mdb_walk_state_t *wsp) 1903 { 1904 struct aw_info *aw; 1905 avl_tree_t *tree; 1906 uintptr_t addr; 1907 1908 /* 1909 * allocate the AVL walk data 1910 */ 1911 wsp->walk_data = aw = mdb_zalloc(sizeof (struct aw_info), UM_SLEEP); 1912 1913 /* 1914 * get an mdb copy of the avl_tree_t being walked 1915 */ 1916 tree = &aw->aw_tree; 1917 if (mdb_vread(tree, sizeof (avl_tree_t), wsp->walk_addr) == -1) { 1918 mdb_warn("read of avl_tree_t failed: %p", wsp->walk_addr); 1919 goto error; 1920 } 1921 if (tree->avl_size < tree->avl_offset + sizeof (avl_node_t)) { 1922 mdb_warn("invalid avl_tree_t at %p, avl_size:%d, avl_offset:%d", 1923 wsp->walk_addr, tree->avl_size, tree->avl_offset); 1924 goto error; 1925 } 1926 1927 /* 1928 * allocate a buffer to hold the mdb copy of tree's structs 1929 * "node" always points at the avl_node_t field inside the struct 1930 */ 1931 aw->aw_buff = mdb_zalloc(tree->avl_size, UM_SLEEP); 1932 1933 /* 1934 * get the first avl_node_t address, use same algorithm 1935 * as avl_start() -- leftmost child in tree from root 1936 */ 1937 addr = (uintptr_t)tree->avl_root; 1938 if (addr == NULL) { 1939 wsp->walk_addr = NULL; 1940 return (WALK_NEXT); 1941 } 1942 addr = avl_leftmostchild(addr, aw->aw_buff, tree->avl_offset, 1943 tree->avl_size); 1944 if (addr == (uintptr_t)-1L) 1945 goto error; 1946 1947 wsp->walk_addr = addr; 1948 return (WALK_NEXT); 1949 1950 error: 1951 if (aw->aw_buff != NULL) 1952 mdb_free(aw->aw_buff, sizeof (tree->avl_size)); 1953 mdb_free(aw, sizeof (struct aw_info)); 1954 return (WALK_ERR); 1955 } 1956 1957 /* 1958 * At each step, visit (callback) the current node, then move to the next 1959 * in the AVL tree. Uses the same algorithm as avl_walk(). 1960 */ 1961 int 1962 avl_walk_step(mdb_walk_state_t *wsp) 1963 { 1964 struct aw_info *aw; 1965 size_t offset; 1966 size_t size; 1967 uintptr_t addr; 1968 avl_node_t *node; 1969 int status; 1970 int was_child; 1971 1972 /* 1973 * don't walk past the end of the tree! 1974 */ 1975 addr = wsp->walk_addr; 1976 if (addr == NULL) 1977 return (WALK_DONE); 1978 1979 aw = (struct aw_info *)wsp->walk_data; 1980 size = aw->aw_tree.avl_size; 1981 offset = aw->aw_tree.avl_offset; 1982 node = (avl_node_t *)((uintptr_t)aw->aw_buff + offset); 1983 1984 /* 1985 * must read the current node for the call back to use 1986 */ 1987 if (mdb_vread(aw->aw_buff, size, addr) == -1) { 1988 mdb_warn("read of avl_node_t failed: %p", addr); 1989 return (WALK_ERR); 1990 } 1991 1992 /* 1993 * do the call back 1994 */ 1995 status = wsp->walk_callback(addr, aw->aw_buff, wsp->walk_cbdata); 1996 if (status != WALK_NEXT) 1997 return (status); 1998 1999 /* 2000 * move to the next node.... 2001 * note we read in new nodes, so the pointer to the buffer is fixed 2002 */ 2003 2004 /* 2005 * if the node has a right child then go to it and then all the way 2006 * thru as many left children as possible 2007 */ 2008 addr = (uintptr_t)node->avl_child[1]; 2009 if (addr != NULL) { 2010 addr = avl_leftmostchild(addr, aw->aw_buff, offset, size); 2011 if (addr == (uintptr_t)-1L) 2012 return (WALK_ERR); 2013 2014 /* 2015 * othewise return to parent nodes, stopping if we ever return from 2016 * a left child 2017 */ 2018 } else { 2019 for (;;) { 2020 was_child = AVL_XCHILD(node); 2021 addr = (uintptr_t)AVL_XPARENT(node); 2022 if (addr == NULL) 2023 break; 2024 addr -= offset; 2025 if (was_child == 0) /* stop on return from left child */ 2026 break; 2027 if (mdb_vread(aw->aw_buff, size, addr) == -1) { 2028 mdb_warn("read of avl_node_t failed: %p", addr); 2029 return (WALK_ERR); 2030 } 2031 } 2032 } 2033 2034 wsp->walk_addr = addr; 2035 return (WALK_NEXT); 2036 } 2037 2038 /* 2039 * Release the memory allocated for the walk 2040 */ 2041 void 2042 avl_walk_fini(mdb_walk_state_t *wsp) 2043 { 2044 struct aw_info *aw; 2045 2046 aw = (struct aw_info *)wsp->walk_data; 2047 2048 if (aw == NULL) 2049 return; 2050 2051 if (aw->aw_buff != NULL) 2052 mdb_free(aw->aw_buff, aw->aw_tree.avl_size); 2053 2054 mdb_free(aw, sizeof (struct aw_info)); 2055 } 2056 2057 2058 int 2059 seg_walk_init(mdb_walk_state_t *wsp) 2060 { 2061 if (wsp->walk_addr == NULL) { 2062 mdb_warn("seg walk must begin at struct as *\n"); 2063 return (WALK_ERR); 2064 } 2065 2066 /* 2067 * this is really just a wrapper to AVL tree walk 2068 */ 2069 wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree; 2070 return (avl_walk_init(wsp)); 2071 } 2072 2073 static int 2074 cpu_walk_cmp(const void *l, const void *r) 2075 { 2076 uintptr_t lhs = *((uintptr_t *)l); 2077 uintptr_t rhs = *((uintptr_t *)r); 2078 cpu_t lcpu, rcpu; 2079 2080 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 2081 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 2082 2083 if (lcpu.cpu_id < rcpu.cpu_id) 2084 return (-1); 2085 2086 if (lcpu.cpu_id > rcpu.cpu_id) 2087 return (1); 2088 2089 return (0); 2090 } 2091 2092 typedef struct cpu_walk { 2093 uintptr_t *cw_array; 2094 int cw_ndx; 2095 } cpu_walk_t; 2096 2097 int 2098 cpu_walk_init(mdb_walk_state_t *wsp) 2099 { 2100 cpu_walk_t *cw; 2101 int max_ncpus, i = 0; 2102 uintptr_t current, first; 2103 cpu_t cpu, panic_cpu; 2104 uintptr_t panicstr, addr; 2105 GElf_Sym sym; 2106 2107 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 2108 2109 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 2110 mdb_warn("failed to read 'max_ncpus'"); 2111 return (WALK_ERR); 2112 } 2113 2114 if (mdb_readvar(&panicstr, "panicstr") == -1) { 2115 mdb_warn("failed to read 'panicstr'"); 2116 return (WALK_ERR); 2117 } 2118 2119 if (panicstr != NULL) { 2120 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 2121 mdb_warn("failed to find 'panic_cpu'"); 2122 return (WALK_ERR); 2123 } 2124 2125 addr = (uintptr_t)sym.st_value; 2126 2127 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 2128 mdb_warn("failed to read 'panic_cpu'"); 2129 return (WALK_ERR); 2130 } 2131 } 2132 2133 /* 2134 * Unfortunately, there is no platform-independent way to walk 2135 * CPUs in ID order. We therefore loop through in cpu_next order, 2136 * building an array of CPU pointers which will subsequently be 2137 * sorted. 2138 */ 2139 cw->cw_array = 2140 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 2141 2142 if (mdb_readvar(&first, "cpu_list") == -1) { 2143 mdb_warn("failed to read 'cpu_list'"); 2144 return (WALK_ERR); 2145 } 2146 2147 current = first; 2148 do { 2149 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 2150 mdb_warn("failed to read cpu at %p", current); 2151 return (WALK_ERR); 2152 } 2153 2154 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 2155 cw->cw_array[i++] = addr; 2156 } else { 2157 cw->cw_array[i++] = current; 2158 } 2159 } while ((current = (uintptr_t)cpu.cpu_next) != first); 2160 2161 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2162 wsp->walk_data = cw; 2163 2164 return (WALK_NEXT); 2165 } 2166 2167 int 2168 cpu_walk_step(mdb_walk_state_t *wsp) 2169 { 2170 cpu_walk_t *cw = wsp->walk_data; 2171 cpu_t cpu; 2172 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2173 2174 if (addr == NULL) 2175 return (WALK_DONE); 2176 2177 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2178 mdb_warn("failed to read cpu at %p", addr); 2179 return (WALK_DONE); 2180 } 2181 2182 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2183 } 2184 2185 typedef struct cpuinfo_data { 2186 intptr_t cid_cpu; 2187 uintptr_t cid_lbolt; 2188 uintptr_t **cid_ithr; 2189 char cid_print_head; 2190 char cid_print_thr; 2191 char cid_print_ithr; 2192 char cid_print_flags; 2193 } cpuinfo_data_t; 2194 2195 int 2196 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2197 { 2198 cpu_t c; 2199 int id; 2200 uint8_t pil; 2201 2202 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2203 return (WALK_NEXT); 2204 2205 if (thr->t_bound_cpu == NULL) { 2206 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2207 return (WALK_NEXT); 2208 } 2209 2210 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2211 2212 if ((id = c.cpu_id) >= NCPU) { 2213 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2214 thr->t_bound_cpu, id, NCPU); 2215 return (WALK_NEXT); 2216 } 2217 2218 if ((pil = thr->t_pil) >= NINTR) { 2219 mdb_warn("thread %p has pil (%d) greater than %d\n", 2220 addr, pil, NINTR); 2221 return (WALK_NEXT); 2222 } 2223 2224 if (cid->cid_ithr[id][pil] != NULL) { 2225 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2226 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2227 return (WALK_NEXT); 2228 } 2229 2230 cid->cid_ithr[id][pil] = addr; 2231 2232 return (WALK_NEXT); 2233 } 2234 2235 #define CPUINFO_IDWIDTH 3 2236 #define CPUINFO_FLAGWIDTH 9 2237 2238 #ifdef _LP64 2239 #if defined(__amd64) 2240 #define CPUINFO_TWIDTH 16 2241 #define CPUINFO_CPUWIDTH 16 2242 #else 2243 #define CPUINFO_CPUWIDTH 11 2244 #define CPUINFO_TWIDTH 11 2245 #endif 2246 #else 2247 #define CPUINFO_CPUWIDTH 8 2248 #define CPUINFO_TWIDTH 8 2249 #endif 2250 2251 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2252 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2253 #define CPUINFO_ITHRDELT 4 2254 2255 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2256 flagline < nflaglines ? flagbuf[flagline++] : "") 2257 2258 int 2259 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2260 { 2261 kthread_t t; 2262 disp_t disp; 2263 proc_t p; 2264 uintptr_t pinned; 2265 char **flagbuf; 2266 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2267 2268 const char *flags[] = { 2269 "RUNNING", "READY", "QUIESCED", "EXISTS", 2270 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2271 "SPARE", "FAULTED", NULL 2272 }; 2273 2274 if (cid->cid_cpu != -1) { 2275 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2276 return (WALK_NEXT); 2277 2278 /* 2279 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2280 */ 2281 cid->cid_cpu = -1; 2282 rval = WALK_DONE; 2283 } 2284 2285 if (cid->cid_print_head) { 2286 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2287 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2288 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2289 "PROC"); 2290 cid->cid_print_head = FALSE; 2291 } 2292 2293 bspl = cpu->cpu_base_spl; 2294 2295 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2296 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2297 return (WALK_ERR); 2298 } 2299 2300 mdb_printf("%3d %0*p %3x %4d %4d ", 2301 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2302 disp.disp_nrunnable, bspl); 2303 2304 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2305 mdb_printf("%3d ", t.t_pri); 2306 } else { 2307 mdb_printf("%3s ", "-"); 2308 } 2309 2310 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2311 cpu->cpu_kprunrun ? "yes" : "no"); 2312 2313 if (cpu->cpu_last_swtch) { 2314 clock_t lbolt; 2315 2316 if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) { 2317 mdb_warn("failed to read lbolt at %p", cid->cid_lbolt); 2318 return (WALK_ERR); 2319 } 2320 mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch); 2321 } else { 2322 mdb_printf("%-6s ", "-"); 2323 } 2324 2325 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2326 2327 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2328 mdb_printf(" (idle)\n"); 2329 else if (cpu->cpu_thread == NULL) 2330 mdb_printf(" -\n"); 2331 else { 2332 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2333 mdb_printf(" %s\n", p.p_user.u_comm); 2334 } else { 2335 mdb_printf(" ?\n"); 2336 } 2337 } 2338 2339 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2340 2341 if (cid->cid_print_flags) { 2342 int first = 1, i, j, k; 2343 char *s; 2344 2345 cid->cid_print_head = TRUE; 2346 2347 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 2348 if (!(cpu->cpu_flags & i)) 2349 continue; 2350 2351 if (first) { 2352 s = mdb_alloc(CPUINFO_THRDELT + 1, 2353 UM_GC | UM_SLEEP); 2354 2355 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 2356 "%*s|%*s", CPUINFO_FLAGDELT, "", 2357 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 2358 flagbuf[nflaglines++] = s; 2359 } 2360 2361 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 2362 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 2363 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 2364 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 2365 first ? "<--+" : ""); 2366 2367 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 2368 s[k] = ' '; 2369 s[k] = '\0'; 2370 2371 flagbuf[nflaglines++] = s; 2372 first = 0; 2373 } 2374 } 2375 2376 if (cid->cid_print_ithr) { 2377 int i, found_one = FALSE; 2378 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 2379 2380 for (i = NINTR - 1; i >= 0; i--) { 2381 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 2382 2383 if (iaddr == NULL) 2384 continue; 2385 2386 if (!found_one) { 2387 found_one = TRUE; 2388 2389 CPUINFO_INDENT; 2390 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 2391 CPUINFO_ITHRDELT, ""); 2392 2393 CPUINFO_INDENT; 2394 mdb_printf("%c%*s+--> %3s %s\n", 2395 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 2396 "", "PIL", "THREAD"); 2397 } 2398 2399 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 2400 mdb_warn("failed to read kthread_t at %p", 2401 iaddr); 2402 return (WALK_ERR); 2403 } 2404 2405 CPUINFO_INDENT; 2406 mdb_printf("%c%*s %3d %0*p\n", 2407 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 2408 t.t_pil, CPUINFO_TWIDTH, iaddr); 2409 2410 pinned = (uintptr_t)t.t_intr; 2411 } 2412 2413 if (found_one && pinned != NULL) { 2414 cid->cid_print_head = TRUE; 2415 (void) strcpy(p.p_user.u_comm, "?"); 2416 2417 if (mdb_vread(&t, sizeof (t), 2418 (uintptr_t)pinned) == -1) { 2419 mdb_warn("failed to read kthread_t at %p", 2420 pinned); 2421 return (WALK_ERR); 2422 } 2423 if (mdb_vread(&p, sizeof (p), 2424 (uintptr_t)t.t_procp) == -1) { 2425 mdb_warn("failed to read proc_t at %p", 2426 t.t_procp); 2427 return (WALK_ERR); 2428 } 2429 2430 CPUINFO_INDENT; 2431 mdb_printf("%c%*s %3s %0*p %s\n", 2432 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 2433 CPUINFO_TWIDTH, pinned, 2434 pinned == (uintptr_t)cpu->cpu_idle_thread ? 2435 "(idle)" : p.p_user.u_comm); 2436 } 2437 } 2438 2439 if (disp.disp_nrunnable && cid->cid_print_thr) { 2440 dispq_t *dq; 2441 2442 int i, npri = disp.disp_npri; 2443 2444 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 2445 2446 if (mdb_vread(dq, sizeof (dispq_t) * npri, 2447 (uintptr_t)disp.disp_q) == -1) { 2448 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 2449 return (WALK_ERR); 2450 } 2451 2452 CPUINFO_INDENT; 2453 mdb_printf("|\n"); 2454 2455 CPUINFO_INDENT; 2456 mdb_printf("+--> %3s %-*s %s\n", "PRI", 2457 CPUINFO_TWIDTH, "THREAD", "PROC"); 2458 2459 for (i = npri - 1; i >= 0; i--) { 2460 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 2461 2462 while (taddr != NULL) { 2463 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 2464 mdb_warn("failed to read kthread_t " 2465 "at %p", taddr); 2466 return (WALK_ERR); 2467 } 2468 if (mdb_vread(&p, sizeof (p), 2469 (uintptr_t)t.t_procp) == -1) { 2470 mdb_warn("failed to read proc_t at %p", 2471 t.t_procp); 2472 return (WALK_ERR); 2473 } 2474 2475 CPUINFO_INDENT; 2476 mdb_printf(" %3d %0*p %s\n", t.t_pri, 2477 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 2478 2479 taddr = (uintptr_t)t.t_link; 2480 } 2481 } 2482 cid->cid_print_head = TRUE; 2483 } 2484 2485 while (flagline < nflaglines) 2486 mdb_printf("%s\n", flagbuf[flagline++]); 2487 2488 if (cid->cid_print_head) 2489 mdb_printf("\n"); 2490 2491 return (rval); 2492 } 2493 2494 int 2495 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2496 { 2497 uint_t verbose = FALSE; 2498 cpuinfo_data_t cid; 2499 GElf_Sym sym; 2500 clock_t lbolt; 2501 2502 cid.cid_print_ithr = FALSE; 2503 cid.cid_print_thr = FALSE; 2504 cid.cid_print_flags = FALSE; 2505 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 2506 cid.cid_cpu = -1; 2507 2508 if (flags & DCMD_ADDRSPEC) 2509 cid.cid_cpu = addr; 2510 2511 if (mdb_getopts(argc, argv, 2512 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 2513 return (DCMD_USAGE); 2514 2515 if (verbose) { 2516 cid.cid_print_ithr = TRUE; 2517 cid.cid_print_thr = TRUE; 2518 cid.cid_print_flags = TRUE; 2519 cid.cid_print_head = TRUE; 2520 } 2521 2522 if (cid.cid_print_ithr) { 2523 int i; 2524 2525 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 2526 * NCPU, UM_SLEEP | UM_GC); 2527 2528 for (i = 0; i < NCPU; i++) 2529 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 2530 NINTR, UM_SLEEP | UM_GC); 2531 2532 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 2533 &cid) == -1) { 2534 mdb_warn("couldn't walk thread"); 2535 return (DCMD_ERR); 2536 } 2537 } 2538 2539 if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) { 2540 mdb_warn("failed to find panic_lbolt"); 2541 return (DCMD_ERR); 2542 } 2543 2544 cid.cid_lbolt = (uintptr_t)sym.st_value; 2545 2546 if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) { 2547 mdb_warn("failed to read panic_lbolt"); 2548 return (DCMD_ERR); 2549 } 2550 2551 if (lbolt == 0) { 2552 if (mdb_lookup_by_name("lbolt", &sym) == -1) { 2553 mdb_warn("failed to find lbolt"); 2554 return (DCMD_ERR); 2555 } 2556 cid.cid_lbolt = (uintptr_t)sym.st_value; 2557 } 2558 2559 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 2560 mdb_warn("can't walk cpus"); 2561 return (DCMD_ERR); 2562 } 2563 2564 if (cid.cid_cpu != -1) { 2565 /* 2566 * We didn't find this CPU when we walked through the CPUs 2567 * (i.e. the address specified doesn't show up in the "cpu" 2568 * walk). However, the specified address may still correspond 2569 * to a valid cpu_t (for example, if the specified address is 2570 * the actual panicking cpu_t and not the cached panic_cpu). 2571 * Point is: even if we didn't find it, we still want to try 2572 * to print the specified address as a cpu_t. 2573 */ 2574 cpu_t cpu; 2575 2576 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 2577 mdb_warn("%p is neither a valid CPU ID nor a " 2578 "valid cpu_t address\n", cid.cid_cpu); 2579 return (DCMD_ERR); 2580 } 2581 2582 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 2583 } 2584 2585 return (DCMD_OK); 2586 } 2587 2588 /*ARGSUSED*/ 2589 int 2590 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2591 { 2592 int i; 2593 2594 if (!(flags & DCMD_ADDRSPEC)) 2595 return (DCMD_USAGE); 2596 2597 for (i = 0; i < sizeof (addr) * NBBY; i++) 2598 mdb_printf("%p\n", addr ^ (1UL << i)); 2599 2600 return (DCMD_OK); 2601 } 2602 2603 /* 2604 * Grumble, grumble. 2605 */ 2606 #define SMAP_HASHFUNC(vp, off) \ 2607 ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ 2608 ((off) >> MAXBSHIFT)) & smd_hashmsk) 2609 2610 int 2611 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2612 { 2613 long smd_hashmsk; 2614 int hash; 2615 uintptr_t offset = 0; 2616 struct smap smp; 2617 uintptr_t saddr, kaddr; 2618 uintptr_t smd_hash, smd_smap; 2619 struct seg seg; 2620 2621 if (!(flags & DCMD_ADDRSPEC)) 2622 return (DCMD_USAGE); 2623 2624 if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) { 2625 mdb_warn("failed to read smd_hashmsk"); 2626 return (DCMD_ERR); 2627 } 2628 2629 if (mdb_readvar(&smd_hash, "smd_hash") == -1) { 2630 mdb_warn("failed to read smd_hash"); 2631 return (DCMD_ERR); 2632 } 2633 2634 if (mdb_readvar(&smd_smap, "smd_smap") == -1) { 2635 mdb_warn("failed to read smd_hash"); 2636 return (DCMD_ERR); 2637 } 2638 2639 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2640 mdb_warn("failed to read segkmap"); 2641 return (DCMD_ERR); 2642 } 2643 2644 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2645 mdb_warn("failed to read segkmap at %p", kaddr); 2646 return (DCMD_ERR); 2647 } 2648 2649 if (argc != 0) { 2650 const mdb_arg_t *arg = &argv[0]; 2651 2652 if (arg->a_type == MDB_TYPE_IMMEDIATE) 2653 offset = arg->a_un.a_val; 2654 else 2655 offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str); 2656 } 2657 2658 hash = SMAP_HASHFUNC(addr, offset); 2659 2660 if (mdb_vread(&saddr, sizeof (saddr), 2661 smd_hash + hash * sizeof (uintptr_t)) == -1) { 2662 mdb_warn("couldn't read smap at %p", 2663 smd_hash + hash * sizeof (uintptr_t)); 2664 return (DCMD_ERR); 2665 } 2666 2667 do { 2668 if (mdb_vread(&smp, sizeof (smp), saddr) == -1) { 2669 mdb_warn("couldn't read smap at %p", saddr); 2670 return (DCMD_ERR); 2671 } 2672 2673 if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) { 2674 mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n", 2675 addr, offset, saddr, ((saddr - smd_smap) / 2676 sizeof (smp)) * MAXBSIZE + seg.s_base); 2677 return (DCMD_OK); 2678 } 2679 2680 saddr = (uintptr_t)smp.sm_hash; 2681 } while (saddr != NULL); 2682 2683 mdb_printf("no smap for vnode %p, offs %p\n", addr, offset); 2684 return (DCMD_OK); 2685 } 2686 2687 /*ARGSUSED*/ 2688 int 2689 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2690 { 2691 uintptr_t kaddr; 2692 struct seg seg; 2693 struct segmap_data sd; 2694 2695 if (!(flags & DCMD_ADDRSPEC)) 2696 return (DCMD_USAGE); 2697 2698 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2699 mdb_warn("failed to read segkmap"); 2700 return (DCMD_ERR); 2701 } 2702 2703 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2704 mdb_warn("failed to read segkmap at %p", kaddr); 2705 return (DCMD_ERR); 2706 } 2707 2708 if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) { 2709 mdb_warn("failed to read segmap_data at %p", seg.s_data); 2710 return (DCMD_ERR); 2711 } 2712 2713 mdb_printf("%p is smap %p\n", addr, 2714 ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) * 2715 sizeof (struct smap) + (uintptr_t)sd.smd_sm); 2716 2717 return (DCMD_OK); 2718 } 2719 2720 int 2721 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 2722 { 2723 if (p->p_as == *asp) 2724 mdb_printf("%p\n", addr); 2725 return (WALK_NEXT); 2726 } 2727 2728 /*ARGSUSED*/ 2729 int 2730 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2731 { 2732 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 2733 return (DCMD_USAGE); 2734 2735 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 2736 mdb_warn("failed to walk proc"); 2737 return (DCMD_ERR); 2738 } 2739 2740 return (DCMD_OK); 2741 } 2742 2743 /*ARGSUSED*/ 2744 int 2745 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 2746 { 2747 proc_t parent; 2748 int ident = 0; 2749 uintptr_t paddr; 2750 2751 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 2752 mdb_vread(&parent, sizeof (parent), paddr); 2753 paddr = (uintptr_t)parent.p_parent; 2754 } 2755 2756 mdb_inc_indent(ident); 2757 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 2758 mdb_dec_indent(ident); 2759 2760 return (WALK_NEXT); 2761 } 2762 2763 void 2764 ptree_ancestors(uintptr_t addr, uintptr_t start) 2765 { 2766 proc_t p; 2767 2768 if (mdb_vread(&p, sizeof (p), addr) == -1) { 2769 mdb_warn("couldn't read ancestor at %p", addr); 2770 return; 2771 } 2772 2773 if (p.p_parent != NULL) 2774 ptree_ancestors((uintptr_t)p.p_parent, start); 2775 2776 if (addr != start) 2777 (void) ptree_walk(addr, &p, NULL); 2778 } 2779 2780 /*ARGSUSED*/ 2781 int 2782 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2783 { 2784 if (!(flags & DCMD_ADDRSPEC)) 2785 addr = NULL; 2786 else 2787 ptree_ancestors(addr, addr); 2788 2789 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 2790 mdb_warn("couldn't walk 'proc'"); 2791 return (DCMD_ERR); 2792 } 2793 2794 return (DCMD_OK); 2795 } 2796 2797 /*ARGSUSED*/ 2798 static int 2799 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2800 { 2801 int fdnum; 2802 const mdb_arg_t *argp = &argv[0]; 2803 proc_t p; 2804 uf_entry_t uf; 2805 2806 if ((flags & DCMD_ADDRSPEC) == 0) { 2807 mdb_warn("fd doesn't give global information\n"); 2808 return (DCMD_ERR); 2809 } 2810 if (argc != 1) 2811 return (DCMD_USAGE); 2812 2813 if (argp->a_type == MDB_TYPE_IMMEDIATE) 2814 fdnum = argp->a_un.a_val; 2815 else 2816 fdnum = mdb_strtoull(argp->a_un.a_str); 2817 2818 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 2819 mdb_warn("couldn't read proc_t at %p", addr); 2820 return (DCMD_ERR); 2821 } 2822 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 2823 mdb_warn("process %p only has %d files open.\n", 2824 addr, p.p_user.u_finfo.fi_nfiles); 2825 return (DCMD_ERR); 2826 } 2827 if (mdb_vread(&uf, sizeof (uf_entry_t), 2828 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 2829 mdb_warn("couldn't read uf_entry_t at %p", 2830 &p.p_user.u_finfo.fi_list[fdnum]); 2831 return (DCMD_ERR); 2832 } 2833 2834 mdb_printf("%p\n", uf.uf_file); 2835 return (DCMD_OK); 2836 } 2837 2838 /*ARGSUSED*/ 2839 static int 2840 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2841 { 2842 pid_t pid = (pid_t)addr; 2843 2844 if (argc != 0) 2845 return (DCMD_USAGE); 2846 2847 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 2848 mdb_warn("PID 0t%d not found\n", pid); 2849 return (DCMD_ERR); 2850 } 2851 2852 mdb_printf("%p\n", addr); 2853 return (DCMD_OK); 2854 } 2855 2856 static char *sysfile_cmd[] = { 2857 "exclude:", 2858 "include:", 2859 "forceload:", 2860 "rootdev:", 2861 "rootfs:", 2862 "swapdev:", 2863 "swapfs:", 2864 "moddir:", 2865 "set", 2866 "unknown", 2867 }; 2868 2869 static char *sysfile_ops[] = { "", "=", "&", "|" }; 2870 2871 /*ARGSUSED*/ 2872 static int 2873 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 2874 { 2875 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 2876 *target = NULL; 2877 return (WALK_DONE); 2878 } 2879 return (WALK_NEXT); 2880 } 2881 2882 /*ARGSUSED*/ 2883 static int 2884 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2885 { 2886 struct sysparam *sysp, sys; 2887 char var[256]; 2888 char modname[256]; 2889 char val[256]; 2890 char strval[256]; 2891 vmem_t *mod_sysfile_arena; 2892 void *straddr; 2893 2894 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 2895 mdb_warn("failed to read sysparam_hd"); 2896 return (DCMD_ERR); 2897 } 2898 2899 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 2900 mdb_warn("failed to read mod_sysfile_arena"); 2901 return (DCMD_ERR); 2902 } 2903 2904 while (sysp != NULL) { 2905 var[0] = '\0'; 2906 val[0] = '\0'; 2907 modname[0] = '\0'; 2908 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 2909 mdb_warn("couldn't read sysparam %p", sysp); 2910 return (DCMD_ERR); 2911 } 2912 if (sys.sys_modnam != NULL && 2913 mdb_readstr(modname, 256, 2914 (uintptr_t)sys.sys_modnam) == -1) { 2915 mdb_warn("couldn't read modname in %p", sysp); 2916 return (DCMD_ERR); 2917 } 2918 if (sys.sys_ptr != NULL && 2919 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 2920 mdb_warn("couldn't read ptr in %p", sysp); 2921 return (DCMD_ERR); 2922 } 2923 if (sys.sys_op != SETOP_NONE) { 2924 /* 2925 * Is this an int or a string? We determine this 2926 * by checking whether straddr is contained in 2927 * mod_sysfile_arena. If so, the walker will set 2928 * straddr to NULL. 2929 */ 2930 straddr = (void *)(uintptr_t)sys.sys_info; 2931 if (sys.sys_op == SETOP_ASSIGN && 2932 sys.sys_info != 0 && 2933 mdb_pwalk("vmem_seg", 2934 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 2935 (uintptr_t)mod_sysfile_arena) == 0 && 2936 straddr == NULL && 2937 mdb_readstr(strval, 256, 2938 (uintptr_t)sys.sys_info) != -1) { 2939 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 2940 strval); 2941 } else { 2942 (void) mdb_snprintf(val, sizeof (val), 2943 "0x%llx [0t%llu]", sys.sys_info, 2944 sys.sys_info); 2945 } 2946 } 2947 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 2948 modname, modname[0] == '\0' ? "" : ":", 2949 var, sysfile_ops[sys.sys_op], val); 2950 2951 sysp = sys.sys_next; 2952 } 2953 2954 return (DCMD_OK); 2955 } 2956 2957 /* 2958 * Dump a taskq_ent_t given its address. 2959 */ 2960 /*ARGSUSED*/ 2961 int 2962 taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2963 { 2964 taskq_ent_t taskq_ent; 2965 GElf_Sym sym; 2966 char buf[MDB_SYM_NAMLEN+1]; 2967 2968 2969 if (!(flags & DCMD_ADDRSPEC)) { 2970 mdb_warn("expected explicit taskq_ent_t address before ::\n"); 2971 return (DCMD_USAGE); 2972 } 2973 2974 if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) { 2975 mdb_warn("failed to read taskq_ent_t at %p", addr); 2976 return (DCMD_ERR); 2977 } 2978 2979 if (DCMD_HDRSPEC(flags)) { 2980 mdb_printf("%<u>%-?s %-?s %-s%</u>\n", 2981 "ENTRY", "ARG", "FUNCTION"); 2982 } 2983 2984 if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT, 2985 buf, sizeof (buf), &sym) == -1) { 2986 (void) strcpy(buf, "????"); 2987 } 2988 2989 mdb_printf("%-?p %-?p %s\n", addr, taskq_ent.tqent_arg, buf); 2990 2991 return (DCMD_OK); 2992 } 2993 2994 /* 2995 * Given the address of the (taskq_t) task queue head, walk the queue listing 2996 * the address of every taskq_ent_t. 2997 */ 2998 int 2999 taskq_walk_init(mdb_walk_state_t *wsp) 3000 { 3001 taskq_t tq_head; 3002 3003 3004 if (wsp->walk_addr == NULL) { 3005 mdb_warn("start address required\n"); 3006 return (WALK_ERR); 3007 } 3008 3009 3010 /* 3011 * Save the address of the list head entry. This terminates the list. 3012 */ 3013 wsp->walk_data = (void *) 3014 ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task)); 3015 3016 3017 /* 3018 * Read in taskq head, set walk_addr to point to first taskq_ent_t. 3019 */ 3020 if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) == 3021 -1) { 3022 mdb_warn("failed to read taskq list head at %p", 3023 wsp->walk_addr); 3024 } 3025 wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next; 3026 3027 3028 /* 3029 * Check for null list (next=head) 3030 */ 3031 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 3032 return (WALK_DONE); 3033 } 3034 3035 return (WALK_NEXT); 3036 } 3037 3038 3039 int 3040 taskq_walk_step(mdb_walk_state_t *wsp) 3041 { 3042 taskq_ent_t tq_ent; 3043 int status; 3044 3045 3046 if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) == 3047 -1) { 3048 mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr); 3049 return (DCMD_ERR); 3050 } 3051 3052 status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent, 3053 wsp->walk_cbdata); 3054 3055 wsp->walk_addr = (uintptr_t)tq_ent.tqent_next; 3056 3057 3058 /* Check if we're at the last element (next=head) */ 3059 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 3060 return (WALK_DONE); 3061 } 3062 3063 return (status); 3064 } 3065 3066 int 3067 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3068 { 3069 3070 if (*didp == thr->t_did) { 3071 mdb_printf("%p\n", addr); 3072 return (WALK_DONE); 3073 } else 3074 return (WALK_NEXT); 3075 } 3076 3077 /*ARGSUSED*/ 3078 int 3079 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3080 { 3081 const mdb_arg_t *argp = &argv[0]; 3082 kt_did_t did; 3083 3084 if (argc != 1) 3085 return (DCMD_USAGE); 3086 3087 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 3088 3089 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3090 mdb_warn("failed to walk thread"); 3091 return (DCMD_ERR); 3092 3093 } 3094 return (DCMD_OK); 3095 3096 } 3097 3098 static int 3099 errorq_walk_init(mdb_walk_state_t *wsp) 3100 { 3101 if (wsp->walk_addr == NULL && 3102 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 3103 mdb_warn("failed to read errorq_list"); 3104 return (WALK_ERR); 3105 } 3106 3107 return (WALK_NEXT); 3108 } 3109 3110 static int 3111 errorq_walk_step(mdb_walk_state_t *wsp) 3112 { 3113 uintptr_t addr = wsp->walk_addr; 3114 errorq_t eq; 3115 3116 if (addr == NULL) 3117 return (WALK_DONE); 3118 3119 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 3120 mdb_warn("failed to read errorq at %p", addr); 3121 return (WALK_ERR); 3122 } 3123 3124 wsp->walk_addr = (uintptr_t)eq.eq_next; 3125 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 3126 } 3127 3128 typedef struct eqd_walk_data { 3129 uintptr_t *eqd_stack; 3130 void *eqd_buf; 3131 ulong_t eqd_qpos; 3132 ulong_t eqd_qlen; 3133 size_t eqd_size; 3134 } eqd_walk_data_t; 3135 3136 /* 3137 * In order to walk the list of pending error queue elements, we push the 3138 * addresses of the corresponding data buffers in to the eqd_stack array. 3139 * The error lists are in reverse chronological order when iterating using 3140 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3141 * walker client gets addresses in order from oldest error to newest error. 3142 */ 3143 static void 3144 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3145 { 3146 errorq_elem_t eqe; 3147 3148 while (addr != NULL) { 3149 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3150 mdb_warn("failed to read errorq element at %p", addr); 3151 break; 3152 } 3153 3154 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3155 mdb_warn("errorq is overfull -- more than %lu " 3156 "elems found\n", eqdp->eqd_qlen); 3157 break; 3158 } 3159 3160 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3161 addr = (uintptr_t)eqe.eqe_prev; 3162 } 3163 } 3164 3165 static int 3166 eqd_walk_init(mdb_walk_state_t *wsp) 3167 { 3168 eqd_walk_data_t *eqdp; 3169 errorq_elem_t eqe, *addr; 3170 errorq_t eq; 3171 ulong_t i; 3172 3173 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3174 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3175 return (WALK_ERR); 3176 } 3177 3178 if (eq.eq_ptail != NULL && 3179 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3180 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3181 return (WALK_ERR); 3182 } 3183 3184 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3185 wsp->walk_data = eqdp; 3186 3187 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3188 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3189 eqdp->eqd_qlen = eq.eq_qlen; 3190 eqdp->eqd_qpos = 0; 3191 eqdp->eqd_size = eq.eq_size; 3192 3193 /* 3194 * The newest elements in the queue are on the pending list, so we 3195 * push those on to our stack first. 3196 */ 3197 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3198 3199 /* 3200 * If eq_ptail is set, it may point to a subset of the errors on the 3201 * pending list in the event a casptr() failed; if ptail's data is 3202 * already in our stack, NULL out eq_ptail and ignore it. 3203 */ 3204 if (eq.eq_ptail != NULL) { 3205 for (i = 0; i < eqdp->eqd_qpos; i++) { 3206 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3207 eq.eq_ptail = NULL; 3208 break; 3209 } 3210 } 3211 } 3212 3213 /* 3214 * If eq_phead is set, it has the processing list in order from oldest 3215 * to newest. Use this to recompute eq_ptail as best we can and then 3216 * we nicely fall into eqd_push_list() of eq_ptail below. 3217 */ 3218 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3219 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3220 eq.eq_ptail = addr; 3221 3222 /* 3223 * The oldest elements in the queue are on the processing list, subject 3224 * to machinations in the if-clauses above. Push any such elements. 3225 */ 3226 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3227 return (WALK_NEXT); 3228 } 3229 3230 static int 3231 eqd_walk_step(mdb_walk_state_t *wsp) 3232 { 3233 eqd_walk_data_t *eqdp = wsp->walk_data; 3234 uintptr_t addr; 3235 3236 if (eqdp->eqd_qpos == 0) 3237 return (WALK_DONE); 3238 3239 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3240 3241 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3242 mdb_warn("failed to read errorq data at %p", addr); 3243 return (WALK_ERR); 3244 } 3245 3246 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3247 } 3248 3249 static void 3250 eqd_walk_fini(mdb_walk_state_t *wsp) 3251 { 3252 eqd_walk_data_t *eqdp = wsp->walk_data; 3253 3254 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3255 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3256 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3257 } 3258 3259 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3260 3261 static int 3262 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3263 { 3264 int i; 3265 errorq_t eq; 3266 uint_t opt_v = FALSE; 3267 3268 if (!(flags & DCMD_ADDRSPEC)) { 3269 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3270 mdb_warn("can't walk 'errorq'"); 3271 return (DCMD_ERR); 3272 } 3273 return (DCMD_OK); 3274 } 3275 3276 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3277 argc -= i; 3278 argv += i; 3279 3280 if (argc != 0) 3281 return (DCMD_USAGE); 3282 3283 if (opt_v || DCMD_HDRSPEC(flags)) { 3284 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3285 "ADDR", "NAME", "S", "V", "N"); 3286 if (!opt_v) { 3287 mdb_printf("%7s %7s %7s%</u>\n", 3288 "ACCEPT", "DROP", "LOG"); 3289 } else { 3290 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3291 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3292 } 3293 } 3294 3295 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3296 mdb_warn("failed to read errorq at %p", addr); 3297 return (DCMD_ERR); 3298 } 3299 3300 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3301 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3302 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3303 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3304 3305 if (!opt_v) { 3306 mdb_printf("%7llu %7llu %7llu\n", 3307 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3308 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3309 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3310 } else { 3311 mdb_printf("%5s %6lu %6lu %3u %a\n", 3312 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3313 mdb_printf("%38s\n%41s" 3314 "%12s %llu\n" 3315 "%53s %llu\n" 3316 "%53s %llu\n" 3317 "%53s %llu\n" 3318 "%53s %llu\n" 3319 "%53s %llu\n" 3320 "%53s %llu\n" 3321 "%53s %llu\n\n", 3322 "|", "+-> ", 3323 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3324 "DROPPED", EQKSVAL(eq, eqk_dropped), 3325 "LOGGED", EQKSVAL(eq, eqk_logged), 3326 "RESERVED", EQKSVAL(eq, eqk_reserved), 3327 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3328 "COMMITTED", EQKSVAL(eq, eqk_committed), 3329 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3330 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3331 } 3332 3333 return (DCMD_OK); 3334 } 3335 3336 /*ARGSUSED*/ 3337 static int 3338 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3339 { 3340 cpu_t panic_cpu; 3341 kthread_t *panic_thread; 3342 void *panicbuf; 3343 panic_data_t *pd; 3344 int i, n; 3345 3346 if (!mdb_prop_postmortem) { 3347 mdb_warn("panicinfo can only be run on a system " 3348 "dump; see dumpadm(1M)\n"); 3349 return (DCMD_ERR); 3350 } 3351 3352 if (flags & DCMD_ADDRSPEC || argc != 0) 3353 return (DCMD_USAGE); 3354 3355 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3356 mdb_warn("failed to read 'panic_cpu'"); 3357 else 3358 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3359 3360 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3361 mdb_warn("failed to read 'panic_thread'"); 3362 else 3363 mdb_printf("%16s %?p\n", "thread", panic_thread); 3364 3365 panicbuf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3366 pd = (panic_data_t *)panicbuf; 3367 3368 if (mdb_readsym(panicbuf, PANICBUFSIZE, "panicbuf") == -1 || 3369 pd->pd_version != PANICBUFVERS) { 3370 mdb_warn("failed to read 'panicbuf'"); 3371 mdb_free(panicbuf, PANICBUFSIZE); 3372 return (DCMD_ERR); 3373 } 3374 3375 mdb_printf("%16s %s\n", "message", (char *)panicbuf + pd->pd_msgoff); 3376 3377 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3378 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3379 3380 for (i = 0; i < n; i++) 3381 mdb_printf("%16s %?llx\n", 3382 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3383 3384 mdb_free(panicbuf, PANICBUFSIZE); 3385 return (DCMD_OK); 3386 } 3387 3388 static const mdb_dcmd_t dcmds[] = { 3389 3390 /* from genunix.c */ 3391 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 3392 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3393 { "binding_hash_entry", ":", "print driver names hash table entry", 3394 binding_hash_entry }, 3395 { "callout", NULL, "print callout table", callout }, 3396 { "class", NULL, "print process scheduler classes", class }, 3397 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3398 { "did2thread", "? kt_did", "find kernel thread for this id", 3399 did2thread }, 3400 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3401 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3402 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3403 { "lminfo", NULL, "print lock manager information", lminfo }, 3404 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3405 { "panicinfo", NULL, "print panic information", panicinfo }, 3406 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3407 { "pmap", ":[-q]", "print process memory map", pmap }, 3408 { "project", NULL, "display kernel project(s)", project }, 3409 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3410 { "pgrep", "[-n | -o] pattern", "pattern match against all processes", 3411 pgrep }, 3412 { "ptree", NULL, "print process tree", ptree }, 3413 { "seg", ":", "print address space segment", seg }, 3414 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3415 sysevent}, 3416 { "sysevent_channel", "?", "print sysevent channel database", 3417 sysevent_channel}, 3418 { "sysevent_class_list", ":", "print sysevent class list", 3419 sysevent_class_list}, 3420 { "sysevent_subclass_list", ":", 3421 "print sysevent subclass list", sysevent_subclass_list}, 3422 { "system", NULL, "print contents of /etc/system file", sysfile }, 3423 { "task", NULL, "display kernel task(s)", task }, 3424 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 3425 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3426 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 3427 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3428 whereopen }, 3429 3430 /* from zone.c */ 3431 { "zone", "?", "display kernel zone(s)", zoneprt }, 3432 { "zsd", ":[zsd key]", "lookup zsd value from a key", zsd }, 3433 3434 /* from bio.c */ 3435 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3436 3437 /* from contract.c */ 3438 { "contract", "?", "display a contract", cmd_contract }, 3439 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3440 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3441 3442 /* from cpupart.c */ 3443 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3444 3445 /* from cyclic.c */ 3446 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3447 { "cycid", "?", "dump a cyclic id", cycid }, 3448 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3449 { "cyclic", ":", "developer information", cyclic }, 3450 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3451 3452 /* from devinfo.c */ 3453 { "devbindings", "?[-qs] [device-name | major-num]", 3454 "print devinfo nodes bound to device-name or major-num", 3455 devbindings, devinfo_help }, 3456 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3457 devinfo_help }, 3458 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3459 devinfo_audit }, 3460 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3461 devinfo_audit_log }, 3462 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3463 devinfo_audit_node }, 3464 { "devinfo2driver", ":", "find driver name for this devinfo node", 3465 devinfo2driver }, 3466 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3467 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3468 dev2major }, 3469 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3470 dev2minor }, 3471 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3472 devt }, 3473 { "major2name", "?<major-num>", "convert major number to dev name", 3474 major2name }, 3475 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3476 minornodes }, 3477 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3478 modctl2devinfo }, 3479 { "name2major", "<dev-name>", "convert dev name to major number", 3480 name2major }, 3481 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3482 { "softstate", ":<instance>", "retrieve soft-state pointer", 3483 softstate }, 3484 { "devinfo_fm", ":", "devinfo fault managment configuration", 3485 devinfo_fm }, 3486 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3487 devinfo_fmce}, 3488 3489 /* from findstack.c */ 3490 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3491 { "findstack_debug", NULL, "toggle findstack debugging", 3492 findstack_debug }, 3493 3494 /* from kgrep.c + genunix.c */ 3495 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep }, 3496 3497 /* from kmem.c */ 3498 { "allocdby", ":", "given a thread, print its allocated buffers", 3499 allocdby }, 3500 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3501 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3502 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3503 { "kmalog", "?[ fail | slab ]", 3504 "display kmem transaction log and stack traces", kmalog }, 3505 { "kmastat", NULL, "kernel memory allocator stats", kmastat }, 3506 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3507 "of the kmem allocator", kmausers, kmausers_help }, 3508 { "kmem_cache", "?", "print kernel memory caches", kmem_cache }, 3509 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 3510 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 3511 { "kmem_verify", "?", "check integrity of kmem-managed memory", 3512 kmem_verify }, 3513 { "vmem", "?", "print a vmem_t", vmem }, 3514 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 3515 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 3516 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 3517 { "whatis", ":[-abiv]", "given an address, return information", whatis, 3518 whatis_help }, 3519 { "whatthread", ":[-v]", "print threads whose stack contains the " 3520 "given address", whatthread }, 3521 3522 /* from ldi.c */ 3523 { "ldi_handle", "?[-i]", "display a layered driver handle", 3524 ldi_handle, ldi_handle_help }, 3525 { "ldi_ident", NULL, "display a layered driver identifier", 3526 ldi_ident, ldi_ident_help }, 3527 3528 /* from leaky.c + leaky_subr.c */ 3529 { "findleaks", FINDLEAKS_USAGE, 3530 "search for potential kernel memory leaks", findleaks, 3531 findleaks_help }, 3532 3533 /* from lgrp.c */ 3534 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 3535 3536 /* from log.c */ 3537 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 3538 3539 /* from memory.c */ 3540 { "page", "?", "display a summarized page_t", page }, 3541 { "memstat", NULL, "display memory usage summary", memstat }, 3542 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 3543 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 3544 3545 /* from mmd.c */ 3546 { "multidata", ":[-sv]", "display a summarized multidata_t", 3547 multidata }, 3548 { "pattbl", ":", "display a summarized multidata attribute table", 3549 pattbl }, 3550 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 3551 pattr2multidata }, 3552 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 3553 pdesc2slab }, 3554 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 3555 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 3556 slab2multidata }, 3557 3558 /* from modhash.c */ 3559 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 3560 "display information about one or all mod_hash structures", 3561 modhash, modhash_help }, 3562 { "modent", ":[-k | -v | -t type]", 3563 "display information about a mod_hash_entry", modent, 3564 modent_help }, 3565 3566 /* from net.c */ 3567 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 3568 mi }, 3569 { "netstat", "[-av] [-f inet | inet6 | unix] [-P tcp | udp]", 3570 "show network statistics", netstat }, 3571 { "sonode", "?[-f inet | inet6 | unix | #] " 3572 "[-t stream | dgram | raw | #] [-p #]", 3573 "filter and display sonode", sonode }, 3574 3575 /* from nvpair.c */ 3576 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 3577 nvpair_print }, 3578 3579 /* from rctl.c */ 3580 { "rctl_dict", "?", "print systemwide default rctl definitions", 3581 rctl_dict }, 3582 { "rctl_list", ":[handle]", "print rctls for the given proc", 3583 rctl_list }, 3584 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 3585 rctl }, 3586 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 3587 "sequence", rctl_validate }, 3588 3589 /* from sobj.c */ 3590 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 3591 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 3592 mutex_help }, 3593 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 3594 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 3595 { "turnstile", "?", "display a turnstile", turnstile }, 3596 3597 /* from stream.c */ 3598 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 3599 "print an mblk", mblk_prt, mblk_help }, 3600 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 3601 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 3602 mblk2dblk }, 3603 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 3604 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 3605 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 3606 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 3607 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 3608 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 3609 "filter and display STREAM queue", queue, queue_help }, 3610 { "stdata", ":[-q|v] [-f flag] [-F flag]", 3611 "filter and display STREAM head", stdata, stdata_help }, 3612 { "str2mate", ":", "print mate of this stream", str2mate }, 3613 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 3614 { "stream", ":", "display STREAM", stream }, 3615 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 3616 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 3617 "filter and display STREAM sync queue", syncq, syncq_help }, 3618 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 3619 3620 /* from thread.c */ 3621 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 3622 thread_help }, 3623 { "threadlist", "?[-v [count]]", 3624 "display threads and associated C stack traces", threadlist, 3625 threadlist_help }, 3626 3627 /* from tsd.c */ 3628 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 3629 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 3630 3631 /* 3632 * typegraph does not work under kmdb, as it requires too much memory 3633 * for its internal data structures. 3634 */ 3635 #ifndef _KMDB 3636 /* from typegraph.c */ 3637 { "findlocks", ":", "find locks held by specified thread", findlocks }, 3638 { "findfalse", "?[-v]", "find potentially falsely shared structures", 3639 findfalse }, 3640 { "typegraph", NULL, "build type graph", typegraph }, 3641 { "istype", ":type", "manually set object type", istype }, 3642 { "notype", ":", "manually clear object type", notype }, 3643 { "whattype", ":", "determine object type", whattype }, 3644 #endif 3645 3646 /* from vfs.c */ 3647 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 3648 { "pfiles", ":[-fp]", "print process file information", pfiles, 3649 pfiles_help }, 3650 3651 { NULL } 3652 }; 3653 3654 static const mdb_walker_t walkers[] = { 3655 3656 /* from genunix.c */ 3657 { "avl", "given any avl_tree_t *, forward walk all entries in tree", 3658 avl_walk_init, avl_walk_step, avl_walk_fini }, 3659 { "anon", "given an amp, list of anon structures", 3660 anon_walk_init, anon_walk_step, anon_walk_fini }, 3661 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 3662 { "errorq", "walk list of system error queues", 3663 errorq_walk_init, errorq_walk_step, NULL }, 3664 { "errorq_data", "walk pending error queue data buffers", 3665 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 3666 { "allfile", "given a proc pointer, list all file pointers", 3667 file_walk_init, allfile_walk_step, file_walk_fini }, 3668 { "file", "given a proc pointer, list of open file pointers", 3669 file_walk_init, file_walk_step, file_walk_fini }, 3670 { "lock_descriptor", "walk lock_descriptor_t structures", 3671 ld_walk_init, ld_walk_step, NULL }, 3672 { "lock_graph", "walk lock graph", 3673 lg_walk_init, lg_walk_step, NULL }, 3674 { "port", "given a proc pointer, list of created event ports", 3675 port_walk_init, port_walk_step, NULL }, 3676 { "portev", "given a port pointer, list of events in the queue", 3677 portev_walk_init, portev_walk_step, portev_walk_fini }, 3678 { "proc", "list of active proc_t structures", 3679 proc_walk_init, proc_walk_step, proc_walk_fini }, 3680 { "projects", "walk a list of kernel projects", 3681 project_walk_init, project_walk_step, NULL }, 3682 { "seg", "given an as, list of segments", 3683 seg_walk_init, avl_walk_step, avl_walk_fini }, 3684 { "sysevent_pend", "walk sysevent pending queue", 3685 sysevent_pend_walk_init, sysevent_walk_step, 3686 sysevent_walk_fini}, 3687 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 3688 sysevent_walk_step, sysevent_walk_fini}, 3689 { "sysevent_channel", "walk sysevent channel subscriptions", 3690 sysevent_channel_walk_init, sysevent_channel_walk_step, 3691 sysevent_channel_walk_fini}, 3692 { "sysevent_class_list", "walk sysevent subscription's class list", 3693 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 3694 sysevent_class_list_walk_fini}, 3695 { "sysevent_subclass_list", 3696 "walk sysevent subscription's subclass list", 3697 sysevent_subclass_list_walk_init, 3698 sysevent_subclass_list_walk_step, 3699 sysevent_subclass_list_walk_fini}, 3700 { "task", "given a task pointer, walk its processes", 3701 task_walk_init, task_walk_step, NULL }, 3702 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 3703 taskq_walk_init, taskq_walk_step, NULL, NULL }, 3704 3705 /* from zone.c */ 3706 { "zone", "walk a list of kernel zones", 3707 zone_walk_init, zone_walk_step, NULL }, 3708 { "zsd", "walk list of zsd entries for a zone", 3709 zsd_walk_init, zsd_walk_step, NULL }, 3710 3711 /* from bio.c */ 3712 { "buf", "walk the bio buf hash", 3713 buf_walk_init, buf_walk_step, buf_walk_fini }, 3714 3715 /* from contract.c */ 3716 { "contract", "walk all contracts, or those of the specified type", 3717 ct_walk_init, generic_walk_step, NULL }, 3718 { "ct_event", "walk events on a contract event queue", 3719 ct_event_walk_init, generic_walk_step, NULL }, 3720 { "ct_listener", "walk contract event queue listeners", 3721 ct_listener_walk_init, generic_walk_step, NULL }, 3722 3723 /* from cpupart.c */ 3724 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 3725 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 3726 NULL }, 3727 { "cpupart_walk", "walk the set of cpu partitions", 3728 cpupart_walk_init, cpupart_walk_step, NULL }, 3729 3730 /* from ctxop.c */ 3731 { "ctxop", "walk list of context ops on a thread", 3732 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 3733 3734 /* from cyclic.c */ 3735 { "cyccpu", "walk per-CPU cyc_cpu structures", 3736 cyccpu_walk_init, cyccpu_walk_step, NULL }, 3737 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 3738 cycomni_walk_init, cycomni_walk_step, NULL }, 3739 { "cyctrace", "walk cyclic trace buffer", 3740 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 3741 3742 /* from devinfo.c */ 3743 { "binding_hash", "walk all entries in binding hash table", 3744 binding_hash_walk_init, binding_hash_walk_step, NULL }, 3745 { "devinfo", "walk devinfo tree or subtree", 3746 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 3747 { "devinfo_audit_log", "walk devinfo audit system-wide log", 3748 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 3749 devinfo_audit_log_walk_fini}, 3750 { "devinfo_audit_node", "walk per-devinfo audit history", 3751 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 3752 devinfo_audit_node_walk_fini}, 3753 { "devinfo_children", "walk children of devinfo node", 3754 devinfo_children_walk_init, devinfo_children_walk_step, 3755 devinfo_children_walk_fini }, 3756 { "devinfo_parents", "walk ancestors of devinfo node", 3757 devinfo_parents_walk_init, devinfo_parents_walk_step, 3758 devinfo_parents_walk_fini }, 3759 { "devinfo_siblings", "walk siblings of devinfo node", 3760 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 3761 { "devi_next", "walk devinfo list", 3762 NULL, devi_next_walk_step, NULL }, 3763 { "devnames", "walk devnames array", 3764 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 3765 { "minornode", "given a devinfo node, walk minor nodes", 3766 minornode_walk_init, minornode_walk_step, NULL }, 3767 { "softstate", 3768 "given an i_ddi_soft_state*, list all in-use driver stateps", 3769 soft_state_walk_init, soft_state_walk_step, 3770 NULL, NULL }, 3771 { "softstate_all", 3772 "given an i_ddi_soft_state*, list all driver stateps", 3773 soft_state_walk_init, soft_state_all_walk_step, 3774 NULL, NULL }, 3775 { "devinfo_fmc", 3776 "walk a fault management handle cache active list", 3777 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 3778 3779 /* from kmem.c */ 3780 { "allocdby", "given a thread, walk its allocated bufctls", 3781 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3782 { "bufctl", "walk a kmem cache's bufctls", 3783 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 3784 { "bufctl_history", "walk the available history of a bufctl", 3785 bufctl_history_walk_init, bufctl_history_walk_step, 3786 bufctl_history_walk_fini }, 3787 { "freedby", "given a thread, walk its freed bufctls", 3788 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3789 { "freectl", "walk a kmem cache's free bufctls", 3790 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 3791 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 3792 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3793 { "freemem", "walk a kmem cache's free memory", 3794 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 3795 { "freemem_constructed", "walk a kmem cache's constructed free memory", 3796 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3797 { "kmem", "walk a kmem cache", 3798 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 3799 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 3800 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 3801 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 3802 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 3803 { "kmem_log", "walk the kmem transaction log", 3804 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 3805 { "kmem_slab", "given a kmem cache, walk its slabs", 3806 kmem_slab_walk_init, kmem_slab_walk_step, NULL }, 3807 { "kmem_slab_partial", 3808 "given a kmem cache, walk its partially allocated slabs (min 1)", 3809 kmem_slab_walk_partial_init, kmem_slab_walk_step, NULL }, 3810 { "vmem", "walk vmem structures in pre-fix, depth-first order", 3811 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 3812 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 3813 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3814 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 3815 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3816 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 3817 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 3818 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 3819 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3820 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 3821 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3822 3823 /* from ldi.c */ 3824 { "ldi_handle", "walk the layered driver handle hash", 3825 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 3826 { "ldi_ident", "walk the layered driver identifier hash", 3827 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 3828 3829 /* from leaky.c + leaky_subr.c */ 3830 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 3831 "stack trace", 3832 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 3833 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 3834 "leaks w/ same stack trace", 3835 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 3836 3837 /* from lgrp.c */ 3838 { "lgrp_cpulist", "given an lgrp, walk cpus", 3839 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, 3840 NULL }, 3841 { "lgrptbl", "walk the lgrp table", 3842 lgrp_walk_init, lgrp_walk_step, NULL }, 3843 3844 /* from list.c */ 3845 { "list", "walk a linked list", 3846 list_walk_init, list_walk_step, list_walk_fini }, 3847 3848 /* from memory.c */ 3849 { "page", "walk all pages, or those from the specified vnode", 3850 page_walk_init, page_walk_step, page_walk_fini }, 3851 { "memlist", "walk specified memlist", 3852 NULL, memlist_walk_step, NULL }, 3853 { "swapinfo", "walk swapinfo structures", 3854 swap_walk_init, swap_walk_step, NULL }, 3855 3856 /* from mmd.c */ 3857 { "pattr", "walk pattr_t structures", pattr_walk_init, 3858 mmdq_walk_step, mmdq_walk_fini }, 3859 { "pdesc", "walk pdesc_t structures", 3860 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3861 { "pdesc_slab", "walk pdesc_slab_t structures", 3862 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3863 3864 /* from modhash.c */ 3865 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 3866 modhash_walk_step, NULL }, 3867 { "modent", "walk list of entries in a given mod_hash", 3868 modent_walk_init, modent_walk_step, modent_walk_fini }, 3869 { "modchain", "walk list of entries in a given mod_hash_entry", 3870 NULL, modchain_walk_step, NULL }, 3871 3872 /* from net.c */ 3873 { "ar", "walk ar_t structures using MI", 3874 mi_payload_walk_init, mi_payload_walk_step, 3875 mi_payload_walk_fini, &mi_ar_arg }, 3876 { "icmp", "walk ICMP control structures using MI", 3877 mi_payload_walk_init, mi_payload_walk_step, 3878 mi_payload_walk_fini, &mi_icmp_arg }, 3879 { "ill", "walk ill_t structures using MI", 3880 mi_payload_walk_init, mi_payload_walk_step, 3881 mi_payload_walk_fini, &mi_ill_arg }, 3882 { "mi", "given a MI_O, walk the MI", 3883 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 3884 { "sonode", "given a sonode, walk its children", 3885 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 3886 3887 /* from nvpair.c */ 3888 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 3889 nvpair_walk_init, nvpair_walk_step, NULL }, 3890 3891 /* from rctl.c */ 3892 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 3893 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 3894 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 3895 rctl_set_walk_step, NULL }, 3896 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 3897 rctl_val_walk_init, rctl_val_walk_step }, 3898 3899 /* from sobj.c */ 3900 { "blocked", "walk threads blocked on a given sobj", 3901 blocked_walk_init, blocked_walk_step, NULL }, 3902 { "wchan", "given a wchan, list of blocked threads", 3903 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 3904 3905 /* from stream.c */ 3906 { "b_cont", "walk mblk_t list using b_cont", 3907 mblk_walk_init, b_cont_step, mblk_walk_fini }, 3908 { "b_next", "walk mblk_t list using b_next", 3909 mblk_walk_init, b_next_step, mblk_walk_fini }, 3910 { "qlink", "walk queue_t list using q_link", 3911 queue_walk_init, queue_link_step, queue_walk_fini }, 3912 { "qnext", "walk queue_t list using q_next", 3913 queue_walk_init, queue_next_step, queue_walk_fini }, 3914 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 3915 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 3916 { "readq", "walk read queue side of stdata", 3917 str_walk_init, strr_walk_step, str_walk_fini }, 3918 { "writeq", "walk write queue side of stdata", 3919 str_walk_init, strw_walk_step, str_walk_fini }, 3920 3921 /* from thread.c */ 3922 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 3923 deathrow_walk_init, deathrow_walk_step, NULL }, 3924 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 3925 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3926 { "cpupart_dispq", 3927 "given a cpupart_t, walk threads in dispatcher queues", 3928 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3929 { "lwp_deathrow", "walk lwp_deathrow", 3930 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 3931 { "thread", "global or per-process kthread_t structures", 3932 thread_walk_init, thread_walk_step, thread_walk_fini }, 3933 { "thread_deathrow", "walk threads on thread_deathrow", 3934 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 3935 3936 /* from tsd.c */ 3937 { "tsd", "walk list of thread-specific data", 3938 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 3939 3940 /* 3941 * typegraph does not work under kmdb, as it requires too much memory 3942 * for its internal data structures. 3943 */ 3944 #ifndef _KMDB 3945 /* from typegraph.c */ 3946 { "typeconflict", "walk buffers with conflicting type inferences", 3947 typegraph_walk_init, typeconflict_walk_step }, 3948 { "typeunknown", "walk buffers with unknown types", 3949 typegraph_walk_init, typeunknown_walk_step }, 3950 #endif 3951 3952 /* from vfs.c */ 3953 { "vfs", "walk file system list", 3954 vfs_walk_init, vfs_walk_step }, 3955 { NULL } 3956 }; 3957 3958 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 3959 3960 const mdb_modinfo_t * 3961 _mdb_init(void) 3962 { 3963 if (mdb_readvar(&devinfo_root, "top_devinfo") == -1) { 3964 mdb_warn("failed to read 'top_devinfo'"); 3965 return (NULL); 3966 } 3967 3968 if (findstack_init() != DCMD_OK) 3969 return (NULL); 3970 3971 kmem_init(); 3972 3973 return (&modinfo); 3974 } 3975 3976 void 3977 _mdb_fini(void) 3978 { 3979 /* 3980 * Force ::findleaks to let go any cached memory 3981 */ 3982 leaky_cleanup(1); 3983 } 3984